
Distributed Key Generation and Threshold
Cryptography for OpenPGP

Heiko Stamer

HeikoStamer@gmx.net

76F7 3011 329D 27DB 8D7C 3F97 4F58 4EB8 FB2B E14F

HeikoStamer.dkg@gmx.net

9EBD C46A B510 F909 21DB 84B2 DD28 EE5A E478 3280

Datengarten/81, October 2017, Berlin

Background

Source: Bruno Sanchez-Andrade Nuño, CC BY 2.0

Phillip Rogaway: The Moral Character of Cryptographic Work
http://web.cs.ucdavis.edu/~rogaway/papers/moral.html

We need to realize popular services in a secure,
distributed, and decentralized way, powered by free
software and free/open hardware.

https://www.flickr.com/photos/64887888@N00/12556730895
https://creativecommons.org/licenses/by/2.0/
http://web.cs.ucdavis.edu/~rogaway/papers/moral.html

What is the problem?

Where is the problem?

Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer.
Stealing Keys from PCs using a Radio: Cheap Electromagnetic
Attacks on Windowed Exponentiation. http://eprint.iacr.org/2015/170

Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2015.

Vulnerable software: GnuPG ď 1.4.18, Libgcrypt ď 1.6.2 (CVE-2014-3591)

http://eprint.iacr.org/2015/170

Where is the problem?

Better side-channel attacks on ECDH and ECDSA followed . . .

Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer.
ECDH key-extraction via low-bandwidth electromagnetic attacks
on PCs. https://eprint.iacr.org/2016/129

RSA Conference Cryptographers’ Track (CT-RSA) 2016.
Costs: $ 3000, Vulnerable software: Libgcrypt ď 1.6.3 (CVE-2015-7511)

https://eprint.iacr.org/2016/129

Mitigation measures

Make side-channel attacks difficult

‚ Hardware: electromagnetic shielding or tamper-proof HSM
‚ Software: constant-time operations on secret key material

Splitting/Sharing of private keys

‚ Example ICANN/IANA: DNSSEC root zone signing key
https://www.cloudflare.com/dns/dnssec/root-signing-ceremony/

https://www.iana.org/dnssec/ceremonies/

‚ Example Debian GNU/Linux: FTP archive signing key
https://ftp-master.debian.org/keys.html

http://www.digital-scurf.org/software/libgfshare

The program gfshare (package libgfshare-bin) (a Shamir’s secret
sharing scheme implementation) is used to produce 5 shares of
which 3 are needed to recover the secret key.

Problems: trusted hardware needed, more side-channels issues
possible (e.g. CVE-2016-6316), no verifiable secret sharing (VSS)

https://www.cloudflare.com/dns/dnssec/root-signing-ceremony/
https://www.iana.org/dnssec/ceremonies/
https://ftp-master.debian.org/keys.html
http://www.digital-scurf.org/software/libgfshare

Threshold Cryptography

Boy86 Boyd: Digital Multisignatures. Cryptography and Coding, 1986.

Des87 Desmedt: Society and Group Oriented Cryptography: A New Concept.
CRYPTO 1987.

DF89 Desmedt, Frankel: Threshold Cryptosystems. CRYPTO 1989.

P
x

one secret and single-party
algorithms (Generate, Decrypt, Sign)

P0
x0

P1
x1

P2
x2

P3
x3

P4
x4

P5
x5

P6
x6

Ex.: t = 3,n = 7

shared secret and distributed
algorithms with threshold t ă n

Distributed Key Generation (DKG)

GJKR07 Gennaro, Jarecki, Krawczyk, Rabin: Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. JoC 20(1) 2007.

Preliminaries: set of n parties P1, . . . ,Pn with partially
synchronous communication (e.g. synchronized clocks)

Assumptions:

‚ computing discrete logarithms modulo large primes is hard
‚ let p,q large primes such that q � p´ 1; then Gq denotes

the subgroup of elements from Z˚p of order q and let g,h
generators of Gq such that logg h is not known to anybody

Adversary:

‚ is malicious; can corrupt up to t parties, where t ă n/2
(optimal threshold or t-resilience for a synchronous model)

‚ is static, i.e., chooses corrupted parties at the beginning
‚ is rushing, i.e., speaks last in each round of communication

Properties of Distributed Key Generation (DKG)

GJKR07 Gennaro, Jarecki, Krawczyk, Rabin: Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. JoC 20(1) 2007.

Security: A DKG protocol is called t-secure, if in presence of an
attacker A that corrupts at most t parties the following
requirements for correctness and secrecy are satisfied:

(C1) all subsets of t+ 1 shares provided by honest parties (i.e. not
corrupted by A) define the same unique secret key x P Gq,

(C2) all honest parties have the same public key y = gx mod p,
where x is the unique secret key guaranteed by (C1),

(C3) x is uniformly distributed in Gq,
(S1) no information on x can be learned by the adversary A,

except for what is implied by the public key y = gx mod p

Robustness: construction of y and reconstruction of x is possible
in presence of ď t malicious parties that try to foil computation

Properties of Distributed Key Generation (DKG)

GJKR07 Gennaro, Jarecki, Krawczyk, Rabin: Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. JoC 20(1) 2007.

Security: A DKG protocol is called t-secure, if in presence of an
attacker A that corrupts at most t parties the following
requirements for correctness and secrecy are satisfied:

(C1) all subsets of t+ 1 shares provided by honest parties (i.e. not
corrupted by A) define the same unique secret key x P Gq,

(C2) all honest parties have the same public key y = gx mod p,
where x is the unique secret key guaranteed by (C1),

(C3) x is uniformly distributed in Gq,
(S1) no information on x can be learned by the adversary A,

except for what is implied by the public key y = gx mod p

Robustness: construction of y and reconstruction of x is possible
in presence of ď t malicious parties that try to foil computation

Protocol New-DKG [GJKR07]

Generating common secret x =
ř

iPQUAL zi mod q:

1. Each party Pi performs Pedersen-VSS of secret zi as a dealer
(a) Choose random polynomials fi(z) = ai0 +ai1z + ¨ ¨ ¨+aitz

t and
f 1i(z) = bi0 + bi1z + ¨ ¨ ¨+ bitz

t over Zq, let zi = ai0 = fi(0),

broadcast commitment Cik = gaikhbik mod p for k = 0, . . . , t, and
send shares sij = fi(j) mod q and s 1ij = f

1
i(j) mod q to party Pj

(b) Each party Pj verifies that gsijh
s1ij =

śt
k=0(Cik)

jk mod p
(c), (d) Resolution of received complaints from verification of the shares

2. Each party builds the set QUAL (non-disqualified parties)
3. Each party Pi computes secret share as xi =

ř

jPQUAL sji mod q

Extracting y = gx mod p: (only non-disqualified parties, i.e., i P QUAL)

4. Each party Pi exposes yi = g
zi mod p via Feldman-VSS:

(a) Each party Pi broadcasts Aik = gaik mod p for k = 0, . . . , t

(b) Each party Pj verifies that gsij =
śt
k=0(Aik)

jk mod p
(c) Run reconstruction to compute z`, f`(z),A`k, if P` corrupted

Set yi = Ai0 = gzi mod p and compute y =
ś

iPQUAL yi mod p

Threshold Decryption (ElGamal Cryptosystem)

CGS97 Cramer, Gennaro, Schoenmakers: A Secure and Optimally
Efficient Multi-Authority Election Scheme. EUROCRYPT 1997.

Encryption: message m P Gq is encrypted as (gk,ykm), where

y P Gq is the corresponding public key and k
R
P Zq a fresh secret

Decryption:

1. Each Pi broadcasts its decryption share ri = (gk)xi mod p
together with a zero-knowledge proof of knowledge that
shows logg vi = log(gk) ri, where vi = g

xi mod p is a public
verification key that can be computed after New-DKG 4.(c):

vi =
ź

jPQUAL

t
ź

k=0

(Ajk)
ik mod p

2. Combine t+ 1 correct decryption shares by using Lagrange

interpolation in exponent: m = (ykm)/
ś

jPΛ r
λj,Λ
j mod p

Interactive Proof Systems

GMR85 Goldwasser, Micali, Rackoff: The Knowledge Complexity of
Interactive Proof Systems. STOC 1985. (SIAM J. Comput. 18(1) 1989)

Probabilistic Interactive Proof System (IP) for a statement x P L

.

rw

Instructions for P

.

rw

Instructions for V

¨ ¨ ¨ ¨ ¨ ¨

.

.
.

r r

w
r w

r

r r

ITM is computationally unbounded ITM is PPT-bounded in |x|

input tape

communication tapes

work tape work tape

random tape random tape

Completeness: if the statement is true, the honest verifier V will
be convinced of this fact by an honest prover P

Soundness: if the statement is false, no cheating prover P can
convince the honest verifier V that it is true, except
with some small probability (soundness error)

Zero-Knowledge Proof
Probabilistic Interactive Proof System (IP) for a statement x P L

.

rw

Instructions for P

.

rw

Instructions for V

¨ ¨ ¨ ¨ ¨ ¨

.

.
.

r r

w
r w

r

r r

ITM is computationally unbounded ITM is PPT-bounded in |x|

input tape

communication tapes

work tape work tape

random tape random tape

Zero-Knowledge: if the statement is true, no cheating verifier V
learns anything other than the fact that x P L

Theorem (Goldreich, Micali, Wigderson 1986; Ben-Or et al. 1988)

NP Ď IPCZK, if one-way functions exist; IP = IPCZK, if one-way functions exist.

Theorem (Shamir 1990)

IP = PSPACE.

Example: ZK Proof of Graph Isomorphism P IPPZK

input: graphs G1,G2, statement: G1 – G2, secret: π s.t. G1 = π(G2)

P: σ
R
P t1, 2u, ψ

R
P Π(Gσ), compute H = ψ(Gσ), send H to V

V: (challenge) τ
R
P t1, 2u, send τ to P

P: compute ρ =

$

&

%

ψ if τ = σ
ψ ˝ π if τ ‰ σ and σ = 1
ψ ˝ π´1 if τ ‰ σ and σ = 2

, send ρ to V

V: check whether H = ρ(Gτ) holds and accept resp. reject

Completeness: honest prover P can always construct ρ s.t. H = ρ(Gτ)

Soundness: error prob. 1/2 (can be reduced by sequential repetitions)

Zero-Knowledge: @V : DS (simulator, expected PPT) with identically
distributed output as the view of the above protocol

(simulator S picks σ1
R
P t1, 2u,ψ1

R
P Π(Gσ1), computes H1 = ψ1(Gσ1) and

outputs transcript (H1, τ1,ψ1), if V’s challenge τ = σ1, otherwise restart)

Zero-Knowledge Proof of Knowledge

GMR85 Goldwasser, Micali, Rackoff: The Knowledge Complexity of Interactive Proof
Systems. STOC 1985.

FFS87 Feige, Fiat, Shamir: Zero-Knowledge Proofs of Identity. STOC 1987.

BG92 Bellare, Goldreich: On Defining Proofs of Knowledge. CRYPTO 1992.

L P NP: show that P “knows” a corresponding short witness ω for
proving membership of each x P L without revealing these secrets

Definition (informal)

The protocol Π is a Zero-Knowledge Proof of Knowledge (ZKPoK), iff

1 Π is an Interactive Proof System with zero-knowledge property,

2 for any ITM P that make V accept the input x there exists a
PPT-bounded knowledge extractor M that can rewind the execution
of P (i.e. reset the head and content of work tape, the heads of
input and random tape and the state of its finite control unit) and
thus extract a witness ω showing membership x P L.

Σ-protocol: three-round ZKPoK (P: commitment, V : challenge, P: response)

Example: Equality of Discrete Logarithms (Σ-protocol)

CP92 Chaum, Pedersen: Wallet Databases with Observers. CRYPTO 1992.

Threshold Decryption [CGS97] (ElGamal Cryptosystem)

Let p and q be large primes such that q � p´ 1; then Gq denotes the unique
subgroup of elements from Z˚p of order q and g denotes a generator of Gq.

public verification key of Pi: vi = g
xi mod p

decryption share of Pi: ri = (gk)xi mod p

input: p,q,g, vi,g
k, ri, statement: logg vi = log(gk) ri (mod p)

P: s
R
P Zq, commit to (a,b) = (gs, (gk)s), send (a,b) to V

V: (challenge) c
R
P Zq and send c to P

P: compute d = cxi + s mod q and send d to V

V: accept, if gd = a(vi)
c (mod p) and (gk)d = b(ri)

c (mod p)

Knowledge Extractor: rewind P to get (c1,d1) and (c2,d2) for same s;

since c1 ‰ c2 it can compute xi =
d1´d2

c1´c2
= (c1xi+s)´(c2xi+s)

c1´c2
mod q

Security of ElGamal in Z˚p (e.g. in OpenPGP)

Sakurai, Shizuya: Relationships among the Computational Powers of
Breaking Discrete Log Cryptosystems. EUROCRYPT 1995.

Sakurai, Shizuya: A Structural Comparison of the Computational
Difficulty of Breaking Discrete Log Cryptosystems. JoC 11(1), 1998.

‚ Computing m P Z˚p from given g,y,gk,ykm P Z˚p is hard, iff
the Computational Diffie-Hellman (CDH) problem is hard

 ElGamal in Z˚p is OW-CPA secure under CDH assumption

Tsiounis, Yung: On the Security of ElGamal based Encryption.
PKC 1998.

‚ Distinguishing m, m̄ P Gq given g,y,gk,ykm,gk̄,yk̄m̄ P Gq
is hard, iff the Decision Diffie-Hellman (DDH) problem is hard

 ElGamal in Gq is IND-CPA secure under DDH assumption

Threshold Signature Scheme (DSA/DSS Variant)

CGJKR99 Canetti, Gennaro, Jarecki, Krawczyk, Rabin: Adaptive
Security for Threshold Cryptosystems. CRYPTO 1999.

Preliminaries: set of n parties P1, . . . ,Pn with partially
synchronous communication (e.g. synchronized clocks)

Assumptions:

‚ computing discrete logarithms modulo large primes is hard
‚ let p,q large primes such that q � p´ 1; then Gq denotes

the subgroup of elements from Z˚p of order q and let g,h
generators of Gq such that logg h is not known to anybody

Adversary:

‚ can corrupt up to pt parties, where pt ă n/2 (optimal
threshold or pt-resilience for a synchronous model)

‚ is adaptive, i.e., can choose corrupted parties during attack
‚ is rushing, i.e., speaks last in each round of communication

Protocol DL-Key-Gen (optimally-resilient) [CGJKR99]

Generating common secret px =
ř

iP{QUAL
pzi mod q:

1. Parties execute Joint-RVSS (i.e. each Pi performs a Pedersen-VSS

of random secret pzi as a dealer) and get pCik, {QUAL, shares pxi, px1i

Extracting py = gpx mod p: (only non-disqualified parties, i.e., i P {QUAL)

2. Each party Pi broadcasts pAi = g
pzi mod p and pBi = h

pf1i(0) mod p
such that pCi0 = pAi ¨ pBi (mod p) holds

3.–6. Each party Pi proves with a distributed zero-knowledge proof of
knowledge that the above split of the commitment pCi0 is correct

7. Run reconstruction to compute pzj and pAj, if some Pj are corrupted

8. The public value py is set to py =
ś

iP{QUAL
pAi mod p

9. Pi erases all secrets generated in this protocol aside from pxi and px1i

Protocol DSS-Sig-Gen (ě 2pt+ 1, not optimal) [CGJKR99]

1. Generate r = gk
´1

mod p mod q:

(a) Parties execute Joint-RVSS to generate k and get shares ki, k
1
i

(b) Parties execute DL-Key-Gen to generate a and get ga and ai, a
1
i

(c) Back-up ki and ai using Pedersen-VSS; Pi is required to prove
correctness with a distributed zero-knowledge proof of knowledge
(at least pt+ 1 sound proofs and corrupted parties will be ignored)

(d) Each Pi shares pvi = aiki mod q using Pedersen-VSS and proves
correctness with a distributed zero-knowledge proof of knowledge

(e) Run reconstruction of aj and kj, if some Pj are corrupted, and set
pvj = ajkj; bad values are sieved out using commitments from (c)

(f) Each Pi broadcasts its shares of the pt-degree polynomial, which is
a linear combination of the shares pv1, . . . , pv2pt+1 received in step (d)

(g) Each Pi computes locally µ´1 and r = (ga)µ
´1

mod p mod q

2. Generate s = k(m+ pxr) mod q:

‚ Parties perform steps equivalent to 1.(c)–(f), with the values
m+ pxir taking the role of ai’s, and with s taking the role of µ
(in step 1.(c) only the back-up of m+ pxir is required; reuse ki’s)

3. Party Pi erases all secrets generated in this protocol

Implementation for OpenPGP [RFC4880]

Case 1: Each party Pi has a shared primary DSA key (for signing)
and a shared ElGamal subkey (for encryption)

Secret Key Packet (tag 5): version = 4, algo = 108,
created = 1504351201, expires = 0,

p,q,g,h, py,n, pt, i, {QUAL, pCik, CAPL, pxi, px1i

User ID Packet (tag 13): Heiko Stamer xheikostamer.dkg@gmx.nety

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x13 (UID Certification), digest algo = 8,

. . . , key flags = S|0x10, issuer key ID = 0xDD28EE5AE4783280, . . .

Secret Subkey Packet (tag 7): version = 4, algo = 109,
created = 1504351201, expires = 0,

p,q,g,h,y,n, t, i, QUAL,vi,Cik,xi,x
1
i

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x18 (Subkey Binding), digest algo = 8,

key flags = E|0x10, issuer key ID = 0xDD28EE5AE4783280, . . .

Corresponding OpenPGP-compatible Public Key

Case 1: Each party Pi has shared primary DSA key (for signing)
and a shared ElGamal subkey (for encryption)

Public Key Packet (tag 6): version = 4, algo = DSA,
created = 1504351201, expires = 0,

p,q,g, py

User ID Packet (tag 13): Heiko Stamer xheikostamer.dkg@gmx.nety

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x13 (UID Certification), digest algo = 8,

. . . , key flags = S|0x10, issuer key ID = 0xDD28EE5AE4783280, . . .

Public Subkey Packet (tag 14): version = 4, algo = ElGamal,
created = 1504351201, expires = 0,

p,g,y

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x18 (Subkey Binding), digest algo = 8,

key flags = E|0x10, issuer key ID = 0xDD28EE5AE4783280, . . .

Other Cases

Case 2: Each party Pi has an individual primary DSA key (for
signing etc.) and a shared ElGamal subkey (for encryption)

Secret Key Packet (tag 5): version = 4, algo = DSA,
created = 1504351201, expires = 0,

p,q,g, xyi, xxi

User ID Packet (tag 13): John Doe

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x13 (UID Certification), digest algo = 8,

. . . , key flags = C|S|A, issuer key ID = ..., . . .

Secret Subkey Packet (tag 7): version = 4, algo = 109,
created = 1504351201, expires = 0,

p,q,g,h,y,n, t, i, QUAL,vi,Cik,xi,x
1
i

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x18 (Subkey Binding), digest algo = 8,

key flags = E|0x10, issuer key ID = ..., . . .

Corresponding OpenPGP-compatible Public Key

Case 2: Each party Pi has an individual primary DSA key (for
signing etc.) and a shared ElGamal subkey (for encryption)

Public Key Packet (tag 6): version = 4, algo = DSA,
created = 1504351201, expires = 0,

p,q,g, xyi

User ID Packet (tag 13): John Doe

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x13 (UID Certification), digest algo = 8,

. . . , key flags = C|S|A, issuer key ID = ..., . . .

Public Subkey Packet (tag 14): version = 4, algo = ElGamal,
created = 1504351201, expires = 0,

p,g,y

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x18 (Subkey Binding), digest algo = 8,

key flags = E|0x10, issuer key ID = ..., . . .

Other Cases

Case 3: Each party Pi has only a shared primary DSA key

Secret Key Packet (tag 5): version = 4, algo = 108,
created = 1504351201, expires = 0,

p,q,g,h, py,n, pt, i, {QUAL, pCik, CAPL, pxi, px1i

User ID Packet (tag 13): Project Foobar

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x13 (UID Certification), digest algo = 8,

. . . , key flags = S|0x10, issuer key ID = ..., . . .

Corresponding OpenPGP-compatible Public Key

Case 3: Each party Pi has only a shared primary DSA key

Public Key Packet (tag 6): version = 4, algo = DSA,
created = 1504351201, expires = 0,

p,q,g, py

User ID Packet (tag 13): Project Foobar

Signature Packet (tag 2): version = 4, algo = 17,
created = 1504351201, sigclass = 0x13 (UID Certification), digest algo = 8,

. . . , key flags = S|0x10, issuer key ID = ..., . . .

Implementation in LibTMCG resp. DKGPG
WARNING: Code is in EXPERIMENTAL state and should not be used for production!

New-DKG, New-TSch:
GennaroJareckiKrawczykRabinDKG.cc

contains « 1.750 LOC

Joint-RVSS, Joint-ZVSS, DL-Key-Gen, DSS-Sig-Gen:
CanettiGennaroJareckiKrawczykRabinASTC.cc

contains « 4.500 LOC (+900 LOC PedersenVSS.cc)

Reliable Broadcast: CachinKursawePetzoldShoupSEABP.cc

contains « 850 LOC; RBC Protocol [CKPS01] for t ă n/3

OpenPGP: CallasDonnerhackeFinneyShawThayerRFC4880.cc

contains « 3.650 LOC

3rd Party Libraries:

‚ GNU Multiple Precision Arithmetic Library (libgmp) ě 4.2.0
‚ GNU Crypto Library (libgcrypt) ě 1.6.0 (random, crypto primitives)

P2P Message Exchange: GNUnet ě 0.10.2 (not yet released!),
TCP/IP interface (e.g. TOR hidden service with port forwarding and torsocks)

User Interface (DKGPG = Distributed Privacy Guard)

dkg-gencrs domain parameter generation (p,q,g) of Gq
-f SEED generate domain parameters according to FIPS 186-4

dkg-generate distributed key generation (DSA+ElGamal)
-e TIME expiration time of generated keys in seconds

-g STRING domain parameters of Gq (common reference string)
-H STRING hostname of this peer for TCP/IP (e.g. onion address)
-P STRING password list to encrypt/authenticate TCP/IP connections

-s INTEGER threshold pt for DL-Key-Gen protocol (signature scheme)
-t INTEGER threshold t for New-DKG protocol (encryption scheme)

dkg-decrypt threshold decryption (ElGamal)
-i FILENAME input file with ASCII-armored encrypted message

-n switch to non-interactive mode (using NIZK proofs; ROM)
-o FILENAME output file with decrypted message

dkg-sign threshold signature generation (DSA)
-e TIME expiration time of generated signature in seconds

-i FILENAME create detached signature from given input file
-o FILENAME output file with detached signature

dkg-revoke threshold key revocation (DSA+ElGamal)
-r INTEGER reason for revocation (OpenPGP machine-readable code)

Network Traffic (dkg-generate with |p| = 2048, |q| = 256)

4 6 8 10 12

0

10

20

30

40

50

60

n

R
ec

ei
ve

d
M

B
yt

es

t = 0, pt = (n´ 1)/2

t = 1, pt = (n´ 1)/2

t = n´ 1, pt = (n´ 1)/2

Usage Scenarios

Mailbox for informants/whistleblowers: distributed power

‚ Imagine a newspaper or broadcast media with n responsible
journalists in the editorial department/board

‚ There are authenticated private channels (e.g. already
exchanged GNUnet/OpenPGP keys) between the journalists

‚ At least t+ 1 of these journalists should be necessary to
decrypt messages received in this dedicated mailbox

Shared mailbox for groups of political activists:

‚ Similar scenario as above with additional signing capability

Protection of encryption/signing keys of a single person:

‚ Imagine n devices with different security levels (e.g. OS)
‚ At least t+ 1 resp. 2pt+ 1 of these devices (storing the key

shares) must work together to decrypt resp. sign messages

Remaining Work (TODO)

Cryptographic Protocols/Schemes:

‚ h-generation protocol with distributed zero-knowledge PoKs
‚ Proactive refresh of shares protects against mobile adversary

Software Engineering:

‚ Package (dkgpg) containing only the DKG tools
‚ Fully asynchronous communication model without artifical

timing assumptions, cf. related work [KG09, KHG12]
‚ State-based representation of the protocols
‚ Generic group abstraction layer in LibTMCG (e.g. for ECC)

How can you help?

‚ Compiling and testing the software on different platforms

‚ Review design criterias and invent new usage scenarios

‚ Review source code and report vulnerabilities/bugs

‚ Help with implementation of missing protocols (e.g. RSA, ECC)

‚ Packaging for different distributions of free/libre software

‚ Write standardization draft and advocate for including
threshold cryptography in revised RFC 4880bis or other

References

GJKR07 Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Secure Distributed Key Generation for Discrete-Log Based Cryptosystems.
Journal of Cryptology, 20(1):51–83, 2007.

CGS97 Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers.
A Secure and Optimally Efficient Multi-Authority Election Scheme.
Advances in Cryptology — EUROCRYPT ’97, LNCS 1233, pp. 103–118, 1997.

CGJKR99 Ran Canetti, R. Gennaro, S. Jarecki, Hugo Krawczyk, and Tal Rabin.
Adaptive Security for Threshold Cryptosystems. (extended paper available)
Advances in Cryptology — CRYPTO ’99, LNCS 1666, pp. 98–116, 1999.

CKPS01 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup.
Secure and Efficient Asynchronous Broadcast Protocols.
Advances in Cryptology — CRYPTO ’01, LNCS 2139, pp. 524–541, 2001.

KG09 Aniket Kate and Ian Goldberg.
Distributed Key Generation for the Internet.
Proceedings of ICDCS 2009, pp. 119–128, 2009.

KHG12 Aniket Kate, Yizhou Huang, and Ian Goldberg.
Distributed Key Generation in the Wild.
Cryptology ePrint Archive: Report 2012/377, 2012.
https://eprint.iacr.org/2012/377

RFC4880 J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
OpenPGP Message Format.
Network Working Group, Request for Comments, No. 4880, November 2007.

http://theory.lcs.mit.edu/~cis/pubs/stasio/adapt-full.ps.gz
https://eprint.iacr.org/2012/377

	Introduction
	Threshold Cryptography
	Distributed Key Generation
	Threshold Decryption
	Excursus: Zero-Knowledge Proof
	Threshold Signatures
	Implementation
	Conclusion
	References

