Source code for opengl.decors

##  This file is part of pyFormex 2.0  (Mon Sep 14 12:29:05 CEST 2020)
##  pyFormex is a tool for generating, manipulating and transforming 3D
##  geometrical models by sequences of mathematical operations.
##  Home page:
##  Project page:
##  Copyright 2004-2020 (C) Benedict Verhegghe (
##  Distributed under the GNU General Public License version 3 or later.
##  This program is free software: you can redistribute it and/or modify
##  it under the terms of the GNU General Public License as published by
##  the Free Software Foundation, either version 3 of the License, or
##  (at your option) any later version.
##  This program is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  GNU General Public License for more details.
##  You should have received a copy of the GNU General Public License
##  along with this program.  If not, see
"""Decorations for the OpenGL canvas.

This module contains a collection of predefined decorations that
can be useful additions to a geometry scene rendering.

import pyformex as pf
from pyformex import simple
from pyformex.formex import Formex
from . import colors
from .drawable import Actor
from .textext import FontTexture
from .sanitize import saneLineWidth

import numpy as np

### Decorations ###############################################

[docs]class BboxActor(Actor): """Create a bounding box actor. A bounding box is a hexaeder in global axes. The hexaeder is drawn in wireframe mode with default color black. Parameters ---------- bbox: :term:`coords_like` A Coords with two points: the minimal and maximal coordinates of the bounding box to be drawn. **kargs: keyword parameters Keyword parameters like in the :func:`draw` funnction. The `mode`, `lighting`, `opak` parameters are fixed and can not be used. Returns ------- :class:`Actor` An Actor representing a bounding box. """ def __init__(self, bbox, **kargs): F = simple.cuboid(*bbox) Actor.__init__(self, F, mode='wireframe', lighting=False, opak=True, **kargs)
[docs]class Rectangle(Actor): """A 2D-rectangle on the canvas.""" def __init__(self, x1, y1, x2, y2, **kargs): F = Formex([[[x1, y1], [x2, y1], [x2, y2], [x1, y2]]]) Actor.__init__(self, F, rendertype=2, **kargs)
[docs]class Line(Actor): """A 2D-line on the canvas. Parameters: - `x1, y1, x2, y2`: floats: the viewport coordinates of the endpoints of the line - `kargs`: keyword arguments to be passed to the :class:`Actor`. """ def __init__(self, x1, y1, x2, y2, **kargs): F = Formex([[[x1, y1], [x2, y2]]]) Actor.__init__(self, F, rendertype=2, **kargs)
[docs]class Lines(Actor): """A collection of straight lines on the canvas. Parameters: - `data`: data that can initialize a 2-plex Formex: the viewport coordinates of the 2 endpoints of the n lines. The third coordinate is ignored. - `kargs`: keyword arguments to be passed to the :class:`Actor`. """ def __init__(self, data, color=None, linewidth=None, **kargs): """Initialize a Lines.""" F = Formex(data) Actor.__init__(self, F, rendertype=2, **kargs)
[docs]class Grid2D(Actor): """A 2D-grid on the canvas.""" def __init__(self, x1, y1, x2, y2, nx=1, ny=1, lighting=False, rendertype=2, **kargs): F = Formex([[[x1, y1], [x1, y2]]]).replic(nx+1, step=float(x2-x1)/nx, dir=0) + \ Formex([[[x1, y1], [x2, y1]]]).replic(ny+1, step=float(y2-y1)/ny, dir=1) Actor.__init__(self, F, rendertype=rendertype, lighting=lighting, **kargs)
[docs]class ColorLegend(Actor): """A labeled colorscale legend. When showing the distribution of some variable over a domain by means of a color encoding, the viewer expects some labeled colorscale as a guide to decode the colors. The ColorLegend decoration provides such a color legend. This class only provides the visual details of the scale. The conversion of the numerical values to the matching colors is provided by the :class:`colorscale.ColorScale` class. Parameters: - `colorscale`: a :class:`colorscale.ColorScale` instance providing conversion between numerical values and colors - `ncolors`: int: the number of different colors to use. - `x,y,w,h`: four integers specifying the position and size of the color bar rectangle - `ngrid`: int: number of intervals for the grid lines to be shown. If > 0, grid lines are drawn around the color bar and between the ``ngrid`` intervals. If = 0, no grid lines are drawn. If < 0 (default), the value is set equal to the number of colors or to 0 if this number is higher than 50. - `linewidth`: float: width of the grid lines. If not specified, the current canvas line width is used. - `nlabel`: int: number of intervals for the labels to be shown. If > 0, labels will be displayed at `nlabel` interval borders, if possible. The number of labels displayed thus will be ``nlabel+1``, or less if the labels would otherwise be too close or overlapping. If 0, no labels are shown. If < 0 (default), a default number of labels is shown. - `size`: font size to be used for the labels - `font`: font to be used for the labels. It can be a :class:`textext.FontTexture` or a string with the path to a monospace .ttf font. If unspecified, the default font is used. - `dec`: int: number of decimals to be used in the labels - `scale`: int: exponent of 10 for the scaling factor of the label values. The displayed values will be equal to the real values multiplied with ``10**scale``. - `lefttext`: bool: if True, the labels will be drawn to the left of the color bar. The default is to draw the labels at the right. Some practical guidelines: - Large numbers of colors result in a quasi continuous color scheme. - With a high number of colors, grid lines disturb the image, so either use ``ngrid=0`` or ``ngrid=`` to only draw a border around the colors. - With a small number of colors, set ``ngrid = len(colorlegend.colors)`` to add gridlines between each color. Without it, the individual colors in the color bar may seem to be not constant, due to an optical illusion. Adding the grid lines reduces this illusion. - When using both grid lines and labels, set both ``ngrid`` and ``nlabel`` to the same number or make one a multiple of the other. Not doing so may result in a very confusing picture. - The best practice is to either use a low number of colors (<=20) and the default ``ngrid`` and ``nlabel``, or to use a high number of colors (>=200) and the default values or a low value for ``nlabel``. The `ColorScale` example script provides opportunity to experiment with different settings. """ def __init__(self, colorscale, ncolors, x, y, w, h, ngrid=0, linewidth=None, nlabel=-1, size=18, font=None, textcolor=None, dec=2, scale=0, lefttext=False, **kargs): """Initialize the ColorLegend.""" from pyformex.gui import colorscale as cs = cs.ColorLegend(colorscale, ncolors) self.x = float(x) self.y = float(y) self.w = float(w) self.h = float(h) self.ngrid = int(ngrid) if self.ngrid < 0: self.ngrid = ncolors if self.ngrid > 50: self.ngrid = 0 self.linewidth = saneLineWidth(linewidth) self.nlabel = int(nlabel) if self.nlabel < 0: if self.ngrid > 0: self.nlabel = self.ngrid else: self.nlabel = ncolors self.dec = dec # number of decimals self.scale = 10 ** scale # scale all numbers with 10**scale self.lefttext = lefttext self.xgap = 4 # hor. gap between color bar and labels self.ygap = 4 # (min) vert. gap between labels F = simple.rectangle(1, ncolors, self.w, self.h).trl([self.x, self.y, 0.]) Actor.__init__(self, F, rendertype=2, lighting=False,, **kargs) if self.ngrid > 0: F = simple.rectangle(1, self.ngrid, self.w, self.h).trl([self.x, self.y, 0.]) G = Actor(F, rendertype=2, lighting=False,, linewidth=self.linewidth, mode='wireframe') self.children.append(G) # labels # print("LABELS: %s" % self.nlabel) if self.nlabel > 0: from pyformex.opengl import textext if font is None: font = FontTexture.default() elif isinstance(font, str): font = FontTexture(font, size) self.font = font fh = self.font.height pf.debug("FONT HEIGHT %s" % fh, pf.DEBUG.DRAW) if textcolor is None: textcolor = pf.canvas.settings['fgcolor'] if self.lefttext: x = F.coords[0, 0, 0] - self.xgap gravity = 'W' else: x = F.coords[0, 1, 0] + self.xgap gravity = 'E' # minimum label distance dh = fh + self.ygap da = self.h / self.nlabel # Check if labels will fit if da < dh and self.nlabel == ncolors: # reduce number of labels self.nlabel = int(self.h/dh) da = self.h / self.nlabel vals = cs.ColorLegend(colorscale, self.nlabel).limits #print("VALS",vals) ypos = self.y + da * np.arange(self.nlabel+1) yok = self.y - 0.01*dh for (y, v) in zip(ypos, vals): #print(y,v,yok) if y >= yok: t = textext.Text(("%%.%df" % self.dec) % (v*self.scale), (x, y), size=size, gravity=gravity, color=textcolor) self.children.append(t) yok = y + dh
[docs]def Grid(nx=(1, 1, 1), ox=(0.0, 0.0, 0.0), dx=(1.0, 1.0, 1.0), lines='b', planes='b',, planecolor=colors.white, alpha=0.3, **kargs): """Creates a (set of) grid(s) in (some of) the coordinate planes. Parameters: - `nx`: a list of 3 integers, specifying the number of divisions of the grid in the three coordinate directions. A zero value may be specified to avoid the grid to extend in that direction. Thus, setting the last value to zero will result in a planar grid in the xy-plane. - `ox`: a list of 3 floats: the origin of the grid. - `dx`: a list of 3 floats: the step size in each coordinate direction. - `planes`: one of 'first', 'box', 'all', 'no' (the string can be shortened to the first chartacter): specifies how many planes are drawn in each direction: 'f' only draws the first, 'b' draws the first and the last, resulting in a box, 'a' draws all planes, 'n' draws no planes. Returns a list with up to two Meshes: the planes, and the lines. """ from pyformex import simple from pyformex.olist import List from pyformex.mesh import Mesh G = List() planes = planes[:1].lower() P = [] L = [] for i in range(3): n0, n1, n2 = np.roll(nx, i) d0, d1, d2 = np.roll(dx, i) if n0*n1: if planes != 'n': M = simple.rectangle(b=n0*d0, h=n1*d1) if n2: if planes == 'b': M = M.replic(2, dir=2, step=n2*d2) elif planes == 'a': M = M.replic(n2+1, dir=2, step=d2) P.append(M.rollAxes(-i).toMesh()) if lines != 'n': M = Formex('l:1').scale(n0*d0).replic(n1+1, dir=1, step=d1) + \ Formex('l:2').scale(n1*d1).replic(n0+1, dir=0, step=d0) if n2: if lines == 'b': M = M.replic(2, dir=2, step=n2*d2) elif lines == 'a': M = M.replic(n2+1, dir=2, step=d2) L.append(M.rollAxes(-i).toMesh()) if P: M = Mesh.concatenate(P) M.attrib(name='__grid_planes__', mode='flat', lighting=False, color=planecolor, alpha=alpha, **kargs) G.append(M) if L: M = Mesh.concatenate(L) M.attrib(name='__grid_lines__', mode='flat', lighting=False, color=linecolor, alpha=0.6, **kargs) G.append(M) return G.trl(ox)
__all__ = ['BboxActor', 'Rectangle', 'Line', 'Lines', 'Grid2D', 'ColorLegend', 'Grid'] # End