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1 Running Enigma

Hopefully, after successfully installing and playing some first levels, you may be interested
in some information about how we have configured Enigma, how you can optimize Enigma
to your needs, and the purpose of some options and attributes within Enigma.

This first chapter should give you some valuable information about these questions, and
provide some basic knowledge you will need to manage level packs, levels or write your own
levels, as described in the following chapters.

1.1 Locating Resources

For reasons of backup, system changes, special configurations, level additions and hopefully
your own new levels, you may need to know where Enigma stores the resources and how
you can control them.

Enigma maintains several paths for control of load and storage of files. You can list these
paths either in the help submenu paths, or by starting Enigma with the switch ‘--log’ (see
Section 1.2 [Startup Switches], page 2) and looking at the console output.

Preferences Path
This is the path to the file that stores your preferences concerning application
options. This file is usually located at your HOME directory. For HOME-less Win-
dows users, it is stored in the ‘Application Data\Enigma’ directory. Since it is
the third version in the history of Enigma, the file is named ‘.enigmarc.xml’
by default.

We recommend that you backup this file, although it contains only a few data
that you can quickly reconfigure.

Since these preferences are quite specific for the operating system and configu-
ration, you will use a different version on each Enigma installation you have.

Mainly for Enigma developers, a switch exists ‘--pref’ (see Section 1.2 [Startup
Switches], page 2) to rename this preferences file. By starting Enigma with a
renamed preferences file, a developer can temporarily use a complete separate
configuration for testing purposes without the danger of destroying his main
configuration. The developer may use it to start Enigma with a plain standard
configuration for testing purposes, too.

In all cases, a leading ‘.’ will hide the preferences filename.

User Path This is the main path to the user’s Enigma data. All updates, user-installed
levels and user- written levels, the user’s scores, history and usually the user’s
screenshots and level previews, are stored at this path.

A backup of this directory is mandatory!

The standard location is the directory ‘.enigma’ in your HOME directory.
For HOME-less Windows users, it is the folder ‘%APPDATA%\Enigma’, what
resolves to the subfolder ‘Application Data\Enigma’ on XP/2000 or
‘AppData\Roaming\Enigma’ on Vista/Windows 7 located within your user
data folder.

This standard location of the user path is the location of logging and error
output files, too.
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You can define your own path within the Section 1.3 [User Options], page 4.
By doing so, you can store your Enigma user data on a memory stick or on a
shared partition, and use them alternatively from two Enigma installations.

User Image Path
This is a second path to the user’s Enigma data, which you can use to ac-
cess images such as screenshots and thumbnails of levels. Usually this path is
identical to the main ‘User Path’.

Just in case you make many screenshots and have limited resources on the main
‘User Path’, you may want to store the images on another path. You can define
your own path within the Section 1.3 [User Options], page 4.

System Path
This path gives you the location of all system resources that are distributed
with Enigma. Here you will find the levels, libraries, etc. This is a first class
address to look for examples if you start writing your own levels.

Resource Paths
This is a list of paths. The program looks up each version-independent resource
on all paths in this list, and loads from the first occurrence.

User data precedes system data; this way, updates on your user data path will
win. Have a look at this list if you are observing a difference between a source
and the runtime behavior. You may have looked at a file that another file had
hidden on a preceding path in this list.

l10n Path This path shows the directory that contains the localization data.

Please note that some resources, like levels, may be zipped. In this case, a resource that
you expect to find at ‘dirname/filename’ may be stored in a zipfile named ‘dirname.zip’.
The path of the file within the zip can be either ‘dirname/filename’ or ‘./filename’. In
case a resource is provided in zipped and unzipped form, the plain file stored in a directory
wins, since Enigma assumes it to be an update to the zip.

1.2 Startup Switches

Besides starting Enigma by clicking on an installation-provided icon or start menu entry,
you can start Enigma from a shell or commandline. This allows you to add a selection of
startup switches that are valid for just a single run.

For repeated usage of constant startup switches you can create an desktop icon or start
menu entry and append the startup switch to the target string of the Enigma application
executable.

The following list explains the supported user options. If an option is listed with a long
name preceded by two minus signs, and with a one-character abbreviation preceded by one
minus sign, use one of the notations, not both together; for example, ‘--data path’ or ‘-d
path’.

--assert A switch for Enigma developers that forces all debugging assertions,
even expensive ones, to be evaluated. The additionally evaluated checks
look like ‘ASSERT(noAssert || long_lasting_check(), XLevelRuntime,

"remark");’.
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--data -d path
A switch for Enigma developers that allows you to add an additional path
to the resource paths that precedes the system path (see Section 1.2 [Startup
Switches], page 2). A developer can test an Enigma compilation, without in-
stallation, by calling it from the shell with the current working directory on the
main directory via ‘src/Enigma -d ./data’.

--help -h Just lists the available startup switches to the output and terminate.

--lang -l lang
A switch that allows you to override any other language preference. The lan-
guage is given in the common 2-character sequence as ‘fr’ for French or ‘ru’
for Russian.

--log This switch turns on logging of internal information to the standard output.
Windows users will find an file called ‘Output.log’ in the standard ‘User Path’
folder. An additional file ‘Error.log’ lists severe error messages.

The output will, for example, list the paths described in Section 1.1 [Locating
Resources], page 1.

--nograb A switch for Enigma developers that causes Enigma not to grab the mouse.
You can hardly play a level in this mode, but it makes it possible to debug the
application in its core parts.

--nomusic Start Enigma without playing background music.

--nosound Start Enigma with sound being switched off.

--pref -p filename
The name of an alternative preferences file without the leading dot for hidden
filenames. This switch is a pure Enigma developer support feature, as described
in Section 1.1 [Locating Resources], page 1.

--pref -p dirpath
The path of an alternative directory that contains the standard named prefer-
ence file ‘.enigmarc.xml’. If no preference file exists or the directory does not
yet exist they are created. On creation of the preference file the user data path
is set to the given dirpath per default. This allows to store all Enigma user
data in a single directory that can be stored anywhere, e.g. on a USB stick.
You always need to call Enigma with the above switch to use this new set up.
Remember that a path with spaces needs to be quoted.

--redirect Redirect the ‘stdout’ and ‘stderr’ to files named ‘Output.log’ and
‘Error.log’ on the standard user path (see Section 1.1 [Locating Resources],
page 1). For Windows this option is always true, but the usage of this option
is useful on any operating system if Enigma is started via a desktop icon or a
menu button.

--robinson Disable all connections to the internet. No automatic updates will take place
and all user initiated requests that would require an internet connection will
fail with an error message.

--showfps Show the framerate (FPS) during the game.
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--version Just print the version number to the output and terminate.

--window -w
Start Enigma in window mode instead of screen mode.

Enigma interprets all further arguments supplied on the commandline as level file ad-
dresses. You can use absolute or relative addresses to level files stored on your computer.
Adding url’s to levels stored in the Internet is also possible.

A Unix user may start Enigma with the following command:

enigma --log ~/mylevel.xml http://somewhere.com/netlevel.xml

A Windows user may start Enigma from the command line (please adjust the Enigma
installation path):

C:\Programs\Enigma\enigma.exe --log demo_simple.xml

You will find these levels in the levelpack called ‘Startup Levels’, which is only visible
by default if you supplied levels on the commandline.

1.3 User Options

Ratings update
Please retain this option on the value ‘Never’ until release of Enigma 1.00.

User name
Enter your user name, which Enigma will attach to your scores. Please look at
the Enigma home page for user names already in use and choose a new, unique
name. You can change your user name at anytime without losing any of your
scores.

User path This textfield allows you to define an arbitrary directory for your Enigma user
data as described in Section 1.1 [Locating Resources], page 1.

Deletion of the string resets the path to the default.

Enigma activates the new path when you leave the options menu. Though
it stores all files directly to the new path, and will still find files on the old
path, you may want to quit Enigma immediately and first copy/merge the old
directory to the new location. This copy of your old data is necessary, since with
the next start, Enigma will locate user data at the new location exclusively.

User image path
This textfield allows you to define an arbitrary directory for your Enigma user
image data as described in Section 1.1 [Locating Resources], page 1.

Deletion of the string resets the path to the default.

Enigma activates the new path when you leave the options menu. Though it
has stored all files directly to the new path and files will still be found on the
old path, you may want to quit Enigma immediately and first copy/merge the
old directory to the new location. This copy of your old data is necessary, since
with the next start, Enigma will locate user data at the new location exclusively.
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1.4 Inventory Console

The lower right window area that usually shows the inventory items and scrolls the texts
of activated document items allows the user to reread previous document texts, to enter
textual commands and to reissue previous commands.

You can issue a command by usage of the keyboard. Just enter the command string
and activate the command by a finishing RETURN stroke. The following commands are
supported:

help List all public available commands.

abort Abort level and return to level selection menu. Same as ALT X

April 1st Just a joke.

cheats List level developer cheat commands for fast testing.

collision Developer cheat that disables collisions between stones and marbles or pearls.
Once used no score will be recorded if the level is successfully finished.

easy Restart level in easy difficulty mode.

find search string
Searches levels in all levelpacks that contain matching string in either the level’s
title, author’s name or the file name.

god Developer cheat that protects the actors assigned to the current player like the
activation of an Section 8.3.32 [it umbrella], page 205 does. Once used no score
will be recorded if the level is successfully finished.

hunt Switch to world record hunting mode. Same as toggling the left most button
in the level selection menu to the world icon.

info Show info about level like the levelpack, position within levelpack, the file lo-
cation, the title, author, version and the level internal id.

jumpto levelpack,position
Directly start the given level. The levelpack is identified by its title. The
position is the number within the levelpack. E.g. jumpto Enigma IV,33.

nohunt Switch off the world record hunting mode. Same as toggling the left most
button in the level selection menu to the marble icon.

regular Restart level in regular difficulty mode

restart Restart level in currently selected difficulty mode.

suicide Kill actors, but continue level if possible. Same as F3.

Both, the commands and the displayed document text have a history. You recall the
history by usage of the up and down arrows.

• inventory –> jump to start

• command #10, oldest command in history

• command #9

• . . .
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• command #2

• command #1, last executed command

• command under edition, just if the last edited command has not been executed

• inventory <– start

• document #1, last viewed document

• document #2, previous viewed document

• . . .

• document #n, first viewed document

• level title, subtitle, author, as shown on level start

• inventory –> jump to start

Starting with the inventory item display the up arrow shows the previously submitted
commands. Just by another RETURN you can reissue a command. The history will be
resorted with the last command at the position direktly above the inventory. You can
edit history commands anytime like you can insert a new command. If you do not finish a
command by a RETURN the string will still be recorded and presented as the first command
above the inventory. The command history is persistent.

The document history can be recalled by usage of the down arrow. All level documents
previously displayed can be redisplayed. Additionally the initial level info displayed on the
level start can be read again.

Both histories revolve to the item inventory when the up or down keys are used beyond
the oldest command or message.

1.5 Level Info

For every level, Enigma manages more data than can be displayed in the level menu. You
can view them all with the levelinspector. You can call this special menu from within the
level menu by right or control clicking on the level icon.

Besides title and author, Enigma provides information concerning a public rating of the
level, different score values of interest, details on the level version, the level file location and
more. Additionally, the levelinspector allows you to enter personal annotations for a level.
You can review any screenshots you made for this level directly from the levelinspector, too.

1.5.1 Public Ratings

Most levels are rated within five different categories:

• int = Intelligence

• dex = Dexterity

• pat = Patience

• kno = Knowledge of Enigma

• spe = Speed and Speed control

To distinguish the ratings from their everyday-meanings, we use the following abbrevia-
tions for the ratings. Each of these categories takes values between 1 (easy) and 5 (difficult),
except kno, which can also be 6 (unique mechanism).
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Please bear in mind that it’s not simple to retain the following definitions in each of
nearly 750 cases, so there might be (will be) deviations from them in single levels.

Intelligence (int)

This rating is intended to measure the creativity, planning and analytic requirements
needed to solve the level. Intelligence is a very difficult concept in itself, and thus at first
not easy to rate or to grasp. Consequently, a fixed definition of the five rating-degrees not
only helps, but is essential in the rating process. So, assume you know everything about
the single elements of a level. Then ask yourself these questions:

• Can I see the solution at once? Yes -> int 1

• Do I only have to orient myself, for example, testing the exits of wormholes or to see
the function of a switch? -> int 2

• Is there a standard algorithm to solve the problem, like in a maze, or searching for a
hidden item? -> int 3

• Neither trial-and-error nor standard algorithms work; is it a simple kind of code or
does it require advance planning? -> int 4

• Is it a difficult code, pattern or causal chain? -> int 5

High values for intelligence are typically puzzles. int-ratings do not accumulate; the
most difficult puzzle itself already determines the rating.

Dexterity (dex)

You can solve many levels either by accuracy or by patience. In our context, we do not
mean dexterity in the sense of accuracy to avoid impatience, but accuracy to avoid death.
So it focuses on the lethal positions in a level, not only death-stones and abysses, but also
casualties like pushing a stone accidentally into an unreachable corner.

• It doesn’t matter what I touch, this level is damn-proof. -> dex 1

• Well, there are lethal positions I shouldn’t move the level into, but they are not difficult
to overcome. -> dex 2

• Comparable to a single row with an abyss left and right. -> dex 3

• Comparable to pushing a stone to the right with an abyss on the left, or a single row
with death-stones left and right. -> dex 4

• Needs lots of attempts to succeed. -> dex 5

In contrast to the int-rating, dex might accumulate: A level with many situations, each
of dex 3, can add up to dex 4 or even 5. This way, you can achieve dex 5. Rotors in a
level also contribute to dex and to the speed-rating, spe. Thus, levels with a high dex-spe-
combination are mostly action-driven, whereas a high dex-pat-combination typically is a
dangerous maze.

Patience (pat)

Patience is a relatively subjective rating, and refers mostly to “felt time”, how long it
felt to complete the level. So two levels with same mechanics can have different pat-values,
e.g., if one level has a nicer design or shows the progress of the level in some way, like the
number of opened oxyds. It explicitly includes having to restart the level repeatedly; not
the time in the lower left corner or the score is crucial, but the complete “felt time” needed
to solve the level, starting from the first look at it.
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• I solved the level right after understanding it. -> pat 1

• I needed some time, but it wasn’t boring. -> pat 2

• Okay, it took some minutes, but the landscape is nice . . . -> pat 3

• I know what to do, but it doesn’t seem to end. -> pat 4

• This level really requires discipline. -> pat 5

A high number of oxyds can heighten the pat-value and also lower it: If the player has
to traverse the level several times to open matching pairs of oxyds, it is definitely pat-
heightening. However, if oxyds are arranged to mark the progress of the player, and act as
a kind of small reward within the level, they can lower the pat-value. It’s the same with a
high number of doors: The arrangement is the critical factor.

High pat-values are typically mazes. In combination with int 3, a high pat-value can
indicate a hidden item or a hollow stone. pat-values involve the whole level, so they can’t
accumulate.

Knowledge of Enigma (kno)

The kno-rating mostly takes on the function and interactions of single objects in the
game, like stones, floors, items, and actors. However, in some cases it also deals with
special techniques. The guideline is the “Advanced Tutorial”, which defines kno 3. kno 4
corresponds to standard objects that aren’t shown in the tutorial; kno 5 requires a deeper
knowledge of the game internals. Finally, kno 6 indicates special mechanisms, that are
seldom encountered or unique. The overall kno-rating of a level equals that of the most
difficult object or technique (and thus is non-accumulative):

1. Moving a single marble on normal floors, normal walls, oxyds, stones that look like
oxyds, death-stones, water, an abyss, documents, using the inventory, static gravity,
visible gradients.

2. Pushing stones, simple Sokoban-tricks, bridge-building in water and an abyss, con-
nected puzzle-stones, moving more than one marble, meditations, grates, rotors and
tops, hidden gradients, triggers and switches, doors, holes (not made by dynamite),
swamp, floppies and st-floppy, keys and locks, coins and slots, cracks, timer-stones.

3. Different floors can have different fraction and mouseforce, space, ice, inverted
floor, some stones sink while others swim, black grates that hold rotors and tops
away, dynamite, dynamite-breakable stones, spade, boulders, magic-wand to change
boulder-direction, boulders sink into an abyss, sheets of glass, spoon, actors and items
may hide under movable stones, small not-killer whiteballs, coloured one-way-streets,
actorimpulse-stones (“bumpers”), rotors can fly over an abyss, quake-stones, swords
and knights, lasers, static and movable mirrors, item- and coin-transformations by
pushing stones over them and by using lasers, umbrellas protect in an abyss, hammer
and breakable stones (although not in the tutorial).

4. Bridge-building in swamps, rubber-bands, rubber-band-stones, scissor-stones, uncon-
nected puzzle-stones, exploding puzzle-stones, turning puzzle-stones (with and without
a magic wand), springs (both types, on the floor and hole-kind springs like in “Up-
stream Journey”), thieves, three-part shogun-stones, invisible stones, hollow stones,
chameleon-stones, items hidden under chameleon stones, stones that aren’t what they
seem (e.g., fake-death-stones), wormholes, magnets, using F3 for a restart to solve a
level, yin-yangs, one-color-, yin-yang- and inverted yin-yang-stones, stones breakable by
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only one color, killer-balls, swap-stones, brush and paintable stones, changing one-way-
streets with a magic wand, changing stones to glass with a magic wand, impulse-stones
(movable, static and hollow), black and white bombs, bomb-stones, fire, extinguishers,
rotator-stones, yellow anti-swapping stones, mines, flags, seeds, weights, putting ob-
jects under one-way-streets and other hollow stones, electric stones, turnstiles, mailing
and pipes, rings (single and multiplayer), volcanos, bags, randomizers (as possible ef-
fect of a switch), horses (the actors) and horse-passing stones, pins, bananas, cherries
can make you invisible, surprise-item.

5. Cracks, floor-springs, wormholes, etc., are all items, seeds can grow inside stones, the
laser is blocked by all items, killer-balls don’t sink in water, “Space Meditation”-kind
collisions, holding down the mouse-button, invisibility lets you go through glass, jump-
ing over lasers . . .

6. Spitter-stones, surprise-stones, levels like “Enigris” or “Flood Gates” . . .

kno 6 does not necessarily mean that this level is difficult to understand; the unique
mechanism or object might also be very intuitive, like in “Flood Gates”.

Speed and speed control (spe)

The spe-value corresponds not only to the maximum speed a level requires (like you
need to run away from a rotor), but also the degree of control a player has over his mouse
while moving it; excellent examples for this are “Mourning Palace” and the middle part of
“Sacrifice”. This involves moving the mouse at a constant velocity for a long time, as well
as correctly estimating the speed that’s needed in a certain task, like shattering a sheet of
glass.

1. No time limit.

2. You shouldn’t stop for too long. For example, something slow might be chasing you.

3. There is an appropriate time limit or speed control task. This can be a single, not-too-
fast rotor in an open area.

4. Don’t stop! Examples include difficult timing-tasks as well as a single fast rotor or
several slower ones.

5. Hurry Up! Whereas spe 4 is meant to be difficult, but obviously solvable in not too
many attempts, spe 5 is everything beyond this.

The spe-rating again is cumulative, since many slow rotors can add up to spe 3 or 4,
or a combination of many slow time-switches to be pressed in a certain order can create a
horrible task. In contrast to the other categories, for which the average is near 3 (or between
3 and 4 for kno), most levels are definitely spe 1. So, the spe-rating is more a supplement
to the three core-ratings int, dex and pat.

Combinations of ratings

Sometimes, it can be interesting to have a single value to measure the difficulty of a level.
To calculate such a universal rating, a simple possibility is choosing a linear combination of
the 5 single ratings, weighted with appropriate weights. These weights should correspond
to the difficulty a single category adds to the universal difficulty. Yet you should also choose
these weights carefully to avoid number-theoretic obstructions (e.g., when all weights are
even except for the spe-rating, then there will be a visible difference in the distribution
of even and odd universal ratings, which can be very misleading). A working, and very
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interesting linear combination, is the following, which has been applied in the reordering
process:

universal difficulty = 7*int + 6*dex + 4*pat + 3*kno + 4*spe - 23

This has a special property, in that it takes relatively broad and continuously distributed
values between 1 (all ratings 1) and 100 (all ratings 5, kno 6) and emphasizes the most
difficult categories, intelligence and dexterity. However, some very low or very high values
cannot appear in this combination, such as 2 or 99. Other combinations lead to full but
narrow, or to broad but noncontinuous spectra.

1.5.2 Scores

The score columns show your and some comparison values for the difficult and for the easy
mode, if the levels supports it.

The world record is the best score that was retransmitted to the Enigma team. The
world record holders are listed below.

The PAR value is the “professional average rating” of the level. It is the harmonic average
of all scores that Enigma players have retransmitted. However, we take into account only
scores from players who have solved a certain number of levels. Opposed to the world
record, which will be very difficult to gain, the PAR value is a much more realistic aim for
an ambitious player. If you are equal or better than PAR, the levels are marked with a
speeding blackball within the level menu.

The author’s value is another reference score. Most authors are not keen on holding the
world record of their own levels. However, they will likely know the fastest way to solve the
level. If your score is much higher than the author’s score, a simpler solution to solve the
level may exist.

The solved number is the number of players who solved this level in the given score
version.

The solved percentage is the relation of the number of players who solved this level to
the number of players who retransmitted scores. Actually, we take into account only those
players who could have solved the level. For example, players who did retransmit scores
before the level was written, without updating afterwards, are not taken into account. A
low percentage is a hint that a level is not easy to solve.

1.5.3 Versions

The version column shows detailed information about the level. Read the chapter Level
Basics node see Section 3.3.2 [<version>], page 30 and see Section 3.3.7 [<modes>], page 35
for an explanation of the values.

For you as a player, the ‘Score’ version number can be interesting. A level you had
solved with a certain score may appear with a red triangle in the level menu in an updated
Enigma release of the level. Although the level menu displays the medals showing that you
solved the level, it will not display the score values anymore. This is due to an incompatible
level update that requires a new solution with different, incomparable score values. The
author will increase the score version number in such a case.
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1.5.4 Private Annotations and Ratings

This textfield allows you to enter an annotation for a level that you can review on later
replays. Note that the current textfield is limited (it may not allow you to enter all charac-
ters, and needs the mouse cursor to remain within its boundaries). Yet it should work for
entering short annotations that may be very useful later.

Enigma stores annotations in your private applications ‘state.xml’ file. It permits one
annotation per level, independent of the level version.

You may rate the levels, too. Just click on the ratings button. Values go from 0 to 10
with an additional ‘-’ for abstention. 0 stands for a poor level that you think is not worth
playing, 5 for an average level and 10 for the ultimate, best levels. Try to use all values in
your ratings.

Enigma stores the ratings with the scores and evaluates them anonymously. Enigma
displays the resulting average rating of all users, for your information. Note that different
ratings are possible for different score versions of the same level, because levels may improve
as a result of suggestions by users. If you do not re-rate a new version of a level, Enigma
inherits your rating from a previous version.

1.5.5 Screenshots

While playing a level, you can make screenshots by pressing F10. You can make several
screenshots in sequence for documentation purposes. Enigma will store each with a unique
image filename. Using the level inspector, you can view the screenshots directly from within
Enigma. Just click on the screenshot button to view the first image.

Because any buttons would disturb the view of a screenshot, all functions are keyboard
commands. Press F1 to get a help screen. ESC returns to the level inspector. PAGE UP
and PAGE DOWN will show the previous and next screenshot. If you scroll down behind
the last screenshot, the “missing” screenshot file is named. This may be a useful hint as
to where to search the other screenshot files on your ‘user image path’ (see Section 1.1
[Locating Resources], page 1).

1.6 Handicap and PAR

As PAR (see Section 1.5.2 [Scores], page 10) describes the difficulty of a level, the handicap
‘hcp’ describes your ability to solve levels in PAR. The handicap is always related to a
levelpack or group of levelpacks. You can see your handicap for each levelpack in the level
menu, if you select the PAR mode by clicking on the lower left button until the speeding
black marble appears. The value is displayed in the upper right corner, with the number of
levels you solved in PAR.

The handicap is similar to the golfer’s handicap. A low value is better than a high value.
If you solve all levels exactly in PAR, your handicap will be 0. If you are even better than
PAR, your handicap will be negative. Players can use this value to compare their overall
abilities.

Just for those of you that want to know the details of this score rating system of PAR
and handicap, here is some additional information, which others may skip and continue
with the next chapter Chapter 2 [Levelpack Basics], page 15.

We request all users to send their scores. All scores are evaluated for world records and
counts of level solution rates and numbers.
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However, for the PAR calculation, we take into account only scores from users who have
solved more than a certain percentage of levels (currently about 10% of the levels). For
every level, we calculate the harmonic average of the scores of these ‘professionals’. We
take professionals who did not solve a level into account with the 10-fold world record score.
The harmonic average calculates as

harm.avg. = N / (sum [j=1..N] 1/score j) )

It weights small (short) times with a greater weight than large (long) solution times.

The handicap is a sum of values that describe your scores in relationship to the PAR
value of a level. Since it has to take into account that you have no score at all or that no
PAR value exists, we apply some exception rules to the addends:

• + 1.0 for each unsolved level
• +

log10(score/par)
for each solved level with existing par if score >= par

• + 0.7 as upper limit for each solved level with existing par if score >=
par

• +

log2(score/par)
for each solved level with existing par if score < par

• - 3.0 as lower limit and as value for levels without par

Note that each score that is better than PAR results in a negative addend and thus
reduces your handicap. For a levelpack with 100 levels, the handicap will be in the range
of +100 to -300. For levelpacks with more or fewer levels, Enigma will scale the sum by
a factor 100/size to result in comparable handicap values. Handicaps are stated with one
digit behind the decimal point.

1.7 User Sound Sets

(The following information accounts only for Enigma 1.01 and above.) Sound effects are
triggered by so-called ‘sound events’. These sound events usually have a name (like
‘dooropen’) and an associated location (the coordinates of the door) which affects the
way a sound effect is played. The collection of all sound files, their assignment to sound
events, and some additional information how to play them is called a ‘sound set’.

You can use own sound files to create own sound sets for Enigma, and choose among
them in the options menu (entry ‘Sound set’). You can distribute these sound sets under
your own choice of license and install sound sets from other users. There is no internal limit
for the number of installed sound sets.

The sound event is converted into a real sound effect using tables, you
can find such tables in the ‘data/sound-defaults.lua’ file and in the empty
sample file at ‘reference/soundset.lua’. Each entry in these tables is ei-
ther a string like ‘enigma/st-coinslot’, which is interpreted as the file
‘soundsets/enigma/st-coinslot.wav’ with some default properties, or a list of
sound attributes enclosed in curly braces. Sound events triggered by a Section 6.2.12
[sound], page 133 message are converted the same way. Here is an example of such an
entry:

dooropen = { file="my_soundset/open-door", volume=0.9, priority=4 },

The meaning of these attributes is as follows:
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• ‘file’ Path and name of the sound file for this event, without the ‘.wav’ extension.

• ‘volume’ The sound volume: 1.0 is default, 0.0 is silent.

• ‘priority’ If many effects are active at the same time, high-priority effects can replace
lower-priority effects. Use an integer between 1 and 10 (default 1). This property does
not yet work with Enigma 1.01.

• ‘global’ Either ‘true’ or ‘false’. If true, no stereo effects are applied and there is no
attenuation. Used for menu sound, level end sounds, etc. Default is ‘false’.

• ‘loop’ ‘true’ or ‘false’. If true, the sound repeats infinitely until canceled. Default is
‘false’.

• ‘damp_max’, ‘damp_inc’, ‘damp_mult’, ‘damp_min’, ‘damp_tick’ Parameters for sound
damping. Sounds from noisy objects like light passengers are damped to reduce the
noise. For this, the sound event’s frequency is estimated. ‘damp_max’ calibrates the
maximal damping factor (high means quiet), ‘damp_inc’ how fast the damping accu-
mulates, ‘damp_mult’ is an overall factor, ‘damp_min’ defines a lower bound for the
damping entries (beyond which they are removed from memory) and ‘damp_tick’ the
factor that’s applied all 0.1 seconds. See ‘sound.hh’ for details. Defaults: 10.0, 1.0,
1.0, 0.5, 0.9.

To design a new sound set, proceed as follows:

1. Create a new folder containing a copy of the sample file ‘soundset.lua’ and the wav
files you want to use.

2. Move this new folder into Enigma’s "soundsets" folder in your user path. (Possibly
you have to create it.) The directory structure should look something like this:

(user path)/soundsets/my_sounds/

/soundset.lua

/high_pitch.wav

/soundfile_13.wav

...

3. Run Enigma and choose ‘My Soundset’ in the options menu. Since this file’s sound set
does not map any sound effect to a wav file, you should hear nothing.

4. Edit the contents of ‘soundset.lua’ to your liking. You can access the default sound
files, e.g.:

...

coinsloton = { file="enigma/st-coinslot" },

...

When using own sound files, remember to add the subfolder, like in

...

coinsloton = { file="my_sounds/soundfile_13" },

...

No extension ".wav"! It’s added automatically. Make sure that the extension is in
lower case letters.

5. Replace ‘MY_SOUNDSET’ by a suitable variable name, and ‘My Soundset’ by the name
you want to see in the sound options menu. Remember to make it short enough to
fit on the button. The three identifiers variable, button name, directory name need
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not have the same names, but it eases the life of other developers to give them similar
names that uniquely determine the sound set.

Remember to choose the sound set in the options menu anew each time you change
its name. And always shut down Enigma before changing sound sets, new sounds are not
recognized during runtime.

Feel free to zip and distribute the whole directory containing your sounds and the
‘soundset.lua’ file. You can install a downloaded zipped sound set simply by unpack-
ing it and placing it into the ‘soundsets’-subdirectory of your user path. Make sure that
the ‘soundset.lua’ is always exactly one subdirectory below ‘soundsets’. Deinstall a user
sound set simply by deleting its directory. Renaming the directory does not suffice – you
have to rename the ‘soundset.lua’ if you want to hide a sound set from Enigma. This can
be advantageous if you use interdependent sound sets (sound sets that share sound files)
and want to deactivate just one of them.
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2 Levelpack Basics

Knowing the basics of running Enigma, you may wonder how levels are organized in level-
packs and how you can add levels or complete levelpacks to Enigma.

Levelpacks are sorted collections of levels that consist of an index and optional attached
level sources. Not all level sources of a levelpack have to be included within the levelpack
itself. A levelpack can crossreference levels stored in other levelpacks. If a levelpack has no
level sources of its own and consists only of crossreferences, we speak of a crossindex, since
just a single index file represents the levelpack.

These definitions suit all versions of Enigma well. However, up to Enigma 0.92, levelpacks
needed to be manually edited, and the registration of levelpacks was a little bit cryptic.
Thus, we decided to rewrite the complete levelpack system for Enigma 1.0, and tried to
make it versatile and easy to use. We did set up the following aims:

• an ‘Auto’ levelpack that allows level addition by drag and drop of the level source

• levelpack addition simply by copying the files to the userpath

• autodetection of all levelpacks without editing any registration files

• commandline-supplied levels as a standard levelpack

• a ‘History’ levelpack with crossreferences of last-played levels

• level search results as a levelpack of crossreferences

• zipped levelpacks that are just archives of levelpack directories and their files

• grouping of levelpacks in the menu

• integrated composer to create and modify new levelpacks

• updates of levelpacks without updating Enigma itself

• automatic conversion of Enigma 0.92 levelpacks

Some of these features work seamlessly. You can use them immediately from the levelpack
menu. For others, you may need to know where to place files. We will explain these details
in the following sections:

2.1 Getting Started with Levelpacks

One of the outstanding features of Enigma is its extensibility by new levels. And the
community of users usually provides us several new great levels every week.

Adding a new level that you receive as an XML file is very simple. Locate the subdi-
rectory ‘levels/auto’ on your ‘user path’ (see Section 1.1 [Locating Resources], page 1).
Just copy the level file to this folder and restart Enigma. The new level will be part of the
‘Auto’ levelpack, and you can play it like any other level.

Please note that Enigma displays erroneous or incompatible levels with an error icon in
the level menu. Of course an attempt to run such a level will result in an error message.
Look at the level metadata with the levelinspector (see Section 1.5 [Level Info], page 6) to
identify the required compatibility version, and contact the author via the address in case
of level code errors.

A second way to run new levels is to add the address of the level files to the commandline
(see Section 1.2 [Startup Switches], page 2). This way you can play levels that are stored
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anywhere, and you may even use url addresses of levels stored on the internet. Levels added
to the commandline are accessible via the ‘Startup Levels’ levelpack.

If you want to run an old-fashioned Lua level that someone wrote for Enigma 0.92 or
earlier, you may try to start it via the commandline. These old levels miss necessary meta-
data for auto detection. However, commandline-supplied levels are treated as temporary
levels available just for a single run of Enigma; reasonable defaults substitute the missing
data. The level will probably run, but scoring and copy, paste and linking of such levels is
not possible.

Besides single new levels, the community may provide you with complete levelpacks,
too. These levelpacks may occur as directories with levels, zip archives or single XML files.
You can install all of them simply by copying the files, but we have to distinguish the three
formats.

You must copy levelpacks distributed as directories, with level files and an index file
in them, to the subdirectory ‘levels’ on your ‘user path’ (see Section 1.1 [Locating Re-
sources], page 1).

You must copy levelpacks distributed as zip archives to the subdirectory ‘levels’ on
your ‘user path’. You do not need to unpack the zip, although it is possible, as described
in the section Section 2.3 [Zip Levelpacks], page 17.

You must copy levelpacks that are distributed as a single XML index file to the subdi-
rectory ‘levels/cross’ on your ‘user path’.

All new levelpacks should be accessible via the levelpack menu after restarting Enigma.

That is all you need to know to be able to add new levels and levelpacks for testing and
playing. If your main interest lies in writing your own levels, you may want to proceed
directly to chapter Chapter 3 [Level Basics], page 21. The rest of this chapter explains how
to arrange and sort existing levels in your own levelpacks.

2.2 Converting 0.92 Levelpacks

With the changes of the levelpack index format, converting old levelpacks is necessary.
Although the main work is done automatically just by starting Enigma, a few special cases
remain that need manual preparation. Further on, after the autoconversion, some cleanup
may be useful.

If you formerly maintained your levelpacks within the Enigma system levels directory,
you should now copy your own levelpacks from the old Enigma version to the ‘user path’
subdir ‘levels’ (see Section 1.1 [Locating Resources], page 1). The ‘user path’ exists on all
systems, and since Enigma 1.00 will never write to the system levels directory, it will perform
updates and conversions only on the ‘user path’. If you registered your levelpacks on the
system levels directory within the ‘index.lua’ file, you need to copy these registration lines
to the ‘index_user.lua’ file, which you should store on your ‘user path’.

If you maintained several of your own levelpacks, Enigma 0.92 allowed you to keep them
in several subdirectories of the ‘levels’ directory. However, since it also allowed you to keep
all level files and different indices in the ‘levels’ directory itself, you will run into trouble
with the auto conversion, because Enigma 1.00 allows only one levelpack with attached
level files per directory. In this case, we recommend a step-by-step conversion: in every
step, provide only one old index for conversion. Enigma will convert this index to a new
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‘index.xml’. Move this new index, together with all levels, to a subdirectory and convert
the next levelpack.

A last special case occurs if you had an old index stored in ‘levels’ that referenced level
files in different subdirectories of ‘levels’. Since Enigma 0.92 did not have a concept of
cross-references, and Enigma 1.00 requires that you store all level files attached to a levelpack
in a single subdirectory, the conversion algorithm needs to guess the correct subdirectory.
It simply takes the subdirectory of the first level. If this does not fit, you may need to clean
up your 0.92 levelpack prior to conversion.

Enigma should convert all other standard levelpacks without problems. It only performs
the conversion once. As soon as the new ‘index.xml’ exists, only this index is used. Thus,
after a careful check, you may remove the old ‘index.txt’. We recommend keeping a
backup of the old index until you have completely switched to Enigma 1.00.

If you used a levelpack of your own in the zip format, you will find a subdirectory named
with the base name of the zip archive in your user ‘levels’ directory. Enigma stores the
converted ‘index.xml’ within this directory. You may want to exchange the old ‘index.txt’
in the zip with the new index. Afterwards you can delete the subdirectory, since Enigma
will load the index directly from the zip archive.

After converting your levelpacks, we strongly recommend that you update your own
levels to the new XML format, as described in Chapter 3 [Level Basics], page 21.

2.3 Zip Levelpacks

Besides the classic levelpack format of a subdirectory of ‘levels’ with an ‘index.xml’ and
several level files, Enigma 1.00 provides a compatible zip archive format. This zip allows
you to reduce resources and to ease distribution of levelpacks.

The compatibility is 100%. If you have a classic subdirectory levelpack, you can simply
zip the complete subdirectory and name the zip with the name of the subdirectory, plus
the standard ‘.zip’ suffix. Now you can completely remove the subdirectory; Enigma
autodetects the levelpack and it is fully playable. Even cross-references into this levelpack
will not be broken!

On the other hand, Enigma allows you to expand every zip levelpack to a subdirectory
with index and level files. Again, everything runs and no cross-references are broken.

If you keep both, the files contained in the subdirectory precede files in the zip archive.
Thus, Enigma stores updates of single files in subdirectories in parallel to existing zip
archives.

2.4 Grouping and Sorting Levelpacks

As the number of levelpacks increased, it became necessary to sort and group the levelpacks
in the menu. We tried to provide a useful set of default groups and default assignment of
the distributed levelpacks to these groups:

• Enigma - levels that are written just for Enigma

• Déjà-vu - levels that you may have seen before

• Sokoban

• Facets - special sortings and views of the levels above
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• User - personal levels and levelpacks like History, Autofolder generated by the system
for the user.

• Development - templates and unfinished levels from the Enigma Team

• All Packs

Still, this is just a proposal. You are free to rename the groups, add new groups and
change the assignments of the levelpacks. As in other parts of Enigma, you can right or
control click on the group and levelpack buttons.

The group configuration menu allows you to rename and reposition a group. You can
choose any name that is not a duplicate, that is not enclosed in square brackets and differs
from ‘Every Group’. Note that you may not be able to enter as many characters as you are
used to. Sorry for this inconvenience.

The levelpack configuration menu allows you to assign a pack to a group. The group
list contains two special entries: ‘[Every Group]’ and another name enclosed in square
brackets. Selecting the first pseudogroup displays the levelpack in every group. This is
the default assignment of the ‘Startup Levels’ group. The second square bracket-enclosed
name is the default group of the levelpack itself. It is a hint for you and allows you to
reassign a levelpack to the default group even if meanwhile you have deleted the group.

2.5 Creating New Levelpacks

To create a new levelpack, you simply select the group to which you want to add the new
pack. This is most likely the ‘User’ group. Right or ctrl click on the group and simply click
on the ‘New Levelpack’ button. Enigma will call the levelpack configuration menu, which
allows you to enter all the important data for the creation of a levelpack.

First you should enter a name for the levelpack. You are limited to characters that can
be used for filenames, too. You may use alphanumerical characters A-Z, a-z, 0-9 and space,
underscore and hyphen. Note that you may rename the pack later for a better or more
suitable display name (see Section 2.6 [Modifying and Deleting Levelpacks], page 19).

Later, you should decide whether you want a levelpack that can contain level sources or
just a crossreference levelpack. The first one is useful for storing your own self-written levels
or levels that you download from the internet. You may use the crossreference levelpacks
for your favorite collections, where you simply reference existing levels of other levelpacks
with your own personal sorting. You set the selected type with the ‘Level types’ button,
which uses symbols for references and carbon copies.

The ‘Default Location’ is a number that determines the sorting location within lev-
elpack groups, if you have not resorted the levelpack manually (see Section 2.4 [Grouping
and Sorting Levelpacks], page 17). This default value is relevant only if you distribute your
levelpack and want to ensure that the users will find your levelpack at a proper location.
The value given after creating a new levelpack should work well in most circumstances.

You may declare yourself as owner or creator of the levelpack. This is just a string for
identification purposes.

Finally, when you have completed the configuration, you can create the levelpack by
clicking ‘OK’. Enigma will create the levelpack on your ‘userpath’ (see Section 1.1 [Locating
Resources], page 1).
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If you decide not to create a new levelpack, just click ‘Undo’. Enigma will not create or
change anything in this case.

If you want to set up the new levelpack immediately, you can click directly on ‘Compose
Pack’. Enigma will create the levelpack, and you can use the composer to fill it with levels.

2.6 Modifying and Deleting Levelpacks

To modify a levelpack, right or ctrl click on its button in the levelpack menu. You will see
the metadata for all levelpacks. However, an ‘Edit Metadata’ button will appear only for
your own levelpacks, which Enigma stores on your ‘userpath’. Clicking on it allows you to
edit the metadata.

Renaming the levelpack is possible, but Enigma will not change the filenames anymore.
It will use the new name as the logical levelpack name that shows up in Enigma.

Other attributes that you can modify include the ‘Default Location’ and the ‘Owner’.

Note that changing the levelpack type later is not possible. You must create a new
levelpack of the proper type and copy the levels by using Section 2.7 [Composing Levelpacks],
page 19.

We do not provide a levelpack deletion function to avoid unintended loss of levelsources.
Still, the deletion of a levelpack is as simple as deleting the complete levelpack directory on
your ‘userpath’. For crossreference levelpacks, you simply need to delete the index XML
file on the ‘levels/cross’ subdirectory of your ‘userpath’.

2.7 Composing Levelpacks

You can change the levels of a levelpack by using the levelpack composer. You call it by
right or ctrl clicking on the levelpack button in the levelpack menu, then clicking on the
‘Compose Pack’ button in the levelpack configuration menu.

The composer looks similar to the levelmenu, but it provides other functionality. Enigma
lists all commands in the F1 help menu. First, if you compose your own levelpacks, you
may note that the levels are bordered red. This is a warning, since you can modify these
levelpacks. System levelpacks (the distributed Enigma levelpacks) will border the levels in
gray, since you can use the composer only for copying levels to the clipboard.

The clipboard allows you to select levels in one or several levelpacks and to insert these
levels as reference or as copy to your own levelpacks. First, clear the clipboard by ‘Shift
delete’. Then select any levelpack you want from within the composer levels. Add them
by ‘Shift click’. They will appear in the upper text lines in the composer. Return to
the levelpack where you want to add the levels. Select the level behind which you want
to add the levels. Use ‘F8’ to insert the levels of the clipboard as references. If you edit a
levelpack that can take level copies, you may use ‘F9’ to insert the levels of the clipboard
as file copies.

As soon as you modify the levelpack, a small red triangle in the upper left corner signals
the modification. Leaving the composer via the ‘OK’ button finalizes all changes. Leaving
the composer via the‘Undo’ button reverts all changes.

Besides adding levels, you can delete levels by using the ‘delete’ button. Note that
Enigma will delete the level files themselves if you delete a level that is not just a reference.
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Be careful with all levels that have the document icon on their preview. You can revert
deletions with the ‘Undo’ button.

You can resort all levels with the ‘alt left arrow’ and ‘alt right arrow’. The new
sorting appears immediately, and you can save it by using the ‘OK’ button.

You can use the ‘F5’ button to update the index from the levels. This is very useful
if you edit levels yourself. The levelpack will notice changes in title, revision, easy mode
support etc. Enigma updates all levels of the levelpack at once.

By using the Auto levelpack and the composer, you can set up levelpacks of your own
levels, as follows: Create a new levelpack, add the level files to the ‘auto’ folder, restart
Enigma, add the levels from the ‘auto’ folder to the clipboard, use the composer to insert
the levelpack to your levelpack as a copy, and delete the unused level file copies from the
‘auto’ folder.
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3 Level Basics

Now that you have played some levels of Enigma, you may have noticed that Enigma is
quite a dynamic game with versatile levels. Thus, it is not astonishing that it is impossible
to describe such levels with a static approach of a simple object map like Sokoban. Some
levels, like mazes, generate their layout and look different each time you play them. Other
levels provide a dynamic behavior during the play; i.e., switches may open doors only in
certain circumstances. To comply with these demands, we have integrated the powerful
lightweight C extension language Lua as of version 5.1.4 into Enigma.

Up to Enigma 0.92, two different level formats did exist. One was a XML-like for-
mat, primarily designed for external level editor programs. Because its static object map
description part was inconvenient for manual editing, many authors never used it. The
second format was plain Lua code that used an interface of Enigma Lua functions to add
objects and callback functions. Nearly all authors used this second format, but it had a
small drawback: you could store metadata for the level (like the author name, license info,
and last but not least, the level name itself) only as unformatted Lua comments, and you
had to reinsert it manually into the level-package indices.

With the post-0.92 XMLification of Enigma, we achieved full XML support by integrat-
ing Apache Xerces, and were wondering how to get rid of the old level format drawbacks
and how to add some compelling new features:

• a single format with optional parts - use only those parts you need

• no major changes or any limitations for Lua level authors

• keep all author-supplied metadata in the level

• enable plug & play for users - copy the level from the author and play it without manual
index edition

• support of various encodings, such as US-ASCII, UTF-8, UTF-16, Windows-1252

• internationalization of levels - allow authors to add strings in their native language and
supply translators with all translatable level strings and comments from the authors’
how-to-translate.

• add a release and dependency management for levels and libraries

• add level update and upgrade support for levels and libraries

• substitute the old XML format with a versatile editor interface

• keep the format open to future extensions

Let us have a first view on complete simple ‘Hello World’ level in the new format:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<el:level xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://enigma-

game.org/schema/level/1 level.xsd" xmlns:el="http://enigma-game.org/schema/level/1">

<el:protected >

<el:info el:type="level">
<el:identity el:title="Demo Simple" el:id="20060210ral001"/>
<el:version el:score="1" el:release="1" el:revision="2" el:status="stable"/>
<el:author el:name="Ronald Lamprecht"/>

<el:copyright>Copyright c© 2006,2009 Ronald Lamprecht</el:copyright>

http://www.lua.org
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<el:license el:type="GPL v2.0 or above" el:open="true"/>
<el:compatibility el:enigma="1.10"/>
<el:modes el:easy="false" el:single="true" el:network="false"/>
<el:score el:easy="-" el:difficult="-"/>

</el:info>
<el:luamain><![CDATA[

ti[" "] = {"fl lawn b"}
ti["#"] = {"st box"}
ti["o"] = {"st oxyd"}
ti["@"] = {"#ac marble"}

wo(ti, " ", {

"####################",

"# #",

"# o @ o #",

"# #",

"####################",

})

]]></el:luamain>
<el:i18n/>

</el:protected>
</el:level>

You may notice that the XML portion contains all the metadata that the level author
is accustomed to supplying with a level. The XML part is like a formula that you can copy
from a template and fill out.

The Lua code is embedded in the XML. The only limitation to the Lua portion is that it
reserves ‘]]>’ for the end mark, and you would have to substitute it with ‘]] >’. No further
restrictions.

Since the example above includes all mandatory XML parts, we should achieve our aim
to avoid major changes for Lua level authors.

You can find the example above in the ‘Exp’ levelpack grouped in ‘Development’. The
source code is located on the system path subdirectory ‘levels/enigma_experimental’
(see Section 1.1 [Locating Resources], page 1).

If you make your first coding experiments on a copy of this level, either add your copy
to the auto folder (see Section 2.1 [Getting Started with Levelpacks], page 15), or use it as
an argument on the command line (see Section 1.2 [Startup Switches], page 2).

Of course we must look at the details of the format and explain the optional parts:

3.1 Getting Started with Levels

Most likely you are keen on understanding the basic principles of placing objects in a
level. Here is a very simple level description that can also serve as a starting-point for new
landscapes. (In fact, this is the first welcome level in levelpack Enigma I, so you can try it
out right away.)

1 ti[" "] = {"fl gravel"}
2 ti["#"] = {"st box"}
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3 ti["O"] = {"st oxyd"}
4 if wo["IsDifficult"] then

5 ti["Q"] = {"st quake", name="quake"}
6 ti["T"] = {"st timer", interval=10.0, target="quake"}
7 else

8 ti["Q"] = ti[" "]

9 ti["T"] = ti[" "]

10 end

11 ti["@"] = {"ac marble black", 0.0, 0.5}

11

12 wo(ti, " ", {

13 "####################",

14 "# #",

15 "# #",

16 "# O O #",

17 "# @ #",

18 "# #",

19 "# QT #",

20 "# #",

21 "# #",

22 "# O O #",

23 "# #",

24 "# #",

25 "####################"})



Chapter 3: Level Basics 24

The resulting level looks like this inside the game:

Let’s now turn to a line-by-line analysis of this program:

1 ti[" "] = {"fl gravel"}
2 ti["#"] = {"st box"}
3 ti["O"] = {"st oxyd"}

First we declare some keys for objects we like to use in our level map. We just add each
key to our ti tiles repository and assign an object tile description that consists of the object
kind name in these simple cases. The two character prefix of the kind name shows us the
basic object type like floor, item, stone, actor, etc.

4 if wo["IsDifficult"] then

5 ti["Q"] = {"st quake", name="quake"}
6 ti["T"] = {"st timer", interval=10.0, target="quake"}
7 else

8 ti["Q"] = ti[" "]

9 ti["T"] = ti[" "]

10 end

The welcome level provides two modes, the regular difficult one and an easy one. As
the regular difficult one differs just in two additional stones we add two mode specific tile
declarations.
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In the difficult mode we assign two stone definitions. Each provides the stone kind and
additional attributes. The ‘st_quake’ is the stone that closes oxyd stones when being hit
or toggled. We just name it, to be able to reference it later on. The second stone is a timer
that should get active every 10 seconds and should send a toggle message to its target, our
oxyd closing ‘st_quake’. As we did name this stone we can reference it here as target by
its name.

11 ti["@"] = {"ac marble black", 0.0, 0.5}

Now we just need to declare our actor. It is a black marble that should not be placed
at the left upper corner of a grid but in the mid of the left border of a tile grid. Actually
we just want to center it within the level. As a one screen sized level has the extension of
20 x 13 we need the offsets given above.

12 wo(ti, " ", {

13 "####################",

14 "# #",

15 "# #",

16 "# O O #",

17 "# @ #",

18 "# #",

19 "# QT #",

20 "# #",

21 "# #",

22 "# O O #",

23 "# #",

24 "# #",

25 "####################"})

Now we can create the world simply by providing a map. We just need to call ‘wo’, our
world handle, provide it our tile resolver, the key of the default floor and a map of tile keys.

You will find all conceptional background information in chapter Chapter 4 [Enigma
Paradigm], page 47 and more examples and syntax information in chapter Chapter 5 [Lua
API], page 64. But first you should take the time to get aware of the XML based level
metadata.

3.2 XML Level structure

Let us start with a complete overview of all existing top XML element nodes. The following
level skeleton contains optional elements that are beyond level basics. We include these
elements for completeness:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<el:level xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://enigma-

game.org/schema/level/1 level.xsd http://enigma-game.org/schema/editor ed-

itor.xsd" xmlns:el="http://enigma-game.org/schema/level/1" xmlns:ee="http://enigma-

game.org/schema/editor">

<el:protected>
<el:info el:type="level">
<!-- required elements omitted -->

</el:info>
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<el:elements/>
<el:luamain><![CDATA[
]]></el:luamain>
<ee:editor/>
<el:i18n/>

</el:protected>
<el:public>
<el:i18n/>
<el:upgrade/>

</el:public>
</el:level>

The first line is the XML declaration. It is fixed besides the encoding specification.
Enigma supports on all platforms, at least ‘US-ASCII’, ‘UTF-8’, ‘UTF-16’, ‘ISO-8859-1’,
‘windows-1252’. Enter your encoding and make sure that your editor saves the level in this
encoding. On some editors, you can start in ASCII mode, copy the level skeleton with a
different encoding declaration, like UTF-8, save the level still in ASCII mode and reopen
the file. The editor may then detect the XML declaration and switch automatically to the
given encoding. Note that unless you enter international strings in the level, you do not
have to bother with the encoding at all. You can choose UTF-8 in this case.

Some additional remarks for XML newbies: The XML markup tags are quite similar
to HTML. But XML requires a corresponding end tag ‘</element>’ for each start tag
‘<element>’. For elements that have only attributes and no content, you can and should
use the alternative empty element notation ‘<element/>’. Note that when we define an
element as empty or state that no content is allowed, not a single whitespace, not even a
linebreak is allowed between start and end tag. Use the empty element notation to avoid
mistakes.

We use a pretty printing format with an indentation of 2. Each element starts on a
separate line. Elements with text content have the end tag on the same line. Only elements
with subelements have the end tag on a separate line with the same indentation.

This format is not mandatory. You can even insert linebreaks in text contents, within
the marks, and even within attribute values. But note: The basic rule is that each linebreak
will be substituted by a space during the XML parsing. Take this space into account to
avoid mistakes, or simply live with the long lines.

A namespace identifier prefixes all tag names and attribute names. We use ‘el’ as an
abbreviation for Enigma levels. All tag names you can manually edit use this prefix.

Finally, a short comment on the XML reserved characters, ‘&’ and ‘<’. These two char-
acters are reserved as tag and entity starting characters. If you need them in text contents
or in attribute values, you must substitute them by the entity sequences ‘&amp;’ and ‘&lt;’.
Additionally, you must enclose attribute values with either ‘"’ or ‘’’. Of course, you must
substitute the enclosing character used in attribute values, too. Use ‘&quot’ and ‘&apos’.

Elements:

/level, required, single occurrence
This is the root node. Only one instance of this node occurs per file. Like
the first XML declaration line, this second line is quite fixed. There are two
versions. The simple 3-attribute version, as used in the first example, and only
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level editor programs use the 4-attribute version as above. For manual level
editing, just copy the simple version as the second line to your level file.

Attributes:

xmlns:xsi, required, contents fixed
Namespace definition for the schema. The contents are fixed to
“http://www.w3.org/2001/XMLSchema-instance”. The attribute
tag ‘xsi’ must match the prefix of the next attribute tag, and is
standard.

xsi:schemaLocation, required, contents fixed
Location of the schemas used. The contents are the fixed Enigma
level namespace, followed by the schema location URL. Level editor
programs will add their namespace and their schema location URL,
as in the second example above.

xmlns:el, required, contents fixed
Namespace definition for “Enigma level”. We use ‘el’ as the names-
pace prefix for all level element and attribute tags, as standard. The
prefix used can be arbitrary, but must match this attributes tag.
The contents of the attribute is fixed to the Enigma level names-
pace.

xmlns:ee, optional
Only level editor programs use this last namespace definition. For
example, we declared ‘ee’ as the namespace prefix for all editor
element and attribute tags. The prefix you use can be arbitrary,
but must match this attributes tag. The contents of the attribute
are the editor’s namespace.

/level/protected, required, single occurrence
The protected node section contains all level data that derive from the author
and should not be modified by anyone else.

/level/protected/info, required, single occurrence
The info node section contains all level metadata. It is mandatory and described
in detail at section Section 3.3 [Info metadata], page 28.

/level/protected/elements, optional, single occurrence
The elements node section is optional. It contains level description parts that
are given in a data-driven manner. Though the driving force is the support for
level editor programs, a level author may use any parts of this section he or she
likes.

/level/protected/luamain, optional, single occurrence
The luamain node section is the part to insert manually Lua level descriptions.
It is described in detail at section Section 3.4 [LUA code], page 38.

/level/protected/editor, optional, single occurrence
The editor node section is an open extension area for level editor programs.
They can add any additional information in this section that they need. Enigma
simply ignores this node section.
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/level/protected/i18n, required, single occurrence
The i18n node section contains English strings, native translations and com-
ments supplied by the author for the translators. This node section is manda-
tory and described in detail at section Section 3.5 [Internationalization (i18n)],
page 39.

/level/public, optional, single occurrence
This public node section is an optional extension to the protected part. It
contains information that the author has not validated and may even be added
after the last author’s review.

/level/public/i18n, optional, single occurrence
This public i18n section contains further translations supplied for the level.
They may derive from the author or other sources. The translators will validate
these translations, and they continue in use if the translators do not supply
corrected versions. See Section 3.5 [Internationalization (i18n)], page 39.

/level/public/upgrade, optional, single occurrence
This upgrade node is part of the Section 3.7 [Update and Upgrade], page 43
system.

3.3 Info metadata

The Info node contains all author-supplied metadata for the level. This is the source of
these data. All other parts of Enigma, such as level indices, simply contain copies that will
be automatically updated to the level’s original data.

Let us look at all supported subnodes of info with typically used attributes:

<el:info el:type="level">
<el:identity el:title="Demo I18N" el:subtitle="Translate or let it be trans-

lated" el:id="20060211ral002"/>
<el:version el:score="1" el:release="1" el:revision="0" el:status="experimental"/>
<el:author el:name="Ronald Lamprecht" el:email="ral@users.berlios.de"/>
<el:copyright>Copyright c© 2006 Ronald Lamprecht</el:copyright>
<el:license el:type="GPL v2.0 or above" el:open="true"/>
<el:compatibility el:enigma="0.92"/>
<el:modes el:easy="false" el:single="true" el:network="false"/>
<el:comments/>
<el:update el:url="http://..."/>
<el:upgrade el:url="http://..." el:release="2"/>
<el:score el:easy="-" el:difficult="-"/>

</el:info>

Attributes:

type, required, values = "level", "library", "multilevel"
You may use the schema for single Enigma levels, libraries that contain level
description parts for reuse, and descriptions for multiple levels at once.

‘level’ are all single level descriptions. It does not matter if you edit them
manually or with a level editor program, or which description elements you
use.
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‘library’ are level description parts that may be included in levels.
Section 3.8 [Library Files], page 43 consist simply of Lua code in the
luamain node. Libraries may make use of nearly all nodes besides the
‘/level/protected/info/score’ and ‘/level/*/i18n’, which both must be
provided, but will not be evaluated. Libraries are included in levels via the
dependency node-element. See Section 3.3.6 [<compatibility>], page 33.

‘multilevel’ are descriptions for multiple levels at once. The main purpose
is to support foreign game level formats, like the Sokoban level format, which
usually describes a whole set of level maps in a single file (see Section 3.9
[Multilevel Files], page 45).

quantity, optional
The number of levels contained in a multilevel file (see Section 3.9 [Multilevel
Files], page 45).

Contents - Elements:

identity, required
The title, subtitle and the main level identification string. See Section 3.3.1
[<identity>], page 30.

version, required
All aspects of the level Section 3.3.2 [<version>], page 30.

author, required
All information provided about the author him- or herself. See Section 3.3.3
[<author>], page 32.

copyright, required
The Section 3.3.4 [<copyright>], page 32 message for the level.

license, required
Information about the Section 3.3.5 [<license>], page 33 conditions.

compatibility, required
All information about Section 3.3.6 [<compatibility>], page 33 to Enigma re-
leases, dependencies from libraries, external data and the editor program that
generated the level.

modes, required
The Section 3.3.7 [<modes>], page 35 that the level supports, such as difficulty,
network and control.

comments, optional
Optional comments, such as credits, dedication and code comments. See
Section 3.3.8 [<comments>], page 36.

update, optional
Section 3.7 [Update and Upgrade], page 43

upgrade, optional
Section 3.7 [Update and Upgrade], page 43

score, required
The author’s own Section 3.3.9 [<score>], page 37 of this level.
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3.3.1 <identity>

The ‘identity’ element is required, since it provides the information for human and system
identification of the level.

<el:identity el:title="Demo I18N" el:subtitle="Translate or let it be trans-

lated" el:id="20060211ral002"/>

Attributes:

title, required
The English title of the level. The string can contain arbitrary characters
that are displayable by Enigma’s font and XML conformant. Just in case of
Section 3.9 [Multilevel Files], page 45 a trailing hash sign has a special meaning.
Anyway please make sure that the title is not too long, since Enigma will use
it on the level selection menu. Translations of the title can be provided in the
Section 3.5 [Internationalization (i18n)], page 39 sections.

subtitle, optional
An optional English subtitle. Used for title parts that are too long for the main
title, or for a short first hint. Enigma displays the subtitle on the level info
page and on the start of the level. Translations of the subtitle can be provided
in the Section 3.5 [Internationalization (i18n)], page 39 sections.

id, required
This is the central system identification string of the level that remains valid
for all time, independent of upcoming release updates. The id string should not
contain spaces, braces and wildcard characters, that means no character out of
‘*? ()[]{}’. Enigma’s main demand on the id is that it is unique among all
levels created by all authors around the world and that it does not end on a
closing square bracket.

Since you can edit levels with any text editor or different special Enigma level
editors, there is no control about the uniqueness. Thus, we have to provide a
simple convention to avoid any possible id clashes:

YYYYMMDDuserNNN

Where ‘YYYY’,‘MM’,‘DD’ is the date of the creation of the first experimental ver-
sion, ‘user’ stands for a user-specific name and ‘NNN’ for a random number. For
example, my level called ‘Houdini’ has the id ‘20060816ral719’. Of course all
levels created on the same day have to differ in the random number part. The
id is an Enigma level system id, and is never exposed to users.

For backward compatibility, legacy levels keep their former filename as the new
level id, and do not fit in the name schema given above. Still, that does not
harm since the only requirement is the uniqueness.

Contents:

The element itself is empty - no content is allowed.

3.3.2 <version>

This element provides the versioning information for the system.
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<el:version el:score="1" el:release="1" el:revision="0" el:status="experimental"/>

Attributes:

score, required
The score version is given as a positive integer number. New levels start with
score version “1”. New level versions need to increase the score version number if
the level modifications cause different solutions with incomparable score values.
Of course, level authors should be very restrictive with such modifications.

During the development of a level, you should use the attribute ‘status’ to mark
a level as not released. When the author changes the ‘status’ to ‘released’, he
has to check scoring compatibility and increase the score version if necessary.

This attribute is the logical equivalence to the Enigma 0.92 ‘index.txt’ at-
tribute ‘revision’.

release, required
The technical release version is given as a positive integer number. New levels
start with release version “1”. You must increase the release version number
if the level modifications cause either technical incompatibilities with previous
Enigma releases, or the scoring version has been increased.

The primary cause for technical incompatibilities should be the compensation
of Enigma engine changes. Since such compensations will not run on the old
Enigma version, the level versions must be distinguished by a different release
number.

In both cases, technical and scoring incompatibilities, the level file name must
be changed, too. This is necessary since different Enigma versions may be
installed on some systems at the same time. They have the need for both level
versions at the same time. Internet servers providing Enigma levels need to
offer the different level release at the same time, too.

To enable people to assign different level release files to a level itself, we
strongly recommend the name convention for levels AuthoridentifierLevelnum-
ber Releasenumber.Suffix, where the levelnumber is at least 2 digits; for exam-
ple, ‘ral01_2.xml’

revision, required
The revision number is a simple, ever-increasing version number. Every pub-
lished version of the level should have a new revision number. The revision
number is independent from the scoring and release version number.

If Enigma finds two levelfiles in its data search paths with identical filenames, id,
score and release version, it will load the one with the higher revision number.
This feature guarantees that an older level revision stored on the user’s home
level directory cannot supersede a new revision of a level distributed with a new
Enigma release. Online updates will check the level revision numbers, too.

Although the revision evaluates to a number, the attribute can take a sec-
ond string format as the literal keyword ‘$Revision$’. This Subversion for-
mat allows level authors to let their Subversion repository automatically insert
the level revision number. They must simply set ‘svn propset svn:keywords

http://subversion.tigris.org/
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"Revision" level.xml’ at their repository for every level file. Since the Sub-
version revision number is ever-increasing, it fulfills our criteria. Note that
Enigma does not require that revision numbers be consecutive.

status, required, values = “released”, “stable”, “test”, “experimental”
This attribute describes the quality of the level during development. Enigma
uses the status to protect the score database from being spoiled by unplanned
solution scores. It will record scores only for levels marked as ‘released’.

As a level author, if you start to change a released level, you should first change
the status back to ‘experimental’. Then make your changes and test the level.
When you are definitively sure that you did not introduce any spoilers, you can
release the level again with a new revision and perhaps a new release or score
version number.

Contents:

The element itself is empty - no content is allowed.

3.3.3 <author>

The information about the author him/herself. Enigma requires the author element itself,
but all attributes are optional to allow an author to be anonymous. Please remember that
level administrators and translators may need to contact you as the author. So please
provide a way for them to contact you.

The author element node may look like:

<el:author el:name="Ronald Lamprecht" el:email="ral@users.berlios.de" el:homepage="http://myhomepage.domain"/>

Attributes:

name, optional, default = “anonymous”
The author’s name as it will be displayed on the level info page and on the start
of the level. The name defaults to ‘anonymous’.

email, optional
The author’s email address or a newsgroup or forum he monitors. In general,
this is a hint as to how to communicate with him or her. The value will simply
be displayed as a string on the level info page.

homepage, optional
An address for the author or where the author publishes additional Enigma
levels. The value will simply be displayed as a string on the level info page.

Contents:

The element itself is empty; no content is allowed.

3.3.4 <copyright>

The standardized location for the author’s copyright message:

<el:copyright>Copyright c© 2006 Ronald Lamprecht</el:copyright>

Attributes:

none

Contents:

The author’s copyright notice.
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3.3.5 <license>

Of course, every author is free to choose the license conditions for his/her levels. How-
ever, the author must state the conditions. Thus, this node element and its attributes are
required:

<el:license el:type="GPL v2.0 or above" el:open="true"/>

Attributes:

type, required
A short license identifier of the license type, with an optional link address to the
license text or the string ‘special’, if the author supplies his/her own license
as the content of this element.

open, required
A boolean statement, whether the chosen license fulfills the criteria of the Open
Source Initiative (OSI). Please note that a value of ‘false’ may prevent your
level from being distributed with Enigma.

Contents:

You may add a complete license text as the contents of this element. Please use the type
attribute to identify the level.

3.3.6 <compatibility>

<el:compatibility el:enigma="0.92" el:engine="enigma">
<el:dependency el:path="lib/natmaze" el:id="lib/natmaze" el:release="1" el:preload="true" el:url="http://anywhere.xxx/mypage/natmaze.xml"/>
<el:externaldata el:path="./extfile" el:url="http://anywhere.xxx/mypage/extdata.xml"/>
<el:editor el:name="none" el:version=""/>

</el:compatibility>

Attributes:

enigma, required
The minimal Enigma release number required for compatibility.

engine, optional, values = “enigma”, “oxyd1”, “per.oxyd”, “oxyd.extra”, “oxyd.magnum”;
default = “enigma”

The required engine compatibility mode that influences the behavior of vari-
ous objects. This attribute is evaluated only for levels. Libraries ignore this
attribute.

Contents - Elements:

The compatibility element itself contains only subelements as content.

dependency, optional, multiple occurrence
You can use this element to specify any Enigma-Lua library this level depends
on. You can specify several libraries by multiple occurrence of this element. If
you configure a library to be preloaded, the engine will load it before it loads
or executes any level Lua code. The load sequence of several libraries conforms
strictly to the sequence of their dependencies elements.

Attributes:

http://www.opensource.org/
http://www.opensource.org/
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path, required
The resource path of the library without its suffix or any release
extension. Enigma stores most libraries in the ‘lib’ subdirectory
of its ‘levels’ directory, in most cases the resource path will be
like the one in the example above: ‘lib/ant’. This is the valid
path for the library file that may be either ‘levels/lib/ant.xml’
or ‘levels/lib/ant.lua’ or ‘levels/lib/ant_1.xml’.

However, libraries can also be totally level pack-specific. In this
case, you may use a relative resource path, such as ‘./mylib’ and
store the library in the level pack directory itself.

id, required
The version independent id of the library, as specified in the library
metadata. Enigma will check it on load of the library to avoid prob-
lems, and may use it with the release number to detect relocated
libraries.

release, required
Although different release versions of libraries must have different
filenames, we require to specify the library version. Enigma will
check it on load of the library to avoid problems, and may use it
with the release number to detect relocated libraries.

preload, required
A boolean statement that specifies whether the library should be
preloaded. If the library is not preloaded, you can still load it
via Lua code statements. Yet even those libraries must be declared
since Enigma will checked them on conformance. You should always
preload your libraries if you make use of the ‘elements’ section.

url, optional
This optional attribute allows you to specify a backup address for
the library. This will be useful for using new libraries that are not
yet distributed with the system.

For the development and test phase of new libraries themselves, a
developer can hand out test levels with an empty ‘library’ resource
path attribute. The test levels will load the newest library version
as published at the given url.

Contents:

none.

externaldata, optional, multiple occurrence
You can use this element to specify any external text data file this level depends
on. You can specify several files by multiple occurrences of this element. Files
declared can be read via the Lua interface.

This feature should support levels that simulate foreign games like Sokoban
within Enigma. Due to copyrights and license conditions, the inclusion of such
data within a level or even the distribution with Enigma may not be possible.



Chapter 3: Level Basics 35

However, distributing or downloading the data in the original unmodified format
may be legal.

Attributes:

path, required
The resource path of the external data file without its suffix ‘.txt’.
The path has to be either of the format "./name" for an external
data file that is locally stored in the same folder as the level file,
or will be saved at this position when it gets downloaded. Or the
path can be of the format "externaldata/name" for shared exter-
nal data files, that are referenced by multiple level files stored at
different folders. The external data file will be locally stored or gets
saved in the folder "levels/externaldata". In any case the local
name of the external data file will have the suffix ‘.txt’ to mark it
readable but not executable for the local operating system.

url, optional
This optional attribute allows you to specify an internet download
address for the external data file. On first access a missing external
data file will be downloaded and a copy will be stored locally for
further access.

Contents:

none.

editor, optional, single occurrence
Special level editor programs use this element to store information about them-
selves.

Attributes:

name, required
The name of the level editor.

version, required
A version number of the editor, given as a string. .

Contents:

none

Contents:

none

3.3.7 <modes>

The modes element allows the author to declare the supported and the default modes of
his level. Enigma’s engine checks that the level is used in supported modes.

<el:modes el:easy="false" el:single="true" el:network="false" el:control="force" el:scoreunit="duration" el:scoretarget="time"/>

Attributes:

easy, required, values = “true”, “false”
If a level provides a second easy-difficulty mode, set this attribute to ‘true’. If
only a one difficulty mode is supported, set this attribute to ‘false’.
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single, required, values = “true”, “false”
If a level provides a single player game as it is standard, set this attribute to
‘true’. Set this attribute to ‘false’ only if the level is a 2-player-network game.

network, required, values = “true”, “false”
If a level provides a 2-player-network game, set this attribute to ‘true’. If not,
set this attribute to ‘false’.

control, optional, values = “force”, “balance”, “key”, “other”; default = “force”
This attribute defines the standard control mode of the level. You can play
a level by using the mouse to generate forces on the marbles, since it is the
standard and was the only way up to Enigma 0.92. Or you can play a level
using the mouse, or other input devices to balance the level-world with the
marbles. Or you may use the keyboard with its cursor keys to move the actor
like in classic Sokoban games.

Although the user has always the last choice to define the input method he/she
currently wants to use, the author must define the standard control-mode that
the scoring system uses. Enigma will save and evaluate only scores achieved in
the defined control mode for high score lists.

scoreunit, optional, values = “duration”, “number”; default = “duration”
This attribute defines the evaluation and display mode of score values. By the
default ‘duration’, the score is interpreted as level solution time and displayed
in a MM:SS format. The ‘number’ mode displays scores as plain numbers and
lower numbers will be evaluated as better scores. This mode is appropriate for
counting pushes and moves.

scoretarget, optional, values = “time”, “pushes”, “moves”, *; default = “time”
The score target triggers the measuring of score values. ‘time’ will take the
solution time, ‘pushes’ counts the pushes of stones, ‘moves’ counts the moves
of the actor. Any other value will call a Lua function for score values. The
target is used as a short title for the score in user interface displays.

Contents:

none

3.3.8 <comments>

The optional comments node allows the author to add a few comments and to determine how
they should be processed. Please note that internationalization support will not translate
comments.

<el:comments>
<el:credits el:showinfo="true" el:showstart="false">Thanks to the au-

thor of my favorite libs</el:credits>
<el:dedication el:showinfo="true" el:showstart="false">To a honorable or a beloved per-

son</el:dedication>
<el:code>some important general notes</el:code>

</el:comments>

Attributes: none
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Contents - Elements:

The comments element itself contains only subelements as content.

credits, optional, single occurrence
The place to honor people who helped to make your level run.

Attributes:

showinfo, optional, default = “false”
A value of ‘true’ will display the message on the level info page

showstart, optional, default = “false”
A value of ‘true’ will display the message on startup of the level.
Please use this feature only in rare cases.

Contents:

The credits message itself. It may be broken into several lines. Whitespace will
be collapsed before display.

dedication, optional, single occurrence
The place to dedicate the level to a honorable or a beloved person. Please use
this place instead of adding document-items within the level.

Attributes:

showinfo, optional, default = “false”
A value of ‘true’ will display the message on the level info page

showstart, optional, default = “false”
A value of ‘true’ will display the message on startup of the level.
Please use this feature only in rare cases.

Contents:

The dedication message itself. It may be broken into several lines. Whitespace
will be collapsed before display.

code, optional, single occurrence
Attributes:

none.

Contents:

The main code comment, which may be an explanation of the Section 3.3.2
[<version>], page 30 status or a to-do list. It may be broken into several lines.
This comment will not be processed.

3.3.9 <score>

In this node, the author should provide his own scoring values as hints and a challenge for
other players. All values are related to the control mode defined in Section 3.3.7 [<modes>],
page 35.

<el:score el:easy="01:07" el:difficult="-"/>

Attributes:
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easy, required
The solution time for the easy mode. The format is either MM:SS, where MM
stands for the minutes, and SS for the seconds, or - if the author did not yet
solve the level him/herself. For levels with a score unit mode ‘number’, the
value would be the number of marble moves or pushes.

difficult, required
The solution time for the difficult mode. The format is either MM:SS, where
MM stands for the minutes, and SS for the seconds, or - if the author did not
yet solve the level him/herself. For levels with a score unit mode ‘number’, the
value would be the number of marble moves or pushes.

Contents:

3.4 LUA code

This element takes any Lua code as a single chunk with nearly no limitations:

<el:luamain><![CDATA[
levelw = 20

levelh = 13

create_world( levelw, levelh)

draw_border("st-wood")

fill_floor("fl-leavesb", 0,0,levelw,levelh)

oxyd( 4,4)

oxyd( 14,4)

document(5,10,"hint1")

document(10,10,"hint2")

document(10,5,"Heureka!")

set_actor("ac-blackball", 4, 11)

]]></el:luamain>

Attributes:

none

Contents:

This element takes the main Lua code as its contents.

All other possible libraries that are declared as dependencies, and Lua chunks supplied
by XML elements are preloaded as described in Section 3.3.6 [<compatibility>], page 33.
Generally there is no more need to use Lua functions like ‘Require’ to load libraries. Just
in case you need to control the point of execution were the library must be loaded, you
can declare the library with the attribute ‘el:preload="false"’. You should use the new
function 〈undefined〉 [enigma.LoadLib], page 〈undefined〉 to load the library.

The Lua code that is enclosed in a XML CDATA section. This limits the Lua code not
to use the reserved end marker ‘]]>’. Any occurrence must be substituted by ‘]] >’.

On the other hand, the XML format extends the Lua capabilities to the use of encodings.
You may use Lua strings and comments with Umlauts, but Lua identifiers are still limited
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to pure US-ASCII. The benefit is that you can use Umlauts and other non-ASCII characters
within it-document hints.

3.5 Internationalization (i18n)

The internationalization of levels is a driving force behind the level format changes. As
you may have noticed, there are two ‘i18n’ elements, one in the author’s protected section
and one in the public. Let us review how to use them for internationalization of the three
documents of our ‘demo_i18n.xml’ level:

<el:protected >

<!-- elements omitted -->

<el:i18n>
<el:string el:key="title">
<el:english el:translate="false"/>

</el:string>
<el:string el:key="subtitle">
<el:english el:translate="true"/>
<el:translation el:lang="de">Übersetzten oder übersetzten lassen</el:translation>

</el:string>
<el:string el:key="hint1">
<el:english el:comment="Let ’right’ be ambiguous: correct and op-

posite of left - if not possible choose correct">Read the right document</el:english>
<el:translation el:lang="de">Lies das rechte Dokument</el:translation>

</el:string>
<el:string el:key="hint2">
<el:english el:comment="the correct one and not the right posi-

tioned one">The right one, not the right one!</el:english>
<el:translation el:lang="de">Das rechte, nicht das rechte</el:translation>

</el:string>
<el:string el:key="Heureka!">
<el:english el:translate="false">Heureka!</el:english>

</el:string>
</el:i18n>

</el:protected>
<el:public>
<el:i18n>

<el:string el:key="hint1">
<el:translation el:lang="fr">Lisez la document de droite</el:translation>

</el:string>
</el:i18n>

</el:public>

Two of the documents use key words to reference a string. The last one uses the English
string itself as the key. There are two additional reserved keys, ‘title’ and ‘subtitle’.

For each string we like to translate or have translated, we define a ‘string’ subelement
of the protected section and add a ‘english’ subelement to the ‘string’ element itself.
The ‘string’ element just takes a single mandatory attribute, the key of the string. The
‘english’ element has a single mandatory attribute ‘translate’ that defaults to ‘true’,
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stating the author’s decision whether the string should be translated. If the author does
not want a string to be translated, he can and must simply add no ‘string’ element for
this string at all. Thus, the elements for the strings with the keys ‘title’ and ‘Heureka!’
are optional and quite unusual.

‘title’ and ‘subtitle’ display the English text in the Section 3.3.1 [<identity>], page 30
element. All other strings referenced by keys need to add the English text as the content
of the ‘english’ element. ‘hint1’ and ‘hint2’ are examples.

Because we chose quite ambiguous English texts, it is very likely that translators who
do not play the game but just translate the text, may deliver a wrong translation. To avoid
mistakes, a level author may add a ‘comment’ attribute to the ‘english’ element. The
translator receives this comment with the English string as we will see later.

If the author is not native English-speaking, he should add his own ‘translation’ subele-
ment to the ‘string’ element. The ‘translation’ element has a single mandatory attribute
‘lang’ that takes the 2-character language abbreviation. The contents of the element is the
translation itself.

All translations added in the protected section take precedence over any translator’s
translation and will work directly after addition without waiting for a translator’s transla-
tion.

Last but not least, we have an ‘i18n’ element in the public section. This element takes
translation suggestions. The author may add them him/herself for other languages he/she
knows. They may be added by others on the way to the user, or even by the user himself.

Translations in this section will work immediately after addition without waiting for
a translator’s translation. However, available translations, provided by translators, will
precede them.

The format is identical to the protected section, with the exception that no ‘english’
element may be provided. The ‘key’ attribute in the ‘string’ element must match exactly
the ‘key’ attribute in the corresponding ‘string’ element in the protected section. One
subtle difference exists, due to technical and practical reasons. ‘key’ attributes in the
public section need to be XML identifiers; thus, you cannot provide public translations for
strings that use the English phrase as the key. Choose a keyword and provide the English
string in the public ‘i18n’ section to avoid these troubles.

The ‘string’ element in protected section and in the public section must be unique
concerning the attribute ‘key’ within the section. This means you should add translations
for all known languages for a string in ‘string’ element in the protected and in the public
section. The sequence does not matter.

Let us review what the translator receives for each string. Let us start with ‘hint2’ for
the German translator:

# level: "Demo Internationalization"

# author: "Ronald Lamprecht" email "ral@users.berlios.de"

# comment: "the correct one and not the right positioned one"

# use: "Das rechte, nicht das rechte"

#: po/level_i18n.cc:17

msgid "The right one, not the right one!"

msgstr ""
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‘msgid’ is the English string. ‘msgstr’ takes the German translation. But the translator
does not need to translate since the author provided the German translation in the ‘# use:’
line

As another example, ‘hint1’ for the French translator:

# level: "Demo Internationalization"

# author: "Ronald Lamprecht" email "ral@users.berlios.de"

# comment: "Let ’right’ be ambiguous: correct and opposite of left - if not pos-

sible choose correct"

# check: "Lisez la document de droite"

#: po/level_i18n.cc:14

msgid "Read the right document"

msgstr "Lisez le document de droite"

Here the author gives the public translation in the ‘# check:’ line. Since it contains at
least one mistake, the translator will correct it, as shown in the ‘msgstr’ string.

3.6 Usage

After all the theory, let’s look at how to deal with the XML levelformat in practice. Of
course, you will not assemble all XML metadata from scratch for every new level you
write. You should use templates. You can start with any existing level, for example,
the ‘demo_i18n.xml’ supplied with this documentation. Add your personal data to your
template and store it as the basis for all new levels you write.

Some level authors are very familiar with the Lua file format since their favorite editor
supports Lua files with syntax coloring. The XML file name and the XML elements will
cause their editor to use XML syntax coloring. Nevertheless, these authors are used to
supplying metadata in the header of their Lua levels as non-standardized Lua comments;
we decided to support a similar Lua-compatible XML format. We call it “Lua commented
XML” since it simply comments out all XML lines with the Lua comment ‘--xml-- ’. For
example:

--xml-- <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

--xml-- <el:level xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://enigma-game.org/schema/level/1 level.xsd" xmlns:el="http://enigma-game.org/schema/level/1">

--xml-- <el:protected >

--xml-- <el:info el:type="level">

--xml-- <el:identity el:title="Demo Simple" el:id="20060210ral001"/>

--xml-- <el:version el:score="1" el:release="1" el:revision="0" el:status="stable"/>

--xml-- <el:author el:name="Ronald Lamprecht"/>

--xml-- <el:copyright>Copyright c© 2006 Ronald Lamprecht</el:copyright>

--xml-- <el:license el:type="GPL2" el:open="true">GPL v2.0 or above</el:license>

--xml-- <el:compatibility el:enigma="0.92"/>

--xml-- <el:modes el:easy="false" el:single="true" el:network="false"/>

--xml-- <el:score el:easy="-" el:difficult="-"/>

--xml-- </el:info>

--xml-- <el:luamain><![CDATA[

levelw = 20

levelh = 13
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create world( levelw, levelh)

draw border("st-wood")
fill floor("fl-leavesb", 0,0,levelw,levelh)

oxyd( 4,4)

oxyd( 14,4)

set actor("ac-blackball", 4, 11)

--xml-- ]]></el:luamain>

--xml-- <el:i18n/>

--xml-- </el:protected>

--xml-- </el:level>

Please note that each XML metadata line must start exactly with ‘--xml-- ’, 8 charac-
ters, including the space at the end! An additional limitation of the Lua-commented XML
format arises from Lua’s capability of handling character encodings. You need to limit
yourself to ‘UTF-8’ or, of course ‘US-ASCII’ to successfully use the Lua-commented XML
format. Please remember, that although the XML part is Lua-commented, it must still be
evaluated and thus must be valid.

Every level stored in this Lua-commented XML format as a file with extension ‘.lua’
can be used locally for command line use as well as in any level package that is stored on
the Enigma user’s home directory. However, Lua-commented XML levels cannot be stored
on Internet servers or be updated online. Thus, this format is good for level development,
but you should convert the levels to the pure XML format for distribution. Please note that
Enigma looks for XML levels first, and uses Lua levels only if it can’t find an XML level.

Another use of Lua-commented XML levels is the format backward compatibility to
Enigma 0.92. If levels do not use new Enigma features, you can include your levels in
Enigma 0.92 level packages in this format.

Since you may need to convert levels several times between the XML and the Lua format,
we do provide tools for conversion: ‘xml2lua’ and ‘lua2xml’. Both are very simple Lua 5
scripts that you can execute as ‘lua xml2lua demo_simple.xml > demo_simple.lua’ with
a properly installed Lua 5 version. On Unix systems, you can mark the scripts as executable
and simply call ‘xml2lua demo_simple.xml > demo_simple.lua’.

Of course you can add the conversion algorithms as simple macros for your favorite
editor. Please publish any editor macros you write.

As you fiddle with the XML metadata, you may produce syntactical errors, of course.
You can validate your level by trying to start it with Enigma. XML errors are output as Lua
errors are. If the error messages are too long to read, you may want to start Enigma from the
command line with the option ‘--log’ and read the messages printed to the command line
or written to the file ‘stdout.txt’ on the current working directory for Windows systems.

Of course, you can use any external XML validation tool, too. You just need to copy
the schema file ‘level.xsd’ on the same directory as the level itself. Possible validation
tools are the Xerces-C sample application ‘DOMPrint.exe -n -s -f -v=always level.xml’
or validating editors, such as Exchanger XML Lite. Such editors will provide you with
selections of all possible elements and attributes at each position.

http://www.freexmleditor.com/
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3.7 Update and Upgrade

Enigma is able to load new level versions since we provide all necessary attributes in the
Section 3.3.2 [<version>], page 30 element.

If Enigma loads a new level version, which differs just in the ‘revision’, we speak of
an ‘update’. You can perform updates automatically and replace old versions with the
updates, since the author guarantees them to be compatible in scoring and dependencies.
The author should provide a download address for automatic updates in the protected info
element:

<el:update el:url="http://myLevelServer.org/path/level_1.xml"/>

Attributes:

url, required
A long-term valid, complete address for update downloads of this level in the
same score and release version.

If the author of a level introduces incompatibilities into the level, he increases the release
version of the level and stores it with a new filename. We call the download of such a new
level version an ‘upgrade’.

To publish the availability of an upgrade release, the author should update the previous
release with a final revision that simply adds an upgrade element that announces the new
release:

<el:upgrade el:url="http://myLevelServer.org/path/level_2.xml" el:release="2"/>

Attributes:

url, required
A long-term valid, complete address for upgrade downloads of this level. A
path to the new file.

release, required
The release version of the upgrade.

Since the author cannot update all distributed levels himself to announce the availability
of the new release, we added another upgrade element in the public section. Level adminis-
trators can use this element for the same purpose, with the same syntax, without modifying
the author’s protected section.

3.8 Library Files

Libraries are collections of Lua functions for reuse in many levels. To use a library, you
must declare it as a dependency, as described in Section 3.3.6 [<compatibility>], page 33.
Preloading the library is all you have to do to use the library. Otherwise, you can use the
function 〈undefined〉 [enigma.LoadLib], page 〈undefined〉 to load the library at a certain
point of execution.

Enigma provides several very useful Chapter 12 [Libraries], page 331. You will find them
on the system path in the subdirectory ‘levels/lib’. Most of them are documented in-line.
You will find a separate documentation file ‘doc/ant_lua.txt’ for ‘ant’.

In this section, we will concentrate on the aspects of writing and maintaining libraries:
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3.8.1 Writing a Library

Library files are nearly identical to level files. The main difference is the attribute ‘el:type’
in the ‘info’ element, which you should set to ‘library’. You must provide all other
elements and attributes as you must for levels. Of course no scoring related attributes will
ever be evaluated and you should set them to default.

Libraries may depend on others, so you must provide an id and a release number. Several
releases of a library can coexist and you can update and upgrade them if you provide the
necessary information. Of course, libraries may contain document strings that can be
localized if you provide the ‘i18n’ elements.

The ‘el:luamain’ element takes the complete Lua code as it does for levels. Let’s look
at the essential XML parts of a library:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<el:level xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://enigma-

game.org/schema/level/1 level.xsd" xmlns:el="http://enigma-game.org/schema/level/1">

<el:protected >

<el:info el:type="library">
<el:identity el:title="" el:id="lib/ant"/>
<el:version el:score="1" el:release="1" el:revision="0" el:status="released"/>
<el:author el:name="Petr Machata"/>

<el:copyright>Copyright c© 2002-2003 Petr Machata</el:copyright>
<el:license el:type="GPL v2.0 or above" el:open="true"/>
<el:compatibility el:enigma="0.92">
<el:dependency el:path="lib/natmaze" el:id="lib/natmaze" el:release="1" el:preload="false">

</el:compatibility>
<el:modes el:easy="false" el:single="false" el:network="false"/>
<el:score el:easy="-" el:difficult="-"/>

</el:info>
<el:luamain><![CDATA[
...

]]></el:luamain>
<el:i18n/>

</el:protected>
</el:level>

3.8.2 Maintaining a Library

Libraries may exist in different releases and revisions. Library versions that differ simply in
the revision, denote compatible versions. Library versions that introduce incompatibilities
must differ in the release number. However, since existing levels may depend on the legacy
behavior of the older release, you must maintain both library release versions and distribute
them with Enigma at the same time.

To coexist, these different library releases must follow a strict naming scheme. Every
library has a base name. In the example above it is ‘lib/ant’. The filename of a given
release is the basename with the addition of an underscore and the release number plus the
suffix ‘xml’. Thus, you must store release ‘lib/ant’ as ‘lib/ant_2.xml’.
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If you look at the lib directory, you may wonder that Enigma stores most library files
without release number addition to the basename. This is due to 0.92 Lua level format
compatibility support. You can store one, and of course only one, release of each library
without release number addition to the basename. Enigma will load this version from pure
Lua levels that do not provide any information of the required library release.

If a library file with a complete filename is not present, the default library file without
release number addition will be loaded for XML load requests, too. Yet the future belongs
to the new naming scheme, and every new library should follow it from the beginning.

3.9 Multilevel Files

Another concept of code reusage besides Section 3.8 [Library Files], page 43 are multilevel
files. The code contained in a single file generates several levels, called sublevels, that
appear as autonomous levels in a levelpack. Of course this concept is much less flexible
than the library concept as other level files can not reuse the code. But you can write a
multilevel if you wrote a lot of specific code for a complex level that provides more than just
two variants, which would be otherwise presented as ‘difficult’ and ‘easy’ Section 3.3.7
[<modes>], page 35.

But the main reason for multilevel files is the support of foreign game level formats like
Sokoban, which describe a whole set of levels in a single file. Enigma imports these original
files with just a few lines of code. It would be inefficient, even though being possible, to
write an Enigma level stub for every level imported from a single foreign file.

But multilevel files have some restrictions. They use a single set of XML level metadata.
Thus these metadata must fit to all levels. The Section 3.3.2 [<version>], page 30 will
be identical as it reflects either the code version of the native level or the version of the
imported foreign file. But the other data like Section 3.3.3 [<author>], page 32, Section 3.3.6
[<compatibility>], page 33 and Section 3.3.7 [<modes>], page 35 have to match, too. If they
do not, you can not use a multilevel file.

Just the values for ‘title’ and ‘id’ will and have to differ for all levels described by a
single multilevel file. There exists special support for multilevels to handle these attributes.

Let us look at all attributes and features of multilevels that differ from standard level
files.

First you have to declare in the Section 3.3 [Info metadata], page 28 element the type
as "multilevel" and to provide the quantity of generated levels. The sublevels will be
numbered from 1 to the given quantity.

In the element Section 3.3.1 [<identity>], page 30 you have to provide just one unique
level id value. Enigma will automatically append the string "[1]" for the first sublevel,
"[2]" for the second and so on. Thus every sublevel has an unique id.

Additionally you should provide a base title for the levels in this metadata Section 3.3.1
[<identity>], page 30 element. If your title ends with a hash ‘#’ sign Enigma will autogenerate
titles for the sublevels by appending the sublevel number to the given common title string.

For individual sublevel titles the Section 3.4 [LUA code], page 38 has to provide the
titles. The title in the Section 3.3.1 [<identity>], page 30 element may not end on a hash
sign and will only be used as a default title base in case the Section 3.4 [LUA code],
page 38 fails to provide a sublevel title. Prior execution of the Lua code the global attribute
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Section 6.4.29 [SublevelNumber], page 146 gets initialized. The Lua part has either way to
load the appropriate sublevel based on this number. Now it has additionally the task to set
the second special multilevel global attribute Section 6.4.30 [SublevelTitle], page 146.

Section 3.3.6 [<compatibility>], page 33 externaldata
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4 Enigma Paradigm

Now that you have learned about the formal declarative XML part of a level you should be
eager to understand the basic principles of the participants of an Enigma level world. In
this chapter we explain all the fundamental concepts and the terms used in the following
chapters that describe the level author’s view of a level.

Please note that we describe the features of the new API of Enigma 1.10. The API of
the earlier releases does not provide all the features and differs in several aspects.

4.1 The World’s Structure

We speak of a level as the opus as a whole that describes the initial composition of a gaming
world and its dynamic behaviour during the game play. Let us look at the participating
objects in details.

4.1.1 World’s Shape and Coordinates

Having played a few levels you will have noticed that every screen shows quadratic tiles, 20
ones in the horizontal and 13 ones in the vertical direction. Even if it is difficult for a player
to map together all rooms and screens of a large level, every level world has the shape of a
rectangle in whole. Nevertheless some parts may never be visible to the player due to walls
of stones or oceans of water.

On the creation of a world the level author has to give its size in measure of tiles. The
given width and height of the world are fixed and cannot be changed later on. A common
size is 20x13 for a Onescreener. But there are no limits. You can even build levels smaller
than a screen. Note that for larger levels you have to take into account that one tile row or
column is usually shared between two screens on scrolling. Thus a level of 2x2 screens has
a size of 39x25 tiles, a 3x4 screen level has 58x49 tiles,...

Looking at the edges of all the tiles we get a grid that spans our world. We define the
upper left corner of our world as the position {0, 0}. The first coordinate is the horizontal
offset to the right, the second coordinate the vertical offset to the bottom. For a Onescreener
level the tile in the lower right corner is located at position {19, 12}, whereas the corner
itself is at the position {20, 13} (Note that this point is actually not part of the level
anymore).

A position of an actor like the black marble needs to be given by two floating numbers
as coordinates like {1.5, 2.5} for an actor positioned in the center of the tile that is one
column right and two rows down of the upper left corner tile.

But most objects like stones can only be placed on the fixed integral grid positions. Even
if you try to put a stone on {1.5, 2.5} it will be put on the grid position {1, 2}. Thus we
speak of a grid position if just the integral part is taken into account. You may note that
a tile is positioned according to its upper left corner. Actually the upper and the left edge
are part of a tile, whereas the right and lower edge belong to the neighbour tiles.

Finally let us look more precisely on the tile itself. On one grid position you may place
a floor, an item, a stone and even several actors. The combination of all objects on one grid
position is called a tile. It is a common technique to declare these object combinations once
in so called tile definitions. As many grid positions share the same combination of objects
these tiles can be reused very efficiently.
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4.1.2 Object Layers

On every grid position you may set a floor, an item and a stone. But just one of each. If
you set a second stone the first one will be replaced. Floor, item and stone have a unique
physical arrangement with the floor always being below an item and a stone always being
on top of the others. Thus we speak of three object layers - the floor layer, the item layer
and the stone layer.

The floor layer has a unique prerequisite. Every grid position needs to be covered by a
floor. You can define a default tile which contains a default floor that gets automatically
set on every grid where you set no other floor. Even if you kill a floor, that means removing
a floor without setting a replacement floor, a default floor will be set for you.

The floors provide two elementary features to the game: friction and adhesion. The
friction slows down actors and the adhesion enables you to accelerate actors with your
mouse. A floor may additionally cause a directed flat force that gives the user the feeling of
a slope. And last but not least a floor may burn. A whole set of attributes let you control
the details of the fire behaviour.

The item layer is shared between items that an actor can pick up and items that are static.
The first category are items like keys, banana, etc. Static items are bombs, landmines,
triggers, hollows and items that will only be set by the system itself like laserbeams, fire
animations, ash, etc. As only one item can be positioned of every grid position a marble
can not drop an item on such a static item. This is the technical reason that you can not
intercept a laser beam by dropping an item. But as an level author you are free to add any
item you like to the initial grid tile.

The stone layer is straight forward. The level author can choose a stone out of the
repository per grid. Of course most grid positions should be kept free for the actors to
move around. Even if most levels have a stone wall at the border of the world that visually
limits the area this is not mandatory. Without a stone wall the marbles will be bounced at
the physically boundary of the world.

The actors live in another layer that is not grid based. The actors can be placed at any
position. Actors that pass a stone will be displayed below the stone.

4.1.3 World as an Object

Friction, Brittleness, Modes and Co., Scrollmodes

4.1.4 Unpositioned Objects

You should be missing at least one object, that can neither be assigned to a single position
nor to one of the above layers: rubberbands! In fact there are many Chapter 11 [Other
Objects], page 326 besides floors, items, stones and actors that are unpositioned. Besides
visible rubberbands and wires useful gadgets, that help in plug and play composition of
levels, can be added to the world.

All these other objects are full objects concerning the following chapters. But you need
to use the world’s Section 5.13.5 [add], page 111 method to add them and you need to
use Section 4.2.2 [Object Reference], page 50 or Section 4.2.3 [Object Naming], page 51 to
access them later on, as no position driven access does exist.
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4.1.5 Player and Inventory

Enigma is conceptionally a game for 2 players. But nevertheless it can be played by one
user on a single computer by toggling the control between two virtual players. We do call
these virtual player’s YIN and YANG, as the first player controls in most cases a black marble,
whereas the second controls usually a white marble.

Each virtual player has its own inventory of up to 13 items. The leftmost item of the
inventory is called ‘revealed’, as an item activation by a mouse click does activate this
item and on actor hits this item may cause special actions.

The players inventories do exist outside of the rectangular world. Thus any item being
part of a player’s inventory will report an invalid, out of world position, that evaluates on an
‘exists()’ request to ‘false’. You can add items directly to inventories by the advanced
world method Section 5.13.5 [add], page 111.

Even though the actors are assigned to players they are quite independent objects that
live in one of the Section 4.1.2 [Object Layers], page 48. Their relationship to players is as
follows:

Each virtual player can own and control one or several actors of any kind. That means
player YIN is not limited to a black Section 10.2.4 [ac marble], page 321, but may as well
control a white Section 10.2.5 [ac pearl], page 322, an Section 10.2.2 [ac horse], page 318
or any other set of one or several arbitrary actors.

Ownership and control of actors are two distinct aspects. Ownership of an actor means
that every item picked up by an actor ends up in the player’s inventory and items of the
player’s inventory can act on all owned actors. The control of an actor by a player does
just affect the movement of the actor by the users force input. An actor may be controlled
by a player without parallel ownership. Another actor may be owned by a player without
being controlled by it, thus being a passive actor that depends on being pushed by others.
An actor may even be controlled by both players, but it can just be owned by one player
or none.

The assignment of actors to players is solely configured by Section 10.1 [Actor Attributes],
page 316.

When a single user plays Enigma he starts with the control over the player Yin. By
usage of yinyang objects he can toggle the control to the player Yang and back again.
Items Section 8.3.35 [it yinyang], page 207 are added automatically for network levels when
played by a single user. They allow an arbitrary switch between the players. The stones
Section 9.5.68 [st yinyang], page 312 do limit the user’s ability to switch between the player
control.

4.1.6 Owned Objects

Besides objects owned by a player and being part of his inventory, objects can be temporary
part of another object. The most obvious case is an item contained in an Section 8.3.1
[it bag], page 182. Other samples are two Section 9.5.56 [st shogun], page 297 stones
pushed onto the same grid position or for a short fraction of time a stone swapping the
position with an Section 9.5.60 [st swap], page 303 or an Section 9.5.48 [st pull], page 287.

In any case the owned object will report the same position as the owner itself. Even in
case of some items contained in a bag that is itself part of another bag all items will report
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the same position as the outmost bag. If this bag is part of an player’s inventory all items
report an invalid position.

You can not directly enforce ownership by setting two objects to the same position as
this standard operation will kill and replace the old object by the new one. Where possible,
like in the case of an bag, you can add objects to a container object by usage of the world
advanced method Section 5.13.5 [add], page 111.

4.2 Object Description

Knowing where to place objects it is time to know how to select an object type, how to
specify the details of the object and how to reference it later on.

4.2.1 Object Kind

Up to now we have spoken about object kinds of floor ‘fl’, item ‘it’, stone ‘st’ and actor
‘ac’. All these kinds are called abstract. You can check if a given object is of such a kind,
but you can not instantiate an abstract kind.

To create an object you need to give a specific kind name like ‘st_switch’. You will find
all object kinds described in the chapters starting with Chapter 7 [Floor Objects], page 149.
All these kind names with at least one underscore can be instantiated.

Most kinds provide subkinds like ‘st_switch_black’ and ‘st_switch_white’. In case
of the switches you get a color independent switch if you do not append a suffix. In other
cases like ‘st_chess’ the super kind will result in a default ‘st_chess_black’ as no colorless
chess stone exists.

If you request an object for its kind it will always return the most specific kind. This
means that a fresh generated ‘st_chess’ returns the kind ‘st_chess_black’, whereas an
‘st_switch’ reports its name unchanged.

Objects can change their kind by level code statements or by user actions. You may set
a color on a switch or a marble may cause a color change on a chess stone by hitting it with
a revealed wand. The object will report the new kind on subsequent requests.

A few special object kinds do exist only for setting a new object. They are usually named
with a suffix ‘_new’. These objects will never report their initial kind name but change to
a standard kind immediately.

If you are not interested in the specific subkind you can check an object for conformity
to any super kind. E.g. any switch stone of whatever color will return true if checked for
‘st_switch’.

4.2.2 Object Reference

Having set objects to the various layers a level author sometimes has the need of referencing
them later on. On callbacks the engine provides references to sender objects. But the author
can request any grid object anytime by its position.

With an object reference, that is of a special Lua type ‘object’, you can request the
objects on its current state and attributes, modify the object, send messages or perform
any supported methods of the object.

Objects can be grouped for efficient handling of common operations on all affected
objects. E.g. if you can send a message to a group of objects all objects will receive the
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message in turn. The sequence of several objects in a group is constant and guaranteed to
be observed in processing common operations.

As objects can seize to exist you have to be aware that the references are volatile, too.
You can check every object reference for existence. But in many cases the validity of the
reference is unimportant as Enigma 1.10 is very tolerant on invalid object references access.
The operations will simply be ignored and requests will return default values.

As a general thumb rule you should request and keep object references just for the time
of a local call. As long as your level code is processed in sequence without the running world
simulation giving the player a chance to kill objects by marble actions, objects should seize
to exist just due to your own direct statements.

To gain access to an object later on a subsequent call you can address it via two methods.
First you can address it via its position. But as many objects are movable the position is
not constant. Therefore you can address an object by name. See Section 4.2.3 [Object
Naming], page 51.

4.2.3 Object Naming

For addressing objects on a long term valid basis every object can individually be tagged
by a name. Assigning a name to an object is as simple as setting the attribute ‘name’ with
a unique string on this object. Of course you can request an objects name by reading the
attribute ‘name’.

The name is a string that should be made up of characters ‘a..z’, ‘A..Z’, numbers
‘0..9’ and the underscore ‘_’. Other special characters are only allowed as far as they are
explained in the following text.

It is up to you to ensure unique names. Reuse of an already assigned name will unname
the prior object and assign the name to the new object. To simplify the naming of larger
groups of similar objects you can add the hash sign ‘#’ as the last character to a name,
e.g. ‘mydoor#’. This causes Enigma to add a unique random number to the given string.
Thus an auto named object will never unname another prior auto named object. But if you
delete an auto named object that has been named e.g. ‘mydoor#103284’ the number and
the same name may be assigned to another that is created later on.

All named objects are registered by the named object repository. The API provides a
variable ‘no’ that allows you to retrieve any named object, e.g. ‘no["mylaser_a"]’. You
get an Section 4.2.2 [Object Reference], page 50 or ‘nil’, if no object is registered by the
given name.

As you can auto name groups of objects you are allowed to use the wildcard characters
‘?’ and ‘*’. The question mark replaces a single arbitrary character, the asterisk any number
of arbitrary characters. E.g. ‘no["mydoor#*"]’ retrieves all auto named ‘mydoor’ objects
in a single object group.

Many object attributes like ‘target’, ‘destination’ need object references to other
objects. Besides a volatile Section 4.2.2 [Object Reference], page 50 you always can provide
a name string as a long term valid object reference. If the attribute allows several objects
to be given you can either give a group of object references, a table of object names or a
object name with wildcards. Thus the string ‘"mydoor#*"’ is a valid target.

Often switches are located near by their target object. As a major shortcut you can
reference the nearest object out of a group by prefixing its name with an ‘@’ character.
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ti["F"] = {"st_floppy", target="@door#*"}

ti["D"] = {"st_blocker", name="door#"}

With this tile declaration you can describe arbitrary number of floppy switches and
nearby blocker doors in a world map all by the same two tile key characters. Every floppy
switch will target the nearest blocker door. If two targets are given within the same distance
the one located in the south will win. If the targets are additionally horizontally aligned
the one located in east will win. In the rare case of objects located on the same position
stones will precede items, floors and actors. The chosen target or destination depends just
on the location of these objects and their type, but nothing else. Thus you can rely on a
stable selection mechanism. Section 13.3.1 [Nearest Object Clustering], page 392 may help
you in case of unexpected selected equidistant targets.

Auto naming and nearest object features help you to reduce the number of needed
tile declarations. Resolvers like Section 13.1.3 [res.autotile], page 370 and Section 13.1.4
[res.composer], page 373 are another feature for reducing the need of tile declarations.

Another unique feature of object names is their late on access evaluation. This allows
you to reference an object prior to its existence. E.g. if you want to set two vortices each
declaring the other one as its destination, object names are the favorite solution:

wo[{3,4}] = {"it_vortex", name="vortex1", destination="vortex2"}

wo[{15,9}] = {"it_vortex", name="vortex2", destination="vortex1"}

In general you will need to use object name references within any tile declarations as
none of the referenced objects will yet exist at the point of tile declarations.

Objects do change over time. Doors do open, a chess may be recolored, a blocker stone
may shrink to a blocker item. This means that the kind of the objects will change. But in
many cases this means that the volatile object reference will brake, too. For the sake of the
level authors the identity of the object will be transferred even if the reference gets invalid.
And like the user attributes the name is part of the object identity. Thus if you name an
Section 9.5.4 [st blocker], page 242 and it shrinks to an Section 8.4.1 [it blocker], page 207
you will retrieve this item if you ask the name object repository for the named object.

When an object like a door is completely killed, e.g. by an Section 8.3.26 [it seed],
page 201, it can no longer be targeted by active objects like switches. A still existing
reference to a no longer existing object does not cause problems on Section 4.3.1 [Messages],
page 55. But what about the nearest object references? To avoid problems due to killed
objects the standard nearest object reference with just one ‘@’ as prefix are finalized on
Section 4.4.3 [Level Initialization], page 60. This means that they get substituted by the
unique name of the nearest of all existing objects at a point of time when all objects have
been created, but before the user takes action and can incidentally kill a candidate.

But sometimes you may like a dynamic nearest object target or destination. One that
is evaluated when it gets accessed. By prefixing a name with ‘@@’ the reference will not get
finalized on initialization but remains dynamic.

ti["c"] = {"it_coin_s", "magic#"}

ti["v"] = {"it_vortex", destination="@@magic#*"}

Setting three magic coins and one vortex in your map will teleport the marble to the
grid of that coin that is nearest to the vortex at the moment of teleportation.
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To avoid unexpected problems with invalid object references a few critical objects are
internally autonamed if the level author does not provide a name. But these unique names
should never interfere with the user assigned object names.

4.2.4 Object Attributes

One of the key concepts for the versatility of Enigma is possibility to fine tune objects by
means of attributes. The level author is not limited to a fixed set of preconfigured objects
as given by the object kind.

An attribute is a name, a string, with an assigned value. E.g. ‘obj["inverse"]=true’
sets a single object attribute to a boolean value and ‘{"it_magnet", range=6.5}’ describes
a magnet item with an initial set floating point attribute.

The scope of values is manifold. Most Lua types and a bunch of Enigma specific types
can be assigned:

• bool

• int

• double

• string

• nil, DEFAULT

• position

• object

• group

• tokens

If we speak of a bool value we do it in the sense of Lua 5, that means with the possible
values ‘true’ and ‘false’.

Many enumerated values like orientations and colors are covered by the integer numbers.

Of special interest is the value ‘nil’. Just a few attributes make direct use of the
value ‘nil’, e.g. "color" on some objects. If you set an attribute to value ‘nil’ you do
actually reset its value to the default value. E.g. if you set the attribute "orientation" of
Section 9.5.6 [st boulder], page 244 to ‘nil’ it will be set to its default, which is actually
‘NORTH’, an enumerated orientation value. A subsequent read of the attribute will return
this value. Just those attributes that allow a nil value will ever return ‘nil’ on a read
access. As a direct consequence these attributes always default to ‘nil’.

The authors of Lua did decide to prohibit the usage of ‘nil’ as a value in Lua tables.
As we make heavy usage of anonymous tables as object declarations, you would not be
able to set such attributes to ‘nil’. You would need to set such attributes explicitly. As a
workaround we added a custom value ‘DEFAULT’ that can be used anywhere to set attributes
- even within Lua tables.

mySwitch["color"] = nil

mySwitch["color"] = DEFAULT

wo[{3,6}] = {"ac_marble_black", player=DEFAULT}

Note that ‘DEFAULT’ is not equal to ‘nil’. They are different values concerning Lua. They
just result both in attributes reset to their default. If you request a nil valued attribute you
will always receive the Lua value ‘nil’. ‘DEFAULT’ will never be returned by the engine.
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A group is an ordered set of Section 4.2.2 [Object Reference], page 50s. As all contained
objects must exist this value is seldom used for attributes in object declarations. But it
is very useful for postprocessing of objects and for usage within Section 4.3.3 [Callback
Function], page 57s.

The most complex attribute value type are the tokens. Their purpose is the specification
of one or many objects. As Enigma provides several means to do that this value type
combines and mix all possibilities. A tokens value may be a string, representing an object
name, an object reference, a group or a table with any of these basic types in any sequence
and number. E.g. the following right sides are all valid tokens for the attribute ‘target’:

obj1["target"] = "mydoor"

obj2["target"] = myobject

obj3["target"] = grp(ojb1, obj2, obj3)

obj4["target"] = {"mydoor", myobject}

obj5["target"] = {grp(ojb1, obj2, obj3), "mydoor", myobject, "anotherdoor"}

This versatility is useful to set tokens attributes independent of the given object reference
types.

The chapter Chapter 6 [Common Attributes and Messages], page 126 and its followers
describe the existing object attributes in detail.

Besides these predefined attributes the level author can store own information on objects
for later retrieval. Any name starting with an underscore ‘_’ can be used for level specific
purposes. This prefix has been chosen as the resulting names are still valid Lua names.
Common usage patterns are switches or triggers with callback functions. These functions
provide the sender, the switch or trigger, as an argument. If you attach the same function
to number of senders you can store the necessary context information within the sender.

The internal engine uses object attributes as well. Such inaccessible attributes are named
with a leading dollar sign ‘$’. They may appear in the documentation for C++ developers
information. Level authors should ignore these attributes.

In some cases you may observe a different behaviour on setting an attribute within the
object definition and setting the same attribute while the object is already on the grid.
E.g. a door ‘{"st_door_h", state = OPEN}’ is opened from the very beginning. Whereas
‘mydoor["state"] = OPEN’ on a closed door will start opening the door. This takes a short
time until the door is really open. You find more details on these as aspects in the section
Section 4.4 [The Lifecycle of a Level], page 59.

If you ever look into the C++ code you may wonder about the implementation of at-
tributes. They are not all directly stored in a map. Some of them are hold in object
instance variables, other do not exist at all. Objects attributes are an abstract concept that
unifies several internal features within a common simple API for level description code.
Within the C++ engine subtle reasons like performance optimization forces a much more
complex handling.

4.3 Methods of Interaction

Having looked at the description of the initial object composition of a level world we still
need to understand how to configure the dynamic behaviour of a level.
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4.3.1 Messages

You can generate an initially open door by setting its attributes. But how can a switch
stone open a door when it is hit by a marble? It simply sends a message ‘open’ to the
door. Another switch may send a message ‘on’ to a laser or ‘ignite’ to an Section 8.3.11
[it dynamite], page 189. On explosion the dynamite will in turn send automatically ‘ignite’
messages to the neighbour grid positions.

Messages are a simple universal function or from the receiver object and the Lua level
authors point of view a "method". It takes two arguments - the message name, a string,
and an optional value. E.g.

mydoor:message("open")

myboulder:message("orientate", NORTH)

mydoor:open()

myboulder:orientate(NORTH)

The last two examples are a common abbreviation of the first two ones.

Messages may return a value. But most messages just return ‘nil’.

You can send any message to any object. Not supported messages are silently ignored.
This is the reason that an exploding dynamite can send ‘ignite’ messages to its neighbours
without knowing if the objects can be ignited at all. Further on the dynamite has not to
bother with the recipients of the messages. Due to messages the sender and the receiver
objects are totally decoupled concerning the code base. Thus the level author just needs
one method that allows sending arbitrary messages to arbitrary objects.

You should not send a message during initialization of the level. You configure the switch
to send an ‘open’ message to the door by Section 4.3.2 [Target - Action], page 55. Within
a Lua Section 4.3.3 [Callback Function], page 57 you may send messages during runtime to
any object.

All messages are listed and described in Section 6.2 [Common Messages], page 130 and
the subsequent chapters.

4.3.2 Target - Action

The "target action paradigm" is a classical object oriented method that allows you to easily
plug together objects. One object is triggered by a function call or by an event like an actor
hitting a stone, crossing over or applying an item. You simply plug this object to another
target object and tell it to send an action message. Every time the first object is triggered
it will send the message to its target.

You configure such a target action by setting the attributes ‘target’ and ‘action’ on
the first object. E.g. a for a switch stone that should open a door named ‘mydoor’ you can
write:

{st_switch, target="mydoor", action="open"}

Objects like the switch can be triggered on and off. Each time they will perform the
action. If you would like the door to open and close in turn to the switch you need another
action than ‘open’. The universal message for changing targets in their alternate states is
‘toggle’.
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{st_switch, target="mydoor", action="toggle"}

{st_switch, target="mydoor"}

Now the door will toggle in sync with the switch between its open and closed state. The
message Section 6.2.1 [toggle], page 130 can be used quite independent of the target object.
In fact it is the default action message. As a default you may omit the action in this case
as it is demonstrated by the second example.

But keep in mind that toggling just changes the state of the target. If you start with
a switch in off state and an open door, the door will close when the switch in turned on.
They will not sync. If you configure two switches both targeting the same door, you will
have no clear relationship between the switch states and the door.

As you remember messages can take a value. Action messages are no exception. Every
object sends its actions with a value, usually a bool value. A switch sends a value ‘true’ if
it just switched on, and a value ‘false’ if it just switched off. The appropriate message for
the door would be the universal message ‘signal’:

{st_switch, target="mydoor", action="signal"}

Now the door will open when the switch is turned on and close if the switch is turned
off.

The message Section 6.2.3 [signal], page 131 takes an integer value of ‘0’ or ‘1’. Indeed
the action value does not match. But in this as in many other cases the messages and values
are designed in a way that they are automatically converted to the appropriated type. This
compatibility is the basis for a seamless plugging of objects.

In many cases authors face the task of triggering two or more objects by a single object.
‘target’ and ‘action’ are both able to take multiple values. ‘target’ is of type tokens, as
described in Section 4.2.4 [Object Attributes], page 53, whereas ‘action’ can be a string or
a table of strings.

{st_switch, target={grp(ojb1, obj2, obj3), "mydoor", myobject, "anotherdoor"},

action={"toggle", "open", "turn", "close"}}

All objects described by a token receive the related message in the action table. If not
enough messages are listed the default action ‘toggle’ will be sent.

Usually actions are performed at once. That is very important as the sequence of ac-
tions if often essential. Consider an Section 9.5.7 [st box], page 246 being pushed from
one Section 8.4.18 [it trigger], page 224 to a neighboring one, or just an Section 10.2.4
[ac marble], page 321 moving from the first trigger to the neighboring one. In both cases
it is important that the first trigger is released prior the second one to be pressed. If this
sequence gets mixed up both triggers could be pressed by a single object for a moment
what could cause major shortcuts in a level. Thus all actions are performed in the logical
sequence and in a stable, repeatable sequence without any random.

Action may be simple or sometimes be very complex world rearrangements. But in
any case you should never ever ‘kill’ the sender object. Killing the sender can cause
application crashes! Be aware that even chained actions are not allowed to kill any prior
sender object. Thus an Section 8.4.18 [it trigger], page 224 that toggles an Section 9.5.61
[st switch], page 303 which in turn kills the first trigger is as critical as the trigger killing
itself. We do generally discourage you to kill any object within its own action, as there
is no dissolving animation and the WYSIWYG user paradigm is violated, too. But if
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there is urgent need for reasons of the level gaming logic you can perform the action in a
secure, delayed mode. Just add the attribute Section 6.1.6 [safeaction], page 128 with value
‘true’ to the self killing sender object. The action will no longer be performed at once,
but with a minimum delay in a manner that will never cause crashes. But be aware that
even a minimum delay, which is still within the same timeslice, may disturb the sequence
of actions. This can cause unexpected logical results on the other hand.

4.3.3 Callback Function

The most powerful extension to the Section 4.3.2 [Target - Action], page 55 paradigm that
you can think of are callback functions. Instead of a target object as receiver of an action
message you can supply an own Lua function that is called whenever the action is triggered.

{"st_switch", target="my_magic", action="callback"}

{"st_switch", target="my_magic"}

The ‘target’ is the name of the function as a string. You may set the ‘action’ to the
string ‘"callback"’ for purpose of clarification, but it is not necessary as you see in the
second example. The engine identifies the target to be of type of a Lua function and thus
the action needs to be a callback. But you should note and remember that it is up to you
to ensure that all object names and callback functions names are unique.

Let us look at the syntax of such a callback function

function my_magic(value, sender)

if value == true then

wo[sender + {1,0}] = {"it_coin_s"}

end

end

The function is called with two arguments. The first one is a value. The type and
contents depends on the issuing object, but in most cases it is a boolean value. You will
find the value described in the objects description. The second argument is the reference
of the calling object.

In the example we check if the Section 9.5.61 [st switch], page 303 did just toggle to
ON. If this is given we take the switch, which is the sender, as a position and set a new
Section 8.3.8 [it coin], page 187 to the grid east of it - a small bank automate that supplies
money.

The Section 5.3 [Advanced Lua Examples], page 79 will show examples of real powerful
callback functions with a line by line comment.

Further usage and aspects of callbacks in the level’s lifecycle are given in the section
Section 4.4.6 [Callbacks and Load Balancing], page 61.

4.3.4 Object State

A key concept for the ability to plug together objects like switches and doors are the very
simple state machines of these objects. Most objects are described by simple machines with
just 2 states like ‘ON’,‘OFF’ or ‘OPEN’, ‘CLOSED’. These objects can be plugged together by
just few common messages. Further on these simple state machines are suited to the gamers
who do not want to read manuals but want to explore the objects by playing with just a
few tests.

http://www.lua.org
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Even though states are usually named by appropriate uppercase names like above, the
states are integer numbers starting with ‘0’ usually related to the default state. But some
objects use another mapping due to historic reasons. E.g. states that are orientation related
use the state ‘3’ representing ‘NORTH’ usually as the default and number the orientations
clockwise down to ‘0’ representing ‘WEST’.

In most cases it is sufficient to perform a state independent common action like
Section 6.2.1 [toggle], page 130. Even two stated objects can be easily synchronized by the
standard action Section 6.2.3 [signal], page 131. But sometimes you may want to perform
very state specific actions. Let us look how this can be done.

E.g. let us take an Section 9.5.24 [st fourswitch], page 262, that has four states, and two
Section 9.5.32 [st laser], page 269 which should be switched on and off. Both lasers should
emit their beams while the fourswitch is in 3 of its states. But one of them should be off
just while the fourswitch is in the ‘EAST’ state and the other should be off just while the
fourswitch is in the ‘WEST’ state. This can be done by usage of state dependent target and
actions:

{st_fourswitch, target_3="laser#2", action_3="on",

target_2="laser#1", action_2="off",

target_1="laser#1", action_1="on",

target_0="laser#2", action_0="off"}

Adding a number as suffix to ‘target_’ and ‘action_’ gives you special target and action
attributes that will take precedence over the general ‘target’ and ‘action’ attributes if the
state value equals the suffix number. An alternative declaration would be:

{st_fourswitch, target={"laser#1", "laser#2"},

action_3={"nop", "on"},

action_2={"off", "nop"},

action_1={"on", "nop"},

action_0={"nop", "off"}}

Here we do address both lasers in all states. But one of them receives a Section 6.2.2
[nop], page 131 message that stands for "no operation". In fact this message will never be
send. It is just a dummy message that we have need of for syntax reasons in the case above.

Another example are two Section 8.4.18 [it trigger], page 224 that switch a laser. An
object pressing the first trigger should switch the laser on, an object pressing the second
trigger should switch it off. But a trigger is two stated and performs one action on being
pressed and another on being released. Thus we want to block the actions on trigger release
events:

{it_trigger, name="on_trigger", target="laser#1", action_1="on", action_0="nop"}

{it_trigger, name="off_trigger", target="laser#1", action_1="off", action_0="nop"}

The blocking of ‘action_0’ is essential and can not be omitted, as otherwise the default
action would be performed. This would be a ‘toggle’ message that would switch the laser.

As this useful default mechanism can sometimes be annoying you can switch off the
default message by setting the Section 6.1.5 [nopaction], page 127 attribute to true.

{it_trigger, name="on_trigger", target="laser#1", action_1="on", nopaction=true}

{it_trigger, name="off_trigger", target="laser#1", action_1="off", nopaction=true}
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When an objects leaves a trigger the state ‘0’ action will be performed. As neither
‘action_0’ nor ‘action’ is specified the default action will be performed, which is now
‘nop’.

If you ever look into the C++ code you may note that many objects do have much more
complex state machines than you expect from the level authors and gamers view. This is
due to running animations, timers, etc.. The C++ objects map their complex internal state
set to the much simpler external state set. This is the main reason that some features that
level authors request can not be provided in the Lua API.

4.4 The Lifecycle of a Level

Snapshot Levelloading, Initialization, Runtime Callbacks, Ending Conditions - the mystery
of Oxyds and Meditation

4.4.1 Library Preloading

4.4.2 Snapshot Principle

Most levels contain objects that take influence on each other. A switch might toggle a door
by Section 4.3.2 [Target - Action], page 55, marbles may press a trigger, or a laser might
activate a laserswitch or transform a hammer into a sword. Of course it is essential to
know how to set up such objects to get the desired start configuration without the objects
changing unexpected on level initialization.

The snapshot principle is a simple thumb rule that you can rely on in describing the
level as a snapshot of object at a given point of time. Every object has just to be configured
as it should be at the given time. All interactions that would take place in a running game
do not take place while setting objects during initialization.

E.g. if a switch toggles a door and the switch should be initially on and the door should
be initially open you describe the object with exactly these attributes:

{"st_switch", target="mydoor", state=ON}

{"st_door", name="mydoor", state=OPEN}

A laser that is initially on that illuminates a laserswitch needs an initially active laser-
switch. But of course no attribute exists that would allow you to set a laserswitch active.
The snapshot principle includes the rule that all internal states are updated without exter-
nal actions. This means that the laserswitch will show up active without causing an action
on its target.

{"st_laser", state=ON}

{"st_laserswitch", target="mydoor"}

What about objects that transform on laser light. The snapshot principle keeps the
object from transforming during initialization. A hammer that is set in an initially existing
laser beam will not transform to a sword. It remains as a hammer that will transform on
any subsequent new laser light during the game.

Of course it cannot be allowed to describe impossible initial level states. Objects like
dynamite do explode immediately on a laser beam hit. Thus a dynamite item in an initial
laser beam is a fault that causes an exception. The snapshot principle forces you in this
case to set an explosion item instead of the dynamite.
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Some objects do process internal state transformations that cannot be configured by
attributes. But some of these states may be of interest on describing a snapshot of a level.
Where possible a special object subkind exists with a suffix of ‘_new’. These objects can be
used in the initial level description to set objects in special initial states. E.g. Section 8.4.1
[it blocker], page 207 provides such a special subkind. Note that these objects will never
report their initial subkind on a kind request as they come into existence as a standard
object.

4.4.3 Level Initialization

Knowing what has been preloaded and knowing exactly which objects we have to set in
which state, it is time to have a look on how your level code is processed. The main issue
is to guarantee that all parts referenced have been set up properly in advance.

Prior execution of the first line of your code the world exists just as an abstract handle,
but not as grid array able to accept objects. Thus the first lines of code should set up all
Section 6.4 [Global Attributes], page 138 deviating from their defaults. Even though many
attributes can be set or changes later on and even on runtime, there are some attributes
like Section 6.4.25 [ProvideExtralifes], page 145 that take only effect if being set prior world
creation, or others like Section 6.4.23 [MaxOxydColor], page 144 that must be set prior
their first usage. Our recommendation is to collect all global attribute settings at the very
beginning of the level.

The second section of your level code should be the declaration of tiles. Being just
declarations these code lines do not set objects to the world. They just depend on global
attributes and may reference each other. Listing them all together in a code section makes
it easy to maintain the overview and to avoid dependency conflicts.

If you use Section 13.1 [Resolvers], page 368 you should put their declarations in the
next code section as they may refer to tiles and global attributes and need to be set up
prior the world creation.

The central statement of every level is the Section 5.13.1 [World Creation], page 109. It
sets up the world to its size and sets initial objects according to the given tile declarations
to the grid array. While you are free to add and change any of these objects later on the
size of the world is fixed and can not be changed.

Thus subsequent code lines should Section 5.13.5 [add], page 111 other objects, draw
additional maps of objects and finalize some objects. The most common statement for such
a finalization is the Section 5.13.11 [shuffleOxyd], page 115 method. It needs to know all
Section 9.5.42 [st oxyd], page 281 to be able to color and shuffle them. Another finalization
may be a custom rendering of a maze, that extracts the maze shape out of the level map
(see Section 13.1.5 [res.maze], page 375).

This post world creation code may well have the need of loops or even some local used
functions that need to be integrated to precede. Please keep such functions near by their
usage and within the same code section.

Another set of functions that you may want to add are Section 4.4.6 [Callbacks and Load
Balancing], page 61. We recommend to append these functions as the last section as they
are not called within the level initialization itself.

But there is one very special exception. The postinit() callback is called after the
level initialization code has been processed and all subsequent engine internal initialization
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has been finished. If this function is present in a level it gets executed directly before the
first mouse movement event gets processed. Thus you can rely within this function that
all objects are set up in their final state. If you have need of such a postinit callback you
should put it after all the level intialization code and in front of other callback functions
that will be executed on subsequent events.

4.4.4 Object Transformation

During runtime some Enigma objects do transform into other successor objects, like an
Section 9.5.4 [st blocker], page 242/Section 8.4.1 [it blocker], page 207, an Section 9.5.8
[st brake], page 247/Section 8.3.4 [it brake], page 185, an Section 8.3.25 [it rubberband],
page 200/Section 11.1.2 [ot rubberband], page 326, an Section 8.3.17 [it hammer],
page 194/Section 8.3.31 [it sword], page 204,...

Even though the successor object may have other attributes, some attributes and espe-
cially any user attributes should be maintained. In fact the objects name, its target and
action attributes and all attributes starting with an underscore ‘_’, the user attributes, are
transferred to the successor object. Thus you can rely on the successor to message the same
target and you can it access it via its old name.

4.4.5 Named Positions

Many stones are movable and if the user can not push them, most may still be swapped.
Items may be picked up by actors or be killed in a burning fire. Thus in most cases it is
preferable to mark anchors or shapes in the floor. On every grid position a floor object is
guaranteed and they are much more stable than other objects. But nevertheless a user may
push an Section 9.5.7 [st box], page 246, an Section 9.5.49 [st puzzle], page 288 or other
floor building stone on an Section 7.4.12 [fl water], page 177 or Section 7.4.1 [fl abyss],
page 167. Furthermore a user may drop and ignite an Section 8.4.2 [it bomb], page 209
that destructs the floor leaving a new Section 7.4.1 [fl abyss], page 167. In all these cases
you may loose a named anchor or an essential part of a named grid area accessible as an
object group.

Thus for every named floor that gets killed its position is stored in a repository under
its name. You just need to retrieve the named positions instead of the named objects if you
want to get all affected floor positions.

ti["~"] = {"fl_water", "water#"}

...

function sweet()

wo[po["water#*"]] = {"it_cherry"}

end

Note that a request for a named position will include all positions of matching named
objects as well as those named positions derived from killed floors.

4.4.6 Callbacks and Load Balancing

The most flexible feature for a level author to establish an unique behaviour of his level are
Section 4.3.3 [Callback Function], page 57s.

Section 4.3.2 [Target - Action], page 55 kill warning Section 11.2.2 [ot timer], page 329

global and res.*.function
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4.4.7 Level Restart

4.4.8 Ending Conditions

Two essential questions remain to be answered. When and under which conditions is a level
successfully finished. How do I declare a level as being a meditation level in opposite to a
standard oxyd pair opening level.

In fact there is no ’meditation’ flag, neither within the XML Level Section 3.3 [Info
metadata], page 28 nor as one of the Section 6.4 [Global Attributes], page 138. That means
there is no formal distinction between both level ’types’. But there are two different types
of ending conditions. Both are checked permanently and whichever is fulfilled first wins.
Thus Enigma allows you to write true hybrid levels that provide Section 9.5.42 [st oxyd],
page 281 as well as Section 8.4.11 [it meditation], page 217 allowing the user to solve the
level by two totally different means.

The main way to end the game is to fulfill the oxyd pair opening condition:

The game is over when the user succeeds in opening all regular colored Section 9.5.42
[st oxyd], page 281s by pairs.

This implies that there is at least one pair of regular colored oxyd stones and that all
oxyd colors appear in even number of instances. Whereas you will always add at least one
pair of oxyds for a standard level, you may simply loose track of the number of instances.
Therefore the engine will permanently check at runtime that every oxyd color appears in
an even number of instances. Any violation causes an error. In case you will add or delete
oxyd stones you need to disable this checking by setting the global attribute Section 6.4.2
[AllowSingleOxyds], page 138 to true. Now it is your reponsibility as an author to ensure
that the level remains solvable by adding or removing pairs only.

The second way to end the game is to fulfill the meditation condition:

All Section 10.2.5 [ac pearl], page 322s must reside for at least one second within
the uneven area of an Section 8.4.11 [it meditation], page 217, all Section 8.4.11
[it meditation], page 217 marked as essential must be occupied and the number of
Section 10.2.5 [ac pearl], page 322s must be equal to the number of occupied Section 8.4.11
[it meditation], page 217s.

This implies again that there exists at least one Section 10.2.5 [ac pearl], page 322 and
that no two pearls can reside within the same Section 8.4.11 [it meditation], page 217.
There must be at least the same number of Section 8.4.11 [it meditation], page 217 as of
Section 10.2.5 [ac pearl], page 322, but there may be more Section 8.4.11 [it meditation],
page 217s as long as they are not marked as being essential. A surplus of Section 8.4.11
[it meditation], page 217 can easily occur due to explosions of Section 8.3.11 [it dynamite],
page 189.

A level that should be solved by fulfillment of the meditation condition can contain
Section 9.5.42 [st oxyd], page 281 and by setting Section 6.4.2 [AllowSingleOxyds], page 138
to true you can add odd numbers of oxyd stones of a color. On the other hand you can add
Section 10.2.5 [ac pearl], page 322 to a level that should be solved by fulfillment of the oxyd
pair condition. But you must carefully check that the user can not rest the pearls in given
Section 8.4.11 [it meditation], page 217 or can create Section 8.4.11 [it meditation], page 217
by Section 8.3.11 [it dynamite], page 189. Marking more Section 8.4.11 [it meditation],
page 217 as essential than existing Section 10.2.5 [ac pearl], page 322s can avoid shortcuts.
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A level that is set up to allow the user to fulfill both conditions is called a hybrid level.
Of course it is a difficult task to provide equivalent solutions for both approaches.

Independent of the condition type all actors marked as essential need to be alive at
the moment the condition is fulfilled. Mainly in existing legacy levels but may in some
very carefully designed future levels the author may allow the user to sacrify an actor to
fulfill the condition by setting the global attribute Section 6.4.32 [SurviveFinish], page 146
to false. In this case a mable may shatter while the condition is fulfilled. Of course the
essential actor may not shatter in advance, because as soon as the shattering is over the
essential actor will cause a level restart, if it can not be resurrected.
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5 Lua API

Knowing the basic principles of an Enigma level’s world you now just need the language
glue to write your first level. Enigma levels are written in the language Lua as of version
5.1.4. This powerful language gives you the ability to write most complex, dynamical levels,
while being nearly transparent on writing basic standard levels. Indeed there is no reason
to dig into this language at the very beginning.

With the second Lua API version, as of Enigma 1.10, we designed an optimized way of
describing levels in a very short and readable manner. Thus we would like to introduce you
to this API by giving several examples from a basic level to most thrilling dynamic real
Enigma levels. You should be able to start your first experiments just after reading the first
example with its explanations.

For your convenience we do color the Lua code part. Predefined Lua variables and
functions are colored in green. Enigma internal string constants as object kinds, attribute
or message names are colored in blue. Level specific variable names and value constants are
colored in magenta.

After the examples and a short overview the details of the language specific API part are
given, as you can expect it for a reference manual. Please note that additional Chapter 13
[Advanced Features], page 368 are described in a separate chapter.

5.1 Basic Lua Examples

Let us look at two basic onescreener levels, that make use of all basic techniques. While the
first level is a little bit artificial, as it is designed for demo purposes only, the second one is
a quite dynamic real level out of the Enigma levelpacks.

5.1.1 Basic Example

Let us view the source code. We did add a line count in the first two columns for reference
purpose within this section. These line count numbers are not part of the source code itself!

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

2 <el:level xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://enigma-game.org/schema/level/1 level.xsd" xmlns:el="http://enigma-game.org/schema/level/1">

3 <el:protected>

4 <el:info el:type="level">

5 <el:identity el:title="Basic Level" el:subtitle="" el:id="20080721ral513"/>

6 <el:version el:score="1" el:release="1" el:revision="$Revision: 1170 $" el:status="experimental"/>

7 <el:author el:name="Ronald Lamprecht" el:email="ral@users.berlios.de"/>

8 <el:copyright>Copyright c© 2008 Ronald Lamprecht</el:copyright>

9 <el:license el:type="GPL v2.0 or above" el:open="true"/>

10 <el:compatibility el:enigma="1.10"/>

11 <el:modes el:easy="true" el:single="true" el:network="false"/>

12 <el:score el:easy="-" el:difficult="-"/>

13 </el:info>

14 <el:luamain><![CDATA[

15

16 wo["ConserveLevel"] = true

17

http://www.lua.org
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18 ti[" "] = {"fl samba"}
19 ti["."] = {"fl abyss"}
20 ti["~"] = {"fl water"}
21 ti["#"] = {"st granite"}
22 ti["X"] = {"st oxyd"}
23

24 ti["L"] = {"st laser", orientation=EAST, state=ON}
25 ti["M"] = {"st lightpassenger", interval=0.04}
26

27 ti["P"] = {"st polarswitch", name="polar"}
28 ti["T"] = {"it trigger", target="polar"}
29

30 ti["^"] = {"st boulder", "boulder", orientation=NORTH}
31 ti["F"] = {"st fourswitch", target="boulder", action="orientate"}
32

33 ti["D"] = {"st door d", "door", faces="ew"}
34 ti["B"] = {"it blocker", "wall#"}

35 ti["S"] = {"st switch", target={"door", "wall#*"}}

36

37 ti["v"] = {"it vortex", "left", destination="right"}
38 ti["V"] = {"it vortex", "right", destination="left"}
39

40 ti["O"] = {"st turnstile", flavor="red"}
41 ti["E"] = {"st turnstilearm", orientation=EAST}
42 ti["N"] = ti["."] .. {"st turnstilearm n"}
43

44 ti["+"] = {"fl samba", checkerboard=0} .. ti({"fl wood", checkerboard=1})
45

46 ti["1"] = {"#ac marble"}
47

48 if wo["IsDifficult"] then

49 ti["="] = ti["~"]

50 else

51 ti["="] = ti["~"] .. {"it strip ew"}
52 end

53

54 w, h = wo(ti, " ", {

55 "####################",

56 "# ....++++++~ #",

57 "L PM ..N.++~~~~OE#",

58 "####### T~++++++. #",

59 "# ^ ~++++++# #",

60 "# =++++++X X",

61 "# ~++++++# #",

62 "#~~~~~~~~~~~~~+++X X",

63 "# ~ B ~+++###",

64 "F ~ B ~+++++#",
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65 "# 1 ~ B #+++++#",

66 "S v~V B D+++++#",

67 "####################"

68 })

69

70 wo:shuffleOxyd()
71

72 ]]></el:luamain>

73 <el:i18n>

74 <el:string el:key="title">

75 <el:english el:translate="false"/>

76 </el:string>

77 </el:i18n>

78 </el:protected>

79 </el:level>

The resulting level looks like this in the game

Let us now analyse the code line by line.

Lines 1 to 14 are the XML metadata of the level as described in Chapter 3 [Level Basics],
page 21. The only line worth mentioning is

10 <el:compatibility el:enigma="1.10"/>
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You need to declare the level to be compatible to Enigma 1.10 or higher for the new API
2 as described in this reference manual. A value less than 1.10 indicates compatibility to
a previous Enigma release that did use the old API 1, which should not be mixed up with
the new API 2.

The Lua part starts with line 15:

16 wo["ConserveLevel"] = true

Like most levels it starts with setting Section 6.4 [Global Attributes], page 138. The
handle of our world is ‘wo’. This object reference is preset (see Section 4.1.3 [World as
an Object], page 48). Concerning Lua it is an ‘userdata’, but most of its usage syntax
is identical to that of Lua tables. Thus we access an attribute by providing the desired
attribute name in square brackets. As we give a literal attribute name, we have to put it in
double quotes ‘"’. In total this line requests the world to resurrect a killed actor as long as
there are enough extra lifes to conserve the running level (see Section 6.4.5 [ConserveLevel],
page 139). In fact ‘true’ is the default value. So we could have left this line out. But
remember it is a demo level.

The second part of a level are the tile definitions as explained in Section 4.1.1 [World’s
Shape and Coordinates], page 47. Let us start with the most simple ones:

18 ti[" "] = {"fl samba"}
19 ti["."] = {"fl abyss"}
20 ti["~"] = {"fl water"}
21 ti["#"] = {"st granite"}
22 ti["X"] = {"st oxyd"}

Again we use a handle ‘ti’ which is a preset object reference for the tile definition
repository. Like the world it is a Lua ‘userdata’. And we can access it like the world by
giving the desired index in square brackets. These indices are free to your choice. They
have to be of a common character length if they are referenced in the world map below.
For a small level one character keys are sufficient. You can use any ASCII character that
Lua is aware of. That means upper and lower case characters ‘A-Z,a-z’, the numbers and
special characters besides backslash ‘\’ and double quote ‘"’.

The assigned object definition are given as Lua anonymous tables, the curly braces,
containing in the most simple case just the desired Section 4.2.1 [Object Kind], page 50.
As it is again a literal string, it has to be quoted. Without any further specification the
objects are taken in their default configuration as described in Chapter 7 [Floor Objects],
page 149 and following chapters.

24 ti["L"] = {"st laser", orientation=EAST, state=ON}
25 ti["M"] = {"st lightpassenger", interval=0.04}

These two lines define objects with custom configuration. The Section 9.5.32 [st laser],
page 269 should send its beam to the east and should start being switched on. The
Section 9.5.36 [st lightpassenger], page 272 should move a little bit faster than usually.
Both times we just have to add comma separated additional attributes. The attribute
names are not quoted as they are followed by an equal ‘=’ sign.

27 ti["P"] = {"st polarswitch", name="polar"}
28 ti["T"] = {"it trigger", target="polar"}

An Section 9.5.46 [st polarswitch], page 286 named for reference usage (see Section 4.2.3
[Object Naming], page 51). The Section 8.4.18 [it trigger], page 224 sets up a Section 4.3.2
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[Target - Action], page 55, the target being our polarswitch. The action attribute is omitted.
It defaults to the message ‘toggle’. Thus any actor or stone on top of the trigger makes
the polarswitch transparent, but switches it back to opacity when leaving the trigger.

30 ti["^"] = {"st boulder", "boulder", orientation=NORTH}
31 ti["F"] = {"st fourswitch", target="boulder", action="orientate"}

Another pair of objects that are coupled by Section 4.3.2 [Target - Action], page 55.
The Section 9.5.6 [st boulder], page 244 starts trying to move to north. This time we name
the object just by giving the name as the second comma separated string. We omitted
the attribute identifier ‘name =’. This is a shortcut for this most common attribute which
requires the name to be given as the second value directly after the objects kind.

The Section 9.5.24 [st fourswitch], page 262 references the boulder as its target. We
need to give the action as well, as we want to make use of a special action that directly
steers the boulder according to the fourswitch orientation.

33 ti["D"] = {"st door d", "door", faces="ew"}
34 ti["B"] = {"it blocker", "wall#"}

35 ti["S"] = {"st switch", target={"door", "wall#*"}}

And another even more complex Section 4.3.2 [Target - Action], page 55. We want a
single Section 9.5.61 [st switch], page 303 to toggle a Section 9.5.19 [st door], page 256 as
well as set of Section 8.4.1 [it blocker], page 207s at the same time. The gaming idea is that
neither with switch on nor with switch off the marble can pass both obstacles. The gamer
needs to steer the boulder through the blocker wall to pass these obstacles.

The setup of the door is simple. We just need to name it to be able to reference it later
on. We want to use several blocker objects and we need to name each for reference purposes.
We do this by appending a hash sign ‘#’ to its name as described in Section 4.2.3 [Object
Naming], page 51. Every blocker gets a unique name. The switch needs to list all these
objects as its targets. This is done by an embedded anonymous table given by the curly
braces and comma separated values. The first one is our door’s name, the second one is a
wildcarded string that describes all our blocker objects. The asterisk stands for any suffix
that may have been added behind the hash in the process of autonaming of our blockers.

37 ti["v"] = {"it vortex", "left", destination="right"}
38 ti["V"] = {"it vortex", "right", destination="left"}

We want to use two Section 8.4.19 [it vortex], page 225 that are connected to each other
allowing the marble to warp into both directions. We set up both vortices with a unique
name and add the attribute ‘destination’ referencing the other vortex’ name.

Note that it is no problem to reference the right vortex in line 37 while it is named later
on in line 38. We are still just defining tiles and not creating any objects at all.

40 ti["O"] = {"st turnstile", flavor="red"}
41 ti["E"] = {"st turnstilearm", orientation=EAST}
42 ti["N"] = ti["."] .. {"st turnstilearm n"}

Another object group is an Section 9.5.64 [st turnstile], page 306 cluster with one arm
disconnected. The first two definitions are straight forward. But in line 42 we precede
the arm’s definition by another tile reference. It is the abyss tile defined in line 19. By
concatenation, the two dots .., of a tile and an object definition we can define a new tile
that is composed of both objects. In this case we define a turnstile arm on top of an abyss
floor.
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You may be wondering why we did not define floors for the other stone and item tiles.
We make use of the tile definition in line 18 that we will declare later as the default floor for
our level. Thus any tile declaration that does not provide its own floor will set this default
floor.

44 ti["+"] = {"fl samba", checkerboard=0} .. ti({"fl wood", checkerboard=1})

Just for fun we want to provide a checkerboard floor on the right side of our level. This
can be done by usage of the Section 6.1.11 [checkerboard], page 129 attribute. Again we
concatenate two object definitions for a single tile. Both are floors. That means for each
grid position we try to set both floor types, but just one meets the checkerboard condition
and will be set.

Please notice that we did convert one the floor object definitions to a tile definition by
the function call ‘ti()’. This is necessary as Lua does not know how to concatenate two
anonymous tables. One argument of the concatenation has to be a tile.

46 ti["1"] = {"#ac marble"}

Finally we do need our marble. Unlike other objects it can be positioned anywhere
within a grid. The most common position is the center of the grid. This is simply done by
preceding the actor’s kind by a hash sign ‘#’.

48 if wo["IsDifficult"] then

49 ti["="] = ti["~"]

50 else

51 ti["="] = ti["~"] .. {"it strip ew"}
52 end

We encourage every level author to provide an easy mode for the levels. This is an
example how to define mode dependent tiles. Like in line 16 we access a world attribute.
But this time it is a read access of Section 6.4.20 [IsDifficult], page 144. In easy mode we
want an Section 8.4.16 [it strip], page 222 on top of the water floor that allows the marble
to pass and press the trigger. In difficult mode there should be no passage. Thus the special
tile is identical to the water tile defined in line 20.

54 w, h = wo(ti, " ", {

55 "####################",

56 "# ....++++++~ #",

57 "L PM ..N.++~~~~OE#",

58 "####### T~++++++. #",

59 "# ^ ~++++++# #",

60 "# =++++++X X",

61 "# ~++++++# #",

62 "#~~~~~~~~~~~~~+++X X",

63 "# ~ B ~+++###",

64 "F ~ B ~+++++#",

65 "# 1 ~ B #+++++#",

66 "S v~V B D+++++#",

67 "####################"

68 })

After all tiles have been defined we can create our world simply by a map that uses
our tile keys. The first argument is our handle ‘ti’, that defines how the keys should be
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resolved. The second argument is the key of our default floor. The third argument is the
map as a table of strings, one for every line.

The world initialization returns the width and height of our world which are calculated
by the map’s size.

70 wo:shuffleOxyd()

After the world is created and all objects are set, we can do some final postprocessing
before the level starts to run. The most common task is the shuffling of the oxyds, which
is just a method call of Section 5.13.11 [shuffleOxyd], page 115 to our mighty world object.

5.1.2 Colored Turnstiles

As this level is part of the Enigma levelpacks we recommend that you play the level first to
get familiar with the used objects and their behaviour.

Now let us look at the essential Lua source code part of the level to understand how
such an idea can be realized with the new API

ti[" "] = {"fl sahara"}
ti["#"] = {"st purplegray"}
ti["@"] = {"#ac marble black", "marble_black"}

ti["N"] = {"st turnstilearm n"}
ti["S"] = {"st turnstilearm s"}
ti["E"] = {"st turnstilearm e"}
ti["W"] = {"st turnstilearm w"}
ti["R"] = {"st turnstile", action = {"open", "close"}, target = {"red#*", "green#*"}}

ti["G"] = {"st turnstile", action = {"close", "open"}, target = {"red#*", "green#*"},

flavor = "green"}

ti["r"] = {"it blocker", "red#"} .. ti({"fl red"})
ti["g"] = {"it blocker", "green#"} .. ti({"fl lawn"})

ti["O"] = {"st oxyd", flavor = "d", oxydcolor = OXYD_GREEN}

ti["o"] = {"st oxyd", flavor = "d", oxydcolor = OXYD_RED}

w, h = wo(ti, " ", {

-- 01234567890123456789

"#O#####O############",

"# r N g N rO##O#O#",

"#WRE#WGE# R ####g#r#",

"# r N r S r N #",

"#g#g#WG #g##r# REr##",

"# # N S r g S gO",

"#@g RE#g#gWGE###g###",

"# # S g r N ro",

"#r#r#WGE#r##g#WGEg##",

"# N r S g N r #",

"#WGE# RE# RE####r#g#",

"# g S r S go##o#o#",

"#o#####o############"
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})

wo:shuffleOxyd()

There are just four tile definitions that do all the dynamic actions. Let us look first at
the blocker item definitions:

ti["r"] = {"it blocker", "red#"} .. ti({"fl-red"})
ti["g"] = {"it blocker", "green#"} .. ti({"fl-leaves"})

All blockers on red floors are autonamed with a name being composed of the prefix ‘red#’
and a unique random number being added by the engine as explained in Section 4.2.3 [Object
Naming], page 51. This allows us to address all these blockers later on.

ti["R"] = {"st turnstile", action = {"open", "close"}, target = {"red#*", "green#*"}}

ti["G"] = {"st turnstile", action = {"close", "open"}, target = {"red#*", "green#*"},

flavor = "green"}

Whenever the marble hits and turns an Section 9.5.64 [st turnstile], page 306 it per-
forms its actions on the targets. Here the author makes clever usage of multitargets and
multiactions as described in Section 4.3.2 [Target - Action], page 55. On every turn of a
red turnstile all objects named ‘red#*’, that are all our blockers on a red floor, will be sent
a message ‘open’, whereas all blocks on a green floor, the second target group, receives the
second action message ‘close’. It is essential to choose the ‘open’, ‘close’ messages instead
of ‘toggle’, as more than one red turnstile may be turned in sequence, but just the first red
turn should "toggle" all blockers. The next toggling should occur on the first green turn
following thereafter.

Hope you got the basic idea of the new API. You may well start with you first level
experiments. But you should return and read the following chapters with overview and
advanced examples to write even more fancy levels.

5.2 API 2 Overview

Having analysed a first level it is time get an overview of the API 2 capabilities. Let us
take a task driven approach by listing the different possibilities and use cases by example.

5.2.1 Types Overview

But first we need to introduce you to the special Enigma value types besides the standard
Lua types ‘nil’, ‘boolean’, ‘string’, ‘function’ and ‘table’:

Types:

position: See Section 5.5 [Position], page 90
A position within the world that can be described by an x and y
coordinate.

positions: preset variable: po; See Section 5.10 [Positions Repository],
page 105

The singleton type of the repository of all named positions.

object: See Section 5.6 [Object], page 93
An Enigma object like a stone, item, floor, other. Any object is a
position, too.
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group: See Section 5.7 [Group], page 97
A list of objects.

namedobjects: preset variable: no; See Section 5.8 [NamedObjects], page 102
The singleton type of the repository of all named objects.

default: preset variable: DEFAULT; See Section 4.2.4 [Object Attributes],
page 53

The singleton type of default values that can be used instead of
Lua’s ‘nil’ in anonymous table tile definitions.

tile: See Section 5.11 [Tile and Object Declaration], page 107
A description of one or several objects for a common grid position
(floor, item, stone, actor)

tiles: preset variable: ti; See Section 5.12 [Tiles Repository], page 108
The singleton type of the repository of all tile instances.

world: preset variable: wo; See Section 5.13 [World], page 109
The singleton type of the world that contains all objects.

position list: See Section 4.4.5 [Named Positions], page 61
A list of positions.

Please note the four handles ‘po’, ‘no’, ‘ti’ and ‘wo’. You have noticed two of them in
the previous section Section 5.1 [Basic Lua Examples], page 64. These are four variables,
that are preset prior the level code gets executed.

API 2 uses mainly two character names for frequently used variables and functions to
shorten the level code and to make it better readable. Authors should try to use either
single characters or names that are three characters or longer for private variable names.

For the rest of this section let us assume that ‘obj’ is an object reference of a stone, item
or floor, which means that is of type ‘object’. And let ‘pos’ be a valid variable of type
‘position’.

5.2.2 Position Tasks

For reference details see Section 5.5 [Position], page 90.

Creating Positions:
pos = po(7, 3) -- using function "po()" to generate a position object

pos = po({7, 3}) -- using a table position constant as argument

pos = obj -- every object is a valid position

pos = po(12.3, 3.7) -- a position within a grid (for an actor)

Absolute positions are created by the function ‘po()’. But the most common
way should be the reinterpretation of an object as a position. This lets you set
other objects relatively to given ones.

Position Constants:
{7,3} -- a valid position for all arguments and operations (see

[Caveats], page 373)

Anonymous tables with just two number values can be used in many cases
directly as a position constant. In case of errors, e.g. when operators are not
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well defined like addition of two constants, which results in an attempt of adding
two Lua tables, use the function ‘po()’ to convert the constant.

Coordinate Access:
x, y = pos.x, pos.y
x, y = pos["x"], pos["y"]
x, y = pos:xy()
x, y = obj.x, obj.y
x, y = obj:xy()

The x and y coordinate of a position or object can be read accessed like any
object attribute. A position or object method call by ‘xy()’ returns both co-
ordinate values at once. You can not set a position value by coordinate write
access. Objects need to be set to a new world position. New positions can be
calculated by position arithmetic.

Position Calculation:
pos = obj + {2,7}

dpos = obj1 - obj2

dpos2 = 2 * dpos

dpos3 = dpos / 2

Positions can be added or subtracted to get distance vectors. You can multiply
and divide them with any number.

Center positions for set actors
pos_centered1 = pos + {0.5, 0.5}

pos_centered2 = #pos

pos_centered3 = #obj

Especially for positioning of actors you sometimes need the position of the
center of a grid. Of course you can get it by addition of a constant position.
But the ‘#’ operator applied on a position or an actor does the same in a simpler
way.

Round a position to a grid
grid_pos = pos:grid()
grid_pos = ((pos1 - pos2)/2):grid()

A result of a position calculation needs sometimes to be rounded to integer grid
coordinates. This is done by the ‘grid()’ method.

Position comparison
pos_centered1 == pos_centered2

pos_centered1 ~= pos_centered2 -- Lua’s inequality operator

Position can be easily compared to equality.

Position existence
pos:exists()

‘true’ if a position is a valid position of the world. All positions outside of the
world return ‘false’.
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5.2.3 Attribute Tasks

For reference details see Section 5.6 [Object], page 93.

Single Attribute Setting:
obj["destination"] = po(7,3)

wo["Brittleness"] = 7

Object attributes as well as global world attributes can be set like Lua table
values. They can take values of special Enigma types like position, object or
group.

Multiple Attribute Setting:
obj:set({target=mydoor, action="open"})

You can set multiple attributes on any object at once with the objects ‘set()’
method. The argument is an anonymous Lua table with the attribute names
as keys and assigned values of your choice.

Requesting Attributes:
value = obj["attr name"]
value = wo["Brittleness"]
if wo["IsDifficult"] then ... end

Attributes of objects and the world can be read like Lua table key values.

Reset Attributes:
obj["length"] = nil -- the default length, e.g. ‘1’

obj["color"] = nil -- delete color attribute - no color

obj["length"] = DEFAULT -- the default length, e.g. ‘1’

Any object attribute can be reset to its default value, which is the attribute’s
"delete" operation, by assigning it the Lua ‘nil’ or the Enigma ‘DEFAULT’ value.

5.2.4 Object Tasks

For reference details see Section 5.6 [Object], page 93.

Creating Objects:
wo[pos] = {"st chess", color=WHITE, name="Atrax"} -- on grid pos

wo[#pos] = {"ac bug"} -- actor centered on grid pos

wo[pos] = {"#ac bug"} -- actor centered on grid pos

wo[pos] = {"ac bug", 0.3, 0.7} -- actor with offsets to pos

wo[my_floor] = {"it magicwand"} -- set a wand on top of a given floor object

wo[pos] = ti["x"] -- tile based object definition

Besides map based object creation, that you saw in the previous basic examples,
you can create new objects on any world position directly. The world takes a
position, that may well be an object, as key argument. The new object is
described either by an anonymous Lua table, containing the kind string as first
value and additional attributes as key value pairs appended, or by a tile object.

Object Naming:
no["Atrax"] = obj

wo[pos] = {"st chess", name="Atrax"}
wo[pos] = {"st chess", "Atrax", color=WHITE}
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As explained in Section 4.2.3 [Object Naming], page 51, the names are the only
longtime valid object references. You can explicitly name an object by assigning
it at the named object repository ‘no’ to the name as the key. But most times
you just supply the objects name as an object attribute. If you supply the
name attribute as the second value in the anonymous table you can omit the
key ‘name =’ part as a common abbreviation.

Object Autonaming:
wo[pos] = {"st chess", name="Atrax#"}

As explained in Section 4.2.3 [Object Naming], page 51 you can append a hash
sign ‘#’ to a name and use the resulting string for arbitrary number of similar
objects. This is especially useful for building groups.

Requesting Objects:
obj = no["Atrax"] -- named object retrieval from repository

obj = it(pos)

obj = it(x,y)

obj = st(pos)

obj = wo:it(pos)
my_item = it(my_floor) -- get the item that is on top of the given floor

The most common way is naming objects and the requesting the ‘no’ repository
for the object reference. If you know the position of the desired object you can
use one of the functions or world methods ‘fl’, ‘it’, ‘st’ that take a position,
an object as position, or just the two coordinates as arguments. Especially
requesting one type of objects that is positioned at the same grid as another
object, the stone on top of a floor, etc. can be very useful.

Killing Objects:
wo[pos] = {"it nil"}
obj:kill()

You remove an object by setting another replacement object at the same po-
sition in the same layer. If you do not want to set a new object you can use
the placebo objects ‘fl_nil’, ‘it_nil’, ‘st_nil’. Another way is to call the
‘kill()’ method of an object or send it a ‘kill’ message. You can only remove
objects that are set on the grid. Neither actors nor owned objects like items in
a players inventory can be killed - they will simply ignore the attempt.

Comparing Objects
obj1 == obj2

obj1 ~= obj2

Objects can be directly compared on equality or inequality. It is an identity
comparison that acknowledges that you have two references of the same object.

Existence of an object
obj:exists()
-obj -- unary minus operator on object

if -obj then ...

Object references may get invalid due to objects being killed. In most cases this
creates no problem as requests to invalid objects will simply be ignored. But if
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the level logic depends on the existence of an object you can call the ‘exists()’
method or simply precede the reference by the unary minus ‘-’ operator. Both
ways return a simple bool value stating if the object reference is still valid.

Messages:

my_boulder:message("orientate", WEST)

my_boulder:orientate(EAST)
my_door:open()

Section 4.3.1 [Messages], page 55 are a main feature of Enigma. You can send
them directly to any object by the ‘message()’ method or by using any message
directly as a method call itself.

Object Classification:
obj:is("st chess")
obj:is("st")
obj:is("st chess black")

You create objects by giving an Section 4.2.1 [Object Kind], page 50. Later
on you can check a given object for conformity to a given class or kind. Even
though you can not create abstract kind objects like ‘st’, you can check this
way if an object is a stone. Checking for special subkinds may even evaluate the
current state or other attributes of an object to report its current classification.

5.2.5 Group Tasks

For reference details see Section 5.7 [Group], page 97.

Creating Groups:
group = no["Atrax#*"] -- a group of all matching objects

-- wildcards "*","?" allowed

group = grp(obj1, obj2, obj3)

group = grp({obj1, obj2, obj3}) -- a group of objects set up in a table

Requesting objects from the named object repository will result in a group of
objects if you make proper usage of wildcards. Appending an asterisk ‘*’ to
the autonaming hash will retrieve all objects that have been set with this name
suffix. But you can create a group by the ‘grp’ function, too. Simply add the
desired object reference as arguments, either single or as a table.

Group Usage:
floor_group["friction"] = 3.2 -- set attribute on all floors in the group

door_group:message("open")
door_group:open()
stone_group:kill()
wo[floor_group] = {"it coin m"} -- add some money on all floor positions

wo[pos] = {"st switch", target=door_group, action="open"}
wo[pos] = {"st switch", target="door#*", action="close"}

Many object operations can be applied to groups in the same manner. The
operations will be applied to all members of the group. You set attributes,
send messages or call any method.
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The world object takes a group as key, too. You can set objects of a given
definition to many positions at once.

Another usage of groups is the application as an attribute value. E.g. you can
define multiple targets by supplying a group.

Group Operations:
doors_lasers = doorgrp + lasergrp -- join of two groups

lasergrp = doors_lasers - doorgrp -- difference of two groups

common_doors = doorgrp1 * doorgrp2 -- intersection of two groups

Groups offer some standard operations known from handling with sets.

Group Members:
count = #mygroup -- number of objects in the group

obj = mygroup[5] -- 5th object of the group

obj = mygroup[-1] -- last object of the group

for i = 1, #mygroup do obj = mygroup[i] ... end

for obj in mygroup do ... end

You can access the members of a group by numbered indices. The size of a
group is reported by the standard Lua hash ‘#’ operator. If you need to iterate
over the objects of a group you can write easily Lua for loops. You can either
iterate with a counter or directly iterate the content objects.

Shuffled Group:
shuffled_group = sorted_group:shuffle()
shuffled_group = no["Atrax#*"]:shuffle()

Every group returns a shuffled group with the same members when receiving
the message "shuffle".

Sorted Group:
sorted_group = group:sort("linear", po(2, 1))

sorted_group = group:sort("linear")
sorted_group = group:sort("circular")
sorted_group = group:sort()

Sort group objects in linear order according to given direction vector, or direc-
tion determined by the first two objects. Or order objects circular around their
center. If no argument is given order objects lexically.

Subset Group:
sub_group = group:sub(2) -- first two objects

sub_group = group:sub(-2) -- last two objects

sub_group = group:sub(2, 4) -- objects from 2 to 4

sub_group = group:sub(2, -2) -- two objects starting with 2

Build subgroup with given indices and numbers.

Nearest Object:
object = group:nearest(reference)

Search object in group that is nearest to the given reference object.
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5.2.6 Tiles and World Tasks

For reference details see Section 5.11 [Tile and Object Declaration], page 107, Section 5.12
[Tiles Repository], page 108 and Section 5.13 [World], page 109.

Tiles:

ti["_"] = {"fl sahara"}
ti["__"] = {"fl sahara"}
ti[".."] = {"fl sand"}
ti["##"] = {"st blocker"}
ti["switch_template"] = {"st switch"}
ti[".."] = {"fl abyss"} -- redefinition causes error to avoid common mistakes

ti[".w"] = ti[".."] .. {"it magicwand"}
ti[" w"] = {"fl abyss"} .. ti({"it magicwand"})

The tiles repository ‘ti’ is like a table, but specialized on storage of tile defini-
tions. You can use any string as key. You can store the same definition twice
at different keys. But you are not allowed to redefine an already set key. This
is pure protection of common error situations. A definition stored in the repos-
itory can be used in other definitions that follow. Referencing a tiles repository
entry at a given key like ‘ti[".."]’ results in a tile value. Such tile values
can be concatenated by the ‘..’ operator with other tile values and anonymous
tables containing object definitions. The last example is a concatenation of two
prior not declared object definitions. You can not concatenate two anonymous
tables. Lua forbids that. By converting any of the two tables by the ‘ti()’ to
a tile value the concatenation gets valid.

World Initialization
width, height = wo(ti, "__", { -- second arg: default tile key that

"##__......", -- defines the base, too - this example

"##..__.w__", -- is 2 chars per tile/grid

"##.. w__.."

})

The world is initialized by the ‘wo()’ call that is explained in details at
Section 5.13.1 [World Creation], page 109. In the simple form you supply the
‘ti’ handle as the first argument. The second argument is the key of the
default tile definition that defines the default floor to be set if a tile does not
contain another floor object. At the same time this key defines by its length
the standard key length as used in the following map, too. The third argument
is the map given as an anonymous table of strings. The worlds size is given by
the maximum line length and the number of lines. These values are returned
by the call.

5.2.7 Named Positions Tasks

For reference details see Section 5.9 [PositionList], page 103.

Named Position Usage:
obj["name"] = "anchor1"

obj:kill()
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pos = po["anchor1"]

po["anchor2"] = pos

The position of any named object can be directly retrieved. The position is still
accessible under the name, when the object gets killed. You can additionally
name own positions. Note that the position of an existing object precedes a
position stored under the same name.

Creating Position Lists:
polist = po["deepwater#*"]

polist = po(grp)

Requesting positions will result in a list of positions if you make proper usage
of wildcards. A given object group can be converted into a position list, too.

Position List Usage:
wo[polist] = ti["x"]

grp = fl(polist)

You can use a list of positions to set tiles or to retrieve a group of floors, items,
stones.

Position List Operations:
wo[polist .. po["beach#*"]] = {"it banana"}

Two position lists can be appended. Single positions can be appended to a
given position list, too.

Position List Members:
for i = 1, #polist do

wo[polist[i]] = {"it cherry"}
end

Single positions within the list can be accessed by index. The whole list can be
traversed by a simple for loop. The hash length operator reports the number
of contained positions.

5.3 Advanced Lua Examples

Now it is time to reveal the real power of the new API. Let us look again at two real levels.
Investigate the levels first by playing and then join in the line by line commentary of the
source code to understand how to implement your own level ideas.

5.3.1 Color Maze

Let us view the Lua source code part. We did add a line count in the first two columns for
reference purpose within this section. These line count numbers are not part of the source
code itself!

01 wo["ConserveLevel"] = false

02 wo["FollowGrid"] = false

03 wo["FollowMethod"] = FOLLOW_SCROLL

04

05 ti[" "] = {"fl fake abyss"} .. ti({"st lightglass"})
06
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07 ti["!"] = {"fl blueslab", "blue#", _color="blue"}

08 ti["@"] = {"fl pinkbumps", "orange#", _color="orange"}

09 ti["#"] = {"fl redslab", "red#", _color="red"}

10 ti["$"] = {"fl lawn b", "green#", _color="green"}

11

12 ti["b"] = ti["!"] .. {"st door", flavor="d", faces="ns", state=OPEN}
13 ti["B"] = ti["!"] .. {"st door", flavor="d", faces="ew", state=OPEN}
14 ti["o"] = ti["@"] .. {"st door", flavor="d", faces="ns", state=OPEN}
15 ti["O"] = ti["@"] .. {"st door", flavor="d", faces="ew", state=OPEN}
16 ti["r"] = ti["#"] .. {"st door", flavor="d", faces="ns", state=OPEN}
17 ti["R"] = ti["#"] .. {"st door", flavor="d", faces="ew", state=OPEN}
18 ti["g"] = ti["$"] .. {"st door", flavor="d", faces="ns", state=OPEN}
19 ti["G"] = ti["$"] .. {"st door", flavor="d", faces="ew", state=OPEN}
20

21 ti["d"] = {"it document", text="text1"}
22 ti["5"] = ti["b"] .. ti["d"]

23 ti["6"] = ti["O"] .. ti["d"]

24 ti["7"] = ti["r"] .. ti["d"]

25 ti["8"] = ti["G"] .. ti["d"]

26

27 ti["x"] = {"it sensor", invisible=true, target="gates"}
28 ti["*"] = ti["x"] .. {"#ac marble black", "me"}

29

30 ti["?"] = {"st oxyd a"}
31

32 wo(ti, " ", {

33 -- | 1 1 |2 2

34 -- |1 5 0 5 |0 5

35 " ",

36 " xO@OxR#RxO@OxB!BxR#RxB!Bx ", --01

37 " b r g g b g r ",

38 " ! # $ $ ! $ # ",

39 " b r g g b g r ",

40 " xR#RxB!BxO@OxG$GxO@OxO@Ox ", --05

41 " g g r g g b b ",

42 " $ $ # $ $ ! ! ",

43 " g g r g g b b ",

44 " xR#RxO@OxG$GxR#RxG$GxR#Rx ",

45 " g b b o b r ", --10

46 " $ ! ! @ ! # ",

47 " g b 5 o ? b r ", --

48 " xO@OxO@6*8$Gx xG$GxR#Rx ",

49 " r b 7 b ? o o ",

50 " # ! # ! @ @ ", --15

51 " r b r b o o ",

52 " xG$GxB!BxR#RxO@OxR#RxG$Gx ",

53 " g o o g g o b ",
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54 " $ @ @ $ $ @ ! ",

55 " g o o g g o b ", --20

56 " xB!BxO@OxR#RxR#RxO@OxB!Bx ",

57 " o r g g b b g ",

58 " @ # $ $ ! ! $ ",

59 " o r g g b b g ", --

60 " xR#RxB!BxB!BxR#RxO@OxR#Rx ", --25

61 " "} --

62 -- | 1 1 |2 2

63 -- |1 5 0 5 |0 5

64 )

65

66 last = it(no["me"]) -- the last visited sensor

67 move = 0 -- the count of link moves

68 sequence = {} -- the sequence of the 4 colors that the user did choose

69

70 function gates(value, sender)

71 if last ~= sender then

72 local middle = last + (sender - last)/2

73 local color = fl(middle)["_color"]
74 if color == nil then return end -- someone cheated, avoid throwing an exception

75 st(no[color.."#*"]):close()
76 sequence[move%4] = color

77 if move >= 3 then

78 st(no[sequence[(move+1)%4].."#*"]):open()
79 end

80 move = move + 1

81 last = sender

82 end

83 end

Let us concentrate on new aspects not discussed in the previous Section 5.1 [Basic Lua
Examples], page 64.

01 wo["ConserveLevel"] = false

02 wo["FollowGrid"] = false

03 wo["FollowMethod"] = FOLLOW_SCROLL

This level must forbid the user to resurrect a marble at the start position. At the same
time the user should see the area around the marble as complete as possible. Thus the
scroll mode needs to be set, too. All this is done by setting special Section 6.4 [Global
Attributes], page 138.

05 ti[" "] = {"fl fake abyss"} .. ti({"st lightglass"})
32 wo(ti, " ", {

The inaccessible areas are filled with a transparent glass on top of a black floor as defined
in line 5. The world initialization uses this tile definition as the default tile. This is o.k.
as it contains a floor definition. Additional objects like the glass stone will never be set on
default usage.

07 ti["!"] = {"fl blueslab", "blue#", _color="blue"}
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08 ti["@"] = {"fl pinkbumps", "orange#", _color="orange"}

09 ti["#"] = {"fl redslab", "red#", _color="red"}

10 ti["$"] = {"fl lawn b", "green#", _color="green"}

Every floor object is autonamed for later group access purposes. Additionally every floor
object sets a user attribute prefixed in its name by an underscore ‘_’. This attribute stores
a string that we need later on in the callback function.

12 ti["b"] = ti["!"] .. {"st door", flavor="d", faces="ns", state=OPEN}
13 ti["B"] = ti["!"] .. {"st door", flavor="d", faces="ew", state=OPEN}

The doors are set without being named, as we will target them by their position.

27 ti["x"] = {"it sensor", invisible=true, target="gates"}

The actors moves are detected by invisible Section 8.4.12 [it sensor], page 219s that are
positioned on any intersection. The target is the Section 4.3.3 [Callback Function], page 57
‘gates’. The action can be omitted as the function name is a unique target.

66 last = it(no["me"]) -- the last visited sensor

A Lua variable that stores the last sensor visited by the marble. This is initially the
sensor beneath the start position of the marble. We do get the marble by name, but do
store the sensor item beneath it, that is an unnamed object.

67 move = 0 -- the count of link moves

68 sequence = {} -- the sequence of the 4 colors that the user did choose

These are the essential variables for our algorithm. The user is free in selecting the
sequence of the colored floors. We do initialize the sequence by an anonymous table that
will be filled with the color names. An additional move counter will give us the current
index into this table.

70 function gates(value, sender)

71 if last ~= sender then

The callback function provides the sender, the Section 8.4.12 [it sensor], page 219, that
caused the action. It is the current sensor. As the marble can return to the last sensor, we
have to check that it is a new sensor before taking any actions. A simple object comparison
suffices.

72 local middle = last + (sender - last)/2

73 local color = fl(middle)["_color"]

We need to know the color of the floor strip that the marble did pass. We do calculate
the position of the middle of this floor strip by position calculation. We simply take the
middle position between the last and the current intersection. Once we have the middle
position we can get the floor object and retrieve the private user attribute with the color
description.

74 if color == nil then return end -- someone cheated, avoid throwing an exception

In regular play we are guaranteed to get a color value. But just in case a gamer cheats
he may have moved irregular without visiting neighboring sensors. Just avoid errors. The
gamer can not score anyway.

75 st(no[color.."#*"]):close()

Knowing the color we want to close all doors on same colored floor strips. We did
autoname the floors by matching name prefixes. Thus we can retrieve all floors of a given
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color by concatenating the color string with the suffix ‘#*’ and requesting the named object
repository. As we are interested in the doors we do request the stone above every floor. We
provide a group of floors and get a group of stones. Not every floor has a door on top. That
does not matter as only existing objects are added to the resulting stone group. Knowing
the stones we just send them all a ‘close’ message.

76 sequence[move%4] = color

We need to remember the sequence of colors. We just store the color name in the table at
the index given by the move count modulo 4. Yes we could limit this statement to the first
four moves. But who cares? The modulo operation is simpler than a conditional expression.

77 if move >= 3 then

78 st(no[sequence[(move+1)%4].."#*"]):open()
79 end

On the first 3 moves we just do close doors and remember the color sequence. But
starting with the 4th move we need to open the next color in sequence. We do retrieve
the color string of the next color from the sequence table by a simple modulo calculation.
Having the color name we do the same trick as in line 75. But this time we do send the
‘open’ messages to all affected doors.

80 move = move + 1

81 last = sender

Finally we just have to increase the move count and to remember the current sender as
the last visited sensor.

That is all to code a quite complex dynamic level idea like "Color Maze".

5.3.2 Weirdly Wired

You should have restarted this level several times to notice the design changes of the floor
pattern and the border panel stones besides the dynamic wiring of the stones.

Let us view the Lua source code part. We did add a line count in the first two columns
for reference purpose within this section. These line count number are not part of the source
code itself!

01 <el:compatibility el:enigma="1.10">

02 <el:dependency el:path="lib/libmath" el:id="lib/libmath" el:release="1" el:preload="true"/>

03 </el:compatibility>

...

04 ti[" "] = {"fl sahara", friction = 3.5, adhesion = 4.0}

05 ti["a"] = {"fl ivory", friction = 3.5, adhesion = 4.0}

06 ti["b"] = {"fl bright", friction = 3.5, adhesion = 4.0}

07 ti["c"] = {"fl platinum", friction = 3.5, adhesion = 4.0}

08 ti["_"] = {"fl water"}
09 ti["@"] = {"#ac marble black"}
10 ti["w"] = {"st flat movable", "wood#"}

11 ti["t"] = {"it trigger", "trigger#"}

12 ti["d"] = {"st blocker", "door#"}

13 ti["o"] = {"st oxyd", oxydcolor = OXYD_YELLOW, flavor = "a"}

14 ti["O"] = {"st oxyd", oxydcolor = OXYD_WHITE, flavor = "a"}

15 ti["1"] = {"st panel", cluster = 1}
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16 ti["2"] = {"st panel", cluster = 2}

17 ti["S"] = {"st switch", target = "easy_mode_call"}

18

19 floors = {ti[" "], ti["a"], ti["b"], ti["c"]}

20 polynom = lib.math.random_vector(10, 4)

21

22 function myresolver(key, x, y)

23 if key == " " then

24 return floors[lib.math.cubic_polynomial(polynom, x, y) % (#floors) + 1]

25 elseif (key == "#")

26 or ((key == "_") and (random(4) == 1))

27 or ((key == "S") and wo["IsDifficult"]) then

28 return ti[""..random(2)]

29 else

30 return ti[key]

31 end

32 end

33

34 w, h = wo(myresolver, " ", {

35 -- 01234567890123456789

36 "####################___________________",

37 "# #_____###o###_______",

38 "# w w t t #_____#d d#_______",

39 "# w w t t #___### ### ###_____",

40 "# w t #___#d d#_#d d#_____",

41 "# ##### ###_### ###___",

42 "S w w t @ t d#___#_#d d#___",

43 "# #######_####### #___",

44 "# w t #_______O d# # o___",

45 "# w w t t #_______### ### #___",

46 "# w w t t #_________#d d#___",

47 "# #_________###O###___",

48 "####################___________________"

49 })

50

51 door_p = lib.math.permutation(12)

52 wire_p = lib.math.permutation(12)

53 woods = no["wood#*"]

54 triggers = no["trigger#*"]

55 doors = no["door#*"]

56

57 for j = 1, 12 do

58 triggers[j].target = doors[door_p[j]]

59 end

60

61 for j = 1, 9 do

62 wo:add({"ot wire",
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63 anchor1 = woods[wire_p[j + 3]],

64 anchor2 = woods[wire_p[j%3 + 1]]})

65 wo:add({"ot wire", name = "obsolete_wire#",

66 anchor1 = woods[wire_p[j + 3]],

67 anchor2 = woods[wire_p[j%9 + 4]]})

68 end

69

70 function easy_mode_call(is_on, sender)

71 if is_on then

72 no["obsolete_wire#*"]:kill()
73 else

74 for j = 1, 9 do

75 wo:add({"ot wire", name = "obsolete_wire#",

76 anchor1 = woods[wire_p[j + 3]],

77 anchor2 = woods[wire_p[j%9 + 4]]})

78 end

79 end

80 end

How is this versatility in design and action achieved as the last lines 69 to 79 obviously
deal just with the easy mode diffs? Let us analyse the lines that do the real work.

01 <el:compatibility el:enigma="1.10">

02 <el:dependency el:path="lib/libmath" el:id="lib/libmath" el:release="1" el:preload="true"/>

03 </el:compatibility>

We make use of some functions of the Section 12.3 [libmath], page 334 library. Thus we
need to preload it, besides declaration of compatibility to Enigma 1.10.

04 ti[" "] = {"fl sahara", friction = 3.5, adhesion = 4.0}

05 ti["a"] = {"fl ivory", friction = 3.5, adhesion = 4.0}

06 ti["b"] = {"fl bright", friction = 3.5, adhesion = 4.0}

07 ti["c"] = {"fl platinum", friction = 3.5, adhesion = 4.0}

Four floor types that the dynamic floor is composed of. They all are unified in the
‘friction’ and ‘adhesion’ to provide smooth movement on the stylish floor.

10 ti["w"] = {"st flat movable", "wood#"}

11 ti["t"] = {"it trigger", "trigger#"}

12 ti["d"] = {"st blocker", "door#"}

The movable stone that will be wired, the target triggers and the doors to be opened.
All are autonamed for group retrieval from the named object repository.

13 ti["o"] = {"st oxyd", oxydcolor = OXYD_YELLOW, flavor = "a"}

14 ti["O"] = {"st oxyd", oxydcolor = OXYD_WHITE, flavor = "a"}

A minor design aspect: selecting two unique colors for the Section 9.5.42 [st oxyd],
page 281s.

15 ti["1"] = {"st panel", cluster = 1}

16 ti["2"] = {"st panel", cluster = 2}

The base of the prominent all time different looking Section 9.4.4 [st panel], page 239
border design. Two tiles with panel stones assigned to two different clusters. The engine
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will automatically join all neighboring stones of the same cluster to big unified blocks. Now
we just need to assign these tiles to the different grid positions.

17 ti["S"] = {"st switch", target = "easy_mode_call"}

The left border switch that will just be used in easy mode. It is blocked in line 27 to
not appear in the regular mode. The target is the callback function of lines 71 to 81.

19 floors = {ti[" "], ti["a"], ti["b"], ti["c"]}

20 polynom = lib.math.random_vector(10, 4)

Preparations for the floor design. The four floor tiles are stored in a table for number
based index access. Ten random numbers in the range 1 to 4 are stored in a table, which
we will use as polynom coefficients later on.

22 function myresolver(key, x, y)

34 w, h = wo(myresolver, " ", {

Up to now we did look up the keys used in the map from our tiles repository ‘ti’ that
was the first argument of the world initialization call. But now we use a Section 13.1.2
[Custom Resolver], page 369. The function starting in line 22 is called on every tile to be
resolved. It has the task of delivering the appropriate tile.

23 if key == " " then

24 return floors[lib.math.cubic_polynomial(polynom, x, y) % (#floors) + 1]

These two lines generate the always changing floor design. For every map key ‘ ’ we
calculate the cubic polynomial that is randomized due to the coefficients. The resulting
number is limited to the number of our four floors. This number is taken as the index into
our ‘floors’ table and the resulting tile definition is returned.

25 elseif (key == "#")

26 or ((key == "_") and (random(4) == 1))

27 or ((key == "S") and wo["IsDifficult"]) then

28 return ti[""..random(2)]

And now we cluster the border panels. First we need to decide where to put panels at
all. The positions marked ‘#’ in the map are for sure. Additionally we choose randomly
every 4th ‘_’ position to be a panel instead of being a water floor. Finally we replace just
in difficult mode the switch marked as ‘S’ by a panel stone. Now we need to assign to this
grid position one of the two panel cluster tiles. We simply generate a random number out
of 1 and 2. But we do need a string as the tiles key. We force Lua to convert the number to
string by concatenating an empty string ‘""’ with the random number. Choosing the right
panel variants to build up closed clusters is done by the engine.

29 else

30 return ti[key]

Finally for all other keys that need no special treatment we just take the tile definition
as stored in the tiles repository.

34 w, h = wo(myresolver, " ", {

35 -- 01234567890123456789

36 "####################___________________",

37 "# #_____###o###_______",

38 "# w w t t #_____#d d#_______",

39 "# w w t t #___### ### ###_____",
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...

The map uses the keys as interpreted by the custom resolver. Thus all mandatory panel
stones are marked by ‘#’ and all may be water by ‘_’. All spaces ‘ ’ do not stand for the
sahara floor definition in the tiles repository, but are floor positions for our design floor set
up in the custom resolver. Note that even the ‘w’ marked tiles will set a design floor, as the
default floor is ‘ ’, too.

51 door_p = lib.math.permutation(12)

52 wire_p = lib.math.permutation(12)

Now let us shuffle the trigger/door assignment and the wire distribution. We do this by
permuting 12 index numbers to be used for door and wire access.

53 woods = no["wood#*"]

54 triggers = no["trigger#*"]

55 doors = no["door#*"]

Get the groups of movable stones, triggers and doors. It is essential to do this once and
to store the resulting groups as we want to index the group members. Repeated access to
the named object repository does not guarantee a stable sorting of the result groups. Thus
we operate on the stable once retrieved and stored groups.

57 for j = 1, 12 do

58 triggers[j].target = doors[door_p[j]]

59 end

A random assignment of the triggers to the doors. Every triggers gets a random indexed
member of the door group as target. Note the alternative attribute member access on the
trigger. Instead of embracing the attributes name in square brackets and quoting the string
constant as ‘["target"]’ the author did prefer to write ‘.target’. That is a legal Lua
alternative statement as long as the attribute’s name is a legal Lua name (see [Caveats],
page 373).

61 for j = 1, 9 do

62 wo:add({"ot wire",
63 anchor1 = woods[wire_p[j + 3]],

64 anchor2 = woods[wire_p[j%3 + 1]]})

Finally we need to add the Section 11.1.3 [ot wire], page 327 between our movable stones.
This can not be done within the map. We need to use the Section 5.13 [World], page 109
method ‘wo:add()’, which takes the two connected stones as two anchor attributes. We
select the first 3 stones of our wood group as stones to be connected with 3 other stones of
the indices 4 to 12. Thus we take in every loop as the first anchor one of the stones 4 to
12 and connect it to one of the first 3 stones by a simple modulo operation. The first three
stones now have three wires and are finished. The last 9 stones have just one wire.

65 wo:add({"ot wire", name = "obsolete_wire#",

66 anchor1 = woods[wire_p[j + 3]],

67 anchor2 = woods[wire_p[j%9 + 4]]})

68 end

Now we wire these remaining 9 stones in sequence, in a closed circle. That gives each
stone 2 additional wires. We do this by connecting each of the stones 4 to 11 with its
successor and finally connecting stone 12 to stone 4, what is done by the modulo operation.
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This completes the level for the regular mode. As preparation for the easy mode we do
autoname these additional wires.

71 function easy_mode_call(is_on, sender)

72 if is_on then

73 no["obsolete_wire#*"]:kill()

Just for the easy mode we added a switch to remove and recreate the additional wires.
As we named these obsolete wires we can simply kill all of them in a single call by applying
the ‘kill()’ method to the group of these wires.

73 else

74 for j = 1, 9 do

75 wo:add({"ot wire", name = "obsolete_wire#",

76 anchor1 = woods[wire_p[j + 3]],

77 anchor2 = woods[wire_p[j%9 + 4]]})

78 end

79 end

When the user switches off again, the wires should be recreated. That is done by the
same code as lines 65 to 68. Note that is essential that we stored and kept the used wire
permutation in the variable ‘wire_p’.

5.4 Introduction to Datatypes

Before describing the datatypes in detail let us look at the used common concepts and
conventions.

5.4.1 Syntax and Conventions

In the following subchapters we will describe the datatypes, their operators and methods,
and global functions in detail. We need some syntax and conventions for an efficient de-
scription.

The following short names, and those derived by appending a number, do always repre-
sent a value of the corresponding type:

• pos - Section 5.5 [Position], page 90

• obj - Section 5.6 [Object], page 93

• polist - Section 5.9 [PositionList], page 103

• group - Section 5.7 [Group], page 97

• cpos - constant position, a table with two numbers like {2, 3}

On syntax descriptions of datatype operators or methods we need to list allowed ar-
gument types. Often several types are possible and you are allowed to choose any of a
list. In these cases we enlist the types enclosed by ‘<’ and ‘>’ and separated by ‘|’. These
characters are not part of the operator or method itself and should thus not be typed into
the level code. Note that we keep square braces ‘[’, ‘]’ and curly braces ‘{’, ‘}’ as literal
Lua symbols. When these braces appear in the syntax you need to type them in the code.
E.g. the following syntax rule:

result = pos + <pos | obj | cpos | polist>

allows you to write any of the following lines in your level
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result = pos + pos

result = pos + obj

result = pos + cpos

result = pos + polist

But a syntax rule like

x = pos["x"]

requires the Lua square brackets to be coded literally. Of course you are still free to
name your position variable and the resulting value variable whatever you like.

5.4.2 Value and Reference

Another most important aspect of Lua data types is the difference between values and
references. Values are numbers, booleans like ‘true’ and ‘false’, strings and ‘nil’. The
only reference data type is the Lua table.

Values are always constant. They can never be modified. You assign a value to a variable.
On calculations you may assign another value to the same variable. But the original value
does never get modified. That should be obvious if you think of values like ‘true’ or numbers
like ‘7’. But it is even true for strings like "hello". When you append two strings you
get a new string. But the components themselves do not change. All "string modifying"
methods do return a new string with the resulting value. Thus a variable containing the
value of the original string still contains the unmodified value.

Tables are of a totally opposite nature. They represent data containers. In Lua you
are just handling references to these containers. When you add or change a value within
the container the table reference remains unmodified but the table contents changes. Thus
two variable containing both references to the same table will afterwards both reference the
same modified table.

We will denote for every new data type the character of being a value or a reference.
If you are unfamiliar to the resulting effects you may want to read the appendix about
[Caveats], page 373.

5.4.3 Polymorphism and Overloading

You may have noticed that in many operations you can use an Section 5.6 [Object], page 93
as a Section 5.5 [Position], page 90. This is due to the fact that objects support most of the
position features as well. Objects are no positions, but they do speak the same language.
This feature is called ‘polymorphism’ and helps you to simplify your code significantly. In
the following subchapters you should carefully look at the syntax to understand which types
of arguments do fit in seamlessly.

The number of usable operators is limited by Lua. Thus an addition of two data by
the ‘+’ operator causes different actions depending on the involved data themselves. An
addition of two positions results in a vectorial addition. But the addition of two groups
results in a join of the groups. This reuse of a single operator is called ‘overloading’.

Overloading combined with polymorphism can cause situations that are ambiguous by
design. E.g. we decided to allow the addition of a position with an object resulting in the
vectorial addition of the object’s position to the first one. At the same time we want to be
able to join an object with an existing group by usage of the ‘+’ operator. But what should
be the result of an addition of two objects? The vectorial addition of their positions, or the
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join of both objects in a new group? Either makes sense and would be useful. In this case
we decided for the first possibility as the minus operation as the vectorial difference between
two objects is a very important feature. Anyway you can always force the operation of your
choice to be applied by transforming one object either into a position or a group. Please
read carefully the given syntax rules for a clear understanding of the results.

5.4.4 Pseudo Datatypes

Even though we introduce just the ten additional fundamental datatypes as described in
the following subchapters, the API does additionally differ the same datatype according to
its usage. E.g. a standard Lua number is used to describe the Section 6.1.2 [state], page 126
of an object. Just in rare occurrences the state will reflect a real number like the state of
Section 11.2.1 [ot counter], page 328. For most objects the state will just be one of a given
set of allowed values, which happen to be described by numbers by the API. Thus we speak
of a pseudo datatype in the case of Section 6.1.2 [state], page 126 values.

The API provides Section 6.3 [Common Constants], page 133 for all pseudo datatypes,
all written in upper case letters only. You should use exclusively these constants and never
their equivalent basic number or other type values. The usage of the constants makes the
level code readable and upward compatible if we ever should have the need of changing the
assigned values or transforming the pseudo datatype to another datatype.

There is one abstract datatype that needs to be mentioned, as it uses two differ-
ent pseudo datatypes at the same time. This special case is the datatype used to de-
scribe the ‘direction’ or ‘orientation’. Both are essentially the same. But we speak of
‘orientation’ if we are just interested in enlisting the main directions by number values for
the purpose of identification. The constant values are given as Section 6.3.5 [orientations],
page 135.

Sometimes you need values for calculation of position offsets. In this case we speak of
a ‘direction’ and use Section 5.5 [Position], page 90 values as offset vectors. The most
common values are given as constants as listed in subchapter Section 6.3.6 [direction offsets],
page 135. Note that our ‘direction’ values have no need of being normalized to the length
of 1.

A given ‘orientation’ can be transformed into a ‘direction’ value by the conversion
table Section 5.14.8 [ORI2DIR], page 124.

5.5 Position

A position is a Lua userdata type introduced by Enigma to handle world positions as
introduced in Section 4.1.1 [World’s Shape and Coordinates], page 47. A position is a value
and thus constant. Once a position is created it can not be modified anymore. But you
can calculate with positions by usage of operators. When you add two position values you
receive the resulting position as a new value.

In contrast to Section 5.6 [Object], page 93s positions have an unlimited lifetime and
will never cease to exist. Thus you can store position values in global variables and keep
them as long as you need. The values are constant and will not change even if the objects
from which they have been derived have meanwhile moved to another grid or even been
killed.
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Position values are not limited to valid world coordinates. Both coordinates can take
every positive or negative number and zero, too. Thus you can calculate with positions and
use them to express offsets between two other positions.

Positions are created by the Section 5.10 [Positions Repository], page 105 singleton
handle, that allows you to convert coordinates, objects, position constants into positions.
The handle allows you to retrieve existing named positions, too. Furtheron positions are
implicitly created as return values of many operations.

For task driven samples see Section 5.2.2 [Position Tasks], page 72.

Let us look at the supported operators:

5.5.1 Position Addition and Subtraction

Syntax: result = pos <+|-> <pos | obj | cpos | polist>

result = <pos | obj | cpos | polist> <+|-> pos

Details: When a position is added to, or subtracted from another position or data con-
vertible to a position the result is the position value representing the vectorial
addition or difference of both arguments.

If a position is added to, or subtracted from a position list a new list is created
with the positions representing the sum or difference of the position with every
member of the supplied position list.

Syntax Samples:
newpos = po(3, 4) + {1, 2} -- = po(4, 6)

newpos = myobject - po(1, 5)

newpolist = po(2, 3) + NEIGHBORS_4 -- po(1, 3) .. po(2, 4) .. po(3, 3) .. po(2, 2)

newpolist = po["myfloor#*"] - po(3, 0)

5.5.2 Position Multiplication and Division

Syntax: result = pos <*|/> number

result = number * pos

Details: A scalar multiplication or division of a position vector. A position value with
both coordinate values multiplicated or divided by the given number is returned.

Syntax Samples:
newpos = 3 * po(3, 4) -- = po(9, 12)

newpos = po(2, 3) / 2 -- = po(1, 1.5)

5.5.3 Position Sign

Syntax: result = -pos

Details: An unary scalar multiplication of a position vector with ‘-1’. A new position
value with both coordinate values multiplicated by ‘-1’ is returned.

Syntax Samples:
newpos = -po(3, 4) -- = po(-3, -4)
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5.5.4 Position Center

Syntax: result = #pos

Details: A rounding of a position vector to the center of the grid. A new position value
with coordinates of the center of the containing grid position is returned.

Syntax Samples:
newpos = #po(3, 4) -- = po(3.5, 4.5)

5.5.5 Position Comparison

Equality and Inequality.

Syntax: result = pos1 <==|~=> pos2

Details: A comparison of two position values. Two position values are equal if both
coordinates are equal. Otherwise they are unequal. If you want to know whether
two positions point to the same grid, you may want to round both position prior
comparison. You can round either to the center or to the grid by usage of the
position operator ‘#’ or the method ‘grid()’.

Syntax Samples:
bool = po(3, 4) == po({3, 4}) -- = true

bool = po(3, 4) == po(4, 3) -- = false

bool = po(3, 4) ~= po(4, 3) -- = true

5.5.6 Position Concatenation

Syntax: result = pos1 .. <pos2 | polist>

result = <pos1 | polist> .. pos2

Details: Concatenates two positions or a position with an existing Section 5.9 [Position-
List], page 103 to a new PositionList containing all positions in the given order.
Note that this operation is associative, that means it does not matter if you use
braces in multiple concatenations or not.

Syntax Samples:
newpolist = po(3, 4) .. po(4, 4)

5.5.7 Position Coordinate Access

Syntax: result = pos["x"]

result = pos["y"]

result1, result2 = pos:xy()

Details: The single coordinates of a position can be read anytime. You can retrieve
single coordinates by Lua square bracket index access. Of course you can use
the Lua alternative dot index access syntax, too (see examples). If you want to
evaluate both coordinates, you can make use of the method ‘xy()’, that returns
both numbers at once in a Lua multiple assignment.

Syntax Samples:
number = po(3, 4)["x"] -- = 3
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number = po(3, 4).x -- = 3

number = po(3, 4)["y"] -- = 4

number = po(3, 4).y -- = 4

number1, number2 = po(3, 4):xy() -- = 3, 4

5.5.8 Position Grid Rounding

Syntax: result = pos:grid()

Details: Returns a new position value that points to the upper left corner of the grid
that contains the position itself.

Syntax Samples:
newpos = po(3.2, 4.7):grid() -- = 3, 4

newpos = po(-2.4, -5.0):grid() -- = -3, -5

5.5.9 Position Existence

Syntax: result = pos:exists()

Details: Checks if the position is part of the world and returns ‘true’ if it is contained.
Otherwise ‘false’ is returned.

Note that the Section 5.6 [Object], page 93s ‘exists’ method reports the exis-
tence of the object. Evaluation of ‘po(obj):exists()’ may result in ‘false’ for
existing objects. E.g. this result occurs for Chapter 8 [Item Objects], page 180
currently being part of a player’s inventory. The item exists, but is not part
of the world. But items contained in a bag placed in the world will report the
same position as the bag.

Syntax Samples:
boolean = po(3.2, 4.7):exists()

5.6 Object

This datatype handles all world participating objects as described in Section 4.1.2 [Object
Layers], page 48. When you request an object you get a reference to this object and not the
object itself. You can modify the object, but the object can be modified by user actions,
too. Deleting your reference by assigning another value to your variable does not delete the
object itself.

On the other hand an object can cease to exist due to user actions while you still have a
reference assigned to a Lua variable. Of course this reference gets invalid when the referenced
object is deleted. But such an invalid reference, which we call a ‘NULL’ reference, is no longer
fatal with the new API. Any write accesses on such references are simply ignored. Thus you
can send messages to object references independently of their validity. Just on read accesses
you may want to prior check the existence of an object as you would get ‘nil’ values on
access of ‘NULL’ references.

Objects take attributes that you access by Lua index methods. Additional to the object
specific attributes you are free to store your own custom attributes on any object. Custom
attributes are any indices starting with an underscore ‘_’ as prefix to their name.
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The real world objects are created by assigning a tile declaration to a Section 5.13
[World], page 109 position. You retrieve a corresponding object reference either by the
Section 5.8 [NamedObjects], page 102 repository, by Section 5.14 [Functions], page 119 or
other methods that return single object references.

Objects provide most methods of a Section 5.5 [Position], page 90 and can in most cases
be directly used as a position without explicit conversion. Just special methods like existence
differ on both datatypes. Of course all objects placed in the world are limited to positions
within the world. But be aware that portable Chapter 8 [Item Objects], page 180 can well
be part of a player’s inventory and thus report a position outside of the world. Actors will
always report positions rounded to the containing grid. This feature is legacy. As Lua code
is anyway inappropriate to handle actor movements we maintained this rounding feature.

Objects support standard set operators of Section 5.7 [Group], page 97s, too, as long as
one operand is a group and the other an object.

For task driven samples see Section 5.2.4 [Object Tasks], page 74 and Section 5.2.3
[Attribute Tasks], page 74.

5.6.1 Object Attribute Access

Syntax: result = obj ["attributename"]

obj ["attributename"] = value

obj :set({attributename1=value1, attributename2=value2,...})

Details: Read or write object attributes as described in the following chapters or custom
attributes. The ‘set’ method allows you to set multiple attributes at once.
Attribute writes are ignored if the object reference is invalid. Attribute reads
require a valid object reference. Otherwise they return ‘nil’.

Syntax Samples:
value = obj["color"]
value = obj.color
obj["color"] = BLACK

obj.color = BLACK

obj:set({target=mydoor, action="open"})

5.6.2 Object Messaging

Syntax: result = obj :message("msg", value)

result = obj :msg(value)

Details: Send a message with a given value or ‘nil’ to the object. Every message can
be sent directly as a method with the given message name. When the object
reference is invalid the message is simply ignored.

Syntax Samples:
value = obj:message("open")
value = obj:open()
value = obj:message("signal", 1)

value = obj:signal(1)
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5.6.3 Object Comparison

Syntax: result = obj1 <==|~=> obj2

Details: A comparison of two object values. Two object values are equal if both reference
the same, still existing world object. Otherwise they are unequal.

Syntax Samples:
bool = obj1 == obj1 -- = true

bool = obj1 == obj2 -- = false, if two different objects

bool = obj1 ~= obj2 -- = true, if two different objects

5.6.4 Object Existence

Syntax: result = -obj

result = obj :exists()

Details: Checks whether an object reference is still valid. Returns true if the object still
exists, otherwise false is returned for ‘NULL’ object references.

Syntax Samples:
bool = -obj

bool = obj:exists()

5.6.5 Object Kill

Syntax: obj :kill()

Details: Kills the object at once. Note that you should never kill a sender object within
a callback action. If you have need of killing the sender then add the attribute
Section 6.1.6 [safeaction], page 128 as explained in Section 4.3.2 [Target - Ac-
tion], page 55.

Syntax Samples:
obj:kill()

5.6.6 Object Kind Check

Syntax: result = obj :is("kind")

result = obj :kind()

Details: These methods allow you to check or retrieve the Section 4.2.1 [Object Kind],
page 50.

Syntax Samples:
bool = obj:is("st chess")
string = obj:kind()

5.6.7 Object Coordinate Access

Syntax: result = obj ["x"]

result = obj ["y"]

result1, result2 = obj :xy()
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Details: The single position coordinates of an object can be read anytime. You can
retrieve single coordinates by Lua square bracket index access. Of course you
can use the Lua alternative dot index access syntax, too (see examples). If you
want to evaluate both coordinates, you can make use of the method ‘xy()’,
that returns both numbers at once in a Lua multiple assignment. Anyway the
coordinates of an object are read only. You can not reposition an object by
changing its coordinates.

Syntax Samples:
number = obj["x"]
number = obj.x
number = obj["y"]
number = obj.y
number1, number2 = obj:xy()

5.6.8 Object Addition and Subtraction

Syntax: result = obj <+|-> <pos | obj | cpos | polist>

result = <pos | obj | cpos | polist> <+|-> obj

Details: When an object is added to or subtracted from another position or data con-
vertible to a position the result is the position value representing the vectorial
addition or difference of both positions.

If an object is added to or subtracted from a position list a new list is created
with the positions representing the sum or difference of the position with every
member of the supplied position list.

Syntax Samples:
newpos = obj + {1, 2}

newpos = myobject - obj

newpolist = obj + NEIGHBORS_4

newpolist = po["myfloor#*"] - obj

5.6.9 Object Center

Syntax: result = #obj

Details: A rounding of an objects position vector to the center of the grid. A new
position value with coordinates of the center of the containing grid position is
returned.

Syntax Samples:
newpos = #obj -- e.g. po(3.5, 4.5)

5.6.10 Object Join

Syntax: result = obj + group

result = group + obj

Details: A new set containing the objects of the group plus the single object is returned.
The object sequence is maintained. If the object is already member of the group
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the new group will contain just one object reference, namely the first one in
sequence.

Syntax Samples:
newgroup = obj1 + grp(obj2, obj3, obj1) -- = grp(obj1, obj2, obj3)

newgroup = grp(obj2, obj3) + obj1 -- = grp(obj2, obj3, obj1)

5.6.11 Object Intersection

Syntax: result = obj * group

result = group * obj

Details: A new set containing just the object itself, in case it is part of the group, too,
or an empty group returned.

Syntax Samples:
newgroup = obj1 * grp(obj1, obj2) -- = grp(obj1)

newgroup = grp(obj2) * obj1 -- = grp()

5.6.12 Object Difference

Syntax: result = obj - group

result = group - obj

Details: In the first case a new set containing just the object itself, if it is not part of
the group, too, or an empty group returned. In the second case the new group
contains all members of the old group without the object. The sequence of
objects remains untouched.

Syntax Samples:
newgroup = obj1 - grp(obj2, obj1) -- = grp()

newgroup = grp(obj1, obj2) - obj1 -- = grp(obj2)

5.6.13 Object Sound

Syntax: result = obj :sound("name", volume)

Details: Play a sound of given name at the position of the object. The volume defaults
to ‘1’.

Syntax Samples:
obj:sound("quake")
obj:sound("quake", 2)

5.7 Group

A group is a sorted set of Section 5.6 [Object], page 93s. Every object can be contained
just in one instance in the group. In contrast to a Lua table the group is a constant value
datatype. Once you retrieved a group it can not be modified. But you can calculate and
apply operators like join, intersection and difference on groups and generate thereby other
group values as results.

Even though groups as values are long living you should be careful in keeping a group
longer than a callback evaluation. Groups contain object references and objects can be
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killed. Thus a prior retrieved group may contain invalid object references on a subsequent
callback evaluation. This may be uncritical if you just send a message to a group, but in
other cases you may need to clean the group from invalid members (see below).

You create a group by listing the contained objects as arguments to the ‘grp()’
Section 5.14 [Functions], page 119, by retrieving objects from the Section 5.8
[NamedObjects], page 102 repository or as result of other methods and calculations.

As groups are constant the sequence of contained objects is stable. All operations that
generate resulting new groups maintain this sequence as far as possible. E.g. a join of two
groups takes the objects of the first group in the given sequence and appends the additional
objects of the second group in the sequence they appear in the second group.

All group operations that return new groups clean their results from any meanwhile
invalid ‘NULL’ object references. You can use this feature to clean a group by the function
‘grp()’.

Any message sent to a group will be forwarded to all its members in sequence. An
attribute write access to a group results in series of attribute writes on every group member
in sequence, too.

But of course you can iterate over a group and access every member by index access.
Several special methods for common group evaluations like shuffling, subgroup, sort, etc.
are supported, too.

For task driven samples see Section 5.2.5 [Group Tasks], page 76.

5.7.1 Group Messaging

Syntax: result = group:message("msg", value)

result = group:msg(value)

Details: Send a message with a given value or ‘nil’ to all objects in the group. Every
message can be sent directly as a method with the given message name. When
an object reference is invalid the message is simply ignored. The result is the
return value of the message to the last object in the group, or ‘nil’ for an empty
group.

You are even allowed to send a ‘kill()’ message to all objects in a group. The
objects will be killed, but the group remains filled with invalid ‘NULL’ object
references.

Syntax Samples:
value = group:message("open")
value = group:open()
value = group:message("signal", 1)

value = group:signal(1)
value = group:kill()

5.7.2 Group Attribute Write

Syntax: group["attributename"] = value

group:set({attributename1=value1, attributename2=value2,...})
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Details: Set attributes as described in the following chapters or custom attributes on all
objects of the group. The ‘set’ method allows you to set multiple attributes at
once. Attribute writes are ignored if an object reference is invalid. Attribute
read on groups in not allowed - the group index read is overloaded as a group
member access.

Syntax Samples:
group["color"] = BLACK

group.color = BLACK

group:set({target=mydoor, action="open"})

5.7.3 Group Comparison

Syntax: result = group1 <==|~=> group2

Details: A comparison of two groups. Two groups are equal if both contain the same set
of objects independent of their sequence within both groups. Otherwise they
are unequal.

Syntax Samples:
bool = grp(obj1, obj2) == grp(obj2, obj1) -- = true

bool = grp(obj1, obj2) == grp(obj1, obj3) -- = false, if different object contents

bool = grp(obj1) ~= grp(obj2, obj1) -- = true, if different object contents

5.7.4 Group Length

Syntax: result = #group

Details: Number of objects contained in the group. Invalid ‘NULL’ object references are
counted, too.

Syntax Samples:
number = #grp(obj1, obj2) -- = 2

for i = 1, #group do obj = group[i] ... end

5.7.5 Group Member Access

Syntax: result = group[index ]

result = group[obj ]

Details: An index like read access with an index number between 1 and #group returns
the object in the related group sequence position. Negative indices between
-#group and -1 give the same objects. Thus you can always access the last
object at index -1. All other index positions return an invalid ‘NULL’ object -
not ‘nil’ as tables do! Thus you are always able to send messages to returned
object references.

An index like read access with an object as index returns the sequence position
number, the number index, of the object if it is contained in the group or ‘nil’
if it is not contained.

Syntax Samples:
object = grp(obj1, obj2)[2] -- = obj2
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object = grp(obj1, obj2)[-1] -- = obj2

object = grp(obj1, obj2)[0] -- = NULL object

for i = 1, #group do obj = group[i] ... end

number = grp(obj1, obj2)[obj2] -- = 2

number = grp(obj1, obj2)[obj3] -- = nil

5.7.6 Group Loop

Syntax: for obj in group do ... end

Details: Looping over all objects contained in a group. The loop occurs in the sequence
of the contained objects and includes all objects, even invalid ‘NULL’ object
references.

Syntax Samples:
for obj in group do obj:toggle() end

5.7.7 Group Join

Syntax: result = group + <obj|group>

result = <obj|group> + group

Details: A new set containing any object of both arguments just once, is returned.
The object sequence is maintained. If an object is member of both arguments
the new group will contain just one object reference, namely the first one in
sequence.

Syntax Samples:
newgroup = obj1 + grp(obj2, obj3, obj1) -- = grp(obj1, obj2, obj3)

newgroup = grp(obj2, obj3) + grp(obj1, obj3) -- = grp(obj2, obj3, obj1)

5.7.8 Group Intersection

Syntax: result = <obj|group> * group

result = group * <obj|group>

Details: A new set containing just those objects that are contained in both arguments.
The objects are returned in the same sequence as they appear in the first
argument.

Syntax Samples:
newgroup = obj1 * grp(obj2, obj1) -- = grp(obj1)

newgroup = grp(obj1, obj2) * grp(obj2, obj1, obj3) -- = grp(obj1, obj2)

5.7.9 Group Difference

Syntax: result = <obj|group> - group

result = group - <obj|group>

Details: A new set containing just those objects of the first argument, that are not
contained in the second argument is returned. The sequence of the objects in
the new group is the same as in the first argument.
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Syntax Samples:
newgroup = obj1 - grp(obj2, obj1) -- = grp()

newgroup = grp(obj1, obj2, obj3) - grp(obj2, obj4) -- = grp(obj1, obj3)

5.7.10 Group Shuffle

Syntax: result = group:shuffle()

Details: Returns a new group with the same objects in another random sequence. Note
that all invalid ‘NULL’ object references are removed in the resulting group by
this method call.

Syntax Samples:
newgroup = grp(obj1, obj2)

5.7.11 Group Sorting

Syntax: result = group:sort("circular")

result = group:sort("linear" <, direction>)

result = group:sort()

Details: Returns a new group with the same objects in another sorted sequence. Note
that all invalid ‘NULL’ object reference are removed in the resulting group by
this method call.

With a string argument "circular" the objects are arranged around their
center by their angle. The distance from this center has no influence.

With a string argument "linear" the objects are arranged in a linear fashion.
You either supply a Section 5.5 [Position], page 90 as sorting direction vector,
or the first two objects of the group will define the sorting direction as default.

If no sorting argument is supplied the objects will be sorted by their name in
lexical order.

Syntax Samples:
newgroup = grp(obj1, obj2, obj3):sort("linear", po(2,1))

newgroup = grp(obj1, obj2, obj3):sort("circular")

newgroup = grp(obj1, obj2, obj3):sort()

5.7.12 Group Subset

Syntax: result = group:sub(number)

result = group:sub(start, end)

result = group:sub(start, -number)

Details: Returns a new group with a subset of the contained objects. The sequence of
objects in the new group is identical to the sequence in the originating group.
Note that all invalid ‘NULL’ object reference are removed in the resulting group
by this method call after determination of the sub set candidate objects.

With a number as argument you determine the number of requested objects.
A positive number returns the amount of objects starting with the first object
of the group. Whereas a negative number returns objects from the tail of the
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group. In this case the absolute value determines the number of selected objects
counted backwards from the last one in sequence.

With two positive numbers as arguments you define the first and the last se-
quence index of the requested subset.

With two numbers, but the second one being negative, you define the first
object and the with the absolute value of the second number you define the
amount of objects you want in your subset.

Syntax Samples:
newgroup = grp(obj1, obj2, obj3, obj4):sub(2) -- = grp(obj1, obj2)

newgroup = grp(obj1, obj2, obj3, obj4):sub(-2) -- = grp(obj3, obj4)

newgroup = grp(obj1, obj2, obj3, obj4):sub(2, 4) -- = grp(obj2, obj3, obj4)

newgroup = grp(obj1, obj2, obj3, obj4):sub(2, -2) -- = grp(obj2, obj3)

5.7.13 Group Nearest Object

Syntax: result = group:nearest(obj )

Details: Returns the object contained in the group that is nearest to the given reference
object. The distances are calculated exactly without rounding actor positions.
In case two objects have the same distance from the reference object one is
chosen by chance as the result.

Syntax Samples:
newobject = grp(obj1, obj2, obj3):nearest(obj4)

5.8 NamedObjects

The datatype NamedObjects is used by just one object, the singleton repository of named
objects. Whenever you name an object, see Section 4.2.3 [Object Naming], page 51, this
repository registers its name and allows you to retrieve the object lateron by providing its
name.

Being a singleton you can not create new NamedObjects. The singleton is stored at the
global variable ‘no’ on level load.

5.8.1 NamedObjects Repository Request

Syntax: result = no["name"]

Details: Request of one or several objects from the repository. If no wildcard characters
are used in the name an Section 5.6 [Object], page 93 value is returned. It is
either the unique object with the given name, or an invalid ‘NULL’ object if no
object exists with the given name.

If the requested name contains a wildcard character, either an asterisk ‘*’ or
a question mark ‘?’, a Section 5.7 [Group], page 97 containing all objects with
matching names is returned. An asterisk matches zero, one or several arbitrary
characters. A question mark matches a single arbitrary character. Both wild-
card characters can be used anywhere in the string and in arbitrary multiplicity.
Anyway the result is always returned as a Section 5.7 [Group], page 97. The
group may contain multiple objects, just a single object, or even no objects at
all when no existing object matches your name pattern.
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Syntax Samples:
obj = no["mydoor"] -- exact name match

group = no["mydoors#*"] -- any suffix

group = no["mydoor?"] -- just one char suffix

group = no["mydoors?#*"] -- matches e.g. "mydoorsA#123435", "mydoorsB#1213"

5.8.2 NamedObjects Object Naming

Syntax: no["name"] = obj

Details: Index write accesses to the singleton allows you to name or rename objects.
Note that you can name or rename objects by Section 5.6 [Object], page 93
attribute writes, too. The object’s name is stored as attribute "name". Both
ways of naming an object are totally equivalent.

Syntax Samples:
no["myobject"] = obj

5.9 PositionList

A PositionList is a sorted set, known as list, of Section 5.5 [Position], page 90s. Like a
Section 5.7 [Group], page 97 this container is a constant datatype, that can not be modified.
But you can easily compose new position lists by concatenation of existing lists and single
positions.

An important difference to a group is the ability of a position list to store a position
multiple times at different locations in its sequence. Thus a position list is suited to describe
paths, even paths that are closed or cross itself.

As Section 5.5 [Position], page 90s are values that never become invalid, position lists
once created will never change or get invalid. They are true values themselves. Thus they
are the containers of choice for longterm storage.

You can easily create a position list by Section 5.10.4 [PositionList Conversion], page 106,
which is featured by the Section 5.10 [Positions Repository], page 105 singleton and allows
you to transform a group into a position list by the simple expression ‘po(group)’. On the
other hand you can retrieve all Section 5.6 [Object], page 93s of a basic kind located along
a position list path by Section 5.14 [Functions], page 119 like ‘st(polist)’, ‘it(polist)’
and ‘fl(polist)’.

As a unique floor object is guaranteed to be on every grid position, you can convert
a given list of unique grid positions to a group of floors without loosing any information.
Now you can apply all group methods on the floors, like shuffling, sorting, subgrouping, etc..
Finally you can convert the resulting group back to a persistent position list. Of course the
conversions preserve the sequence of members.

Some additional position specific operators are supplied to allow simple translations and
stretchings of position lists.

Note that in contrast to a Section 5.7 [Group], page 97 this datatype can not directly be
stored in an Section 5.6 [Object], page 93 attribute. But you can always store a Section 5.7
[Group], page 97 of floors in an attribute. In case floors can be destroyed you may need to
name these floors as discussed in Section 4.4.5 [Named Positions], page 61.

For task driven samples see Section 5.2.7 [Named Positions Tasks], page 78.
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5.9.1 PositionList Comparison

Syntax: result = polist1 <==|~=> polist2

Details: A comparison of two position lists. Two position lists are equal if both contain
the same positions in the identical sequence. Otherwise they are unequal.

Syntax Samples:
bool = (po(2,3).. po(5,7)) == (po(2,3) .. po(5,7)) -- = true

bool = (po(2,3).. po(5,7)) == (po(4,0) .. po(5,7)) -- = false, different positions

bool = (po(2,3).. po(5,7)) == (po(5,7) .. po(2,3)) -- = false, different sequence

5.9.2 PositionList Length

Syntax: result = #polist

Details: Number of positions contained in the list.

Syntax Samples:
number = #(po(2,3) .. po(5,7)) -- = 2

for i = 1, #polist do pos = polist[i] ... end

5.9.3 PositionList Member Access

Syntax: result = group[index ]

Details: An index like read access with an index number between 1 and #polist returns
the position in the related position list position. Negative indices between -
#polist and -1 give the same positions. Thus you can always access the last
position at index -1. All other indices return a Lua ‘nil’ value like tables.

Syntax Samples:
pos = (po(2,3) .. po(5,7))[2] -- = po(5,7)

pos = (po(2,3) .. po(5,7))[-1] -- = po(5,7)

pos = (po(2,3) .. po(5,7))[0] -- = nil

for i = 1, #polist do pos = polist[i] ... end

5.9.4 PositionList Concatenation

Syntax: result = polist1 .. <pos | polist2>

result = <pos | polist1> .. polist2

Details: Concatenates two position lists or a position with a position list to a new
PositionList containing all positions in the given order. Note that this operation
is associative, that means it does not matter if you use braces in multiple
concatenations or not.

Syntax Samples:
newpolist = po(po(2,3), po(5,7)) .. po(4, 4) -- = (2,3),(5,7),(4,4)

Caveats: Note that due to the value nature of position lists the concatenation creates a
new value. This is an expensive operation. When you are collecting potentially
large number of positions in a loop, you should not concat each new candidate
to an existing position list. Avoid the creation of numerous position list values
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and collect the positions in a standard Lua table. Convert this table at the end
to a position list (See Section 5.10.4 [PositionList Conversion], page 106).

result = {}

for x = 1, 200 do

table.insert(result, po(x, 17))

end

return po(result)

5.9.5 PositionList Translation

Syntax: result = polist <+|-> <pos | obj | cpos>

result = <pos | obj | cpos> <+|-> polist

Details: If a position or data convertible to a position is added to or subtracted from
a position list a new list is created with the positions representing the sum or
difference of the position with every member of the position list. In total the
position list is shifted by the position as a vector.

Syntax Samples:
newpolist = po(2, 3) + NEIGHBORS_4 -- po(1, 3) .. po(2, 4) .. po(3, 3) .. po(2, 2)

newpolist = po["myfloor#*"] - po(3, 0)

5.9.6 PositionList Stretching

Syntax: result = polist * number

result = number * polist

Details: A scalar multiplication or division of all positions in a position list. All position
values are multiplicated or divided by the given number in both coordinate
values. In total the position list is stretched by a scalar factor.

Syntax Samples:
newpolist = 2 * NEIGHBORS_4 -- = po(9, 12)

newpolist = (po(2,4) .. po(6,7)) * 1/2 -- = (1, 2), (3, 3.5)

5.10 Positions Repository

The Positions datatype is just used by a single instance, the singleton repository of named
positions. Besides the management of named positions it provides useful conversions of
other datatypes to position based types.

Being a singleton you can not create a new Positions Repository. The singleton that is
available on level load is stored at the global variable ‘po’.

The position repository is an extension of the Section 5.8 [NamedObjects], page 102
repository. Whenever you name an object, See Section 4.2.3 [Object Naming], page 51, this
repository registers its name and allows you to retrieve lateron the current object’s position
by providing its name. But even when a floor object gets killed, its position entry remains
stored as Section 4.4.5 [Named Positions], page 61. Of course you can name positions
yourself, but positions of existing named objects will always override plane named positions
on name clashes.

For task driven samples see Section 5.2.7 [Named Positions Tasks], page 78.
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5.10.1 Positions Repository Request

Syntax: result = po["name"]

Details: Request of one or several positions from the repository. If no wildcard characters
are used in the name the Section 5.5 [Position], page 90 value of the unique
object with the given name, if existent, is returned. It no object exists with the
name, the last position stored with the same name is returned. If no position
exists the value ‘nil’ is returned.

If the requested name contains a wildcard character, either an asterisk ‘*’ or a
question mark ‘?’, a Section 5.9 [PositionList], page 103 containing all positions
with matching names is returned. An asterisk matches zero, one or several ar-
bitrary characters. A question mark matches a single arbitrary character. Both
wildcard characters can be used anywhere in the string and in arbitrary mul-
tiplicity. Anyway the result is always returned as a Section 5.9 [PositionList],
page 103. The list may contain multiple positions, just a single position, or
even no position at all when no existing position matches your name pattern.

Syntax Samples:
pos = po["mydoor"] -- exact name match

polist = po["mydoors#*"] -- any suffix

polist = po["mydoor?"] -- just one char suffix

polist = po["mydoors?#*"] -- matches e.g. "mydoorsA#123435", "mydoorsB#1213"

5.10.2 Positions Repository Storage

Syntax: po["name"] = obj

Details: Index write accesses to the singleton allows you to name or rename positions.
Note that can not assign a new position to a name that currently references an
existing Section 5.6 [Object], page 93. Such write access are silently ignored.

Syntax Samples:
po["mypos"] = pos

5.10.3 Position Conversion

Syntax: result = po(<obj | pos | {x, y} | x, y >)

Details: Converts its argument to a new position value.

Syntax Samples:
pos = po(pos2)

pos = po(obj)

pos = po({2, 4})

pos = po(3, 7)

5.10.4 PositionList Conversion

Syntax: result = po(group | {pos1, pos2, pos3})

Details: Converts the given group or table of positions to a new Section 5.9 [PositionList],
page 103 value, that contains the positions of all valid group Section 5.6 [Object],
page 93s or table members in the same sequence.
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Syntax Samples:
polist = po(group)

polist = po({po(3, 7), po(2, 6)})

polist = po({}) -- an empty position list

5.11 Tile and Object Declaration

A tile is the description of one or several objects that should be positioned on the same grid
position. A single object can be set up by a straight object declaration, an anonymous Lua
table with entries for the object kind and all attributes. The object declaration comes in
three minor variations:

{"st chess", name="jumper", color=WHITE}
{"st chess white", "jumper", _myattr=5}

{"ac marble", 0.2, 0.6, name="blacky"}

The first entry, the one stored at table position ‘1’, has always to be the kind name of
a supported Enigma object. In the first example all other table entries are key value pairs
with the key being the attribute name. The second example uses the shortcut of specifying
the name attribute value as second table entry, that will be stored at table position ‘2’. It
has to be a string value. The third variation, that is useful for actor declarations, stores
the grid offsets in x and y directions in the table positions ‘2’ and ‘3’. Of course you can
not use the name attribute shortcut in the same declaration.

These table driven object declarations are always sufficient if you just want to set a
single object at once. But tiles do often take an item or a stone besides a floor. So we need
an Enigma data type being able to handle these multiple declarations. This is the ‘tile’
data type. It can take just one object declaration or an arbitrary list of declarations. You
convert a table object declaration into a tile by the Section 5.12 [Tiles Repository], page 108
handle. Once you have a tile you can concat other tiles or table object declarations to set
up new tiles.

Enigma guarantees that the objects will be set to the world in the sequence of declarations
in the tile.

Even though in most cases you use object declarations and tiles to set objects you may
need in some advanced usage cases to supply such a datatype in situations where you want
to add nothing at all or even want to kill a possibly existing object. In these cases you
can supply one of the pseudo object kind names "fl_nil", "it_nil", "st_nil" or "nil".
While the first three pseudo kinds will kill existing objects on the given layer, the last
pseudo kind will just do nothing. It is equivalent, but more expressive than an empty Lua
table being used as an object declaration:

ti["D"] = cond(wo["IsDifficult"], {"st death"}, {"nil"})
ti["S"] = {"st surprise", selection={"st box", "st nil"}}
function customresolver(key, x, y)

if key == "a" then

return {"nil"}
elseif key == "b" then

return {}

else

return ti[key]
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end

end

The first sample uses the pseudo to supply a valid third arguement to the Section 5.14.3
[cond], page 121 function that causes no syntax error when being passed to the world in
easy mode.

The second sample uses the pseudo to kill the Section 9.5.59 [st surprise], page 302 even
when no substitution stone is being set.

The last example of a Section 13.1.2 [Custom Resolver], page 369 provides a solution for
avoiding the change of the world on a given key in the world map. Usually you will always
set at least a floor object. But if you draw a map during runtime there is no longer the need
of setting inital floors. In cases where this can not be handled by proper usage of default
keys the pseudo kind "nil" is your friend.

For task driven samples see Section 5.2.6 [Tiles and World Tasks], page 78.

5.11.1 Tile concat

Syntax: result = tile .. <tile | odecl>

result = <tile | odecl> .. tile

Details: Compose a new tile by concatenation of a tile with another tile or a table object
declaration. In a concatenated chain of tiles and object declarations one of the
first two evaluated arguments needs to be a tile as two Lua tables do not know
how to concat.

Note that Lua does evaluate the ‘..’ operator from right to left! Thus you need
either use proper braces or you need to guarantee that at least one of the two
rightmost tokens is a tile.

Syntax Samples:
newtile = ti{"st chess"} .. {"fl sahara"}
newtile = ti{"st chess"} .. {"fl sahara"} .. {"it cherry"} -- Lua error due to right to left evaluation

newtile = (ti{"st chess"} .. {"fl sahara"}) .. {"it cherry"} -- evaluation order fixed

newtile = ti{"st chess"} .. {"fl sahara"} .. ti{"it cherry"} -- converted one of the two critical declarations

5.12 Tiles Repository

The Tiles datatype is just used by a single instance, the singleton repository of Section 5.11
[Tile and Object Declaration], page 107s. Besides the management of tiles it provides useful
conversions of table based object declarations to tiles.

Being a singleton you can not create a new Tiles repository. The singleton is stored at
the global variable ‘ti’ on level load.

The repository stores tiles for given string keys. The key strings can be of any length.
Due to Lua limitations they need to be composed of printable 7-bit ASCII characters.

You can assign a tile to every key just once. A reassign causes an error. On one hand
this allows internal implementation optimization, but on the other hand an unforeseen key
reassignment is the most common level coding error that needs to be reported.

For task driven samples see Section 5.2.6 [Tiles and World Tasks], page 78.



Chapter 5: Lua API 109

5.12.1 Tiles Storage

Syntax: ti["key"] = <tile|odecl>

Details: Index write accesses to the singleton allows you to assign a tile or an table
based object declaration, that is autoconverted to a tile, to a given key. The
key must be a unique string. Unique in the sense that you can not reassign a
new tile to key to which previously another tile has been assigned.

Syntax Samples:
ti["#"] = tile

ti["$"] = {"st chess"}
ti["$"] = {"st switch"} -- error of key reassignment

ti["anykey"] = {"st chess"}

5.12.2 Tiles Request

Syntax: result = ti["key"]

Details: Request of the tile that has been assigned to the given key. If no tile has yet
been stored for the key a Lua ‘nil’ value is returned. Note that this tiles
repository does not use wildcard characters as the named objects and positions
repositories do. The asterisk ‘*’ and question mark ‘?’ are just keys as any
other characters.

Syntax Samples:
tile = ti["#"]

5.12.3 Tile Conversion

Syntax: result = ti(odecl)

Details: Converts a table based object declaration to a new tile value.

Syntax Samples:
tile = ti({"st chess"})
tile = ti{"st chess"} -- Lua syntax equivalence

5.13 World

The World datatype is just used by a single instance, another singleton object. A reference
to this singleton is stored at the Lua global variable ‘wo’ on level load. Being a singleton
you can not instantiate another World object.

But even though the singleton ‘wo’ already exists on load of a level the world is still
undefined in all aspects. From the first line of Lua code you can access the Section 6.4
[Global Attributes], page 138. But the world gets really set up with the Section 5.13.1
[World Creation], page 109. After this call the world has a well defined size and is filled
with an initial set of objects that you can access and modify from this moment on.

5.13.1 World Creation

Once all parameters have been set and all tiles have been declared it is time to create the
level world with all its objects. This is done by the following constructor that appears in
three variations.
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Syntax: width, height = wo(topresolver, defaultkey, map)

width, height = wo(topresolver, libmap)

width, height = wo(topresolver, defaultkey, width, height)

topresolver = ti | resolver | localresolver
Every tile in the world is given by a key that needs to be resolved
to its declaration. This can be done either by the Section 5.12
[Tiles Repository], page 108 ‘ti’, or by given library Section 13.1
[Resolvers], page 368 or by a local Section 13.1.2 [Custom Resolver],
page 369 function. This argument takes the top resolver that is
requested first.

defaultkey A string that defines the key that should be taken as default. It
is taken if no other key is given and it is added to a tile if a floor
object is missing. The character length of this key defines the key
size within the map

map A table of strings. Each string describes a row of tiles by its tile
keys. If a map is given, the world size is determined from the
longest string and the number of rows.

libmap A map of the library Section 12.4 [libmap], page 340

width As an argument that is given instead of a map it describes the
width of the desired world.

height As an argument that is given instead of a map it describes the
height of the desired world.

Syntax Samples:
w, h = wo(ti, " ", 20, 13)

w, h = wo(resolver, " ", {

" ",

...

" "})

w, h = wo(ti, mylibmap)

Details: This world constructor may just be called once. Every subsequent call causes
an error. This call sets the size of the world to fixed values that are reported
by its two return values. The world size can later on be retrieved by the
world attributes Section 6.4.35 [Width], page 147 and Section 6.4.18 [Height],
page 143, too.

A mapless world is filled with default tiles. Rows in a given map that are shorter
than others are filled with default tiles, too. Any tile that does not define a
floor object will add the floor object of the default tile.

Every key is resolved to its tile declaration via the given resolver chain. The
top resolver is given to this call as a parameter. If it is ‘ti’ the chain consists
just of one element and the tile declaration stored in the tiles repository at the
given key is taken. Otherwise the resolvers will be evaluated as explained in
Section 13.1.1 [Resolver Chaining], page 368.
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5.13.2 World Tile Set

Syntax: wo[<object | position | table | group | polist>] = tile declarations

Details: Index write accesses to an index that can be interpreted as a grid position or a
list of grid positions allows you to set one or several new objects to the given
positions according to the supplied tile declaration.

Syntax Samples:
wo[no["myobjectname"]] = {"st chess"}
wo[po(3, 4)] = ti["x"]

wo[{2, 5}] = ti["x"] .. ti["y"]

wo[no["floorgroup#*"]] = {"it burnable oil"}
wo[no["myobjectname"] + NEIGHBORS 4] = ti["x"]

5.13.3 Global Attribute Set

Syntax: wo["attritbutename"] = value

Details: Write accesses to string type indices allows you to change Section 6.4 [Global
Attributes], page 138. Just existing attributes with write accessibility may be
changed. Note that some attributes must be set prior Section 5.13.1 [World
Creation], page 109 to take proper affect.

Syntax Samples:
wo["ConserveLevel"] = true

5.13.4 Global Attribute Get

Syntax: var = wo["attritbutename"]

Details: Read accesses to string type indices allows you to retrieve Section 6.4 [Global
Attributes], page 138. Just existing attributes with read accessibility can be
read. Note that some attributes report proper values just after Section 5.13.1
[World Creation], page 109.

Syntax Samples:
var = wo["IsDifficult"]

5.13.5 add

Add Chapter 11 [Other Objects], page 326 to the world or a portable item to an inventory
or other container object.

Syntax: wo:add(tile declarations)

wo:add(target, tile declarations)

tile declarations
One or many other object declarations given as tiles or anonymous
tables.

target ‘YIN’, ‘YANG’ or valid Section 4.2.2 [Object Reference], page 50

Syntax Samples:
wo:add({"ot_rubberband", anchor1="a1", anchor2="w", length=2, strength=80, threshold=0})
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wo:add(ti["r"] .. {"ot_wire", anchor1="w1", anchor2="w2"})

wo:add(YIN, {"it_magicwand"})

wo:add(no["mybag"], {"it_magicwand"} .. ti["h"] .. ti["c"])

Details: Just Chapter 11 [Other Objects], page 326 can be directly added to the world.
Just portable Chapter 8 [Item Objects], page 180 can be added to the player’s
inventories ‘YIN’ and ‘YANG’ and to Section 8.3.1 [it bag], page 182s. No other
targets do currently add objects by this method.

5.13.6 drawBorder

Draw a border around a rectangle out of given tiles.

Syntax: wo:drawBorder(upperleft edge, lowerright edge, <tile | key, resolver>)

wo:drawBorder(upperleft edge, width, height, <tile | key, resolver>)

upperleft edge
Upper left anchor position of the rectangle.

lowerright edge
Lower right end position of the rectangle.

width Width of the rectangle.

height Height of the rectangle.

tile A tile or an object declaration.

key A key string to be resolved via the given resolver.

resolver A resolver to be used for resolving the key to a valid tile.

Syntax Samples:
wo:drawBorder(po(0, 0), wo["Width"], wo["Height"], ti["#"])

wo:drawBorder(no["myRectUL"], no["myRectLR"], {"st_grate1"})

wo:drawBorder(no["myRectUL"], no["myRectLR"], {"fl_water"} .. ti["X"])

wo:drawBorder(no["myRectUL"], no["myRectLR"], "x", myresolver)

Details: The rectangle as four one grid thick lines is drawn with the given tile. That
means on every position of the rectangle itself an instance of every object of
the tile declaration is set. The rectangle may degenerate to a single line.

5.13.7 drawMap

Even if the world is initialized by a map on creation of the world (see Section 5.13.1 [World
Creation], page 109), it is sometime useful to be able to draw smaller submaps either as part
of the initialization or as dynamic level changes within Section 4.3.3 [Callback Function],
page 57. Of course the main purpose of ‘drawMap’ is the drawing of repeating patterns.

Syntax:

wo:drawMap(resolver, anchor, ignore, map, [readdir ])

wo:drawMap(resolver, anchor, libmap-map, [readdir ])

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.



Chapter 5: Lua API 113

anchor The anchor position where the upper left tile of the map should be
drawn.

ignore A tile key string that should be ignored. This key string is manda-
tory, even if it not used within the map.

map A table of strings. Each string describes a row of tiles by its tile
keys.

libmap-map
If the map used is created via Section 12.4 [libmap], page 340, the
‘ignore’-string can be omitted. The map’s default key will then be
ignored instead.

readdir An optional argument to modify the direction of the map relative
to the world. This argument can be any of the constants described
in Section 12.4.3 [Rotating and Mirroring Maps], page 341.

Syntax Samples:
wo:drawMap(ti, po(5, 7), "-", {"abcabc"})

wo:drawMap(ti, anchor_object, "--", {"--##--##","##--##"})

wo:drawMap(ti, {12, 5}, " ", {"122 221"}, MAP_ROT_CW)

Details: The syntax is similar to the world creation call. But there are two essential
differences you need to be aware of. First the map is drawn in the already
existing world. Thus we need to define the position. This is done via the
anchor position, which can be an already existing object, too.

The second difference is in the definition of a tile key string for tiles in the map
that should be ignored. Remember that the world initialization requested a
default tile key string. This default is still valid. But with the given ignore key
string we can draw arbitrary shaped patterns by filling unused grids in the map
with this key.

The length of the ignore key defines the map key length. It is strongly recom-
mended to use the same key length as in the world map.

The rows of the supplied map are drawn from the anchor position. The rows
may be of different length and may start with ignore tile keys. The anchor must
be the position composed of the smallest x and smallest y coordinate within
the pattern.

You can use drawMap anywhere after the world creation. You are even allowed
to use it within the world creation in a resolver.

Full Example:
01 ti[" "] = {"fl plank"}
02 ti["X"] = {"st oxyd"}
03 ti["B"] = {"st passage black", flavor="frame"}
04 ti["W"] = {"st passage white", flavor="frame"}
05 ti["y"] = {"it yinyang"}
06 ti["1"] = {"#ac marble black"}
07 ti["2"] = {"#ac marble white"}
08
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09 function myresolver(key, x, y)

10 if key == "w" then

11 wo:drawMap(ti, po(x-1, y-1), "-", {"-W-",

12 "WXW",

13 "-W-"})

14 return ti({})

15 elseif key == "b" then

16 wo:drawMap(ti, po(x-1, y-1), "-", {"-B",

17 "BXB",

18 "-B"})

19 return ti({})

20 else

21 return ti[key]

22 end

23 end

24

25 w, h = wo(myresolver, " ", {

26 " ",

27 " b b ",

28 " w w ",

29 " ",

30 " ",

31 " w ",

32 " 12 b ",

33 " w ",

34 " w ",

35 " b ",

36 " w b ",

37 " b ",

38 " "

39 })

40 wo:shuffleOxyd()

5.13.8 drawRect

Fill a rectangle with a given tile.

Syntax: wo:drawRect(upperleft edge, lowerright edge, <tile | key, resolver>)

wo:drawRect(upperleft edge, width, height, <tile | key, resolver>)

upperleft edge
Upper left anchor position of the rectangle.

lowerright edge
Lower right end position of the rectangle.

width Width of the rectangle.

height Height of the rectangle.

tile A tile or an object declaration.
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key A key string to be resolved via the given resolver.

resolver A resolver to be used for resolving the key to a valid tile.

Syntax Samples:
wo:drawRect(po(0, 0), wo["Width"], wo["Height"], ti[" "])

wo:drawRect(no["myRectUL"], no["myRectLR"], {"fl_water"})

wo:drawRect(no["myRectUL"], no["myRectLR"], {"fl_water"} .. ti["#"])

wo:drawRect(no["myRectUL"], no["myRectLR"], "x", myresolver)

Details: The complete rectangle is filled with the given tile. That means on every
position of the rectangle and its interior an instance of every object of the tile
declaration is set. The rectangle may degenerate to a single line.

5.13.9 world floor

Retrieves the floor objects for the given position or positions.

Syntax: result = wo:fl(<pos| {x, y}|x, y| obj | group| polist>)

Details: This world method is identical to the global function Section 5.14.5 [fl], page 123.

5.13.10 world item

Retrieves the item objects for the given position or positions.

Syntax: result = wo:it(<pos| {x, y}|x, y| obj | group| polist>)

Details: This world method is identical to the global function Section 5.14.7 [it],
page 123.

5.13.11 shuffleOxyd

Shuffling the color distribution of the Section 9.5.42 [st oxyd], page 281 makes every level,
that is no meditation, a bit generic. On every level start the level looks a little bit different
and the user has to solve a modified level. This provides long term amusement. Thus the
call of this method is part of most levels.

Many levels just call this method without any arguments. This results in a shuffling of
all Section 9.5.42 [st oxyd], page 281 that are not excluded by a ‘noshuffle’ attribute.

But sometimes levels need to influence the shuffling, either for ensuring that the level
remains solvable, or simply to ensure fairness. Imagine a level that has two Section 9.5.42
[st oxyd], page 281s in every corner. If by chance a user gets a distribution where he has in
each corner a pair of same colored oxyds, the level might be trivial. Another level may have
a passage that the marble can pass just a few times. With 5 or more oxyds on each side of
the passage you need to ensure that the marble never needs to pass the passage more often
than possible. Both situations can be handled by providing proper rules as arguments to
this method.

Syntax:

wo:shuffleOxyd(rules)

rules = rule, rule,...
No rule or as many as you like, all separated by a comma.
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rule = {group1, group2, maxrule, minrule, circularrule, linearrule, log}
Each rule is a table with a subset of the listed entries. The group1
entry is mandatory. All other entries are optional and can be added
in any combination.

group1 = group | objectreference | objectspecifier
A description of oxyd objects that are part of the first rule group.
Either a group or a single object reference or a string specifier that
resolves to a single or via wildcard to several oxyd objects are legal
descriptors.

group2 = group | objectreference | objectspecifier
A description of oxyd objects that are part of the second rule group.
Either a group or a single object reference or a string specifier that
resolves to a single or via wildcard to several oxyd objects are legal
descriptors.

maxrule = max = number
The maximum number of oxyd pairs.

minrule = min = number
The minimum number of oxyd pairs.

circularrule = circular = true

Avoid any pair of neighboring oxyds in group1. Avoid an oxyd pair
of first and last oxyd in group1, too.

linearrule = linear = true

Avoid any pair of neighboring oxyds in group1.

log = log = "solution" |"count" |"all"

Log additional information to the log stream for debugging pur-
poses and security checks by the level author.

Syntax Samples:
wo:shuffleOxyd()

wo:shuffleOxyd({no["borderoxyds#*"]:sort("circular"), circular=true})

wo:shuffleOxyd({"leftoxyds#*","rightoxyds#*", min=3}, {"islandoxyds#*", max=0})

Details:

Any call of ‘wo:shuffleOxyd()’ must occur after all Section 9.5.42 [st oxyd],
page 281 have been set. That means that it must follow the standard world
initialization (see Section 5.13.1 [World Creation], page 109). As a side effect
shuffleOxyd will assign colors to all ‘OXYD_AUTO’ colored Section 9.5.42 [st oxyd],
page 281.

Once called the given shuffling rules remain valid. Any further reshuffling must
be done by messages ‘closeall’ and ‘shuffle’ to one arbitrary Section 9.5.42
[st oxyd], page 281 instance. No addition of an Section 9.5.42 [st oxyd],
page 281 or subsequent ‘wo:shuffleOxyd()’ calls are possible without
disturbing and deleting the given rules.

Rule based shuffling is limited to a maximum of one pair of each standard
oxyd color plus any combination of additional special fake, quake or bold oxyds
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summing up to a maximum of 32 oxyds. If more than 32 oxyds or 2 or more
pairs of a single standard color are set, all oxyds will be shuffled by random
ignoring any provided rules.

There are basically two different types of rules. Those with one group and those
with two groups of oxyds (Note that group is the general API expression for a
set of oxyds and not a mathematical group). For a single group the rules apply
to the oxyd instances within this group. For two groups the rules apply to oxyd
pairs with one oxyd in the first group and the other in the second group.

E.g. ‘{"islandoxyds#*", max=0}’ requests that there is no pair within
this group of oxyds. Whereas ‘{"leftoxyds#*","rightoxyds#*", min=3}’
requests that there are 3 different oxyd pairs, each with one oxyd out of the
leftoxyd group and the second out of the rightoxyd group.

Linear and circular rules can only be applied to a single group. They are
shortcuts for the most common rules that are applied to oxyds arranged on a
line or a circle. In both cases they avoid pairs of neighboring oxyds. They are
equivalent to ‘n-1’ res. ‘n’ rules with all possible neighboring oxyd pairs as two
groups and a rule of ‘max=0’.

Note that you can apply several rules at once to given groups. E.g. you can
apply a minrule and a maxrule within one rule!

The shuffling process consists always of two stages. The most important first
stage generates a valid oxyd pair distribution. That means that we settle which
pairs will have the same color. But the color itself is assigned in an independent
second stage. As for the examination of given rules just the pair distribution
is relevant, we do just count and log these different distributions ignoring the
colors.

With 16 oxyds of 8 different colors and no restricting rules you have 2027025 (15
* 13 * 11 * 9 * 7 * 5 * 3) different valid distributions. Keep in mind that useful
rules should always keep hundreds or thousands of different valid distributions
for a level.

For debugging purposes you can add a log parameter to one of the rules (it
does not matter to which one). If you request the log of ‘solution’ the pair
distribution will be printed to the log stream.

In case of ‘count’ the number of different oxyd distributions will be counted and
logged. It is recommended to check the count on complex rules to ensure that
enough distributions remain for a varying game. But be careful applying count
on trivial rules. With 16 oxyds there may be as many as 2027025 distributions
and it may take a standard PC up to 30 seconds to count them - add a factor
of 17*19 for 20 oxyds!

Be very, very cautious in usage of logging ‘all’. This call tries to print all
solutions. It takes ages if there are too many solutions. First check the count
before trying to log the solutions.

Full Example:
01 wo["ConserveLevel"] = false

02

03 ti["~"] = {"fl water"}
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04 ti[" "] = {"fl plank"}
05 ti["c"] = {"it crack l", brittleness=0}
06 ti["^"] = {"st oneway n"}
07 ti["1"] = {"ac marble black", 0, 0.5}

08

09 ti["x"] = {"st oxyd", "island#"}

10 ti["y"] = {"st oxyd", "left#"}

11 ti["z"] = {"st oxyd", "right#"}

12

13 w, h = wo(ti, " ", {

14 "~~x x x x x x~~",

15 "~~ ~~",

16 "~~~~^~~~~~~~~~~^~~~~",

17 "y ~~~~ z",

18 "~ cccc ~",

19 "y ~~~~ z",

20 "~ cccc ~",

21 "y ~~~~ z",

22 "~ cccc ~",

23 "y ~~~~ z",

24 "~~~~c~~~~~~~~~~c~~~~",

25 "~~ ~~",

26 "~~ 1 ~~"

27 })

28

29 wo:shuffleOxyd({"island#*", min=3, linear=true}, {"left#*","right#*", max=2, min=2})

This level uses 14 oxyds. The 6 oxyds in the upper row are on an island that
can not be left once the marble entered it through one of the oneways. Thus
we need 3 pairs of oxyds on this island, which are enforced by the min rule. To
avoid trivial neighboring pairs on the island, we do add a linear rule, too. The
marble can pass just three times between the left and right islands. This allows
a first look on the color oxyds with one pass and opening one pair on each of
the two following passes. Thus we limit the number of pairs by a max rule to 2.
To avoid trivial oxyd pair distributions, like two pairs on the left and two pairs
on the right side, we do add a min rule that enforces that two shared pairs of
oxyds do exist.

5.13.12 world stone

Retrieves the stone objects for the given position or positions.

Syntax: result = wo:st(<pos| {x, y}|x, y| obj | group| polist>)

Details: This world method is identical to the global function Section 5.14.10 [st],
page 125.
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5.14 Functions

Besides all the features strongly related to a value as context and thus implemented as
operators or methods of these datatypes, a few other tasks remain. These are either context
free or take at least in one variation just a standard Lua datatype, that does not supply a
context. Thus these tasks are implemented as simple functions.

5.14.1 assert bool

The function ‘assert_bool’ throws an error if a given condition doesn’t hold.

Syntax: assert bool(condition, message, level)

condition A boolean expression or anything else. If it is false or nil, an
error will be thrown.

message A string, holding the error message. If message is nil or empty,
an "anonymous assertion" will be thrown, but it’s always better to
provide a meaningful error message.

level level specifies the error position in the same way as does Lua’s
‘error’-function. Default is 1.

Syntax Samples:
assert_bool(no["mystone"]:exists(), "Stone ’mystone’ has disap-

peared.")

Details: Assertions help you to detect coding errors. They are heavily used on argu-
ment checks of library functions and resolver implementations. As the asser-
tions should not lead to performance penalties during runtime they are usu-
ally just evaluated when the level’s ‘status’ is declared in the XML header
element Section 3.3.2 [<version>], page 30 with a value of either "test" or
"experimental".

For "stable" and "released" levels standard assert statements are simply
skipped on compilation like Lua comments. But you can enforce assert state-
ments to be executed even in these modes by the following pattern of assignment
and additional braces:

dummy = (assert_bool)(no["mystone"]:exists(), "Stone ’mystone’ has dis-

appeared.")

Similar to Section 5.14.3 [cond], page 121, all side effects within the evaluation
of ‘message’ and ‘level’ will appear.

See Lua’s manual for more detailed information about the ‘error’-function.

5.14.2 assert type

The function ‘assert_type’ throws an error if the first argument is not of one of the specified
types.

Syntax: assert type(var, vardescription, level, type1, type2, ...)

var Any kind of variable.
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vardescription
If ‘var’ is not of one of the types ‘type1’, ‘type2’ ..., then an error
message will be thrown which includes the actual type of ‘var’
and the desired types. ‘vardescription’ is a string which holds
additional information for the error message. It should be a lower-
case not-too-short description of ‘var’ (a name, as it is), additional
details should be added in brackets.

level level specifies the error position in the same way as does Lua’s
‘error’-function. Can’t be omitted, use ‘1’ if in doubt.

type1, type2, ...
A sequence of strings. If ‘var’ is none of these types, the error will
be thrown. See details below for type descriptors.

Syntax Samples:
assert_type(arg1, "mygreatfunction first argument (level width)", 1, "nil", "pos-
itive integer", "position")

Details: Assertions help you to detect coding errors. They are heavily used on argu-
ment checks of library functions and resolver implementations. As the asser-
tions should not lead to performance penalties during runtime they are usu-
ally just evaluated when the level’s ‘status’ is declared in the XML header
element Section 3.3.2 [<version>], page 30 with a value of either "test" or
"experimental".

For "stable" and "released" levels standard assert statements are simply
skipped on compilation like Lua comments. But you can enforce assert state-
ments to be executed even in these modes by the following pattern of assignment
and additional braces:

dummy = (assert_type)(arg1, "myfunction first argument", 1, "integer")

Possible types are all Lua types (like "nil", "number", "boolean", "string",
"table", "function") except "userdata", all Enigma-own user types
("object", "position", "tile", "tiles", "group", "world", "polist",
"unknown"), and types defined inside metatables ("map" from Section 12.4
[libmap], page 340), see Section 5.14.4 [etype], page 122. In addition, the
following type descriptors are recognized:

"integer"

Any integer number (..., -2, -1, 0, 1, 2, ...)

"positive"

Any number which is positive and not zero.

"non-negative"

Any number which is not negative, i.e. which is positive or zero.

"natural"

Any non-negative integer number (0, 1, 2, ...).

"positive integer"

Any positive integer number (1, 2, 3, ...).
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"non-empty string"

Any string other than the empty string "".

"any table"

If ‘var’ is a table, the ‘_type’-attribute of its metatable will be
used as its Section 5.14.4 [etype], page 122. In particular, it won’t
be accepted as a "table" anymore, if this ‘_type’-attribute exists.
For example,

assert_type(mytable, "large table", 1, "table")

will throw an assertion when ‘mytable’ is a "map", although, tech-
nically, a "map" always is a "table". You can use "any table" as
type to allow for any table, regardless of its metatable.

"valid object"

Any valid object.

Similar to Section 5.14.3 [cond], page 121, all side effects within the evaluation
of ‘vardescription’, ‘level’ and any type descriptor will apply.

See Lua’s manual for more detailed information about the ‘error’-function.

Full Example:
function paint_lawn(pos)

assert_type(pos, "paint_lawn first argument", 2, "position", "object", "polist", "group", "table")

if etype(pos) == "object" then

assert_bool(-pos, "paint_lawn: Object not existing.", 2)

end

wo[pos] = ti["lawn"]

end

paint_lawn(no["mystone"])

paint_lawn("myotherstone")

If ‘mystone’ doesn’t exist, no["mystone"] will still be of etype "object", an
invalid object. Hence assert_type will not trigger, but assert_bool will.

If ‘mystone’ exists, the second ‘paint_lawn’ will throw an error via
‘assert_type’, as pos now is a "string". The error message will be:

Wrong type for paint_lawn first argument, is string, must be one of position,

object, polist, group, table.

5.14.3 cond

‘cond’ is a conditional assignment, a substitution for the ternary ‘?:’ operator of C-like
languages. Note however, that it is not an equivalent substitution but just a workaround
with some subtle side effects.

Syntax: cond(condition, iftrue, iffalse)

condition A boolean expression.

iftrue The expression to be returned if ‘condition’ is true.

iffalse The expression to be returned if ‘condition’ is false.
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Syntax Samples:
ti["x"] = cond(wo["IsDifficult"], {"st death"}, ti["#"])

ti["D"] = cond(wo["IsDifficult"], {"st death"}, {"nil"})

Details: ‘cond’ always evaluates both expressions ‘iftrue’ and ‘iffalse’, regardless of
‘condition’. Hence,

mytable = {1,2,3,4,5,6,7,8,9,0}

removed_element = cond(i < 5, table.remove(mytable, i), table.remove(mytable, 5))

will always remove two elements. With ‘i=2’ the ‘2’ will be returned but
‘mytable’ will result in ‘{1,3,4,5,7,8,9,0}’, and with ‘i=6’ you get the ‘5’
but mytable will be ‘{1,2,3,4,7,8,9,0}’.

Another Enigma example that will cause errors is:

w,h = cond(wo["IsDifficult"], wo(ti, " ", map1), wo(ti, " ", map2))

Both, the second and the third argument will be evaluated. Thus two contra-
dicting attempts to create a new world will be made causing the second one to
fail. Use the following statement instead:

w,h = wo(ti, " ", cond(wo["IsDifficult"], map1, map2))

However, in most cases ‘cond’ is used anyway with static expressions for
‘iftrue’ and ‘iffalse’ (e.g. strings or variables) and no side effects will occur.

5.14.4 etype

The function ‘etype()’ returns the advanced type of its argument.

Syntax: etype(var)

var Any kind of variable.

Syntax Samples:
argtype = etype(value)

Details: Lua types are "nil", "number", "boolean", "string", "table", "function",
"userdata", and "thread". You can use Lua’s ‘type’-function to query the
type of any variable. However, Enigma defines more types through various
means, and these types can be queried via ‘etype’. ‘etype’ will return its
argument’s Lua type as usual, with the following two exceptions:

"userdata"
Instead of "userdata", Enigma’s special types will be returned.
These special types are "object", "position", "tile", "tiles",
"group", "world", "polist" and "default". If an unknown user-
data is encountered, "unknown" will be returned.

"table" If var is a table, its metatable will be queried. If there is an en-
try ‘_type’, this entry will be used as etype. Most important
examples of this kind are Section 12.4 [libmap], page 340-maps,
Section 13.1 [Resolvers], page 368 and Section 13.1.5 [res.maze],
page 375 with its mazes and cells. So ‘etype’ will return "map",
"resolver", "maze" and "cell", too. You may access the etype-
system through ‘_type’ whenever you use metatables on your own.
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5.14.5 fl

The function ‘fl()’ retrieves the floor objects for the given position or positions.

Syntax: result = fl(<pos| {x, y}|x, y| obj | group| polist>)

Details: If the argument describes a single position, the floor object at this position is
returned. When this single position is outside of the world an invalid ‘NULL’
Section 5.6 [Object], page 93 reference is returned.

If the argument is either a Section 5.7 [Group], page 97 or Section 5.9 [Position-
List], page 103 all floor objects of the related positions are retrieved and added
in the same sequence to a new result group. Invalid positions will be skipped
without adding an object to the group.

In any case you can send messages to the result value.

Syntax Samples:
floor = fl(po(3, 5))

floor = fl({3, 5})

floor = fl(3, 5)

floor = fl{3, 5} -- by Lua syntax equivalence

floor = fl(mystone)

group = fl(no["door#*"])

group = fl(po(3, 5)..po(4, 2))

5.14.6 grp

The function ‘grp()’ builds a Section 5.7 [Group], page 97 out of its argument Section 5.6
[Object], page 93s.

Syntax: grp(<{obj1,obj2,...}| obj1,obj2,... |group>)

Details: Returns a new Section 5.7 [Group], page 97 that is build up by the objects
listed by the arguments. The contents objects must be either listed in a Lua
table, given as multiple single object arguments or an existing group. In all
cases the sequence of objects is maintained in the returned new group, but all
invalid ‘NULL’ objects are omitted. In case one object is listed multiple times
just the first instance will occur in the group and subsequent instances will be
omitted.

Syntax Samples:
newgroup = grp(obj1, obj2, obj3)

newgroup = grp({obj1,obj2})

newgroup = grp{obj1,obj2} -- Lua syntax equivalence

newgroup = grp{} -- empty group

newgroup = grp(group) -- a copy of group cleaned of in-

valid ‘NULL’ objects

5.14.7 it

The function ‘it()’ retrieves the item objects for the given position or positions.

Syntax: result = it(<pos| {x, y}|x, y| obj | group| polist>)
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Details: If the argument describes a single position, the item object at this position is
returned. When no item is located at the given single position or this position
is outside of the world an invalid ‘NULL’ Section 5.6 [Object], page 93 reference
is returned.

If the argument is either a Section 5.7 [Group], page 97 or Section 5.9 [Posi-
tionList], page 103 all item objects of the related positions are retrieved and
added in the same sequence to a new result group. Invalid positions or positions
without items will be skipped without adding an object to the group.

In any case you can send messages to the result value.

Syntax Samples:
item = it(po(3, 5))

item = it({3, 5})

item = it(3, 5)

item = it{3, 5} -- by Lua syntax equivalence

item = it(mystone)

group = it(no["door#*"])

group = it(po(3, 5)..po(4, 2))

5.14.8 ORI2DIR

The table ‘ORI2DIR[]’ converts orientation values to direction values.

Syntax: result = ORI2DIR[orientation]

Details: The table has stored the proper directions values at the index positions of the
related orientations.

Syntax Samples:
direction = ORI2DIR[NORTH] -- N = po(0, -1)

direction = ORI2DIR[SOUTHEAST] -- SE = po(1, 1)

direction = ORI2DIR[NODIR] -- po(0, 0)

5.14.9 random

The function ‘random()’ is a syntax compatible replacement for the standard Lua function
‘math.random()’. Both names refer to the same Enigma random implementation.

Syntax: result = random(<|n|l,u>)

Details: When called without arguments, math.random returns a pseudo-random real
number in the range [0,1). When called with a number n, math.random returns
a pseudo-random integer in the range [1,n]. When called with two arguments,
l and u, math.random returns a pseudo-random integer in the range [l,u].

The only difference from the Lua implementation is the random generator itself.
Enigma uses an own implementation that guarantees the same pseudo-random
number sequence on any operating system and any processor for a given seed.
This feature will be important for future Enigma versions and thus the ran-
domseed can not be modified by the level itself.

Syntax Samples:
float = random() -- e.g. 0.402834



Chapter 5: Lua API 125

integer = random(20) -- e.g. 13

integer = random(5, 10) -- e.g. 5

5.14.10 st

The function ‘st()’ retrieves the stone objects for the given position or positions.

Syntax: result = st(<pos| {x, y}|x, y| obj | group| polist>)

Details: If the argument describes a single position, the stone object at this position is
returned. When no stone is located at the given single position or this position
is outside of the world an invalid ‘NULL’ Section 5.6 [Object], page 93 reference
is returned.

If the argument is either a Section 5.7 [Group], page 97 or Section 5.9 [Posi-
tionList], page 103 all stone objects of the related positions are retrieved and
added in the same sequence to a new result group. Invalid positions or positions
without stone will be skipped without adding an object to the group.

In any case you can send messages to the result value.

Syntax Samples:
stone = st(po(3, 5))

stone = st({3, 5})

stone = st(3, 5)

stone = st{3, 5} -- by Lua syntax equivalence

stone = st(myfloor)

group = st(no["cherry#*"])

group = st(po(3, 5)..po(4, 2))

5.14.11 usertype

The function ‘usertype()’ returns type info for Enigma data types.

Syntax: usertype(var)

var Any kind of variable.

Syntax Samples:
argtype = usertype(value)

Details: Just for Lua type "userdata" Enigma’s special type info will be returned.
These special types are "object", "position", "tile", "tiles", "group",
"world", "polist" and "default". If another data type is encountered,
"unknown" will be returned.

The function Section 5.14.4 [etype], page 122 provides a more general type
evaluation for arbitrary data types and is partially based on this function.
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6 Common Attributes and Messages

Some attributes, messages and constants are common to many objects or even supported
by all objects. We describe them here in detail. The following chapters will just reference
them or even skip them when they are generally supported and used in the default manner.

6.1 Common Attributes

6.1.1 name

The attribute of Section 4.2.3 [Object Naming], page 51 that allows you to name any
object for reference purposes. It is up to you to ensure the uniqueness of the names. But
the engine supports you by autonumbering names ending on a ‘#’ sign (see Section 4.2.3
[Object Naming], page 51). If you reuse an already used name the first object will be
unnamed and all name references will point to the new named object. If you have need of
naming an object you should do it with the object creation as a few objects have need of
names and will otherwise be named by the engine with unique names.

Note that this attribute is not listed in the individual object descriptions.

Type: string
Values: {a-zA-Z0-9 }+

A sequence of characters of the given characters plus special characters as men-
tioned in the text above.

Default: nil

Some objects will be autonamed if no name is defined.

Access: read/write
Support: by all objects

6.1.2 state

The central attribute of any object that describes the current state of an object in its
standard life cycle. This Section 4.3.4 [Object State], page 57 is described by a simple
number. Most dynamic objects have just 2 states. Others may have more. The available
states are listed with each object. This universal attribute allows common messages like
Section 6.2.1 [toggle], page 130, Section 6.2.3 [signal], page 131, Section 6.2.4 [on], page 131,
Section 6.2.5 [off], page 131, Section 6.2.6 [open], page 131, Section 6.2.7 [close], page 132.

Type: number
Values: dependent on the individual object

Please use the given upper case constants.

Default: 0

Access: read/sometimes write
While it is common to set the state attribute on object creation, it is preferable
to change the object state later on by messages.

Support: by all objects
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6.1.3 target

All active objects react on being triggered by performing an action on their targets. This
attribute is part of the Section 4.3.2 [Target - Action], page 55 paradigm that guarantees
plugability of objects. You can either set a general ‘target’ attribute for an object, or you
can set Section 6.1.2 [state], page 126 dependent attributes ‘target_0’, ‘target_1’,... (see
Section 4.3.4 [Object State], page 57). They all have the same syntax:

Type: string, object, group, tokens See Section 4.2 [Object Description], page 50
Single targets may be declared by their object name or their reference. Multiple
targets can be declared by usage of groups and tokens.

Values: See Section 4.2.4 [Object Attributes], page 53
target = "myDoor"

target = myObject

target = {"myDoor", myObject}

target = {grp(obj1, obj2), "myDoor", myObject}

Default: nil

Access: read/write
Support: by all objects

6.1.4 action

All active objects react on being triggered by performing an action on their targets. This
attribute is part of the Section 4.3.2 [Target - Action], page 55 paradigm that guarantees
plugability of objects. You can either set a general ‘action’ attribute for an object, or you
can set Section 6.1.2 [state], page 126 dependent attributes ‘action_0’, ‘action_1’,... (see
Section 4.3.4 [Object State], page 57). They all have the same syntax:

Type: string, tokens of strings See Section 4.3.2 [Target - Action], page 55
A single action may be declared by its message string. Multiple actions that
match multiple targets can be declared by tokens of strings.

Values: See Section 4.2.4 [Object Attributes], page 53
action = "open"

action = {"open", "turn", "toggle"}

Default: nil

Access: read/write
Support: by all objects

6.1.5 nopaction

A very special addition to the Section 4.3.2 [Target - Action], page 55 paradigm that allows
in case of state specific actions to deny the sending of default messages (see Section 4.3.4
[Object State], page 57).

Type: bool
Values: true, false
Default: false

Access: read/write
Support: by all objects
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6.1.6 safeaction

A very special addition to the Section 4.3.2 [Target - Action], page 55 paradigm that allows
to kill the sender within the execution of the action code.

Type: bool
Values: true, false
Default: false

Access: read/write
Support: by all objects

6.1.7 inverse

An attribute that requests an inversion of the action value. It is supported by all objects
with boolean action values.

Note that this attribute is not listed in the individual object description if the object
has boolean action values.

Type: bool
Values: true, false
Default: false

Access: read/write
Support: by most objects

All objects with boolean action values will support this attribute. Addition-
ally some objects with other invertible action value types like orientations will
support the inversion of their attributes as stated in the individual object de-
scriptions.

6.1.8 destination

An attribute that describes one or several destinations. It is used by objects like
Section 8.4.19 [it vortex], page 225 and Section 8.4.20 [it wormhole], page 227 to describe
their teleporting destination and by Section 10.2.2 [ac horse], page 318 to describe its
traveling path.

Note that this attribute is only supported if it is listed in the individual description.

Type: tokens or a single position
Just a single position for a first destination is allowed. Use tokens to define
multiple destination.

Values: See Section 4.2.4 [Object Attributes], page 53
destination = po(3.0, 4.7)

destination = "myFloor"

destination = myObject

destination = {"vortex2","vortex3","vortex4"}

po["dest1"] = po(3,4)

po["dest2"] = po(7,8)

destination = {"dest1","dest2","myFloor"}

Note that objects like ‘it_wormhole’ that have just a single destination do
take the first token object. Note that in contrast to Section 6.1.3 [target],
page 127 tokens a destination tokens argument can take named positions, too.
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Referencing floors that may be destructed by bombs, cracks, floor building
stones, etc. are save destinations, too.

Default: nil

Access: read/write
Support: by teleporting objects

6.1.9 friction

An attribute that describes the decelerating friction force on actors that are on the floor.
The friction force increases with the speed of the actor and is decelerating for positive friction
values. But friction can be set to negative values as well what generates an accelerating
force that is very difficult to control for the player.

Besides all floors some floor covering items like Section 8.4.16 [it strip], page 222,
Section 8.4.11 [it meditation], page 217 may provide friction values as well to deviate from
the floor friction.

Type: number
Values: any floating point number
Default: nil

Access: read/write
Support: by all floor, and floor covering item objects

6.1.10 adhesion

An attribute that describes the adhesion that allows an actor to accelerate on a floor.
Greater adhesion leads to more accelerating force at the same given mouse speed. Adhesion
can be set to negative values as well what generates an accelerating force in the inverse
direction of the mouse movement which is a little bit difficult to control for the player.

Besides all floors some floor covering items like Section 8.4.16 [it strip], page 222,
Section 8.4.11 [it meditation], page 217 may provide adhesion values as well to deviate
from the floor adhesion.

Type: number
Values: any floating point number
Default: nil

Access: read/write
Support: by all floors, and floor covering item objects

6.1.11 checkerboard

An attribute that defines if a given object declaration should only be applied on ’even’ or
’uneven’ grid positions. Setting this attribute to ‘0’ assures that this object will only be
set on grid positions with an even sum of x + y grid coordinates, where as a value of ‘1’
assures that the sum must be uneven. This way you can easily provide two different object
declarations for a tile to generate an arbitrarily shaped map of checkerboard floors, items
or stones.
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Type: number
Values: 0, 1
Default: nil

Access: read/write
Support: by all floor, stone and item objects

ti["c"] = ti({"fl_sahara", checkerboard=0}) .. {"fl_tigris", checkerboard=1}

6.1.12 rubbers

An attribute that gives you access to the Section 11.1.2 [ot rubberband], page 326s that
are currently connected to this object.

Note that this attribute is read only. You can use the rubberband references to kill or
reconnect single rubberbands. But to add new rubberbands you need to use the world’s
‘add’ method.

Type: group of Section 11.1.2 [ot rubberband], page 326 objects
Default: nil

Access: read only
Support: by actor and stone objects

6.1.13 wires

An attribute that gives you access to the Section 11.1.3 [ot wire], page 327s that are cur-
rently connected to this stone object.

Note that this attribute is read only. You can use the wire references to kill or reconnect
single wires. But to add new wires you need to use the world’s ‘add’ method.

Type: group of Section 11.1.3 [ot wire], page 327 objects
Default: nil

Access: read only
Support: by all stone objects

6.1.14 fellows

An attribute that gives you access to the group of all objects that are currently connected ei-
ther by an Section 11.1.2 [ot rubberband], page 326 or an Section 11.1.3 [ot wire], page 327.

Note that this attribute is read only. It is just for evaluation of the current level state.
But to add new rubberbands or wires you need to use the world’s ‘add’ method.

Type: group of objects
Default: nil

Access: read only
Support: by actor and stone objects

6.2 Common Messages

6.2.1 toggle

This is the default message that is always taken if no other message is provided. It toggles
the Section 4.3.4 [Object State], page 57 quite independent of the very nature of the state.
Two-stated objects like switches will toggle their state form ‘ON’ to ‘OFF’ or from ‘OFF’ to
‘ON’. Door like objects will toggle their state from ‘OPEN’ to ‘CLOSED’ or from ‘CLOSED’ to
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‘OPEN’. Other objects like Section 9.5.24 [st fourswitch], page 262 will turn into the next
orientation. Generally the object will toggle to its next state.

Value: -

Returns: -
Support: by nearly all objects which use the ‘state’ attribute

6.2.2 nop

A dummy message that just does nothing: no operation. You may need it in cases of state
dependent actions to block an otherwise sent default ‘toggle’ message (see Section 4.3.4
[Object State], page 57).

Value: -

Returns: -
Support: by all objects

6.2.3 signal

A signal message tries to set the object to the state 0 (‘OFF’, ‘CLOSED’) or state 1 (‘ON’,
‘OPEN’) according to its value. This message allows you to keep the states of an action
source and a receiving object in sync. Note that values like ‘true’, ‘false’ and orientation
values like ‘WEST’ to ‘NORTH’ are converted to 0 and 1. This allows you to use ‘signal’ as
action message on most objects.

Value: 0, 1
Returns: -
Support: by nearly all objects which use the ‘state’ attribute

6.2.4 on

This message is just supported by objects that can be switched on and off. Just objects in
state ‘OFF’ will be switched on. An object in state ‘ON’ remains unchanged in its state.

Value: -

Returns: -
Support: by objects that can be switched on and off

6.2.5 off

This message is just supported by objects that can be switched on and off. Just objects in
state ‘ON’ will be switched off. An object in state ‘OFF’ remains unchanged in its state.

Value: -

Returns: -
Support: by objects that can be switched on and off

6.2.6 open

This message is just supported by door like objects that can be opened and closed. Just
objects in state ‘CLOSED’ will be opened. An object in state ‘OPEN’ remains unchanged in
its state.

Value: -
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Returns: -
Support: by door like objects that can be opened and closed

6.2.7 close

This message is just supported by door like objects that can be opened and closed. Just
objects in state ‘OPEN’ will be closed. An object in state ‘CLOSED’ remains unchanged in its
state.

Value: -

Returns: -
Support: by door like objects that can be opened and closed

6.2.8 ignite

Sets fire to a floor if it is burnable (see Section 13.2.3 [Fire Spreading], page 388) or start
an explosion or shattering of items like Section 8.3.11 [it dynamite], page 189, Section 8.4.2
[it bomb], page 209 or stones like Section 9.5.28 [st ice], page 265, Section 9.5.18
[st dispenser], page 255 and many more.

Value: -

Returns: -
Support: by all Chapter 7 [Floor Objects], page 149 and explosive or shattering items
and stones

6.2.9 heat

Sets fire to a floor if it is burnable (see Section 13.2.3 [Fire Spreading], page 388) or causes a
Section 13.2.4 [Heat-Transformation], page 390 on a floor or other objects like Section 9.5.28
[st ice], page 265 that starts melting. Some objects do react on a heat message like on an
Section 6.2.8 [ignite], page 132 message by explosions or shattering.

Value: -

Returns: -
Support: by all Chapter 7 [Floor Objects], page 149 and some other objects.

6.2.10 setfire

Sets fire to a floor if it is burnable (see Section 13.2.3 [Fire Spreading], page 388).

Value: -

Returns: -
Support: by all Chapter 7 [Floor Objects], page 149

6.2.11 kill

This message causes the recipient to cease to exist. You are just allowed to kill objects that
are directly part of the world. Objects owned by players, being content part of a bag or
otherwise owned by another object will refuse this message on behalf of their owner.

Value: -

Returns: -
Support: by all world owned objects
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6.2.12 sound

This message causes the recipient to play the sound given by the first string argument value.
It is played at the position of the object. The volume can be defined by a second number
argument and defaults to 1.0.

Value: string [, number]
Returns: -
Support: by all objects

6.2.13 disconnect

This message causes the recipient to disconnect from all Section 6.1.14 [fellows], page 130
by cutting all Section 6.1.13 [wires], page 130 and Section 6.1.12 [rubbers], page 130 that
are connected to it.

Value: -

Returns: -
Support: by all objects

6.3 Common Constants

Constants for Section 5.4.4 [Pseudo Datatypes], page 90.

6.3.1 state values

Number constants for object attribute Section 6.1.2 [state], page 126. Please choose the
constant that is appropriate for an object and do avoid using numbers.

• ‘OFF’ = 0, all switch like objects

• ‘ON’ = 1, all switch like objects

• ‘CLOSED’ = 0, all door like objects

• ‘OPEN’ = 1, all door like objects

• ‘IDLE’ = 0, other objects in the default passive state

• ‘ACTIVE’ = 1, other objects in the active state

• ‘INACTIVE’ = 2, other objects in the inactive state

• ‘OXYDPAIR’ = 2, just by Section 9.5.42 [st oxyd], page 281

• ‘LIGHT’ = 0, by Section 9.5.17 [st disco], page 254

• ‘MEDIUM’ = 1, by Section 9.5.17 [st disco], page 254, Section 8.4.4 [it crack], page 211,
Section 8.3.12 [it extinguisher], page 190

• ‘DARK’ = 2, by Section 9.5.17 [st disco], page 254

• ‘FLOODING’ = 1, by Section 7.4.12 [fl water], page 177, Section 7.4.13 [fl wood],
page 178, Section 7.4.4 [fl hay], page 170, Section 7.4.7 [fl rock], page 171

• ‘INVISIBLE’ = -1, by Section 8.4.4 [it crack], page 211

• ‘SMALL’ = 0, by Section 8.4.4 [it crack], page 211

• ‘LARGE’ = 2, by Section 8.4.4 [it crack], page 211

• ‘YIN’ = 0, by Section 7.4.14 [fl yinyang], page 179 and all actors as Section 10.1.7
[owner], page 317 value
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• ‘YANG’ = 1, by Section 7.4.14 [fl yinyang], page 179 and all actors as Section 10.1.7
[owner], page 317 value

• ‘EMPTY’ = 0, by Section 8.3.12 [it extinguisher], page 190

• ‘FULL’ = 2, by Section 8.3.12 [it extinguisher], page 190

• ‘BROKEN’ = 1, by Section 8.3.3 [it bottle], page 184

• ‘BREAKING’ = 2, by Section 9.5.50 [st quake], page 294

• ‘CW’ = 0, clockwise, by Section 9.5.53 [st rotator], page 295

• ‘CCW’ = 1, counterclockwise, by Section 9.5.53 [st rotator], page 295

6.3.2 color values

Number constants for attribute Section 10.1.4 [color], page 316. Please choose the constant
that is appropriate for an object and do avoid using numbers. Note that objects do support
a color attribute only, if it is related to a functionality. The color of Section 9.5.42 [st oxyd],
page 281 uses another enumeration scheme due to legacy reasons, see Section 6.3.4 [oxyd
colors], page 134.

• ‘BLACK’ = 0, all black/white colored objects

• ‘WHITE’ = 1, all black/white colored objects

• ‘BLUE’ = 2, by Section 9.5.49 [st puzzle], page 288

• ‘YELLOW’ = 3, by Section 9.5.49 [st puzzle], page 288

• ‘NOCOLOR’ = nil, some objects, that exist in black, white variants, too, like
Section 9.5.61 [st switch], page 303

6.3.3 actor controllers

Number constants for actor attribute Section 10.1.3 [controllers], page 316. Please choose
the constant that is appropriate for an object and do avoid using numbers.

• ‘CTRL_NONE’ = 0, by all actors

• ‘CTRL_YIN’ = 1, by all actors

• ‘CTRL_YANG’ = 2, by all actors

• ‘CTRL_YINYANG’ = 3, by all actors

6.3.4 oxyd colors

Number constants for Section 9.5.42 [st oxyd], page 281 attribute ‘oxydcolor’. Please
choose the constant that is appropriate for an object and do avoid using numbers.

• ‘OXYD_BLUE’ = 0, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_RED’ = 1, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_GREEN’ = 2, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_YELLOW’ = 3, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_CYAN’ = 4, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_PURPLE’ = 5, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_WHITE’ = 6, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_BLACK’ = 7, by Section 9.5.42 [st oxyd], page 281
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• ‘OXYD_GRAY’ = 8, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_ORANGE’ = 9, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_PINE’ = 10, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_BROWN’ = 11, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_AUTO’ = -1, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_FAKE’ = -2, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_QUAKE’ = -3, by Section 9.5.42 [st oxyd], page 281

• ‘OXYD_BOLD’ = -4, by Section 9.5.42 [st oxyd], page 281

6.3.5 orientations

Number constants for attributes ‘orientation’ or ‘slope’. Please choose the constant that
is appropriate for an object and do avoid using numbers.

• ‘RANDOMDIR’ = -2, by Section 9.5.39 [st mirror], page 275

• ‘NODIR’ = -1, by Section 7.4.9 [fl slope], page 173

• ‘WEST’ = 0, by all objects with 4 orientations

• ‘SOUTH’ = 1, by all objects with 4 orientations

• ‘EAST’ = 2, by all objects with 4 orientations

• ‘NORTH’ = 3, by all objects with 4 orientations

• ‘NORTHWEST’ = 4, by all objects with 8 orientations

• ‘SOUTHWEST’ = 5, by all objects with 8 orientations

• ‘SOUTHEAST’ = 6, by all objects with 8 orientations

• ‘NORTHEAST’ = 7, by all objects with 8 orientations

Just for Section 9.5.39 [st mirror], page 275 another alternative orientation notation
exists:

• ‘BACKSLASH’ = 0, by Section 9.5.39 [st mirror], page 275

• ‘HORIZONTAL’ = 1, by Section 9.5.39 [st mirror], page 275

• ‘SLASH’ = 2, by Section 9.5.39 [st mirror], page 275

• ‘VERTICAL’ = 3, by Section 9.5.39 [st mirror], page 275

6.3.6 direction offsets

Position constants as vectorial direction offsets. Please choose the constant that is appro-
priate for a calculation and do avoid using the trivial positions instead.

• ‘N’ = po(0, -1)

• ‘E’ = po(1, 0)

• ‘S’ = po(0, 1)

• ‘W’ = po(-1, 0)

• ‘NE’ = N + E

• ‘NW’ = N + W

• ‘SE’ = S + E

• ‘SW’ = S + W
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• ‘NNE’ = N + NE, by Section 9.5.13 [st chess], page 250

• ‘ENE’ = E + NE, by Section 9.5.13 [st chess], page 250

• ‘ESE’ = E + SE, by Section 9.5.13 [st chess], page 250

• ‘SSE’ = S + SE, by Section 9.5.13 [st chess], page 250

• ‘SSW’ = S + SW, by Section 9.5.13 [st chess], page 250

• ‘WSW’ = W + SW, by Section 9.5.13 [st chess], page 250

• ‘WNW’ = W + NW, by Section 9.5.13 [st chess], page 250

• ‘NNW’ = N + NW, by Section 9.5.13 [st chess], page 250

6.3.7 position lists

Position list constants. Please choose the constant that is appropriate for a calculation and
do avoid using the trivial position lists instead.

• ‘NEIGHBORS_4’ = W .. S .. E .. N

• ‘NEIGHBORS_8’ = NEIGHBORS_4 .. NW .. SW ..SE .. NE

• ‘NEIGHBORS_CHESS’ = NNE .. ENE .. ESE .. SSE .. SSW .. WSW .. WNW .. NNW

6.3.8 essentialness

Number constants for attribute Section 10.1.5 [essential], page 317. Please choose the
constant that is appropriate for an object and do avoid using numbers.

• ‘DISPENSABLE’ = 0, by all actors and Section 8.4.11 [it meditation], page 217

• ‘INDISPENSABLE’ = 1, by all actors and Section 8.4.11 [it meditation], page 217

• ‘PERKIND’ = 2, by all actors

6.3.9 meditation types

Number constants for Section 8.4.11 [it meditation], page 217 attribute Section 6.1.2 [state],
page 126. Please choose the constant that is appropriate for an object and do avoid using
numbers.

• ‘MEDITATION_CALDERA’ = -3, by Section 8.4.11 [it meditation], page 217

• ‘MEDITATION_HOLLOW’ = -2, by Section 8.4.11 [it meditation], page 217

• ‘MEDITATION_DENT’ = -1, by Section 8.4.11 [it meditation], page 217

• ‘MEDITATION_BUMP’ = 1, by Section 8.4.11 [it meditation], page 217

• ‘MEDITATION_HILL’ = 2, by Section 8.4.11 [it meditation], page 217

• ‘MEDITATION_VOLCANO’ = 3, by Section 8.4.11 [it meditation], page 217

6.3.10 glasses abilities

Number constants for Section 8.3.16 [it glasses], page 193 attribute Section 6.1.2 [state],
page 126 and global variable Section 6.4.9 [ExtralifeGlasses], page 141. Please use sums of
the constants that are appropriate for your glasses and do avoid using numbers.

• ‘SPOT_NOTHING’ = 0, by Section 8.3.16 [it glasses], page 193

• ‘SPOT_DEATH’ = 1, by Section 8.3.16 [it glasses], page 193

• ‘SPOT_HOLLOW’ = 2, by Section 8.3.16 [it glasses], page 193
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• ‘SPOT_ACTORIMPULSE’ = 4, by Section 8.3.16 [it glasses], page 193

• ‘SPOT_SENSOR’ = 8, by Section 8.3.16 [it glasses], page 193

• ‘SPOT_LIGHTPASSENGER’ = 16, by Section 8.3.16 [it glasses], page 193

• ‘SPOT_TRAP’ = 32, by Section 8.3.16 [it glasses], page 193

6.3.11 coinslot acceptance

Number constants for Section 9.5.14 [st coinslot], page 251 attributes ‘interval_*’. Please
choose the constant that is appropriate for the coinslot and do avoid using numbers.

• ‘COIN_IGNORE’ = -1, by Section 9.5.14 [st coinslot], page 251

• ‘COIN_REJECT’ = -2, by Section 9.5.14 [st coinslot], page 251

6.3.12 rubberband length

Number constant for Section 8.3.25 [it rubberband], page 200, Section 9.5.54
[st rubberband], page 296 and Section 11.1.2 [ot rubberband], page 326 attribute ‘length’.
Please choose the constant that is appropriate for the rubberband length and do avoid
using numbers.

• ‘AUTOLENGTH’ = -1, by Section 8.3.25 [it rubberband], page 200, Section 9.5.54
[st rubberband], page 296 and Section 11.1.2 [ot rubberband], page 326

6.3.13 subsoil kind

Number constants for the global attribute Section 6.4.31 [SubSoil], page 146. Please choose
the constant that is appropriate for the SubSoil and do avoid using numbers.

• ‘SUBSOIL_ABYSS’ = 0, by Section 8.4.7 [it explosion], page 214

• ‘SUBSOIL_WATER’ = 1, by Section 8.4.7 [it explosion], page 214

• ‘SUBSOIL_AUTO’ = 2, by Section 8.4.7 [it explosion], page 214

6.3.14 screen scrolling

Constants for screen scrolling global attributes Section 6.4.13 [FollowMethod], page 142 and
Section 6.4.11 [FollowAction], page 141. Please choose the constants that are appropriate
for screen scrolling and do avoid using numbers or position values.

• ‘FOLLOW_NO’ = 0, by global Section 6.4.13 [FollowMethod], page 142

• ‘FOLLOW_SCROLL’ = 1, by global Section 6.4.13 [FollowMethod], page 142

• ‘FOLLOW_FLIP’ = 2, by global Section 6.4.13 [FollowMethod], page 142

• ‘FOLLOW_FULLSCREEN’ = po(19, 12), by global Section 6.4.11 [FollowAction], page 141

• ‘FOLLOW_HALFSCREEN’ = po(9.5, 6), by global Section 6.4.11 [FollowAction], page 141

6.3.15 map read directions

Constants for map read directions (see Section 5.13.7 [drawMap], page 112) and map trans-
formations (see Section 12.4.3 [Rotating and Mirroring Maps], page 341 and Section 12.4.9
[Map Transformation], page 349). They are not numbers, to allow advanced operations on
them when libmap is loaded, see Section 12.4.26 [Map Transformation Composition and
Powers], page 360.

• ‘MAP_IDENT’ = no transformation
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• ‘MAP_ROT_CW’ = rotate map 90 degrees clockwise

• ‘MAP_ROT_180’ = rotate map 180 degrees

• ‘MAP_ROT_CCW’ = rotate map 90 degrees counter-clockwise

• ‘MAP_FLIP_BACKSLASH’ = flip upper-left and lower-right corners

• ‘MAP_FLIP_HORIZONTAL’ = flip right and left

• ‘MAP_FLIP_SLASH’ = flip upper-right and lower-left corners

• ‘MAP_FLIP_VERTICAL’ = flip up and down

Because map transformations are not numbers, you may not safe them as attributes of
objects. Instead, you have to use ‘index’ and ‘MAP_ALL’, see Section 12.4.25 [Map Trans-
formation Index and MAP ALL], page 360.

6.4 Global Attributes

6.4.1 ActorimpulseStrength

A global scalar default factor for the actorimpulse stone bumping force. This global value
is only used if no object specific value is set.

Type: number
Values: float number
Default: +200.0

Access: read/write
Support: Section 9.5.1 [st actorimpulse], page 240

6.4.2 AllowSingleOxyds

A global variable that enables the existence of single unmatched Section 9.5.42 [st oxyd],
page 281 stones. Setting this variable to true allows you to set uneven numbers of oxyd
stones for fixed colors. If a level deletes or adds oxyd stones during runtime a true value
avoids possible problems due to temporary uneven oxyd stone numbers. The default false
value causes an error message on detection of uneven oxyd numbers.

Type: bool
Values: true, false
Default: false

Access: read/write
Support: Section 9.5.42 [st oxyd], page 281

6.4.3 AllowSuicide

A global variable that enables the user to commit suicide with all owned actors by pressing
‘F3’. As this legacy feature can cause unexpected shortcuts, you can deny this freedom. A
single actor suicide as committed by activation of an Section 8.3.28 [it spoon], page 202 is
not affected by this global variable.

Type: bool
Values: true, false
Default: true

Access: read/write
Support: no object
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6.4.4 AutoRespawn

A global variable that determines, if in absence of an Section 8.3.14 [it flag], page 192 drop
given respawn position, the last recorded secure actor position should be taken instead of
the starting position, in case the actor dies and is resurrected.

The recorded auto respawn position will be appropriate for common actor deaths like
sinking in Section 7.4.12 [fl water], page 177, falling into Section 7.4.1 [fl abyss], page 167,
hitting of Section 9.5.16 [st death], page 253, slipping from an Section 8.4.16 [it strip],
page 222, being hit by an Section 8.4.9 [it laserbeam], page 216. Even a jump into one
these lethal destinations resurrects the actor onto the position from where the actor started
its jump. There is no danger of being resurrected on floors without Section 7.2.1 [adhesion
(floor)], page 150.

The usage of Section 8.3.14 [it flag], page 192 in combination with AutoRespawn is fully
supported. On drop of a flag, the flag position remains the valid respawn position until
a flag is picked up. After a pickup of the flag, what delete the flag defined position the
AutoRespawn position gets active until a flag is dropped again.

Deaths caused by actor collisions, Section 8.4.4 [it crack], page 211 and floor shattering
explosions can lead to leathal AutoRespawn positions. Either avoid setting AutoRespawn
to true in such cases or provide an Section 8.3.14 [it flag], page 192 in such cases.

Shortcuts introduced by AutoRespawn are unlikely, but not generally impossible.

Type: bool
Values: true, false
Default: false

Access: read/write
Support: Section 10.2.4 [ac marble], page 321, Section 10.2.5 [ac pearl], page 322

6.4.5 ConserveLevel

A global variable that determines if a dead actor will be resurrected in case of Section 8.3.13
[it extralife], page 191s in the gamer’s inventory.

If true, dead actors attached to a player will be resurrected as long as extralifes are
available. If a player has no living actor to control or is missing the actor’s Section 10.1.5
[essential], page 317 constraints, the player is dead. The level may still continue if a second
player is alive. If the gamer has an Section 8.3.35 [it yinyang], page 207 in his inventory in
single user mode, the control switches to the second player. If all players are dead, a new
level game is started.

If the conserve mode is false, no actors will be resurrected. As soon as the player is
dead and the control cannot switch to another player, all dead actors are resurrected by
using extralifes, and the level is restarted without finishing the level game.

Use false if the level can either be not solved in case of resurrected actors or would
provide a major shortcut. In all other cases, mode true with proper usage of actors
Section 10.1.5 [essential], page 317 constraints will be preferable.

Type: bool
Values: true, false
Default: true

Access: read/write
Support: no objects
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6.4.6 CrackSpreading

A global default value denoting the probability that a brittle floor plate, that is a floor with
an Section 8.4.4 [it crack], page 211 on top, causes direct neighboring floors to either be
marked with an invisible crack or to toggle such invisible cracks to a small visible cracks. A
value of 1.0 ensures that the crack spreads to the direct neighbors, a value of 0.0 prohibits
the spreading to neighbor grids. Note that even if crack spreading is prohibited, existing
cracks on neighbor grids may continue disintegrating due to their Section 6.4.15 [Fragility],
page 142. For more details see Section 8.4.4 [it crack], page 211.

Type: number
Values: float number between 0.0 and 1.0

Default: 0.5

Access: read/write
Support: Section 8.4.4 [it crack], page 211

6.4.7 CreatingPreview

A global read only variable that indicates if the current level load is just for creating a
preview thumbnail of the level or a real game play. If ‘true’, you can, e.g., change the
start-position of the main actor to display another part of the level in the preview, or hide
objects from it. When changing the initial position, it might be advantageous to also set
the Section 13.2.1 [Display Follow Strategy], page 385 to permanent smooth scrolling:

if wo["CreatingPreview"] then

wo["FollowGrid"] = false

wo["FollowMethod"] = FOLLOW_SCROLL

end

Type: bool
Values: true, false
Default: false

Access: read only
Support: object independent

6.4.8 ElectricStrength

A global scalar default factor for electrical forces. Positive numbers result in attracting
forces for opposite charges and repelling forces for equal signed charges. Where as negative
numbers result in repelling forces for opposite charges and attracting forces for equal signed
charges. This global value is always multiplied by the charge load of the affected actors.
The actor’s charge load usually results from hits of Section 9.5.12 [st charge], page 249.

Type: number
Values: float number
Default: 15.0

Positive number are attracting, negative numbers are repelling.

Access: read/write
Support: Chapter 10 [Actor Objects], page 316
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6.4.9 ExtralifeGlasses

A global variable that defines the Section 8.3.16 [it glasses], page 193 type that is generated
on the laser light conversion of an Section 8.3.13 [it extralife], page 191

Type: number
Values: positive integer number

A sum out of the constants ‘SPOT_DEATH’, ‘SPOT_HOLLOW’, ‘SPOT_ACTORIMPULSE’,
‘SPOT_SENSOR’, ‘SPOT_LIGHTPASSENGER’, ‘SPOT_TRAP’

Default: SPOT_DEATH + SPOT_HOLLOW + SPOT_LIGHTPASSENGER

Access: read/write
Support: Section 8.3.13 [it extralife], page 191

6.4.10 FallenPuzzle

A global object replacement kind for Section 9.5.49 [st puzzle], page 288s fallen into
Section 7.4.12 [fl water], page 177 or Section 7.4.1 [fl abyss], page 167. Besides any floor
kind you can use any key of a tile declaration preceeded by an equal sign ’=’. By this
second method you can use attributed floor kinds with special values for friction and
adhesion.

Additionally you can set this global ‘FallenPuzzle’ attribute to "it_pipe" or "it_

stip". In both cases fallen puzzle objects will be replaced by items of the given class with
the identical connections as the fallen puzzle stones. Just in case that an item of the given
class is already present at one of the affected grid positions the connections of these will be
adjusted in a special way. An existing "it_pipe" remains unchanged, but an "it_stip"

will add the connections of the fallen puzzle to its own connections.

Type: string
Values: any floor object kind, "it_strip", "it_pipe" or "=key", with key being a valid
tile key
Default: "fl_gray"

Access: read/write
Support: Section 9.5.49 [st puzzle], page 288

6.4.11 FollowAction

A global variable that describes the action of the display on relocation. This attribute is
introduced for future extensions, but is currently just partially supported. Just the values
listed below are used. Please use this attribute just as explained in Section 13.2.1 [Display
Follow Strategy], page 385.

Type: number or position
Values: 0, FOLLOW_FULLSCREEN, HALFSCREEN

The distance of display readjustment. Positions are used to supply different
values for x and y. The value ‘{19, 12}’ is a standard full screen move. The
value ‘{9.5, 6}’ is a standard half screen move. A value ‘0’ is a minimal smooth
move or the default value for grid based moves.

Default: {19, 12}

Actually the default is mode based (see Section 13.2.1 [Display Follow Strategy],
page 385).
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Access: read/write
Support: no objects

6.4.12 FollowGrid

A global variable that determines if the display is fixed in its static positions to grids or if it
can be scrolled to any pixel position (see Section 13.2.1 [Display Follow Strategy], page 385).

Type: bool
Values: true, false
Default: true

Access: read/write
Support: no objects

6.4.13 FollowMethod

A global variable that describes the method how the display moves, either not at all, by
pixelwise scrolling, or by flipping to another screen or region (see Section 13.2.1 [Display
Follow Strategy], page 385).

Type: number
Values: FOLLOW_NO, FOLLOW_SCROLL, FOLLOW_FLIP
Default: FOLLOW_FLIP

Access: read/write
Support: no objects

6.4.14 FollowThreshold

A global variable that describes the threshold at which a crossing active marble triggers the
display to relocate. It is given as the distance to the screen boundary (see Section 13.2.1
[Display Follow Strategy], page 385).

Type: number or position
Values: 0 or positive number, or a pair of two positive numbers

The distance from the screen boundary at which the displays readjusts. Posi-
tions are used to supply different values for x and y. All values need to be less
than half of the screen size.

Default: 0.5

Access: read/write
Support: no objects

6.4.15 Fragility

A global default value denoting the probability that a brittle floor plate, that is a floor with
an Section 8.4.4 [it crack], page 211 on top, continues to disintegrate on events like an actor
entering, passing a neighboring Section 8.4.4 [it crack], page 211, nearby explosions or fire
heating. A value of 1.0 ensures that the crack continues to disintegrates on these events, a
value of 0.0 prohibits visible cracks to get larger. This default is superseded by Section 7.2.9
[fragility (floor)], page 152 and Section 8.4.4 [it crack], page 211 specific values.
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Type: number
Values: float number between 0.0 and 1.0

Default: 1.0

Access: read/write
Support: Section 8.4.4 [it crack], page 211 and Chapter 7 [Floor Objects], page 149

6.4.16 FrictionStrength

A global scalar default factor for floor friction values. This global value is always multiplied
by the floor specific friction on calculation of the friction force applied to actors.

Type: number
Values: float number
Default: 1.0

Access: read/write
Support: all floors

6.4.17 GlobalForce

A global constant force that is added to every actor on every grid. The force is given as a
vector constant by a value of type Section 5.5 [Position], page 90.

Type: Section 5.5 [Position], page 90
Values: pair of float numbers
Default: po(0.0, 0.0)

Access: read/write
Support: all floors

6.4.18 Height

A global read only variable reports the height of the world in grid units. This is set by the
initial world constructor call (see Section 5.13.1 [World Creation], page 109).

Type: number
Values: positive integer number
Default: ?

Access: read only
Support: object independent

6.4.19 InfiniteReincarnation

A global variable that switches off the Section 8.3.13 [it extralife], page 191 consumption
on resurrection of a dead actor. Usually the number of extralifes is counted, the items are
explicitly set or an Section 9.5.18 [st dispenser], page 255 for extralifes is located at strategic
positions. The main purpose of this flag is the support of easy modes for very lethal levels,
that should give the user the opportunity to exercise difficult patterns. Usage of this flag
for the regular difficult mode is deprecated.

Type: bool
Values: true, false
Default: false

Access: read/write
Support: object independent
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6.4.20 IsDifficult

A global read only variable that defines the current difficulty mode selected by the user. All
differences of easy and difficult mode within the level should be coded solely in dependence
of this flag. If a level that supports an easy mode the author needs to declare it in the XML
header in the element Section 3.3.7 [<modes>], page 35.

Type: bool
Values: true, false
Default: true

Access: read only
Support: object independent

6.4.21 MagnetRange

A global default distance up to which magnets apply forces to actors. This global value is
only used if no object specific value is set.

Type: number
Values: positive float number or zero
Default: 10.0

Access: read/write
Support: Section 8.4.10 [it magnet], page 216

6.4.22 MagnetStrength

A global scalar default factor for magnet forces. Positive numbers are attracting forces
where as negative numbers are repelling forces. This global value is only used if no object
specific value is set.

Type: number
Values: float number
Default: 30.0

Positive number are attracting, negative numbers are repelling.

Access: read/write
Support: Section 8.4.10 [it magnet], page 216

6.4.23 MaxOxydColor

A global variable that limits the number of colors assigned to autocolored Section 9.5.42
[st oxyd], page 281. Be careful with increasing this value beyond its default.

Type: number
Values: OXYD_BLUE, ... OXYD_BROWN
Default: OXYD_BLACK

Access: read/write
Support: Section 9.5.42 [st oxyd], page 281

6.4.24 MeditationStrength

A global scalar default factor for Section 8.4.11 [it meditation], page 217 slope forces. Pos-
itive numbers are downhill forces that let actors roll into dents and hollows and roll down
from hills and bumps.
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Type: number
Values: float number
Default: 1.0

Access: read/write
Support: Section 8.4.11 [it meditation], page 217

6.4.25 ProvideExtralifes

A global variable that causes two Section 8.3.13 [it extralife], page 191s to be added to both
player inventories on start of a new level. Set it to ‘false’ if a gamer could misuse these
items. It is important to set this attribute before the world is created (see Section 5.13.1
[World Creation], page 109).

Type: bool
Values: true, false
Default: true

Access: read/write
Support: object independent

6.4.26 RubberViolationStrength

A global scalar default factor for the Section 11.1.2 [ot rubberband], page 326 force that
is applied to actors if the length of the rubberband exceeds the given min or max limits.
This can happen due to extraordinary events like actor warping, actor resurrection, moving
anchor stones or simply new rubberbands that are created with off limit length.

Type: number
Values: positive float number
Default: 50.0

Access: read/write
Support: Section 11.1.2 [ot rubberband], page 326

6.4.27 ShowMoves

A global variable that enables or disables the display of the stone push counter besides the
level time. It is mainly used in Sokoban like levels.

Type: bool
Values: true, false
Default: false

Access: read/write
Support: object independent

6.4.28 SlopeStrength

A global scalar default factor for Section 7.4.9 [fl slope], page 173 floor gradient forces. This
global value is used if no slope object specific strength factor is supplied.

Type: number
Values: float number
Default: 25.0

Access: read/write
Support: Section 7.4.9 [fl slope], page 173
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6.4.29 SublevelNumber

A global variable that is only used by Section 3.9 [Multilevel Files], page 45. It contains
the number of the sublevel that should be loaded and played. The number is preset to a
value between 1 and the ‘quantity’ given in the Section 3.3 [Info metadata], page 28.

Type: int
Values: positive integer numbers
Default: 1

Access: read only
Support: no objects

6.4.30 SublevelTitle

A global variable that is only used by Section 3.9 [Multilevel Files], page 45. If the sublevel
provides an individual title this variable must be set on level load to the title string. An
empty string value causes an auto generated title based on the title given in the Section 3.3.1
[<identity>], page 30 element and the Section 6.4.29 [SublevelNumber], page 146.

Type: string
Values: any string
Default: ""

Access: read/write
Support: no objects

6.4.31 SubSoil

A global variable that defines the subsoil which replaces a floor on its physical destruction.
Section 8.4.2 [it bomb], page 209s and Section 11.1.1 [ot cannonball], page 326s can cause
Section 8.4.7 [it explosion], page 214 debris which in turn dissolves the floor to the base
subsoil. The special value SUBSOIL_AUTO determines the subsoil based on the surrounding
floors. Any Section 7.4.12 [fl water], page 177 on a direct neighboring floor causes the floor
to be replaced by water, too. Otherwise the default Section 7.4.1 [fl abyss], page 167 will
be used as replacement.

Type: int
Values: SUBSOIL_ABYSS, SUBSOIL_WATER, SUBSOIL_AUTO
Default: SUBSOIL_ABYSS

Access: read/write
Support: Section 8.4.7 [it explosion], page 214

6.4.32 SurviveFinish

A global variable that defines if the essential actors have to survive the finish of the game
(see Section 4.4.8 [Ending Conditions], page 62). With this attribute set to ‘false’ a gamer
can sacrifice an essential actor to finish the level in the same step in some subtle cases.

Type: bool
Values: true, false
Default: true

Access: read/write
Support: object independent
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6.4.33 SwampSinkTime

A global default for the time it takes a static actor to sink in Section 7.4.10 [fl swamp],
page 176. Fast moving actors will need slightly more time than static actors.

Type: number or nil
Values: positive float number or zero or nil

Sink time in seconds or ‘nil’ for an infinite time aka not sinking. Time values
smaller than approximately 0.7 ms will be rounded down to 0 ms.

Default: 1.75

Access: read/write
Support: Section 7.4.10 [fl swamp], page 176

6.4.34 WaterSinkTime

A global default for the time it takes an actor to sink in Section 7.4.12 [fl water], page 177.

Type: number or nil
Values: positive float number or zero or nil

Sink time in seconds or ‘nil’ for an infinite time aka not sinking. Time values
smaller than approximately 0.7 ms will be rounded down to 0 ms.

Default: 0.0

Access: read/write
Support: Section 7.4.12 [fl water], page 177

6.4.35 Width

A global read only variable reports the width of the world in grid units. This is set by the
initial world constructor call (see Section 5.13.1 [World Creation], page 109).

Type: number
Values: positive integer number
Default: ?

Access: read only
Support: object independent

6.4.36 WormholeRange

A global default distance up to which wormholes apply forces to actors. This global value
is only used if no object specific value is set.

Type: number
Values: positive float number or zero
Default: 10.0

Access: read/write
Support: Section 8.4.20 [it wormhole], page 227

6.4.37 WormholeStrength

A global scalar default factor for wormhole forces. Positive numbers are attracting forces
where as negative numbers are repelling forces. This global value is only used if no object
specific value is set.
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Type: number
Values: float number
Default: 30.0

Positive number are attracting, negative numbers are repelling.

Access: read/write
Support: Section 8.4.20 [it wormhole], page 227
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7 Floor Objects

7.1 Floor Overview

fl abyss fl adhesionless fl aquamarine

fl bast fl bluegray fl bluegreen

fl blueslab fl brick fl bridge bw

fl bridge gc fl bright fl concrete

fl darkgray fl dark fl dunes

fl fake trigger fl gravel fl gray

fl hay fl himalaya fl ice

fl inverse gray fl inverse white fl ivory

fl lawn fl marble fl metal

fl mortar fl pinkbumps fl plank

fl platinum fl red fl redslab

fl rock fl rough fl sahara

fl samba fl sand fl scales brick

fl scales bridgewood fl scales concrete fl scales darkgray
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fl scales gray fl scales platinum fl slope

fl slope ps fl slope ise fl slope ose

fl space fl stone fl swamp

fl thief fl thief fl thief

fl tigris fl water fl white

fl wood fl woven fl yinyang yang

fl yinyang yin

7.2 Floor Attributes

7.2.1 adhesion (floor)

The responsiveness of an actor on mouse movements. It is a scalar factor to the accelerating
force applied to an actor. Note that the actor itself has another scalar Section 10.1.1
[adhesion (actor)], page 316 factor. The adhesion may take negative values, too. Such
values correspond to inverse forces.

Type: number
Values: float number
Default: 0.0

Access: read/write

7.2.2 burnable

Determines whether the floor starts to burn when a fire is nearby and the item on the floor
allows it to burn. See Section 13.2.3 [Fire Spreading], page 388 for details.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.3 eternal

Determines whether a fire keeps on burning unlimited, until an external cause stops it. See
Section 13.2.3 [Fire Spreading], page 388 for details.
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Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.4 faces (floor)

Describes if a floor is framed.

Currently a floor is either not framed at all or framed on all sides. The frame attribute
can not be directly accessed and modified on most floors. Append the string "_framed" to
a given floor name to yield the all side framed variant.

Type: string or nil
Values: nil, "nesw"
Default: nil

Access: none - with a few exceptions

7.2.5 fastfire

When set to true, fire will spread faster than usual, with the same speed as if Section 8.4.3
[it burnable], page 210[ oil] would be on it. See Section 13.2.2 [Flood Spreading], page 386
for details.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.6 floodable

Determines whether a floor can be flooded by Section 7.4.12 [fl water], page 177 from a
neighboring floor. See Section 13.2.2 [Flood Spreading], page 386 for details.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.7 force x

A constant floor specific force into east direction applied additionally to all other forces to
all actors on the floor.

Type: number
Values: float number
Default: 0.0

Access: read/write

7.2.8 force y

A constant floor specific force into south direction applied additionally to all other forces
to all actors on the floor.
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Type: number
Values: float number
Default: 0.0

Access: read/write

7.2.9 fragility (floor)

A value denoting the probability that a brittle floor plate, that is a floor with an Section 8.4.4
[it crack], page 211 on top, continues to disintegrate on events like an actor entering, passing
a neighboring Section 8.4.4 [it crack], page 211, nearby explosions or fire heating. A value of
1.0 ensures that the crack continues to disintegrate on these events, a value of 0.0 prohibits
visible cracks to get larger. This value is defaulted by Section 6.4.15 [Fragility], page 142
and superseded by Section 8.4.4 [it crack], page 211 specific values.

Type: number
Values: float numbers between 0.0 and 1.0

Default: 1.0

Access: read/write

7.2.10 freeze check (floor)

If true, allows for Section 13.2.5 [Freeze Checking], page 391 on this floor tile. Note that
Freeze Checking only works with those (movable) stones that have additionally set freeze_
check = true on their own, see Section 9.2.2 [freeze check (stone)], page 232.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.11 friction (floor)

see Section 6.1.9 [friction], page 129.

Type: number
Values: float number
Default: 0.0

Access: read/write

7.2.12 ignitable

When true, and the item on the floor allows it to burn, it will start burning on nearby
explosions. See Section 13.2.3 [Fire Spreading], page 388 for details.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.13 indestructible

Most floors can dissolve to Section 7.4.1 [fl abyss], page 167 or Section 7.4.12 [fl water],
page 177 on destruction by explosions, fire, Section 11.1.1 [ot cannonball], page 326 hits,
Section 8.4.4 [it crack], page 211, Section 8.4.17 [it trap], page 223, etc. But a few like
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Section 7.4.1 [fl abyss], page 167, Section 7.4.12 [fl water], page 177 and Section 7.4.10
[fl swamp], page 176 are indestructible by all these events.

Type: boolean
Values: false, true
Default: false

Access: none

7.2.14 initfire

When set to true, the floor will start to burn after level initialization. See Section 13.2.3
[Fire Spreading], page 388 for details.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.15 noash

Determines whether Section 8.4.3 [it burnable], page 210 ash is put onto the floor after a fire
stops. Ash stops a floor from re-igniting, so noash = true will allow a floor to start burning
a second time, unless the item on it or its burnable-attribute deny fire. See Section 13.2.3
[Fire Spreading], page 388 for details.

Section 7.4.1 [fl abyss], page 167 is the only floor with noash = true by default, because
ash falls into the abyss. Note however, that Section 7.4.1 [fl abyss], page 167 isn’t burnable
by default.

Type: boolean
Values: false, true
Default: false

Access: read/write

7.2.16 push directions

A hint for the resolver Section 13.1.6 [res.puzzle], page 378 for shuffling of a puzzle. A floor
marked with this attribute guarantees that an adjacent puzzle row or column can be push
rotated into the listed directions by the user.

Type: string or nil
Values: nil, "nesw"
Default: nil

Access: read/write

7.2.17 secure

Ensures that a nearby fire eventually ignites this floor. See Section 13.2.3 [Fire Spreading],
page 388 for details.

Type: boolean
Values: false, true
Default: false

Access: read/write
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7.2.18 texture

Many floors do provide several textures - graphical image variations that are without any
influence on the physical engine. Most floors do select a random texture in their default
variant. This generates areas without unintended optical effects. But on some floors you
can select the textures by means of variant kind names to create your own graphical floor
layout.

Type: integer number or string
Values: integer number or string
Default: 1

Access: currently none - just by variants kind string on some floors

7.3 Standard Floors

7.3.1 fl adhesionless

Orange velvet that offers no adhesion but causes friction.

Attributes:

adhesion, values: number; default : 0.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 2.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl adhesionless

7.3.2 fl aquamarine

Aquamarine floor with low friction.

Attributes:

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 0.4 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl aquamarine

fl aquamarine framed

7.3.3 fl bast

Brown woven bast with black background.

When burnt, fl_bast will become Section 7.4.1 [fl abyss], page 167.
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Attributes:

adhesion, values: number; default : 2.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 1.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl bast

fl bast framed

7.3.4 fl bluegray

Light blue gray floor, visually indistinguishable from Section 7.4.11 [fl thief], page 176.

Attributes:

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl bluegray

fl bluegray framed

7.3.5 fl bluegreen

Dark blue green floor.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl bluegreen

fl bluegreen framed
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7.3.6 fl blueslab

Dark blue slab like floor, that is marbled with black. A matching floor is Section 7.3.25
[fl redslab], page 164.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 7.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl blueslab

fl blueslab framed

7.3.7 fl brick

Floor composed of small red bricks.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl brick

fl brick framed

7.3.8 fl bright

Nearly white floor without any yinyang related features. A matching floor is Section 7.3.10
[fl dark], page 157.

Attributes:

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:
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fl bright

fl bright framed

7.3.9 fl concrete

Granular gray concrete.

Attributes:

adhesion, values: number; default : 1.3 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl concrete

fl concrete framed

7.3.10 fl dark

Nearly black floor without any yinyang related features. A matching floor is Section 7.3.8
[fl bright], page 156.

Attributes:

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl dark

fl dark framed

7.3.11 fl darkgray

A medium to dark gray floor.
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Attributes:

adhesion, values: number; default : 1.6 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl darkgray

fl darkgray framed

7.3.12 fl dunes

Brown granular dunes.

Attributes:

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 1.3 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl dunes

fl dunes framed

7.3.13 fl gravel

Dark gray, granular floor.

Attributes:

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.2 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl gravel

fl gravel framed
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7.3.14 fl gray

Gray with some brown spots.

Attributes:

adhesion, values: number; default : 3.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl gray

fl gray framed

7.3.15 fl himalaya

Blue purple marbled floor.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl himalaya

fl himalaya framed

7.3.16 fl ivory

Warm ivory or pearl white floor.

Attributes:

adhesion, values: number; default : 1.6 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 2.2 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:
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fl ivory

fl ivory framed

7.3.17 fl lawn

Grass floor. Light and dark grass and different textures of both exist.

When burnt, fl_lawn becomes Section 7.3.12 [fl dunes], page 158.

Attributes:

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.0 See Section 6.1.9 [friction], page 129
texture, values:
"a","b","c1","c2","c3","c4","d1","d2","d3","d4","e1","e2","e3","e4" ;
default : "a"; access: none See Section 7.2.18 [texture], page 154
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl lawn a: texture = ‘"a"’ fl lawn b: texture = ‘"b"’

fl lawn c1: texture = ‘"c1"’ fl lawn c3: texture = ‘"c3"’

fl lawn c2: texture = ‘"c2"’ fl lawn c4: texture = ‘"c4"’

fl lawn d1: texture = ‘"d1"’ fl lawn d3: texture = ‘"d3"’

fl lawn d2: texture = ‘"d2"’ fl lawn d4: texture = ‘"d4"’

fl lawn e1: texture = ‘"e1"’ fl lawn e3: texture = ‘"e3"’

fl lawn e2: texture = ‘"e2"’ fl lawn e4: texture = ‘"e4"’

fl lawn: texture = ‘"a"’

7.3.18 fl marble

Light red brown marbled floor.
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Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.4 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl marble

fl marble framed

7.3.19 fl metal

Grey metal floor with rivets. Several different textures exists with horizontal or vertical
aligned joists and various rivets.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
texture, values: integer number, 1 <= n <= 7 ; default : random; access:
none See Section 7.2.18 [texture], page 154
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl metal: texture = ‘random’ fl metal framed: texture =
‘random’

fl metal 1: texture = 1 fl metal 1 framed: texture = 1

fl metal 2: texture = 2 fl metal 2 framed: texture = 2

fl metal 3: texture = 3 fl metal 3 framed: texture = 3

fl metal 4: texture = 4 fl metal 4 framed: texture = 4

fl metal 5: texture = 5 fl metal 5 framed: texture = 5
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fl metal 6: texture = 6 fl metal 6 framed: texture = 6

fl metal 7: texture = 7 fl metal 7 framed: texture = 7

7.3.20 fl mortar

Very rough brilliant white floor.

Attributes:

adhesion, values: number; default : 1.8 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 7.2 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl mortar

fl mortar framed

7.3.21 fl pinkbumps

Pink floor with white bumps.

Attributes:

adhesion, values: number; default : 1.2 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl pinkbumps

fl pinkbumps framed

7.3.22 fl plank

Floor build up by small diagonal orange brown planks.

When burnt, fl_plank becomes Section 7.4.1 [fl abyss], page 167.
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Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl plank

fl plank framed

7.3.23 fl platinum

Warm light gray floor.

Attributes:

adhesion, values: number; default : 1.6 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl platinum

fl platinum framed

7.3.24 fl red

Warm red, very slippy floor.

Attributes:

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 0.9 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl red

fl red framed
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7.3.25 fl redslab

Dark red slab floor, that is marbled with black. A matching floor is Section 7.3.6
[fl blueslab], page 156.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 7.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl redslab

fl redslab framed

7.3.26 fl rough

Rough warm white floor.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 7.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl rough

fl rough framed

7.3.27 fl sahara

Bright yellow sandstone floor.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.4 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:
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fl sahara

fl sahara framed

7.3.28 fl samba

Gray bleached wooden floor. Textures with horizontal and vertical aligned plank exist.

When burnt, fl_samba becomes Section 7.4.1 [fl abyss], page 167.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.0 See Section 6.1.9 [friction], page 129
texture, values: "h", "v" ; default : random; access: none See
Section 7.2.18 [texture], page 154
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl samba: texture = ‘random’

fl samba h: texture = "h"

fl samba v: texture = "v"

fl samba framed: texture = ‘random’

fl samba h framed: texture = "h"

fl samba v framed: texture = "v"

7.3.29 fl sand

Granular orange gray sand floor.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:
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fl sand

fl sand framed

7.3.30 fl space

Black space with a few sparkling stars. This floor has neither a friction nor does it provide
an adhesion. All actors do drift for infinity on this floor until they reach another floor.

Attributes:

adhesion, values: number; default : 0.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 0.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl space

7.3.31 fl stone

Granular brown gray floor.

Attributes:

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 1.4 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl stone

fl stone framed

7.3.32 fl tigris

Red sandstone floor.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:
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fl tigris

fl tigris framed

7.3.33 fl white

Pure white floor without any yinyang related features.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl white

fl white framed

7.3.34 fl woven

Diagonal woven white floor with black shadows.

Attributes:

adhesion, values: number; default : 3.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:

fl woven

fl woven framed

7.4 Special Floors

7.4.1 fl abyss

Pure black abyss into which all rolling balls do fall and shatter. An abyss chasm can be
crossed by jumping. Section 10.2 [Actors], page 318 protected by an activated Section 8.3.32
[it umbrella], page 205 can pass and even move on an abyss as it provides useful ‘adhesion’
and ‘friction’. Another comparable floor barrier is Section 7.4.12 [fl water], page 177.

Many floors disintegrate on fire or on a dissolving Section 8.4.4 [it crack], page 211 into
an abyss. The abyss itself is indestructible. It does neither burn nor crack.
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Some stones fall into abyss, too. Section 9.5.7 [st box], page 246 will build floors on
which all actors can move and pass the former abyss filled grid.

By default, fl_abyss can’t burn. However, when it burns (e.g. by Section 8.4.3
[it burnable], page 210 oil), it does not create Section 8.4.3 [it burnable], page 210 ash in
the end by default (i.e., Section 7.2.15 [noash], page 153 is true by default). In particular,
when burnable is set to true, an abyss may reignite arbitrarily often.

Attributes:

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 2.0 See Section 6.1.9 [friction], page 129
indestructible, values: bool ; default : true; access: none See
Section 7.2.13 [indestructible], page 152
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150
noash, values: boolean; default : true See Section 7.2.15 [noash], page 153

Variants:

fl abyss

7.4.2 fl bridge

A bridge is a variable floor that can be passed when being CLOSED but being impassable
for marbles like Section 7.4.1 [fl abyss], page 167 when being opened. Floor bridges come
in several flavors. They can be grey or wooden brown, they can pop up in the center
or emerge from one side. The flavor string is a combination of a color character and an
emerging direction character. Note that not all combinations do exist.

Bridges can be opened and closed via messages and state set operations like Section 9.5.19
[st door], page 256.

But a unique feature of bridges is to close on a solid stone being pushed onto them.
Thus stones do not fall into the visible abyss of an opened bridge, but can be pushed over
them. But as soon as the stone leaves the bridge it opens again. Thus a user will notice
the closing and opening bridge on stone pushes.

To be more precise after a stone leaving a bridge, it switches into the state that it would
have had if the stone would never have been on top of it. That means that if a stone gets
pushed onto an open bridge and the bridge receives a "close" or "toggle" message while
the stone is being on top the bridge remains closed when the stone is pushed away.

A bridge being set adjusts its state according to the Section 4.4.2 [Snapshot Principle],
page 59. It checks for solid stones being on top of it and auto closes accordingly.

Only the brown (wooden) bridges are burnable by default. Open bridges are never
burnable, regardless of the Section 7.2.2 [burnable], page 150-attribute.

Attributes:

state, values: CLOSED, OPEN; default : OPEN See Section 6.1.2 [state],
page 126

The state as visible and responsible for the actor ability to pass.
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flavor, values: "gc", "bw", "bs", "be", "bn"; default : "gc"
The type of the bridge.

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : depends on flavor See Section 7.2.2
[burnable], page 150

True if flavor is "b*", false otherwise.

Messages:

open See Section 6.2.6 [open], page 131
Opens a closed bridge that is not covered by a solid stone. Oth-
erwise the explicit open request will be registered and executed as
soon as the stone is pushed away.

close See Section 6.2.7 [close], page 132
Closes an open bridge. If the bridge is already closed by a covering
solid stone, the request will be registered and the bridge will not
open when the stone is pushed away.

signal See Section 6.2.3 [signal], page 131
A signal of value 1 sends an open message, a signal of value 0 sends
a close message.

toggle See Section 6.2.1 [toggle], page 130
A toggle causes a change of the state if no stone is on top, or the
registered explicit state if a solid stone currently covers the bridge.

Variants:

fl bridge flavor = "gc"

fl bridge gc flavor = "gc"

fl bridge bw flavor = "bw"

fl bridge bs flavor = "bs"

fl bridge be flavor = "be"

fl bridge bn flavor = "bn"

7.4.3 fl fake

A floor that mimics other floors, but does not act like them.
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In contrast to Section 7.4.1 [fl abyss], page 167 the fake abyss is just a standard floor
that lets pass any actor without any harm.

A fake trigger looks similar to an Section 8.4.18 [it trigger], page 224 but is just a
standard floor without any special features.

Attributes:

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
flavor, values: "abyss", "trigger"; default : "abyss"; access: none
burnable, values: boolean; default : depends on flavor See Section 7.2.2
[burnable], page 150

True if flavor is "trigger", false otherwise.

Variants:

fl fake abyss: flavor = "abyss"

fl fake trigger: flavor = "trigger"

7.4.4 fl hay

A hay floor is in most aspects a standard floor, that exists in a framed variation, too.

The framed variant is the successor of a fallen Section 9.5.7 [st box], page 246 hay.
It may be flooded by a Section 7.4.12 [fl water], page 177 stream without the attribute
‘floodable’ being set to ‘true’ as the flood passes below this floor. The framed wood acts
like a bridge over a flood stream and the water will continue to spread to neighboring grids,
while the framed wood is still passable for actors. In fact a framed wood can even operate as
a flood source, but we do not recommend this usage. see Section 13.2.2 [Flood Spreading],
page 386.

Attributes:

state, values: IDLE, FLOODING; default : IDLE See Section 6.1.2 [state],
page 126
interval values: positive number; default : 0.2

Number of seconds .

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:
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fl hay

fl hay framed: faces = "nesw"

7.4.5 fl ice

An ice floor is very slippery frozen water. The user can increase the effective friction by
carrying an Section 8.3.21 [it pin], page 196 in the players inventory.

Ice is a standard floor in most aspects. But an Section 8.3.11 [it dynamite], page 189
will leave an Section 8.4.4 [it crack], page 211 water instead of a meditation hollow, and
nearby fire heat will melt the ice to Section 7.4.12 [fl water], page 177 (see Section 13.2.4
[Heat-Transformation], page 390).

Attributes:

adhesion, values: number; default : 0.1 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 0.1 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl ice

7.4.6 fl inverse

Inverse floors accelerate all actors into the opposite direction of the applied mouse input
force. In all other aspects they are just standard floors.

Attributes:

adhesion, values: number; default : -2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 3.0 See Section 6.1.9 [friction], page 129
flavor, values: "white", "gray"; default : "white"; access: none
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl inverse: flavor = "white"

fl inverse white: flavor = "white"

fl inverse gray: flavor = "gray"

7.4.7 fl rock

A rock floor is in most aspects a standard floor, that exists in a framed variation, too.
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The framed variant is the successor of a fallen Section 9.5.7 [st box], page 246 rock.
It may be flooded by a Section 7.4.12 [fl water], page 177 stream without the attribute
‘floodable’ being set to ‘true’ as the flood passes below this floor. The framed wood acts
like a bridge over a flood stream and the water will continue to spread to neighboring grids,
while the framed wood is still passable for actors. In fact a framed wood can even operate as
a flood source, but we do not recommend this usage. see Section 13.2.2 [Flood Spreading],
page 386.

Attributes:

state, values: IDLE, FLOODING; default : IDLE See Section 6.1.2 [state],
page 126
interval values: positive number; default : 0.2

Number of seconds .

adhesion, values: number; default : 2.2 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl rock

fl rock framed: faces = "nesw"

7.4.8 fl scales

The scales floor is a trigger that reacts on the mass load of actors and items atop or any
stones that may press it. It performs actions when it is initially pressed and again when it
releases. A pressed trigger is in state ‘ON’ and will send an action value of ‘true’, a released
trigger is in state ‘OFF’ and will send an action value of ‘false’.

Only actors moving on the floor can press scales. An actor jumping over a scale will not
press it. An actor jumping on a scale will release and press it again. But anyway the mass
of all actors and items atop will be measured and compared to the given min attribute.
The default triggering mass is 1.8. This mass is given by two Section 10.2.4 [ac marble],
page 321 or three Section 10.2.5 [ac pearl], page 322. Any item like Section 8.3.33 [it weight],
page 206 or weights in an Section 8.3.1 [it bag], page 182 that are either dropped on top of
scales or carried by any actor in the players inventory is added to the actors basic mass.

Just solid stones will press the scales when pushed onto it. Floating, hollow stones will
generally not press the scales with the exception of the hollow, central puzzle stone (see
Section 9.5.49 [st puzzle], page 288).

There is no way to set the state of a trigger manually. But the state can nevertheless
be read. At initialization a scales floor that is pressed by objects will start in state ‘ON’
without sending actions due to the Section 4.4.2 [Snapshot Principle], page 59.

Scales trigger with a click sound.
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Scales are given in several flavors. They are similar to the Section 8.4.18 [it trigger],
page 224 in respect to their features. Visually they look similar to frames, but are well
distinguishable. It is deprecated to use invisible Section 8.4.18 [it trigger], page 224 on a
framed floor as a substitution for scales.

Alternative items that react just on actors are Section 8.4.12 [it sensor], page 219 and
Section 8.4.5 [it cross], page 213.

Attributes:

state, values: ON, OFF; default : OFF See Section 6.1.2 [state], page 126
The current switch state - ‘ON’ for pressed scales, ‘OFF’ for a released
scales.

flavor, values: "brick", "bridgewood", "concrete", "darkgray", "gray",
"platinum"; default : "darkgray"

The base floor type of the scales.

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : depends on flavor See Section 7.2.2
[burnable], page 150

True if flavor is "bridgewood", false otherwise.

min values: positive float number; default : +1.8
Mass unit is the mass of an Section 10.2.4 [ac marble], page 321

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

fl scales brick: flavor = "brick"

fl scales bridgewood: flavor = "bridgewood"

fl scales concrete: flavor = "concrete"

fl scales darkgray: flavor = "darkgray"

fl scales gray: flavor = "gray"

fl scales platinum: flavor = "platinum"

7.4.9 fl slope

A floor suited to build larger hills, gradient areas, wall brims, staircases or tubes that
channelize actors.
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Slope floors are basically described by their ‘slope’ and their ‘shape’. The slope is the
orientation of the force applied to actors on top. The eight main orientations and ‘NODIR’,
that causes no force to be applied at all, are currently supported.

The shape describes the intended usage, which causes a proper visual representation.
There are planar slopes falling just into a horizontal or vertical direction ("pw", "ps", "pe",
"pn"), inner and outer edges falling into a diagonal direction ("inw", "isw", "ise", "ine",
"onw", "osw", "ose", "one"), tube center parts falling into a horizontal or vertical direction
("tw", "ts", "te", "tn") and tube left and right sides that accelerate actors into the main
tube direction and back to the tube center at the same time ("twl", "tsl", "tel", "tnl",
"twr", "tsr", "ter", "tnr").

Note that several shapes do currently use an identical visual representation. But they
differ in their usage and different slope force orientations are assigned by default when you
use the variant suffices. It is strongly recommended to use always the shape of the intended
usage as the images might be improved in the future and should fit to your level.

The force applied to actors on the floor grid is given per default by the global attribute
Section 6.4.28 [SlopeStrength], page 145. You may override this default by an explicit
value for the slope floor attribute ‘strength’. In very special cases you may even define
individual force components ‘force_x’ and ‘force_y’, which will override all other slope
force attributes.

Attributes:

slope, values: NODIR, WEST, SOUTH, EAST, NORTH, NORTHWEST, SOUTHWEST,
SOUTHEAST, NORTHEAST; default : NODIR

The orientation of the force. Note that setting this attribute does
not automatically assign a fitting ‘shape’. This attribute is ne-
glected if ‘force_x’ or ‘force_y’ attributes are set.

shape, values: "", "pw", "ps", "pe", "pn", "inw", "isw", "ise", "ine",
"onw", "osw", "ose", "one", "tw", "ts", "te", "tn", "twl", "tsl", "tel",
"tnl", "twr", "tsr", "ter", "tnr"; default : ""

The intended usage as described above. Note that setting this
attribute does not automatically assign the proper ‘slope’.

strength values: float number; default : 25.0 See Section 6.4.28
[SlopeStrength], page 145
force x values: float number; default : 0.0 See Section 7.2.7 [force x],
page 151
force y values: float number; default : 0.0 See Section 7.2.8 [force y],
page 151
adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Messages: None
Variants:
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fl slope slope = ‘NODIR’, shape = ""

fl slope pw slope = ‘WEST’, shape =
"pw"

fl slope ps slope = ‘SOUTH’, shape =
"ps"

fl slope pe slope = ‘EAST’, shape =
"pe"

fl slope pn slope = ‘NORTH’, shape
= "pn"

fl slope inw slope = ‘NORTHWEST’,
shape = "inw"

fl slope isw slope = ‘SOUTHWEST’,
shape = "isw"

fl slope ise slope = ‘SOUTHEAST’,
shape = "ise"

fl slope ine slope = ‘NORTHEAST’,
shape = "ine"

fl slope onw slope = ‘NORTHWEST’,
shape = "onw"

fl slope osw slope = ‘SOUTHWEST’,
shape = "osw"

fl slope ose slope = ‘SOUTHEAST’,
shape = "ose"

fl slope one slope = ‘NORTHEAST’,
shape = "one"

fl slope tw slope = ‘WEST’, shape =
"tw"

fl slope ts slope = ‘SOUTH’, shape =
"ts"

fl slope te slope = ‘EAST’, shape =
"te"

fl slope tn slope = ‘NORTH’, shape =
"tn"

fl slope twl slope = ‘NORTHWEST’,
shape = "twl"

fl slope tsl slope = ‘SOUTHWEST’,
shape = "tsl"

fl slope tel slope = ‘SOUTHEAST’,
shape = "tel"

fl slope tnl slope = ‘NORTHEAST’,
shape = "tnl"

fl slope twr slope = ‘SOUTHWEST’,
shape = "twr"

fl slope tsr slope = ‘SOUTHEAST’,
shape = "tsr"
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fl slope ter slope = ‘NORTHEAST’,
shape = "ter"

fl slope tnr slope = ‘NORTHWEST’,
shape = "tnr"

7.4.10 fl swamp

A swamp is very sticky floor caused by a high friction. Additionally ball like actors will sink
in swamp. But the sink speed is limited and gives the user a certain time, defined by the
global attribute Section 6.4.33 [SwampSinkTime], page 147. When an actor moves faster
than 6 grids per second, the actor start raising out of the swamp. Jumping in a swamp
raises an actor, too.

A swamp is indestructible to the aspect that Section 8.4.4 [it crack], page 211 will not
spread onto it. But fire starting to burn nearby will dry out the swamp to Section 7.3.12
[fl dunes], page 158 (see Section 13.2.4 [Heat-Transformation], page 390). A swamp itself
may be a successor of a Section 7.4.12 [fl water], page 177 heated by a fire.

Attributes:

adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 13.0 See Section 6.1.9 [friction], page 129
indestructible, values: bool ; default : true; access: none See
Section 7.2.13 [indestructible], page 152
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl swamp

7.4.11 fl thief

A thief steals the item on its position plus an item from the player’s inventory when it is
entered by an owned actor. Unfortunately the thief floor is visually indistinguishable from
an Section 7.3.4 [fl bluegray], page 155 and has even the same ‘friction’ and ‘adhesion’
values.

The item is not directly stolen at the moment of entering the grid. The entering itself
just causes the thief to emerge from his hiding-place. The thief steals from the actor that
did conjure him at the moment of maximum visibility. He takes a random item from the
owner’s inventory. But he just will steal an item if the actor is not shielded due to an
activated Section 8.3.32 [it umbrella], page 205.

Thieves have an addiction to alcohol. Thus they get drunken and inactive if they happen
to steal a bottle filled with stuff.

Thieves have an enemy - the Section 9.5.13 [st chess], page 250. If a chess stone is
pushed onto a thief it will capture the thief, sober or drunken. The thief vanishes leaving
an inactive standard floor and the chess stone jumps onto its position. But the thief will
leave behind on the grid all stolen items in his own Section 8.3.1 [it bag], page 182. If the
thief has not stolen any items he leaves no empty bag.
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Attributes: none

adhesion, values: number; default : 1.5 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 4.5 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Messages: none
Action: none
Variants:

fl thief: hidden

fl thief: showing up at the moment when stealing items

fl thief: when being captured

fl thief: drunken thief

7.4.12 fl water

Besides Section 7.4.1 [fl abyss], page 167 water is the second natural floor barrier for ball
like actors, as they can not easily pass it.

Both, Section 10.2.4 [ac marble], page 321 and Section 10.2.5 [ac pearl], page 322, will
sink in water, usually at once, but the time amount can be configured by the global attribute
Section 6.4.34 [WaterSinkTime], page 147. Unlike Section 7.4.10 [fl swamp], page 176 water
does not raise fast moving actors. But jumping within water raises an actor. Jumping
completely over a water chasm is of course a more standard way to cross it. Actors protected
by an activated Section 8.3.32 [it umbrella], page 205 can pass and even move on water
without restrictions.

Some stones fall into water, too. Section 9.5.7 [st box], page 246 will build floors on
which all actors can move and pass the former water filled grid.

Water itself is indestructible to the aspect that Section 8.4.4 [it crack], page 211 will not
spread onto it. But a fire starting to burn nearby will dry out the water to Section 7.4.10
[fl swamp], page 176 (see Section 13.2.4 [Heat-Transformation], page 390).

The standard water is static, its ‘state’ is ‘IDLE’. It will not spread to adjacent floors.
But you can set up flood streams that will fill areas or flow through given paths. You
just need to define the area by setting the attribute ‘floodable’ to ‘true’ on the affected
floors. But static water lakes do not require an additional ‘floodable’ attribute, as they
are floodable by default.

As soon as you add a ‘fl_water_source’ or set the ‘state’ to ‘FLOODING’, the wa-
ter starts to spread to floodable neighboring grids with a speed defined by the attribute
‘interval’. The speed will be inherited to floors flooded by a stream.
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As a flood can be influenced by many obstacles and may sink some stones itself, you will
find a complete discussion in the section Section 13.2.2 [Flood Spreading], page 386.

Attributes:

state, values: IDLE, FLOODING; default : IDLE See Section 6.1.2 [state],
page 126
interval values: positive number; default : 0.2

Number of seconds .

indestructible, values: bool ; default : true; access: none See
Section 7.2.13 [indestructible], page 152
adhesion, values: number; default : 1.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.0 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl water: state = IDLE

fl water source: state = FLOODING

7.4.13 fl wood

A wooden floor is in most aspects a standard floor, that exists in textures with horizontal
or vertical panels, or random. All textures come in a framed variation, too.

The framed variant is the successor of a fallen Section 9.5.7 [st box], page 246 wood.
It may be flooded by a Section 7.4.12 [fl water], page 177 stream without the attribute
‘floodable’ being set to ‘true’ as the flood passes below this floor. The framed wood acts
like a bridge over a flood stream and the water will continue to spread to neighboring grids,
while the framed wood is still passable for actors. In fact a framed wood can even operate as
a flood source, but we do not recommend this usage. see Section 13.2.2 [Flood Spreading],
page 386.

When burnt, fl_wood becomes Section 7.4.1 [fl abyss], page 167.

Attributes:

state, values: IDLE, FLOODING; default : IDLE See Section 6.1.2 [state],
page 126
interval values: positive number; default : 0.2

Number of seconds .

adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 6.4 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : true See Section 7.2.2 [burnable],
page 150

Variants:
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fl wood: texture = random

fl wood h: texture = "h"

fl wood v: texture = "v"

fl wood framed: texture = random, faces = "nesw"

fl wood framed h: texture = "h", faces = "nesw"

fl wood framed v: texture = "v", faces = "nesw"

7.4.14 fl yinyang

A floor that lets move just actors assigned to one player. A basic floor color of dark gray
corresponds to ‘YIN’ and lets accelerate just actors that are controlled by this first player.
White colored yinyang floors correspond to ‘YANG’ and let accelerate just actors controlled
by this second player.

The floor image with 4 rivets in the corners shows an additional yinyang symbol to
visualize that not the color of the actor is essential but the controlling player. In large
areas of this floor this symbol is disturbing and it can be switched off by the attribute
‘invisible’.

Attributes:

state, values: YIN, YANG; default : YIN See Section 6.1.2 [state], page 126
invisible values: true, false; default : false
adhesion, values: number; default : 2.0 See Section 6.1.10 [adhesion],
page 129
friction, values: number; default : 5.2 See Section 6.1.9 [friction], page 129
burnable, values: boolean; default : false See Section 7.2.2 [burnable],
page 150

Variants:

fl yinyang: state = YIN

fl yinyang yin: state = YIN

fl yinyang yang: state = YANG
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8 Item Objects

8.1 Item Overview

it bag it banana it blocker

it bomb black it bomb white it bottle

it bottle broken it brake it brush

it burnable ash it burnable burning it burnable fireproof

it burnable oil it cherry it coffee

it coin s it coin m it coin l

it crack abyss it crack water it cross

it death it document it drop

it dynamite it explosion it extinguisher

it extralife it flag black it flag white

it floppy it glasses it glasses broken

it hammer it key it landmine

it laserbeam it magicwand it magnet

it meditation bump it meditation caldera it meditation dent
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it meditation hill it meditation hollow it meditation volcano

it pencil it pin it pipe

it puller it ring it rubberband

it seed it sensor it sensor exit

it shogun it spade it spoon

it springboard it spring drop it spring keep

it squashed it strip ew it surprise

it sword it trap it trigger

it umbrella it vortex it weight

it wormhole it wrench it yinyang

8.2 Item Attributes

8.2.1 fireproof

Type: boolean
Values: false, true
Default: false

Access: read/write

8.2.2 freezable

Describes the affinity of an item to be frozen by an Section 9.5.28 [st ice], page 265. All
Section 8.2.4 [portable], page 182 items a freezable. But some otherwise static items may
be freezable, too.

Type: boolean
Values: false, true
Default: false

Access: read only
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8.2.3 liftable

Describes the ability of Section 10.2 [Actors], page 318 to pick up an item from a floor.
Note that some items can be added to the player’s inventory and can be dropped onto a
floor but nevertheless can not be picked up later on.

Type: boolean
Values: false, true
Default: false

Access: read only

8.2.4 portable

Determines whether an item can be added to the player’s inventory. All Section 8.2.3
[liftable], page 182 items are portable. Portable items that are not liftable can either be
added to the inventory by means of the world Section 5.13.5 [add], page 111 method or by
an actor hitting a variant of Section 9.5.18 [st dispenser], page 255.

Type: boolean
Values: false, true
Default: false

Access: read only

8.3 Liftable Items

8.3.1 it bag

A bag is a portable container for other objects. The player can fill it with up to 13 other
items, including other empty or filled bags.

The bag allows a player to carry in total more than 13 items in his inventory. Nevertheless
most items carried in a bag can not directly be applied. Just the Section 8.3.33 [it weight],
page 206 does apply its mass even when carried in a bag. On the other hand bags offer the
user the possibility to pick up and drop items that can not be dropped otherwise as they
would be activated. E.g. an Section 8.3.6 [it cherry], page 186 can not be dropped without
application, but if it is contained in a bag the bag can be dropped and the cherry can be
extracted later on. A bag is useful to transfer multiple items via Section 9.5.38 [st mail],
page 274, too.

As long as an it_bag is at the first place in the inventory, new items are put into the
bag instead of the inventory, until the bag is full (13 items). The player can drop an it_bag

anytime. When picked up again, items from the bag are put back into the inventory (until
it is full).

The quite complex rules of pick up in detail:

1. Inventory and bag are limited concerning pickups to 13 items.

2. Both are generally LIFO (last item picked up is first item out), but the inventory
content can be rotated.

3. If you pick up any item besides a bag and your first inventory item is not a bag the
item is added to the inventory.

4. If you pick up any item besides a non-empty bag and your first inventory item is a bag
the item is added to the first inventory bag (this includes non-empty bags being added
into first inventory bags!)
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5. You empty a bag by dropping it and picking it up again with any item at the first
inventory position but a bag. As many items as possible are taken from the bag and
added to the inventory.

6. Empty bags are never put into other bags (this would cause unresolvable recursion
problems). They will only be added as items directly to the inventory.

7. If the "picked up" bag can not empty its contents to the inventory or a bag at the first
inventory position is full the bag is not picked up and keeps the remaining items.

You can add items directly to a bag by usage of the world Section 5.13.5 [add], page 111
method.

Bags are used by Section 9.5.62 [st thief], page 304 and Section 7.4.11 [fl thief], page 176
to carry their stolen items. When the thieves are captured by Section 9.5.13 [st chess],
page 250 the bag remains on the grid position filled up with the stolen items.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182
mass values: positive float number; default : 0.0; access: read only

Sum of masses of all contained items. Currently just the
Section 8.3.33 [it weight], page 206 has a mass.

Messages: none
Variants:

it bag

8.3.2 it banana

A portable item without direct usage. But it transforms into an Section 8.3.6 [it cherry],
page 186 when hit by a laser beam.

When a stone is pushed over it an Section 8.4.15 [it squashed], page 221 remains as
remnants.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it banana
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8.3.3 it bottle

A bottle can be filled either with booze or with a message. When a bottle breaks the
remnants are lethal sherds.

A bottle filled with booze makes any ball like actor that activates it drunken. The control
of actor gets difficult as it will likely no longer move straight into the intended direction.
Fortunately the period of drunkenness lasts just 5 seconds per default. But you can set this
time by the attribute ‘interval’ to other values. The bottle will be dropped on activation.
Activation of several bottles in sequence will lead to longer periods of drunkenness as the
intervals will sum up.

Alternatively you can fill the bottle with a message by the attribute ‘text’. Like
Section 8.3.9 [it document], page 188 the message gets displayed on activation. Of course
the actor does not get drunken in this case.

When a stone gets pushed over a bottle it will break to sherds. These remnants are
lethal to Section 10.2.4 [ac marble], page 321 and Section 10.2.5 [ac pearl], page 322 when
entering the affected grid. But of course they can jump over the broken bottle or pass it while
being protected by an activated Section 8.3.32 [it umbrella], page 205. Unlike Section 8.4.6
[it death], page 214 the broken bottle can be removed by an actor by activation of an
Section 8.3.5 [it brush], page 185 while jumping over it, or passing it with protection. But
a broken bottle can not be picked up and is not portable.

Attributes:

state, values: IDLE, BROKEN; default : BROKEN See Section 6.1.2 [state],
page 126
interval values: positive number; default : 5.0

Number of seconds that the actor becomes drunken.

text, values: string;
Either the text to be displayed or just a key word for identification
on Section 3.5 [Internationalization (i18n)], page 39.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182

Just an ‘IDLE’ bottle is liftable, a ‘BROKEN’ one is not liftable.

portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Just an ‘IDLE’ bottle is portable, a ‘BROKEN’ one is not portable.

Messages: none
Variants:
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it bottle: state = IDLE

it bottle idle: state = IDLE

it bottle broken: state = BROKEN

8.3.4 it brake

The brake is a stone that can be picked up as an item by actors. The Section 9.5.8 [st brake],
page 247 can be used to stop a running Section 9.5.6 [st boulder], page 244 or a Section 9.5.36
[st lightpassenger], page 272, what likely has given this object its name.

When an actor passes below the brake stone it will pick up the object like other items.
The brake will be added as a brake item to its inventory. Unlike other items the brake can
be dropped even on grids that are already occupied by an item. But you can not drop the
brake beneath another stone like a Section 8.3.26 [it seed], page 201.

On dropping the brake item it transforms immediately to an Section 9.5.8 [st brake],
page 247 without killing an item positioned on the grid. The brake stone will press an
Section 8.4.18 [it trigger], page 224 beneath, what makes the brake item a portable trigger
key.

The item itself will never exist on the world grid. It exists just as part of the player
inventory or item containers like Section 8.3.1 [it bag], page 182.

Due to the Section 4.4.2 [Snapshot Principle], page 59 you should never instantiate this
item. Do set an Section 9.5.8 [st brake], page 247 to the world grid positions instead. This
item is listed for your understanding what happens to a picked up brake and for identifying
an Section 4.2.1 [Object Kind], page 50 ‘it_brake’ in an inventory or a container.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181

Even though being freezable a brake will never freeze as an item,
as it is always converted to an Section 9.5.8 [st brake], page 247 on
being dropped or placed onto a floor.

liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it brake

8.3.5 it brush

A brush that is useful to paint some stones and sweep away some otherwise static items.
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Stones must be hit with the brush revealed as the first item in the inventory. To sweep
away nasty items the actor must activate the brush while being on the grid, or while jumping
or flying over it:

• Section 9.5.1 [st actorimpulse], page 240, invisible - makes invisible variant visible

• Section 9.5.5 [st blur], page 243, magic - transforms to Section 9.5.43 [st passage],
page 284

• Section 9.5.22 [st flat], page 260, burnable - transforms to Section 9.5.22 [st flat],
page 260

• Section 9.5.22 [st flat], page 260, moveburnable - transforms to Section 9.5.22 [st flat],
page 260 movable

• Section 9.5.25 [st ghost], page 263, purplemarble - transforms to Section 9.3.14
[st purplemarble], page 236

• Section 9.5.25 [st ghost], page 263, break - transforms to Section 9.5.9 [st break],
page 248 oxydc

• Section 9.5.36 [st lightpassenger], page 272, off - reactivates to state ‘ON’

• Section 8.3.3 [it bottle], page 184, broken - remove from floor

• Section 8.4.3 [it burnable], page 210, ash - remove from floor

• Section 8.4.3 [it burnable], page 210, fireproof - remove from floor

• Section 8.4.5 [it cross], page 213 - remove from floor

• Section 8.4.15 [it squashed], page 221 - remove from floor

The brush is sensitive to laser light an dissolves with an Section 8.4.7 [it explosion],
page 214 nil leaving no remnants when being hit by light.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it brush

8.3.6 it cherry

A magic item that makes the activating actor for 8 seconds invisible. But not all ac-
tors become invisible. Just the ball like actors Section 10.2.4 [ac marble], page 321 and
Section 10.2.5 [ac pearl], page 322 do vanish.

An invisible actor can walk through most kinds of glass (see Section 9.6.1 [Transparent
Stones], page 313) and as being invisible they do no longer attract hostile Section 10.2.6
[ac rotor], page 323 and Section 10.2.7 [ac top], page 324.
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When several cherries are activated in sequence each does prolong the actor’s time of
invisibility by additional 8 seconds.

Other actors drop the cherry as an Section 8.4.15 [it squashed], page 221 on activation.
Sending a cherry via an Section 9.5.38 [st mail], page 274 results in an Section 8.4.15
[it squashed], page 221, too. This gives you the control that a cherry added to one player’s
inventory can not be easily transfered to other actors assigned to the other player. Just
Section 9.5.62 [st thief], page 304 and Section 7.4.11 [fl thief], page 176 are able to steal
the cherry undamaged.

When a stone is pushed over a cherry an Section 8.4.15 [it squashed], page 221 remains
as remnants.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it cherry

8.3.7 it coffee

A totally passive cup of coffee. It can be picked up and be dropped many times. It blocks
laser light, prohibits Section 8.4.4 [it crack], page 211 spreading but it burns on fire and is
blown away on Section 8.4.2 [it bomb], page 209 explosions.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it coffee

8.3.8 it coin

A coin activates an Section 9.5.14 [st coinslot], page 251 when inserted by hitting the stone
with the coin as first item in the players inventory. The time interval of activity of the
coinslot depends on the coin type that is represented by its ‘state’. Small, medium and
large coin variants do exist.
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When hit by a moving stone the coin type changes from small to medium and from
medium to large.

A laser beam transforms a small coin into an Section 8.3.32 [it umbrella], page 205,
a medium coin into an Section 8.3.17 [it hammer], page 194 and a large coin into an
Section 8.3.13 [it extralife], page 191.

A coin that comes into existence on an illuminated grid position will not transform due
to already existing laser beams. But it will transform on the first additional beam and on
laser beams that are switched off and on again.

Attributes:

state, values: SMALL, MEDIUM, LARGE; default : SMALL; access: read only

See Section 6.1.2 [state], page 126
Represents the coin type with ‘SMALL’ being a coin of 2 cents,
‘MEDIUM’ being a coin of 5 cents and ‘LARGE’ being a coin of 10
cents..

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it coin: state = SMALL

it coin s: state = SMALL

it coin m: state = MEDIUM

it coin l: state = LARGE

8.3.9 it document

This item looks like a piece of paper and contains a text message that can be displayed by
activating the item. It is destroyed by explosions from Section 8.4.2 [it bomb], page 209,
Section 9.5.18 [st dispenser], page 255, Section 8.3.11 [it dynamite], page 189 and by
burning fire. The document is sensitive to laser light an dissolves with an Section 8.4.7
[it explosion], page 214 nil leaving no remnants when being hit by light.

Another message carrying item is the Section 8.3.3 [it bottle], page 184.

Attributes:

text, values: string;
Either the text to be displayed or just a key word for identification
on Section 3.5 [Internationalization (i18n)], page 39.
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freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages:

ignite Burn and destroy the document.

Variants:

it document

8.3.10 it drop

The drop is a magic elixir for temporary actor transformations. On activation the actor
transforms into another kind, lives for 5 seconds with all qualities of this kind and then
transforms back to its old kind. The drop gets consumed by its activation. Generally it is
not possible to prolong the transformation by activation of several drops.

Note that this object is currently just defined for the following actors:

• Section 10.2.4 [ac marble], page 321 transforms to Section 10.2.6 [ac rotor], page 323.

Providing a drop in a level with Section 10.2.5 [ac pearl], page 322 will likely cause
incompatibilities with future Enigma versions.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it drop

8.3.11 it dynamite

Dynamite is an explosive that can be picked up and that can be easily ignited at any free
grid position. It ignites on drop, or if positioned on the floor in ‘IDLE’ state it ignites
on laser light, nearby fire and other nearby explosions as those caused by Section 8.4.2
[it bomb], page 209, Section 9.5.18 [st dispenser], page 255, or other dynamite. A falling
Section 11.1.1 [ot cannonball], page 326 lets it explode immediately without prior ignition.

On ignition its fuse starts burning. During this ‘ACTIVE’ state the dynamite can longer
be picked up. After a short time the dynamite explodes causing on the 8 neighboring
positions items to ignite and some stones like Section 9.5.9 [st break], page 248 to dissolve,
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too. The explosion leaves at its position an Section 8.4.11 [it meditation], page 217 hollow
on all floor kinds besides Section 7.4.5 [fl ice], page 171 where an Section 8.4.4 [it crack],
page 211 water remains.

Generally there is no direct way to stop a burning dynamite in order to prevent the
explosion. It is even not allowed to reset the ‘state’ attribute to ‘IDLE’. But when the user
pushes an Section 9.5.28 [st ice], page 265 over a ‘ACTIVE’ dynamite it will freeze and stop
burning, returning to state ‘IDLE’.

Dynamite items will be added to the inventory when an actor hits a Section 9.5.18
[st dispenser], page 255 dynamite.

Attributes:

state, values: IDLE, ACTIVE; default : IDLE See Section 6.1.2 [state],
page 126
freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Just ‘IDLE’ dynamite can be added to the inventory, burning
‘ACTIVE’ ones are not portable.

Messages:

explode Direct explosion without burning fuse.

ignite Ignite the fuse.

heat Ignite the fuse.

Variants:

it dynamite: state = IDLE

it dynamite burning: state = ACTIVE

8.3.12 it extinguisher

A fire extinguisher that allows to extinguish burning fire and to protect areas with extin-
guishing foam of upcoming fire. See Section 13.2.3 [Fire Spreading], page 388.

A full loaded extinguisher allows two applications. The first one covers the nearest 13
grids, whereas the second one covers just 5 grids, the actor position itself and the 4 direct
neighbor positions. The foam is an Section 8.4.3 [it burnable], page 210 of kind ‘fireproof’
which can be cleaned with an Section 8.3.5 [it brush], page 185 or by a Section 13.2.2 [Flood
Spreading], page 386.

The load is given by the attribute ‘state’ of the extinguisher and is visible for the user
by a color spot. Green is a ‘FULL’ extinguisher, yellow a ‘MEDIUM’ filled extinguisher and
red an ‘EMPTY’ extinguisher.
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Extinguishers themselves are fireprotected as long as they are not empty.

The ‘toggle’ messages refills an extinguisher by one load until it is ‘FULL’ again.

Attributes:

state, values: EMPTY, MEDIUM, FULL; default : FULL See Section 6.1.2
[state], page 126
freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages:

toggle See Section 6.2.1 [toggle], page 130
A toggle causes a refill by one load.

Variants:

it extinguisher: state = FULL

it extinguisher full: state = FULL

it extinguisher medium: state = MEDIUM

it extinguisher empty: state = EMPTY

8.3.13 it extralife

An extralife transforms into Section 8.3.16 [it glasses], page 193 when hit by a laser beam
and is itself a laser transformation result of an ‘it_coin_l’ (see Section 8.3.8 [it coin],
page 187). The global variable Section 6.4.9 [ExtralifeGlasses], page 141 describes what the
new glasses are able to spot.

An extralife that comes into existence on an illuminated grid position will not be de-
stroyed due to already existing laser beams. But it will be destroyed on the first additional
beam and on laser beams that are switched off and on again.

If another item transforms into an extralife this new extralife will be immune to light
destruction for a short latency period to avoid repeated item transformations.
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Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Variants:

it extralife

it extralife new: An extralife that is immune to light destruction for a
short latency period.

8.3.14 it flag

Flags do mark the place where killed actors will be resurrected. Flags exist in two colors,
‘BLACK’ and ‘WHITE’. Each can be used to define the respawn position of matching colored
Section 10.2.4 [ac marble], page 321s and Section 10.2.5 [ac pearl], page 322s.

As a level can contain many flags of the same ‘color’ the respawn position can not be
defined by the flag position itself. The respawn position is the position of the last dropped
flag of a given color. Additionally the respawn position gets cleared when after the last drop
any flag of the same color gets picked up again. When no flag defined respawn position
exists the actors will be resurrected at their initial position or the last secure position, if
the global attribute Section 6.4.4 [AutoRespawn], page 139 is set to true.

Attributes:

color values: BLACK, WHITE; default : BLACK
freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Variants:

it flag: color = BLACK

it flag black: color = BLACK

it flag white: color = WHITE
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8.3.15 it floppy

A floppy activates an Section 9.5.23 [st floppy], page 261 when inserted by hitting the stone
with the floppy as first item in the players inventory.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it floppy

8.3.16 it glasses

Glasses help a marble to spot certain other objects that are otherwise invisible or indistin-
guishable.

To be effective glasses must be hold in the top level of a players inventory. That means
that the glasses must be shown in the inventory and not be buried in an Section 8.3.1
[it bag], page 182 that is part of the inventory. Of course glasses just help those actors that
are attached to the player wearing the glasses.

Glasses can make invisible Section 9.5.16 [st death], page 253 visible, can uncover in-
visible passages by making hollow stones transparent, can make inactive Section 9.5.36
[st lightpassenger], page 272 be distinguishable from Section 9.5.15 [st darkglass], page 252,
can make invisible Section 8.4.12 [it sensor], page 219, Section 8.4.17 [it trap], page 223 and
Section 9.5.1 [st actorimpulse], page 240 be visible.

All these features are configurable by the constants ‘SPOT_DEATH’, ‘SPOT_HOLLOW’,
‘SPOT_LIGHTPASSENGER’, ‘SPOT_SENSOR’, ‘SPOT_TRAP’ and ‘SPOT_ACTORIMPULSE’. You
can set the ‘state’ attribute to a sum of these constants that should apply to given
glasses. The default is for backward compatibility ‘SPOT_DEATH + SPOT_HOLLOW +

SPOT_LIGHTPASSENGER’. When a player wears several glasses he spots everything that any
of the glasses could spot.

Glasses break when a stone is pushed over them. Broken glasses spot nothing.

Glasses result from the laser light transformation of Section 8.3.13 [it extralife], page 191.
The features of such new glasses are determined by the global variable Section 6.4.9 [Ex-
tralifeGlasses], page 141.

Attributes:

state, values: positive numbers; default : SPOT_DEATH + SPOT_HOLLOW +

SPOT_LIGHTPASSENGER See Section 6.1.2 [state], page 126
A sum of the constants ‘SPOT_DEATH’, ‘SPOT_HOLLOW’,
‘SPOT_LIGHTPASSENGER’, ‘SPOT_SENSOR’, ‘SPOT_ACTORIMPULSE’,
‘SPOT_TRAP’. ‘SPOT_NOTHING’ is the state of a broken glasses.
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freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it glasses Active glasses item.

it glasses broken Broken glasses that spot nothing.

8.3.17 it hammer

The hammer is used to destroy some stones, see Section 9.6.2 [Breakable Stones], page 315
and Section 9.5.36 [st lightpassenger], page 272.

It transforms into Section 8.3.31 [it sword], page 204 when hit by a laser beam and is itself
a laser transformation result of an Section 8.3.31 [it sword], page 204 and an ‘it_coin_m’
(see Section 8.3.8 [it coin], page 187).

An hammer that comes into existence on an illuminated grid position will not transform
due to already existing laser beams. But it will transform on the first additional beam and
on laser beams that are switched off and on again.

If another item transforms into an hammer this new hammer will be immune to further
light transformations for a short latency period to avoid unstable flickering of repeated item
transformations.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Variants:

it hammer A standard hammer item.

it hammer new A hammer that is immune to light transformations
for a short latency period.

8.3.18 it key

A key activates an Section 9.5.30 [st key], page 268 when inserted by hitting the stone with
the key as first item in the players inventory.
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Usually the ‘code’ of the key is not visually unveiled. But if you set ‘invisible’ to the
value ‘false’ the code becomes visible for number code values ‘1’ to ‘8’. The code is just
visible, when the key is part of the inventory. This helps the user to distinguish multiple
keys in the inventory and to assign them to the matching Section 9.5.30 [st key], page 268s.

An ‘invisible’ key reveals its code when being inserted in a matching, unveiled
Section 9.5.30 [st key], page 268. The code remains visible, when the user withdraws the
key from the stone and adds it to his inventory.

Attributes:

code, values: number or string; default : 1
The code of a key must match that of an Section 9.5.30 [st key],
page 268 to unlock it.

invisible values: true, false; default : true
A visible key unveils its ‘code’ by a color spot when being lifted.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it key

8.3.19 it magicwand

The wizard’s tool, that allows to do all sort of magic things if it is the wielded item in the
player’s inventory:

• Section 9.5.5 [st blur], page 243, magic - transforms to Section 9.5.43 [st passage],
page 284,

• Section 9.5.6 [st boulder], page 244 - changes orientation of a boulder,

• Section 9.5.13 [st chess], page 250 - changes the color of a chess stone,

• Section 9.5.25 [st ghost], page 263, greenbrown - transforms to Section 9.5.27
[st greenbrown], page 265,

• Section 9.5.37 [st magic], page 273, brick - transforms to a Section 9.5.51 [st rawglass],
page 294,

• Section 9.5.41 [st oneway], page 279 - changes orientation of a oneway,

• Section 9.5.49 [st puzzle], page 288 - scrambles blue puzzle stones instead of pushing,
causes complete clusters to explode,

• Section 9.5.54 [st rubberband], page 296 - makes rubberband stones movable,

• Section 9.5.58 [st stoneimpulse], page 300, movable - avoid pulsing on pushes.
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Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: none
Variants:

it magicwand

8.3.20 it pencil

An item to mark floors and stones.

An activated pencil scratches an Section 8.4.5 [it cross], page 213 on most floors. As
the pencil gets consumed by this operation the cross takes the pencils identity on this
Section 4.4.4 [Object Transformation], page 61. But on Section 7.4.5 [fl ice], page 171 the
pencil makes a small Section 8.4.4 [it crack], page 211 as it is so sharp. On indestruc-
tible floors like Section 7.4.1 [fl abyss], page 167, Section 7.4.12 [fl water], page 177 and
Section 7.4.10 [fl swamp], page 176 and on Section 7.4.2 [fl bridge], page 168 the pencil can
not be activated at all. Any existing item on the floor does prevent a pencil application,
too. The actor can only mark a floor if it is on the floor and not flying. During a jump an
actor will just drop the pencil as an item.

On actor hits with a revealed pencil on a Section 9.5.22 [st flat], page 260 the stones
gets marked burnable. Again the pencil is consumed on this operation. Both the plain and
the movable variants can be marked.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it pencil

8.3.21 it pin

A pin is a friction increasing item that can be used as a crampon on Section 7.4.5 [fl ice],
page 171. When it is picked up and is added to the inventory it significantly increases the
floor friction applied to all actors owned by the inventory’s owner.
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Pins do just increase friction as long as they are directly part of the inventory. A pin
contained within an Section 8.3.1 [it bag], page 182, being part of the inventory, has no
influence on the friction. Two or more pins do not apply more friction than a single pin.
As soon as the last pin is dropped the friction returns to its standard values.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it pin

8.3.22 it pipe

Pipe items are used to build item transporting pipes connected to an Section 9.5.38 [st mail],
page 274.

Pipe items are described by their ‘connections’ to neighbor grids. A pipe is build up
of items with fitting connections.

Even though there exist pipe ending items with just one connection there is currently
no known usage of them besides decoration.

Attributes:

connections, values: string; default : "ew"
Describes the pipe connections to the neighbor grids. The string is
a substring of "nesw" listing the existing connections. The sequence
of the sides, north, east, south, west, is guaranteed on read access
but arbitrary on write access. Currently only pipes with one or two
connections do exist.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: none
Variants:
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it pipe connections = "ew" The horizontal pipe.

it pipe w connections = "w"

it pipe s connections = "s"

it pipe sw connections = "sw"

it pipe e connections = "e"

it pipe ew connections = "ew" The horizontal pipe.

it pipe es connections = "es"

it pipe n connections = "n"

it pipe nw connections = "nw"

it pipe ns connections = "ns" The vertical pipe.

it pipe ne connections = "ne"

8.3.23 it puller

A puller item looks like a white arrow. It can be picked up. But when being dropped it
gets activated and whirls around. The actor should leave the grid immediately as the puller
will finally dissolve in a lethal explosion.

But the main purpose of the puller is its ability to pull stones. The arrow ‘orientation’
indicates the direction into which a stone will be pulled when the item is dropped in front.
The pull takes place immediately at the end of the short explosion. It is a full blown stone
pull, that will pull others stones connected to the directly affected stone via Section 11.1.3
[ot wire], page 327, too. With the explosion the puller item ceases to exist.
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Attributes:

orientation, values: NORTH, EAST, SOUTH, WEST; default : WEST
freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: none
Variants:

it puller orientation = WEST

it puller w orientation = WEST

it puller s orientation = SOUTH

it puller e orientation = EAST

it puller n orientation = NORTH

8.3.24 it ring

The ring is a magic position exchange item. On activation the ring gets dropped onto the
grid and the actor gets warped either to the actors respawn position or to the position of
another actor that is warped to the initiators position in exchange.

Note that this object is currently just defined in the following cases:

• just one arbitrary actor owned by player ‘YIN’ - the actor gets warped to its respawn
position.

• just an Section 10.2.4 [ac marble], page 321 black owned by player ‘YIN’ and an
Section 10.2.4 [ac marble], page 321 white owned by player ‘YANG’ - both actors ex-
change their position.

Providing a ring in any other case will likely cause incompatibilities with future Enigma
versions.
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Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it ring

8.3.25 it rubberband

A portable Section 11.1.2 [ot rubberband], page 326 that gets connected to the bearer on
activation.

As the rubberband’s ‘anchor1’ is given by the activator itself, just the ‘anchor2’ reference
can be configured by this item. It can be any stone or actor reference.

Of special interest may be the usage of dynamic nearest object references (see
Section 4.2.3 [Object Naming], page 51). A marble will be able to connect to the nearest
object out of a given group.

If ‘anchor2’ does not exist, the ‘it_rubberband’ will be dropped.

The other attributes describe the force and length parameters of the Section 11.1.2
[ot rubberband], page 326, that will be created on application of the item. In fact the
item’s identity will be transferred to its successor (see Section 4.4.4 [Object Transformation],
page 61). After creation of the life rubberband the action message will be send to the target.
Note that it is actually the Section 11.1.2 [ot rubberband], page 326 as the successor that
sends the message.

Attributes:

anchor2 values: actor or stone object; default : nil
Object reference or name of an actor or a stone that the rubber will
be connected to. The reference will be evaluated on item activation.

strength values: number; default : 10.0
The force strength.

length values: positive number or AUTOLENGTH; default : 1.0
The natural length above which forces are applied.

threshold values: positive number or zero; default : 0.0
The length smaller than the natural length below which inverted
forces are applied.

min values: positive number or zero; default : 0.0
The minimum length at which actors bounce.

max values: positive number or zero; default : 0.0
The maximum length at which actors bounce.
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scissor values: true, false; default : false
Rubberband cutting behaviour on connection. On a value of true
the activation of this rubberband will cut all existing rubberbands
which are currently connected to the activating actor.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127

On successful activation of this item the action message is send with a value
of ‘true’. Note that the parameter ‘sender’ will report the new Section 11.1.2
[ot rubberband], page 326.

Variants:

it rubberband

8.3.26 it seed

Stone seeds are items that start growing and finally transforming to stones on activation.
There are different ‘flavor’s of seeds that all look the same, but do grow to different
stones. While a "wood" seed grows to an Section 9.5.7 [st box], page 246 wood, a "hay"

seed grows to an Section 9.5.7 [st box], page 246 hay, a "greenbrown" seed grows to an
unmovable Section 9.5.27 [st greenbrown], page 265 and a "volcano" seed grows to an
active Section 9.5.66 [st volcano], page 308.

Seeds can be dropped on any item free grid position, even beneath another stone that
will get killed by the seed successor stone.

Seeds get automatically activated when being dropped, when hit by a laser beam or a
stone being pushed on them. You can activate them by ‘grow’ and ‘signal’ messages, too.

The identity of the seed gets transferred to the emerging stone including the attribute
‘secure’.

The only method of handling seeds without activation are containment within a
Section 8.3.1 [it bag], page 182 or sending them via Section 9.5.38 [st mail], page 274 to a
destination grid.

Attributes:

flavor, values: "wood", "hay", "greenbrown", "volcano"; default : "wood"
The type of the resulting stone.

secure values: true, false; default : false
This attribute is transferred to the resulting stone. The
Section 9.5.66 [st volcano], page 308 and Section 9.5.7 [st box],
page 246 make use of it.
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freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages:

grow Start growing the seed.

signal See Section 6.2.3 [signal], page 131
Start growing the seed.

Variants:

it seed flavor = "wood"

it seed wood flavor = "wood"

it seed hay flavor = "hay"

it seed greenbrown flavor = "greenbrown"

it seed volcano flavor = "volcano"

8.3.27 it spade

A spade activated while being on the grid position of an Section 8.4.11 [it meditation],
page 217 will flatten this by one degree and will finally eliminate it completely.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it spade

8.3.28 it spoon

Dropping a spoon is a medieval synonym for dying. The poor people had nothing besides
a wooden spoon. They never dropped it. They had to peg out to give away their spoon.
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Thus an Enigma spoon shatters the actor who drops it. When a player owns multiple
actors just the active one gets killed. This is an essential difference to pressing F3, what
shatters all actors of all players. When providing a spoon you may sometimes want to
revoke the ability to commit a global suicide by pressing F3. You can do this by setting the
global variable Section 6.4.3 [AllowSuicide], page 138 to ‘false’.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it spoon

8.3.29 it spring

Springs let Section 10.3.1 [Flying Actors], page 325 jump on activation.

There are two types of portable springs. A thin one that is kept in the inventory on
activation and can thus be used multiple times in sequence. And a thick, condensed one
that gets dropped on activation. A static jump facility that can not be picked up by an
actor is the Section 8.4.14 [it springboard], page 221.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it spring

it spring keep

it spring drop

8.3.30 it surprise

An item that transforms into a random item as soon as the player drops it.
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The replacement item is a random one out of a given selection. You can set the
‘selection’ attribute with tokens of strings. Every string needs either to be an Section 4.2.1
[Object Kind], page 50 or a tile key prefixed by an equal sign ‘=’.

ti["m"] = {"it_magicwand"}

ti["e"] = {"it_extralife"}

ti["s"] = {"it_surprise", selection={"it_seed", "=m", "=e", "=e"}}

The replacement item is randomly chosen out of the given selection. By listing an item
several times you can take influence on the likelihood.

The tile declarations referenced by a key may even contain objects besides items. But
you should make rare and proper usage of this feature.

The surprise item will perform its action after being dropped but before being replaced.
You can use this action to modify the selection or to set objects on your own.

The surprise item is killed by any replacement item set to the grid position. If your
selection does not resolve to an item you may need to add ‘"it_nil"’ to the replacement
tile declaration.

Attributes:

selection, values: tokens of item kinds and tile keys; default :
{"it_umbrella", "it_spring_keep", "it_dynamite", "it_coffee",

"it_hammer"}

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages:

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

it surprise

8.3.31 it sword

The sword is used to neutralize Section 9.5.31 [st knight], page 269.

It transforms into Section 8.3.17 [it hammer], page 194 when hit by a laser beam and is
itself a laser transformation result of an Section 8.3.17 [it hammer], page 194.

A sword that comes into existence on an illuminated grid position will not transform
due to already existing laser beams. But it will transform on the first additional beam and
on laser beams that are switched off and on again.

If another item transforms into a sword this new sword will be immune to further light
transformations for a short latency period to avoid unstable flickering of repeated item
transformations.
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Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Variants:

it sword A standard sword item.

it sword new A sword that is immune to light transformations for a
short latency period.

8.3.32 it umbrella

An activated umbrella temporarily protects a marble from Section 9.5.16 [st death],
page 253, Section 9.5.31 [st knight], page 269, Section 9.5.62 [st thief], page 304,
Section 7.4.1 [fl abyss], page 167, Section 7.4.12 [fl water], page 177, Section 7.4.10
[fl swamp], page 176, Section 7.4.11 [fl thief], page 176, Section 8.4.6 [it death], page 214,
Section 8.4.17 [it trap], page 223, broken Section 8.3.3 [it bottle], page 184, explosions,
moving stones and all other internal ‘shatter’ and ‘fall’ events; in other words, from
all lethal situations and thieves. The protection lasts for 10 seconds. Multiple umbrellas
activated in sequence will prolong the protection period.

An umbrella gets destroyed when hit by a laser beam and is itself a laser transformation
result of an ‘it_coin_s’(see Section 8.3.8 [it coin], page 187).

An umbrella that comes into existence on an illuminated grid position will not be de-
stroyed due to already existing laser beams. But it will be destroyed on the first additional
beam and on laser beams that are switched off and on again.

If another item transforms into an umbrella this new umbrella will be immune to light
destruction for a short latency period to avoid repeated item transformations.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Variants:
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it umbrella A standard umbrella item.

it umbrella new An umbrella that is immune to light destruction for a
short latency period.

8.3.33 it weight

A weight is an item with a mass, that defaults to the mass of 10 Section 10.2.4 [ac marble],
page 321s. When it is picked up it is added to the inventory and increases the mass of all
actors owned by the inventory’s owner.

Weights can easily be picked up, but the player can not drop them. Just indirect methods
like hitting Section 9.5.38 [st mail], page 274, Section 9.5.62 [st thief], page 304 or crossing
a Section 7.4.11 [fl thief], page 176 may remove this item from the inventory.

The inventories mass is always updated to the mass of all weights kept in the inventory
or contained in any Section 8.3.1 [it bag], page 182 contained in the inventory.

Attributes: none

mass values: positive float number; default : +10.0
Mass unit is the mass of an Section 10.2.4 [ac marble], page 321

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it weight

8.3.34 it wrench

A wrench wielded as first item in the players inventory causes some objects to react on
actor hits. An Section 9.5.53 [st rotator], page 295 changes its turning direction. A green
Section 9.5.64 [st turnstile], page 306 rotates backwards when hit. An Section 9.5.67
[st window], page 310 face pushed with an wrench will swap to the opposite side of the
stone if possible.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:
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it wrench

8.3.35 it yinyang

A special switch that allows the user to toggle the Section 4.1.5 [Player and Inventory],
page 49 between YIN and YANG.

On activation this item does not get dropped but remains unchanged in the inventory.

If a level has been declared to be a full blown two player network level in Section 3.3.7
[<modes>], page 35, but is currently played on a single computer both players get automat-
ically an yinyang item added to their inventory to allow all actors to be controlled at every
point of time.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : true; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it yinyang

8.4 Static Items

8.4.1 it blocker

A door like object that grows to Section 9.5.4 [st blocker], page 242 when an Section 9.5.6
[st boulder], page 244 passes. When the boulder did shrink and pass the blocker again it
stays in its item like open state until it is passed again by a boulder which causes it to grow
again to a blocker stone.

It fully supports the messages of any door like object and can be opened and closed by
any switch like object. Note that due to the transformation between stone and item dur-
ing opening and closing you should name the blocker (see Section 6.1.1 [name], page 126)
and address the blocker by this name. The complete identity with all attributes includ-
ing any user attributes will be transferred between stone and item. E.g. {it_switch,

target="myblocker", action="toggle"} will open and close a given blocker multiple
times.

Note that the blocker is the only door object that allows a stone to be pushed through.
Just boulders cause the growing. Any other stone keeps the open state.

Another unique door feature is the closing of a blocker item caused by a passing actor if
the autoclose attribute is set to true.

Note that a dropped Section 8.3.4 [it brake], page 185 destroys this item.
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Attributes:

state, values: 0, 1; default : 1 See Section 6.1.2 [state], page 126
Use CLOSED and OPEN macros as values. The item represents
the open state and will always return state 1. But you can set its
state what is equivalent to sending an open message in case of value
1 and a close message in case of value 0.

autoclose values: true, false; default : false
A true value causes any actor passing this item to close and grow
the blocker.

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:

signal See Section 6.2.3 [signal], page 131
A signal of value 1 sends an open message, a signal of value 0 sends
a close message.

toggle See Section 6.2.1 [toggle], page 130
A toggle causes a close message.

close See Section 6.2.7 [close], page 132
A close message take immediate effect if the item is not covered
by a stone. The item transforms to a new growing Section 9.5.4
[st blocker], page 242. If it is covered by a stone of whatever kind
it will be marked as unlocked. The closing process starts when the
stone moves away.

open See Section 6.2.6 [open], page 131
As the item is open this message takes only effect if it is currently
covered by a stone and marked as unlocked. That means it should
grow as soon as the stone moves away what happens when an
Section 9.5.6 [st boulder], page 244 passes an idle blocker item.
In this case an open message locks the blocker again to avoid a
growing when the stone moves away.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Sends an action at the moment the blocker reaches the open state. That means
an Section 9.5.4 [st blocker], page 242 did open and did generate this blocker
item as its successor. The value will be true to express the open state.

Variants:

it blocker
A standard blocker item.
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it blocker new
A blocker that just finished shrinking. Mainly used internally as
the direct successor of an Section 9.5.4 [st blocker], page 242. But
it may be useful to generate an initial snapshot of a moving boulder
over a blocker line, too. See example levels.

8.4.2 it bomb

A bomb is an explosive that can not be picked up. It ignites on laser light, nearby fire
and other nearby explosions as those caused by other Section 8.4.2 [it bomb], page 209s,
Section 8.3.11 [it dynamite], page 189, Section 9.5.18 [st dispenser], page 255 exploding
directly above a bomb, or simply by a solid stone being pushed over them (just a few
stones like Section 9.5.56 [st shogun], page 297, Section 9.5.7 [st box], page 246 hay do not
cause bombs to ignite). A falling Section 11.1.1 [ot cannonball], page 326 lets it explode
immediately without prior ignition.

On ignition its fuse starts burning. After a short time the bomb explodes causing on
the 8 neighboring positions items to ignite and some stones like Section 9.5.9 [st break],
page 248 to dissolve, too.

‘BLACK’ bombs will cause destructible items on the 4 neighboring positions to be blown
away, and dissolves the floor beneath to a Section 7.4.1 [fl abyss], page 167.

‘WHITE’ bombs will cause destructible items on the 8 neighboring positions to be blown
away, and dissolves the floor beneath and the 8 neighboring positions to Section 7.4.1
[fl abyss], page 167.

Bomb items will be added to the inventory when an actor hits a Section 9.5.18
[st dispenser], page 255 bombblack or Section 9.5.18 [st dispenser], page 255 bombwhite.

Attributes:

state, values: IDLE, ACTIVE; default : IDLE See Section 6.1.2 [state],
page 126
color values: BLACK, WHITE; default : BLACK
freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Just bombs in ‘state’ ‘IDLE’ are portable, burning ‘ACTIVE’ ones
can not be added to the inventory or an Section 8.3.1 [it bag],
page 182.

Messages:

explode Direct explosion without burning fuse.

ignite Ignite the fuse.

heat Ignite the fuse.

Variants:
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it bomb: color = BLACK

it bomb black: color = BLACK

it bomb white: color = WHITE

8.4.3 it burnable

A legacy item representing the fire state and handling the visible animation. This item is
nowadays mainly an internal system item as the Section 13.2.3 [Fire Spreading], page 388
with its attributes and messages is mainly handled by the Chapter 7 [Floor Objects],
page 149. But it may be essential for your understanding to be aware of this object in
all its variants. You may also need to make use of all variants on level initialization due to
the Section 4.4.2 [Snapshot Principle], page 59.

The following variants do exist:

• ‘invisible’ - allow a floor tile to catch fire, and to ignite on explosions; set the at-
tributes Section 7.2.2 [burnable], page 150 and Section 7.2.12 [ignitable], page 152 on
the floor instead.

• ‘oil’ - is the visible variant of the invisible burnable item.

• ‘ignited’ - carries the starting-animation of fire; send the ‘setfire’ message to a floor
or set the floor with attribute ‘initfire’ instead.

• ‘burning’ - carries the animation of burning fire. Use setfire instead.

• ‘ash’ - the unburnable remnant of a fire.

• ‘fireproof’ - the extinguisher foam that protects from fire.

Note that you are not allowed to set or change the ‘state’ of a burnable item. But you
can investigate the kind of a burnable.

Besides by Section 13.2.3 [Fire Spreading], page 388 the user can interact with burnable
items with the following other objects:

• Section 8.3.12 [it extinguisher], page 190 sprays ‘fireproof’ foam

• Section 8.3.5 [it brush], page 185 removes ‘ash’ and ‘fireproof’

• Section 9.5.28 [st ice], page 265 removes all burnable besides ‘oil’ when being pushed
over them

Attributes:

state, values: integer numbers between 0 and 5; default : 0; access: read
only See Section 6.1.2 [state], page 126
freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:
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ignite See Section 6.2.8 [ignite], page 132
Ignites the floor beneath.

extinguish Changes burnable immediately to extinguisher foam.

Variants:

it burnable: state = 0

it burnable invisible: state = 0

it burnable oil: state = 1

it burnable ignited: state = 2

it burnable burning: state = 3

it burnable ash: state = 4

it burnable fireproof: state = 5

8.4.4 it crack

A legacy item that features a crack in the floor. A crack increases every time an actor
enters and finally dissolves the floor either into an Section 7.4.1 [fl abyss], page 167 or an
Section 7.4.12 [fl water], page 177. The color of the fissures shows the upcoming new floor
kind and corresponds to the attribute ‘flavor’.

The progress of the floor destruction is described by the attribute ‘state’. On every
crack event the state advances by one and a cracking ‘LARGE’ crack finally dissolves giving
an actor on top just enough time to leave the grid at once. Of course an actor jumping over
a crack does not causes change on the crack itself.

You can control the crack progress by the two attributes ‘spreading’ and ‘fragility’.
Where as the first attribute describes the likelihood that the crack spreads to a neighboring
crack free grid, does the second attribute describe the likelihood that an existing crack
advances its state.

An actor entering a crack causes the crack itself to advance its state with the given
likelihood. A default ‘abyss’ crack causes existing cracks on any of the 4 neighboring grid
positions to advance their states, too. But a ‘water’ crack does not advance neighboring
cracks. Both do cause a spread with the given likelihood of an invisible crack to any of the
4 neighboring grid positions in case no crack or any other items exists on it.

Let us have another look on a spreading crack. An actor entering a crack causes an
invisible crack on the next grid. If the actor continues to move to this grid the invisible
crack advances to a small visible one, of cause just with the given likelihood. Note that
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this first and just this first crack progress takes place with the likelihood of spreading, too.
That means even if the fragility is zero the invisible crack gets visible.

Another special feature is the behaviour of a large crack. An actor entering causes it to
dissolve. But this causes neither a spreading nor a crack advancing on neighboring grids.
This feature is essential to allow an actor to walk over a path of large cracks, as the next
grid may not dissolve on an actor entering the one before.

Common attribute patterns besides the default ones are:

• ‘spreading=0, fragility=0’ - a fake crack that neither spreads nor dissolves

• ‘spreading=0, fragility=1’ - a crack that dissolves and causes neighbor cracks to
dissolve, but does not spread to new floors

Both attributes are inherited to new cracks during the process of spreading. If not set
they take as default the value of the global attributes. For a maximum control you can set
individual floors their own Section 7.2.9 [fragility (floor)], page 152. These values supersede
the global Section 6.4.15 [Fragility], page 142 default.

Indestructible floors like Section 7.4.1 [fl abyss], page 167, Section 7.4.12 [fl water],
page 177, Section 7.4.10 [fl swamp], page 176 will never crack. As any other item cracks
do block laser light and prohibit other items to be dropped on the same grid. Nearby fire,
explosions and hitting Section 11.1.1 [ot cannonball], page 326s will dissolve a crack by
another step.

On the other hand Section 9.5.28 [st ice], page 265 will putty any existing crack when
being pushed over it.

Attributes:

state, values: INVISIBLE, SMALL, MEDIUM, LARGE; default : SMALL See
Section 6.1.2 [state], page 126
flavor, values: "abyss", "water"; default : "abyss"
spreading values: positive number between 0.0 and 1.0; default : 0.5, See
Section 6.4.6 [CrackSpreading], page 140
fragility values: positive number between 0.0 and 1.0; default : 1.0, See
Section 6.4.15 [Fragility], page 142
freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:

crack

toggle See Section 6.2.1 [toggle], page 130
ignite See Section 6.2.8 [ignite], page 132
heat See Section 6.2.9 [heat], page 132

Variants:
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it crack: state = SMALL, flavor =
"abyss"

it crack: state = SMALL, flavor =
"water"

it crack i: state = INVISIBLE, fla-
vor = "abyss"

it crack i: state = INVISIBLE, fla-
vor = "water"

it crack s: state = SMALL, flavor =
"abyss"

it crack s: state = SMALL, flavor =
"water"

it crack m: state = MEDIUM, flavor
= "abyss"

it crack m: state = MEDIUM, flavor
= "water"

it crack l: state = LARGE, flavor =
"abyss"

it crack l: state = LARGE, flavor =
"water"

8.4.5 it cross

An eye-catching cross spot that can detect actors staying on it for a given time. When an
actor remains on top of the cross for the given ‘interval’ without any other actor leaving
or passing the cross grid the cross will perform its action. Similar, but instant sensors for
actors are Section 8.4.12 [it sensor], page 219 and Section 8.4.18 [it trigger], page 224

A cross can be drawn with an Section 8.3.20 [it pencil], page 196 and it can be removed
with an Section 8.3.5 [it brush], page 185.

An Section 9.5.36 [st lightpassenger], page 272 moving onto a cross item will switch off.

Attributes:

state, values: 0, 1; access: read only See Section 6.1.2 [state], page 126
The current state - ‘0’ for the last event being an actor leaving the
cross, ‘1’ for the last event being an actor entering the cross.

interval values: positive number; default : 10.0
Number of seconds that the actor must stay on the sensor to cause
an action.

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:



Chapter 8: Item Objects 214

it cross

8.4.6 it death

This item shatters any marble that tries to pass the grid. Even jumping marbles will be
shattered. Just marbles protected by an activated Section 8.3.32 [it umbrella], page 205
can pass without taking harm. Apart from that an ‘it_death’ barrier can only be passed
by walking around the complete barrier or by warping through an Section 8.4.19 [it vortex],
page 225, an Section 8.4.20 [it wormhole], page 227 or by means of an Section 8.3.24 [it ring],
page 199.

The death item is the most secure barrier object. Comparable objects are Section 8.3.3
[it bottle], page 184 broken, Section 7.4.1 [fl abyss], page 167, Section 7.4.12 [fl water],
page 177, Section 8.4.17 [it trap], page 223 or simply any solid wall of stones. Usually
these alternatives should be favored. The death item should mainly be used when all other
alternatives are too insecure.

Attributes:

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it death

8.4.7 it explosion

An intermediate short living system item representing and visualizing an explosion. There
are very few acceptable usages of this item besides the internal setting due to explosions
of Section 8.4.2 [it bomb], page 209, Section 8.3.11 [it dynamite], page 189, Section 8.4.8
[it landmine], page 215 and Section 11.1.1 [ot cannonball], page 326.

All explosions do shatter ball like actors.

The following variants do exist:

• ‘nil’ - no remnants.

• ‘hollow’ - leave an Section 8.4.11 [it meditation], page 217 hollow.

• ‘crack’ - make an Section 8.4.4 [it crack], page 211 water.

• ‘debris’ - dissolve the floor to Section 6.4.31 [SubSoil], page 146, which defaults to
Section 7.4.1 [fl abyss], page 167

Note that you are not allowed to set or change the ‘state’ of an explosion item. But
you can investigate the kind of an explosion.
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Attributes:

state, values: integer numbers between 0 and 3; default : 0; access: read
only See Section 6.1.2 [state], page 126
freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it explosion: state = 0

it explosion nil: state = 0

it explosion hollow: state = 1

it explosion crack: state = 2

it explosion debris: state = 3

8.4.8 it landmine

A static item that explodes on actors stepping onto its critical center part and on stones
being pushed onto the mine.

The landmine explodes shattering nearby marbles on the same grid and leaves an hollow
Section 8.4.11 [it meditation], page 217 behind.

Actors can jump over a landmine and pass carefully between two adjacent landmines
without activating the mines. Landmines do neither react on nearby explosions, nor fire,
nor laserbeams.

Attributes:

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: none
Variants:
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it landmine

8.4.9 it laserbeam

A beam of laser light. This item is caused by an Section 9.5.32 [st laser], page 269 that
is switched on. The beam is automatically calculated and the items are set by the engine.
You can not set laser beam items on your own. But you may detect a beam as an item
being located on the item layer. You are free to replace a laser beam item by another item.
This causes automatically a recalculation of the laser light.

Attributes:

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it laserbeam can not be instantiated by levels

8.4.10 it magnet

Attracts or repels actors in its ‘range’ with a force proportional to the ‘strength’ and the
inverse of the squared distance. A magnet can be switched ‘ON’ and ‘OFF’.

Note that no forces are applied to actors at a distance smaller than 0.05 grids to avoid
extraordinary large forces.

Attributes:

state, values: ON, OFF; default : OFF See Section 6.1.2 [state], page 126
The current magnet state - ‘ON’ for an active magnet, ‘OFF’ for an
inactive magnet.

range values: float number greater or equal 0; default : 10.0 See
Section 6.4.21 [MagnetRange], page 144

The distance up to which the magnet applies forces to actors.

strength values: float number; default : +30.0 See Section 6.4.22
[MagnetStrength], page 144

A scalar factor for magnet forces. Positive numbers are attracting
forces where as negative numbers are repelling forces.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:
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signal See Section 6.2.3 [signal], page 131
A signal of value 1 switches the magnet on, a value of 0 switches
the magnet off.

toggle See Section 6.2.1 [toggle], page 130
A toggle causes a change in the magnet activity state.

on See Section 6.2.4 [on], page 131
Switches the magnet on.

off See Section 6.2.5 [off], page 131
Switches the magnet off.

Action: none

Variants:

it magnet state = ‘OFF’.

it magnet on state = ‘ON’.

it magnet off state = ‘OFF’.

8.4.11 it meditation

Meditation items are small round areas of flatness imperfection. All actors will experience
the slope forces that can be modified by the global scalar factor Section 6.4.24 [Medita-
tionStrength], page 144. There are different shapes of meditation items that are named
according to their shape: MEDITATION_CALDERA, MEDITATION_HOLLOW, MEDITATION_DENT,
MEDITATION_BUMP, MEDITATION_HILL, MEDITATION_VOLCANO.

Of special interest are Section 10.2.5 [ac pearl], page 322s resting on a meditation item.
They are counted as meditating after staying continuously for one second within the round
area of the item. One of the two Section 4.4.8 [Ending Conditions], page 62 of the game is
that all meditation marbles come to rest on mediation items.

As meditation items can dynamically be generated during the game by exploding
Section 8.4.8 [it landmine], page 215 or Section 8.3.11 [it dynamite], page 189 it may be
necessary for an author to mark those meditation items that are required to be filled with
meditation marbles. You do this by setting the ‘essential’ attribute to true. Please
make rare and obvious usage of this attribute, as the player can not distinguish essential
from not essential meditation items by their images.

Meditation items can transform into other shapes by various means.

First a user can push a solid stone over a meditation item or activate an Section 8.3.27
[it spade], page 202 on it. Both actions flatten the meditation, either MEDITATION_VOLCANO
-> MEDITATION_HILL -> MEDITATION_BUMP -> it_nil or MEDITATION_CALDERA ->
MEDITATION_HOLLOW -> MEDITATION_DENT -> it_nil.

Secondly you can send a "flip" message to a meditation item which transforms hol-
low like items into their hill like counterparts and vice versa: MEDITATION_VOLCANO <->
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MEDITATION_CALDERA, MEDITATION_HILL <-> MEDITATION_HOLLOW, MEDITATION_BUMP <->
MEDITATION_DENT.

Third a "signal"message flips on a 1 value all meditations to their hill like counterparts,
keeping hill like meditations unchanged, and on a 0 value to their hollow like counterparts,
keeping hollow like meditations unchanged.

A fourth message is "toggle". It transforms MEDITATION_HOLLOW <-> MEDITATION_

VOLCANO, MEDITATION_CALDERA <-> MEDITATION_HILL, MEDITATION_BUMP <-> MEDITATION_

DENT.

Of course you can change the state by setting the attribute anytime in any sequence
you like. Essentialness is kept on shape transformations and mediation actor counting is
updated and continues.

Attributes:

state, values: MEDITATION_CALDERA, MEDITATION_HOLLOW,
MEDITATION_DENT, MEDITATION_BUMP, MEDITATION_HILL,
MEDITATION_VOLCANO; default : MEDITATION_HOLLOW See Section 6.1.2
[state], page 126

The shape of the meditation.

essential values: DISPENSABLE, INDISPENSABLE; default : DISPENSABLE
Essentialness of being filled with a meditation marble to fulfill the
Section 4.4.8 [Ending Conditions], page 62.

friction, values: number; default : nil See Section 6.1.9 [friction], page 129
Deviating friction that defaults to floor friction.

adhesion, values: number; default : nil See Section 6.1.10 [adhesion],
page 129

Deviating adhesion that defaults to floor adhesion.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:

flip Shape transformation. See text above.

shovel Shape transformation like an activated Section 8.3.27 [it spade],
page 202. See text above.

signal See Section 6.2.3 [signal], page 131
Shape transformation. See text above.

toggle Shape transformation. See text above.

Variants:
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it meditation state = MEDITATION_HOLLOW

it meditation caldera state = MEDITATION_CALDERA

it meditation hollow state = MEDITATION_HOLLOW

it meditation dent state = MEDITATION_DENT

it meditation bump state = MEDITATION_BUMP

it meditation hill state = MEDITATION_HILL

it meditation volcano state = MEDITATION_VOLCANO

8.4.12 it sensor

The sensor item is a switch on top of a floor that reacts on actors passing it. It performs
actions on actors either entering or exiting the sensors grid depending on its attribute
‘exit’. It will send the causing actor as action value, which evaluates like ‘true’ in Lua,
but nevertheless the Section 6.1.7 [inverse], page 128 attribute can be used to send an action
value of ‘false’ instead.

Any actors passing the grid, either on the floor or jumping over it will be detected.

Sensors do not cause any noise. Visible sensors will nevertheless flash on passing actors.
You can make the trigger invisible by setting its attribute. Be aware that the user will still
notice that actors cannot drop items onto the same grid position.

The level author can configure Section 8.3.16 [it glasses], page 193 by addition of
‘SPOT_SENSOR’ to show invisible sensor items. An actor with such an Section 8.3.16
[it glasses], page 193 in its inventory will be able to spot invisible sensor items. With the
global attribute Section 6.4.9 [ExtralifeGlasses], page 141 even glasses generated by laser
lighting an Section 8.3.13 [it extralife], page 191 can be configured not to show invisible
sensor items.

Alternative objects that react on actors are Section 8.4.18 [it trigger], page 224 and
Section 8.4.5 [it cross], page 213.

Attributes:

invisible values: true, false; default : false
An invisible sensor is totally transparent. But the user may notice
it, as actors cannot drop items onto the same grid position.

exit values: true, false; default : false
React either on an actor exiting or entering the grid.
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freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

it sensor: exit = false

it sensor exit: exit = true

8.4.13 it shogun

A dot like, blue animated sensor item for Section 9.5.56 [st shogun], page 297 stones. The
dot comes in three variations matching the different hole sizes of shogun stones.

Shogun dots detect stacks of Section 9.5.56 [st shogun], page 297 that contain all varia-
tions from small up to the size of the dot. Thus the small dot requires just a single small
shogun stone, the middle sized dot requires a stack of a small shogun beneath a middle
sized shogun stone, whereas the large dot requires a stack of all three shogun stones on top.

There is no way to set the state of a dot manually. But the state can nevertheless be
read. At initialization a dot with a matching shogun stack on top will start in state ‘ON’
without sending actions due to the Section 4.4.2 [Snapshot Principle], page 59.

Note that a dot is freezable by an Section 9.5.28 [st ice], page 265 and can thus be
relocated to another position.

Attributes:

state, values: OFF, ON; default : OFF; access: read only See Section 6.1.2
[state], page 126

The current state of the dot - ‘ON’ for a matching Section 9.5.56
[st shogun], page 297 stack on top, ‘OFF’ otherwise.

flavor, values: "s", "m", "l"; default : "s"
A string describing the hole size. "s" for a small hole, "m" for a
medium hole, "l" for a large hole.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:
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it shogun: flavor = "s"

it shogun s: flavor = "s"

it shogun m: flavor = "m"

it shogun l: flavor = "l"

8.4.14 it springboard

A static jump facility that lets Section 10.3.1 [Flying Actors], page 325 jump on passing
its center square. A springboard can catapult any number of actors anytime with an idle
reloading time after an activation.

A springboard positioned on top of a floor can not be picked up. But nevertheless as
being portable, it can be added to the initial inventory, to an Section 8.3.1 [it bag], page 182
or can be picked up as a result of a Section 8.3.30 [it surprise], page 203.

Another catapulting, but liftable item is Section 8.3.29 [it spring], page 203.

Attributes:

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : true; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it springboard

8.4.15 it squashed

The remnants of fruits like Section 8.3.6 [it cherry], page 186 and Section 8.3.2 [it banana],
page 183 after pushing a stone over it.

The squashed remnants are scarcely visible on some floor types. The player can not pick
them up. But it can be wiped away by application of an Section 8.3.5 [it brush], page 185,
by a nearby exploding Section 8.4.2 [it bomb], page 209 or by an Section 9.5.28 [st ice],
page 265 being pushed over it.
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Attributes:

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Variants:

it squashed

8.4.16 it strip

These items cover a small strip of the ground below them and provide a narrow bridge
for the marble to safely pass Section 7.4.1 [fl abyss], page 167, Section 7.4.10 [fl swamp],
page 176, Section 7.4.12 [fl water], page 177, or any other floor.

A strip connects zero, what is just a central small unconnected square, or up to 4
neighboring floor grids. A marble can pass from one connected floor to another connected
floor via the strip.

Any stone on a directly neighboring grid can be touched or hit by a large marble and
prevents it from falling off the strip on this side. Small marbles can not touch neighboring
stones and will not be protected from falling.

Per default an actor on a covering strip is exposed to the same friction and adhesion as
on the floor below. But strips can provide its own deviating values for these factors.

Attributes:

connections, values: string; default : nil
Describes the connections to the neighbor grids. The string is a
substring of "nesw" listing the existing connections. The sequence
of the sides, north, east, south, west, is guaranteed on read access
but arbitrary on write access.

friction, values: number; default : nil See Section 6.1.9 [friction], page 129
Deviating friction that defaults to floor friction.

adhesion, values: number; default : nil See Section 6.1.10 [adhesion],
page 129

Deviating adhesion that defaults to floor adhesion.

freezable, values: true, false; default : true; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Variants:
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it strip: connections = "" it strip w: connections = "w"

it strip s: connections = "s" it strip sw: connections = "sw"

it strip e: connections = "e" it strip ew: connections = "ew"

it strip es: connections = "es" it strip esw: connections = "esw"

it strip n: connections = "n" it strip nw: connections = "nw"

it strip ns: connections = "ns" it strip nsw: connections = "nsw"

it strip ne: connections = "ne" it strip new: connections = "new"

it strip nes: connections = "nes" it strip nesw: connections =
"nesw"

8.4.17 it trap

A classical trap that is camouflaged by a floor image. Any marble stepping onto this trap
will break the trap and fall into the trap’s abyss. But marbles can jump unharmed over a
trap. Movable stones can be pushed over a trap without any reaction.

Any marble falling into a trap causes it to break and to become visible by the remnants
of the trap. The trap can be opened by messages, too.

The level author can configure Section 8.3.16 [it glasses], page 193 by addition of
‘SPOT_TRAP’ to show invisible traps. An actor with such an Section 8.3.16 [it glasses],
page 193 in its inventory will be able to spot invisible traps. With the global attribute
Section 6.4.9 [ExtralifeGlasses], page 141 even glasses generated by laser lighting an
Section 8.3.13 [it extralife], page 191 can be configured to show invisible traps.

Attributes:

state, values: CLOSED, OPEN; default : CLOSED See Section 6.1.2 [state],
page 126

A ‘CLOSED’ trap is intact and invisible, an ‘OPEN’ trap is broken and
visible.
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freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:

signal See Section 6.2.3 [signal], page 131
Opens the trap on value ‘1’

toggle See Section 6.2.1 [toggle], page 130
Opens the trap.

open See Section 6.2.6 [open], page 131
Opens the trap.

Variants:

it trap

8.4.18 it trigger

The trigger item is a switch on top of a floor that reacts on actors and stones on top of it
that may press it. It performs actions when it is initially pressed and again when it releases
after the last object left it. A pressed trigger is in state ‘ON’ and will send an action value
of ‘true’, a released trigger is in state ‘OFF’ and will send an action value of ‘false’.

Only actors moving on the floor will press triggers. An actor jumping over a trigger will
not press it. An actor jumping on a trigger will release and press it again.

Just solid stones will press the trigger when pushed onto it. Floating, hollow stones will
generally not press the trigger with the exception of the hollow, central puzzle stone (see
Section 9.5.49 [st puzzle], page 288).

There is no way to set the state of a trigger manually. But the state can nevertheless be
read. At initialization a trigger that is pressed by objects will start in state ‘ON’ without
sending actions due to the Section 4.4.2 [Snapshot Principle], page 59.

You can make the trigger invisible by setting its attribute. Be aware that it still produces
its click-sounds and the user will notice that actors cannot drop items onto the same grid
position.

Alternative items that react just on actors are Section 8.4.12 [it sensor], page 219 and
Section 8.4.5 [it cross], page 213. Another switch that reacts on the actors mass and stones
are the Section 7.4.8 [fl scales], page 172.

Attributes:

state, values: ON, OFF; access: read only See Section 6.1.2 [state],
page 126

The current switch state - ‘ON’ for a pressed trigger, ‘OFF’ for a
released trigger.
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invisible values: true, false; default : false
An invisible trigger is totally transparent. But the user may notice
it, as actors cannot drop items onto the same grid position.

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

it trigger

8.4.19 it vortex

Teleports Section 10.2.4 [ac marble], page 321 and Section 10.2.5 [ac pearl], page 322 to
a given ‘destination’. Unlike Section 8.4.20 [it wormhole], page 227 it does not teleport
other Section 10.2 [Actors], page 318.

In the simplest case, a vortex is connected to a single destination given by an object or
a position. If the destination is not blocked by a stone the actor will be teleported to the
destination.

If multiple destination addresses are given, the actor will be teleported to the single
destinations in sequence. Blocked destinations are indicated by sparkles. Finally the actor
exists on the first unblocked destination. If no unblocked destination exists the marble
exists at the starting vortex. A level author can write nice puzzle which require the user to
block destinations to reach the final destination of a vortex.

Vortices can be ‘OPEN’ or ‘CLOSED’. Of course an actor can enter just an open vortex.
Closed vortices at the destination are opened automatically. By default such vortices remain
open. By usage of the attribute ‘autoclose’ you can configure a vortex to close after an
actor has been emitted. This helps the user to leave the vortex by keeping the marble from
being reinserted into the vortex. Of course an autoclose disables the user to return, too. If
this is not your intention you set additionally the attribute ‘autoopen’ to true. The vortex
will reopen again when the marble leaves the closed vortex. If the user did directly jump
out of the vortex, it will reopen when the user enters the vortex grid again.

Actors are emitted by vortices in a jumping fashion. The user can accelerate the actor
for a short period and the actor may jump out of a vortex into the desired direction.

Vortex teleportation takes a short amount of time and the involved vortices are blocked
for other teleporting request during this process. Thus it is no problem to set up destinations
of vortices that build a cycle.

Rubberbands bound to teleported actors are cut by default. The attribute ‘scissor’
allows you to control the cutting behaviour.

But the teleporting feature of a vortices is not limited to actors. A water flood will
spread through a vortex, too. In contrast to actors the flood will spread to all destinations
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at the same time. Of course a closed vortex on either side of the teleportation will block
a flood from spreading. But the flood continues as soon as the vortices are opened again.
Destinations will not be blocked by stones for a flood penetrating the grid from beneath,
but may block the water from spreading further from the destination grid positions. All
important details are explained in section Section 13.2.2 [Flood Spreading], page 386.

Attributes:

state, values: OPEN, CLOSED; default : OPEN See Section 6.1.2 [state],
page 126

The visual state of a vortex. An ‘OPEN’ vortex may still be busy
due to ongoing teleportations and may not accept a marble.

destination, values: tokens or position; default : nil See Section 6.1.8
[destination], page 128

The destination of the teleport given by an object or a position.

autoclose, values: true, false; default : false
Flag that indicates whether the vortex should be closed after a
teleport.

autoopen, values: true, false; default : false
Flag that indicates whether the vortex should open when an actor
enters the grid or leaves the vortex.

scissor, values: true, false; default : true
Rubberband cutting behaviour on teleporting.

freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:

signal See Section 6.2.3 [signal], page 131
Opens the vortex on value ‘1’, and closes the vortex on value ‘0’.

toggle See Section 6.2.1 [toggle], page 130
Opens a closed vortex and closes an open vortex if possible.

open See Section 6.2.6 [open], page 131
Tries to open the vortex.

close See Section 6.2.7 [close], page 132
Tries to close the vortex.

Action: none
Variants:
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it vortex: state = OPEN.

it vortex open: state = OPEN.

it vortex closed: state ‘CLOSED’.

8.4.20 it wormhole

Teleports Section 10.2 [Actors], page 318 of any kind to a given ‘destination’. Unlike
Section 8.4.19 [it vortex], page 225 every wormhole has a unique destination. But of course
the destination may be another wormhole which instantly teleports the actor again. An
infinite circle of wormholes that are connected by destinations is forbidden.

A wormhole can attract or repel actors in its ‘range’ with a force proportional to the
‘strength’ and the inverse of the squared distance. The force can be switched ‘ON’ and
‘OFF’ and is represented by its external ‘state’. Note that no forces are applied to actors
at a distance smaller than 0.05 grids to avoid extraordinary large forces.

Rubberbands bound to teleported actors are cut by default. The attribute ‘scissor’
allows you to control the cutting behaviour.

After teleporting an actor, the wormhole’s teleporting ability may be switched off for a
short latency period given by ‘interval’. A latency separates actors traveling through a
wormhole and avoids overlapping actors at the destination.

But the teleporting feature of a wormhole is not limited to actors. A water flood will
spread through a wormhole, too. Of course all actor related attributes described above have
no influence on the flood. Just the ‘destination’ is important as explained in details in
Section 13.2.2 [Flood Spreading], page 386.

Attributes:

state, values: ON, OFF; default : ON See Section 6.1.2 [state], page 126
The current force state - ‘ON’ for a force applying wormholes, ‘OFF’
for force neutral wormholes.

destination, values: tokens or position; default : nil See Section 6.1.8
[destination], page 128

The destination of the teleport given by an object or a position.

range values: float number greater or equal 0; default : 10.0 See
Section 6.4.36 [WormholeRange], page 147

The distance up to which the wormhole applies forces to actors.

strength values: float number; default : +30.0 See Section 6.4.37
[WormholeStrength], page 147

A scalar factor for the wormhole force. Positive numbers are at-
tracting forces where as negative numbers are repelling forces.

scissor, values: true, false; default : true
Rubberband cutting behaviour on teleporting.

interval values: float number greater or equal 0; default : 0.0
The latency time after a teleport during which no further teleports
take place.
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freezable, values: true, false; default : false; access: read only See
Section 8.2.2 [freezable], page 181
liftable, values: true, false; default : false; access: read only See
Section 8.2.3 [liftable], page 182
portable, values: true, false; default : false; access: read only See
Section 8.2.4 [portable], page 182

Messages:

signal See Section 6.2.3 [signal], page 131
A signal of value 1 switches the wormhole force on, a value of 0
switches the wormhole force off.

toggle See Section 6.2.1 [toggle], page 130
A toggle causes a change in the wormhole force activity state.

on See Section 6.2.4 [on], page 131
Switches the wormhole on.

off See Section 6.2.5 [off], page 131
Switches the wormhole off.

Action: none
Variants:

it wormhole: state = ON.

it wormhole on: state = ON.

it wormhole off: state OFF.
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9 Stone Objects

9.1 Stone Overview

st actorimpulse st ancient st barrier

st beads st blocker st boulder

st bluegray or
st thief

st bluesand st blur cross

st blur straight st box hay st box rock

st box wood st brake st break black

st break boulder st break bug st break oxydc

st break plain st break white st brick

st brownie st brownmarble st brownpyramid

st camouflage st charge minus st charge plus

st charge zero st chess black st chess white

st coinslot st concrete st darkglass

st darkgray st death st disco light

st disco medium st disco dark st door d (ew)

st door d (ns) st dispenser bombblack st dispenser bombwhite
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st dispenser dynamite st dispenser extralife st fake oxydc
(open)

st flash st flat st floppy off

st floppy on st fourswitch st granite

st grate cross st grate framed st greenbrown

st greengray st ice st invisible or
st ghost

st jamb black st jamb white st key off

st key on st knight st laser

st lightglass st lightpassenger st mail

st metal st mirror triangle st mirror triangle

st mirror slab st mirror slab st mirror sheets

st monoflop st monoflop st oneway

st oneway black st oneway white st oxyd a

st oxyd b or
st quake
or st laserswitch

st oxyd c st oxyd d

st oxyd e st panel st passage black

st passage black st passage black st passage black
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st passage white st passage white st passage white

st passage white st pinkbumps st plaster

st plop slate st portal st pull

st purplegray st purplemarble st puzzle blue or
st turnstilearm n

st puzzle blue st puzzle blue st puzzle yellow

st puzzle yellow st rawglass st rawglass quad

st redbrown st redfiber st redmarble

st redrock st rotator ccw st rotator cw

st rubberband st scissors st shogun s

st shogun m st shogun l st spitter

st stoneimpulse st stoneimpulse hollow st surprise

st swap st switch st switch black

st switch white st thief st thief

st thief st tigris st timer

st timer st turnstile st turnstile green

st window st window st woven
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st yellow st yinyang st yinyang inactive

9.2 Stone Attributes

9.2.1 breakable

Type: boolean
Values: false, true
Default: false

Access: read/write

9.2.2 freeze check (stone)

If true, allows for Section 13.2.5 [Freeze Checking], page 391 for this stone. Note that
Freeze Checking only works on those floors that have additionally set freeze_check =

true on their own, see Section 7.2.10 [freeze check (floor)], page 152.

Type: boolean
Values: false, true
Default: false

Access: read/write

9.2.3 hit *

A set of attributes that allow you to distort hit forces. Objects like Section 9.5.21 [st flash],
page 259, Section 9.5.57 [st spitter], page 298 and Section 9.5.1 [st actorimpulse], page 240
apply forces that are either based on the hit velocity or the position.

By usage of a simple ‘hit_strength’ factor you can increase, decrease or invert the
default factor. Note that you must not set this attribute, if you want to use the default.

By setting the four attributes ‘hit_distortion_xx’, ‘hit_distortion_xy’,
‘hit_distortion_yx’ and ‘hit_distortion_yy’ you can describe a matrix to set up a new
direction. These attributes default to 1, 0, 0, 1. A 90 degree clockwise turn is described by
0, 1, -1, 0.

Type: number
Values: ?
Default: factor - nil, xx, yy - 1, xy, yx - 0

By default no hit factor is applied. The hit matrix is the neutral one.

Access: read/write
Support: by some stones

9.2.4 hollow

Type: boolean
Values: false, true
Default: false

Access: read/write
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9.2.5 hovering

Type: boolean
Values: false, true
Default: false

Access: read/write

9.2.6 movable

An attribute that describes if a stone is movable by actor impulses. It is supported by all
stones.

Note that this attribute is not listed in the individual stone description if the stone is
generally not movable.

Type: bool
Values: true, false
Default: usually false

If a stone exists only in a movable variant this attribute will default to ‘true’.

Access: read/sometimes write
This attribute is only writable for objects that exist in both variations.

Support: by all stones

9.2.7 transparent

Type: boolean
Values: false, true
Default: false

Access: read/write

9.3 Standard Stones

A standard stone is a passive wall stone. It might exist in a hollow or movable variant but
provides no additional features.

9.3.1 st ancient

A rough green gray rock that looks ancient.

Variants:

st ancient

9.3.2 st bluegray

A light blue gray stone that exists in all two variants. This stone is visually indistinguishable
from a Section 9.5.62 [st thief], page 304.

Variants:
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st bluegray

st bluegray hollow

9.3.3 st brownie

A golden, hay stack like stone that exists just in a movable variant.

Variants:

st brownie

9.3.4 st brownmarble

A brown gray marble like stone.

Variants:

st brownmarble

9.3.5 st camouflage

A military green camouflage stone that exists in all three variants.

Variants:

st camouflage
st camouflage hollow
st camouflage movable

9.3.6 st concrete

A polished light gray stone.

Variants:

st concrete

9.3.7 st darkgray

A dark gray rock that exists in all two variants.

Variants:

st darkgray
st darkgray hollow
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9.3.8 st granite

A light gray rock like stone that exists in all three variants.

Variants:

st granite
st granite hollow
st granite movable

9.3.9 st greengray

A light green gray rock.

Variants:

st greengray

9.3.10 st invisible

An invisible stone that exists in all three variants. Please make rare usage of this stone as
it may be very annoying to users to guess that a stone exists that he can not see. Use it to
maintain the WYSIWYG expected behaviour.

Invisibility is not equal to laser transparency. In fact this stone is not laser transpar-
ent. And invisibility does not mean that an invisible actor can pass (see Section 9.6.1
[Transparent Stones], page 313).

Variants:

st invisible
st invisible hollow
st invisible movable

9.3.11 st metal

A metal stone that exists in two variants.

Variants:

st metal
st metal hollow

9.3.12 st pinkbumps

A pink stone with heavy white bumps.

Variants:

st pinkbumps



Chapter 9: Stone Objects 236

9.3.13 st purplegray

A dark purple gray rock.

Variants:

st purplegray

9.3.14 st purplemarble

A purple marble stone.

Variants:

st purplemarble

9.3.15 st redbrown

A brown stone with light red touches that exists in all three variants.

Variants:

st redbrown
st redbrown hollow
st redbrown movable

9.3.16 st redmarble

A red white marbled stone.

Variants:

st redmarble

9.3.17 st redrock

A dark red rock.

Variants:

st redrock

9.3.18 st tigris

A red sandstone like Section 7.3.32 [fl tigris], page 166.

Variants:

st tigris
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9.3.19 st woven

A yellow gray woven stone.

Variants:

st woven

9.3.20 st yellow

A yellow stone with red green stripes. This stone fits visually to the Section 9.5.14
[st coinslot], page 251.

Variants:

st yellow

9.4 Cluster Stones

A cluster stone is a passive wall stone like a simple stone. But several cluster stones adjacent
to each other can visually build a cluster and look like a single big stone with a one common
outer face.

9.4.1 Cluster Features

For each cluster stone there exist 16 different variations that represent all needed combina-
tions of inner and outer faces to build arbitrary shaped big blocks.

There exist two methods of describing a special variation. You can either give the inner
faces, the ‘connections’, those sides that should be adjacent to other stones of the same
cluster. Or you can give the outer faces, the ‘faces’, that build the common outer face of
the resulting big block.

As it is a tedious work to set up larger blocks by their single stones with appropriate
faces you can rely on an automatic clustering feature. Just set the ‘cluster’ attribute of all
single stones of a big block to the same number and the faces will be set up automatically
to form a large block.

You can build a screen of arbitrary big blocks and it is proven that there will never be the
need of more than 4 different cluster numbers (the "4 color theorem"). But for convenience
you are free to use additional cluster numbers as you like. Note that the autoclustering is
quite dynamic. A single cluster stone with fitting cluster number that is swapped at the
side of an existing block with the same cluster number will melt and join the block like seen
in "Terminator 2".

We recommend making use of the autoclustering feature by setting the ‘cluster’ at-
tribute and using the ‘faces’ attribute where necessary. ‘connections’ attribute and ex-
plicit naming of variations by a suffix are deprecated, but will continue to be supported.

Attributes:

connections, values: string; default : nil
Describes the inner faces of stone. The string is a substring of
"nesw" listing the inner faces. The sequence of the sides, north,
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east, south, west, is guaranteed on read access but arbitrary on
write access.

faces values: string; default : nil
Describes the outer faces of stone. The string is a substring of
"nesw" listing the outer faces. The sequence of the sides, north,
east, south, west, is guaranteed on read access but arbitrary on
write access.

cluster values: number; default : nil
If set to a number all adjacent cluster stones of the same base
type with the identical cluster number will build a big block. This
attribute supersedes any explicitly given face description.

9.4.2 st bluesand

A standard cluster stone with the Section 9.4.1 [Cluster Features], page 237. It is recom-
mended to use ‘st_bluesand’ with the attributes ‘cluster’ and ‘faces’.

Variants:

st bluesand: connections = "" st bluesand w: connections = "w"

st bluesand s: connections = "s" st bluesand sw: connections =
"sw"

st bluesand e: connections = "e" st bluesand ew: connections =
"ew"

st bluesand es: connections = "es" st bluesand esw: connections =
"esw"

st bluesand n: connections = "n" st bluesand nw: connections =
"nw"

st bluesand ns: connections = "ns" st bluesand nsw: connections =
"nsw"

st bluesand ne: connections =
"ne"

st bluesand new: connections =
"new"
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st bluesand nes: connections =
"nes"

st bluesand nesw: connections =
"nesw"

9.4.3 st brick

A standard cluster stone with the Section 9.4.1 [Cluster Features], page 237. It is recom-
mended to use ‘st_brick’ with the attributes ‘cluster’ and ‘faces’.

Variants:

st brick: connections = "" st brick w: connections = "w"

st brick s: connections = "s" st brick sw: connections = "sw"

st brick e: connections = "e" st brick ew: connections = "ew"

st brick es: connections = "es" st brick esw: connections = "esw"

st brick n: connections = "n" st brick nw: connections = "nw"

st brick ns: connections = "ns" st brick nsw: connections = "nsw"

st brick ne: connections = "ne" st brick new: connections = "new"

st brick nes: connections = "nes" st brick nesw: connections =
"nesw"

9.4.4 st panel

A standard cluster stone with the Section 9.4.1 [Cluster Features], page 237. It is recom-
mended to use ‘st_panel’ with the attributes ‘cluster’ and ‘faces’.

Variants:

st panel: connections = "" st panel w: connections = "w"

st panel s: connections = "s" st panel sw: connections = "sw"

st panel e: connections = "e" st panel ew: connections = "ew"
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st panel es: connections = "es" st panel esw: connections = "esw"

st panel n: connections = "n" st panel nw: connections = "nw"

st panel ns: connections = "ns" st panel nsw: connections = "nsw"

st panel ne: connections = "ne" st panel new: connections = "new"

st panel nes: connections = "nes" st panel nesw: connections =
"nesw"

9.5 Special Stones

9.5.1 st actorimpulse

An active bumper for actors and some stones like Section 9.5.6 [st boulder], page 244. The
actorimpulse stone can be made invisible while idle to introduce some surprise effects.

Actors that hit this stone will not be reflected just passively. An additional force will be
applied to them that can even be distorted. By default the actors are just pushed away from
the center of the stone. A global attribute Section 6.4.1 [ActorimpulseStrength], page 138
gives a default force that can be overridden by the stone attribute ‘strength’.

For sophisticated usage you can distort this force by usage of the Section 9.2.3 [hit *],
page 232 attributes. Note that the ‘hit_factor’ overrides a ‘strength’ attribute.

An actorimpulse stone can be configured by the ‘invisible’ attribute to be hidden
while being idle. While pulsing any actorimpulse is visible. An invisible actorimpulse can
be made permanently visible by hitting it with a revealed Section 8.3.5 [it brush], page 185
in the player’s inventory. The level author can configure Section 8.3.16 [it glasses], page 193
by addition of ‘SPOT_ACTORIMPULSE’ to show otherwise invisible actorimpulse stones. With
the global attribute Section 6.4.9 [ExtralifeGlasses], page 141 even glasses generated by
laser lighting an Section 8.3.13 [it extralife], page 191 can be configured to show invisible
actorimpulse stones.

An Section 9.5.6 [st boulder], page 244 hitting an actorimpulse stone will revert its
orientation and return in the incoming direction.

Attributes:

invisible values: true, false; default : false
An invisible actorimpulse stone is totally transparent. But the user
will notice it, as actors will bounce with additional impulses.

strength values: float number; default : +200.0 See Section 6.4.1
[ActorimpulseStrength], page 138

A scalar factor for the impulse force. Positive numbers are attract-
ing forces where as negative numbers are repelling forces.
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hit strength values: float number; default : nil See Section 9.2.3 [hit *],
page 232

A ‘hit_strength’ overrides a given ‘strength’ attribute.

hit distortion xx values: float number; default : +1.0 See Section 9.2.3
[hit *], page 232
hit distortion xy values: float number; default : 0.0 See Section 9.2.3
[hit *], page 232
hit distortion yx values: float number; default : 0.0 See Section 9.2.3
[hit *], page 232
hit distortion yy values: float number; default : +1.0 See Section 9.2.3
[hit *], page 232

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st actorimpulse: invisible = false

st actorimpulse invisible: invisible = true

9.5.2 st barrier

The barrier stone blocks actors that carry a given item kind in their inventory. By blocking
all entries to a given room by barriers of the same ‘flavor’ you can assure that no actor
can use the given item kind within the room, even when the item is available outside of the
room. The barrier acts like customs service. The barrier performs a deep check investigating
not only the top level of the actor’s inventory. Every Section 8.3.1 [it bag], page 182 will
be checked recursively, too, ensuring that no instance of the searched item can pass the
barrier.

The ‘flavor’ attribute determines the blocked item kind. The string "all" blocks any
item. Any string containing an Section 4.2.1 [Object Kind], page 50 will block items of just
the given kind. Of course you can use just kinds of Section 8.2.4 [portable], page 182 items.
E.g. a ‘flavor’ of "it_flag_white" will just block actors that carry a white Section 8.3.14
[it flag], page 192, while "it_flag" would block actors carrying flags of any color. The
blocked item kind is indicated on top of the barrier stone.

Be aware that barrier stones can be circumvented with two actors exchanging their
positions by Section 8.3.35 [it yinyang], page 207 usage. As the player can not drop the
Section 8.3.35 [it yinyang], page 207 it is no use to add an additional barrier stone for this
item. Multiple actors assigned to a single player are another potential shortcut of barrier
stones.

As barrier stones are usually bound to their initial position to fulfill their item blocking
task, they are kept from being swapped of pulled by the ‘static’ attribute’s default of
true.
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Attributes:

flavor values: "all", any portable item kind string; default : "all"
The item kind to be searched for.

static values: true, false; default : true
Static barriers are neither swappable nor pullable.

Messages: none
Action: none
Variants:

st barrier: flavor="all"

9.5.3 st beads

A stone framed by glass beads. Like other Section 9.6.1 [Transparent Stones], page 313 it
is passable for invisible actors, but it is not transparent to laser beams.

Like Section 9.5.41 [st oneway], page 279 the beads stone does not detain visible actors
once they entered the grid and lets them leave on any side.

Attributes: none
Messages: none
Variants:

st beads

9.5.4 st blocker

A door like object that shrinks to Section 8.4.1 [it blocker], page 207 when hit by an
Section 9.5.6 [st boulder], page 244. When the boulder did pass the blocker stays in its
item like open state until it is passed again by a boulder which causes it to grow again to
a blocker stone.

It fully supports the messages of any door like object and can be opened and closed by
any switch like object. Note that due to the transformation between stone and item dur-
ing opening and closing you should name the blocker (see Section 6.1.1 [name], page 126)
and address the blocker by this name. The complete identity with all attributes includ-
ing any user attributes will be transferred between stone and item. E.g. ‘{st_switch,
target="myblocker", action="toggle"}’ will open and close a given blocker multiple
times.

Note that the blocker is the only door object that allows a stone to be pushed through.
Just boulders cause the growing. Any other stone keeps the open state.

Be aware that the Section 8.3.4 [it brake], page 185 destroys an Section 8.4.1 [it blocker],
page 207.

Attributes:

state, values: OPEN, CLOSED; default : CLOSED See Section 6.1.2 [state],
page 126

The stone represents the closed state and will always return state
‘CLOSED’. But you can set its state what is equivalent to sending
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an open message in case of value ‘OPEN’ and a close message in case
of value ‘CLOSED’.

autoclose values: true, false; default : false
This attribute is irrelevant to the blocker stone itself. But it is
transferred to the Section 8.4.1 [it blocker], page 207 when the
blocker opens.

Messages:

signal See Section 6.2.3 [signal], page 131
A signal of value 1 sends an open message, a signal of value 0 sends
a close message.

toggle See Section 6.2.1 [toggle], page 130
A toggle causes an open unless the blocker stone is in the shrinking
process. In this case it causes a close message.

open See Section 6.2.6 [open], page 131
Starts an opening by shrinking the blocker. Note that during the
shrinking process the blocker still reports to be closed. The shrink-
ing process can be reverted by a close message.

close See Section 6.2.7 [close], page 132
A close message takes only effect on a blocker stone that is in the
shrinking process. The shrinking is stopped immediately and re-
verted to grow the blocker again to full size.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Sends an action at the moment the blocker reaches the closing state. That
means an Section 8.4.1 [it blocker], page 207 did close and did generate this
blocker stone as its successor. The value will be ‘false’ to express the closing
state.

Variants:

st blocker
A standard blocker stone.

st blocker new
A blocker that just starts growing. Mainly used internally as the
direct successor of an Section 8.4.1 [it blocker], page 207. But it
may be useful to generate an initial snapshot of a moving boulder
over a blocker line, too. See example levels.

9.5.5 st blur

A gray stone that transforms on an actor hit into a Section 9.5.43 [st passage], page 284
depending on the color of actor. The color of the passage may be the same as the color of
the actor or be of the opposite color. The flavor of the passage is always "square".
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In the first case the blur stone is pure gray and its ‘flavor’ is called "straight" due
to the straight color preserving transformation. The touching actor will be able to pass the
passage straight away.

In the second case the blur stone has an added white and black symbol to notify the
player that, on touching the stone with a colored actor, this actor will not be able to
pass the resulting passage. There are two flavors of such blur stones - "cross" which
transform unconditionally on an actor hit to the opposite colored Section 9.5.43 [st passage],
page 284 and flavor "magic" which transforms just on actors hitting the blur stone with
a revealed Section 8.3.19 [it magicwand], page 195 or Section 8.3.5 [it brush], page 185 in
their inventory.

For colorless actors a blur stone is just a standard stone without any special features.

Attributes:

flavor values: "straight", "cross", "magic"; default : "straight"
The blur subkind.

Messages: none
Action: none
Variants:

st blur: flavor = "straight"

st blur straight: flavor = "straight"

st blur cross: flavor = "cross"

st blur magic: flavor = "magic"

9.5.6 st boulder

This solid stone moves into the direction shown by the arrow on its picture. A marble
blocking its way is shattered. When a stone blocks its way, the boulder triggers it by a
sequence of two internal messages. Some stones give way like Section 9.5.4 [st blocker],
page 242, ‘st_break_boulder’ (see Section 9.5.9 [st break], page 248), others change their
state like Section 9.5.42 [st oxyd], page 281, Section 9.5.58 [st stoneimpulse], page 300,
Section 9.5.50 [st quake], page 294, Section 9.5.39 [st mirror], page 275, Section 9.5.24
[st fourswitch], page 262, Section 9.5.66 [st volcano], page 308. A third category switches
temporarily into another state on the first message sent when the boulder reaches a grid
and switches back on the second message sent when the boulder gives up like Section 9.5.43
[st passage], page 284, Section 9.5.22 [st flat], page 260, Section 9.5.36 [st lightpassenger],
page 272.

Items getting beneath a moving boulder may react like on any other stone move on top
of them. Additionally Section 8.4.1 [it blocker], page 207 will be released to grow again to
a blocking stone.
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Boulder stones fall into Section 7.4.1 [fl abyss], page 167, but cross Section 7.4.12
[fl water], page 177 unchanged.

Section 8.3.19 [it magicwand], page 195 and lasers reverse its orientation. An
Section 9.5.1 [st actorimpulse], page 240 reverts the orientation if the boulder hits it
frontally. An Section 9.5.53 [st rotator], page 295 changes its orientation according to the
rotator’s direction. An Section 9.5.58 [st stoneimpulse], page 300 pushes a boulder away.

Attributes:

orientation, values: NORTH, EAST, SOUTH, WEST; default : NORTH
The orientation of the boulder that is shown by its arrow. It deter-
mines the direction that the boulder will take on its next move.

counterclock values: true, false; default : false
The standard turning direction is clockwise. Use this attribute to
revert the direction.

Messages:

orientate, value type: direction
Change the orientation to the given orientation value. The
Section 9.5.24 [st fourswitch], page 262 provides a compatible
action which allows you to set a boulder as target and this message
as action.

turn Turn orientation in turning direction as defined by attribute
‘counterclock’.

turnback Turn orientation in opposite turning direction as defined by at-
tribute ‘counterclock’.

flip Turn orientation into the reverse of the current orientation.

Action: none

Variants:

st boulder

st boulder n: orientation = NORTH

st boulder e: orientation = EAST

st boulder s: orientation = SOUTH

st boulder w: orientation = WEST
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9.5.7 st box

A movable, floor building stone of various flavors.

This very common stone is well known in its default flavor "wood". But it exists in
the flavors "hay" and "rock", too. The flavor "wood" has a random wood tile orientation.
You can set wooden boxes of given tile orientation by the variants st_box_wood_h and
st_box_wood_v.

The flavors "wood" and "hay" may originate from a growing Section 8.3.26 [it seed],
page 201. Due to the Section 4.4.2 [Snapshot Principle], page 59 special box variants exist
just for usage in level initialization: st_box_wood_growing and st_box_hay_growing.

All variants can easily be pushed around, do press Section 8.4.18 [it trigger], page 224s
and do fall into Section 7.4.1 [fl abyss], page 167, Section 7.4.12 [fl water], page 177 and
Section 7.4.10 [fl swamp], page 176 by building a framed floor of the kind indicated by
their ‘flavor’ attribute. All boxes will fall on the first occasion. Even if they receive two
push impulses at the same time by Section 11.1.3 [ot wire], page 327 they fall on the first
grid. Thus it is impossible to push a box over a ditch. Boxes will fall if the floor beneath
them vanishes. E.g. an Section 8.4.2 [it bomb], page 209 explosion beneath a box may
change the floor to Section 7.4.1 [fl abyss], page 167 or a flood stream may change the floor
to Section 7.4.12 [fl water], page 177. In all these cases the box above falls immediately
building its kind of floor.

Note that all boxes do actively support Section 13.2.2 [Flood Spreading], page 386. That
means that they let an arriving flood stream flow beneath them. In case the floor beneath
the box is floodable it will change to water and the box will fall. The new built floor itself
conserves the flood stream feature and will let the stream flood neighboring floodable floors,
too. (see Section 7.4.13 [fl wood], page 178, Section 7.4.4 [fl hay], page 170, Section 7.4.7
[fl rock], page 171).

The box flavors do differ in some small but essential features. Whereas the flavors "wood"
and "rock" do cause an Section 8.4.2 [it bomb], page 209 to explode when being pushed
over it, a "hay" flavored box does not ignite bombs.

According to their flavor "wood" and "hay" will burn on fire. But "rock" flavored boxes
are fire resistant and fire blocking.

Attributes:

flavor values: "wood", "hay", "rock"; default : "wood"; access: read only
secure values: true, false; default : false

This attribute is inherited to a floor build by a falling box and
guarantees then secure fire burning.

Messages: none
Action: none
Variants:
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st box: flavor="wood"

st box wood: flavor="wood"

st box wood h: flavor="wood"

st box wood v: flavor="wood"

st box wood growing: flavor="wood"

st box hay: flavor="hay"

st box hay growing: flavor="hay"

st box rock: flavor="rock"

9.5.8 st brake

The brake stone can be used to block a running Section 9.5.6 [st boulder], page 244 or
a Section 9.5.36 [st lightpassenger], page 272, what likely has given this object its name.
But unlike all other blocking stones the brake can be picked up as an item by actors and
dropped anywhere else.

When an actor passes a brake stone, rolling on the floor or while jumping, it will pick
up the object like other items. The brake will be added as an Section 8.3.4 [it brake],
page 185 to its inventory. Unlike other items the brake can be dropped even on grids that
are already occupied by an item. But you can not drop the brake beneath another stone
like a Section 8.3.26 [it seed], page 201.

On dropping the brake item it transforms immediately back to an Section 9.5.8 [st brake],
page 247 without killing the item positioned on the grid. Just one exception is a brake being
dropped on top of an Section 8.4.1 [it blocker], page 207 what results in an elimination of the
blocker. On the other hand a brake stone will press an Section 8.4.18 [it trigger], page 224
beneath, what makes the brake item a portable trigger key.

The brake stone explodes when it is exposed to laser light or a Section 8.4.2 [it bomb],
page 209 explosion on a direct neighbor grid.

Attributes: none
Messages: none
Action: none
Variants: none

st brake



Chapter 9: Stone Objects 248

9.5.9 st break

A stone of various flavors that is breakable under various conditions. The stone may be
breakable by actors of some kind, with or without an item, by an igniting explosion on a
neighboring grid and in most cases by laser light. Besides being breakable the stone is a
standard stone. The different flavors let this stone appear in quite different outlooks.

The flavor "plain" is a grey stone that is breakable by any actor hit with a revealed
Section 8.3.17 [it hammer], page 194 and by a laser beam hitting any side.

The flavors "black" and "white" look similar to the "plain" variant just with a small
colored ball sitting on top. But these variants are just breakable by any actors of matching
color. Of course the actors need a revealed Section 8.3.17 [it hammer], page 194. Laser
beams do break the stone, too.

The flavor "oxydc" looks like a cracked Section 9.5.42 [st oxyd], page 281 of flavor "c".
Like the "plain" variant it is breakable by any actor hit with a revealed Section 8.3.17
[it hammer], page 194 and by a laser beam hitting any side.

The flavor "boulder" looks like a yellowish version of flavor "oxydc". It is breakable
under the same conditions plus additionally by an Section 9.5.6 [st boulder], page 244
hitting on one of its sides.

The flavor "bug" looks like an Section 9.5.22 [st flat], page 260 with a bug symbol on
top. It is just breakable by an Section 10.2.1 [ac bug], page 318. No other actor and no
laser light will break it.

The flavor "laser" looks identical to an Section 9.5.22 [st flat], page 260. It is not
breakable by actors. Just laser light beams on one of its faces will break this variant.

All but the variant "bug" will break on neighboring ignitions like those caused by an
exploding Section 8.3.11 [it dynamite], page 189 on a direct neighboring position or an
exploding black Section 8.4.2 [it bomb], page 209 on a diagonal neighboring position.

Attributes:

flavor values: "plain", "black", "white", "oxydc", "boulder", "bug",
"laser"; default : "plain"; access: read only

Messages:

ignite Break stone with exception of flavor "bug".

Action: none
Variants:
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st break: flavor="plain"

st break plain: flavor="plain"

st break black: flavor="black"

st break white: flavor="white"

st break oxydc: flavor="oxydc"

st break boulder: flavor="boulder"

st break bug: flavor="bug"

st break laser: flavor="laser"

9.5.10 st brownpyramid

A brown gray pyramid shaped stone. This stone is just standard stone besides the fact
that it can be destroyed by an Section 11.1.1 [ot cannonball], page 326 emitted by an
Section 9.5.57 [st spitter], page 298 that happens to fall on its top.

Variants:

st brownpyramid

9.5.11 st chameleon

A stone that has no own image but mimics the floor beneath. Thus it is fairly invisible.
But as it shows the same image as the floor it hides items and even actors on the grid. The
stone is hovering, thus it does not press any Section 8.4.18 [it trigger], page 224 and lets
pass any actors and laser light, too.

Please make rare usage of this stone in Enigma 1.1* as the current display engine does
not really support this stone. All dynamic floors and floor changes do cause faulty displays.
Thus use it currently only in patterns without any floor dynamics.

Variants:

st chameleon

9.5.12 st charge

An electrical charger for actors. The image reflects the sign of the ‘charge’ attribute.
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Any actor hitting this stone will recharge its Section 10.1.2 [charge], page 316 attribute
to the value given by the stone’s ‘charge’ attribute.

The stone itself does not cause any electrical forces. It is neither attracting nor repelling
for charged actors. Electrical forces applied to actors just depend on the charges of different
actors and the global attribute Section 6.4.8 [ElectricStrength], page 140.

Attributes:

charge values: floating point numbers; default : 0.0
The charge applied to hitting actors.

Messages: none
Action: none
Variants:

st charge: charge = 0.0

st charge zero: charge = 0.0

st charge plus: charge = +1.0

st charge minus: charge = -1.0

9.5.13 st chess

A chess stone is like a chess knight. It exists in the two colors black and white, it can jump
and make a chess knight move. It can even beat stones at the target position.

A black chess can only be moved with a black marble, a white one with white marbles.
The jump direction is given by the marble hit direction. It moves two grid steps into the
direction, into which other movable stones move just one grid, plus one grid step vertical.
The vertical direction is given by the marbles vertical velocity component.

When there is a chess stone of opposite color or an Section 9.5.62 [st thief], page 304 at
the target position of a knight move, this stone is captured and destroyed.

When hit with a revealed Section 8.3.19 [it magicwand], page 195, a chess stone changes
color.

Chess stones fall into Section 7.4.1 [fl abyss], page 167 and sink in Section 7.4.10
[fl swamp], page 176, but cross Section 7.4.12 [fl water], page 177 undamaged.

A chess stone that jumps onto a Section 7.4.11 [fl thief], page 176 captures and inacti-
vates the thief.

Chess stones can’t jump over or into fire (see Section 13.2.3 [Fire Spreading], page 388).
At least, a chess knight is brave enough not to panic when fire starts to burn beneath.
Note that fire can’t ignite the floor below a chess stone. In this context it acts like an
immovable stone. In the same sense, they don’t act on stone impulses of Section 9.5.58
[st stoneimpulse], page 300 or Section 8.3.23 [it puller], page 198.
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Attributes:

color values: BLACK, WHITE; default : BLACK
The color of the chess stone

movable values: true; default : true See Section 9.2.6 [movable], page 233
Read only attribute that states the ability of a chess stone to move.

Messages:

flip Flip the color of the stone.

move, value type: position; values: NNE, NEE, SEE, SSE, SSW, SWW, NWW, NNW
Jump into the given direction.

Action: none
Variants:

st chess: color = BLACK

st chess black: color = BLACK

st chess white: color = WHITE

9.5.14 st coinslot

A switch that is activated by insertion of an Section 8.3.8 [it coin], page 187. Just actors
assigned to a player can insert coins out of their item inventory by hitting the coinslot with
the coin being the first item. Depending on the coin type the coinslot remains in state
‘ON’ for a given ‘interval’ before switching back to state ‘OFF’. Multiple inserted coins do
prolong the activity interval.

Standard not ‘instant’ coinslots do activate after the insertion process of the coin.
No additional coins can be inserted while another coin is being inserted. This prevents
unintended multiple coin insertions. On the other hand the player has to insert additional
coins early enough to prolong the active state without temporarily switching back to ‘OFF’
state. If the first interval runs off while the next coin did not yet finish its insertion the
coinslot will first switch ‘OFF’ and switch ‘ON’ when the next coin is completely inserted.

The activity interval of a coin insertion depends on the type of the coin. For each type
you can set the interval by the ‘interval_*’ attributes. You can reject the insertion of
a coin type by setting its interval to ‘COIN_REJECT’. The coin will not be taken from the
players inventory. By a value of ‘COIN_IGNORE’ on the interval attribute the coinslot will
fetch the coin but will not act at all.

Coinslots configured as ‘instant’ do activate immediately when the actor hits the stone.
On every actor hit a coin is inserted independent of the last insertion.

The ‘state’ of a coinslot can be requested but it can not be set, neither by attribute
nor by messages.
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Attributes:

state, values: ON, OFF; default : OFF; access: read only See Section 6.1.2
[state], page 126

Current activity state of the coinslot.

instant values: true, false; default : false
A default coinslot switches to active state after insertion of a coin
and allows the insertion of just one coin at a time.

interval s values: positive number, COIN_REJECT, COIN_IGNORE; default :
3.0

Number of additional active seconds on insertion of a small
Section 8.3.8 [it coin], page 187.

interval m values: positive number, COIN_REJECT, COIN_IGNORE; default :
6.0

Number of additional active seconds on insertion of a medium
Section 8.3.8 [it coin], page 187.

interval l values: positive number, COIN_REJECT, COIN_IGNORE; default :
12.0

Number of additional active seconds on insertion of a large
Section 8.3.8 [it coin], page 187.

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st coinslot: instant = false

st coinslot instant: instant = true

9.5.15 st darkglass

A metal framed semi transparent glass stone. It exists in static, movable and hollow variants
and is just transparent to laser light in its hollow variant. Like other Section 9.6.1 [Trans-
parent Stones], page 313 it is passable for invisible actors as long as it is not ‘movable’.

A Section 9.5.36 [st lightpassenger], page 272 in state ‘OFF’ looks identical to a darkglass
stone

Attributes:

hollow values: true, false; default : false; access: read only See
Section 9.2.4 [hollow], page 232
movable values: true, false; default : false; access: read only See
Section 9.2.6 [movable], page 233

Messages: none
Variants:
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st darkglass: hollow = false, movable = false

st darkglass hollow: hollow = true, movable = false

st darkglass movable: hollow = false, movable = true

9.5.16 st death

Shatters any Section 10.2.4 [ac marble], page 321 and Section 10.2.5 [ac pearl], page 322
that hits or even just touches it. Just marbles and pearls protected by an activated
Section 8.3.32 [it umbrella], page 205 will bounce unharmed as other actors do which will
not die anyway.

Death stones can be configured by the ‘invisible’ attribute to be hidden while being
idle. When hit by an actor any death stone becomes temporary visible. An actor with
unbroken standard Section 8.3.16 [it glasses], page 193 in its inventory will be able to spot
invisible death stones.

The level author can configure Section 8.3.16 [it glasses], page 193 by elimination of
‘SPOT_DEATH’ not to show invisible death stones. With the global attribute Section 6.4.9
[ExtralifeGlasses], page 141 even glasses generated by laser lighting an Section 8.3.13
[it extralife], page 191 can be configured not to show invisible actorimpulse stones.

A death stone can also be movable. Of course ball like actors can not push it. But other
actors can push it. A movable death stone can be connected by an Section 11.1.3 [ot wire],
page 327 to another movable stone that allows to control it. Furtheron all stones emitting
stone impulses like Section 9.5.58 [st stoneimpulse], page 300, Section 9.5.53 [st rotator],
page 295, Section 9.5.36 [st lightpassenger], page 272 can move it. And finally a pushing
Section 9.5.6 [st boulder], page 244 will move it until an obstacle stops the death stone.

A movable death stone looks identical to the static default version. But from time to
time it will show its animation and can thus be identified by the user. The interval of
the animations is determined by the attribute ‘interval’, but will randomly vary up to
20% from the given value. When the ‘interval’ equals zero no animation will reveal the
movable death. But any Section 8.3.16 [it glasses], page 193 capable of ‘SPOT_DEATH’ will
show the movable death in a lighter stone color than the static ones.

A ‘movable’ death can not be ‘invisible’ at the same time. If you set both attributes
the last attribute set wins and resets the first one.

Attributes:

state, values: ON, OFF; default : OFF; access: read only See Section 6.1.2
[state], page 126

Current activity state of the death stone. A stone is usually acti-
vated by a hitting actor.

invisible values: true, false; default : false
Invisible death stones show only when hit by an actor or been tog-
gled by a message. Setting this attribute to ‘true’ sets ‘movable’
to ‘false’.
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movable values: true, false; default : false; See Section 9.2.6 [movable],
page 233

Movable death stone. Setting this attribute to ‘true’ sets
‘invisible’ to ‘false’.

interval values: positive number; default : 10.0
Number of seconds to show animation on movable death.

Messages:

toggle See Section 6.2.1 [toggle], page 130
Temporarily activate the stone to show its animation and to get
visible for this period.

Action: none
Variants:

st death: invisible = false

st death invisible: invisible = true

st death movable: movable = true

9.5.17 st disco

A free passable stone, which darkens everything that is underneath the stone. It looks like
a tinted glass that occurs in several shades. It likely got its name from the possibility to
switch between the shade grades.

The disco stone comes in three variants, ‘LIGHT’, ‘MEDIUM’ and ‘DARK’. The dark variant
is pure black, that shows neither actors, items or the floor. You can switch between these
variants by messages and state attribute access. The messages "lighten" and "darken"

change the shade by one degree. The message "signal" turns the disco light full on or off,
independent of the previous state. The standard "toggle" switches from light -> medium
-> dark -> light.

Note: unlike the old API versions of this stone, it does no longer support recursive
shading of neighboring disco stones. Make use of object groups by Section 4.2.3 [Object
Naming], page 51 to shade groups of arbitrary composition by a single message.

Attributes:

state, values: LIGHT, MEDIUM, DARK; default : LIGHT See Section 6.1.2
[state], page 126

The shading grade.

Messages:

lighten Lighten by one degree.

darken Darken by one degree.

signal See Section 6.2.3 [signal], page 131
Switch to ‘LIGHT’ on a value of 1. Switch to ‘DARK’ on a value of 0.
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toggle See Section 6.2.1 [toggle], page 130
Darken by degree or switch from ‘DARK’ to ‘LIGHT’

Action: none
Variants:

st disco: state = LIGHT

st disco light: state = LIGHT

st disco medium: state = MEDIUM

st disco dark: state = DARK

9.5.18 st dispenser

An item dispenser in some item flavors.

On every actor hit the dispenser adds a new item given by the attribute ‘flavor’, namely
Section 8.4.2 [it bomb], page 209 in color black or white, Section 8.3.11 [it dynamite],
page 189 or Section 8.3.13 [it extralife], page 191 to the inventory of the actor’s owner.
Of course an item will just be added if the inventory is capable of adding a further item.
Additionally the dispenser’s ‘stock’ must supply a further item. The default stock of 1000
items should be enough for usual demands. But you can limit the supply to just a few
counted items. This ‘stock’ attribute gets decremented every time an actor takes an item.

The dispenser stone does break on adjacent Section 8.4.2 [it bomb], page 209 explosions
and adjacent dispenser stone breaks. On its break it will itself cause adjacent Section 8.3.11
[it dynamite], page 189 to ignite, Section 8.4.2 [it bomb], page 209 positioned beneath itself
to explode, and of course neighboring dispensers to break. Dispenser stones will neither
break on actor hits, even with a revealed hammer, nor on laser light beams.

Attributes:

flavor values: "bombblack", "bombwhite", "dynamite", "extralife";
default : "bombblack";
stock, values: integer numbers; default : 1000: See Section 6.1.2 [state],
page 126

Messages: none
Action: none
Variants:
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st dispenser: flavor="bombblack"

st dispenser bombblack: flavor="bombblack"

st dispenser bombwhite: flavor="bombwhite"

st dispenser dynamite: flavor="dynamite"

st dispenser extralife: flavor="extralife"

9.5.19 st door

Doors are stones that let actors pass or block them to enter the grid, depending on their
state. Doors can be opened and closed by the standard set of messages. Doors do not open
or close instantly. They need a small amount of time. Actors can pass only doors that are
completely open.

There are several flavors of doors. The variants "a" to "c" represent grid filling block
doors. Flavor "a" looks in the closed state like Section 9.5.42 [st oxyd], page 281 of flavor
"a" and in the opened state like an Section 9.5.26 [st grate], page 264 of flavor "cross".
Flavor "b" looks in the closed state like Section 9.5.22 [st flat], page 260 but opens to an in-
visible, free passable, but still existing and grid blocking stone. Flavor "c" looks in the closed
state like Section 9.5.22 [st flat], page 260 and in the opened state like an Section 9.5.26
[st grate], page 264 of flavor "framed". The flavor "d" represents a faces based door, that
opens or blocks just the given faces of the grid. Currently just the combinations of two
parallel aligned door faces, aka horizontal and vertical doors, are supported.

As door grids can be entered on unfaced sides you should block these faces by impassable
stones. If you do not block these entries or even allow marbles to warp into a door, the
actors will be free to leave the doors even if they are closed. But marbles will shatter on
the door grid when doors are closed. This behaviour is a legacy Enigma feature.

Doors are stones that are even present if they are not visible in the OPEN state. This
means you can not push or move any other stone through an open door. The Section 9.5.4
[st blocker], page 242 is a quite compatible door alternative that allows stones to pass in
its open state.

All doors are hovering and will not press Section 8.4.18 [it trigger], page 224s. Thus you
can detect passing actors by positioning a trigger beneath a door. Doors will neither press
Section 7.4.2 [fl bridge], page 168 and will thus take no influence on the bridge.

Laser light will pass any open door, but will be blocked by closed faces. Closed doors of
type "d" let light pass if the faces are parallel aligned to the light without intervening the
light.

Just doors of type "d" allow an actor to knock on its closed faces. This causes an action
that might open the door or do anything else. A common target is Section 9.5.29 [st jamb],
page 266 that evaluated the color of the knocking actor.
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Doors do support Section 13.2.2 [Flood Spreading], page 386 and Section 13.2.3 [Fire
Spreading], page 388 through open faces and generally in ‘OPEN’ state.

Attributes:

state, values: OPEN, CLOSED; default : CLOSED; See Section 6.1.2 [state],
page 126

The open state of the door. On read access it reports if the door
is completely opened and passable for actors. Note that a door
reaches the state ‘OPEN’ after the finish of the opening animation,
what is an essential amount of time after the initiating "open"

message. But on a "close" message the state turns immediately
to ‘CLOSED’ as actors are blocked immediately. On write access a
state change causes a proper message and may occur with a delay,
too.

flavor values: "a", "b", "c", "d"; default : "d"
Representing different door types as described above. Block based
flavors "a", "b", "c" and the face based flavor "d".

faces values: string; default : "nesw"
Describes the door faces of the stone. The string is a substring of
"nesw" listing the faces. The sequence of the sides, north, east,
south, west, is guaranteed on read access but arbitrary on write
access. Note that the supported face combinations depend on the
flavor. All but flavor "d" do always provide all 4 faces. Flavor
"d" currently supports the face combinations "ns" and "ew", in
other words horizontal and vertical aligned door faces, with the
first combination being the default.

Messages:

open See Section 6.2.6 [open], page 131
Opens a closed door or reverses the process of a closing door.

close See Section 6.2.7 [close], page 132
Closes an open door or reverses the process of an opening door.

signal See Section 6.2.3 [signal], page 131
Opens at value ‘1’, and closes at value ‘0’.

Action: Just flavor "d" doors will perform an action on an actor touching a face of a
closed door. The action value will be the actor object, which can be evaluated on
its kind. This action value fits the ‘hit’ messages of objects like Section 9.5.29
[st jamb], page 266.

Variants:

st door a: flavor = "a", state =
CLOSED

st door a: flavor = "a", state =
OPEN
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st door b: flavor = "b", state =
CLOSED

st door b: flavor = "b", state =
OPEN

st door c: flavor = "c", state =
CLOSED

st door c: flavor = "c", state =
OPEN

st door d: flavor = "d", faces =
"ns", state = CLOSED

st door d: flavor = "d", faces =
"ns", state = OPEN

st door d: flavor = "d", faces =
"ew", state = CLOSED

st door d: flavor = "d", faces =
"ew", state = OPEN

9.5.20 st fake

A stone that mimics other stones, but does not act like them.

In contrast to Section 9.5.37 [st magic], page 273 the fake stone does not transform but
remains all time a passive variant of the stone that it models. The stone does look like
another stone of the kind given by the attribute ‘flavor’. The fake stone may even mimic
state dependent behaviour with state dependent models and animations.

The flavor "quake" mimics a Section 9.5.50 [st quake], page 294 including the pulsing
animation on actor hits and state changes, but does not cause any Section 9.5.42 [st oxyd],
page 281 to close.

The flavors "oxyda", "oxydb", "oxydc", "oxydd", "oxyde" mimic Section 9.5.42
[st oxyd], page 281 of appropriate flavor, but they are just passive stones. Nevertheless
they are aware of a state ‘OPEN’ and will display the corresponding base image of the open
oxyd stone, of course without any color spot.

Attributes:

flavor values: "quake", "oxyda", "oxydb", "oxydc", "oxydd", "oxyde";
default : "quake";
state, values: CLOSED, OPEN; default : CLOSED: See Section 6.1.2 [state],
page 126

Messages: none
Action: none
Variants:

st fake quake:
flavor="quake",
state=IDLE

st fake quake:
flavor="quake", state=ACTIVE
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st fake oxyda:
flavor="oxyda",
state=CLOSED

st fake oxyda:
flavor="oxyda", state=OPEN

st fake oxydb:
flavor="oxydb",
state=CLOSED

st fake oxydb:
flavor="oxydb", state=OPEN

st fake oxydc:
flavor="oxydc",
state=CLOSED

st fake oxydc:
flavor="oxydc", state=OPEN

st fake oxydd:
flavor="oxydd",
state=CLOSED

st fake oxydd:
flavor="oxydd", state=OPEN

st fake oxyde:
flavor="oxyde",
state=CLOSED

st fake oxyde:
flavor="oxyde", state=OPEN

9.5.21 st flash

A stone symbolized by a yellow flash, that forwards actors hits as a force to matching
partner actors.

Just Section 10.2.4 [ac marble], page 321 actors are affected. A black hitting marble will
push the first white marble, and vice versa. The hitting marble’s velocity is multiplied to
a distortion matrix given by four single attributes. The default matrix does maintain the
direction. The resulting vector is again multiplied by a linear strength factor. The resulting
force vector is applied to the partner marble. If no matching marble exists no forces are
applied. The hitting marble bounces on the flash stone as on any other standard stone.
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Attributes:

hit strength values: floating point numbers; default : 20.0; See
Section 9.2.3 [hit *], page 232
hit distortion xx values: floating point numbers; default : 1.0; See
Section 9.2.3 [hit *], page 232
hit distortion xy values: floating point numbers; default : 0.0; See
Section 9.2.3 [hit *], page 232
hit distortion yx values: floating point numbers; default : 0.0; See
Section 9.2.3 [hit *], page 232
hit distortion yy values: floating point numbers; default : 1.0; See
Section 9.2.3 [hit *], page 232

Messages: none
Action: none
Variants:

st flash:

9.5.22 st flat

A flat gypsum stone with many variants and features.

Besides the standard features of a movable, hollow or breakable stone the flat stone
provides some very special features and variant transformations.

Movable and breakable flat stones will fall into Section 7.4.1 [fl abyss], page 167. But
just the movable variant will fall into Section 7.4.12 [fl water], page 177 and Section 7.4.10
[fl swamp], page 176.

A laser beam will shatter a breakable variant. Further on it transforms a plain flat
stone, and just this variant, into a cracked variant, which is visually distinguishable by small
cracks. But further laser light will not break a cracked variant. Ignitions and explosions will
shatter breakable, cracked and movable variants. An actor with a revealed Section 8.3.17
[it hammer], page 194 is able to shatter both the breakable and the cracked variant. Note
that the visually indistinguishable Section 9.5.9 [st break], page 248 laser breaks on a laser
hit, too, but without being breakable by actors.

An actor with a revealed Section 8.3.20 [it pencil], page 196 will mark a plain or movable
variant as burnable what is hinted for the player by a fire symbol on the flat stone surface.
A burnable flat stone burns on fire, but just the immovable, burnable variant reacts on
heating by self destruction. All burnable variants can be cleaned by an actor hit with an
Section 8.3.5 [it brush], page 185. The fire symbol vanishes and the stone does not longer
react on fire and heating.

Last but not least an Section 9.5.6 [st boulder], page 244 hitting a plain or hollow
variant of the flat stone toggles the ‘hollow’ attribute twice within a short period. The
time is sufficient for a fast actor to pass an otherwise solid plain flat stone. By proper fast
redirection of the boulder a user can enforce permanent changes of the hollow state.
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Attributes:

hollow values: true, false; default : false; access: read only See
Section 9.2.4 [hollow], page 232
movable values: true, false; default : false; access: read only See
Section 9.2.6 [movable], page 233
breakable values: true, false; default : false; access: read only See
Section 9.2.1 [breakable], page 232
burnable values: true, false; default : false; access: read only See
Section 7.2.2 [burnable], page 150

Messages: none
Action: none
Variants:

st flat:

st flat hollow: hollow=true

st flat movable: movable="true"

st flat breakable: breakable="true"

st flat cracked:

st flat burnable: burnable="true"

st flat moveburnable: movable="true", burnable="true"

st flat breaking: breakable="true"

9.5.23 st floppy

A switch that is activated by insertion of an Section 8.3.15 [it floppy], page 193. Just actors
assigned to a player can insert a floppy out of their item inventory by hitting the floppy
switch with a floppy being the first item.

On a second hit the switch is deactivated and the inserted floppy is returned to the
players inventory.

Floppy stones are often used as openers for an adjacent Section 9.5.19 [st door], page 256
that is declared as its ‘target’. But there is the inherent danger that an actor passing the
door accidentially hits the neighboring floppy stone, causing the floppy to be pulled out
again and the door to be closed immediately. Of couse this would shatter any Section 10.2.4
[ac marble], page 321 or Section 10.2.5 [ac pearl], page 322. But a ‘secure’ floppy stone
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checks that the hitting actor is not positioned on one of the floppy stones target positions.
It refuses any actions caused by such critical hits. Note that in case the target is a callback
function that closes the adjacent door, there will be still no protection. A floppy stone with
‘secure’ value ‘false’ would accept any hits and shatter marbles as it has been standard
on older Enigma releases and is still in modes besides Enigma.

Attributes:

state, values: ON, OFF; default : OFF; See Section 6.1.2 [state], page 126
Current activity state of the floppy stone.

secure values: true, false; default : true
Protect actors on target positions by neglecting their hits.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’, and off at value ‘0’.

on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st floppy with state=OFF

st floppy with state=ON

9.5.24 st fourswitch

A switch that points into one of the four orientations and turning on every switching event.
The most common event is an actor hitting this stone. But Section 9.5.6 [st boulder],
page 244 will trigger this switch, too. Of course other objects can send messages on actions
to make this switch turning.

When turning its pointer on a switching event it performs the action given by the
‘action/target’-pair. This can be either a common pair or a state/orientation depen-
dent pair allowing you to issue different messages dependent on the pointing orientation.

Attributes:

state, values: NORTH, EAST, SOUTH, WEST; default : NORTH See Section 6.1.2
[state], page 126
counterclock values: true, false; default : false

The standard turning direction is clockwise. Use this attribute to
revert the direction.

inverse See Section 6.1.7 [inverse], page 128
Note that the action value is inverted in its boolean interpreta-
tion. This means that an inverted action value is not the reverse
orientation and should not be used as an orientation value at all.

Messages:
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signal See Section 6.2.3 [signal], page 131
Note that the fourswitch reacts just on value 1. Values of 0 are sim-
ply ignored. Use message toggle if you need turns on any message
value.

toggle See Section 6.2.1 [toggle], page 130
Note that a toggle turns the fourswitch independent of a message
value.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Performs an action on each turn. If just a pair of global ‘target/action’
attributes are given, the action message is sent to the target with a value of
the new orientation. This value suits any message of the target that expects
an orientation value, and the Section 6.2.3 [signal], page 131 message, that
translates the orientation value to a 1 for ‘NORTH’, ‘SOUTH’ and a 0 for ‘EAST’,
‘WEST’.

If state dependent target/action pairs are given instead, namely
‘target_0/action_0’ for the state ‘WEST’,... , ‘target_3/action_3’ for the
state ‘NORTH’, two actions will be performed: first for the state representing
the old orientation the given action messages will be sent with a value of 0,
then for the state representing the new orientation the given action messages
will be sent with a value of 1. This allows you to switch on and off alternative
sources by a fourswitch.

Variants:

st fourswitch

9.5.25 st ghost

An invisible stone that transforms into a visible stone on actor hits with properly revealed
tools.

Similar to Section 9.5.37 [st magic], page 273 this stone does transform to another kind,
but it is initially always invisible, what gave it its name. Invisibility is not equal to laser
transparency. In fact one flavor of this ghost stone is not laser transparent. And invisibility
does not mean that an invisible actor can pass a ghost stone. (see Section 9.6.1 [Transparent
Stones], page 313)

The ghost stone transforms to another stone of the kind given by its attribute ‘flavor’.
The tool necessary to cause this transformation depends on the flavor.

The flavor "purplemarble" transforms to an Section 9.3.14 [st purplemarble], page 236
on a hit with a revealed Section 8.3.5 [it brush], page 185. This flavor is not laser transpar-
ent.

The flavor "greenbrown" transforms to an Section 9.5.27 [st greenbrown], page 265 on
a hit with a revealed Section 8.3.19 [it magicwand], page 195.

The flavor "break" transforms to an Section 9.5.9 [st break], page 248 of variant
‘st_break_oxydc’ on a hit with a revealed Section 8.3.5 [it brush], page 185.



Chapter 9: Stone Objects 264

Attributes:

flavor values: "purplemarble", "greenbrown", "break"; default :
"purplemarble"; access: read only

Messages: none
Action: none
Variants:

st ghost: flavor="purplemarble"

st ghost purplemarble:
flavor="purplemarble"

st ghost greenbrown: flavor="greenbrown"

st ghost break: flavor="break"

9.5.26 st grate

Hovering metal grate in different flavors that let all actors pass but block stones from moving
over a grid position.

The different flavors are just for decorative purposes, but "cross" variant looks identical
to an open Section 9.5.19 [st door], page 256 of flavor "a", whereas "framed" variant looks
identical to an open Section 9.5.19 [st door], page 256 of flavor "b".

In contrast to opened doors grates do bounce actors that are flying due to a jump.

As a hovering stone grates do not press Section 8.4.18 [it trigger], page 224s and let laser
light pass. Grates allow Section 13.2.2 [Flood Spreading], page 386 and Section 13.2.3 [Fire
Spreading], page 388, too.

Attributes:

flavor values: "cross", "framed"; default : "cross"

Messages: none
Action: none
Variants:

st grate: flavor="cross"

st grate cross: flavor="cross"

st grate framed: flavor="framed"
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9.5.27 st greenbrown

A mainly brown stone that is just a standard stone besides the fact that it can originate
from two other objects.

On one hand an Section 8.3.26 [it seed], page 201 of flavor "fake" will grow to a standard,
unmovable greenbrown. Just for level initialization purpose you can even set a variant
‘st_greenbrown_growing’ due to the Section 4.4.2 [Snapshot Principle], page 59.

On the other hand a Section 9.5.25 [st ghost], page 263 of flavor "greenbrown" will
transform to standard, unmovable greenbrown on an actor hit with a revealed Section 8.3.19
[it magicwand], page 195.

Variants:

st greenbrown

st greenbrown hollow

st greenbrown movable

st greenbrown growing

9.5.28 st ice

A block of ice is a movable stone that freezes some items when being pushed over them. Of
course a floor of Section 7.4.12 [fl water], page 177 will freeze, too, when ice is being pushed
over it. But a block of ice can be destroyed by explosions and by heating fire leaving either
Section 7.4.5 [fl ice], page 171 or Section 7.4.12 [fl water], page 177.

When an ice block without frozen item is pushed onto a grid with a Section 8.2.2 [freez-
able], page 181 item, the ice will freeze the item and will move it beneath itself on subse-
quent pushes. All items that the user can carry in his inventory are Section 8.2.2 [freezable],
page 181 and even some Section 8.4 [Static Items], page 207 like Section 8.4.10 [it magnet],
page 216, Section 8.4.14 [it springboard], page 221, etc. But a few items react in a special
manner when an ice block is pushed onto them:

• Section 8.4.15 [it squashed], page 221 and Section 8.4.3 [it burnable], page 210, with
the exception of ‘it_burnable_oil’, dissolve to nothing.

• Section 8.4.4 [it crack], page 211 will vanish as the ice is putty for the cracked floors

• Section 8.3.26 [it seed], page 201 will not start growing, even though the ice is pushed
as a solid stone on top.

• Section 8.4.2 [it bomb], page 209 will explode and destroy the ice block as well as the
floor.

• Section 8.3.11 [it dynamite], page 189 is very special - a burning dynamite gets extin-
guished by an ice block and becomes frozen in its idle state.

But what happens when an ice block with a frozen item gets pushed onto a grid with
another item? The stronger item wins and survives beneath the ice block on the new
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position while the weaker item will be killed. The sequence from weak to strong is quite
simple:

• static items that get anyway wiped out by an ice block

• Section 8.3 [Liftable Items], page 182

• Section 8.2.4 [portable], page 182 items that are not Section 8.2.3 [liftable], page 182

• Section 8.2.2 [freezable], page 181 items that are not Section 8.2.4 [portable], page 182

• Section 8.4 [Static Items], page 207 that are not Section 8.2.2 [freezable], page 181

When the two items are of the same category the already frozen item wins. This last
rule ensures that the user can not free frozen items by dropping a liftable item out of his
inventory in front of an ice block before pushing it.

An ice block looks like a bluish version of Section 9.5.51 [st rawglass], page 294. But
it has just one feature in common. It is transparent to laser light. Of course you can not
freeze laser beams, even though they are implemented in the item layer. Laser light will
interact even with frozen items and can ignite Section 8.3.11 [it dynamite], page 189 or
Section 8.4.2 [it bomb], page 209. Even though being light transparent invisible actors can
not pass it (see Section 9.6.1 [Transparent Stones], page 313).

Ice blocks shatter on nearby Section 8.4.2 [it bomb], page 209 and Section 8.3.11
[it dynamite], page 189 explosions and on Section 11.1.1 [ot cannonball], page 326 hits.
The ice will spread to the four direct neighboring grid positions and will cover these and
the originating position with Section 7.4.5 [fl ice], page 171. Just Section 7.4.1 [fl abyss],
page 167 will not be covered by this ice floor and remains unchanged. Thus an exploding
bomb leaves an Section 7.4.1 [fl abyss], page 167 at its position, even when an ice blocks
shatters nearby.

A fire starting to burn on a direct neighbor position will eventually melt the ice block by
its Section 13.2.4 [Heat-Transformation], page 390. The ice will melt to an Section 7.4.12
[fl water], page 177. Just in case the ice block melts over an Section 7.4.1 [fl abyss], page 167
the floor remains unchanged. The ice heating is no secure feature, as the heat burst occurs
just once for each fire. Thus a user may be able to push an ice block aside a fire without
heat transformation. Furtheron the melting takes time. Any intermediate nearby explosion
can still shatter the melting ice block.

Messages:

ignite See Section 6.2.8 [ignite], page 132
Shatter the ice block.

heat See Section 6.2.9 [heat], page 132
Melt the ice block

Variants:

st ice

9.5.29 st jamb

A colored door jamb that allows coupled opening and closing on adjacent Section 9.5.19
[st door], page 256s. Especially doors of flavor "d" can be opened by proper colored actors
by door knocking.
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The stone looks like 4 brown door jambs each with a colored ball on top. It fits to the
2 faced "d" variant of Section 9.5.19 [st door], page 256. These doors can be configured
to send the message "hit" to the adjacent jambs as their targets. Whenever an actor
knocks the door, the jamb receives the message and checks the actor for matching color.
On success it sends opening signals to the door being knocked and to a door being located
on the opposite side of the jamb. Additionally doors located on the remaining two adjacent
positions of the jamb will receive a closing signal. E.g.:

ti["n"] = {"st_door_d", "north", target="jamb", action="hit"}

ti["e"] = {"st_door_d", "east", target="jamb", action="hit"}

ti["s"] = {"st_door_d", "south", target="jamb", action="hit"}

ti["w"] = {"st_door_d", "west", target="jamb", action="hit"}

ti["J"] = {"st_jamb", "jamb"}

ti["@"] = {"st_marble"}

wo(ti, " ", {

" n ",

"wJe",

" s@"

}

The black marble touching the east door will open the east and the west door, and will
close the north and south door at the same time. The black marble touching the south door
will open the south and the north door, and will close the west and east door.

Attributes:

color values: BLACK, WHITE; default : BLACK

Messages:

hit The message value must be an object reference of an actor. The
color of the actor must match the jamb color to cause an action.
The sender’s position must either match the x or the y coordinate
of the jamb, too.

signal See Section 6.2.3 [signal], page 131
This message is just kept for backward compatibility issues. Do not
use it in new API levels as it depends on other internal attributes
not set for new API levels.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st jamb: color=BLACK

st jamb black: color=BLACK

st jamb white: color=WHITE



Chapter 9: Stone Objects 268

9.5.30 st key

A switch that is activated by insertion of an Section 8.3.18 [it key], page 194. Just actors
assigned to a player can insert a key out of their item inventory by hitting the key switch
with a key being the first item. Just keys with a matching ‘code’ are accepted.

On a second hit the switch is deactivated and the inserted key is returned to the player’s
inventory.

Key stones are often used as openers for an adjacent Section 9.5.19 [st door], page 256
that is declared as its ‘target’. But there is the inherent danger that an actor passing the
door accidentially hits the neighboring key stone, causing the key to be pulled out again
and the door to be closed immediately. Of couse this would shatter any Section 10.2.4
[ac marble], page 321 or Section 10.2.5 [ac pearl], page 322. But a ‘secure’ key stone
checks that the hitting actor is not positioned on one of the key stones target positions. It
refuses any actions caused by such critical hits. Note that in case the target is a callback
function that closes the adjacent door, there will be still no protection. A key stone with
‘secure’ value ‘false’ would accept any hits and shatter marbles as it has been standard
on older Enigma releases and is still in modes besides Enigma.

Usually the ‘code’ of the key stone is not visually unveiled. But if you set ‘invisible’
to the value ‘false’ the code becomes visible for number code values ‘1’ to ‘8’. This helps
the user to distinguish the stones and to assign the correct Section 8.3.18 [it key], page 194
when multiple instances are present.

An ‘invisible’ key stone reveals its code when a matching, unveiled Section 8.3.18
[it key], page 194 gets inserted.

Attributes:

state, values: ON, OFF; default : OFF; See Section 6.1.2 [state], page 126
Current activity state of the key stone.

code, values: number or string; default : 1:
The code that is required to activate this switch.

secure values: true, false; default : true
Protect actors on target positions by neglecting their hits.

invisible values: true, false; default : true
A visible key stone unveils its ‘code’ by a color spot.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’, and off at values ‘0’.

on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:
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st key with state=OFF

st key with state=ON

9.5.31 st knight

A sword bearing knight stone that shatters all marbles that hit it, as long as they are not
protected by an activated Section 8.3.32 [it umbrella], page 205 or wield an Section 8.3.31
[it sword], page 204.

By hitting ‘st_knight’ with an Section 8.3.31 [it sword], page 204 four times, the knight
stone spits out a cheeky remark and can be passed thereafter, even without a sword.

A beaten knight stone is transparent to laser light.

Attributes:

state, values: 0 to 4; default : 0; access: read only See Section 6.1.2
[state], page 126

Current hit count of the knight stone. Starting uninjured at state
‘0’ the knight is beaten after 4 hits.

Messages: none
Action: none
Variants:

st knight

9.5.32 st laser

The laser stone is the only object that is capable of emitting light beams. Per default laser
stones are switched off. The ‘state’ attribute represents the activity of the laser and can
be set initially to ‘ON’. A laser is orientated to one direction into which the light will be
emitted.

Lasers have a latency that protect them from infinite fast switching cycles. This allows
you to toggle a laser with an Section 9.5.34 [st laserswitch], page 271 that is illuminated
by the laser itself. During the latency period pending switch requests will be registered but
will be executed with a certain small delay. Note that several pending requests may even
neutralize are revoke each other.

An initially switched on laser will not cause actions with its light beam due to the
Section 4.4.2 [Snapshot Principle], page 59. If you have need of the actions you may switch
on the laser by a message in the ‘postinit’ function (See Section 4.4.3 [Level Initializa-
tion], page 60). E.g. a flickering laser caused by a laser that illuminates a Section 9.5.34
[st laserswitch], page 271 which toggles the laser needs to be switched on by a message.

Attributes:

state, values: ON, OFF; default : OFF See Section 6.1.2 [state], page 126
orientation, values: NORTH, EAST, SOUTH, WEST; default : NORTH

The orientation of the laser. It determines the direction that the
laser will emit light if it is switched on.



Chapter 9: Stone Objects 270

counterclock values: true, false; default : false
The standard turning direction is clockwise. Use this attribute to
revert the direction.

Messages:

signal See Section 6.2.3 [signal], page 131
Switch the laser on at value ‘1’ and off at value ‘0’.

on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131
turn Turn orientation in turning direction as defined by attribute

‘counterclock’.

turnback Turn orientation in opposite turning direction as defined by at-
tribute ‘counterclock’.

Action: none
Variants:

st laser w: orientation = WEST,
state = OFF

st laser w: orientation = WEST,
state = ON

st laser s: orientation = SOUTH,
state = OFF

st laser s: orientation = SOUTH,
state = ON

st laser e: orientation = EAST,
state = OFF

st laser e: orientation = EAST,
state = ON

st laser n: orientation = NORTH,
state = OFF

st laser n: orientation = NORTH,
state = ON

9.5.33 st laserflop

A switch that is triggered by actor hits and laser light. It switches instantly to state ‘ON’
and when it is no longer illuminated it switches back to state ‘OFF’ after a given ‘interval’.
Repetitive actor hits and continuing laser light will prolong the ‘ON’ state until a trailing
‘interval’ after the last hit has been expired. A similar object without light sensitiveness
is the Section 9.5.40 [st monoflop], page 279.

The single state cycle, called monoflop, can be initiated by ‘on’ and ‘signal’ messages.
But an activated monoflop cannot be stopped by messages or state setting.

At initialization a laserflop that is exposed to laser light will start in state ‘ON’ without
sending actions due to the Section 4.4.2 [Snapshot Principle], page 59.

A laserflop that is moved or swapped in or out of a laser beam will act on the light
change with proper actions.
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Attributes:

state, values: ON, OFF; default : OFF; See Section 6.1.2 [state], page 126
Represents the activity state. The state of a new object can be set,
but an active laserflop cannot be set to state ‘OFF’.

interval values: positive number; default : 1.8
Number of seconds to return to state ‘OFF’ after the last hit.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’. A value of ‘0’ is ignored.

on See Section 6.2.4 [on], page 131
Switches the laserflop on like on an actor hit.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st laserflop: state = OFF

st laserflop: state = ON

9.5.34 st laserswitch

A switch that is exclusively triggered by laser light. It switches instantly to state ‘ON’ when
a laser beam hits the stone from any direction. It switches instantly back to state ‘OFF’
when it is no longer illuminated.

There is no way to set the state of this stone manually. But the state can nevertheless
be read. At initialization a laserswitch that is exposed to laser light will start in state ‘ON’
without sending actions due to the Section 4.4.2 [Snapshot Principle], page 59.

A laserswitch that is moved or swapped in or out of a laser beam will act on the light
change with proper actions.

Attributes:

state, values: ON, OFF; default : OFF; access: read only See Section 6.1.2
[state], page 126

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127

st laserswitch: state = OFF

st laserswitch: state = ON

9.5.35 st lightglass

A metal framed transparent glass stone. It exists in static, movable and hollow variants
and is by its very nature transparent to laser light. Like other Section 9.6.1 [Transparent
Stones], page 313 it is passable for invisible actors as long as it is not ‘movable’.
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A Section 9.5.37 [st magic], page 273 of variant st_magic_oxyda transforms on actor
hits to a movable lightglass stone

Attributes:

hollow values: true, false; default : false; access: read only See
Section 9.2.4 [hollow], page 232
movable values: true, false; default : false; access: read only See
Section 9.2.6 [movable], page 233

Messages: none
Variants:

st lightglass: hollow = false, movable = false

st lightglass hollow: hollow = true, movable = false

st lightglass movable: hollow = false, movable = true

9.5.36 st lightpassenger

The light passenger skates on a laser beam, and may push up to one movable stone in front
of it. Opposing laser beams are ignored. When another laser beam crosses the actual laser
beam on which the passenger skates, the passenger switches beams. If it is initially lighted
by two rectangular beams, one of them will be chosen by random. The light passenger’s
skating ability can be turned off and on.

When a stone is in its way, the passenger sends an impulse to the blocking stone, which
may move it, but it may also have other effects; e.g., a turnstile turns around and an
impulse-stone starts pulsing, but it does not open oxyds (this is intended).

The light passenger can’t be pushed by actors, but, e.g., by Section 9.5.58
[st stoneimpulse], page 300.

The speed of the light passenger can be changed with the ‘interval’-attribute (default 50
ms, which is quite fast) and may include the floor friction and local gradient via ‘friction’
and ‘gradient’. The resulting interval results as

interval = base * (1 + stone_friction * floor_friction) / (1 + stone_gradient * floor_gradient)

with ‘base’ the value of the ‘interval’-attribute, ‘floor_friction’ the friction of the
floor below the light passenger, and ‘floor_gradient’ the parallel part of the force of the
floor, i.e., the sum of gradient-force and force_x/y-attributes.

The light passenger can be switched on and off by messages (see below), and appears
as ‘st_darkglass’ when inactive. A player with an Section 8.3.16 [it glasses], page 193 in
his inventory that includes the ‘SPOT_LIGHTPASSENGER’ feature is able to distinguish the
switched off lightpassenger from an ‘st_darkglass’. The variant ‘st_lightpassenger_off’
is deactivated from the beginning. A lightpassenger that moves onto an Section 8.4.5
[it cross], page 213 switches off immediately. A switched off lightpassenger can be switched
on by an actor hit with a revealed Section 8.3.5 [it brush], page 185 in the inventory. Such
a touch with a brush does wipe out a cross beneath the lightpassenger, too.
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An Section 9.5.6 [st boulder], page 244 hitting a lightpassenger toggles the lightpassen-
ger’s state for a short period.

When an active ‘st_lightpassenger’ is trapped between exactly two opposing light
beams or light beams from all four directions, it starts blinking. In this state, it can be
destroyed with Section 8.3.17 [it hammer], page 194.

Attributes:

state, values: ON, OFF; default : ON; See Section 6.1.2 [state], page 126
Represents the activity state.

interval values: positive number; default : 0.05
The base interval for movements.

friction values: positive number; default : 0.0
Stone friction of the speed of the light passenger.

gradient values: positive number; default : 0.0
Stone gradient of the speed of the light passenger.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’. A values of ‘0’ is ignored.

on See Section 6.2.4 [on], page 131
Switch the lightpassenger on.

off See Section 6.2.5 [off], page 131
Switch the lightpassenger off.

Variants:

st lightpassenger: state = ON

st lightpassenger on: state = ON

st lightpassenger off: state = OFF

9.5.37 st magic

A stone that mimics one stone, but transforms on actor hits into another stone.

Like Section 9.5.20 [st fake], page 258 this stone does initially look like another stone of a
kind given by the attribute ‘flavor’. But on an actor hit with or without tool it transforms
to another stone, which provides its own set of features.

The flavor "brick" just transforms on a hit with a revealed Section 8.3.19
[it magicwand], page 195 into a static Section 9.5.51 [st rawglass], page 294.

The flavor "oxyda" transforms on any hit into a movable Section 9.5.35 [st lightglass],
page 271.

The flavor "oxydc" transforms on any hit into a movable Section 9.5.51 [st rawglass],
page 294.
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Attributes:

flavor values: "brick", "oxyda", "oxydc"; default : "brick"; access: read
only

Messages: none
Action: none
Variants:

st magic: flavor="brick"

st magic brick: flavor="brick"

st magic oxyda: flavor="oxyda"

st magic oxydc: flavor="oxydc"

9.5.38 st mail

When hit by an actor, a mail stone takes the first item out of the player’s inventory and
drops it at its exit, or the exit of the appending Section 8.3.22 [it pipe], page 197. If this
position is blocked (e.g., by another item), no item is taken from inventory. The Section 8.3.4
[it brake], page 185 is the only item that gets delivered even if another item is positioned
at the end of the pipe as it emerges the pipe as an Section 9.5.8 [st brake], page 247 stone.
An Section 8.3.22 [it pipe], page 197 end piece with just one fitting connection closes a mail
pipe completely, rejecting any item insertion.

Attributes:

orientation, values: NORTH, EAST, SOUTH, WEST; default : NORTH
The orientation of the mail stone. It determines the neighbors grid
position onto which the item will be dropped, or where the pipe
starts.

Messages: none
Action: none
Variants:
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st mail: orientation = NORTH

st mail w: orientation = WEST

st mail s: orientation = SOUTH

st mail e: orientation = EAST

st mail n: orientation = NORTH

9.5.39 st mirror

Mirror stones redirect and fork laser beams. They exist in different shapes. You can set the
shape by the attribute ‘flavor’ or by using the appropriate subkind. There are two planar
versions called ‘slab’ and ‘sheets’, and a ‘triangle’ version.

The mirror panes can either be non-transparent or semi-transparent. Even though you
set this feature with the attribute ‘transparent’ you should be aware that even with a
value of ‘true’ the mirror is not fully transparent. E.g. a ‘slab’ mirror will block any laser
light that is parallel to its shape as the short ends are no mirrors at all. For this reason
we provide the second planar version called ‘sheets’, which lets light parallel to its sheets
pass.

Mirrors hit by an actor or impulsed by an Section 9.5.58 [st stoneimpulse], page 300 will
move if their attribute ‘movable’ is set to true. Mirrors that are not movable will differ
slightly in a darker color.

Mirrors hit or just touched will turn their mirror panes by 90 degrees. The stan-
dard turning direction is clockwise. But this standard can be changed by the attribute
‘counterclock’. An Section 9.5.6 [st boulder], page 244 hitting a mirror will turn it in its
standard direction, too.

A mirror can be turned into the opposite direction either by a message ‘turnback’ or by
an actor with a revealed Section 8.3.34 [it wrench], page 206 in its inventory.

Mirrors moved by stone pushing impulses issued by Section 8.3.23 [it puller], page 198,
Section 9.5.58 [st stoneimpulse], page 300,... or send by Section 11.1.3 [ot wire], page 327
will move without being turned.

Attributes:

flavor values: "slab", "sheets", "triangle"; default : "slab"
Mirror panes either set up as a triangle or as a side opaque slab or
as a mandatory semi-transparent pair of sheets.

state, values: NORTH, EAST, SOUTH, WEST; default : NORTH; See Section 6.1.2
[state], page 126

The orientation of the mirror. For a triangular mirror it is the
triangle’s pointing direction. For a planar mirror it is the reflection
direction of an incoming northbound beam.
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orientation, values: NORTH, EAST, SOUTH, WEST, RANDOMDIR; default : NORTH
The orientation of the mirror. For a triangular mirror it is the
triangle’s pointing direction. For a planar mirror it is the reflection
direction of an incoming northbound beam. The value RANDOMDIR

is just evaluated when the mirror is being set. From this point of
time the mirror will report a random orientation out of the other 4
real orientations.

transparent values: true, false; default : false
Semitransparency of the mirror panes.

movable values: true, false; default : false See Section 9.2.6 [movable],
page 233

Movability on actor hits and stone impulses.

counterclock values: true, false; default : false
The standard turning direction is clockwise. Use this attribute to
revert the direction.

Messages:

orientate, value type: orientation
Change the orientation to the given orientation value. The
Section 9.5.24 [st fourswitch], page 262 provides a compatible
action which allows you to set a mirror as target and this message
as action.

turn Turn the orientation in turning direction as defined by attribute
‘counterclock’.

turnback Turn the orientation in opposite turning direction as defined by
attribute ‘counterclock’.

signal See Section 6.2.3 [signal], page 131
Turn the orientation in turning direction as defined by attribute
‘counterclock’ on value ‘1’. A value of ‘0’ is ignored.

Action: none
Variants:

st mirror triangle:
flavor=triangle, state =
NORTH, transparent = false,
movable = false

st mirror triangle:
flavor=triangle, state =
NORTH, transparent = false,
movable = true

st mirror triangle:
flavor=triangle, state =
EAST, transparent = false,
movable = false

st mirror triangle:
flavor=triangle, state =
EAST, transparent = false,
movable = true
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st mirror triangle:
flavor=triangle, state =
SOUTH, transparent = false,
movable = false

st mirror triangle:
flavor=triangle, state =
SOUTH, transparent = false,
movable = true

st mirror triangle:
flavor=triangle, state =
WEST, transparent = false,
movable = false

st mirror triangle:
flavor=triangle, state =
WEST, transparent = false,
movable = true

st mirror triangle:
flavor=triangle, state =
NORTH, transparent = true,
movable = false

st mirror triangle:
flavor=triangle, state =
NORTH, transparent = true,
movable = true

st mirror triangle:
flavor=triangle, state =
EAST, transparent = true, movable
= false

st mirror triangle:
flavor=triangle, state =
EAST, transparent = true, movable
= true

st mirror triangle:
flavor=triangle, state =
SOUTH, transparent = true,
movable = false

st mirror triangle:
flavor=triangle, state =
SOUTH, transparent = true,
movable = true

st mirror triangle:
flavor=triangle, state =
WEST, transparent = true, movable
= false

st mirror triangle:
flavor=triangle, state =
WEST, transparent = true, movable
= true

st mirror slab: flavor=slab, state
= NORTH, transparent = false,
movable = false

st mirror slab: flavor=slab, state
= NORTH, transparent = false,
movable = true

st mirror slab: flavor=slab, state
= EAST, transparent = false, mov-
able = false

st mirror slab: flavor=slab, state
= EAST, transparent = false, mov-
able = true
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st mirror slab: flavor=slab, state
= SOUTH, transparent = false,
movable = false

st mirror slab: flavor=slab, state
= SOUTH, transparent = false,
movable = true

st mirror slab: flavor=slab, state
= WEST, transparent = false, mov-
able = false

st mirror slab: flavor=slab, state
= WEST, transparent = false, mov-
able = true

st mirror slab: flavor=slab, state
= NORTH, transparent = true, mov-
able = false

st mirror slab: flavor=slab, state
= NORTH, transparent = true, mov-
able = true

st mirror slab: flavor=slab, state
= EAST, transparent = true, mov-
able = false

st mirror slab: flavor=slab, state
= EAST, transparent = true, mov-
able = true

st mirror slab: flavor=slab, state
= SOUTH, transparent = true, mov-
able = false

st mirror slab: flavor=slab, state
= SOUTH, transparent = true, mov-
able = true

st mirror slab: flavor=slab, state
= WEST, transparent = true, mov-
able = false

st mirror slab: flavor=slab, state
= WEST, transparent = true, mov-
able = true

st mirror sheets: flavor=sheets,
state = NORTH, transparent = true,
movable = false

st mirror sheets: flavor=sheets,
state = NORTH, transparent = true,
movable = true

st mirror sheets: flavor=sheets,
state = EAST, transparent = true,
movable = false

st mirror sheets: flavor=sheets,
state = EAST, transparent = true,
movable = true

st mirror sheets: flavor=sheets,
state = SOUTH, transparent = true,
movable = false

st mirror sheets: flavor=sheets,
state = SOUTH, transparent = true,
movable = true
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st mirror sheets: flavor=sheets,
state = WEST, transparent = true,
movable = false

st mirror sheets: flavor=sheets,
state = WEST, transparent = true,
movable = true

9.5.40 st monoflop

A switch that is triggered by actor hits. It switches instantly to state ‘ON’ and after a given
‘interval’ back to state ‘OFF’. Repetitive actor hits will prolong the ‘ON’ state until a
trailing ‘interval’ after the last hit has been expired. A switch similar to the monoflop is
the Section 9.5.33 [st laserflop], page 270, which is additionally light sensitive.

The single state cycle, called monoflop, can be initiated by ‘on’ and ‘signal’ messages.
But an activated monoflop cannot be stopped by messages or state setting.

Attributes:

state, values: ON, OFF; default : OFF; See Section 6.1.2 [state], page 126
Represents the activity state. The state of a new object can be set,
but an active monoflop cannot be set to state ‘OFF’.

interval values: positive number; default : 1.8
Number of seconds to return to state ‘OFF’ after the last hit.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’. A values of ‘0’ is ignored.

on See Section 6.2.4 [on], page 131
Switch the monoflop on like on an actor hit.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st monoflop: state = OFF

st monoflop: state = ON

9.5.41 st oneway

A stone with one special face, that allows actors just to pass from inside to outside but not
vice versa. The other faces can generally be passed in both directions. As most times it is
more important to be aware of the passages that are blocked, you may remember that the
oneway’s arrow points to the side that can not be entered.

Three variants of the oneway do exist. A neutral, green-grey colored one that lets any
actor pass according to the above rules, and additionally a black and a white colored oneway.
These last oneways will let pass only marbles of matching color. All other actors will reflect
from all four sides.

All oneways can only be passed by actors moving on the floor. Jumping actors will
bounce on every side.



Chapter 9: Stone Objects 280

The ‘orientation’ of a neutral oneway can be flipped to the opposite direction by
an actor hitting it with a revealed Section 8.3.19 [it magicwand], page 195. All oneway
variations will change their orientation on messages ‘signal’ and ‘flip’.

Attributes:

state, values: NORTH, EAST, SOUTH, WEST; default : NORTH See Section 6.1.2
[state], page 126

The orientation of the oneway as shown by the arrow.

orientation, values: NORTH, EAST, SOUTH, WEST; default : NORTH
The orientation of the oneway as shown by the arrow.

color values: nil, BLACK, WHITE; default : nil
The color of the oneway that needs to match the actor’s color to
allow passing. The default ‘nil’ color is a greengrey oneway that
matches all actors, marbles of any color as well as all other actors.

Messages:

orientate, value type: orientation
Change the orientation to the given orientation value. The
Section 9.5.24 [st fourswitch], page 262 provides a compatible
action which allows you to set a oneway as target and this message
as action.

flip, Flip the orientation to the opposite direction.

signal See Section 6.2.3 [signal], page 131
Flip the orientation to the opposite direction.

Action: none
Variants:

st oneway: orientation = EAST st oneway: orientation = NORTH

st oneway: orientation = SOUTH st oneway: orientation = WEST

st oneway black: color = BLACK;
orientation = EAST

st oneway black: color = BLACK;
orientation = NORTH

st oneway black: color = BLACK;
orientation = SOUTH

st oneway black: color = BLACK;
orientation = WEST

st oneway white: color = WHITE;
orientation = EAST

st oneway white: color = WHITE;
orientation = NORTH
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st oneway white: color = WHITE;
orientation = SOUTH

st oneway white: color = WHITE;
orientation = WEST

9.5.42 st oxyd

The main target stones of the game. Opening all regular oxyd stones is the standard goal of
the existing Section 4.4.8 [Ending Conditions], page 62. Regular oxyds stones show a color
spot when opening. Pairs of same colored stones have to be opened in sequence, otherwise
the first one closes again.

Even though most levels make use of just a single pair of each color, there is no limit on
a single color. If you like you can define 3 pairs of blue oxyds together with 2 yellow pairs.
You do this by setting explicit ‘oxydcolor’ attributes to the oxyds.

For standard levels the ‘oxydcolor’ can be set to its default ‘OXYD_AUTO’. This causes
an automatic coloring by pairs of colors in the standard color sequence.

There is no limit on the number of used oxyd pairs. There exist 12 different regular
colors for oxyds. But per default just the first 8 colors will be assigned to ‘OXYD_AUTO’
colored oxyds. The colors will repeat from the 9th pair giving the user the possibility
to build arbitrary couples within a single color. With the world attribute Section 6.4.23
[MaxOxydColor], page 144 you can lower or increase this limit. By setting this attribute to
‘OXYD_GREEN’ you can enforce the engine to assign just the first three colors. Be careful in
usage of more than 8 colors as levels can get incredibly difficult.

The number of auto colored oxyds should usually be even as a single remaining oxyd of
a color keeps a level from being solvable. In case of an uneven number one oxyd stone gets
colored to ‘OXYD_FAKE’ and does not participate in the stone opening procedure. But still
you can set uneven number of oxyds of a given color if you do not use auto coloring but use
explicit color values. Same thing happens if you delete a single oxyd during the running
game. In both cases Enigma reacts with an error message by default. You can suppress
this exception by setting Section 6.4.2 [AllowSingleOxyds], page 138 to true. In this case
it is the authors responsibility to guarantee that the level can be solved.

Usually oxyds are shuffled by a ‘wo:shuffleOxyd()’ statement after setting of all oxyds.
All ‘CLOSED’ oxyds that are not explicitly excluded by the ‘noshuffle’ attribute take place
in shuffling. But you can define arbitrary rules to limit and influence the shuffling process
to guarantee solvability and fairness (see Section 5.13.11 [shuffleOxyd], page 115).

Oxyds are opened either by an actor hit, an additional laser beam, an Section 9.5.6
[st boulder], page 244 triggering, an Section 11.1.1 [ot cannonball], page 326 emitted from
an Section 9.5.57 [st spitter], page 298 or a message call. A single opened oxyd is in the
state ‘OPEN’. If a matching second oxyd is opened both switch to the state ‘OXYDPAIR’. Note
that this state can be requested, but it can not be set directly.

Single opened oxyds close on a not matching partner oxyd being opened and on ‘close’
messages and state setting operations. But oxyds being part of an opened pair will not be
closed this way.

All oxyds including pairs will close on the ‘closeall’ messages that is issued by
Section 9.5.50 [st quake], page 294 and oxyds colored ‘OXYD_QUAKE’ on actor hits.

Closed oxyds can have different looks. Their visual representation is defined by their
‘flavor’. Most flavors do hide the oxyd color in the closed state. Only flavor "e" starts
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with hidden color, but once opened returns to a closed image with a peep hole that lets the
player still see the color.

For each flavor exists an identical looking simple stone: ‘st_fake_oxyda’,
‘st_fake_oxydb’, ‘st_fake_oxydc’, ‘st_fake_oxydd’, ‘st_fake_oxyde’ (see Section 9.5.20
[st fake], page 258). If you like an identical looking pseudo stone that takes part in the
oxyd shuffling you can use an oxyd of color ‘OXYD_FAKE’.

During the game oxyds can be reshuffled. Just those oxyds that are still closed will take
part in the new shuffle process. Oxyd shuffling rules will still be guaranteed for these partial
in game reshuffles. It can be initiated either by a ‘shuffle’ message that is send to any
of the oxyd objects, or by usage of an oxyd of color ‘OXYD_BOLD’. If such a special oxyd is
opened, e.g. by an actor hit, it shuffles all remaining oxyds including itself.

At initialization an oxyd that is exposed to laser light will start in state ‘CLOSED’. As
it is the gaming target it is a certain exception to the Section 4.4.2 [Snapshot Principle],
page 59.

An oxyd that is swapped in or out of a laser beam will act on the light change with
proper actions.

Every opened oxyd causes an action call. The action call for an opened oxyd pair occurs
just once when the second oxyd starts opening, whereas the bold and quake oxyd will
perform the action after completion of their task and animation. Thus you are allowed
to kill quake and bold oxyds within their action as long as you properly set Section 6.1.6
[safeaction], page 128 to true.

For a replacement of an opened pair of oxyd stones, what can be seen in the "opal"
levels, the action call is not directly suitable, because the second oxyd did not yet show its
matching color. Furtheron you would have to keep track of the oxyds to find the matching
partner for the second oxyd. For this reason you can directly declare replacements that
should be set when an oxyd pair is opened. The replacement takes place as soon as the
second oxyd finishes the opening animation. Like the Section 9.5.59 [st surprise], page 302
the oxyd allows you to set the ‘selection’ attribute with tokens of strings. Every string
needs either to be an Section 4.2.1 [Object Kind], page 50 or a tile key prefixed by an equal
sign ‘=’.

ti["n"] = {"st_nil"}

ti["g"] = {"st_granite"}

ti["s"] = {"st_oxyd_e", selection={"=n", "=g"}}

The first token defines the replacement for the oxyd stone that has been opened first,
the last token defines the replacement for the matching oxyd stone that has been opened
afterwards. In case of a single token both oxyd stones are being replaced by equivalent
stones.

The tile declarations referenced by a key may even contain objects besides stone. But
you should make rare and proper usage of this feature.

The oxyd stone is killed by any replacement stone set to the grid position. If your
selection does not resolve to a stone you may need to add "st_nil" to the replacement tile
declaration.
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Attributes:

state, values: CLOSED, OPEN, OXYDPAIR; default : CLOSED See Section 6.1.2
[state], page 126
flavor, values: "a", "b", "c", "d", "e"; default : "b"

The flavor only affects the visual representation of the stone.
Mainly the closed state and the way of opening differ in the
following way:

"a" bronze, pyramid like stone that opens like a flower
"b" black, flat stone that opens by a fade animation
"c" blue, flat stone that opens by a concentric animation
"d" dark blue, pyramid like stone that opens like a flower
"e" black, flat stone that provides a peep hole after closing

oxydcolor, values: OXYD_AUTO, OXYD_FAKE, OXYD_QUAKE, OXYD_BOLD,
OXYD_BLUE, OXYD_RED, OXYD_GREEN, OXYD_YELLOW, OXYD_CYAN, OXYD_PURPLE,
OXYD_WHITE, OXYD_BLACK, OXYD_GRAY, OXYD_ORANGE, OXYD_PINE, OXYD_BROWN;
default : OXYD_AUTO

OXYD_BLUE OXYD_RED OXYD_GREEN OXYD_

YELLOW

OXYD_CYAN OXYD_

PURPLE

OXYD_WHITE OXYD_BLACK

OXYD_GRAY OXYD_

ORANGE

OXYD_PINE OXYD_BROWN

OXYD_BOLD OXYD_QUAKE

noshuffle values: true, false; default : false
static values: true, false; default : false

Static oxyds are neither swappable nor pullable.

selection, values: tokens of stone kinds and tile keys; default : no
replacement

Messages:

signal See Section 6.2.3 [signal], page 131
Try open at value ‘1’, and close at values ‘0’.

open See Section 6.2.6 [open], page 131
close See Section 6.2.7 [close], page 132
closeall Closes all opened oxyds if send to any object instance.

peepall All closed oxyds of flavor "e" will show a peep hole if this message
is sent to any oxyd object instance.

shuffle Reshuffles all closed oxyds if send to any object instance.



Chapter 9: Stone Objects 284

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Whenever a CLOSED oxyd gets opened an action with value true is performed.
The action is performed directly after the oxyds own reaction on being opened,
like checking gaming ending conditions, reshuffling or closing all oxyds, did
finish. Additionally an action with value false is performed after an oxyd
changes from an open state to CLOSED. Note that no action is performed on
state changes form OPEN to OXYDPAIR.

Variants:

st oxyd: flavor = "b"

st oxyd a: flavor = "a"

st oxyd b: flavor = "b"

st oxyd c: flavor = "c"

st oxyd d: flavor = "d"

st oxyd e: flavor = "e"

9.5.43 st passage

A black or white colored stone of different shapes that lets pass only actors of matching
color.

The shape is described by the attribute ‘flavor’. The shape does not affect the be-
haviour, but may be important for the visibility of actors and items beneath.

Passage stones react on ‘signal’ and ‘toggle’ messages and Section 9.5.6 [st boulder],
page 244 arriving on one of its sides. In both cases the passage stone recolors to the opposite
color. In case of a boulder the recoloring is of a quite short period, as this stone recolors
the passage twice. The period in between is long enough for an actor to pass or to redirect
the boulder before sending the second recoloring message.

Attributes:

color values: BLACK, WHITE; default : BLACK
The color of the passage that determines which actors can pass.

state, values: BLACK, WHITE; default : BLACK See Section 6.1.2 [state],
page 126

The state is a synonym for color.

flavor values: "square", "slash", "cross", "frame"; default : "square"
The passage shape.
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Messages:

signal See Section 6.2.3 [signal], page 131
Switch color of the passage.

Action: none
Variants:

st passage: color = BLACK, flavor = "square"

st passage black: color = BLACK, flavor = "square"

st passage black: color = BLACK, flavor = "slash"

st passage black: color = BLACK - flavor = "cross"

st passage black: color = BLACK - flavor = "frame"

st passage white: color = WHITE, flavor = "square"

st passage white: color = WHITE - flavor = "slash"

st passage white: color = WHITE - flavor = "cross"

st passage white: color = WHITE - flavor = "frame"

9.5.44 st plaster

A sculptured gypsum stone that exists in various variations of basic stone attributes.

Unlike the similar looking Section 9.5.22 [st flat], page 260 has no special features and
behaves like a standard stone.

But it provides breakable variants. Like Section 9.5.9 [st break], page 248 it is break-
able by laser light, neighboring ignitions like those caused by an exploding Section 8.3.11
[it dynamite], page 189 on a direct neighboring position or an exploding black Section 8.4.2
[it bomb], page 209 on a diagonal neighboring position. It breaks on actor hits with a
revealed Section 8.3.17 [it hammer], page 194, too. But unlike Section 9.5.9 [st break],
page 248 it offers a variant that is breakable and movable at the same time. Of course a
possible break supersedes a possible push condition.
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Attributes:

hollow values: true, false; default : false; access: read only See
Section 9.2.4 [hollow], page 232
movable values: true, false; default : false; access: read only See
Section 9.2.6 [movable], page 233
breakable values: true, false; default : false; access: read only See
Section 9.2.1 [breakable], page 232

Messages: none
Action: none
Variants:

st plaster:

st plaster hollow: hollow=true

st plaster movable: movable="true"

st plaster breakable: breakable="true"

st plaster movebreakable: movable="true", breakable="true"

9.5.45 st plop

A movable stone that ceases to exist with a plop.

This stone behaves like any other standard movable stone. But unlike other stones it
can cease under some conditions. And if it ceases it does it with a plop and some sparkles.

Currently there is just one flavor called "slate" according to its dark blue grey color.
It falls and ceases to exist if pushed on Section 7.4.12 [fl water], page 177, Section 7.4.1
[fl abyss], page 167 or Section 7.4.10 [fl swamp], page 176. Unlike Section 9.5.7 [st box],
page 246 it does not build a floor.

Variants:

st plop

st plop slate

9.5.46 st polarswitch

A special on/off switch that toggles its state on actors hitting the stone. Of course other
objects can send messages on actions to make this switch turning.

The main purpose of this switch is its ability to switch crossing laser beams. While the
switch is not transparent in its default off state, it switches to a transparent on state.
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The switch looks like an Section 9.5.15 [st darkglass], page 252 in its opaque off state
and like an Section 9.5.35 [st lightglass], page 271 in its transparent on state. Like other
Section 9.6.1 [Transparent Stones], page 313 it is passable for invisible actors.

Attributes:

state, values: ON, OFF; default : OFF See Section 6.1.2 [state], page 126
An ‘OFF’ state is not transparent, an ‘ON’ state is transparent.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’, and off at values ‘0’.

on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st polarswitch: state = OFF

st polarswitch: state = ON

9.5.47 st portal

A gate that is just passable for some special kind of actors. Like Section 9.5.26 [st grate],
page 264 it uses metallic frames but it does not let pass actors of all kinds.

The portal stone lets just pass actors of the kind given by its attribute ‘flavor’.

The flavor "horse" lets just pass an Section 10.2.2 [ac horse], page 318.

The flavor "pearl" lets just pass an Section 10.2.5 [ac pearl], page 322.

Attributes:

flavor values: "horse", "pearl"; default : "horse"; access: read only

Messages: none
Action: none
Variants:

st portal: flavor="horse"

st portal horse: flavor="horse"

st portal pearl: flavor="pearl"

9.5.48 st pull

A pull stone changes its position on an initiating impulse into the reverse direction of the
impulse. Thus it can not be pushed like other movable stones. But when an actor hits a
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pull stone it acts like being pulled. If another stone is located on the destination grid, both
stones will exchange their positions. The exchange will also be performed when the pull
stones receives a stone impulse via an Section 11.1.3 [ot wire], page 327 or a neighboring
Section 9.5.58 [st stoneimpulse], page 300. A similar stone is the Section 9.5.60 [st swap],
page 303, that exchanges with stones in the forward direction of the initiating impulse.

Actors on the destination grid, including an initiating hitting actor, are pulled through
it, not caged under them. The actors reappear on the old grid position of the pull stone
with their old velocities.

The pull stone is laser light transparent like other glass like stones.

An existing stone exchange partner is not mandatory. But if a stone is located on the
destination position of a pull stone some conditions must be met for a stone exchange.
Connected Section 9.4 [Cluster Stones], page 237 building a block, Section 9.5.42 [st oxyd],
page 281 configured as being ‘static’, and another Section 9.5.60 [st swap], page 303 or pull
stone that is currently engaged in an own stone exchange operation will refuse swapping.

Stone exchanges will not cause item hit transformations as caused by push moved stones.
But the exchanged stones will react on the new floor, e.g. causing Section 9.5.7 [st box],
page 246 to sink into water.

Further on the exchange is atomic concerning Section 8.4.18 [it trigger], page 224 de-
tection and laser light transparency. If the exchanged stone is not transparent, the light
will pass on every time slice just on one of the two grids. If the exchanged stone is floating
and does not press Section 8.4.18 [it trigger], page 224s, the pull stone will press just one
trigger, releasing the trigger of the old position before pressing the new position’s trigger
like any other stone being pushed from one grid to the next.

Attributes: none
Messages: none
Action: none
Variants:

st pull

9.5.49 st puzzle

Puzzle stones can construct large clusters of stones, that move together and can be destroyed
together. There are two colors, blue and yellow puzzle stones, which behave different. Each
of these color families again consists of 16 variants that differ in the location of sockets to
which neighboring puzzle stones can be attached. Further on there are hollow variants of
all colors and connections.

A cluster is complete as soon as all sockets of all stones are connected to matching sockets
of adjacent puzzle stones of the same color, but independent of being hollow or solid. A
cluster fragment still has at least one stone with an open stub. A single puzzle stone with
no open sockets counts as a complete cluster.

Puzzle stone offer manifold features. A complete cluster can explode and dissolve. Clus-
ter fragments and complete clusters can move and will sink on some floors building bridges.
Rows and columns of adjacent, identical colored puzzle stones, connected and unconnected
ones, can shift rotate thus allowing the player to rearrange and sort the puzzle.
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Blue puzzle stones can be moved as single stones, cluster fragments and complete clusters
by an actor pushing or a stone impulse by Section 11.1.3 [ot wire], page 327 or Section 9.5.58
[st stoneimpulse], page 300. Of course all new positions of the moving puzzle must be
free of other stones. If all new positions are Section 7.4.12 [fl water], page 177 the blue
puzzle will sink and leave an object of the kind given by the global attribute Section 6.4.10
[FallenPuzzle], page 141. The replacement defaults to Section 7.3.14 [fl gray], page 159
building a bridge over the water. The user can prohibit the sinking of the puzzle into water
by pushing with a revealed Section 8.3.19 [it magicwand], page 195. If all new positions are
Section 7.4.1 [fl abyss], page 167 just complete blue clusters will sink and build a bridge. If
all new positions are either abyss or water with at least one abyss floor just complete blue
clusters will sink. Note that puzzles just sink on moves. Moving a blue fragment besides
another fragment on abyss so that both fragments build a complete cluster will not sink
the new cluster. It will sink as a whole on the next move. If two or more stones of a cluster
receive wire impulses originating from a single event, the whole cluster will move multiple
times. But it will sink on the first opportunity.

Just single unconnected yellow puzzle stones can be moved by actors. They will neither
sink in Section 7.4.12 [fl water], page 177 nor fall in Section 7.4.1 [fl abyss], page 167. Any
yellow cluster of two or more stones can not be moved by actor hits. But on receiving stone
impulses they move like blue puzzles.

All puzzle stone moves do not cause standard item transformations, like Section 8.3.8
[it coin], page 187 value changes, Section 8.4.2 [it bomb], page 209 explosions, etc. But
they all are not floating and thus do press Section 8.4.18 [it trigger], page 224s and close
Section 7.4.2 [fl bridge], page 168s.

Hollow puzzle stones let pass actors, either moving on the floor or jumping, and laser
light without any interaction, too.

Complete clusters can explode and dissolve. A precondition is that the cluster is isolated
from any adjacent, same colored further puzzle stone. Such clusters explode on an additional
new laser beam hitting one of its solid stones. Yellow ones explode on any actor hit. Blue
ones only on actor hits with a revealed Section 8.3.19 [it magicwand], page 195. Additionally
complete clusters will explode when an Section 11.1.1 [ot cannonball], page 326 emitted by
an Section 9.5.57 [st spitter], page 298 happens to fall on top of one of the puzzle stones of
the cluster.

Exploding puzzles will stay in place and do not interact any more. The exploding stones
are lethal for actors hitting them, but an actor can start an explosion beneath a hollow
puzzle stone and stay beneath this hollow exploding stone without harm until the puzzle
dissolved.

Puzzles can be rearranged by column and row rotations. Blue puzzle react just on actor
hits with a revealed wand, yellow ones on any actor hit. All colors do rotate on laser light
hits. All rotations can originate only on a solid puzzle stone. All subsequent puzzle stones
of the same color will shift away with the last puzzle of the line returning to the origin.
This operation is called "push_rotate" and can be initiated by a message, too.

In case of actor hits possible explosions precede moves, which precede rotation operations.
Thus you need to touch a blue puzzle row carefully with a revealed wand if the row is part
of a movable cluster fragment. If the speed is sufficient for a hit operation, the cluster
will move instead of an expected row rotation. An actor hit on a blue puzzle that did
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neither cause an explosion or a rotation will be propagated by an Section 11.1.3 [ot wire],
page 327 connected to this puzzle stone. Hits on yellow puzzle stones will never propagate
to Section 11.1.3 [ot wire], page 327 connected other stones.

Like Section 9.4 [Cluster Stones], page 237 puzzles accept a ‘cluster’ attribute. A
new set puzzle stone autoconnects to adjacent, same colored puzzle stones belonging to the
same cluster. But once set the puzzle stone will of course not change its connections on
subsequent moves or rotations. But as a level author you need to think of possible puzzle
stones pushed to positions neighboring an area on which a puzzle might be set during the
running game. The new set stones may autoconnect to such unexpected stones if the color
and cluster number fits.

The resolver Section 13.1.6 [res.puzzle], page 378 provides easy methods to set and shuffle
puzzles. The attributes ‘algorithm’ and ‘intensity’ are used by the resolver only.

If you need to shuffle a puzzle of your own, you can make use of the messages
‘get_adjacents’ which returns the group of color matching, adjacent puzzle stones, and
‘pull_rotate’ which is the exact inversion of a push rotation.

Attributes:
color values: BLUE, YELLOW; default : BLUE

The color of the puzzle stubs. Adjacent puzzle stones of matching colors and
connections cluster to fragments.

connections, values: string; default : nil
Describes the connection stubs of the puzzle stone. The string is a substring of
"nesw" listing the stubs. The sequence of the sides, north, east, south, west, is
guaranteed on read access but arbitrary on write access.

cluster values: number; default : nil
If set to a number all adjacent puzzle stones of the same color with the identical
cluster number will build a cluster. This attribute supersedes any explicitly
given connection description.

hollow values: true, false; default : false
A hollow puzzle stone has a hole in its middle and allows actors to pass beneath.

algorithm, values: string; default : nil
intensity values: number; default : 3
Messages:

get adjacents
Returns the huddle of all adjacent puzzle stones of same color in-
dependent of being connected or not. The huddle is returned as a
group.

pull rotate, value type: orientation
Perform a reverse ‘push_rotate’ from this puzzle stones with the
line of puzzle stone into the given direction.

push rotate, value type: orientation
Perform a line rotation as described above from this puzzle stones
with the line of puzzle stone into the given direction.
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Action: none
Variants:

st puzzle blue: color = BLUE, con-
nections = "", hollow = false

st puzzle blue: color = BLUE, con-
nections = "w", hollow = false

st puzzle blue: color = BLUE, con-
nections = "s", hollow = false

st puzzle blue: color = BLUE, con-
nections = "sw", hollow = false

st puzzle blue: color = BLUE, con-
nections = "e", hollow = false

st puzzle blue: color = BLUE, con-
nections = "ew", hollow = false

st puzzle blue: color = BLUE, con-
nections = "es", hollow = false

st puzzle blue: color = BLUE, con-
nections = "esw", hollow = false

st puzzle blue: color = BLUE, con-
nections = "n", hollow = false

st puzzle blue: color = BLUE, con-
nections = "nw", hollow = false

st puzzle blue: color = BLUE, con-
nections = "ns", hollow = false

st puzzle blue: color = BLUE, con-
nections = "nsw", hollow = false

st puzzle blue: color = BLUE, con-
nections = "ne", hollow = false

st puzzle blue: color = BLUE, con-
nections = "new", hollow = false

st puzzle blue: color = BLUE, con-
nections = "nes", hollow = false

st puzzle blue: color = BLUE, con-
nections = "nesw", hollow = false

st puzzle blue: color = BLUE, con-
nections = "", hollow = true

st puzzle blue: color = BLUE, con-
nections = "w", hollow = true

st puzzle blue: color = BLUE, con-
nections = "s", hollow = true

st puzzle blue: color = BLUE, con-
nections = "sw", hollow = true

st puzzle blue: color = BLUE, con-
nections = "e", hollow = true

st puzzle blue: color = BLUE, con-
nections = "ew", hollow = true
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st puzzle blue: color = BLUE, con-
nections = "es", hollow = true

st puzzle blue: color = BLUE, con-
nections = "esw", hollow = true

st puzzle blue: color = BLUE, con-
nections = "n", hollow = true

st puzzle blue: color = BLUE, con-
nections = "nw", hollow = true

st puzzle blue: color = BLUE, con-
nections = "ns", hollow = true

st puzzle blue: color = BLUE, con-
nections = "nsw", hollow = true

st puzzle blue: color = BLUE, con-
nections = "ne", hollow = true

st puzzle blue: color = BLUE, con-
nections = "new", hollow = true

st puzzle blue: color = BLUE, con-
nections = "nes", hollow = true

st puzzle blue: color = BLUE, con-
nections = "nesw", hollow = true

st puzzle yellow: color = YELLOW,
connections = "", hollow = false

st puzzle yellow: color = YELLOW,
connections = "w", hollow = false

st puzzle yellow: color = YELLOW,
connections = "s", hollow = false

st puzzle yellow: color = YELLOW,
connections = "sw", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "e", hollow = false

st puzzle yellow: color = YELLOW,
connections = "ew", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "es", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "esw", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "n", hollow = false

st puzzle yellow: color = YELLOW,
connections = "nw", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "ns", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "nsw", hollow =
false
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st puzzle yellow: color = YELLOW,
connections = "ne", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "new", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "nes", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "nesw", hollow =
false

st puzzle yellow: color = YELLOW,
connections = "", hollow = true

st puzzle yellow: color = YELLOW,
connections = "w", hollow = true

st puzzle yellow: color = YELLOW,
connections = "s", hollow = true

st puzzle yellow: color = YELLOW,
connections = "sw", hollow = true

st puzzle yellow: color = YELLOW,
connections = "e", hollow = true

st puzzle yellow: color = YELLOW,
connections = "ew", hollow = true

st puzzle yellow: color = YELLOW,
connections = "es", hollow = true

st puzzle yellow: color = YELLOW,
connections = "esw", hollow =
true

st puzzle yellow: color = YELLOW,
connections = "n", hollow = true

st puzzle yellow: color = YELLOW,
connections = "nw", hollow = true

st puzzle yellow: color = YELLOW,
connections = "ns", hollow = true

st puzzle yellow: color = YELLOW,
connections = "nsw", hollow =
true

st puzzle yellow: color = YELLOW,
connections = "ne", hollow = true

st puzzle yellow: color = YELLOW,
connections = "new", hollow =
true

st puzzle yellow: color = YELLOW,
connections = "nes", hollow =
true

st puzzle yellow: color = YELLOW,
connections = "nesw", hollow =
true
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9.5.50 st quake

This stone looks like an Section 9.5.42 [st oxyd], page 281 of flavor "b", but it has the
unpleasant habit of quaking when being activated. Unfortunately this closes all open
Section 9.5.42 [st oxyd], page 281s.

The stone gets activated on an actor hit, on Section 9.5.6 [st boulder], page 244s hit and
on its destruction.

The player can destroy this troublemaker with an actor that reveals an Section 8.3.17
[it hammer], page 194, by directing a laser light onto the quake stone or by a nearby
explosion or ignition.

Of course you can activate and destroy it by messages and state set operations, too.

Attributes:

state, values: IDLE, ACTIVE, BREAKING; default : IDLE: See Section 6.1.2
[state], page 126

Current state of the quake stone. You can just change the state
into legal follow up states. A breaking state is final.

Messages:

toggle See Section 6.2.1 [toggle], page 130
Toggles stone from ‘IDLE’ to ‘ACTIVE’

signal See Section 6.2.3 [signal], page 131
Toggles stone from ‘IDLE’ to ‘ACTIVE’

ignite Toggles stone to ‘BREAKING’

Action: none

st quake: state = IDLE

st quake: state = ACTIVE

st quake: state = BREAKING

9.5.51 st rawglass

A block of raw glass. It exists in static and movable variants and is by its very nature
transparent to laser light. Like other Section 9.6.1 [Transparent Stones], page 313 it is
passable for invisible actors.

This stone comes in a second texture variant that looks like being composed of 4 small
rawglasses. This ‘quad’ variant is not movable.

Attributes:

movable values: true, false; default : false; access: read only See
Section 9.2.6 [movable], page 233

Messages: none
Variants:
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st rawglass: movable = false

st rawglass quad: movable = false

st rawglass movable: movable = true

9.5.52 st redfiber

A metal frame with woven red fiber. Like other Section 9.6.1 [Transparent Stones], page 313
it is passable transparent to laser light. But the redfiber is not passable to any actors.

Attributes: none
Messages: none
Variants:

st redfiber

9.5.53 st rotator

Rotators send impulses to neighboring stones, thus pushing them in the direction given by
the rotation. Section 9.5.6 [st boulder], page 244 additionally change their orientation to
the one they are pushed to.

Rotators can either rotate in clockwise or counterclockwise direction. They can be
movable or unmovable.

The rotator changes its rotation direction when hit by an actor with a revealed
Section 8.3.34 [it wrench], page 206 and by laser beams. Every additional laser beam
causes a change in the rotation direction.

Attributes:

state, values: CW, CCW; default : CW See Section 6.1.2 [state], page 126
The rotation direction - ‘CW’ for clockwise as default, or ‘CCW’ for
counter clockwise.

counterclock values: true, false; default : false
The standard rotation direction is clockwise. Use this attribute to
revert the direction.

movable values: true, false; default : false See Section 9.2.6 [movable],
page 233

Messages:

toggle See Section 6.2.1 [toggle], page 130
Switches the rotation direction.

Variants:
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st rotator: state = CW

st rotator cw: state = CW

st rotator ccw: state = CCW

9.5.54 st rubberband

A rubberband stone attaches a new Section 11.1.2 [ot rubberband], page 326 between actors
hitting it and itself.

No rubberband is attached if the hitting actor is already connected to this particular
stone.

If the attribute ‘scissor’ is ‘true’, all rubberbands connected to the hitting actor are
removed prior to attaching the direct new connection.

The rubberband stone is static by default. But an actor with a revealed Section 8.3.19
[it magicwand], page 195 can move it by hitting it. As the actor will get connected by
an Section 11.1.2 [ot rubberband], page 326 at the same time you will usually place an
Section 9.5.55 [st scissors], page 296 near the target place as an opportunity for the marble
to free itself again from the rubberband stone.

Attributes:

strength values: number; default : 10.0
The force strength.

length values: positive number or AUTOLENGTH; default : 1.0
The natural length above which forces are applied.

threshold values: positive number or zero; default : 0.0
The length smaller than the natural length below which inverted
forces are applied.

min values: positive number or zero; default : 0.0
The minimum length at which actors bounce.

max values: positive number or zero; default : 0.0
The maximum length at which actors bounce.

scissor, values: true, false; default : true
Rubberband cutting behaviour on connection.

Messages: none
Variants:

st rubberband

9.5.55 st scissors

This stone cuts all Section 11.1.2 [ot rubberband], page 326s attached to an actor that
touches it. When at least one rubber band is cut, it performs the action given in the
action/target-pair.
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Attributes: none
Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127

Sends an action message with value ‘true’ on freeing an actor from its rubber-
bands.

Variants:

st scissors

9.5.56 st shogun

Shogun stones are nestable stones like Fukuroma or Matryoshka dolls. The different basic
variations are distinguishable by their central hole. Small, medium and large ones do exist.
In contrast to the Fukuroma dolls you can push smaller variations beneath the larger ones
but not vice versa. You can see smaller shoguns pushed beneath larger ones through the
upper, larger hole. Thus the player is always aware of the stack of shogun stones positioned
on a single grid.

An actor or a stone impulse hitting a shogun stack will push the smallest shogun out
of the stack. The upper and larger shogun stones can never be moved out of a stack and
larger shoguns stones can never be pushed over smaller ones.

Section 8.4.13 [it shogun], page 220 are a special trigger type for shogun stones repre-
sented by animated blue dots. They just react on shogun stacks positioned on top of the
dot items. All shogun sizes must be present from the smallest up to the size of the dot
itself.

Shogun stones press Section 8.4.18 [it trigger], page 224, too. But all other items
that react on other stones being pushed over them will not react on shogun stones. E.g.
Section 8.3.26 [it seed], page 201 will not grow, Section 8.4.2 [it bomb], page 209 will not
explode, Section 8.3.8 [it coin], page 187 will not transform and Section 8.3.6 [it cherry],
page 186 will not smash.

All shogun stones keep their identity even if they are pushed together onto a single grid.
Thus each shogun can be connected independently to Section 11.1.3 [ot wire], page 327s or
Section 11.1.2 [ot rubberband], page 326s. On initialization you can set a stack of shogun
onto a grid by setting a single shogun stone with a combined flavor string. The largest
shogun stone of a stack will be positioned onto the grid and all smaller ones being part of
the stack will be contained by the largest one. You can name the smaller shoguns of a stack
by the additional attributes ‘name_m’ and ‘name_s’. Every shogun, even those being part of
a stack can individually be killed by sending a Section 6.2.11 [kill], page 132 message to it.
By setting another stone or ‘st_nil’ onto the grid currently being occupied by a shogun
grid all shogun stones being part of the stack will be killed.

Attributes:

flavor, values: "s", "m", "l", "sm", "sl", "ml", "sml"; default : "s";
access: after initialization read only

A string describing the hole sizes of this shogun stone and all smaller
shogun stones that are positioned beneath this stone. "s" for a
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small hole, "m" for a medium hole, "l" for a large hole, plus combi-
nations of these characters for stacks. On initialization all shoguns
of this grid’s stack will be set according to this attribute, which
can be prior set. After initialization this attribute is read only and
reports the current stack configuration. The character sequence is
guaranteed to be sorted from small to large on read access but is
arbitrary on initial write access.

name m values: string; default : nil
Name of the middle sized shogun as subpart of a stack of a large
shogun.

name s values: string; default : nil
Name of the small sized shogun as subpart of a stack of a large or
middle sized shogun.

Messages: none
Action: none
Variants:

st shogun: flavor = "s"

st shogun s: flavor = "s"

st shogun m: flavor = "m"

st shogun sm: flavor = "sm"

st shogun l: flavor = "l"

st shogun sl: flavor = "sl"

st shogun ml: flavor = "ml"

st shogun sml: flavor = "sml"

9.5.57 st spitter

A stone that spits Section 11.1.1 [ot cannonball], page 326s on actor hits and on proper
messages. The standard spitter is ‘ACTIVE’ showing a slow rotating animation. In this
‘state’ the spitter reacts on actor hits, while being ‘IDLE’ it is steady and will spit just on
messages.



Chapter 9: Stone Objects 299

On an actor hit the spitter checks the owner’s inventory for an existing Section 8.3.13
[it extralife], page 191. If one exists that is not stuffed in a Section 8.3.1 [it bag], page 182,
it takes it and spits an Section 11.1.1 [ot cannonball], page 326 according to the actors
velocity and its own hit attributes. The cannonball flies into the resulting direction with a
speed that is proportional to the actors hit speed.

All cannonballs fly the same period of time. They fly above all other objects and cross
all stone walls. The flight distance is proportional to their initial speed. On landing they
cause actions on some objects and destroy others:

• Section 9.5.42 [st oxyd], page 281 do open,

• Section 9.5.58 [st stoneimpulse], page 300 do pulse,

• Section 9.5.68 [st yinyang], page 312 do toggle,

• Section 9.5.49 [st puzzle], page 288 do explode completely connected clusters,

• Section 9.5.10 [st brownpyramid], page 249 do break,

• Section 9.5.57 [st spitter], page 298 do break, if not being ‘secure’

• other stones do remain unmodified and protect items and floors,

• Section 8.3.11 [it dynamite], page 189 do ignite,

• Section 8.4.4 [it crack], page 211 do crack,

• other indestructible items do remain and protect floors,

• other items are blown away by an Section 8.4.7 [it explosion], page 214 debris that
may destruct the floor,too,

• floors dissolve via an Section 8.4.7 [it explosion], page 214 debris if not being inde-
structible as Section 7.4.12 [fl water], page 177, Section 7.4.10 [fl swamp], page 176,
Section 7.4.1 [fl abyss], page 167.

Actors will not be harmed by falling cannonballs.

The spitting can be initiated by the message "hit", too. No Section 8.3.13 [it extralife],
page 191 is needed in this case. The hit message takes either a destination as message value
or in case no value is given it evaluates the ‘destination’ attribute. The second case is
suitable for usage of ‘hit’ as an action message.

The destination can be any value that evaluates to a valid position, object references
and object names included. In case of a ‘destination’ attribute you can even supply
tokens describing a series of destination positions. The destinations will be targeted by the
cannonballs in turn on a sequence of ‘hit’ actions.

Note that the destruction of target objects can have unexpected side effects on the desti-
nation sequence. If you list three Section 9.5.58 [st stoneimpulse], page 300 as destinations
they will be targeted in the given sequence as none of them gets destroyed. But if you
list three Section 9.5.10 [st brownpyramid], page 249 the first cannonball destroys the first
target, leaving two valid destinations. The spitter now targets the second target of its list,
which happens to evaluate to the third brown pyramid stone. Finally the destination list has
just one still existing brown pyramid, the second one, as target. This one will be destroyed
on the next spit as the spitter starts again on the first (remaining) destination when the
end of list is reached. This may be no problem if you want to destroy objects randomly or if
you use named destinations with wildcards. But if you need control about the sequence you
need either destinations targets that get not destroyed or floor object references, as they
represent Section 4.4.5 [Named Positions], page 61 that are persistent to object destruction.
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Attributes:

state, values: IDLE, ACTIVE; default : ACTIVE See Section 6.1.2 [state],
page 126

An ‘ACTIVE’ spitter is animated and reacts on actor hits while an
‘IDLE’ looks steady and does not spit on actor hits.

hit strength values: floating point numbers; default : 1.0; See
Section 9.2.3 [hit *], page 232
hit distortion xx values: floating point numbers; default : 1.0; See
Section 9.2.3 [hit *], page 232
hit distortion xy values: floating point numbers; default : 0.0; See
Section 9.2.3 [hit *], page 232
hit distortion yx values: floating point numbers; default : 0.0; See
Section 9.2.3 [hit *], page 232
hit distortion yy values: floating point numbers; default : 1.0; See
Section 9.2.3 [hit *], page 232
destination, values: tokens or position; default : nil See Section 6.1.8
[destination], page 128

The destination of the cannonball given by an object or a position.

secure values: true, false; default : false
Unsecure spitters do break on a Section 11.1.1 [ot cannonball],
page 326 hit.

Messages:

hit Spit a cannonball. Takes either a destination as message value or
‘nil’.

Variants:

st spitter: secure = false, state = ACTIVE

9.5.58 st stoneimpulse

When being triggered these stones do pulse and send stone pushing impulses to their direct
neighbors. There exist solid, hollow and movable variants of this stone.

The pulsing can either be triggered by an actor touching or hitting the stone, by re-
ceiving a stone impulse from a neighboring Section 9.5.58 [st stoneimpulse], page 300, via
Section 11.1.3 [ot wire], page 327 or a dropped Section 8.3.23 [it puller], page 198. Further
on laser light, an Section 9.5.6 [st boulder], page 244 hitting and of course messages will
cause the pulsing, too.

Even though the three major variants can be set by attributes, they are mutual exclusive.
A ‘hollow’ stone is never movable or solid and vice versa. That means setting one of these
basic attributes will reset the others to their defaults.

A movable stoneimpulse being pushed will pulse due to the actor hit at the new grid
position. Even when it is pushed while pulsing it will continue the running pulse animation
on the new grid and if necessary it will repulse to guarantee that impulses are send to the
neighboring stones at the new position.
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But if an actor with a revealed Section 8.3.19 [it magicwand], page 195 pushes a movable
stoneimpulse it will move without any additional pulse.

In general stoneimpulse stones are very responsive to actor contacts. The slightest touch
is sufficient to cause a pulsing. Hollow stones will shatter actors beneath it while pulsing.

Hollow stoneimpulse stones are transparent to laserlight and thus do not react. But all
other stones do pulse. A standard not ‘steady’ stoneimpulse will pulse just one time on
each new added light beam. But if you set ‘steady’ to true the stone will continue pulsing
as long as a single beam hits one of its sides.

An Section 9.5.6 [st boulder], page 244 that hits a stoneimpulse causes it to pulse once.
The impulse will not backfire onto the Section 9.5.6 [st boulder], page 244. It will just
propagate to the other three directions. Thus the boulder remains aside the stoneimpulse.
But when the stoneimpulse gets activated otherwise it will push back the boulder, which
will in return hit the stoneimpulse again.

An Section 11.1.1 [ot cannonball], page 326 emitted from an Section 9.5.57 [st spitter],
page 298 and now falling onto a stoneimpulse causes it to pulse, too.

On a chain of stoneimpulse stones the pulsing will propagate along the chain without
backfiring, as the previous stone is still active when its successor impulses. This feature lets
propagate a linear front of impulses through a field of stoneimpulse stones as expected.

If you want to setup a linear circle of stoneimpulse stones with an impulse wandering
around the circle in one direction forever, you should insert one ‘st_stoneimpulse_new’
into the chain. According to the Section 4.4.2 [Snapshot Principle], page 59 it is a stone
that is just about to start pulsing. You need to set the attribute ‘orientation’, which is
just evaluated for new stones when set to the grid. It takes the incoming direction of the
impulse when it reached the new stone. E.g. an orientation of east means that the stone
received an impulse from a stone located west of it which was bound to east. Thus the
stone will emit impulses to all directions but west.

Impulse stones will be destroyed by Section 8.3.11 [it dynamite], page 189 exploding on
one of the eight neighboring grid positions while the stone is enlightened by a laser. But
other explosions, including Section 8.4.2 [it bomb], page 209, will not effect stoneimpulse
stones.

Attributes:

movable values: true, false; default : false
Movable stones are not hollow.

hollow values: true, false; default : false
Hollow stones are neither movable, nor steady.

steady values: true, false; default : false
Steady stones send continuous impulses while exposed to laser light.
Steady stones are not hollow.

Messages:

signal See Section 6.2.3 [signal], page 131
Pulse at a value of ‘1’.

Action: none
Variants:
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st stoneimpulse

st stoneimpulse movable: movable = true

st stoneimpulse hollow: hollow = true

st stoneimpulse steady: steady = true

st stoneimpulse new:
A stone that is about to pulse when being set.

9.5.59 st surprise

A stone that transforms into a random stone as soon as an actor hits it.

The replacement stone is a random one out of a given selection. You can set the
‘selection’ attribute with tokens of strings. Every string needs either to be an Section 4.2.1
[Object Kind], page 50 or a tile key prefixed by an equal sign ‘=’.

ti["b"] = {"st_brake"}

ti["d"] = {"st_death"}

ti["s"] = {"st_surprise", selection={"st_chess", "=b", "=d", "=d"}}

The replacement stone is randomly chosen out of the given selection. By listing a stone
several times you can take influence on the likelihood.

The tile declarations referenced by a key may even contain objects besides stone. But
you should make rare and proper usage of this feature.

Prior replacing the surprise stone the surprise stone will perform its action. You can use
this action to modify the selection or to set objects on your own.

The surprise stone is killed by any replacement stone set to the grid position. If your
selection does not resolve to a stone you may need to add "st_nil" to the replacement tile
declaration.

Attributes:

selection, values: tokens of stone kinds and tile keys; default :
{"st_grate_cross", "st_death", "st_surprise",

"st_lightglass_hollow", "st_knight", "st_thief",

"st_flat_breakable", "st_flat_breaking"}

Messages:

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st surprise
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9.5.60 st swap

A swap stone can exchange its position with a neighboring stone on the side in direction of
the initiating impulse. It is not freely movable by pushes. But when an actor hits a swap
stone and another stone is located on the opposite side of the swap stone, both stones will
exchange their positions. The swap will also be performed when the swap stone receives
a stone impulse via an Section 11.1.3 [ot wire], page 327 or a neighboring Section 9.5.58
[st stoneimpulse], page 300. A similar stone it the Section 9.5.48 [st pull], page 287, that
exchanges with stones in the reverse direction of the initiating impulse.

An existing stone exchange partner is mandatory. Nearly all stones can be swapped. Just
connected Section 9.4 [Cluster Stones], page 237 building a block, Section 9.5.42 [st oxyd],
page 281 configured as being ‘static’, and another swap stone or Section 9.5.48 [st pull],
page 287 that is currently engaged in an own stone exchange operation will refuse swapping.

Stone exchanges will not cause item hit transformations as caused by push moved stones.
But the exchanged stones will react on the new floor, e.g. causing Section 9.5.7 [st box],
page 246 to sink into water.

Further on the exchange is atomic concerning Section 8.4.18 [it trigger], page 224 detec-
tion and laser light transparency. If the exchanged stone is transparent, the light will pass
on every time slice just on one of the two grids. If the exchanged stone is floating and does
not press Section 8.4.18 [it trigger], page 224s, the swap stone will press just one trigger,
releasing the trigger of the old position before pressing the new position’s trigger like any
other stone being pushed from one grid to the next.

Attributes: none
Messages: none
Action: none
Variants:

st swap

9.5.61 st switch

A classical on/off switch that toggles its state on actors hitting the stone. Of course other
objects can send messages on actions to make this switch turning.

Three variants of the switch do exist. A neutral, grey colored one that reacts on any
actor hits, and a black and a white colored switch. These last two switches will react only
if hit by actors of matching color.

If a switch turns on or off there will be a short delay until it reaches the new state
and performs it actions. If you need a switch without delay you need to set the ‘instant’
attribute.

Attributes:

state, values: ON, OFF; default : OFF See Section 6.1.2 [state], page 126
color values: nil, BLACK, WHITE; default : nil

The color of the switch that needs to match the hitting actor to
cause a toggle. The default ‘nil’ color is a grey switch that matches
all actors, marbles, pearls or killers of any color as well as all other
actors.
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instant values: true, false; default : false
A default switch requires a short time equivalent to the animation
until the new state is reached and the actions are performed. An
instant switch jumps directly into the new state.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’, and off at values ‘0’.

on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st switch

st switch black: color = BLACK

st switch white: color = WHITE

9.5.62 st thief

A thief steals an item from the player’s inventory when it is hit by an owned actor. Unfor-
tunately the thief is visually indistinguishable from a Section 9.3.2 [st bluegray], page 233.

The item is not directly stolen at the moment of the hit. The hit itself just causes the
thief to emerge from his hiding-place. The thief steals from the actor that did hit the stone
at the moment of maximum visibility. He takes a random item from the owner’s inventory.
But he just will steal an item if the actor is not shielded due to an activated Section 8.3.32
[it umbrella], page 205.

Thieves have an addiction to alcohol. Thus they get drunken and inactive if they happen
to steal a bottle filled with stuff.

Thieves have an enemy - the Section 9.5.13 [st chess], page 250. If a chess stone is
pushed onto a thief it will capture the thief, sober or drunken. The thief stone vanishes
and the chess stone jumps onto its position. But the thief will leave behind on the grid all
stolen items in his own Section 8.3.1 [it bag], page 182. If an item happens to be positioned
beneath the captured thief stone, this item will be added to the thief’s bag, too. If the thief
has not stolen any items he leaves no empty bag.

Attributes: none
Messages: none
Action: none
Variants:
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st thief: hidden

st thief: showing up at the moment when stealing items

st thief: when being captured

st thief: drunken thief

9.5.63 st timer

This stone can be used to trigger a delayed single or periodic events. An active, switched on
timer is usually visualized by an animation. An inactive, switched off timer shows a static
image. An alternative to an invisible timer stone is an Section 11.2.2 [ot timer], page 329
gadget.

Note that this is an exceptional object as its default state is ‘ON’ to support the most
common case of immediately running timers.

A single shot, not looping timer will send an action value of ‘true’. A looping timer will
alternate the boolean action values starting with value ‘true’. You can use Section 6.1.7
[inverse], page 128 to start with a value of ‘false’.

If you stop a timer by switching it off, no further events will be performed. Restarting
the timer by switching it on again will restart the timer like a new timer.

The time interval to the first event and between subsequent events can be relied on to
an accuracy of 0.01 seconds. But due to performance reasons and visibility of the reactions
timers should not be set to intervals below 0.1 seconds. An interval of less than 0.01 seconds
is not valid for a looping timer.

Attributes:

state, values: ON, OFF; default : ON See Section 6.1.2 [state], page 126
An ‘ON’ state timer is running. A timer in state ‘OFF’ is reset and
waiting for reactivation.

invisible values: true, false; default : false
An invisible timer is totally transparent. But the user may notice
it, as actors cannot pass and other stones cannot be moved onto
the same grid position.

interval values: positive number; default : 1.0
Number of seconds until the first and between subsequent events.
The interval must be larger or equal 0.01 seconds for looping timers.

loop values: true, false; default : true
A looping timer will send periodic events.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’, and off at values ‘0’.
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on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
The action value starts with ‘true’ and alternates on every event between
‘false’ and ‘true’. A timer that is reset starts again with value ‘true’

Variants:

st timer: state = OFF

st timer: state = ON

9.5.64 st turnstile

A turnstile is a stone cluster that consists of a central pivot, this ‘st_turnstile’, and up
to four neighboring Section 9.5.65 [st turnstilearm], page 307s of connecting orientations.
When one the arms is hit by an actor or receives a stone pushing impulse by another object
(e.g. ‘st_rotator’, ‘ot_wire’, ‘it_puller’, ...), the whole cluster turns by 90 degrees into
the impulse direction. Of course the turnstile complex just turns if it is not blocked by
other stones in its surrounding. Even movable stones will block turnstiles.

There are two ‘flavor’s of turnstiles. The common ‘red’ version pulls only the actor,
that did hit the arm. It keeps it behind the ‘st_turnstilearm’ and shatters all oth-
ers in its surrounding. Whereas the ‘green’ version pushes all actors with its attached
‘st_turnstilearm’s and keeps them in front of the arms. Just actors being in range of
the arms will be pushed. That means that they need to be in a distance of less than 1.5
grids to the center of the pivot. Thus actors located at the very edge of the diagonal grid
positions will not be pushed. As actors can not be moved out of the world, a green turnstile
positioned at the level border that moves an arm to the border will shatter actors instead.

Any actor moved by a turnstile is directly warped to its new position without touching
any grid in between. Thus actors can pass abyss or water floors, but they will not grab any
items located on the grid positions in between. The relative position of an actor within the
grid is maintained during its circular move. Thus two small actors moved at the same time
keep their relative positioning. It is guaranteed that any moved actors will fall even into a
tiny Section 8.4.11 [it meditation], page 217 dent that is positioned at the destination grid.

Items in the range of the rotating arms will act like a stone being pushed over them.

When green turnstiles push actors to a diagonal grid position they will push away an
Section 9.5.65 [st turnstilearm], page 307, and just this single kind of stone, if it is located
on this target grid. This feature can be used to intertwine several turnstiles as it can be
seen in the level ‘ZigZag’.

There are two other ways of coupling turnstiles. You can simply set another
‘st_turnstile’ as the target of a first one and perform a ‘signal’ action. This will turn
both turnstiles in the same direction. But if one is blocked the rotations will desynchronize.

Another way is the coupling of two Section 9.5.65 [st turnstilearm], page 307s via an
Section 11.1.3 [ot wire], page 327. A turnstile will propagate its rotation impulses via an
wire that is connected at one of its arms. Two turnstiles connected by wired arms will
resynchronize in their rotation even if one of them is temporarily blocked.
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Turnstiles can be turned by standard messages and attributes. They do even evaluate
the turns and keep the attribute ‘orientation’ up to date for easy read evaluation of the
current turnstile orientation.

Attributes:

flavor values: "red", "green"; default : "red"
The distinguishing color of the pivot that signals the behaviour.

counterclock values: true, false; default : false
The standard turning direction is clockwise. Use this attribute to
revert the direction.

orientation, values: NORTH, EAST, SOUTH, WEST; default : NORTH
The orientation of the turnstile that is only visible by its arms.
Setting this attribute just defines a new base, but does not turn
the turnstile as the orientation would not be defined. But every
rotation does update this attribute relative to its previous value.

Messages:

signal See Section 6.2.3 [signal], page 131
Rotates the turnstile counterclockwise on ‘1’, and clockwise at val-
ues ‘0’.

turn Turns in turning direction as defined by attribute ‘counterclock’.

turnback Turns in opposite turning direction as defined by attribute
‘counterclock’.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
At the end of each turn the action is performed with a value of ‘true’ on
counterclock turns and ‘false’ on clockwise turns.

Variants:

st turnstile: flavor = "red"

st turnstile red: flavor = "red"

st turnstile green: flavor = "green"

9.5.65 st turnstilearm

An arm that usually connects to an Section 9.5.64 [st turnstile], page 306 pivot building a
turnstile cluster. The arm’s subkind suffix, its state and orientation are named according
to the arm’s position within the turnstile cluster. Thus a ‘NORTH’ arm has a single standard
connection of "s", the reverse orientation.

As long as a turnstile arm is not connected to a pivot it is a free movable stone. Inten-
tionally it is visually indistinguishable from a Section 9.5.49 [st puzzle], page 288 with the
same connections. But neither an arm will not connect to other Section 9.5.49 [st puzzle],
page 288 nor a puzzle to a pivot.
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An arm is connected to a pivot on a neighboring grid position solely by a matching
connection. It is no longer freely movable. All its impulses will turn the Section 9.5.64
[st turnstile], page 306 cluster instead.

A special move of an arm is due to actors being moved by another green Section 9.5.64
[st turnstile], page 306 to its position. The arm receives an impulse by the other pivot and
will either move straight forward or turn its own pivot if being part of a cluster.

The orientation of an arm can be set by attribute or messages. Neither way will generate
an impulse to turn a connected turnstile cluster. The arm will be reorientated alone.

Attributes:

state, values: NORTH, EAST, SOUTH, WEST; default : NORTH See Section 6.1.2
[state], page 126

The position of an arm in a turnstile cluster.

orientation, values: NORTH, EAST, SOUTH, WEST; default : NORTH
The position of an arm in a turnstile cluster.

connections values: string; default : "s"
Describes the Section 9.5.49 [st puzzle], page 288 like connection
that is the opposite of the orientation. The string is a string of a
single character describing the sole connection.

Messages:

orientate, value type: orientation
Change the orientation to the given orientation value. The
Section 9.5.24 [st fourswitch], page 262 provides a compatible
action which allows you to set an arm as target and this message
as action.

Action: none
Variants:

st turnstilearm: orientation = NORTH

st turnstilearm n: orientation = NORTH

st turnstilearm e: orientation = EAST

st turnstilearm s: orientation = SOUTH

st turnstilearm w: orientation = WEST

9.5.66 st volcano

A volcano stone spreads slowly to neighboring grid positions filling up complete areas and
will just stop on boundaries set by other stones.
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A volcano can either start by the setting of an ‘ACTIVE’ variant, by an inactive ‘IDLE’
variant being triggered by a message or a hitting Section 9.5.6 [st boulder], page 244, or by
an Section 8.3.26 [it seed], page 201 of flavor volcano being dropped or triggered.

Once being activated a volcano stone spreads randomly to its direct neighbor positions.
Even though the new set volcano seeds can be passed by actors without harm for a short
period of time the volcano gets lethal while growing. After reaching its full size a volcano
remains for a random time in an active, glowing state spreading to neighbour positions.
During this phase an actor with a revealed Section 8.3.17 [it hammer], page 194 can destroy
the active volcano stone.

The spreading of the volcano can be made ‘secure’ by setting this attribute to ‘true’.
Per default the spreading in not secure and a volcano may stop spreading with a certain
chance anywhere, but especially in narrow gateways. In contrast a secure volcano remains
active until it is guaranteed that all its neighbor grid positions will be filled with volcano
stones.

After its active phase a volcano reaches its final inactive state and can not be reactivated
anymore.

A volcano stone will press any Section 8.4.18 [it trigger], page 224 as soon as it starts
growing.

!!Work in progress!! special behaviour on items and floors may yet be added

Attributes:

state, values: IDLE, ACTIVE; default : IDLE See Section 6.1.2 [state],
page 126

Inactive, finished and breaking volcano will report an ‘IDLE’ state,
new, growing and active volcano will report an ‘ACTIVE’ state. An
inactive volcano can be activated by setting the state to ‘ACTIVE’.
All other attempts to set the state will be silently ignored.

secure values: true, false; default : false
A secure volcano will spread a complete area with guarantee.

Messages:

toggle See Section 6.2.1 [toggle], page 130
Activates an inactive volcano stone.

Variants:

st volcano: state = IDLE

st volcano idle: state = IDLE

st volcano active: state = ACTIVE

st volcano new:
An active volcano starting in the seed like phase.
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st volcano growing:
An active volcano starting in the growing phase.

9.5.67 st window

A stone made up just of glass window faces. All combinations of window faces with at least
one face are possible. There exist two versions of windows, normal blue colored glass and
green colored safety glass, that is nearly indestructible. Safety glass is selected by setting
the attribute ‘secure’ to ‘true’. Every glass face can be weakened by ‘scratches’ which
are visible in the shadows.

All windows are transparent to laser light.

Slowly moving actors will bounce from window faces on any side. They can freely move
within the inner part of the window stone. Invisible actors can even pass the normal blue
window faces, but not the green safety glass faces.

Fast moving actors can blast normal blue window faces into smithereens. But too strong
hits will cause marbles to shatter themselves. An actor can lower the required speed by
adding Section 8.3.33 [it weight], page 206, by revealing an Section 8.3.17 [it hammer],
page 194, or by weakening the window faces by prior scratching it with an Section 8.3.24
[it ring], page 199. Green safety glass windows will never break on actor attacks and actors
will not shatter on hitting safety glass.

Bomb explosions can shatter window faces, too. Normal blue window faces adjacent to
a bomb explosion will break. Green safety glass faces will break only if prior weakened by
an Section 8.3.24 [it ring], page 199 scratch.

Window faces can be rearranged by actors with a revealed Section 8.3.34 [it wrench],
page 206. Pushing a face from the outside may move it to the opposite side of the window.
But it will only move to the opposite side if there is not already a window face. And
additionally the grid position adjacent to the opposite side must be free of a stone. Just
another window stone without an adjacent window face is allowed on this position. The
reason is, that the moving window face will push non static items and any actors positioned
on the affected window grid to the next grid. If this grid is already occupied by an item,
the window grid item will be Section 8.4.15 [it squashed], page 221.

Window face rearrangements can also be initiated by an Section 8.3.23 [it puller],
page 198 dropped within the window and by the message ‘inner_pull’.

Windows do support Section 13.2.2 [Flood Spreading], page 386 and Section 13.2.3 [Fire
Spreading], page 388 through open faces.

Attributes:

faces values: string; default : "s"
Describes the window faces of the stone. The string is a substring
of "nesw" listing the faces. The sequence of the sides, north, east,
south, west, is guaranteed on read access but arbitrary on write
access.

secure values: true, false; default : false
Green safety glass is secure, whereas normal blue is not.
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scratches values: string; default : ""
Describes the scratched window faces of the stone. The string is
a substring of "nesw" listing the affected faces. The sequence of
the sides, north, east, south, west, is guaranteed on read access but
arbitrary on write access.

Messages:

inner pull, value type: orientation
Tries to tear the opposite window face into the given orientation.

Variants:

st window: faces = "s", secure =
false

st window: faces = "s", secure =
true

st window w: faces = "w", secure =
false

st window w: faces = "w", secure =
true

st window s: faces = "s", secure =
false

st window s: faces = "s", secure =
true

st window sw: faces = "sw", secure
= false

st window sw: faces = "sw", secure
= true

st window e: faces = "e", secure =
false

st window e: faces = "e", secure =
true

st window ew: faces = "ew", secure
= false

st window ew: faces = "ew", secure
= true

st window es: faces = "es", secure
= false

st window es: faces = "es", secure
= true

st window esw: faces = "esw", se-
cure = false

st window esw: faces = "esw", se-
cure = true

st window n: faces = "n", secure =
false

st window n: faces = "n", secure =
true
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st window nw: faces = "nw", secure
= false

st window nw: faces = "nw", secure
= true

st window ns: faces = "ns", secure
= false

st window ns: faces = "ns", secure
= true

st window nsw: faces = "nsw", se-
cure = false

st window nsw: faces = "nsw", se-
cure = true

st window ne: faces = "ne", secure
= false

st window ne: faces = "ne", secure
= true

st window new: faces = "new", se-
cure = false

st window new: faces = "new", se-
cure = true

st window nes: faces = "nes", se-
cure = false

st window nes: faces = "nes", se-
cure = true

st window nesw: faces = "nesw",
secure = false

st window nesw: faces = "nesw",
secure = true

9.5.68 st yinyang

A special switch that allows the user to toggle the Section 4.1.5 [Player and Inventory],
page 49 between YIN and YANG.

In contrast to Section 8.3.35 [it yinyang], page 207 the player can not switch at any
point of time but is limited to situations where he can hit the stone by one of the actors
he controls. Of course other objects can send "toggle" messages on actions to this switch,
too. Additionally an Section 11.1.1 [ot cannonball], page 326 emitted by an Section 9.5.57
[st spitter], page 298 that now happens to fall on top of a yinyang stone activates it, too.

When being activated the yinyang stone switches from the ‘IDLE’ state to the ‘ACTIVE’
state which is animated by a turning yinyang symbol. By default the player switch takes
place at the end of this animation with the stone returning to its ‘IDLE’ state.

If you need a yinyang stone that switches without delay you need to set the ‘instant’
attribute to ‘true’. The animation is executed after the switching. Note that even an
instant stone variant can not be reactivated until it returns to its ‘IDLE’ state after the
completion of the animation.

By default the yinyang stone loops between its two states ‘IDLE’ and ‘ACTIVE’. This
means the user can hit the stone many times causing every time a player toggle action. But
if you set ‘loop’ to ‘false’ the yinyang stone will forward to the state ‘INACTIVE’ after the
next activation. Thus the user can use this stone just once to toggle the players.
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You can use an instance of this stone to toggle the player directly at the start of the
level. Use an ‘ACTIVE’ yinyang stone to switch after a short period of animation, or set
additionally ‘instant’ to ‘true’ to switch the player before the user can act on YIN.

Attributes:

state, values: IDLE, ACTIVE, INACTIVE; default : IDLE See Section 6.1.2
[state], page 126

An ‘IDLE’ yinyang is ready for activation. An ‘ACTIVE’ yinyang
is performing its animation and rejects any further attempts to
reactivate. An ‘INACTIVE’ yinyang reached its final state and can
not be reactivated by actor hits or toggle messages.

instant values: true, false; default : false
A default yinyang stone toggles the player after a short period of
animation. An instant yinyang switches directly with start of the
animation.

loop values: true, false; default : true
A looping yinyang returns to ‘IDLE’ state after completion of the
‘ACTIVE’ state. A yinyang with a ‘loop’ value of ‘false’ forwards
to the final ‘INACTIVE’ state

Messages:

toggle See Section 6.2.1 [toggle], page 130
Activate the yinyang like an actor hitting the stone.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Variants:

st yinyang: state = IDLE

st yinyang active: state = ACTIVE

st yinyang inactive: state = INACTIVE

st yinyang instant: instant = true, state = IDLE

9.6 Stone Feature Summaries

9.6.1 Transparent Stones

Enigma provides a collection of transparent stones, all similar, but with different features.
Some of them may be passed after the use of an Section 8.3.6 [it cherry], page 186, others
will be just pushed. Some are transparent for lasers, but not all! This table shows their
exact properties.
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class kind: actor is visible: actor is invisible: lasertransparent:
Section 9.5.51
[st rawglass],
page 294

st rawglass rebound pass yes

Section 9.5.51
[st rawglass],
page 294

st rawglass movable push pass yes

Section 9.5.35
[st lightglass],
page 271

st lightglass rebound pass yes

Section 9.5.35
[st lightglass],
page 271

st lightglass movable push push yes

Section 9.5.35
[st lightglass],
page 271

st lightglass hollow pass pass yes

Section 9.5.15
[st darkglass],
page 252

st darkglass rebound pass no

Section 9.5.15
[st darkglass],
page 252

st darkglass movable push push no

Section 9.5.15
[st darkglass],
page 252

st darkglass hollow pass pass yes

Section 9.5.52
[st redfiber],
page 295

st redfiber rebound rebound yes

Section 9.5.46
[st polarswitch],
page 286

st polarswitch on toggle pass yes

Section 9.5.46
[st polarswitch],
page 286

st polarswitch off toggle pass no

Section 9.5.3
[st beads],
page 242

st beads leave pass no

Section 9.5.36
[st lightpassenger],
page 272

st lightpassenger off rebound rebound no

Section 9.5.28
[st ice], page 265

st ice push push yes

Section 9.3.10
[st invisible],
page 235

st invisible rebound rebound no
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Section 9.3.10
[st invisible],
page 235

st invisible movable push push no

Section 9.3.10
[st invisible],
page 235

st invisible hollow pass pass no

Section 9.5.25
[st ghost],
page 263

st ghost purplemarble rebound rebound no

Section 9.5.25
[st ghost],
page 263

st ghost greenbrown rebound rebound yes

Section 9.5.25
[st ghost],
page 263

st ghost break rebound rebound yes

These entries can be memorized as follows: A stone is transparent for laser light
if it is hollow, but not if it is dark. Exception is ‘st_beads’, whose irregular sides
would scatter the beam. A stone can always be passed by invisible actors, with three
exceptions: ‘st_redfiber’, whose inside is filled with red stripes, and the two movables
‘st_lightglass_movable’ and ‘st_darkglass_movable’ which have a non-glass frame
which the actor can use to move the stone. st_rawglass_movable does not have such a
frame and can not be moved by an invisible actor.

9.6.2 Breakable Stones
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10 Actor Objects

10.1 Actor Attributes

10.1.1 adhesion (actor)

The responsiveness of an actor on mouse movements. It is a scalar factor to the accelerating
force applied to the actor. Note that mouse forces are only applied to an actor if the
Section 10.1.3 [controllers], page 316 attribute allows forces at all. Vice versa you should
exclude an actor from mouse forces by usage of the Section 10.1.3 [controllers], page 316
attribute instead of setting its adhesion to zero. The adhesion may take negative values,
too. Such values correspond to inverse forces.

Type: number
Values: float number
Default: 0.0

Access: read/write

10.1.2 charge

The initial electrical charge that a new actor starts with when being added to the world.
Actors do charge and recharge by hitting Section 9.5.12 [st charge], page 249. Hits of
charged actors among themselves does not affect their charge load. Each actor keeps its
charge load.

The electrical force on a charged actor is given by its own load and the load and position of
all other charged actors. Note that a constant global factor Section 6.4.8 [ElectricStrength],
page 140 is applied, too. If this factor is negative, equal charged actors may even attract
each other.

Type: number
Values: float number
Default: 0.0

Access: read/write

10.1.3 controllers

The players that can control the actor by their mouse movements.

Type: number
Values: CTRL_NONE, CTRL_YIN, CTRL_YANG, CTRL_YINYANG
Default: CTRL_NONE

Access: read/write

10.1.4 color

The logical color of the actor. All actors besides Section 10.2.4 [ac marble], page 321s,
Section 10.2.5 [ac pearl], page 322s and Section 10.2.3 [ac killer], page 320s will report
color nil. The color of an actor can not be changed, it is a read only attribute.

Type: number
Values: BLACK, WHITE, nil
Default: nil

Access: read only
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10.1.5 essential

Describes the necessity of an actor to be alive in case of multiple actors being attached to a
player. A value ‘DISPENSABLE’ marks an actor as not essential. The player may well continue
to play with other actors that he controls which are still alive. A value of ‘INDISPENSABLE’
marks an actor as totally necessary. If such an actor cannot be resurrected after a death,
the player is essentially dead. A value of ‘PERKIND’ marks an actor as partially essential.
Not the actor itself needs to survive but the number of actors of its kind controlled by the
player need to be larger than the number of actors with value ‘PERKIND’. For example,
marking 4 out of 5 Section 10.2.5 [ac pearl], page 322 with ‘PERKIND’ means that the player
is dead if 2 pearls are no longer alive.

Of course shattered or sunken actors will first be resurrected if an Section 8.3.13
[it extralife], page 191 is available and the global attribute Section 6.4.5 [ConserveLevel],
page 139 allows a resurrection.

For more details about level restart see Section 4.4.7 [Level Restart], page 62.

Type: number
Values: DISPENSABLE, INDISPENSABLE, PERKIND
Default:
Access: read/write

10.1.6 essential id

Since a player may control actors of different kinds at the same time, the essentialness of
actors is limited to its kind via this id. It is possible to group actors of different kinds into
an essential group via this id. The engine keeps this id even if actors are transformed into
other kinds like on activation of an Section 8.3.10 [it drop], page 189.

Type: string
Values: any
Default: model name of actor
Access: read/write

10.1.7 owner

The player that owns the actor. The owner gets all items picked up by an actor added to
his inventory. The ownership of an actor does not influence the ability of a player to control
the actors movements. Note that you need to assign the value DEFAULT in Lua tables to set
the value nil due to the well known Lua table [Caveats], page 373. The other two values
YIN and YANG are common Section 6.3.1 [state values], page 133.

Type: number
Values: YIN, YANG, nil
Default: nil

Access: read/write

10.1.8 velocity x

The velocity into x direction that a new actor starts with when being added to the world.
Even though this attribute is readable it does not reflect the current velocity of an actor
during runtime.
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Type: number
Values: float number
Default: 0.0

Access: read/write

10.1.9 velocity y

The velocity into y direction that a new actor starts with when being added to the world.
Even though this attribute is readable it does not reflect the current velocity of an actor
during runtime.

Type: number
Values: float number
Default: 0.0

Access: read/write

10.2 Actors

10.2.1 ac bug

An actor that looks like a small grey ball with two red dots on it. Bugs are harmless actors
that do not affect other actors and they are usually passive.

In contrast to the main actors they can not jump or pass an Section 8.4.19 [it vortex],
page 225, and will not sink, fall or shatter. Bugs are immortal.

Note that you need to set ‘controllers’ as well as ‘adhesion’ to proper values if you
want a player to control a bug directly. If a bug is owned by a player Section 7.4.11 [fl thief],
page 176 and Section 9.5.62 [st thief], page 304 will steal items from it.

Attributes: common actor attributes

adhesion values: number; default : 0.0; See Section 6.1.10 [adhesion],
page 129
controllers values: CTRL_NONE, CTRL_YIN, CTRL_YANG, CTRL_YINYANG;
default : CTRL_NONE; See Section 10.1.3 [controllers], page 316
owner values: YIN, YANG, nil; default : nil; See Section 10.1.7 [owner],
page 317
mass values: positive float number; default : 0.7; access: read only

Messages: none
Variants:

ac bug: color = nil, controllers = CTRL_NONE, owner = nil

10.2.2 ac horse

A large blue disc like actor. It is called a horse because in some future Enigma release
Section 10.2.4 [ac marble], page 321s and Section 10.2.5 [ac pearl], page 322s should be
able to ride on it.

In contrast to the main actors it can not jump or pass an Section 8.4.19 [it vortex],
page 225, and will not sink, fall or shatter. A horse is immortal.
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By default a horse is a passive actor. But nevertheless a horse may move along its own
path. A set of attributes let you control the movement in various ways.

The most simple approach just uses the attributes ‘destination’ and ‘strength’. You
can mark a path marked by an arbitrary number of positions given as Section 6.1.8 [desti-
nation], page 128s. The horse will try to reach the destinations one in a row with a force
given by the strength attribute. As soon as one destination has been reached the horse
targets for the next position and will start over again as soon as the last position has been
reached. In this ‘steady’ mode the horse is continously accelerated into the direction of the
next destination target. If it misses the destination on the first approach it will return by a
loop again until it finally passes the target position. This approach is rather crude and not
well suited for a precise control needed if the horse should hit certain stones or move on a
well defined trajectory.

Setting ‘steady’ to the value false causes another accelaration algorithm that will
decelerate the horse on approach to its target position. This allows a very precise control
over the path taken by the horse.

Furtheron you can request anytime the index of the current destination target. You can
even set ‘destidx’ anytime. Note that this index counts the destination targets starting with
0 and taking every position into account, which might not be in sync with the destination
token number in case a single token part addresses several positions at a time.

Furtheron you can control the behaviour of the horse when it reaches the last destination
target. It either stops or restarts if the attribute ‘loop’ is set to true.

Setting either ‘destination’ to nil, ‘destidx’ or ‘strength’ to a negative value caues
the horse to stop its automatic travel.

On its move a horse tries to reach the target position. But if the target position is
blocked by a stone, the horse continues its travel targeting the next destination position as
soon as it hits the stone. Thus you can use the horse to toggle Section 9.5.61 [st switch],
page 303 and other active stones.

Whenever the horse reaches a target position it will perform its action. You can reset the
‘destination’ and other attributes within the callback to define a new destination target.

Note that you need to set ‘controllers’ as well as ‘adhesion’ to proper values if you
want a player to control a horse directly.

Attributes:

adhesion values: number; default : 0.0; See Section 6.1.10 [adhesion],
page 129
controllers values: CTRL_NONE, CTRL_YIN, CTRL_YANG, CTRL_YINYANG;
default : CTRL_NONE; See Section 10.1.3 [controllers], page 316
owner values: YIN, YANG, nil; default : nil; See Section 10.1.7 [owner],
page 317
destination, values: position or tokens; default : nil See Section 6.1.8
[destination], page 128

A path given by a sequence of positions.

destidx values: integer number; default : 0
The index of the targeted destination.
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loop values: true, false; default : true
Flag that determines whether ‘destidx’ is reset to its default when
the last destination has been reached.

strength values: float number; default : +10.0
A scalar factor for the horse force that drive it to the next destina-
tion.

steady values: true, false; default : true
Flag that determines the chosen acceleration algorithm. On steady
force the actor is continuously accelerated in direction to the next
destination. If it misses the destination it will loop. If steady is
false the force will switch its sign as soon as the actor reaches a
critical distance. Thus the actor will reach the destination with
nearly no remaining speed.

mass values: positive float number; default : 1.2; access: read only

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127

Performed on every reached destination position or on stone hits when the
destination position if blocked by a stone.

Variants:

ac horse: controllers = CTRL_NONE, owner = nil

10.2.3 ac killer

An actor that looks like a white Section 10.2.5 [ac pearl], page 322, but is a death bringing
killer ball that shatters Section 10.2.4 [ac marble], page 321s and Section 10.2.5 [ac pearl],
page 322s on contact.

In contrast to the main actors it can not jump or pass an Section 8.4.19 [it vortex],
page 225, and will not sink, fall or shatter. A killer ball is immortal.

A killer is preset to its standard attribute values, that let both players control the actor
and do assign a higher ‘adhesion’ to it than to Section 10.2.5 [ac pearl], page 322s.

Note that even though a killer looks quite dangerous, Section 7.4.11 [fl thief], page 176
and Section 9.5.62 [st thief], page 304 do steal items from them, if the killer is owned by a
player.

Attributes:

color values: BLACK, WHITE; default : WHITE; access: read only
The color of the killer.
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adhesion values: number; default : 2.0; See Section 6.1.10 [adhesion],
page 129
controllers values: CTRL_NONE, CTRL_YIN, CTRL_YANG, CTRL_YINYANG;
default : CTRL_YINYANG; See Section 10.1.3 [controllers], page 316
owner values: YIN, YANG, nil; default : nil; See Section 10.1.7 [owner],
page 317
mass values: positive float number; default : 0.7; access: read only

Messages: none
Variants:

ac killer: color = WHITE, controllers = CTRL_YINYANG, owner = nil

ac killer black: color = BLACK, controllers = CTRL_YINYANG, owner =
nil

ac killer white: color = WHITE, controllers = CTRL_YINYANG, owner
= nil

10.2.4 ac marble

The main actor in the shape of a large ball, either black or white. Marbles are versatile
actors that can jump, pass Section 8.4.19 [it vortex], page 225, but on the other hand they
can sink, fall and shatter, too.

As long as the ‘owner’ has an Section 8.3.13 [it extralife], page 191 in his inventory a
dying marble will be resurrected. If no extra life is available a dying actor ends up in the
‘state’ dead and can no longer be controlled.

The marbles are preset to their standard attribute values. A recoloring of marbles is not
possible. The marbles state changes due to events and can be read only, too.

Attributes:

state, values: ALIVE, DEAD; default : ALIVE; See Section 6.1.2 [state],
page 126; access: read only
color values: BLACK, WHITE; default : BLACK; access: read only

The color of the marble.

adhesion values: number; default : 1.0; See Section 6.1.10 [adhesion],
page 129
controllers values: CTRL_NONE, CTRL_YIN, CTRL_YANG, CTRL_YINYANG;
default : CTRL_NONE; See Section 10.1.3 [controllers], page 316
owner values: YIN, YANG, nil; default : nil; See Section 10.1.7 [owner],
page 317
mass values: positive float number; default : 1.0; access: read only

Messages: none
Variants:
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ac marble: color = BLACK, controllers = CTRL_YIN, owner = YIN

ac marble black: color = BLACK, controllers = CTRL_YIN, owner =
YIN

ac marble white: color = WHITE, controllers = CTRL_YANG, owner =
YANG

10.2.5 ac pearl

The main actor for meditation levels in the shape of a small ball, currently just in white
color available. Pearls are like marbles versatile actors that can jump, pass Section 8.4.19
[it vortex], page 225, but on the other hand they can sink, fall and shatter, too.

As long as the ‘owner’ has an Section 8.3.13 [it extralife], page 191 in his inventory a
dying marble will be resurrected. If no extra life is available a dying actor ends up in the
‘state’ dead and can no longer be controlled.

The pearls are preset to their standard attribute values. The pearls state changes due
to events and can be read only.

Attributes:

state, values: ALIVE, DEAD; default : ALIVE; See Section 6.1.2 [state],
page 126; access: read only
color values: BLACK, WHITE; default : WHITE; access: read only

The color of the pearl.

adhesion values: number; default : 1.0; See Section 6.1.10 [adhesion],
page 129
controllers values: CTRL_NONE, CTRL_YIN, CTRL_YANG, CTRL_YINYANG;
default : CTRL_NONE; See Section 10.1.3 [controllers], page 316
owner values: YIN, YANG, nil; default : nil; See Section 10.1.7 [owner],
page 317
mass values: positive float number; default : 0.7; access: read only

Messages: none
Variants:

ac pearl: color = WHITE, controllers = CTRL_YINYANG, owner = YIN

ac pearl black: color = BLACK, controllers = CTRL_YINYANG, owner =
YIN

ac pearl white: color = WHITE, controllers = CTRL_YINYANG, owner
= YIN
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10.2.6 ac rotor

A rotating actor build up of 4 greenish cudgels. It is a death bringing actor that shatters
Section 10.2.4 [ac marble], page 321s and Section 10.2.5 [ac pearl], page 322s on contact.
Its behaviour is identical to an Section 10.2.7 [ac top], page 324.

In contrast to the main actors it can not jump or pass an Section 8.4.19 [it vortex],
page 225, and will not sink, fall or shatter. A rotor is immortal.

Rotors do usually hunt mortal actors trying to shatter them. They accelerate by force
given by the attribute ‘strength’, but they limit their hunt to actors in the given ‘range’. If
no attackable actor remains in this range they return to their initial position if the attribute
‘gohome’ is ‘true’.

Note that in case multiple attackable actors are in range the rotor gets confused and
tries to attack the center of its victims. But if you set the attribute ‘attacknearest’ to
‘true’ the rotor will concentrate just on the nearest victim. By adjusting the attribute
‘prefercurrent’ you can instruct the rotors to prefer victims of the current active player
with a certain likelihood.

Note that you need to set ‘controllers’ as well as ‘adhesion’ to proper values if you
want a player to control a rotor directly. If a rotor is owned by a player Section 7.4.11
[fl thief], page 176 and Section 9.5.62 [st thief], page 304 will steal items from it.

An Section 10.2.4 [ac marble], page 321 will temporarily transform into a rotor when it
activates an Section 8.3.10 [it drop], page 189. During the 5 seconds of transformation the
actor is a real immortal rotor with the identity inclusive the ‘essential_id’ of the former
marble. After the period is over it transforms back to its original kind.

Attributes:

range values: float number; default : 5.0
The distance up to which victims are hunted.

strength values: float number; default : +10.0
The force that drives the rotor to its victims.

gohome values: true, false; default : true
Behaviour of a rotor without victim in range.

attacknearest values: true, false; default : true
Behaviour of a rotor with multiple victims in range

prefercurrent values: float number in range [0.0 - 1.0]; default : +0.0
Likelihood of attack strategy. You will usually use this attribute
in combination with ‘attacknearest’ set to ‘true’. The Level
‘Toreador’ is an example of the behavior of such rotors.

mass values: positive float number; default : 0.8; access: read only

Messages: none
Variants:

ac rotor: color = nil, controllers = CTRL_NONE, owner = nil
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10.2.7 ac top

A fast rotating, greenish disk like actor. It is a death bringing actor that shatters
Section 10.2.4 [ac marble], page 321s and Section 10.2.5 [ac pearl], page 322s on contact.
Its behaviour is identical to an Section 10.2.6 [ac rotor], page 323.

In contrast to the main actors it can not jump or pass an Section 8.4.19 [it vortex],
page 225, and will not sink, fall or shatter. A top is immortal.

Tops do usually hunt mortal actors trying to shatter them. They accelerate by force given
by the attribute ‘strength’, but they limit their hunt to actors in the given ‘range’. If no
attackable actor remains in this range they return to their initial position if the attribute
‘gohome’ is ‘true’.

Note that in case multiple attackable actors are in range the top gets confused and
tries to attack the center of its victims. But if you set the attribute ‘attacknearest’
to ‘true’ the top will concentrate just on the nearest victim. By adjusting the attribute
‘prefercurrent’ you can instruct the top to prefer victims of the current active player with
a certain likelihood.

Note that you need to set ‘controllers’ as well as ‘adhesion’ to proper values if you
want a player to control a top directly. If a top is owned by a player Section 7.4.11 [fl thief],
page 176 and Section 9.5.62 [st thief], page 304 will steal items from it.

Attributes:

range values: float number; default : 5.0
The distance up to which victims are hunted.

strength values: float number; default : +10.0
The force that drives the top to its victims.

gohome values: true, false; default : true
Behaviour of a top without victim in range.

attacknearest values: true, false; default : true
Behaviour of a top with multiple victims in range

prefercurrent values: float number in range [0.0 - 1.0]; default : +0.0
Likelihood of attack strategy. You will usually use this attribute
in combination with ‘attacknearest’ set to ‘true’. The Level
‘Toreador’ is an example of the behavior of such rotors.

mass values: positive float number; default : 0.8; access: read only

Messages: none
Variants:

ac top: color = nil, controllers = CTRL_NONE, owner = nil

10.3 Actor Features
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10.3.1 Flying Actors

Ball like actors, namely Section 10.2.4 [ac marble], page 321 and Section 10.2.5 [ac pearl],
page 322 are able to fly for short period of time if they get catapulted by some item.

Currently there are portable Section 8.3.29 [it spring], page 203 that let actors jump on
activation, static Section 8.4.14 [it springboard], page 221 that catapult crossing actors and
Section 8.4.19 [it vortex], page 225 that catapult warping actors.

A flying actor can pass lethal grids with Section 7.4.12 [fl water], page 177, Section 7.4.1
[fl abyss], page 167, Section 8.4.17 [it trap], page 223 and even laser beams. But most stones
will block flying actors, even some hollow ones like Section 9.5.26 [st grate], page 264 or
Section 9.5.41 [st oneway], page 279. But some others as Section 9.5.19 [st door], page 256
or hollow Section 9.3 [Standard Stones], page 233 let flying actors pass.

While flying an actor can not pick up any item. But the actor can still drop items.
Activation of a spring while sinking in Section 7.4.12 [fl water], page 177 or Section 7.4.10
[fl swamp], page 176 lets the actor jump immediately out of them and starts the sinking
process from scratch anew when landing on such a floor.
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11 Other Objects

11.1 Visible Others

11.1.1 ot cannonball

A short living projectile emitted by an Section 9.5.57 [st spitter], page 298. It is an internal
object that can not be directly instantiated. It is listed here just for completeness.

11.1.2 ot rubberband

An orange link between two objects that can apply attracting or repelling forces to them.

The two connected objects are called anchors. The attribute ‘anchor1’ holds the first
object’s reference that must be an actor. The ‘anchor2’ references the second object that
can either be another actor or a stone. Both objects must exist to Section 5.13.5 [add],
page 111 a rubberband to the world. If the stone sinks, breaks or is killed otherwise the
rubberband will be destroyed, too.

Both anchor objects will update their attributes Section 6.1.12 [rubbers], page 130 and
Section 6.1.14 [fellows], page 130 to list this rubberband and the connected object for
purposes of evaluation.

The force that is applied between the objects can be configured by several attributes.
Every rubberband has a natural ‘length’ at which it does not apply any force to the
actors. The more the rubberband is extended from this point it applies a force of the given
‘strength’. A positive strength is a natural attracting force, whereas a negative strength
would repel the actors.

A rubberband that is shorter than its natural ‘length’ would normally not apply any
force. But this special rubber allows you to set a ‘threshold’ where the rubberband starts
to apply the opposite directed forces onto the actors, like a spring would do. Thus a
positive ‘strength’ would lead to a repelling force, a negative one to an attracting force.
A rubberband with a length in between ‘threshold’ and ‘length’ will apply no forces. If
you set the attribute ‘length’ to the value AUTOLENGTH, the length of the rubberband is
determined from the distance of its two endpoints at the time of creation.

In some cases you do want to limit the length of the rubberband. You can do this
by setting ‘min’ and ‘max’ attributes. Actors will bounce on these limits. Do not try to
use artificial large ‘strength’ values instead to ensure length limits, as this could lead to
extreme forces causing unexpected and unstable actor movements.

If you set ‘min’ or ‘max’ limits, extraordinary events like actor warping, actor resurrection,
moving anchor stones or simply rubberbands that are created with an off limit length can
cause trouble. When such a limit violation is detected an action is performed with a value
‘false’. You may want to kill the rubberband or react in another way by a callback function.
The default handling is an application of a constant force to bring the actors back within
the limits. This force value is given by Section 6.4.26 [RubberViolationStrength], page 145
and defaults to ‘50.0’. If you really need to assure that the player is not able to violate the
limits any further you may need to increase this constant.

Rubberbands can be cut by Section 9.5.55 [st scissors], page 296, by an Section 8.4.19
[it vortex], page 225 or Section 8.4.20 [it wormhole], page 227 with a set ‘scissors’ at-
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tribute, by receiving a Section 6.2.11 [kill], page 132 message, by one of the anchors receiving
a Section 6.2.13 [disconnect], page 133 message or a stone anchor that ceases to exist.

Rubberbands can be dynamically generated by Section 8.3.25 [it rubberband], page 200
and Section 9.5.54 [st rubberband], page 296.

Attributes:

anchor1 values: actor object; default : nil
Object reference or name of an actor that the rubber will be con-
nected to. Note that the reference will be immediately evaluated
and thus the actor must exist already.

anchor2 values: actor or stone object; default : nil
Object reference or name of an actor or a stone that the rubber
will be connected to. Note that the reference will be immediately
evaluated and thus the actor or stone must exist already.

strength values: number; default : 10.0
The force strength.

length values: positive number or AUTOLENGTH; default : 1.0
The natural length above which forces are applied.

threshold values: positive number or zero; default : 0.0
The length smaller than the natural length below which inverted
forces are applied.

min values: positive number or zero; default : 0.0
The minimum length at which actors bounce.

max values: positive number or zero; default : 0.0
The maximum length at which actors bounce.

Messages: none
Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127

An action will be performed with value ‘false’ on violation of a min or max
limit. Additionally an action will be performed on behalf of Section 8.3.25
[it rubberband], page 200 after application and creation of this rubberband
with an action value of ‘true’.

11.1.3 ot wire

A wire is a purple wire connecting two stones that transfers every stone pushing impulse
from one stone to the other and vice versa. Thus both stones will move on the impulse
if they are movable at all and not blocked in the direction of the impulse. The impulses
may originate from an actor hitting a stone, an Section 8.3.23 [it puller], page 198, an
Section 9.5.53 [st rotator], page 295, an Section 9.5.58 [st stoneimpulse], page 300.

A single stone can be wired to many other stones. All these Section 6.1.14 [fellows],
page 130 will move on an impulse. But the impulses will not be propagated to further
stones that are wired themselves to any of the fellows. Just the direct wired stones will
move.

But you can wire to stones just once. Any subsequent additional wire between two
already wired stones will cut the old wire prior establishing the new one.
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You can request the wires connected to a stone by the stones Section 6.1.13 [wires],
page 130 attribute. As it is tedious to evaluate both anchors, every stone supports an
attribute Section 6.1.14 [fellows], page 130 that reports the connected objects.

Attributes:

anchor1 values: stone object; default : nil
Object reference or name of a stone that the wire will be connected
to. Note that the reference will be immediately evaluated and thus
the stone must exist already.

anchor2 values: stone object; default : nil
Object reference or name of a stone that the wire will be connected
to. Note that the reference will be immediately evaluated and thus
the stone must exist already.

Messages: none
Actions: none

11.2 Gadgets

11.2.1 ot counter

A counter that switches on given thresholds. As a supplement to single switch like objects
as Section 8.4.18 [it trigger], page 224, Section 9.5.61 [st switch], page 303, Section 9.5.34
[st laserswitch], page 271, Section 9.5.14 [st coinslot], page 251, Section 9.5.30 [st key],
page 268, Section 9.5.23 [st floppy], page 261, etc. this gadget allows to react on a given
number of these switches to be switched ‘ON’ while the others being switched ‘OFF’.

The attribute ‘state’ represents the count of switches in ‘ON’ state. Due to the
Section 4.4.2 [Snapshot Principle], page 59 you need to set it to the initial number of ‘ON’
switches. All switches need to declare the counter gadget as their ‘target’. They all need
to send a "signal" message as ‘action’. The counter gadget increases or decreases its
count state on every received signal message thus keeping it up to date.

The gadget itself can perform actions by usage of Section 4.3.4 [Object State], page 57
dependent targets and actions.

E.g. let us assume 8 Section 8.4.18 [it trigger], page 224s and 8 Section 9.5.7 [st box],
page 246es. Two boxes are initially on top of two triggers. A door should open as soon as
the user succeeds in pushing all boxes onto the triggers.

ti["t"] = {"it_trigger", target="mycounter", action="signal"}

ti["b"] = {"st_box"}

ti["o"] = ti["t"] .. ti["b"]

ti["d"] = {"st_door", "mydoor"}

wo(ti, " ", {"t t t o t o t t",

"b b b b b b",

" d @ "})

wo:add({"ot_counter", "mycounter", state=2, target="mydoor", action_7="close", action_8="open"})

Note that it is not sufficient to send an "open" message on a ‘state’ count of 8, as this
event occurs, when 7 boxes are on top of triggers and the last trigger is pressed by the actor
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itself, too. When the actor leaves the 8th trigger the gadget state decreases its state to 7
and sends a "close" message to the door.

Attributes:

state, values: numbers; default : 0 See Section 6.1.2 [state], page 126
The count of switches in ‘ON’ state.

Messages:

signal See Section 6.2.3 [signal], page 131
Increases state on a value of ‘1’, and decreases on a value of ‘0’.

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
Sends an action with value ‘true’ just on explicitly given Section 4.3.4 [Object
State], page 57 dependent target or action attributes. No default "toggle"

actions will be issued on other states.

11.2.2 ot timer

This gadget can be used to trigger a delayed single or periodic events. It is nearly identical
to the Section 9.5.63 [st timer], page 305, but does neither require a grid position nor disturb
the user by a pulsing animation.

Note that this is an exceptional object as its default state is ‘ON’ to support the most
common case of immediately running timers.

A single shot, not looping timer will send an action value of ‘true’. A looping timer will
alternate the boolean action values starting with value ‘true’. You can use Section 6.1.7
[inverse], page 128 to start with a value of ‘false’.

If you stop a timer by switching it off, no further events will be performed. Restarting
the timer by switching it on again will restart the timer like a new timer.

The time interval to the first event and between subsequent events can be relied on to
an accuracy of 0.01 seconds. But due to performance reasons and visibility of the reactions
timers should not be set to intervals below 0.1 seconds. An interval of less than 0.01 seconds
is not valid for a looping timer.

Attributes:

state, values: ON, OFF; default : ON See Section 6.1.2 [state], page 126
An ‘ON’ state timer is running. A timer in state ‘OFF’ is reset and
waiting for reactivation.

interval values: positive number; default : 1.0
Number of seconds until the first and between subsequent events.
The interval must be larger or equal 0.01 seconds for looping timers.

loop values: true, false; default : true
A looping timer will send periodic events.

Messages:

signal See Section 6.2.3 [signal], page 131
Switches on at value ‘1’, and off at values ‘0’.



Chapter 11: Other Objects 330

on See Section 6.2.4 [on], page 131
off See Section 6.2.5 [off], page 131

Action: See Section 6.1.3 [target], page 127, See Section 6.1.4 [action], page 127
The action value starts with ‘true’ and alternates on every event between
‘false’ and ‘true’. A timer that is reset starts again with value ‘true’
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12 Libraries

Libraries do contain extensions that are not necessary for every level. By outsourcing
them into separate files they do not get loaded if not used. This improves the level load
time and runtime resource consumption. But as a level author you have to declare the
usage of a library by an XML metadata ‘dependency’ element within the Section 3.3.6
[<compatibility>], page 33 element. The necessary line of code is listed within every library
description.

Some libraries contain collections of useful functions and methods. They are described in
this chapter. Other libraries do contain Section 13.1 [Resolvers], page 368 and are described
just there.

12.1 Basic Functions

Enigma supports most Lua 5.1 and above statements, i.e. you can freely use tables and con-
trol structures in your level, as you would expect. However, some Lua functions have been
deactivated for security reasons or to ensure upwards compatibility. These are ‘dofile’,
‘module’, ‘require’ and most or all functions of the standard libraries ‘package’, ‘io’ and
‘os’. You should use the Section 3.3.6 [<compatibility>], page 33-tag to include external
libraries instead of ‘require’, ‘dofile’ or ‘package’, and ‘print’ for output to stdout in-
stead of ‘io’. The ‘print’ function is pretty useful for developing and debugging complex
levels, but should not appear in the level’s final version anymore.

Of Lua’s built-in mathematical functions you may use any of the following: ‘math.abs’,
‘math.acos’, ‘math.asin’, ‘math.atan’, ‘math.atan2’, ‘math.ceil’, ‘math.cos’,
‘math.cosh’, ‘math.deg’, ‘math.exp’, ‘math.floor’, ‘math.fmod’, ‘math.frexp’,
‘math.huge’, ‘math.ldexp’, ‘math.log’, ‘math.log10’, ‘math.max’, ‘math.min’,
‘math.modf’, ‘math.pi’, ‘math.pow’, ‘math.rad’, ‘math.random’, ‘math.sin’, ‘math.sinh’,
‘math.sqrt’, ‘math.tan’, ‘math.tanh’.

All trigonometric functions use radians, you can use ‘math.deg’ and ‘math.rad’ to
convert between radians and degrees. For the differences between ‘math.mod’, ‘%’, and
‘math.fmod’ see Section 12.2.3 [lib.lua.mod], page 332.

While you have access to nearly all mathematical functions Lua defines, Enigma uses an
own random generator, which you access via ‘math.random’ with the same syntax as Lua’s
random generator. To ensure stability in future versions of Enigma, ‘math.randomseed’ is
disabled.

Please read the online manual of Lua 5.1 for more detailed information.

12.2 liblua

This library of basic extensions to the Lua language is described as of release 1.

You can load it by adding an ‘dependency’ element to the Section 3.3.6 [<compatibility>],
page 33 XML Metadata element as follows:

<el:dependency el:path="lib/liblua" el:id="lib/liblua" el:release="1" el:preload="true"/>

http://www.lua.org/manual/5.1/
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12.2.1 lib.lua.combine tables

‘combine_tables’ combines all entries of a set or table of tables into one common table
(i.e., it joins the subtables). As some of the subtables can have equally named entries, the
first subtable has highest priority, the second subtable second priority etc.

Syntax: lib.lua.combine tables(overtable)

lib.lua.combine tables(table1, table2, ...)

overtable A table of tables: ‘overtable = {table1, table2, ...}’

table1, table2, ...
Lua tables to be joined.

Syntax Samples:
all_contacts = lib.lua.combine_tables(telephone_numbers, email_addresses)

Details: Just as groups can be joined by ‘grp1 + grp2’, it can sometimes be necessary to
join anonymous tables, as well. In most situations, object grouping should be
used instead, but when one works with more abstract data (like names of objects
instead of objects, or tables holding design information), ‘combine_tables’ can
be useful.

Full Example:

12.2.2 lib.lua.deep copy

‘deep_copy’ returns a copy of its argument, where table entries are not copied as memory
references (like Lua typically does), but complete (thereby called "deep copy").

Syntax: lib.lua.deep copy(source)

source The object to be copied.

Syntax Samples:
a = {5}

b = a

c = lib.lua.deep_copy(a)

b[1] = 4

After these four commands, ‘a[1]’ and ‘b[1]’ will both be ‘4’, but ‘c[1]’ will
still be ‘5’.

Details: Metatables are transferred, but not deep-copied. Userdata (like tiles and posi-
tions) is not guaranteed to be deep-copied.

Full Example:

12.2.3 lib.lua.mod

A wrapper for the modulo operation.

Syntax: lib.lua.mod(value, modul)

value, modul
Numbers. ‘modul’ must be positive (non-zero).
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Syntax Samples:
lib.lua.mod(7*7, 17)

lib.lua.mod(5.3, 1/3)

lib.lua.mod(no["marble"].x, 1)

Details: Lua 5.0 used ‘math.mod’ as modulo operation, this function is not available in
Lua 5.1 anymore, and hence not available in Enigma. Lua 5.1 provides ‘%’ and
‘math.fmod’. Whereas all three operations agree on positive numbers and zero
as ‘value’, there are differences on negative numbers:

Lua 5.0: math.mod(-1, 4) == -1

Lua 5.1: math.fmod(-1, 4) == -1

Lua 5.1: (-1)%4 == 3

lib.lua: lib.lua.mod(-1, 4) == 3

While the Lua-own modulo functions yield results even for negative ‘modul’
(with varying signs of the outcome), ‘lib.lua.mod’ will raise an error if ‘modul
<= 0’, and the result ‘r’ is otherwise guaranteed to be 0 <= r < modul.

Full Example:

12.2.4 lib.lua.print table

‘print_table’ is a debug command, which uses the API’s ‘print’ command to recursively
print its argument to the standard output.

Syntax: lib.lua.print table(table, prefix, depth)

table The table to be printed.

prefix A string which will be printed before the table as a separator. Can
be ‘nil’.

depth ‘nil’ in normal use, ‘-1’ if you want to suppress the recursion.

Syntax Samples:
a = {1, [5]=2, "Hello", other_table = {x = 4, y = 5, z = "World"}}

lib.lua.print_table(a, nil, -1)

lib.lua.print_table(a, "--> ")

Details: ‘print_table’ is recursive, i.e. a table with table as entries will call
‘print_table’ again. To avoid infinite loops, ‘depth’ is used internally to
count the depth level of the recursion. The recursion currently stops on depth
5. Set ‘depth’ to ‘-1’ to stop recursion entirely.

Use ‘print_table’ only for debugging and testing, it is not meant as an element
of gameplay.

Full Example:

12.2.5 lib.lua.shuffle

‘shuffle’ randomly resorts its argument, a numerical table.

Syntax: result = lib.lua.shuffle(source)

source The table to be shuffled (only the numerical entries will be shuffled).
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Syntax Samples:
orientations = lib.lua.shuffle({NORTH, SOUTH, EAST, WEST})

a = {1, 2, 3, "r", {"x", "y", "z"}, 4}

b = lib.lua.shuffle(a)

A typical result for ‘b’ would be

b = {"r", 4, 2, {"x", "y", "z"}, 1, 3}

Details: The result is a permutation of the numerical entries of the source table, starting
with entry 1 and ending with entry ‘table.getn(source)’. All other entries
will simply be copied into ‘result’. All copies are shallow copies, i.e. table-
valued and userdata-valued entries (like objects) are not copied, just references
(pointers) to them. Use Section 12.2.2 [lib.lua.deep copy], page 332 to create
a deep copy of the shuffled table, if needed. ‘result’ will use the same metat-
able as ‘source’, and metamethods will be used during the copy and shuffling
process.

Currently, ‘lib.lua.shuffle’ can shuffle only tables. To shuffle groups, use
the group method of the same name:

mygroup:shuffle()

Shuffling a Section 12.4 [libmap], page 340-map results in a map with shuffled
rows, i.e. the x-coordinates of all tile keys are kept constant. Use Section 12.4.3
[Rotating and Mirroring Maps], page 341 to shuffle the columns.

Full Example:

12.2.6 lib.lua.to string

‘to_string’ is a debug function. It may take anything as argument, and tries to return a
sensible string describing the type and, if possible, the content of the argument.

Syntax: lib.lua.to string(arg)

arg The argument to be described.

Syntax Samples:
print(lib.lua.to_string(strange_variable))

Details: ‘to_string’ is meant for debugging Lua code. Sometimes it happens that a
variable is not what the author expected to be, and selecting the correct output
method becomes try-and-error. ‘to_string’ is a fast shortcut to this. It returns
the content of strings, numbers, booleans, tables, positions, and groups. It
distinguishes ordinary tables from Section 12.4 [libmap], page 340-maps. For
objects, it returns their name and position, for position lists, it returns the total
number of positions. It further recognizes nil, tile and tiles.

Use ‘to_string’ only for debugging and testing, it is not meant as an element
of gameplay.

Full Example:

12.3 libmath

This library of basic mathematical extensions is described as of release 1.
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You can load it by adding an ‘dependency’ element to the Section 3.3.6 [<compatibility>],
page 33 XML Metadata element as follows:

<el:dependency el:path="lib/libmath" el:id="lib/libmath" el:release="1" el:preload="true"/>

It preloads automatically the library Section 12.2 [liblua], page 331.

12.3.1 lib.math.combinations

‘lib.math.combinations’ returns a table of all combinations of ‘depth’ entries, each of
which is chosen from ‘digits’.

Syntax: lib.math.combinations(depth, digits)

depth A positive integer.

digits A positive integer or a table with numerical entries.

Syntax Samples:
lib.math.combinations(2, 2)

== { {1, 1}, {1, 2}, {2, 1}, {2, 2} }

lib.math.combinations(3, {7, 8, "a"})

== { {7,7,7}, {7,7,8}, {7,7,"a"},

{7,8,7}, {7,8,8}, {7,8,"a"},

{7,"a",7}, {7,"a",8}, {7,"a","a"},

{8,7,7}, ... }

Details: Mathematically, it builds the leafs of an ‘#digits’-ary tree of depth ‘depth’.

Full Example:

12.3.2 lib.math.cubic polynomial

‘cubic_polynomial’ returns the result of the following polynomial with coefficients in ‘a’:

a[10]*y*y*y + a[9]*x*y*y + a[8]*x*x*y + a[7]*x*x*x

+ a[6]*y*y + a[5]*x*y + a[4]*x*x + a[3]*y + a[2]*x + a[1]

Syntax: lib.math.cubic polynomial(a, x, y)

a A table with numerical entries ‘a[1]’ to ‘a[10]’. The entries may
be ‘nil’ (i.e. missing), then they are interpreted as zero.

x, y Numbers.

Syntax Samples:
lib.math.cubic_polynomial({1, a, b}, x, y) == a*x + b*y + 1

Details: You can use ‘lib.math.random_vector(10, ...)’ and a modulo operation to
easily form a random pattern of a floor, or choose the coefficients to your own
liking. Entries in ‘a’ which are not numbers are considered zero.

Full Example:
This is an excerpt from "Weirdly Wired" and demonstrates the use of
‘cubic_polynomial’ inside a custom resolver to create random, but patternlike
floors:
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[...]

floors = {ti[" "], ti["a"], ti["b"], ti["c"]}

polynom = lib.math.random_vector(10, 4)

function myresolver(key, x, y)

if key == " " then

return floors[lib.math.cubic_polynomial(a, x, y) % (#floors) + 1]

elseif

[...]

else

return ti[key]

end

end

w, h = wo(myresolver, " ", {

[...]

"Weirdly Wired" is explained in detail in section Section 5.3.2 [Weirdly Wired],
page 83.

12.3.3 lib.math.cyclic permutation

‘cyclic_permutation’ returns a random permutation (i.e. a random shuffling) of the num-
bers 1 to ‘n’, which is cyclic: There exists a closed path from any number to any other
number (see details below).

Syntax: lib.math.cyclic permutation(n)

n A positive integer.

Syntax Samples:
lib.math.cyclic_permutation(#no["marbles#*"])

Details: A cyclic permutation is a special kind of permutation, which has only one cycle.
The easiest way is to give an example for a cyclic permutation:

8, 1, 2, 9, 3, 7, 4, 6, 10, 5

We may write this as:

1 -> 8

2 -> 1

3 -> 2

...

We can now put all of these together into a sequence:

1 -> 8 -> 6 -> 7 -> 4 -> 9 -> 10 -> 5 -> 3 -> 2 -> 1

This is, the sequence creates a single cycle through all 10 numbers. This is not
always possible with a general permutation.

If you need a fixpoint-free permutation, you might choose to use a cyclic per-
mutation instead, although not every fixpoint-free permutation is cyclic.
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Full Example:
If you want to connect an arbitrary number of meditation marbles with
rubberbands in a cyclic manner, but otherwise randomly, you can use
‘lib.math.cyclic_permutation’:

marbles = no["marbles#*"]

p = lib.math.cyclic_permutation(#marbles)

for j = 1, #marbles do

wo:add({"ot_rubberband", anchor1 = marbles[j], anchor2 = marbles[p[j]]})

end

If you want to connect them in a linear way, you can either remove a step in
the loop:

[...]

for j = 1, #marbles - 1 do

[...]

or use ‘lib.math.permutation’ in the following way:

marbles = no["marbles#*"]

p = lib.math.permutation(#marbles)

for j = 1, #marbles - 1 do

wo:add({"ot_rubberband", anchor1 = marbles[p[j]], anchor2 = marbles[p[j+1]]})

end

12.3.4 lib.math.digits

‘lib.math.digits’ returns a table whose elements are the digits of ‘number’ in base ‘base’.
‘base’ can be a positive integer (e.g. 3 to get ternary) as well as a table (then the table
entries with numerical keys will be used as digits).

Syntax: lib.math.digits(number, base [, zero is empty ])

number A non-negative integer.

base A positive integer other than 1, or a table with numerical keys.

zero is empty
If number is zero, a table containing the zero-th digit is returned
by default. If zero_is_empty is true, an empty table is returned
instead.

Syntax Samples:
lib.math.digits(13, 2) == {1, 0, 1, 1}

lib.math.digits(15, 16) == {15}

lib.math.digits(17, 3) == {2, 2, 1}

lib.math.digits(17, {2, "b", 5}) == {5, 5, "b"}

The following function can be used to get a table with hexadecimal entries:

lib.math.digits(x, {0,1,2,3,4,5,6,7,8,9,"A","B","C","D","E","F"})

Details:

Full Example:
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12.3.5 lib.math.manhattan distance

‘manhattan_distance’ calculates the Manhattan distance between two positions ‘pos1’ and
‘pos2’, which is

|pos1.x - pos2.x| + |pos1.y - pos2.y|.

Syntax: lib.math.manhattan distance(pos1, pos2 )

lib.math.manhattan distance(x1, y1, x2, y2 )

pos1, pos2 Positions (e.g. object references or tables ‘{posx, posy}’.

x1, y1, x2, y2
Coordinates of the positions ‘pos1’ and ‘pos2’, respectively.

Syntax Samples:
lib.math.manhattan_distance(4, 5, 3, 3)

lib.math.manhattan_distance({4, 5}, {3, 3})

lib.math.manhattan_distance(no["marble"], no["othermarble"])

Details: The Manhattan distance counts the minimal number of pushes necessary to
push a wood stone from one position to another. Its unit balls are squares with
the diagonals parallel to the x- and y-axis (rhombi).

Full Example:

12.3.6 lib.math.mark components

‘mark_components’ calculates the connected components of a group of floors. Two floors are
directly connected if their difference is within a given polist (or NEIGHBORS_4, by default).
A table is returned holding a list of groups, each group is a complete connected component.
In turn, an attribute is attached to each floor of the group which holds the number of its
component. The name of this attribute can be chosen freely.

Syntax: lib.math.mark components(group, attribute name [, neighborhood [,
exclusive attribute]])

group A group of floors.

attribute name
A non-empty string. Typically, this is the title of a user attribute,
so it should start with an underscore ‘_’, unless you want to feat the
information directly to a non-user attribute which takes numerical
values.

neighborhood
A symmetric polist (see details). Defaults to NEIGHBORS_4, which
results in a calculation of path-connected components.

exclusive attribute
A boolean (false by default) which can be set to true, if there is
no other floor which uses an attribute named attribute name.

Syntax Samples:
lib.math.mark_components(all_floors, "_component")

local number = #lib.math.mark_components(all_floors, "_component", NEIGHBORS_CHESS .. NEIGHBORS_4)

local lines = lib.math.mark_components(all_floors, "_linenumber", po(-1, 0) .. po(1, 0), true)
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Details: ‘mark_components’ returns a Lua-table of groups, the table has natural num-
bers as indizes counting up starting from 1, s.t. you can access the total number
of components via ‘#’. Each entry of the table is a subgroup of group, a com-
plete connected component. The sequence of the components is determined by
the sequence of the floors in group.

You have to choose an attribute, as it is used during the calculation. Note that
all prior information saved in this attribute is lost. Also note that choosing a
read-only attribute results in an error.

The chosen neighborhood has to be a symmetric polist, i.e. if it contains the
position po(x, y) it also has to contain the position po(-x, -y) at some point.
Mathematically speaking, we analyze the connected components of an undi-
rected graph, not of a directed graph.

If you know that there is no other floor which uses the attribute attribute_

name, you may set ‘exclusive_attribute’ to ‘true’. This will result in a much
faster algorithm.

Full Example:

12.3.7 lib.math.permutation

‘permutation’ returns a random permutation (i.e. a random shuffling) of the numbers 1 to
‘n’.

Syntax: lib.math.permutation(n)

n A positive integer.

Syntax Samples:
lib.math.permutation(#no["doors#*"])

Details: Permutations give a simple way to randomize a level, e.g. by changing the
assignment of action/target-pairs ("Which trigger to which door?").

Full Example:

12.3.8 lib.math.random vector

‘random_vector’ returns a table of ‘n’ random entries.

Syntax: lib.math.random vector(n, ...)

n A non-negative integer.

... Further arguments, which are the same as for ‘math.random’: Ei-
ther no further arguments, then the random numbers will be float
values in ‘[0,1)’, or with one additional number ‘p’, then the ran-
dom numbers will be integers between 1 and ‘p’ (both included), or
two additional numbers ‘p, q’, then the random numbers will be
integers between ‘p’ and ‘q’ (both included).

Syntax Samples:
lib.math.random_vector(4, 3)

will return a table of 4 random numbers out of {1,2,3}, and
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lib.math.random_vector(22)

returns a table of 22 float values between 0.0 and 1.0 (excluding 1.0).

Details: ‘random_vector’ can be used in conjunction with ‘cubic_polynomial’ to create
random patterns, see Section 12.3.2 [lib.math.cubic polynomial], page 335 and
Section 5.3.2 [Weirdly Wired], page 83.

Full Example:

12.3.9 lib.math.steps

‘steps’ takes a number ‘d’ and a table of numbers as arguments and returns the index of
the first number larger or equal ‘d’, minus one. I.e. it classifies ‘d’ into the intervals given
by the table, starting with zero, when ‘d’ is smaller than the first number in the table, one,
when ‘d’ is larger or equal to the first, but smaller than the second number, and so on.

Syntax: lib.math.steps(discriminator, steps)

discriminator
A number.

steps A table of numbers.

Syntax Samples:
number_pairs = lib.math.steps(total_places, {2, 6, 10, 30})

Details: Negative and non-integer values are allowed. However, the numbers in the
‘steps’-table should be monotonously increasing (not necessarily strictly
monotonously), as otherwise the result might be counter-intuitive.

Full Example:
lib.math.steps(x, {4, 8, 13})

returns:

0 if x < 4

1 if 4 <= x < 8

2 if 8 <= x < 13

3 if 13 <= x

12.4 libmap

The ‘libmap’ gives the author more possibilities to work with API 2-maps. Up to now, a
map just is a table of strings, as described in Section 5.13.1 [World Creation], page 109.
With ‘libmap’, you can utilize maps in a more advanced way.

This library is described as of release 1.

You can load it by adding an ‘dependency’ element to the Section 3.3.6 [<compatibility>],
page 33 XML Metadata element as follows:

<el:dependency el:path="lib/libmap" el:id="lib/libmap" el:release="1" el:preload="true"/>

It preloads automatically the library Section 12.2 [liblua], page 331.

We first give six task-oriented sections, then describe each function in detail.
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12.4.1 Creating Maps

We start by defining a table of strings representing the level we want to write in a two-
dimensional array of tile keys:

mypremap = {"# # # # # # # ",

"o t1 # t2o ",

"# # # ",

"# d2d1# # ",

"# @1# @2# ",

"# # # t1# ",

"o d3 t3o ",

"# # # # # # # "}

To not get confused with names, in this section we’ll call such a table of strings a
’premap’. We create a map (in the sense of libmap) by applying ‘wo:newMap’ to it, with a
default key and the premap as arguments:

mymap = wo:newMap(" ", mypremap)

The default key is saved in ‘mymap’ as well, it’s part of a map.

You can use

mymap = wo:newMap(key, height, width)

to define map of size ‘height*width’, where every tile key is ‘key’, and the default key
is set to ‘key’ as well. You might even omit ‘height’ and ‘width’, then you create a map
consisting of only one character.

12.4.2 Drawing Maps

Just as we could have used the premap with ‘wo’ or ‘wo:drawMap’ to draw it (see
Section 5.13.7 [drawMap], page 112), we can use the newly created map as well:

wo(resolver, mymap)

wo:drawMap(resolver, anchor, mymap)

wo:drawMap(resolver, anchor, ignore, mymap)

When the ‘ignore’-attribute for ‘drawMap’ is omitted, the default key of ‘mymap’ is used
instead.

Of course you can draw the map multiple times, even from within a resolver, see
Section 5.13.7 [drawMap], page 112 for a full example.

12.4.3 Rotating and Mirroring Maps

We can transform a single map simply by using one of the following commands:

newmap = lib.map.transform(mymap, maptransformation)

newmap = mymap ^ maptransformation

‘maptransformation’ can be any of the following constants:

‘MAP_IDENT’
No transformation.

‘MAP_ROT_CW’
Rotate 90 degrees clockwise.
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‘MAP_ROT_180’
Rotate 180 degrees (i.e. a point reflection around the midpoint).

‘MAP_ROT_CCW’
Rotate 90 degrees counter-clockwise.

‘MAP_FLIP_HORIZONTAL’
Flip each horizontal line, i.e. mirror against a vertical mirror: left and right are
swapped.

‘MAP_FLIP_VERTICAL’
Flip each vertical line, i.e. mirror against a horizontal mirror: up and down are
swapped.

‘MAP_FLIP_SLASH’
Flip each /-diagonal, i.e. mirror against a \-mirror: upper-right and lower-left
corners are swapped.

‘MAP_FLIP_BACKSLASH’
Flip each \-diagonal, i.e. mirror against a /-mirror: upper-left and lower-right
corners are swapped.

When you apply multiple transformations, remember that their sequence matters. If
you use

newmap = mymap ^ maptransformation1 ^ maptransformation2 ^ maptransformation3

then maptransformation1 acts first on mymap, then comes maptransformation2, and
maptransformation3 is last. However, composing transformations is associative, so you
can use

newmap = mymap ^ ((maptransformation1 ^ maptransformation2) ^ maptransformation3)

or

newmap = (mymap ^ maptransformation1) ^ (maptransformation2 ^ maptransformation3)

to the same effect. Keep in mind that composing transformations is by far faster than
applying transformations to maps. So the first example is faster than the second. Due to
Lua’s sequence of evaluating operators,

newmap = mymap ^ maptransformation1 ^ maptransformation2 ^ maptransformation3

equals

newmap = mymap ^ (maptransformation1 ^ (maptransformation2 ^ maptransformation3))

and hence already is the fastest possible sequence.

For composing transformations you may use ^ as well as *. You can also use
maptransformation ^ n to calculate the n-th power of maptransformation for any integer
n. The inverse of a transformation is given by -maptransformation, so

MAP_ROT_CW * (-MAP_ROT_CW) == MAP_IDENT

12.4.4 Requesting and Changing Single Map Entries

Let’s take a look at our example again:

mymap = wo:newMap(" ", {"# # # # # # # ",

"o t1 # t2o ",
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"# # # ",

"# d2d1# # ",

"# @1# @2# ",

"# # # t1# ",

"o d3 t3o ",

"# # # # # # # "})

It’s easy to check, what kind of tile key is at position {1,1} (note that the upper left
corner is at position {0,0}):

mymap[{1, 1}] == "t1"

It’s similarly easy to change it. Let’s say, we want to create a passage one tile right
beside the second marble ‘@2’, which is named ‘marble2’:

mymap[no["marble2"] + {1,0}] = " "

Note that the reference to ‘marble2’ only works after the marble has been set.

Requesting and changing map entries can be used with position lists, object and group
references as well.

You can replace any occurrence of a tile key ‘tile1’ by ‘tile2’ simply by

mymap:replace(tile1, tile2)

You can omit ‘tile2’, then any occurrence of ‘tile1’ will be replaced by the default
key.

You can also search for positions in a map which fulfill given conditions by using ‘match’,
the return value is a position list. The syntax is simple:

mymap:match()

mymap:match(tilekey)

mymap:match({pos1, key1a, key1b, ...}, {pos2, key2a, key2b, ...}, ...)

mymap:match({{pos1, key1a, key1b, ...}, {pos2, key2a, key2b, ...}, ...})

The first call will return all positions of the map. The second call will return all positions
with the desired tilekey. The third and fourth call will return all positions x such that x
+ pos1 is one of the keys key1a or key1b or ..., and such that x + pos2 is one of the keys
key2a, 2b, ..., and so on. A tile outside of the map is considered to be a default key.

The resulting position list can then be used to replace the matching tile keys:

mymap[mymap:match(oldkey)] = newkey

is equivalent to ‘mymap:replace(oldkey, newkey)’ (only slower), and

mymap[mymap:match({po(0,0), " "}, {NEIGHBORS_4, ".", ":"})] = "."

will find all occurrences of ‘ ’, which are completely surrounded by ‘.’, or ‘:’, or mixtures
of these, and replace them by ‘.’. As all replacements are done after matching, and hence
simultaneously, the newly introduced ‘.’ will not participate in the matching.

12.4.5 Connecting Two Maps

Given two maps ‘map1’ and ‘map2’, we can glue them together horizontally by ‘map1 ..

map2’ as well as vertically with ‘map1 + map2’. Missing entries will be filled with the default
key of the respective map, the default key of the result will be the one of ‘map1’. A simple
example:
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map1 = wo:newMap(" ", {"####",

"o #",

"# w#",

"####"})

map2 = wo:newMap(".", {"#######",

"#w.#..#",

"#..D..#",

"#..#.w#",

"#######"})

map1 .. map2 == wo:newMap(" ", {"###########",

"o ##w.#..#",

"# w##..D..#",

"#####..#.w#",

" #######"})

map2 .. map1 == wo:newMap(".", {"###########",

"#w.#..#o #",

"#..D..## w#",

"#..#.w#####",

"####### "})

map1 + map2 == wo:newMap(" ", {"#### ",

"o # ",

"# w# ",

"#### ",

"#######",

"#w.#..#",

"#..D..#",

"#..#.w#",

"#######"})

It’s also possible to paste a map into another map:

map1:paste(map2, pos)

will paste ‘map2’ into ‘map1’ at position ‘pos’ (relative to ‘map1’: {0,0} is the upper left
edge). If necessary, ‘map1’ will be extended such that the whole of ‘map2’ fits into it. You can
use ‘map1.sub’ to reduce its size again (see below) as well as to define ‘map2’ as a section of
another map. During the pasting, any occurrence of the default key of ‘map2’ will be ignored,
i.e. not drawn onto ‘map1’. You can change the default key with ‘map2.defaultkey = ...’
prior to the paste command to circumvent this, or use ‘map2:replace(tile)’ to replace
more tile keys by the default key, such that they are not drawn as well. You can use an
object group or position list for ‘pos’, in this case several copies of ‘map2’ will be pasted into
‘map1’. In the first case, there is no guarantee about the sequence in which the maps will
be pasted into ‘map1’. In the second case, a latter entry in the position list may overwrite
the result of earlier entries.

However, there’s a fourth possibility: Two maps may represent two different parts of tile
keys. Let’s give an example to fuse two tile key layers:

first_char = wo:newMap(".", {"#######",

"#w.#..#",

"#..D..#",
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"#..#.w#",

"#######"})

last_char = wo:newMap(".", {"C C",

" 11 22 ",

" 11322 ",

" 11 22 ",

"C C"})

first_char * last_char = wo:newMap(" .", {"#C# # # # # #C",

"# w1.1# .2.2# ",

"# .1.1D3.2.2# ",

"# .1.1# .2w2# ",

"#C# # # # # #C"})

The default key of the fused map is the concatenation of the two original default keys.
You can use a string instead of any of the two maps, in this case the whole tile key layer
will consist of this string everywhere:

first_char = wo:newMap(".", {"#######",

"#w.#..#",

"#..D..#",

"#..#.w#",

"#######"})

first_char * "u" = wo:newMap(" u", {"#u#u#u#u#u#u#u",

"#uwu.u#u.u.u#u",

"#u.u.uDu.u.u#u",

"#u.u.u#u.uwu#u",

"#u#u#u#u#u#u#u"})

Fusing maps can be a mighty technique in combination with the Section 13.1.4
[res.composer], page 373- and Section 13.1.3 [res.autotile], page 370-resolvers.

A map can also be defused: ‘map:defuse()’ will return a table of maps, where each map
is of keylength one, holding the corresponding subkey character.

12.4.6 Other Map Tasks

You can access the default key of a map by ‘mymap.defaultkey’, and change it just as
easily:

mymap.defaultkey = ".3"

mymap:set_default_key(".3")

The new default key should have the same length as the old one. However, it is possible
to choose a new key length as long as it fits to the map.

Width and height of a map can be accessed via ‘mymap.width’ and ‘mymap.height’.
However, these values can be changed only through the following commands ‘mymap:extend’
and ‘mymap:sub’.

It’s possible to extend a map to a given position, as long as both coordinates are non-
negative:

mymap:extend({19, 12})
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will extend ‘mymap’ up to position ‘{19,12}’. Missing entries will be filled with the
default key. If the map already covers this position, no change will be done.

If you want to check whether a position ‘pos’ lies inside a map, you can use
‘mymap:covers(pos)’, which returns a boolean value. Note that a map always starts in
‘{0,0}’.

‘lib.map.sub’ allows you to copy a rectangular area of a map and create a "submap"
this way. ‘lib.map.sub’ uses the same syntax as ‘wo:drawRect’, i.e. either

submap = mymap:sub(pos1, pos2)

with ‘pos1’ being the top left-hand corner and ‘pos2’ the bottom right-hand corner, or
alternatively

submap = mymap:sub(pos1, width, height)

to define the rectangle by its top left-hand corner and the side lengths of its area. If the
bottom right-hand corner overlaps the area of ‘mymap’, the resulting ‘submap’ will still be
just the rectangular section of ‘mymap’, i.e. width and height can be less than the arguments
specified. Use ‘submap:extend(width, height)’ to ensure the full width and height. The
default key of the submap of course is the default key of the original map.

‘lib.map.trim’ or ‘mymap:trim(tilekey)’ removes all lines and columns from the
North, South, East, and West that consist of tilekey only; it’s like trimming a string
from white spaces. You can omit ‘tilekey’, then the default key is used instead.

‘mymap:replace_outside(tile1, tile2)’ is a kind of combination of ‘replace’ and
‘trim’: All occurrences of tile1, which are connected to the border by a path of ‘tile1’,
are replaced by tile2 (or default key). Example:

map1 = wo:newMap(" ", {" ##########",

"### ##",

"F# D ## # #",

"# # #",

"######## "})

map2 = wo:newMap(" ", map1)

map1:replace_outside(" ", ".")

map2:replace_outside(" ", "#")

map2:replace_outside("#", ".")

will yield:

map1 = {".##########",

"### ##",

"F# D ## #.#",

"# #.#",

"########..."})

map2 = {"...........",

"... ..",

"F. D ## ...",

". ...",

"..........."})

You can combine ‘replace_outside’ with ‘match’ to remove irrelevant walls:
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map1.defaultkey = "-"

map1:replace_outside(" ")

map1[map1:match({{po(0,0), "#"}, {NEIGHBORS_4, "-", "#", "F"}})] = "-"

map1:trim()

map1.defaultkey = " "

will yield:

map1 = {"---######-",

"--# #",

"F# D ## #-",

"# #-",

"-#######--"})

Finally, you can use ‘mymap:print()’ to print ‘mymap’ to standard output. Similar to
Section 12.2.4 [lib.lua.print table], page 333, this is useful for debugging a level by taking a
look at its maps, but should not appear in the final level. ‘mymap:print()’ allows several
optional arguments:

mymap:print(withXYCounts, left_separator, right_separator)

If ‘withXYCounts’ is ‘true’, the map is printed with coordinates on the top and on the
left. ‘left_separator’ and ‘right_separator’ can be strings to be put between the left
coordinate axis and the map, and behind the map (to analyse space characters).

12.4.7 newMap

‘wo:newMap’ takes a default key, and a premap or width and height as arguments, and
returns a libmap-map.

Syntax: mymap = wo:newMap(defaultkey, premap)

mymap = wo:newMap(defaultkey, width, height)

mymap = wo:newMap(defaultkey)

defaultkey A non-empty string, which becomes the default key of the new map.

premap A table of strings. It may have lines of varying length, but each
line length must be divisible by the length of the default key.

width, height
Positive integers. If width and height are given instead of a premap,
a rectangular map consisting of the default key only is returned.

If neither a premap, nor width and height are given, a 1x1-map with the default
key is returned.

Syntax Samples:
See Section 12.4.1 [Creating Maps], page 341.

Details: The syntax with neither premap nor width and height is useful in conjunction
with Section 12.4.12 [Map Fusing], page 350.

A libmap-map is always rectangular. But you may use an ignore-key when you
draw the map with Section 5.13.7 [drawMap], page 112 to create arbitrarily
shaped areas.
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If the premap is not rectangular, missing positions are set to the default key.
However, each line length must be divisible by the default key’s length, other-
wise an error is thrown.

You may feed arbitrary tables to wo:newMap, but only their positive integer
entries are used, all other entries are ignored. You might even skip lines, like
in this example:

wo:newMap(" ", {[25] = "g"})

This will return a map of width 1 and height 25 filled with spaces, except for
the last line, which will be "g".

Each libmap-map is a table and can be used as a premap as well. Its default
key is ignored when a libmap-map is considered as a premap. In particular,
you may use wo:newMap to copy a libmap-map with:

newcopy = wo:newMap(mymap.defaultkey, mymap)

12.4.8 Map Entry Request

You may request and set single entries within a libmap-map, using the index-operator ‘[]’.

Syntax: entry = mymap[posarg ]

entry = lib.map.get(mymap, posarg)

mymap[posarg ] = newentry

lib.map.set(mymap, posarg, newentry)

entry, newentry
Non-empty strings of the same length as the default key of mymap.

mymap A libmap-map.

posarg A position, object, group, position list, string, or table (inter-
pretable as single position).

Syntax Samples:
See Section 12.4.4 [Requesting and Changing Single Map Entries], page 342.

Details: A read-access with a group or position list will return a table of all key entries
at the positions in the group or position list, in their corresponding sequence.
Empty groups and position lists will return empty tables.

Correspondingly, a write-access with a group or position list changes the key at
each position in the group or position list to the given string.

A read-access with a string invokes a Section 5.10.1 [Positions Repository Re-
quest], page 106 to retrieve a named position, unless the string equals one of
"type", "width", "height", "defaultkey", or "keylength", which return the
corresponding properties of the map instead.

A write-access with a string similarly is interpreted as access to a named posi-
tion, unless the string equals "defaultkey", see Section 12.4.13 [Map Default
Keys], page 351. A write-access to a non-existing position throws an error.

You may request any position outside of the scope of the map, even with neg-
ative coordinates. If you do so, the default key is returned. This accounts for
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non-existing positions as well (for example positions of items in the inventory,
or the position of a string which doesn’t describe a named position).

If you try to set an entry to a position with a negative coordinate an error is
returned. However, if you use non-negative coordinates outside of the scope
of the map, the map is subsequently extended to the new position, setting the
default key as entry where necessary.

Floating-point coordinates are always rounded to a grid position (see
Section 5.5.8 [Position Grid Rounding], page 93).

12.4.9 Map Transformation

You may transform any libmap-map according to the eight map transformation constants
given in Section 12.4.3 [Rotating and Mirroring Maps], page 341.

Syntax: newmap = mymap^maptransformation

newmap = lib.map.transform(mymap, maptransformation)

mymap, newmap
libmap-maps.

maptransformation
One of the following eight constants: MAP_IDENT, MAP_ROT_

CW, MAP_ROT_180, MAP_ROT_CCW, MAP_FLIP_HORIZONTAL,
MAP_FLIP_VERTICAL, MAP_FLIP_SLASH, MAP_FLIP_BACKSLASH.

Syntax Samples:
See Section 12.4.3 [Rotating and Mirroring Maps], page 341.

Details: As map transformations can be composed with ‘^’, it is possible to combine
several transformations without brackets; it’s only important to always have
the map on the left side of the ‘^’-sign:

newmap = mymap ^ MAP_ROT_CW ^ MAP_FLIP_HORIZONTAL

However, each such combination can equally well be expressed with a single
constant.

After a transformation, height and width of a map might have swapped.

12.4.10 Map Horizontal Concatenation

You may glue libmap-maps one after another in horizontal direction using ‘..’. Note the
similarity to the meaning of ‘..’ in the context of strings to remember its meaning in
contrast to ‘+’ (see Section 12.4.11 [Map Vertical Concatenation], page 350).

Syntax: newmap = mymap1 .. mymap2

newmap = lib.map.concat horizontally(mymap1, mymap2 )

mymap1, mymap2, newmap
libmap-maps.

Syntax Samples:
See Section 12.4.5 [Connecting Two Maps], page 343.
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Details: The upper-left corner of the second map is set beneath the upper-right corner
of the first, i.e. the bottom lines of the maps are aligned. If you want to align
them in another way, you may first vertically concat a map of suitable height
to the second (or first) map, like in this example:

newmap = mymap1 .. (wo:newMap(" ", 1, 13) + mymap2)

The default key of the new map is the default key of the first map. Any missing
position to gain a rectangular map is subsequently set to this default key.

12.4.11 Map Vertical Concatenation

You may glue libmap-maps on top of each other in vertical direction using ‘+’. Compare
with the meaning of ‘..’ (see Section 12.4.10 [Map Horizontal Concatenation], page 349).

Syntax: newmap = mymap1 + mymap2

newmap = lib.map.concat vertically(mymap1, mymap2 )

mymap1, mymap2, newmap
libmap-maps.

Syntax Samples:
See Section 12.4.5 [Connecting Two Maps], page 343.

Details: The upper-left corner of the second map is set below the lower-left corner of the
first, i.e. the left borders of the maps are aligned. If you want to align them in
another way, you may first horizontally concat a map of suitable width to the
second (or first) map, like in this example:

newmap = mymap1 + (wo:newMap(" ", 13, 1) .. mymap2)

The default key of the new map is the default key of the first map. Any missing
position to gain a rectangular map is subsequently set to this default key.

12.4.12 Map Fusing

You may fuse libmap-maps in the way described in Section 12.4.5 [Connecting Two Maps],
page 343, by interpreting the two keys of the two maps at a position as parts of a combined
(fused) key at this position.

Syntax: newmap = mymap1 * mymap2

newmap = lib.map.fuse(mymap1, mymap2 )

mymap1, mymap2, newmap
libmap-maps.

Syntax Samples:
See Section 12.4.5 [Connecting Two Maps], page 343.

Details: Missing keys in one map are replaced by the default key of this map.

The default key of the result is the concatenation of the default key of the first
map with the default key of the second map (as expected).

The inverse of the fusing operation is given by Section 12.4.16 [lib.map.defuse],
page 353.

One of the maps is allowed to be a string, which is then interpreted as a 1x1-
map with the given string as default key. The result of the fusing process then
is that each tile key is concatenated with the given string.
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12.4.13 Map Default Keys

A libmap-map always includes a default key, which is used in various places throughout the
library. It is the placeholder whenever a key out of scope of the map is requested, or when
Section 5.13.7 [drawMap], page 112 or wo (see Section 5.13.1 [World Creation], page 109)
are invoked without a default or ignore key. Hence, it is sometimes necessary to retrieve or
change the default key of a map.

Syntax: defaultkey = mymap.defaultkey

defaultkey = mymap["defaultkey"]

keylength = mymap.keylength

keylength = mymap["keylength"]

mymap.defaultkey = newkey

mymap["defaultkey"] = newkey

mymap:set default key(newkey)

lib.map.set default key(mymap, newkey)

defaultkey, newkey
A non-empty string.

mymap A libmap-map.

keylength A positive integer, which equals the length of the default key.

Syntax Samples:
See Section 12.4.6 [Other Map Tasks], page 345.

Details: It typically makes sense to change the default key of a map, when two or more
keys can be equally well thought of as being "default". Such an example occurs
during the import of Sokoban levels: While the canonical default key would be
the key of the inner free tiles, it is temporarily set to the key of the outer area
to allow a simple matching and trimming. It is then set back again:

local map = lib.import.level_to_map(level, "\n", " ")

map:replace("_")

map:replace("-")

map:replace_outside(" ", "-")

-- Remove redundant walls by outside:

-- A wall is redundant, if it is surrounded by "-" or "#".

-- In this case, it can be replaced by "-".

map.defaultkey = "-"

map[map:match({{po(0,0), "#"}, {NEIGHBORS_8, "-", "#"}})] = "-"

map = map:trim()

map.defaultkey = " "

See Section 12.4.18 [lib.map.match], page 354 and Section 12.4.24
[lib.map.trim], page 359 for details on their use of default keys.

The keylength of a map can be read, but not written. To change the keylength,
a new default key has to be assigned. On the other hand, it is possible to change
the default key to a key of different length; however, this rarely makes sense,
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as each line will be reinterpreted, and the width of the map changes. Still, the
width has to fit to the new keylength, otherwise an error is thrown.

If you want to change the keylength without reinterpreting each line, you should
instead fuse or defuse the map (see Section 12.4.12 [Map Fusing], page 350,
Section 12.4.16 [lib.map.defuse], page 353). Section 12.4.7 [newMap], page 347
allows this quite easily:

extendedmap = mymap * wo:newMap(" ")

restrictedmap = (mymap:defuse())[1] * (mymap:defuse())[3]

12.4.14 Map Width and Height

A libmap-map always includes its width and height. These determine for example the
exact position of the second map during a concatenation (see Section 12.4.5 [Connecting
Two Maps], page 343).

Syntax: width = mymap.width

width = mymap["width"]

height = mymap.height

height = mymap["height"]

width, height
Positive integers.

mymap A libmap-map.

Details: See also Section 12.4.6 [Other Map Tasks], page 345.

It is not possible (and rarely necessary) to directly change width and height of
a map. Instead, you might use Section 12.4.17 [lib.map.extend], page 354 to
extend a map to a given position, Section 12.4.23 [lib.map.sub], page 358 to
retrieve a rectangular part of a map, or Section 12.4.24 [lib.map.trim], page 359
to remove unused lines and columns from the map.

Note that width and height are not invariant. They change with many opera-
tions, like transformations, concatenations or setting a key outside the former
scope of a map.

Also note that the upper-left corner of a map has coordinates {0, 0}, so the
lower-right corner is {width - 1, height - 1}.

12.4.15 lib.map.covers

covers checks whether a position is within the scope of a map.

Syntax: result = mymap:covers(position)

result = lib.map.covers(mymap, position)

result A boolean value: true, if position is within the rectangle of grids
spanned by (0,0) and (mymap.width - 1, mymap.height - 1),
otherwise false.

mymap A libmap-map.

position A positional value (position or table with two entries).
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Syntax Samples:
if map1:covers(po(no["mycoin"]) - po(no["anchor1"])) then

wo(no["mycoin"]) = ti["-"]

end

Details: Floating-point positions are handled as expected, i.e. the position of a marble
which is on a grid corresponding to the map lets cover return true.

Remember to subtract the anchor of an already drawn map to get the correct
information when you use positions of the level world.

12.4.16 lib.map.defuse

defuse returns a table of maps of keylength one, which correspond to the first, second, n-th
character of each key at each position, respectively.

Syntax: result = mymap:defuse()

result = lib.map.defuse(mymap)

result A non-empty table with maps as entries at integer positions. There
are as many maps as the keylength of mymap.

mymap A libmap-map.

Full Example:
Given the following map,

mymap = wo:newMap(" .", {"#C# # # # # #C",

"# w1.1# .2.2# ",

"# .1.1D3.2.2# ",

"# .1.1# .2w2# ",

"#C# # # # # #C"})

mymap:defuse() will return a table

result = {map1, map2}

containing the following two maps:

map1 = wo:newMap(".", {"#######",

"#w.#..#",

"#..D..#",

"#..#.w#",

"#######"})

map2 = wo:newMap(".", {"C C",

" 11 22 ",

" 11322 ",

" 11 22 ",

"C C"})

Details: The default keys of the defused maps are the single characters of the default
key, in corresponding sequence.

The inverse of defusing is Section 12.4.12 [Map Fusing], page 350.
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12.4.17 lib.map.extend

extend changes a map in-place such that it covers a given position. If the position already
is within the scope of the map, nothing happens.

Syntax: mymap:extend(position)

lib.map.extend(mymap, position)

mymap A libmap-map.

position A positional value (position, table with two entries, valid object, or
string).

Syntax Samples:
mymap:extend(po(no["mycoin1"]) - po(no["anchor1"]))

mymap:extend("secondanchor")

Details: Negative coordinates are silently ignored. However, if the other coordinate
makes sense, the map might still get extended.

Floating-point coordinates are rounded to a grid position (see Section 5.5.8
[Position Grid Rounding], page 93).

12.4.18 lib.map.match

You may use match to search for patterns or keys within a map. match then returns a
position list of grid positions.

Syntax: result = mymap:match()

result = mymap:match(tilekey)

result = mymap:match(conditionlist)

result = mymap:match({conditionlist})

result = lib.map.match(mymap, conditionlist)

result The position list of all matched positions.

mymap A libmap-map.

conditionlist = condition, condition, ...
A list of conditions. A position is matched if and only if all condi-
tions of the conditionlist are matched.

condition = {positionlist, tilekey, tilekey, ...}
A position pos is matched by this condition if and only if for
each position relativepos in positionlist the tilekey mymap[pos
+ relativepos] equals one of the tilekeys in the list. If pos +

relativepos is outside the scope of mymap, its tilekey is the de-
fault key.

tilekey Non-empty string of the same length as the default key of mymap
(no wildcards).

positionlist
A single relative position or a position list of relative positions.
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Full Example:
Given the following map,

mymap = wo:newMap(" ", {"#####",

"#w# #",

"# D #",

"# #w#",

"#####"})

mymap:match("#") will return a position list of all walls "#", it is identical to
mymap:match({po(0, 0), "#"}) and mymap:match({{po(0, 0), "#"}}).

We may search for all positions pos which are between two walls with:

result = mymap:match({po(-1, 0), "#"}, {po(1, 0), "#"})

The two positions po(-1, 0) and po(1, 0) are relative to the returned position.
This returns a position list including positions like the wall at {1,0} (which
indeed is between two walls at po(1, 0) + po(-1, 0) and po(1, 0) + po(1,

0)), but also {1,1}. If we want to exclude walls at our position, we have to
give all other keys instead:

result = mymap:match({po(-1, 0), "#"}, {po(1, 0), "#"}, {po(0, 0), "w", " ", "D"})

Finally, mymap:match() will return all positions of the map, i.e. a position list
with all positions between {0,0} and {mymap.width - 1, mymap.height - 1}.

See also Section 12.4.4 [Requesting and Changing Single Map Entries], page 342.

Details: You can, but need not pack the condition list match into a single table. This
possibility exists to easily work with automatically generated condition lists,
but should be avoided in other cases due to readability.

The result of match is sorted primarily vertical, and secondarily horizontal, i.e.
a typical result would be:

po(1, 1) .. po(1, 3) .. po(1, 4) .. po(2, 2) .. po(2, 3) .. po(5, 1)

If you feed the position list back into a replacing command, like in

mymap = wo:newMap(" ", {"####",

"# #",

"####"})

mymap[mymap:match({NEIGHBORS_8, "#"})] = "#"

remember that the newly added changes could not be respected by the match;
so in the above example, the match returns an empty position list and no tilekey
is subsequently replaced.

Floating-point coordinates are rounded to a grid position (see Section 5.5.8
[Position Grid Rounding], page 93).

12.4.19 lib.map.paste

paste copies a map into another map at a given position. This command works in-place,
i.e. the receiving map is changed, instead of returning a new map.

Syntax: map1 :paste(map2, position)

lib.map.paste(map1, map2, position)
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map1 The libmap-map to receive the copy.

map2 The libmap-map which is to be copied into map1.

position A positional value (position, table with two entries, valid object,
position list, group, or string). The upper-left position {0, 0} of
map2 is inserted at this position (or these positions) into map1.

Full Example:
map1 = wo:newMap(" ", {"#######",

"#w # #",

"# D #",

"# # w#",

"#######"})

map2 = wo:newMap(".", {"F.E",

"E.E"})

In this situation, map1:paste(map2, po(1, 1) .. po(5, 3)) will change map1
into:

{"####### ",

"#F E # ",

"#E E # ",

"# # F#E",

"#####E#E"}

Details: The receiving map will be extended with its default key as necessary.

Each tilekey of the copied map which equals its default key will be ignored
during the pasting process.

Floating-point coordinates are rounded to a grid position (see Section 5.5.8
[Position Grid Rounding], page 93).

If a part of a map is to be copied to a position with negative coordinates, an
error is thrown. However, if this part is to be ignored anyway (because it is the
default key), then the negative coordinate is silently ignored. If for example we
have

map1 = wo:newMap(" ", {"#######",

"#w # #",

"# D #",

"# # w#",

"#######"})

map2 = wo:newMap(".", {".FE",

".EE"})

then map1:paste(map2, po(-1, 0)) will change map1 into

{"FE#####",

"EE # #",

"# D #",

"# # #",

"#######"}

while map1:paste(map2, po(0, -1)) throws an error.
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A map can be pasted multiple times into another map by providing a position
list or object group. The sequence of pastings is then given by the sequence of
the list or group, so the pasting at the second entry might overwrite the changes
done by the first entry.

12.4.20 lib.map.print

print prints a map to standard output. You may use this command for debugging purposes,
or to support development or translation of a level, but it should not be used in the released
form of a level.

Syntax: mymap:print([withXYCounts [, left separator [, right separator ]]])

lib.map.print(mymap [, withXYCounts [, left separator [, right separator ]]])

mymap A libmap-map.

withXYCounts
A boolean value, false by default.

left separator, right separator
Strings to be printed on the left and on the right side of the map,
empty strings by default.

Full Example:
mymap = wo:newMap(" ", {"#######",

"#w # #",

"# D #",

"# # w#",

"#######"})

Then mymap:print(true, " -> ", "|") prints the following to standard out-
put:

-> 0123456|

0 -> #######|

1 -> #w # #|

2 -> # D #|

3 -> # # w#|

4 -> #######|

Details: If you use maps wider than ten times its keylength, the x-count will show only
the last digits of the x coordinate.

If you want to insert lines between the columns, you can fuse the map with
your desired character, like in (mymap * "|"):print(...).

You can actually use print to generate a map for a level file if you provide
appropriate separators:

mymap:print(false, " \"", "\",")

12.4.21 lib.map.replace

replace replaces all occurrences of a single tile key in a map in-place with another tile key.

Syntax: mymap:replace(oldkey [, newkey ])

lib.map.replace(mymap, oldkey [, newkey ])
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mymap A libmap-map.

oldkey A non-empty string of the same length as mymap’s default key.

newkey A non-empty string of the same length as mymap’s default key, which
is the replacement for oldkey. The default replacement key is the
default key itself.

Syntax Samples:
mymap:replace("#", "-")

will change mymap in such a way that each "#" is replaced by "-". If "-" is
omitted, each "#" is replaced by the default key instead.

Details: ‘mymap:replace(tile1, tile2)’ is equivalent to

mymap[mymap:match(tile1)] = tile2 or mymap.defaultkey

but faster, because no position list is constructed in between (see Section 12.4.18
[lib.map.match], page 354).

See also Section 12.4.22 [lib.map.replace outside], page 358 and Section 12.4.4
[Requesting and Changing Single Map Entries], page 342.

12.4.22 lib.map.replace outside

replace_outside is a very specialized command, which is used to replace all occurrences
of a tile key which are connected to the border of the map by a path of this tile key with
another tile key. The replacement is done in-place, i.e. no new map is created or returned.

Syntax: mymap:replace outside(oldkey [, newkey ])

lib.map.replace outside(mymap, oldkey [, newkey ])

mymap A libmap-map.

oldkey A non-empty string of the same length as mymap’s default key.

newkey A non-empty string of the same length as mymap’s default key, which
is the replacement for oldkey. The default replacement key is the
default key itself.

Syntax Samples:
See Section 12.4.6 [Other Map Tasks], page 345.

Details: replace_outside shows similarities with Section 12.4.21 [lib.map.replace],
page 357 and Section 12.4.24 [lib.map.trim], page 359. It is the only universal
way to handle the area near the border of a map, and can be combined with
Section 12.4.18 [lib.map.match], page 354 and Section 12.4.24 [lib.map.trim],
page 359 to show its full potential.

Because of its recursive nature, old and new tile key must be different; in
contrast to the situation of Section 12.4.21 [lib.map.replace], page 357 identical
tile keys are not silently ignored, but throw an error message.

12.4.23 lib.map.sub

sub returns a copy of a rectangular section of a map as a new map.
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Syntax: submap = mymap:sub(upperleft, lowerright)

submap = mymap:sub(upperleft, width, height)

submap = lib.map.sub(mymap, upperleft, lowerright)

submap = lib.map.sub(mymap, upperleft, width, height)

submap A libmap-map, the rectangular section of mymap.

mymap A libmap-map.

upperleft, lowerright
Positional values (position, valid object, table with two entries, or
name of a named position.

width, height
Positive integers.

Syntax Samples:
See Section 12.4.6 [Other Map Tasks], page 345.

Details: If the bottom right-hand corner overlaps the area of mymap, the resulting submap
will still be just the rectangular section of mymap, i.e. width and height can
be less than the arguments specified. Use submap:extend(width, height) to
ensure the full width and height.

Floating point positions are rounded to grid positions, and the lower-right cor-
ner may not have coordinates less than those of the upper-left corner, otherwise
an error is thrown.

The default key of the submap is the default key of the original map.

The upper-left corner of the submap of course is {0,0}, i.e. the coordinates are
shifted accordingly.

12.4.24 lib.map.trim

trim returns the smallest rectangular section of a map as new map such that its border
consists of a given tile key only, i.e. it trims the original map from the North, East, South,
and West.

Syntax: trimmedmap = mymap:trim([tilekey ])

trimmedmap = lib.map.trim(mymap [, tilekey ])

trimmedmap
A libmap-map, the trimmed copy of mymap.

mymap A libmap-map.

tilekey A non-empty string of the same length as the default key. If omit-
ted, the default key is used instead.

Full Example:
With the following map:

mymap = wo:newMap(" ", {"#######",

"#w # #",

"# D #",
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"# # w#",

"#######"})

Trimming with ‘mymap:trim()’ will return just a copy of the original map, but
‘mymap:trim("#")’ returns a map as follows:

{"w # ",

" D ",

" # w"})

Details: The default key of the trimmed map is the default key of the original map.

If the original map consists of the trimmed key only, then trim returns a 1x1-
map with the trimmed key as only entry, and the default key of the original
map.

12.4.25 Map Transformation Index and MAP ALL

All eight transformation constants (see Section 6.3.15 [map read directions], page 137,
Section 12.4.3 [Rotating and Mirroring Maps], page 341, Section 12.4.9 [Map Transfor-
mation], page 349) are additionally packed into the table MAP_ALL, so a simple call to
ipairs(MAP_ALL) can iterate over all of them. MAP_ALL is provided without need to load
libmap.

Each transformation offers the field "index", which returns the number at which the
transformation appears in MAP_ALL. libmap is not needed to use "index" either.

Syntax: MAP ALL = {MAP IDENT, MAP ROT CW, MAP ROT 180,
MAP ROT CCW, MAP FLIP BACKSLASH, MAP FLIP HORIZONTAL,
MAP FLIP SLASH, MAP FLIP VERTICAL}

transformation index = maptransformation.index

transformation index
An integer between 1 and 8.

maptransformation
A map transformation.

Syntax Samples:
MAP_ALL[MAP_ROT_CW.index] == MAP_ROT_CW

Details: You may not safe map transformations as attributes of objects, for example the
following will throw an error:

no["stone_a"]["_mytrafo"] = MAP_ROT_CCW

Instead, you have to use index and retrieve the correct transformation from
MAP_ALL:

no["stone_a"]["_mytrafo"] = MAP_ROT_CCW.index

...

oldtrafo = MAP_ALL[no["stone_a"]["_mytrafo"]]

12.4.26 Map Transformation Composition and Powers

The transformation constants (see Section 6.3.15 [map read directions], page 137,
Section 12.4.3 [Rotating and Mirroring Maps], page 341, Section 12.4.9 [Map Transforma-
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tion], page 349) can be composed according to their true operation on a map, as soon as
libmap is loaded. The composition is returned by the operations ‘*’ and ‘^’.

Syntax: composition = maptransformation1 * maptransformation2

composition = maptransformation1 ^ maptransformation2

composition = lib.map.transformation compose(maptransformation1,
maptransformation2 )

composition = lib.map.transformation power(maptransformation1, maptrans-
formation2 )

power = maptransformation ^ exponent

power = lib.map.transformation power(maptransformation, exponent)

composition
The result of composing two map transformations.

maptransformation1, maptransformation2, maptransformation
Map transformations.

power The exponent-th power of maptransformation (again a map trans-
formation).

exponent An integer.

Syntax Samples:
new_transformation = (MAP_ROT_CW * MAP_FLIP_HORIZONTAL) ^ 2

another_transformation = (new_transformation ^ MAP_ROT_180) ^ (-1)

Details: The eight possible map transformations are the elements of a mathematical
group, the dihedral group of order 8. Composition of any two map transforma-
tions therefore yields another one of the eight map transformations. An n-th
power of a map transformation is the composition of n such transformations.
In the case of the dihedral group, any 4-th power returns the original element.
This fact is applied during calculating a power, so it doesn’t make a difference
to the performance when you use large numbers as exponents.

Composing with MAP_IDENT doesn’t change the value; it’s like adding zero to a
number, or multiplying with one.

Keeping to group theoretic notions, the operation ‘^’ between map transforma-
tions should denote conjugation instead of composition. Instead of this, it is
chosen to be synonymous to ‘*’ to allow for associativity of expressions like:

new_map = old_map ^ MAP_ROT_CCW ^ MAP_FLIP_VERTICAL

(Remember that Lua evaluates ‘^’ from the right.)

The inverse can be calculated with a power to -1, but also by ‘-’, see
Section 12.4.27 [Map Transformation Inverse], page 361.

12.4.27 Map Transformation Inverse

The transformation constants (see Section 6.3.15 [map read directions], page 137,
Section 12.4.3 [Rotating and Mirroring Maps], page 341, Section 12.4.9 [Map Transforma-
tion], page 349) have proper inverses, i.e. map transformations that reverse their action.
These inverse transformations are returned by ‘-’.
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Syntax: inverse = -maptransformation

inverse = lib.map.transformation inverse(maptransformation)

inverse The inverse map transformation of maptransformation.

maptransformation
A map transformation.

Syntax Samples:
reverse_transformation = -MAP_ROT_CW

In this case, reverse_transformation equals MAP_ROT_CCW, because their com-
position MAP_ROT_CW * MAP_ROT_CCW equals the trivial transformation (or iden-
tity) MAP_IDENT.

Details: The eight possible map transformations are the elements of a mathematical
group, the dihedral group of order 8. The inverse of any map transformation
therefore yields another one of the eight map transformations. Composition of
any map transformation with its inverse results in MAP_IDENT. However, within
the dihedral group of order 8, only two elements have inverses that are not their
own inverses: the two rotations by 90 degrees.

Keeping to group theoretic notions, the inverse is denoted by ‘^ (-1)’, which
works just as well(see Section 12.4.26 [Map Transformation Composition and
Powers], page 360).

12.4.28 Random Map Transformations

libmap provides the function lib.map.random_transformation() to pick one of the eight
transformations by random.

Syntax: randomtransformation = lib.map.random transformation()

randomtransformation
A map transformation, randomly chosen from MAP_ALL.

Syntax Samples:
wo:drawMap(ti, po(5, 4), mymap, lib.map.random_transformation())

Details: When you use random map transformations, remember that four out of the
eight map transformations switch height and width of the map they are applied
to.

12.5 libimport

libimport is dedicated to parse level files of other games or formats and typically returns
Section 12.4 [libmap], page 340-maps. In this context, the word "level" refers to a string,
representing a level of the other game. A "monolevel" is a string which holds a single
level, but also additional information, like titles or author names. A "multilevel" is a string
composed of one or more monolevels. A "map" is a map in the libmap-sense, i.e. an Enigma
level.

Apart from the following functions, lib.import includes the minor routines
‘lib.import.string_replace’, which is a wrapper for string.gsub, and
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‘lib.import.string_remove_multiples’, which removes multiple occurrences of a string
in another string.

This library is described as of release 1.

You can load it by adding an ‘dependency’ element to the Section 3.3.6 [<compatibility>],
page 33 XML Metadata element as follows:

<el:dependency el:path="lib/libimport" el:id="lib/libimport" el:release="1" el:preload="true"/>

It preloads automatically the libraries Section 12.4 [libmap], page 340 and Section 12.2
[liblua], page 331.

12.5.1 lib.import.unpack multilevel

‘unpack_multilevel’ extracts a level from a multilevel string. For this, it needs a regexp
describing a single level line.

Syntax: lib.import.unpack multilevel(multilevel, sublevel number, format)

multilevel A multilevel string.

sublevel number
The number of the level in multilevel to be extracted. First level
is ‘1’. If nil, ‘1’ is taken as default.

format A string referencing an entry in ‘lib.import.line_regexp’. Cur-
rently, only ‘sokoban’ and ‘wanderer’ are supported. But you can
add further entries to ‘lib.import.line_regexp’ if necessary.

Syntax Samples:
level_four = lib.import.unpack_multilevel(large_string, 4, "sokoban")

Details: A level extracted with unpack_multilevel has still to be converted into a
format Enigma understands. A level is a string, and lines of the level are to be
determined by line endings, which can be quite different. In contrast to this,
an Enigma map is a table of strings, with each line in a separate entry of the
table. Hence, at least the line endings have to be dealt with.

12.5.2 lib.import.uncompress rle

‘uncompress_rle’ takes a string as argument and returns a decoded version without run-
length encoding.

Syntax: lib.import.uncompress rle(level, attribs)

level A level string.

attribs A table containing further parameters. Currently, the only sup-
ported parameter is ‘error_on_multiple’.

Syntax Samples:
uncompressed = lib.import.uncompress_rle(compressed, {error_on_multiple = "\n"})

Details: Levels typically include long lines of repeating characters, like walls or spaces.
To save space, these are sometimes counted and replaced by the total number
and a single example of the character. This is called "run-length encoding", or
RLE.
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"############ A #####BB#" compresses to "12#2 A5#2B#"

However, some characters don’t make sense to be repeated, like line endings.
To return an error when trying to repeat a line ending during decompression,
you can hand a string to the attribute ‘error_on_multiple’. Any character in
this string is then forbidden to be repeated. Remember that the ‘new line’-
character is represented by ‘\n’ in Lua.

12.5.3 lib.import.level to map

‘level_to_map’ breaks a level string down into a table of strings, which is then converted
into a Section 12.4 [libmap], page 340-map.

Syntax: lib.import.level to map(level, line ending, default key)

level A level string.

line ending
A string describing a single line ending. Default: ‘\n’

default key
The default key of the returned map. Default: ‘ ’

Syntax Samples:
mymap = lib.import.level_to_map(level, "|", " ")

Details: Multiple line endings are interpreted as multiple lines (of which the last lines
are filled with the default key).

Make sure that the last line of the level ends in a proper line ending, and only
one line ending. Otherwise, the returned map will be too short or too long.

12.5.4 lib.import.map sokoban

‘map_sokoban’ takes a Sokoban multilevel as argument, and returns a beautified Section 12.4
[libmap], page 340-map.

Syntax: lib.import.map sokoban(multilevel, sublevel number, keylength one)

multilevel A multilevel string.

sublevel number
The number of the level to be extracted. First level is ‘1’. Default:
‘1’

keylength one
A boolean value. If false, the returned map has keylength two.
Otherwise, it has keylength one. Default: ‘false’

Syntax Samples:
map_four = lib.import.map_sokoban(multilevel, 4, true)

Details: Sokoban level files can be very different - they can use run-length encoding and
multilevel files. Sometimes, ‘|’ is used as line ending instead of or even together
with ‘\n’. ‘ ’, ‘_’ and ‘-’ can all represent space. Sometimes, the outside is filled
with ‘ ’, then again with ‘#’. Finally, line width can vary. We use a slightly
generalized version, to include chessoban levels. Allowed characters are:
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- _ space space

# wall

. goal

$ * box, box with goal

n N st_chess, st_chess with goal

@ + player, player with goal

The returned map will use ‘ ’ for inside space, ‘-’ for outside space, default key
is ‘ ’.

If you chose ‘keylength_one = true’, the returned map will use the characters
as described above. Otherwise, the returned map will have keylength two, and
the characters ‘*’, ‘N’, and ‘+’ are resolved into ‘$.’, ‘n.’, and ‘@.’ respectively,
while the other keys become ‘ ’, ‘- ’, ‘# ’, ‘ .’, ‘$ ’, ‘n ’, and ‘@ ’. You can then
use Section 13.1.4 [res.composer], page 373 to easily draw your map.

Remember that the returned map uses the inner space ‘ ’ or ‘ ’ as default
key. Hence, if you want to paste the map into another one (Section 12.4.5
[Connecting Two Maps], page 343), you will have to switch the default key to
‘-’ or ‘- ’ in beforehand to yield a good result.

12.5.5 lib.import.map wanderer

‘map_wanderer’ takes a Wanderer monolevel as argument, and returns a Section 12.4
[libmap], page 340-map. Note that Enigma does not yet have the necessary game objects
to simulate Wanderer.

Syntax: lib.import.map wanderer(monolevel)

monolevel A monolevel string.

Syntax Samples:
mymap = lib.import.map_wanderer(monolevel)

Details: Wanderer is a game originally created by Steven Shipway in 1988. Wanderer
level files are uncompressed monolevels with fixed width. The level itself is
followed by a short description (title/author/email) in a single line or a line of
‘#’. Last line optionally is a number. A Wanderer level knows the following
characters (taken from Wanderer’s editor):

: _ # earth, rock, indestructible rock

* - space treasure, alternative space, space

O < > ^ falling boulder, arrow from right, arrow from left, balloon

! + B landmine, cage, bomb

/ \ deflectors

T A X @ teleport, arrival, exit, start

M S C ~ big monster, baby monster, time capsule, thingy

Due to its fixed width (40) and height (16), a Wanderer level is not always
surrounded by walls; you might have to add them.

Note that Enigma does not yet support the game elements of Wanderer, hence
this function currently is only of use to developers.
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12.6 libsoko

This library is described as of release 1.

You can load it by adding an ‘dependency’ element to the Section 3.3.6 [<compatibility>],
page 33 XML Metadata element as follows:

<el:dependency el:path="lib/libsoko" el:id="lib/libsoko" el:release="1" el:preload="true"/>

It preloads automatically the libraries Section 12.5 [libimport], page 362, Section 12.4
[libmap], page 340, Section 12.3 [libmath], page 334, and Section 12.2 [liblua], page 331.

The only function which is meant to be used in levels is ‘lib.soko.create_sokoball’.

Syntax: lib.soko.create sokoball(multilevel, sublevel number, args)

multilevel Amultilevel string in the sense of Section 12.5 [libimport], page 362.

sublevel number
A number determining the number of the level in multilevel. De-
fault is ‘1’.

args A table holding optional information to construct the level, default
is {}. The following keywords are currently supported, all other
keywords will return an error:

design A number or a design table, see below.

maxdesign A number, see below.

Syntax Samples:
lib.soko.create_sokoball(many_levels, 13, {design = 48})

lib.soko.create_sokoball(many_levels, 12, {maxdesign = MAXDESIGN[1.1]})

Details: ‘create_sokoball’ creates a sokoball-level from the string multilevel. This
string can be a multilevel, in which case ‘sublevel_number’ determines the
number of the level, starting with 1 (default is 1).

The design can be chosen by ‘design’. This is either a number, which refers to
the list of predefined designs in libsoko_designlist.xml, or a table with the
corresponding design entries. A missing entry will be interpreted as the entry
from lib.soko designlist.default. If the ‘design’ variable is omitted, a check-
number is created from the level which uniquely* determines a design from the
design list, with maxdesign as highest possible design number.

*Uniquely means: The design might change when the design list is enlarged.

The number of available designs is 150 in Enigma 1.1, which equals the constant
MAXDESIGN[1.1]. However, further versions of Enigma might support more
designs. If a multilevel is loaded with a (numerically given) maxdesign number
which is larger than the number of available designs, only those levels will
be available for play whose calculated design number is supported, all others
will show an error message. However, it is better to use the MAXDESIGN-
constants. These will always raise an error, when the requested designs are not
available. The MAXDESIGN-constants are read-only.

If both the design argument as well as the maxdesign-number are omitted, the
original 150 designs will be used as fallback, no matter which version of Enigma
is running.
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To define own designs, please consult ‘data/levels/lib/libsoko_designlist.xml’
or use Section 12.5 [libimport], page 362 in the first place.

Returns width and height of new Enigma level.
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13 Advanced Features

13.1 Resolvers

Every tile in the world is defined by a key that needs to be resolved to its declaration.
This can be done either by the Section 5.12 [Tiles Repository], page 108 ‘ti’ alone, or by
additionally chained resolvers. In the chapter Chapter 5 [Lua API], page 64 we learned
how to set up a Section 5.13 [World], page 109 by static Section 5.11 [Tile and Object
Declaration], page 107s. Now it is time to explore the capabilities of resolvers. In the
Section 5.13.1 [World Creation], page 109 you had to supply a top resolver as an argument.
Let us look which types of resolvers are available and how you can chain these resolvers.

13.1.1 Resolver Chaining

There exist several useful resolvers that may simplify the task of level writing or provide
dynamic features like randomness, mazes, etc. Each of them handles just some keys out of
your world map. For the other keys the resolver has no idea how to resolve them to object
declarations. Thus each resolver has to be linked to a so called ‘subresolver’. The resolver
just forwards all key request that it can not handle itself to its subresolver. Indeed it will
in most cases even forward modified key requests to its subresolver that are required by the
process of handling its own keys.

The last resolver in the chain will either use the Section 5.12 [Tiles Repository], page 108
‘ti’ as its subresolver or a Section 13.1.2 [Custom Resolver], page 369 function, which will
be ‘ti’ based, too.

A typical resolver chain will look like:

Syntax Sample:
subresolver = res.random(ti, ...)

topresolver = res.composer(subresolver)

width, height = wo(topresolver, ...)

Details: The call of every resolver returns a context reference handle, that must be
supplied to the upward resolver in the chain. Thus you need to start with the
lowest resolver in your level code. The Section 5.13.1 [World Creation], page 109
takes the top most resolver context handle.

There is no limit to the number of chained resolvers. But the order of resolvers
may sometimes be critical. Please read carefully the resolver notes for usage,
restrictions and caveats.

Full Example:
The level "Demo Resolver Chain" of levelpack "Demolevels":

ti["~"] = {"fl_water"}

ti["s"] = {"fl_sahara"}

ti["t"] = {"fl_tigris"}

ti["1"] = {"ac-blackball", 0, 0.5}

ti["template_trigger"] = {"it_trigger", target="myoxyd%%", action="open"}

ti["template_oxyd"] = ti["~"] .. {"st_oxyd", "myoxyd%%"}
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myrandom = res.random(ti, " ", {"s", "t"})

myautotile = res.autotile(myrandom, {"a", "h", "template_trigger"},

{"A", "H", "template_oxyd"})

w, h = wo(myautotile, " ", {

"A~ ~E",

"~~ ~~",

"~~ h b ~~",

"~~ ~~",

"B~ c d ~F",

"~~ ~~",

"~~ 1 ~~",

"~~ ~~",

"C~ f e ~G",

"~~ ~~",

"~~ g a ~~",

"~~ ~~",

"D~ ~H"

})

wo:shuffleOxyd()

13.1.2 Custom Resolver

A customer resolver is a function in the level that allows a dynamic remapping of tiles.
When this function is registered in the resolver chain it is called once for every tile to be
set. The tile that this function return will be set.

Typical use cases are design patterns that are easy to calculate, but tedious to draw in
the map and dynamic generated levels that differ slightly on every restart.

Syntax: tile = myresolver(key, x, y)

key String that contains the tile key to be resolved.

x The world x coordinate of the tile.

y The world y coordinate of the tile.

Details: A custom resolver function is the last resolver that is called in the chain. It has
to return the final tile that should be drawn at the given position. This can be
done by statement ‘return ti["k"]’, which references the tile already declared
in the tiles map.

If no suitable tile was declared you can alternatively return a new tile like
‘return ti({"st_switch", state=ON})’.

If you decide not to draw any tile at all, you must return an empty tile decla-
ration: ‘return {"nil"}’ or ‘return {}’.

‘return nil’ indicates an error of usage of an unknown tile key.
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Example: The level "Demo User Resolver" of levelpack "Demolevels":

ti["r"] = {"fl_rough_red"}

ti["b"] = {"fl_rough_blue"}

ti["1"] = {"#ac-blackball"}

ti["x"] = {"it_cross"}

function myresolver(key, x, y)

if key == " " then

local center = ((x%3) * (y%3))%2

local checker = ((math.modf(x/3) %2) + (math.modf(y/3) %2))%2

if center + checker == 1 then

return ti["r"]

else

return ti["b"]

end

else

return ti[key]

end

end

w, h = wo(myresolver, " ", {

" ",

" ",

" ",

" x x ",

" x ",

" x x ",

" ",

" 1 ",

" ",

" ",

" ",

" ",

" "

})

13.1.3 res.autotile

Autotiling reduces the number of required tile declarations by generating them according
to given simple rules. The most common application are a bunch of identical switch like
objects that all target the same type of object like a door or a laser. As each of them has its
individual target object it would require to write a separate tile declaration with a unique
tile key, e.g.

ti["A"] = {"st_floppy", target="laserA"}

ti["B"] = {"st_floppy", target="laserB"}

ti["C"] = {"st_floppy", target="laserC"}



Chapter 13: Advanced Features 371

ti["a"] = {"st_laser", name="laserA"}

ti["b"] = {"st_laser", name="laserB"}

ti["c"] = {"st_laser", name="laserC"}

Autotiling requires just one template tile of each type and substitutes any pattern ‘%%’
by a unique substitution.

ti["template_switch"] = {"st_floppy", target="laser%%"}

ti["template_laser"] = {"st_laser", name="laser%%"}

Independent on the number of required unique objects you have just one template. You
just declare the used range of tile keys by a rule and are free to use them within your level
map.

Syntax:

res.autotile(subresolver, rules)

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

rules = rule, rule,...
One rule or as many as you like, all separated by a comma.

rule = prefixrule | rangerule
Each rule can be either a prefixrule or a rangerule in any mixture

prefixrule = {prefix, template}
A table with two entries. First a prefix string that is common to
all tile keys that should be handled followed by key string of the
template tile.

rangerule = {first, last, template [, offset ]}
A table with at least three entries. A string with the first key to
be handled, followed by a string with the last key to be handled.
The third value is the key string of the template tile. An optional
fourth value, that defaults to 1, defines the number of the first key
on ‘%%’ pattern substitutions.

Syntax Samples:
res.autotile(ti, {"A", "template_switch"}, {"L", "template_laser})

res.autotile(ti, {"a", "e", "template_trigger}, {"A", "E", "template_door"}

Details: Prefix rules need a key length of at least 2. You can not use it with maps of
just one character per tile. The resolver will create a tile declaration for any
tile key in the map that matches the given prefix. A copy of the template will
be taken.

Within this copy of the template all occurrences of the two characters ‘%%’ in
explicit object declarations will be substituted by a single percent sign followed
by the suffix of the used tile key. Thus a key of ‘AD’ will target the laser
‘laser%D’. You need to use the key ‘LD’ in the map for the matching laser.

Rangerules match any tile key in the given range. It can well be used in one
character key maps. But it can be used in multicharacter maps, too. In this
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case the given first and last keys may just differ in the last character. Again
a copy of the template rule will be generated and the ‘%%’ patterns will be
substituted. But in this case the substitution is composed of a single percent
sign followed by an integer number, that counts the key position within the
given range, starting with the given offset or default 1. Thus a key of ‘c’ in the
syntax sample above will target the door ‘door%3’. You would need to use the
key ‘C’ in the map for the matching door.

The template tile definitions can well be composed of several concatenated tiles
even with references of base tiles. The pattern substitution takes place on any
attribute value containing string descriptions. A valid template would be:

ti["template"] = ti["~"] .. ti({"it_trigger", target={"door%%#*","laser%%"}}) .. {"st_grate1"}

A pattern substitution can even take place on a key of a referenced base tile.
Every occurrence of the two characters ‘%%’ in the key will be substituted by the
suffix of the used tile key without a preceeding percent sign. E.g. the template:

ti["template"] = ti["P%%"] .. {"st_floppy", target="laser%%"}

applied to a key with the suffix ‘d’ will result in a base tile key ‘Pd’. This feature
is especially useful if the autotile resolver is chained to another subresolver which
generates the base tiles.

Full Example:
ti[" "] = {"fl_sahara"}

ti["template_a"] = {"st_floppy", target={"door%%#*","laser%%"}}

ti["template_A"] = {"st_blocker", "door%%#"}

ti["template_1"] = {"st_laser_s", "laser%%"}

ti["x"] = {"#ac-marble_black"} .. ti({"it_floppy"})

local resolver = res.autotile(ti, {"a", "e", "template_a"},

{"A", "E", "template_A"}, {"1", "5", "template_1"})

w, h = wo(resolver, " ", {

" ",

" ",

" a DB e BC ",

" ",

" CD b AE c ",

" ",

" d EA ",

" ",

" x ",

" ",

" ",

" 4 2 5 1 3 ",

" "

})
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A more elaborate example can be found in Section 13.3.2 [Orthogonal Autotil-
ing], page 393.

Caveats: Do not use the hash sign ‘#’ as suffix character for key length 2 and above
autotiled keys. A key "A#" could result in an unexpected ‘%%’ substitution in
the name attribute. A name "sample%%" would be substituted by "sample%#"

which is a name that will be autonumbered (see Section 4.2.3 [Object Naming],
page 51).

13.1.4 res.composer

The composer resolver reduces the number of required tile declarations by generating them
by composition of base tiles. Even small levels and nearly every large level will use many
different objects in numerous tile compositions. As the usable one character tile key can-
didates will not suffice you will need to use two or three character tile keys. But you will
need numerous tile declarations, one for every used object combination.

The composer frees you from declaring every used combination. You just declare the
base objects, e.g. the floors and all stones, items, actors and use combinations of these base
tiles keys. The composer constructs the required tile declarations on the fly. E.g. with the
following base tile declarations:

ti[" ."] = {"fl_space"}

ti[" ~"] = {"fl_water"}

ti["X "] = {"st_grate"}

ti["h "] = {"it_hammer"}

You can freely use any of the additional combination like "X." - a grate on space, "X~"
- a grate on water, "h." - a hammer on space, "h~" - a hammer on water.

Syntax:

res.composer(subresolver)

res.composer(subresolver, sequence)

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

sequence Search sequence for basic tile declarations given as a string of pri-
ority numbers. The sequence defaults to "123456789".

Syntax Samples:
res.composer(ti)

Details: For every key in the map the subresolver will be first requested for a tile decla-
ration. Thus any given explicit declaration will precede the auto composition.

Just in case that no declaration exists the search starts for existing subkey tiles.
Subkeys are keys with all but some characters replaced by a whitespace ‘ ’.

The search sequence is given by the optional second argument and defaults to
"123456789". In the first step all character positions marked by a ‘1’ in the
sequence string are maintained in the key string and all others are replaced by
whitespace. In the second step all character positions marked by a ‘2’ in the
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sequence string are maintained in the key string and all others are replaced by
whitespace. This procedure continues until the number equals the key length.
All generated subkeys are resolved by the subresolver and concatenated in the
given sequence.

With the default sequence "123456789" a key request for "~mX" is resolved to
subkeys "~ ", " m " and " X". These subkeys are resolved by the subresolver.
If the subresolver is ‘ti’ the result is:

ti["~ "] .. ti[" m "] .. ti[" X"]

With a key length of 3 or more characters it is sometimes useful to avoid a total
decomposition into single character based subkeys. E.g. you may want to use
a Section 13.1.3 [res.autotile], page 370 or Section 13.1.6 [res.puzzle], page 378
as subresolver. Both have the need of essential 2 character subkeys. In this
case you can simply define the sequence as "122" for a key length of 3. A key
request of "~Pa" will be resolved to subkeys "~ ", " Pa". In case of a puzzle
subresolver this would result in:

ti["~ "] .. ti[" P"]

with second tile declaration being a Section 9.5.49 [st puzzle], page 288 decla-
ration with the ‘connections’ attribute being set to "w" according to the last
key character ‘a’.

With a "231" you stick to a total decomposition, but you redefine the sequence
of evaluation and composition. For the key "~mX" you would get in contrast to
the first example:

ti[" X"] .. ti["~ "] .. ti[" m "]

In all cases, subkeys, that are strings of whitespace only, will simply be ignored.
With the default sequence the key "~ X" will result just in:

ti["~ "] .. ti[" X"]

If you set your floors by usage of the composer you should use the all whitespace
key as your default floor as this key does not resolve via the composer and needs
the backup of the default mechanism.

Full Example:
ti[" "] = {"fl_sahara"}

ti[" ="] = {"fl_tigris"}

ti[" ."] = {"fl_abyss"}

ti[" ~"] = {"fl_water"}

ti[" ;"] = {"fl_lawn"}

ti["# "] = {"st_granite"}

ti["W "] = {"st_wood"}

ti["X "] = {"st_oxyd"}

ti["G "] = {"st_grate_cross"}

ti["2 "] = {"it_coin_s"}

ti["s "] = {"it_seed"}

ti["c "] = {"it_cherry"}
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ti["h "] = {"it_hammer"}

ti["k "] = {"it_key"} .. ti({"st_lightglass"})

ti["xx"] = {"#ac_marble_black"}

local resolver = res.composer(ti)

w, h = wo(resolver, " ", {

--0001020304050607080910111213141516171819

" ",

" h= ;W;2;c G~ ~# #.2.X X~k=k; ",

" ",

" 2;s; 2.s. 2=s= ",

" c;h; c.h. c=h= xx ",

" "

})

13.1.5 res.maze

The maze resolver supports you in the creation of quite arbitrary mazes. The shape is no
longer limited to boring rectangular areas of one grid thick walls leaving the player just a
one grid path uniquely connecting all parts of the maze.

This second generation maze generator lets you fill mazes in arbitrarily shaped areas,
mazes with thick walls or chasms, or thin walls of just a sheet of window glass, mazes with
cells of single grid, cells that are whole islands or mazes based on Section 8.4.16 [it strip],
page 222 that have cells of no extent and consist of connections only. The maze cells may
be aligned strictly rectangular or shifted in one direction, they may be just connected to
its 4 neighbors or to 6 neighbors in hexagonal mazes or three dimensional mazes. You can
write and plug in your own maze generation and rendering algorithms. And finally you can
analyse, postprocess and even modify your maze even after the initial creation.

From the mathematical point of view we provide the basic structures for generation of
quite arbitrary directed graphs. Our maze consists of cells, the vertices of a graph. Every
cell can be connected to a given number of neighbor cells. But these connections, that are
the passages from one cell to another, can even be direction dependent. This allows you to
use window panes on either side of a connection or to use oneways for your connections,
too. These passages from one cell to another are the edges of our graph and as they may be
directed we have a directed graph. But for most mazes the support of directions is irrelevant
and transparent, and you do not really need to know anything about graphs at all. Thus
we called the resolver just a maze resolver.

Of course such a versatile resolver needs some configuration. As the parameters exceed
the number of arguments, that you can reasonably supply to a function just by enlisting
them, we decided to group the parameters for specific tasks and to use a table with named
attributes for the configuration. This sounds more complex than it is. But watch out
carefully for the table curly braces as they are necessary and can not be omitted.

In a big level you may want to generate two or even more completely independent mazes.
You can do this by using multiple instances of this resolver. The resolver handle returned
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on the configuration is a unique reference pointer for the maze for subsequent requests.
Store it and link all the maze resolvers as explained in Section 13.1.1 [Resolver Chaining],
page 368.

Location: This resolver is part of the library ‘libmaze’ as of release 2. You can use it by
adding the following dependency to your level Section 3.3.6 [<compatibility>],
page 33 declaration:

<el:dependency el:path="lib/libmaze" el:id="lib/libmaze" el:release="2" el:preload="true"/>

The library Section 12.4 [libmap], page 340 is automatically preloaded by this
resolver.

Syntax:

themaze = res.maze(subresolver, attributes)

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

attributes = {keyvalue, keyvalue,...}
An anonymous table with one or many attributes given as key value
pairs, separated by a comma.

keyvalue = <area=area value | render = render value | kernel = kernel value
| spacing = spacing value | persistent=persistence>

Values for given keys that may occur in any sequence in the anony-
mous table.

area value = {<rectangular area | marked area>}
The maze area specification, that is either defined as an rectangular
area or an area marked in the world’s map.

rectangular area = anchor, width, height
An rectangular area that is given by an anchor position within the
world and two numbers for the width and height measured in maze
cells.

anchor Anything that is convertible to a Section 5.5 [Position], page 90 that
denotes the upper left edge of the rectangular maze area. Besides
a position value, an object reference or a name string of an object
or position are supported value types.

marked area
One or multiple strings separated by a comma as simple entries in
the anonymous table. Every string does either specify a key match,
a key prefix or an object name. All these strings can be used at
the same time for marking an area. The strings can occur in any
sequence and multiplicity.

kernel value = {kernel width, kernel height}
The size of the kernel of a cell given by width and height in number
of grids.
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spacing value = {spacing x, spacing y}
The distance of the kernel of one cell to its neighbor in x and y
direction measured in number of grids.

render value = {<std renderer args | other renderer>}
The specification for drawing the maze. In case of a missing spec-
ification no drawing will be done at all. If the default standard
renderer should be used its parameters can be directly supplied,
other renderers need a type specification plus the necessary config-
uration information.

std renderer args = passage keys [, <wall key [, kernel key ] | cell map>]]
The standard renderer takes info about tile keys to be used for the
passages, and either a cell map, or additional tile keys for the wall
and optionally the kernel of a cell.

passage keys = <passage key | {passage open, passage closed}>
Usually you just give a tile key for open maze passages. Closed
passages appear like walls and use the same tile key. But in case
you want to use special tile keys for open and for closed passages
you can supply two strings in an anonymous table. If you give no
wall key you may need to include an ‘st_nil’ in your open passage
tile declaration to kill a wall stone drawn by your world map.

wall key The tile key to be used for drawing walls. If it is omitted no wall is
drawn and the resolver relies on all possible wall tiles to be drawn
by the world map itself.

kernel key In most cases the cell kernel will be drawn by the world map. But
if not you can supply a tile key that will be drawn on every cell
kernel grid.

cell map Instead of kernel and wall tile keys you can supply a Section 12.4
[libmap], page 340 map of a complete cell. The map can provide
arbitrary tiles for cell kernels larger than a single grid. The walls
can differ on the south and east side, too.

other renderer = renderer [, other renderer args]
Enlisting of a renderer function followed by its specific arguments.

renderer The function that does the rendering. By default it is
‘lib.maze.renderer_standard’ with the above given arguments.
Other supplied renderers are ‘lib.maze.renderer_window’ and
‘lib.maze.renderer_strip’

persistence
A boolean flag that defaults to ‘false’. You need to set it to
‘true’ if you want to access the maze or any of its cells after the
level initialization. Otherwise the maze reference handle with all
its data may get invalid due to memory garbage collection. This is
no problem for most mazes, that will be directly rendered and have
no need of further evaluation or changes during runtime.
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Syntax Samples:
maze1 = res.maze(ti, {area ={"anchor1", 4, 5}, render = {" ", "-", " "}})

maze2 = res.maze(ti, {area ={"."}, kernel={1,1}, render = {"!", "~", "-"}})

maze3 = res.maze(ti, {area ={"amaze#*"}, render = {{".","+"}, "~", "-"}})

maze4 = res.maze(ti, {area ={po(2, 12), 5, 5}, kernel={3,2},

render = {".", wo:newMap(" ", {"!!!~","--!~","~~~~"})}})

Details: To be written.

Full Example:

13.1.6 res.puzzle

The puzzle resolver helps you to reduce the number of required tile declarations for clus-
ters of Section 9.5.49 [st puzzle], page 288 stones. By usage of the ‘cluster’ attribute of
Section 9.5.49 [st puzzle], page 288 you can easily set clusters of fully connected stones.
But for irregular, internally just partial connected puzzles you often need a bunch of similar
tile declarations that differ just in the ‘connections’ attribute value.

ti["B1"] = {"st_puzzle_blue", cluster=1}

ti["Ba"] = {"st_puzzle_blue", connections="w"}

ti["Bb"] = {"st_puzzle_blue", connections="sw"}

ti["Bd"] = {"st_puzzle_blue", connections="ew"}

ti["Bh"] = {"st_puzzle_blue", connections="n"}

Like Section 13.1.3 [res.autotile], page 370 this resolver offers autotiling. You just define
one template tile and can use all connections variations

ti["B"] = {"st_puzzle_blue"}

Additionally this resolver registers every puzzle stone set and allows you to shuffle the
puzzle clusters. You can even select shuffle algorithms and define accessible sides of a puzzle.

Location: This resolver is part of the library ‘libpuzzle’ as of release 3. You can use it by
adding the following dependency to your level Section 3.3.6 [<compatibility>],
page 33 declaration:

<el:dependency el:path="lib/libpuzzle" el:id="lib/libpuzzle" el:release="3" el:preload="true"/>

Syntax:

res.puzzle(subresolver, rules)

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

rules = rule, rule,...
One rule or as many as you like, all separated by a comma.

rule The string of the template tile key that is the common tile key
prefix for all autogenerated tile declarations.

Syntax Samples:
res.puzzle(ti, "B", "Y", "I", "M")

Details: The puzzle resolver assumes a tile key length of two or more characters. The
given rules are prefix strings which need concat with a one character suffix to
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a standard tile key. Given a rule with a proper template rule you can use any
of the following suffices without tile declaration:

Suffix Cluster Connections

Solid Hollow

’0’ ’5’ 0 autoconnect

’1’ ’6’ 1 autoconnect

’2’ ’7’ 2 autoconnect

’3’ ’8’ 3 autoconnect

’4’ ’9’ 4 autoconnect

’ ’ ’+’ nil ""

’a’ ’A’ nil "w"

’b’ ’B’ nil "s"

’c’ ’C’ nil "sw"

’d’ ’D’ nil "e"

’e’ ’E’ nil "ew"

’f’ ’F’ nil "es"

’g’ ’G’ nil "esw"

’h’ ’H’ nil "n"

’i’ ’I’ nil "nw"

’j’ ’J’ nil "ns"

’k’ ’K’ nil "nsw"

’l’ ’L’ nil "ne"

’m’ ’M’ nil "new"

’n’ ’N’ nil "nes"

’o’ ’O’ nil "nesw"

’p’ ’P’ 10 autoconnect

’q’ ’Q’ 11 autoconnect

’r’ ’R’ 12 autoconnect

’s’ ’S’ 13 autoconnect

’t’ ’T’ 14 autoconnect

’u’ ’U’ 15 autoconnect

’v’ ’V’ 16 autoconnect

’w’ ’W’ 17 autoconnect

’x’ ’X’ 18 autoconnect

’y’ ’Y’ 19 autoconnect

’z’ ’Z’ 20 autoconnect

All puzzle stones set by this resolver will be registered and shuffled by default
with the ‘intensity’ of 3. You can define other intensity attribute values on any
puzzle stone. The maximum intensity of all stones in a cluster will be taken.
The intensity multiplied by the number of stones in a cluster describes the
number of inverse pushes, called pulls, that will be performed during shuffling.
Thus an intensity of 3 on a cluster of 6 stones will perform 18 pulls. That means
it is guaranteed that you can solve the puzzle with 18 pushes. But as some pull
operations may neutralize the user may be able to solve such a shuffled puzzle
with less than 18 pushes.
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If you define no shuffle ‘algorithm’ it is assumed that the user can rotate
the puzzle from any side and any Section 9.5.49 [st puzzle], page 288. The
requested number of shuffling pull operations will be performed from random
puzzle stones in a manner that guarantees that the user can solve the puzzle if
he has free access to all sides.

If you set the ‘algorithm’ on any of the puzzle stones to the value "marked" the
resolver registers that the user has no free access, but just from positions that
you did mark. You do mark a position by setting the attribute Section 7.2.16
[push directions], page 153 on a floor. All floors adjacent to puzzle stones,
including floors beneath another puzzle stone, will be checked for this attribute.
It is your responsibility to mark all floors and to ensure that the player has
continuos access to these foors for solving the puzzle by push rotations. The
attribute takes a string value, a substring of "nesw". If it contains the character
of the required push direction this push event will take part in the random
reverse shuffling process.

Note that hollow stones and their restriction of not being able to initiate a
rotation if fully respected on shuffling.

Full Example:
ti[" "] = {"fl_sahara"}

ti["##"] = {"st_granite"}

ti[".."] = {"fl_sahara", push_directions="nesw"}

ti["B"] = {"st_puzzle_blue"}

ti["Y"] = {"st_puzzle_yellow"}

ti["I"] = {"st_puzzle_blue", intensity=2/6}

ti["M"] = {"st_puzzle_blue", algorithm="marked", intensity=10}

ti["xx"] = {"#ac_marble_black"} ..ti({"it_magicwand"})

local resolver = res.puzzle(ti, "B", "Y", "I", "M")

w, h = wo(resolver, " ", {

" ",

"B1B1B1B1 ",

"B2B1BjB1 Y1Y6Y1 ",

"B2B2B2B2 Y1Y1YC ",

" Y6YnY1 ",

" ########## Y1Y1Y1 ",

" ##M1M1M1## ",

" I1I1 ##M1McM1.. ",

" I6Ia ..M1M1M1.. xx ",

" I1I1 ....#### ",

" ",

" ",

" "
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})

13.1.7 res.random

With map based level description you have explicit control about the objects being set on
every single grid. But sometimes you may want to introduce some randomness in the used
objects. E.g. a floor may be made up of two types at random to generate a different look
on every level start. The randomness would even make a level more difficult to play if one
of the two floors would invert the mouse forces. The random resolver allows you to set up
such cases.

Syntax:

res.random(subresolver, hits, replacements)

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

hits = key | {hit, hit, ...}
Either a single tile key string that defines the tiles to be randomized,
or a table of hit descriptors that should all be examined in parallel.

hit = key | {key, superkey}
Either a single tile key string or a pair of tile key string and a related
tile superkey string. The superkey tile will be set additionally to
the random replacement.

replacements = key | {replacement, replacement, ...}
Either a single tile key string that would be taken without random-
ness or as in most cases a table of replacement descriptors from
which the resulting tile should be selected with randomness.

replacement = key | {key, frequency}
Either a single tile key string that should be taken with a frequency
of ‘1’, or a pair of a tile key string with a given frequency number.
The frequency can be an integer or non-integer number, but must
be positive or zero.

Syntax Samples:
res.random(ti, "x", {"a", "b"})

res.random(ti, {{"x", "y"},{"i","j"}}, {{"a", 2}, {"b", 1}})

Details: Every key in the map is checked against the given hit key strings. If it fits one
of them a replacement will take place.

The replacement will be one of the replacement tile keys resolved via the sub-
resolver. The different keys will be chosen with a likelihood according to the
ratio of the given frequency numbers. If no frequency is supplied a default of ‘1’
is taken. Thus in the first example both keys are taken in a ratio 1:1, whereas
in the second the ratio will be 2:1.

When a superkey is given for a hit key this superkey will additionally be resolved
via the subresolver. This feature allows to use randomness on tiles with more
than one object on a grid position. E.g. an item or an actor on a random floor.
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The other objects can be set via the superkey while the random floor is set
according to the replacement rules.

Full Example:
ti["~"] = {"fl_water"}

ti["s"] = {"fl_sahara"}

ti["t"] = {"fl_tigris"}

ti["i"] = {"fl_inverse_gray"}

ti["b"] = {"fl_yinyang_yin"}

ti["w"] = {"fl_yinyang_yang"}

ti["c"] = {"it_coin_s"}

ti["p"] = {"it_brush"}

ti["1"] = {"ac_marble_black", 0, 0.5}

simple_random = res.random(ti, " ", {"s", "t"})

full_random = res.random(simple_random, {".",{"C","c"},{"p","p"}},

{{"i",3},{"b",4},{"w",1}})

w, h = wo(full_random, "s", {

" ~~.........",

" ~~.........",

" ~~......C..",

" ~~.........",

" ~~.........",

" ~~.........",

" c1.........",

" ~~.........",

" ~~.........",

" ~~.........",

" ~~......p..",

" ~~.........",

" ~~........."

})

Note that in this example we can use ‘p’ as key as well as superkey. This is due
to the fact that nowhere else this tile is directly set. Whereas the tile key ‘c’
is used for another tile with the default floor. Thus we do need to use another
unique key ‘C’ for the coin on our random floor.

13.1.8 res.train

The train resolver supports you in the set up of train like wandering floor chains. Usually
short passages of solid standard floors wander on a closed path of otherwise unpassable
floors like Section 7.4.1 [fl abyss], page 167 or Section 7.4.12 [fl water], page 177.
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The path itself is called railway, even though the name train does not really fit the
features of the wandering floor chains. But these names have been chosen by Petr Machata
in his first implementation of a simple wandering floor feature.

In contrast to real world train, the wandering floors themselves do not move at all. Thus
they do neither carry items or stones, nor do they allow an actor to rest on them and to be
automatically transported along the path. The train is more like a curb wheel of a trunk.
New floors are added to the front while trailing floors are removed.

Actually a chain of floors is composed of two train locos which move along the railway
path. One at the front that sets floor of the standard passable kind and one at the end, or
exactly one grid behind the end, that resets floor of the unpassable floor kind.

Usually both train locos move at the same speed keeping the passable floor chain length
constant. But this resolver allows you to set up arbitrary number of train locos moving
in arbitrary direction at arbitrary speed on a railway. But the resulting floor patterns will
likely no longer behave like trains. Nevertheless we keep the name.

Every railway path has to be described by a chained train resolver instance. The paths
of different resolvers may cross each other, but crossing trains may cause unexpected results
as the train locos just set floors without any respect to other trains. In future it is planned
to add track and train line attributes, which will allow even more complex railways.

Syntax:

res.train(subresolver [, suffix ][, hits])

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

suffix An optional key suffix string. Every grid position with a matching
key is registered as part of the railway path.

hits = hit, hit, ...
One or many resolver key hits that will identify positions of the
railway path with optional trains located on them.

hit = key | {key [, subkey ][, edge=edgevalue][, train=trainvalue]}
Either a single tile key string or a table of a tile key string with an
optional related tile subkey string and optional further arguments.

edgevalue A railway position that marks one of two edges spanning a rectan-
gular railway path.

trainvalue = {successorkey [, predecessorkey ] [, length=trainlength] [,
orientation=traveldirection] [, interval=speed ] [, name=namevalue]}

A train loco that moves with the given speed interval, defaulting to
0.25 seconds per grid, and starting into the given traveldirection.
The loco sets floors given by the sucessorkey string that will be
resolved via the subresolver. If a trainlength is given, a second
train loco is automatically created that preceeds this one by the
given length. This front train loco will set floors defined by the
predecessorkey string. If the train loco has an assigned name string,
the front train loco will be named with an appended "_front".
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Syntax Samples:
res.train(ti, ".", {" ^", train={" ~", " w", orientation=NORTH, length=6, interval=0.3}})

res.train(ti, {"e", edge=true}, {">", train={" w", orientation=EAST}}, {"<", train={"~", orientation=WEST}})

Details: Every key in the map is checked against the given hit key strings. If it fits one
of them the positition is added to the railway path and the subkey is used to
set remaining objects via the subresolver onto the grid. If no subkey is given
no additional objects are set.

If the key is no hit, but a suffix string is given and matches the key, the position
will be registered as part of the railway path, too. In this case the suffix part
of the key will be replaced by space characters and the resulting key will be
resolved via the subresolver.

There is no need of marking every grid position of a railway, what would be
a very annoying task if many stones and items are positioned on its path. By
default every train moves straight forward. You just need to provide hints for
positions where the train turns left or right. Marking the positions of the path
that follow every turn is sufficient.

Full Example:
ti[" "] = {"fl_sahara"}

ti[" ~"] = {"fl_water"}

ti[" w"] = {"fl_wood"}

ti["# "] = {"st_rawglass"}

ti[" @"] = {"#ac_marble"}

railway1 = res.train(ti, ".", {"1^", train={" ~", " w", orientation=NORTH, length=6}})

railway2 = res.train(railway1, {"2e", edge=true}, {"2^", train={" ~", " w", orientation=NORTH, length=5}})

wo(railway2, " ", {

" . ",

" . ",

" 1^ ",

" @",

" # ",

" 2e ",

" ",

" ",

" # #. 2^ ",

" . ",

" 2e ",

" . ",

" . "

})

The first railway has just marked the essential positions that define the path.

13.2 General Features
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13.2.1 Display Follow Strategy

As the world can be larger than a display screen the active marble can move out of the area
that is visible at level start. Somehow the display has to follow the active marble.

Whereas prior Enigma versions did provide just a handful of fixed modes, future versions
will give you a much more detailed control of the display following strategy. We decided to
switch the configuration to the future parameters already now. This allows us to give you
some more follower control, even though some attributes are still limited in their values.

The strategy is described by the following parameters.

Attributes:

Section 6.4.12 [FollowGrid], page 142
Section 6.4.13 [FollowMethod], page 142
Section 6.4.14 [FollowThreshold], page 142
Section 6.4.11 [FollowAction], page 141

Syntax Samples:
wo["FollowGrid"] = true

wo["FollowMethod"] = FOLLOW_SCROLL

Details: The attributes should always be set in the sequence as given above. This is due
to the fact that the first attributes may reset some of the later attributes to
matching defaults. This way you will have to set just a two attributes for the
most common cases.

You can set the display follow strategy at any point. You are even allowed to
switch the strategy during the running game.

Valid Configurations as of Enigma 1.10:

Screen Flipping:
wo["FollowGrid"] = true

wo["FollowMethod"] = FOLLOW_FLIP

The default strategy. The screen flips as soon as the marble reaches
the outer half of the boundary grid tile. The screen moves by a full
screen minus the common tile row or column.

Half Screen Scrolling:
wo["FollowGrid"] = true

wo["FollowMethod"] = FOLLOW_SCROLL

wo["FollowAction"] = FOLLOW_HALFSCREEN

As soon as the marble reaches the outer half of the boundary grid
tile the display scrolls pixel by pixel by half a screen. It realigns
to the grid. As on a standard sized screen the display would have
to scroll 9.5 grids in horizontal direction such scrolls will alternate
in scrolls of 9 and 10 grids. The follower will try to stabilize the
reachable scroll positions.

Permanent Smooth Scrolling:
wo["FollowGrid"] = false

wo["FollowMethod"] = FOLLOW_SCROLL
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The active actor will always stay in the center of the screen.
The display compensates the actor’s movement pixel by pixel by
scrolling. The display positions are not aligned to grid tiles.

Full Screen Scrolling:
wo["FollowGrid"] = true

wo["FollowMethod"] = FOLLOW_SCROLL

wo["FollowAction"] = FOLLOW_FULLSCREEN

As soon as the marble reaches the outer half of the boundary grid
tile the display scrolls pixel by pixel by a full screen minus the
common tile row or column.

No Screen Scrolling:
wo["FollowMethod"] = FOLLOW_NO

No scrolling at all. Even if the active actor moves out of sight the
display remains at its position.

Screen Flipping at a given threshold:
wo["FollowGrid"] = true

wo["FollowMethod"] = FOLLOW_FLIP

wo["FollowThreshold"] = po(2.5, 1.5)

The screen flips as soon as the marble reaches the given distance
to the screen boundary. The screen moves by a full screen minus
twice the threshold distance. The final display realigns to the grid
even on odd threshold distances.

Full Screen Scrolling at a given threshold:
wo["FollowGrid"] = true

wo["FollowMethod"] = FOLLOW_SCROLL

wo["FollowThreshold"] = po(2.5, 1.5)

The screen scrolls as soon as the marble reaches the given distance
to the screen boundary. The screen moves by a full screen minus
twice the threshold distance. The final display realigns to the grid
even on odd threshold distances.

13.2.2 Flood Spreading

A flood is active Section 7.4.12 [fl water], page 177 that, originating from a source, spreads
over Section 7.2.6 [floodable], page 151 areas. In contrast to a flood standard water is just
static, its ‘state’ is ‘IDLE’ and it will not spread to adjacent floors. But a flood reaching a
static water lake will cross it as a tsunami and continue actively spreading on all riparian
zones.

You set up the area by adding the attribute Section 7.2.6 [floodable], page 151 with value
true on all its floors. Just Section 7.4.12 [fl water], page 177 and the framed variants of
Section 7.4.13 [fl wood], page 178, Section 7.4.4 [fl hay], page 170 and Section 7.4.7 [fl rock],
page 171 do not require to be explicitly marked floodable as they are floodable by default.
The marked area is the maximum area that may be flooded. But obstacles may block the
flood temporarily or permanently.
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A flood starts at a source. As soon as you add a ‘fl_water_source’ or set the ‘state’ to
‘FLOODING’, the Section 7.4.12 [fl water], page 177 starts to spread to floodable neighboring
grids with a speed defined by the attribute ‘interval’. The speed will be inherited to floors
flooded by the stream.

Floodable floors with solid stones, closed doors or Section 9.5.67 [st window], page 310
with blocking faces on top will keep the flood from spreading to their grid position or if
already flooded to spread to a neighboring grid. But as soon as the obstacle vanishes,
e.g. an Section 9.5.19 [st door], page 256 opens, the flood continues to spread. Hollow
stones, especially Section 9.5.41 [st oneway], page 279 do not block flood streams, totally
independent of actor blocking features on certain types or faces.

Of special interest are the Section 9.5.7 [st box], page 246 variants and their successor
floors, the framed variants of Section 7.4.13 [fl wood], page 178, Section 7.4.4 [fl hay],
page 170 and Section 7.4.7 [fl rock], page 171. A flood will flow beneath a box stone, if the
floor beneath is floodable. In consequence of the upcoming water, the box stone will fall
and build a framed floor of the given kind. These floors act like bridges over flooding water.
They still let the flood spread to further neighboring floodable floors. Thus a user can not
stop a flood by pushing an Section 9.5.7 [st box], page 246 onto its path, but he can make
the water passable for his marbles. In fact this framed floors can even operate as a flood
source, but we do not recommend this usage.

In contrast to these floor building stones the Section 9.5.49 [st puzzle], page 288 does
neither fall on static nor on flooding Section 7.4.12 [fl water], page 177. As a solid stone it
will even block a flood on neighboring grids to reach its position. But of course once moved
completely over Section 7.4.12 [fl water], page 177 the puzzle will fall if its own conditions
are met. The successor Section 7.3.14 [fl gray], page 159 will not build a bridge over water.
It fills up the ditch and replaces the water completely. Thus the user can use puzzles to
stop a flood.

When a flood stream spreads to a new floor items on these floors may be affected. E.g.
Section 8.4.4 [it crack], page 211 get flooded and do vanish. All Section 8.4.3 [it burnable],
page 210 besides oil get wiped out, too.

Further active components of the flood concept are Section 8.4.19 [it vortex], page 225
and Section 8.4.20 [it wormhole], page 227. Besides actors both do spread a flood. The
Section 8.4.20 [it wormhole], page 227 spreads the flood to its ‘destination’ if the floor
at this grid is marked ‘floodable’. An Section 8.4.19 [it vortex], page 225 will flood all
its ‘destination’s, but of course just if it is in state ‘OPEN’. In case the destinations are
vortices, too, they must be open, too, for a successful flood spreading. When the last closed
vortex on either end opens again the hold flood continues to spread. Note that in these
cases the flood reaches the destination grid from beneath. Thus no stone will block the
emerging water. But nevertheless a stone on the destination position may well block the
water from spreading to the neighboring grids.

Be aware that the Enigma flood has some extraordinary features. The most important
is the ability to spread unlimitedly from every grid that got flooded, independently of a
still existing connection to the flood source. Thus once a door is opened and a bit of the
flood passes the door, the flood will continue to spread even if the door closes again. Same
is true for toggling vortices or puzzle stones being pushed into a flood building a complete
bridge over the water stream. But this feature is intentionally, as it avoids many shortcut
situations and thus makes the flood more usable for level authors.
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13.2.3 Fire Spreading

The 1.0-version of Enigma introduced a new fire system, making use of attributes and
messages of the floor tiles. The default fire, once ignited, spreads over the landscape and
destroys items, marbles and some stones. It spreads along those floor tiles that are marked
“burnable” by default (like Section 7.4.4 [fl hay], page 170 or Section 7.4.13 [fl wood],
page 178), by attribute (see attribute Section 7.2.2 [burnable], page 150), or by one of two
items that indicate burnability: the invisible Section 8.4.3 [it burnable], page 210 and the
visible it_burnable_oil. On a burning floor, all items are destroyed. However, some items
prevent the floor from burning, like Section 8.4.11 [it meditation], page 217 or Section 8.3.11
[it dynamite], page 189 (which ignites instead).

Fire can be ignited in several standard ways:

• The setfire-message sets fire to a floor if it is burnable and the item on it allows it
to burn; non-burnable items like Section 8.3.11 [it dynamite], page 189 are not ignited
by this.

• The heat-message ignites burnable floors as does setfire, but also initiates a
Section 13.2.4 [Heat-Transformation], page 390 of the floor and ignites items on it.

• The ignite and explosion-messages that are used by Section 8.3.11 [it dynamite],
page 189 and Section 8.4.2 [it bomb], page 209 can initiate fire via Section 8.4.3
[it burnable], page 210[ oil] or if the Section 7.2.12 [ignitable], page 152-attribute of
the floor is set (off by default).

• The floor already starts burning on initialization when the initfire-attribute is set
(off by default).

• Fire in the neighborhood, see below.

If needed, the forcefire-message can be used to set fire to non-burnable floors. In-
ternally, it is equivalent to manually setting it_burnable_ignited; however, setting it_

burnable_ignited manually is deprecated to allow a further development of the fire-system
in future.

Fire does the following:

• It kills Section 9.5.7 [st box], page 246 wood, Section 9.5.7 [st box], page 246 hay, and
Section 9.5.22 [st flat], page 260 moveburnable above it, and Section 9.5.22 [st flat],
page 260 burnable beneath it.

• It melts Section 9.5.28 [st ice], page 265 to Section 7.4.12 [fl water], page 177.

• It heats its neighboring tiles, which might result in a Section 13.2.4 [Heat-
Transformation], page 390 of the floor.

• It might ignite or destroy items on its neighbor, this concerns Section 8.3.11
[it dynamite], page 189, both Section 8.4.2 [it bomb], page 209, and Section 8.4.4
[it crack], page 211.

• It might set fire to its neighbor.

• It shatters marbles that are not protected with Section 8.3.32 [it umbrella], page 205
or other measures. Note that in future versions, jumping over fire with Section 8.3.29
[it spring], page 203 might get allowed.

Fire stops burning after a random amount of time, as long as the eternal-attribute of
the floor is not set. When it stops burning, it might replace the floor by another kind (“fire-
transform”), this is: Section 7.4.13 [fl wood], page 178 is replaced by Section 7.4.1 [fl abyss],
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page 167, Section 7.3.17 [fl lawn], page 160 by Section 7.3.12 [fl dunes], page 158. Finally,
it puts Section 8.4.3 [it burnable], page 210 ash on the floor, which prohibits a second fire
and which can be removed with Section 8.3.5 [it brush], page 185. However, ash is not set if
the Section 7.2.15 [noash], page 153-attribute is set (default only for Section 7.4.1 [fl abyss],
page 167).

Since the spreading of fire is a random event, in 0.92, a level author couldn’t be sure
that a particular item was ignited or fire was set. Since 1.0, these can be assured by setting
the Section 7.2.17 [secure], page 153-attribute: When a burnable floor with secure = true

is near fire, it will eventually catch fire, items on it are ignited, etc. secure is false by
default.

In 0.92, there were two speeds of fire: When using Section 8.4.3 [it burnable], page 210,
fire spread much faster than without. This is still the same in 1.0 and above. However, you
can set the Section 7.2.5 [fastfire], page 151-attribute to hasten the fire without setting the
invisible Section 8.4.3 [it burnable], page 210, this should be the preferred method.

Fire that burns under a stone is not allowed to spread; the only exceptions are float-
ing stones like Section 9.5.26 [st grate], page 264, and those stones that are destroyed by
fire anyway (Section 9.5.7 [st box], page 246 wood, Section 9.5.7 [st box], page 246 hay,
Section 9.5.22 [st flat], page 260 burnable, Section 9.5.22 [st flat], page 260 moveburnable).
In contrast to this, fire might also spread to under a movable stone, but not further.

You can stop fire with it_extinguisher, which creates the fireproof it_burnable_
fireproof. Another way to stop fire is to push the totally inert Section 9.5.7 [st box],
page 246 rock over it: This is the only movable stone that doesn’t allow fire under it. A
final way to stop fire is to send the stopfire-message to a floor.

Differences between 1.0 and 0.92

The old fire system of Enigma versions up to 0.92, differs from the 1.0 and above version
mainly in the following points:

• no fire-transform except Section 7.4.13 [fl wood], page 178 to Section 7.4.1 [fl abyss],
page 167

• no Section 13.2.4 [Heat-Transformation], page 390s

• ash on Section 7.4.1 [fl abyss], page 167

• no difference between different floors

• replication via same-floor-pattern instead of burnable-floor-pattern: 0.92 didn’t distin-
guish between burnable and non-burnable floors. Instead, fire was allowed to spread
to floors of the same kind slowly.

• burnable items always catch fire: In 1.0 and above, a burnable item (except for
Section 8.4.3 [it burnable], page 210[ oil]) on a non-burnable floor won’t catch fire,
in 0.92 it did.

A good model of the 0.92-system can be attained via the compatibility-modes: All
non-Enigma-modes (see Section 16.1 [Engine Compatibility], page 400 and Section 3.3.6
[<compatibility>], page 33) feature a version which only marginally differs from 0.92-fire,
yet allowing some of the new achievements, like secure- or eternal-fire.

Note that in 0.92, fire-transformation happened at the beginning of the fire, which man-
ifested in the so called “burning-abyss”-bug. Besides other details, this is how the original
0.92 system differs from the one in 1.0-non-Enigma-mode.



Chapter 13: Advanced Features 390

Burnable and Fireproof Floors

All floors that look like plastic, fabrics, or organics are burnable by default:
fl_adhesionless, fl_aquamarine, fl_bluegray, fl_bluegreen, fl_blueslab, fl_

fake_trigger, fl_hay, fl_ivory, fl_marble, fl_platinum, fl_red, fl_redslab,

fl_rough*, fl_tigris, fl_woven.

All floors that look like wood are burnable and leave Section 7.4.1 [fl abyss], page 167
behind: fl_bast, fl_plank, fl_samba*, fl_wood*, and Section 7.4.2 [fl bridge],
page 168 b*.

All floors that look like grass are burnable and leave Section 7.3.12 [fl dunes], page 158
behind: Section 7.3.17 [fl lawn], page 160.

All other floors are fireproof (they don’t burn by default): fl_abyss*, fl_

brick, fl_bright, fl_concrete, fl_dark, fl_darkgray, fl_dummy, fl_dunes,

fl_gravel, fl_gray, fl_himalaya, fl_ice, fl_inverse*, fl_metal*, fl_mortar,

fl_pinkbumps, fl_rock, fl_sahara, fl_sand, fl_slope*, fl_space, fl_stone,

fl_swamp, fl_water, fl_white, fl_yinyang*, and Section 7.4.2 [fl bridge], page 168 g*.

An open Section 7.4.2 [fl bridge], page 168 is never burnable, this overrides all items
and attributes. A closed Section 7.4.2 [fl bridge], page 168 is burnable if and only if it is
brown, but this can be changed via attribute burnable. Note that changing the flavor of
Section 7.4.2 [fl bridge], page 168 will change burnable according to the new flavor as well.

Fireproof Items

Most items are passively burnable, this is: An item is destroyed by fire, if and only
if the floor could burn all by itself. However, there are some items with individual
reactions (it_burnable, it_burnable_oil, it_dynamite, it_bomb*, it_crack*)
and some items that are completely fireproof. These are: it_burnable_ash,

it_burnable_fireproof, it_debris, it_dummy, it_explosion*, it_extinguisher,

it_extinguisher_medium, it_meditation*, it_trap, it_vortex* and the fire
animations themselves: it_burnable_ignited and it_burnable_burning.

Note that it_extinguisher_empty, it_trigger (visible and invisible), it_landmine,
and it_death are passively burnable. In particular, it_landmine does not explode or
create it_meditation when burning. The reaction of Section 8.4.12 [it sensor], page 219
towards fire might be changed in future versions.

If you need to save a passively burnable item from fire, simply set a fireproof floor like
fl_sand or fl_rock below it. This normally is the case when using Section 8.4.16 [it strip],
page 222. However, you can use the burnable-attribute in these cases to force burnability
of the floors.

13.2.4 Heat-Transformation

When a fire starts to burn near Section 7.4.5 [fl ice], page 171, it melts to Section 7.4.12
[fl water], page 177. In the same sense, Section 7.4.12 [fl water], page 177 boils to
Section 7.4.10 [fl swamp], page 176, and this again to Section 7.3.12 [fl dunes], page 158.
In contrast to most other fire-related actions, this is not random, but always and only
happens, when a nearby fire starts to burn, i.e. once for each new fire.

Examples: Put an Section 9.5.7 [st box], page 246 rock on Section 7.4.5 [fl ice], page 171.
A fire will melt the ice, and Section 9.5.7 [st box], page 246 rock creates a fireproof and
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safe way to the other side. If you use Section 9.5.7 [st box], page 246 wood instead,
Section 7.4.13 [fl wood], page 178 framed is created, which presumably catches fire and
leaves Section 7.4.1 [fl abyss], page 167 behind. Finally, Section 9.5.7 [st box], page 246 hay
will create Section 7.4.4 [fl hay], page 170 framed, which is burnable, but won’t burn down
to Section 7.4.1 [fl abyss], page 167. A similar combination is fl_water with Section 9.5.13
[st chess], page 250.

You can enforce a transformation by sending the heat-message to the floor.

If you want to suppress this transformation, you can switch to a non-Enigma-
compatibility-mode.

13.2.5 Freeze Checking

With Enigma 1.1 and above, you can use a special feature to support Sokoban levels and
Sokoban parts of levels: Whenever a movable stone is pushed into some unmovable position,
this feature automatically transforms the stone into Section 9.5.16 [st death], page 253, to
demonstrate that the game is lost and provide a simple way for the player to restart.

The feature is called “Freeze Checking”. It applies to each stone with attribute freeze_
check = true which is pushed onto a floor with attribute freeze_check = true. This
way you can restrict the freeze check to a bounded area. For a true Sokoban the goal
tiles should not be marked with freeze_check = true, as a frozen box on a goal is not
considered harmful. On the other hand, you can specify which boxes are freeze-checked.
This gives further freedom to use other stones inside your Sokoban area: Floor and stone
both need the freeze_check-attribute activated.

The freeze check recognizes three basic constellations of stones that lead to a freeze of a
standard movable stone. With B as box (movable or persistent) and # as wall (persistent):

BB #B #B

BB # B#

There are more freeze constellations which are not recognized, the simplest would be:

#B

BB

#

Don’t rely on this fact, it might be changed in future versions.

Please bear in mind: The freeze check is not intelligent. It can’t foresee that one of your
functions might remove a stone, it can’t foresee that some door will never open up again
(doors are considered as non-existent), it doesn’t recognize when you put an Section 8.3.23
[it puller], page 198, Section 8.3.6 [it cherry], page 186, or Section 9.5.60 [st swap], page 303
in your level. It handles special stones in a way to minimize false-positive freeze checks.

Floating stones (like Section 9.5.26 [st grate], page 264) create completely new frozen
constellations. From the following two examples, only the right example is frozen (G is
st_grate_cross):

G G

BB BB

GB GBG

At present, none of these are recognized as frozen by Enigma, floating stones are consid-
ered as non-existing during a freeze check. To demonstrate the difficulty, you may analyze
yourself which of the following constellations is frozen:
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G G GBG GB# G G#G

B# BBB BB GB G BBBBB

G #B B# #B G G#G G

G G G

In some cases, stones are even handled differently although they have similar proper-
ties: Section 9.5.7 [st box], page 246 wood and st_flat_moveburnable (see Section 9.5.22
[st flat], page 260) are both movable and both destroyed by fire (see Section 13.2.3 [Fire
Spreading], page 388). There would never be frozen stones, as they can easily be burned
away. Yet, st_box_wood uses the default freeze checking, whereas st_flat_moveburnable
is considered as non-existing. This is because st_box_wood is often used without fire,
whereas st_flat_moveburnable is primarily used in combination with fire.

Another example is Section 9.5.56 [st shogun], page 297 s, which is considered as a
default movable stone, in contrast to the remaining shogun stones. This way you can
use st_shogun_s with goal Section 8.4.13 [it shogun], page 220 s, but don’t have to fear
false-positive freeze checks from the non-standard way in which shogun stones move.

As a concluding remark, the freeze checking is to be used as a support for the gamer
only. It’s not meant to be exploited as special feature to make movable stones unmovable
or to provide a way to jump back to the starting position. It is subject to changes in future
versions. And versions before 1.1 won’t make a freeze check at all - so you can’t rely on it
to happen. It should really be used in Sokoban-kind parts of a level only, for which it is
designed.

13.3 Tips and Tricks

13.3.1 Nearest Object Clustering

The nearest object as described in Section 4.2.3 [Object Naming], page 51 provides a major
feature for reducing the number of needed tile declarations. As the selection needs to be
unique a rule had to be defined in case of equal distances. South wins, then east, stones are
favored to items, floors and actors.

In most cases level authors can arrange their objects to fit these rules. But sometimes the
level design does not allow the straight forward usage of a simple nearest object selection.
E.g.

ti["F"] = {"st_floppy", target="@door#*"}

ti["B"] = {"st_blocker", name="door#"}

wo{ti, " ", {

" B ",

" FB#####FB####",

" # F B ",

" # # F#####",

In both cases the floppy switch that is located at the crossing of two blocker doors will
open the false one.

But you can use a cluster concept like the one we introduced for Section 9.4 [Cluster
Stones], page 237. Just add one or in rare cases two or three additional groups. Assign all
standard cases to group A and the out of line cases in group B:
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ti["F"] = {"st_floppy", target="@doorA#*"}

ti["B"] = {"st_blocker", name="doorA#"}

ti["f"] = {"st_floppy", target="@doorB#*"}

ti["b"] = {"st_blocker", name="doorB#"}

wo{ti, " ", {

" b ",

" fB#####fb####",

" # F B ",

" # # F#####",

By clustering the doors in two groups you just need two additional tile declarations. But
you will likely be able to handle a dozen of additional switch/door combinations.

13.3.2 Orthogonal Autotiling

Autotiling is useful whenever you want to define lots of target-action-pairings, even when
source and target objects differ (i.e. use different tile keys). In this case we speak of
‘orthogonal autotiling’. Let’s take a look at the important parts of the API 2 version of
the level ‘Laser Games’:

...

ti["T*"] = {"it_trigger", target = "mirror%%", action_1 = "turn", action_0 = "turnback"}

ti["F*"] = {"st_fourswitch", target = "mirror%%"}

ti["1*"] = {"st_mirror", name = "mirror%%", flavor = "triangle", orientation = NORTH}

ti["2*"] = {"st_mirror", name = "mirror%%", flavor = "triangle", orientation = SOUTH}

ti["3*"] = {"st_mirror", name = "mirror%%", orientation = NORTH}

...

local resolver = res.autotile(ti, {"T", "T*"}, {"F", "F*"},

{"1", "1*"}, {"2", "2*"}, {"3", "3*"}, {"4", "4*"}, {"5", "5*"},

{"6", "6*"}, {"7", "7*"}, {"8", "8*"}, {"9", "9*"})

w, h = wo(resolver, " ", {

"# # # # # # # # # # # $ # $ # $ # $ # # ",

"# # # ",

"# = = # 1a 9b 3c 2d $ ",

"# = # # ",

"# TaTbTcTd # 3e 4f 5g 4h $ ",

"# TeFfFgTh # # ",

"# TiFjFkTl # 6i 3j 4k 7l $ ",

"# TmFnFoTp # # ",

"# TqTrTsTt # 8m 7n 6o 8p $ ",

"# # # ",

"# @ = # 1q 7r 3s 2t $ ",

"# # # ",

"# # # # # # # # # # # $ # $ # $ # ^ # # "

})

...
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We have different kinds of sources for our actions (triggers T and fourswitchs F), and
different kinds of targets (mirrors 1, 2 etc.). However, as all mirrors are consistently named
mirror%%, with %% being replaced by %a to %t, the connections between the objects can be
set easily without having to worry about different object types: The trigger Ta will turn
mirror 1a (which is called mirror%a), Tb will turn 9b and so on. If we decide to replace
mirror 1a by, say, mirror type 2, we can simply replace 1a by 2a, and still preserve the
action-target-pairing.

In this very special situation, the attribute counterclock proves to be useful: All mirrors
in this level turn clockwise, except for 9b. Without counterclock, we’d have to use a
callback-function to decide about the target and manually choose between the actions turn
and turnback. However, by setting

ti["9*"] = {"st_mirror", name = "mirror%%", flavor = "triangle",

orientation = SOUTH, counterclock = true}

it’s possible to send the same messages to all mirrors that correspond to triggers (i.e.
turn when the trigger is pressed down and turnback when it is released again), and still
to have one or more mirrors behave in a different way (i.e. rotating in another direction).
The inverse attribute is of a similar use.
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14 Extension Development

14.1 Resolver Development

Resolvers are designed to provide easy plugable extensions for usage by level authors. Fur-
ther on resolvers should be as flexible as possible. To reach these goals each resolver consists
of three parts: the configurator, the implemention and the finalizer.

14.1.1 Resolver Configurator

The configurator is the function that is being called, when the author supplies the resolver
specific parameters.

Syntax: context = res.resolvername(subresolver,...)

subresolver
Resolver to which unresolved requests should be forwarded. May
be ‘ti’ as the final resolver of the resolver chain.

Details: This function has just one mandatory parameter, the subresolver. You are free
to specify arbitrary further parameters due to the needs of the resolvers task.

All official resolvers will be registered in the registry table ‘res’ under their
official name:

function res.composer(subresolver)

...

end

This configurator function will be called just once per level start. It is called
after the tile declarations and before the first tile is set and the implementation
part may be called.

It is the task of the configurator function to check the user supplied parameters
thoroughly and to provide appropriate error messages on bad parameters. Do
this with a lua error message call at level 2 or the useful helper functions
Section 5.14.1 [assert bool], page 119 and Section 5.14.2 [assert type], page 119:

error("Resolver autotile rule " .. i.." is not a table", 2)

assert_bool(is_resolver(subresolver), "res.composer first argument (subresolver)", 2)

assert_type(args[1], "res.composer second argument (sequence)", 2, "non-empty string")

The configuration function has to return a table that contains the context for
subsequent calls of the implementation. This table has three predefined entries:

[1] = implementation function
[2] = finalizer function
[3] = subresolver
... = resolver specific additional entries

All the checked and preprocessed parameters have to be stored in this context
table for later usage. The resolver implementation function is usually regis-
tered as ‘res.resolvername_implementation’. The finalizer can be ‘nil’ if
no finalization is necessary. The subresolver given as the first parameter of the
configurator call needs to be the third context table entry.
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The context needs to add a metatable with two entries. First "_type" needs
to identify the context as an enigma data type for the Section 5.14.4 [etype],
page 122 function. Most resolvers to simply store the string "resolver", but
special ones might return special identification strings like "maze". The second
required entry is "_resolver" that needs a boolean ‘true’ value assigned for
purpose of secure identification of resolver tables. A default resolver metatable
is stored at ‘res.metatable’ and can directly be set by ‘setmetatable’.

Full Example:
function res.composer(subresolver)

assert_bool(is_resolver(subresolver), "res.composer first argument (subresolver)", 2)

local context = {res.composer_implementation, nil, subresolver}

setmetatable(context, res.metatable)

return context

end

14.1.2 Resolver Implementation

When the map gets evaluated on the world creation the top resolver is asked for every key
to return the valid tile declaration. This is done with the following call.

Syntax: tile = resolver implementation(context, evaluator, key, x, y)

context The context as provided as return value by the Section 14.1.1 [Re-
solver Configurator], page 395.

evaluator A system function that needs to be called whenever this resolver
needs to look up the key by its subresolver.

key The key string that should be resolved

x, y The position of the tile.

Details: Based on the given parameters, the key, the position, the resolver parameters
stored in the context and the existing tiles that can be requested via the eval-
uator function the implementation needs to decide if it takes influence on the
key. Note that it is not possible to access any world object via its coordinate
at this time. On every call you have to assume that it may be the first tile that
is set.

If the key is not resolved to a final tile by this resolver, the subresolver must be
called via the evaluator function:

local tile = evaluator(context[3], key, x, y)

Remember that the subresolver is stored at position 3 of the context. As no
influence should be taken this tile is the one that should be returned.

But if you want to return another tile you are free to do it. You can decide
on another key and ask the subresolver for the appropriate tile. You can even
concatenate two tiles returned by subsequent subresolver calls. You are allowed
to return a new tile with a table declaration of an object. Some valid return
statements:

return evaluator(context[3], "a", x, y)

return evaluator(context[3], "a", x, y) .. evaluator(context[3], "b", x, y)
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return evaluator(context[3], "a", x, y) .. ti({"st_laser_n", state=ON})

You are even allowed to add new tile declarations to the tiles repository to
speed up subsequent calls:

ti["newkey"] = evaluator(context[3], "a", x, y) .. ti({"st_laser_n", state=ON})

A resolver implementation can store and modify any of its private parameters
in the context table for subsequent calls. Especially it can enlist all coordinates
for postprocessing operations in the finalizer.

Full Example:
The implementation of the composer (without the special sequence treatment)

function res.composer_implementation(context, evaluator, key, x, y)

local tile = evaluator(context[3], key, x, y)

if tile ~= nil then

return tile

end

-- try to compose tile

for i = 1, #key do

local subkey = string.rep(" ", i-1) .. string.sub(key, i, i) .. string.rep(" ", #key - i)

local subtile = evaluator(context[3], subkey, x, y)

if subtile == nil then

return nil

end

if tile == nil then

tile = subtile

else

tile = tile .. subtile

end

end

return tile

end

14.1.3 Resolver Finalizer

If the Section 14.1.1 [Resolver Configurator], page 395 provides a finalizer function in its
context this function will be called once when all tiles from the map have been set.

Syntax: resolver finalization(context)

context The context as provided as return value by the Section 14.1.1 [Re-
solver Configurator], page 395.

Details: The finalization functions of chained resolvers are called from bottom to top.

Many resolvers have no need of a finalization. But some like a maze constructor
need to know all participating tiles until they can do their final work.

As all tiles from the map have been processed the objects can now be accessed.
Further information may be stored in the resolvers context.

The finalizer does neither call its subresolver nor does it return a value.
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15 Guidelines and Hints

Up to now we described all features in their full extend. Of course you are free to use
them all without any restrictions for your private levels. We are committed to maintain all
features in future versions of Enigma.

But for inclusion of your levels into the Enigma project we would like to recommend
conformance to some common standards. These few points guarantee that your levels can
easily be processed by our administration tools, the players can talk about your level and
your level remains editable by the project maintainers in case of urgent need.

Additionally we like to give you some hints how to write good levels by means of proper
strategy.

15.1 Filename Recommendation

No space for spaces

15.2 Title Recommendation

English titles preferred - use subtitle, too

15.3 Tile Key Recommendation

The following guidelines are not compulsory, but we nevertheless encourage them, as they
ease the development of new and the maintenance of old levels.

• Stones use capital letters, items small letters, floors use punctuation marks.

• The default floor is " ". The second most important floor typically is "_" or ".". It’s
a good idea to use tile keys for floors, which are small and don’t obstruct the view on
the more important objects, like stones and items. Important floors (like bridges) may
have letters or numbers to emphasize their importance (a bridge could be "b", or a
number to use autotiling).

• Water typically is "~", as the tilde is a small character which resembles a wave. Simi-
larly, an abyss can be well described by "_", as the underscore resembles a hole.

• On a German keyboard, the four characters ".", ",", ":" and ";" are arranged in a
square, so you can easily use them to arrange quadruples of floors, like lawn pieces of
different brightness. On a US keyboard, you can use ",", ".", "<" and ">" to the same
purpose. Another quadruple of characters are the arithmetic operators "+", "-","*",
and "/".

• Slopes can be described using "<", ">", "v" and "^". As you see, we encourage you to
use the letter "v" for a floor at this point, as it resembles an arrow pointing down. For
slant slopes, it’s a good idea to use either numbers (following the number keypad on
your keyboard), or quadruple characters like ".", ",", ":", ";" or arithmetic operators.

• Although it fits nicely to "/", it’s not a good idea to use the backslash as a tile key, as
it has to be masked to work correctly. Similarly, we disencourage the use of brackets
as tile keys.

• The most important simple stone should be "#", all other stones should use their first
letter, like “laser” -> "L", “switch” -> "S", “box” -> "B". If two stones have the same
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first letter, the more important one should be given priority ("L" for laser instead of "L"
for "st_lightglass", "G" for "st_lightglass" instead of "G" for "st_greenbrown").

• Orientable stones like boulders or lasers should use "N", "E", "S", "W" if they appear
in more than one orientation.

• Stones of the same kind, which appear several times in different ways (like switches
with different actions) should use consecutive letter ("S", "T", "U", ...) or numbers.

• Oxyd stones should use "O" or "0". If you put several different oxyd stones, e.g. of
different colors, make use of consecutive letters ("P", "Q", "R" ...) or numbers.

• If you want to put mirrors, it’s a good idea to use characters resembling the orientation
of the mirror, i.e. "|", "-", and "/". As the backslash is no good tile key, you may
use "&" or "Q" instead, as these characters include a prominent slant line similar to
the backslash. Triangular mirrors are best written with "<", ">", "v" and "^".

• For rotator stones, it’s a good idea to use "R" and "L" for clockwise (right) and counter-
clockwise (left) rotating stones. As an alternative, you might want to use characters
which are written in either clockwise or counter-clockwise manner, like "p" and "q".
Note that this might depend on your handwriting.

• Documents can use either "d", or "i" (for "information"), as "d" is used more often
(e.g. for autotiling purposes). If several documents appear in the level, you can use
consecutive letters ("i", "j", "k" ...). Remember that you can take advantage of
autotiling if you have lots of different documents in your level.

• Coins can be written with "c", with "$" or with numbers resembling their worth.

• Marbles should be "@", all other actors should use small letters ("t" for ac top, "p"
for ac pearl, ...), or large punctuation marks.

• For autotiling, it’s a good idea to use "X", "Y", "x", "y", "*", "?" and similar characters
which associate themselves with variables as template keys. Another possibility is to
use a full word like "door" or "switch" as template tile key, which has the advantage
of being easier

15.4 Easy Mode Hints

write easy first, floor friction,...



Chapter 16: Compatibility 400

16 Compatibility

16.1 Engine Compatibility

Although Enigma was inspired by the Oxyd game series, there are some differences between
the native Enigma engine mode and the other modes as well as between the other modes
themselves. Using the compatibility element of the xml-metadata (see Section 3.3.6 [<com-
patibility>], page 33), it is possible to activate some of these special features. Here is a list
of the major differences

All non-Enigma modes (oxyd1, per.oxyd, oxyd.magnum, oxyd.extra)

• Keep Section 8.3.18 [it key], page 194 when using Section 9.5.30 [st key], page 268.

• Oxyd stones (Section 9.5.42 [st oxyd], page 281) must blink before they can be ulti-
mately opened (pairs must be hit with some time delay).

• The non-Enigma modes feature a model of the 0.92-Fire System (see Section 13.2.3
[Fire Spreading], page 388).

• Section 8.4.15 [it squashed], page 221 and Section 8.4.5 [it cross], page 213 can’t be
removed with Section 8.3.5 [it brush], page 185.

• The only function of Section 8.3.20 [it pencil], page 196 is to turn Section 9.5.22 [st flat],
page 260 and its movable variant into the burnable variants.

• Section 8.3.3 [it bottle], page 184 doesn’t break when a stone is pushed over it.

• Section 9.5.60 [st swap], page 303 and Section 9.5.48 [st pull], page 287 may not
swap/pull into the level border.

oxyd1-compatibility

• Section 8.3.26 [it seed], page 201 grows to Section 7.4.13 [fl wood], page 178 framed
under Section 9.5.26 [st grate], page 264 cross, not to Section 9.5.7 [st box],
page 246 wood.

• Flying actors may pass Section 9.5.26 [st grate], page 264).

• Section 9.5.7 [st box], page 246 wood only falls when moved.

• The ignite-message (e.g. by Section 8.3.11 [it dynamite], page 189) doesn’t kill
Section 8.3.9 [it document], page 188.

• Bombs Section 8.4.2 [it bomb], page 209 aren’t ignited when Section 9.5.7 [st box],
page 246 wood is pushed over them (see oxydmagnum-compatibility).

per.oxyd-compatibility

• When painted with Section 8.3.5 [it brush], page 185, Section 9.5.25 [st ghost],
page 263 purplemarble becomes an open Section 9.5.20 [st fake], page 258 oxydc
instead of st_purplemarble.

• Section 8.3.17 [it hammer], page 194 doesn’t laser-transform into Section 8.3.31
[it sword], page 204.

• Section 8.3.32 [it umbrella], page 205 doesn’t explode in laser light.

• Section 8.4.5 [it cross], page 213 inverts signals it receives.

oxyd.magnum-compatibility
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• Section 8.3.26 [it seed], page 201 grows to Section 7.4.13 [fl wood], page 178 framed
under Section 9.5.26 [st grate], page 264 cross, not to Section 9.5.7 [st box],
page 246 wood.

• BombsSection 8.4.2 [it bomb], page 209 aren’t ignited when Section 9.5.7 [st box],
page 246 wood is pushed over them (see oxyd1-compatibility).
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Object Index
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ac-blackball 7→ ac_marble_black, see Section 10.2.4 [ac marble], page 321
ac-bug 7→ Section 10.2.1 [ac bug], page 318
ac-horse 7→ Section 10.2.2 [ac horse], page 318
ac-killerball 7→ Section 10.2.3 [ac killer], page 320
ac-rotor 7→ Section 10.2.6 [ac rotor], page 323
ac-top 7→ Section 10.2.7 [ac top], page 324
ac-whiteball 7→ ac_marble_white, see Section 10.2.4 [ac marble], page 321
ac-whiteball-small 7→ ac_pearl_white, owner=DEFAULT, see Section 10.2.5 [ac pearl],
page 322
fl-abyss 7→ Section 7.4.1 [fl abyss], page 167
fl-abyss fake 7→ fl_fake_abyss, see Section 7.4.3 [fl fake], page 169
fl-acblack 7→ fl_yinyang_yin, see Section 7.4.14 [fl yinyang], page 179
fl-acwhite 7→ fl_yinyang_yang, see Section 7.4.14 [fl yinyang], page 179
fl-black 7→ Section 7.3.10 [fl dark], page 157
fl-bluegray 7→ Section 7.3.4 [fl bluegray], page 155
fl-bluegreen 7→ Section 7.3.5 [fl bluegreen], page 155
fl-bluegreenx 7→ Section 7.3.2 [fl aquamarine], page 154
fl-brick 7→ Section 7.3.7 [fl brick], page 156
fl-bridge 7→ Section 7.4.2 [fl bridge], page 168
fl-bridge-closed 7→ fl_bridge, state=CLOSED, see Section 7.4.2 [fl bridge], page 168
fl-bridge-open 7→ Section 7.4.2 [fl bridge], page 168
fl-bumps 7→ Section 7.3.21 [fl pinkbumps], page 162
fl-concrete 7→ Section 7.3.9 [fl concrete], page 157
fl-darkgray 7→ Section 7.3.11 [fl darkgray], page 157
fl-dunes 7→ Section 7.3.12 [fl dunes], page 158
fl-floor 001 7→ Section 7.3.3 [fl bast], page 154
fl-gradient 7→ fl_slope_ps, see Section 7.4.9 [fl slope], page 173
fl-gradient1 7→ fl_slope_ps, see Section 7.4.9 [fl slope], page 173
fl-gradient2 7→ fl_slope_pn, see Section 7.4.9 [fl slope], page 173
fl-gradient3 7→ fl_slope_pe, see Section 7.4.9 [fl slope], page 173
fl-gradient4 7→ fl_slope_pw, see Section 7.4.9 [fl slope], page 173
fl-gradient5 7→ fl_slope_ose, see Section 7.4.9 [fl slope], page 173
fl-gradient6 7→ fl_slope_osw, see Section 7.4.9 [fl slope], page 173
fl-gradient7 7→ fl_slope_one, see Section 7.4.9 [fl slope], page 173
fl-gradient8 7→ fl_slope_onw, see Section 7.4.9 [fl slope], page 173
fl-gradient9 7→ fl_slope_ise, see Section 7.4.9 [fl slope], page 173
fl-gradient10 7→ fl_slope_ine, see Section 7.4.9 [fl slope], page 173
fl-gradient11 7→ fl_slope_isw, see Section 7.4.9 [fl slope], page 173
fl-gradient12 7→ fl_slope_inw, see Section 7.4.9 [fl slope], page 173
fl-gradient13 7→ fl_slope_tn, see Section 7.4.9 [fl slope], page 173
fl-gradient14 7→ fl_slope_ts, see Section 7.4.9 [fl slope], page 173
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fl-gradient15 7→ fl_slope_tw, see Section 7.4.9 [fl slope], page 173
fl-gradient16 7→ fl_slope_te, see Section 7.4.9 [fl slope], page 173
fl-gravel 7→ Section 7.3.13 [fl gravel], page 158
fl-gray 7→ Section 7.3.14 [fl gray], page 159
fl-hay 7→ Section 7.4.4 [fl hay], page 170
fl-himalaya 7→ Section 7.3.15 [fl himalaya], page 159
fl-ice 7→ Section 7.4.5 [fl ice], page 171
fl-inverse 7→ fl_inverse_white, see Section 7.4.6 [fl inverse], page 171
fl-inverse2 7→ fl_inverse_gray, see Section 7.4.6 [fl inverse], page 171
fl-leaves 7→ fl_lawn_a, see Section 7.3.17 [fl lawn], page 160
fl-leavesb 7→ fl_lawn_b, see Section 7.3.17 [fl lawn], page 160
fl-leavesc1 7→ fl_lawn_c1, see Section 7.3.17 [fl lawn], page 160
fl-leavesc2 7→ fl_lawn_c2, see Section 7.3.17 [fl lawn], page 160
fl-leavesc3 7→ fl_lawn_c3, see Section 7.3.17 [fl lawn], page 160
fl-leavesc4 7→ fl_lawn_c4, see Section 7.3.17 [fl lawn], page 160
fl-leavesd1 7→ fl_lawn_d1, see Section 7.3.17 [fl lawn], page 160
fl-leavesd2 7→ fl_lawn_d2, see Section 7.3.17 [fl lawn], page 160
fl-leavesd3 7→ fl_lawn_d3, see Section 7.3.17 [fl lawn], page 160
fl-leavesd4 7→ fl_lawn_d4, see Section 7.3.17 [fl lawn], page 160
fl-leavese1 7→ fl_lawn_e1, see Section 7.3.17 [fl lawn], page 160
fl-leavese2 7→ fl_lawn_e2, see Section 7.3.17 [fl lawn], page 160
fl-leavese3 7→ fl_lawn_e3, see Section 7.3.17 [fl lawn], page 160
fl-leavese4 7→ fl_lawn_e4, see Section 7.3.17 [fl lawn], page 160
fl-light 7→ Section 7.3.16 [fl ivory], page 159
fl-lightgray 7→ Section 7.3.23 [fl platinum], page 163
fl-marble 7→ Section 7.3.18 [fl marble], page 160
fl-metal 7→ Section 7.3.19 [fl metal], page 161
fl-metal1 7→ fl_metal_1, see Section 7.3.19 [fl metal], page 161
fl-metal2 7→ fl_metal_2, see Section 7.3.19 [fl metal], page 161
fl-metal3 7→ fl_metal_3, see Section 7.3.19 [fl metal], page 161
fl-metal4 7→ fl_metal_4, see Section 7.3.19 [fl metal], page 161
fl-metal5 7→ fl_metal_5, see Section 7.3.19 [fl metal], page 161
fl-metal6 7→ fl_metal_6, see Section 7.3.19 [fl metal], page 161
fl-mortar 7→ Section 7.3.20 [fl mortar], page 162
fl-nomouse 7→ Section 7.3.1 [fl adhesionless], page 154
fl-normal x 7→ fl_metal_7, see Section 7.3.19 [fl metal], page 161
fl-normal 7→ fl_metal_7n, see Section 7.3.19 [fl metal], page 161
fl-plank 7→ Section 7.3.22 [fl plank], page 162
fl-red 7→ Section 7.3.24 [fl red], page 163
fl-rock 7→ Section 7.4.7 [fl rock], page 171
fl-rough 7→ Section 7.3.26 [fl rough], page 164
fl-rough medium 7→ fl_rough, friction=5.0, adhesion=1.2, see Section 7.3.26
[fl rough], page 164
fl-rough slow 7→ fl_rough, friction=7.0, adhesion=0.5, see Section 7.3.26 [fl rough],
page 164
fl-rough-blue 7→ Section 7.3.6 [fl blueslab], page 156
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fl-rough-red 7→ Section 7.3.25 [fl redslab], page 164
fl-sahara 7→ Section 7.3.27 [fl sahara], page 164
fl-samba 7→ Section 7.3.28 [fl samba], page 165
fl-samba1 7→ fl_samba_h, see Section 7.3.28 [fl samba], page 165
fl-samba2 7→ fl_samba_v, see Section 7.3.28 [fl samba], page 165
fl-sand 7→ Section 7.3.29 [fl sand], page 165
fl-space 7→ Section 7.3.30 [fl space], page 166
fl-springboard 7→ Section 7.3.33 [fl white], page 167
fl-stone 7→ Section 7.3.31 [fl stone], page 166
fl-stwood 7→ fl_wood_framed, see Section 7.4.13 [fl wood], page 178
fl-stwood1 7→ fl_wood_framed_h, see Section 7.4.13 [fl wood], page 178
fl-stwood2 7→ fl_wood_framed_v, see Section 7.4.13 [fl wood], page 178
fl-swamp 7→ Section 7.4.10 [fl swamp], page 176
fl-thief 7→ Section 7.4.11 [fl thief], page 176
fl-tigris 7→ Section 7.3.32 [fl tigris], page 166
fl-trigger 7→ fl_fake_trigger, see Section 7.4.3 [fl fake], page 169
fl-water 7→ Section 7.4.12 [fl water], page 177
fl-white 7→ Section 7.3.8 [fl bright], page 156
fl-wood 7→ Section 7.4.13 [fl wood], page 178
fl-wood1 7→ fl_wood_h, see Section 7.4.13 [fl wood], page 178
fl-wood2 7→ fl_wood_v, see Section 7.4.13 [fl wood], page 178
fl-woven 7→ Section 7.3.34 [fl woven], page 167
it-abyss 7→ Section 8.4.17 [it trap], page 223
it-bag 7→ Section 8.3.1 [it bag], page 182
it-banana 7→ Section 8.3.2 [it banana], page 183
it-blackbomb 7→ it_bomb_black, see Section 8.4.2 [it bomb], page 209
it-blocker 7→ Section 8.4.1 [it blocker], page 207
it-blocker-new 7→ it_blocker_new, see Section 8.4.1 [it blocker], page 207
it-booze 7→ Section 8.3.3 [it bottle], page 184
it-booze-broken 7→ it_bottle_broken, see Section 8.3.3 [it bottle], page 184
it-brake 7→ Section 8.3.4 [it brake], page 185
it-brush 7→ Section 8.3.5 [it brush], page 185
it-burnable 7→ Section 8.4.3 [it burnable], page 210
it-burnable ash 7→ it_burnable_ash, see Section 8.4.3 [it burnable], page 210
it-burnable burning 7→ it_burnable_burning, see Section 8.4.3 [it burnable], page 210
it-burnable fireproof 7→ it_burnable_fireproof, see Section 8.4.3 [it burnable], page 210
it-burnable ignited 7→ it_burnable_ignited, see Section 8.4.3 [it burnable], page 210
it-burnable oil 7→ it_burnable_oil, see Section 8.4.3 [it burnable], page 210
it-cherry 7→ Section 8.3.6 [it cherry], page 186
it-coffee 7→ Section 8.3.7 [it coffee], page 187
it-coin1 7→ it_coin_s, see Section 8.3.8 [it coin], page 187
it-coin2 7→ it_coin_m, see Section 8.3.8 [it coin], page 187
it-coin4 7→ it_coin_l, see Section 8.3.8 [it coin], page 187
it-crack0 7→ it_crack_i, see Section 8.4.4 [it crack], page 211
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it-crack1 7→ it_crack_s, see Section 8.4.4 [it crack], page 211
it-crack2 7→ it_crack_m, see Section 8.4.4 [it crack], page 211
it-crack3 7→ it_crack_l, see Section 8.4.4 [it crack], page 211
it-cross 7→ Section 8.4.5 [it cross], page 213
it-death 7→ Section 8.4.6 [it death], page 214
it-document 7→ Section 8.3.9 [it document], page 188
it-drop 7→ Section 8.3.10 [it drop], page 189
it-dynamite 7→ Section 8.3.11 [it dynamite], page 189
it-explosion1 7→ it_explosion_nil, see Section 8.4.7 [it explosion], page 214
it-explosion2 7→ it_explosion_hollow, see Section 8.4.7 [it explosion], page 214
it-explosion3 7→ it_explosion_debris, see Section 8.4.7 [it explosion], page 214
it-extinguisher 7→ Section 8.3.12 [it extinguisher], page 190
it-extinguisher empty 7→ it_extinguisher_empty, see Section 8.3.12 [it extinguisher],
page 190
it-extinguisher medium 7→ it_extinguisher_medium, see Section 8.3.12 [it extinguisher],
page 190
it-extralife 7→ Section 8.3.13 [it extralife], page 191
it-flagblack 7→ it_flag_black, see Section 8.3.14 [it flag], page 192
it-flagwhite 7→ it_flag_white, see Section 8.3.14 [it flag], page 192
it-floppy 7→ Section 8.3.15 [it floppy], page 193
it-glasses 7→ Section 8.3.16 [it glasses], page 193
it-glasses-broken 7→ it_glasses_broken, see Section 8.3.16 [it glasses], page 193
it-hammer 7→ Section 8.3.17 [it hammer], page 194
it-hollow 7→ it_meditation_hollow, see Section 8.4.11 [it meditation], page 217
it-hill 7→ it_meditation_hill, see Section 8.4.11 [it meditation], page 217
it-hstrip 7→ it_strip_ew, see Section 8.4.16 [it strip], page 222
it-inversesensor 7→ it_sensor, invisible=true, inverse=true, see Section 8.4.12
[it sensor], page 219
it-key 7→ it_key, code=1, see Section 8.3.18 [it key], page 194
it-key a 7→ it_key, code=1, see Section 8.3.18 [it key], page 194
it-key b 7→ it_key, code=2, see Section 8.3.18 [it key], page 194
it-key c 7→ it_key, code=3, see Section 8.3.18 [it key], page 194
it-landmine 7→ Section 8.4.8 [it landmine], page 215
it-magicwand 7→ Section 8.3.19 [it magicwand], page 195
it-magnet 7→ Section 8.4.10 [it magnet], page 216
it-magnet-on 7→ it_magnet_on, see Section 8.4.10 [it magnet], page 216
it-magnet-off 7→ it_magnet_off, see Section 8.4.10 [it magnet], page 216
it-pencil 7→ Section 8.3.20 [it pencil], page 196
it-pin 7→ Section 8.3.21 [it pin], page 196
it-pipe-e 7→ it_pipe_e, see Section 8.3.22 [it pipe], page 197
it-pipe-es 7→ it_pipe_es, see Section 8.3.22 [it pipe], page 197
it-pipe-h 7→ it_pipe_ew, see Section 8.3.22 [it pipe], page 197
it-pipe-n 7→ it_pipe_n, see Section 8.3.22 [it pipe], page 197
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it-pipe-ne 7→ it_pipe_ne, see Section 8.3.22 [it pipe], page 197
it-pipe-s 7→ it_pipe_s, see Section 8.3.22 [it pipe], page 197
it-pipe-sw 7→ it_pipe_sw, see Section 8.3.22 [it pipe], page 197
it-pipe-v 7→ it_pipe_ns, see Section 8.3.22 [it pipe], page 197
it-pipe-w 7→ it_pipe_w, see Section 8.3.22 [it pipe], page 197
it-pipe-wn 7→ it_pipe_nw, see Section 8.3.22 [it pipe], page 197
it-puller-e 7→ it_puller_e, see Section 8.3.23 [it puller], page 198
it-puller-n 7→ it_puller_n, see Section 8.3.23 [it puller], page 198
it-puller-s 7→ it_puller_s, see Section 8.3.23 [it puller], page 198
it-puller-w 7→ it_puller_w, see Section 8.3.23 [it puller], page 198
it-ring 7→ Section 8.3.24 [it ring], page 199
it-rubberband 7→ Section 8.3.25 [it rubberband], page 200
it-seed 7→ it_seed_wood, see Section 8.3.26 [it seed], page 201
it-seed nowood 7→ it_seed_fake, see Section 8.3.26 [it seed], page 201
it-seed volcano 7→ it_seed_volcano, see Section 8.3.26 [it seed], page 201
it-sensor 7→ it_sensor, invisible=true, see Section 8.4.12 [it sensor], page 219
it-spade 7→ Section 8.3.27 [it spade], page 202
it-spoon 7→ Section 8.3.28 [it spoon], page 202
it-spring1 7→ it_spring_keep, see Section 8.3.29 [it spring], page 203
it-spring2 7→ it_spring_drop, see Section 8.3.29 [it spring], page 203
it-springboard 7→ Section 8.4.14 [it springboard], page 221
it-squashed 7→ Section 8.4.15 [it squashed], page 221
it-shogun-s 7→ it_shogun_s, see Section 8.4.13 [it shogun], page 220
it-shogun-m 7→ it_shogun_m, see Section 8.4.13 [it shogun], page 220
it-shogun-l 7→ it_shogun_l, see Section 8.4.13 [it shogun], page 220
it-surprise 7→ Section 8.3.30 [it surprise], page 203
it-sword 7→ Section 8.3.31 [it sword], page 204
it-tinyhollow 7→ it_meditation_dent, see Section 8.4.11 [it meditation], page 217
it-tinyhill 7→ it_meditation_bump, see Section 8.4.11 [it meditation], page 217
it-trigger 7→ Section 8.4.18 [it trigger], page 224
it-umbrella 7→ Section 8.3.32 [it umbrella], page 205
it-vortex-open 7→ it_vortex_open, scissor=false, see Section 8.4.19 [it vortex],
page 225
it-vortex-closed 7→ it_vortex_closed, autoclose=true, scissor=false, see
Section 8.4.19 [it vortex], page 225
it-vstrip 7→ it_strip_ns, see Section 8.4.16 [it strip], page 222
it-weight 7→ Section 8.3.33 [it weight], page 206
it-whitebomb 7→ it_bomb_white, see Section 8.4.2 [it bomb], page 209
it-wormhole 7→ it_wormhole_on, scissor=false, see Section 8.4.20 [it wormhole],
page 227
it-wormhole-off 7→ it_wormhole_off, scissor=false, see Section 8.4.20 [it wormhole],
page 227
it-wrench 7→ Section 8.3.34 [it wrench], page 206
it-yinyang 7→ Section 8.3.35 [it yinyang], page 207
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st-actorimpulse 7→ Section 9.5.1 [st actorimpulse], page 240
st-actorimpulse invisible 7→ st_actorimpulse_invisible, see Section 9.5.1
[st actorimpulse], page 240
st-beads 7→ Section 9.5.3 [st beads], page 242
st-bigbluesand-e 7→ st_bluesand_e, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-es 7→ st_bluesand_es, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-esw 7→ st_bluesand_esw, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-ew 7→ st_bluesand_ew, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-n 7→ st_bluesand_n, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-ne 7→ st_bluesand_ne, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-nes 7→ st_bluesand_nes, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-nesw 7→ st_bluesand_nesw, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-new 7→ st_bluesand_new, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-ns 7→ st_bluesand_ns, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-nsw 7→ st_bluesand_nsw, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-nw 7→ st_bluesand_nw, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-s 7→ st_bluesand_s, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-sw 7→ st_bluesand_sw, see Section 9.4.2 [st bluesand], page 238
st-bigbluesand-w 7→ st_bluesand_w, see Section 9.4.2 [st bluesand], page 238
st-bigbrick-e 7→ st_brick_e, see Section 9.4.3 [st brick], page 239
st-bigbrick-es 7→ st_brick_es, see Section 9.4.3 [st brick], page 239
st-bigbrick-esw 7→ st_brick_esw, see Section 9.4.3 [st brick], page 239
st-bigbrick-ew 7→ st_brick_ew, see Section 9.4.3 [st brick], page 239
st-bigbrick-n 7→ st_brick_n, see Section 9.4.3 [st brick], page 239
st-bigbrick-ne 7→ st_brick_ne, see Section 9.4.3 [st brick], page 239
st-bigbrick-nes 7→ st_brick_nes, see Section 9.4.3 [st brick], page 239
st-bigbrick-nesw 7→ st_brick_nesw, see Section 9.4.3 [st brick], page 239
st-bigbrick-new 7→ st_brick_new, see Section 9.4.3 [st brick], page 239
st-bigbrick-ns 7→ st_brick_ns, see Section 9.4.3 [st brick], page 239
st-bigbrick-nsw 7→ st_brick_nsw, see Section 9.4.3 [st brick], page 239
st-bigbrick-nw 7→ st_brick_nw, see Section 9.4.3 [st brick], page 239
st-bigbrick-s 7→ st_brick_s, see Section 9.4.3 [st brick], page 239
st-bigbrick-sw 7→ st_brick_sw, see Section 9.4.3 [st brick], page 239
st-bigbrick-w 7→ st_brick_w, see Section 9.4.3 [st brick], page 239
st-blackballs 7→ st_jamb_black, see Section 9.5.29 [st jamb], page 266
st-black1 7→ st_passage_black_square, see Section 9.5.43 [st passage], page 284
st-black2 7→ st_passage_black_slash, see Section 9.5.43 [st passage], page 284
st-black3 7→ st_passage_black_cross, see Section 9.5.43 [st passage], page 284
st-black4 7→ st_passage_black_frame, see Section 9.5.43 [st passage], page 284
st-block 7→ Section 9.5.45 [st plop], page 286
st-blocker 7→ Section 9.5.4 [st blocker], page 242
st-blocker-growing 7→ st_blocker_new, see Section 9.5.4 [st blocker], page 242
st-bluegray 7→ Section 9.3.2 [st bluegray], page 233
st-bluegray hole 7→ st_bluegray_hollow, see Section 9.3.2 [st bluegray], page 233
st-blue-sand 7→ Section 9.4.2 [st bluesand], page 238
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st-bolder 7→ Section 9.5.6 [st boulder], page 244
st-bolder-e 7→ st_boulder_e, see Section 9.5.6 [st boulder], page 244
st-bolder-n 7→ st_boulder_n, see Section 9.5.6 [st boulder], page 244
st-bolder-s 7→ st_boulder_s, see Section 9.5.6 [st boulder], page 244
st-bolder-w 7→ st_boulder_w, see Section 9.5.6 [st boulder], page 244
st-bombs 7→ st_dispenser_bombblack, see Section 9.5.18 [st dispenser], page 255
st-brake 7→ Section 9.5.8 [st brake], page 247
st-break acblack 7→ st_break_black, see Section 9.5.9 [st break], page 248
st-break acwhite 7→ st_break_white, see Section 9.5.9 [st break], page 248
st-break bolder 7→ st_break_boulder, see Section 9.5.9 [st break], page 248
st-break gray 7→ st_break_plain, see Section 9.5.9 [st break], page 248
st-break invisible 7→ st_ghost_break, see Section 9.5.25 [st ghost], page 263
st-brick 7→ Section 9.4.3 [st brick], page 239
st-brick magic 7→ st_magic_brick, see Section 9.5.37 [st magic], page 273
st-brownie 7→ Section 9.3.3 [st brownie], page 234
st-bug 7→ st_break_bug, see Section 9.5.9 [st break], page 248
st-bumps 7→ Section 9.3.12 [st pinkbumps], page 235
st-camouflage 7→ Section 9.3.5 [st camouflage], page 234
st-camouflage hole 7→ st_camouflage_hollow, see Section 9.3.5 [st camouflage], page 234
st-camouflage move 7→ st_camouflage_movable, see Section 9.3.5 [st camouflage],
page 234
st-chameleon 7→ Section 9.5.11 [st chameleon], page 249
st-chargeminus 7→ st_charge_minus, see Section 9.5.12 [st charge], page 249
st-chargeplus 7→ st_charge_plus, see Section 9.5.12 [st charge], page 249
st-chargezero 7→ st_charge_zero, see Section 9.5.12 [st charge], page 249
st-chess 7→ Section 9.5.13 [st chess], page 250
st-chess black 7→ st_chess_black, see Section 9.5.13 [st chess], page 250
st-chess white 7→ st_chess_white, see Section 9.5.13 [st chess], page 250
st-coffee 7→ st_magic_oxydc, see Section 9.5.37 [st magic], page 273
st-coinslot 7→ Section 9.5.14 [st coinslot], page 251
st-death 7→ Section 9.5.16 [st death], page 253
st-death invisible 7→ st_death_invisible, see Section 9.5.16 [st death], page 253
st-disco-dark 7→ st_disco_dark, see Section 9.5.17 [st disco], page 254
st-disco-light 7→ st_disco_light, see Section 9.5.17 [st disco], page 254
st-disco-medium 7→ st_disco_medium, see Section 9.5.17 [st disco], page 254
st-door a 7→ st_door_a, see Section 9.5.19 [st door], page 256
st-door b 7→ st_door_b, see Section 9.5.19 [st door], page 256
st-door c 7→ st_door_c, see Section 9.5.19 [st door], page 256
st-door-h 7→ st_door_d, faces="ns", see Section 9.5.19 [st door], page 256
st-door-h-open 7→ st_door_d, faces="ns", state=OPEN, see Section 9.5.19 [st door],
page 256
st-door-v 7→ st_door_d, faces="ew", see Section 9.5.19 [st door], page 256



Renaming Index 415

st-door-v-open 7→ st_door_d, faces="ew", state=OPEN, see Section 9.5.19 [st door],
page 256
st-fakeoxyd 7→ st_fake_quake, see Section 9.5.20 [st fake], page 258
st-fakeoxyda 7→ st_magic_oxyda, see Section 9.5.37 [st magic], page 273
st-fart 7→ Section 9.5.50 [st quake], page 294
st-firebreak 7→ st_flat_burnable, see Section 9.5.22 [st flat], page 260
st-firebreak move 7→ st_flat_moveburnable, see Section 9.5.22 [st flat], page 260
st-flash 7→ Section 9.5.21 [st flash], page 259
st-flhay 7→ st_box_hay, see Section 9.5.7 [st box], page 246
st-floppy 7→ Section 9.5.23 [st floppy], page 261
st-flrock 7→ st_box_rock, see Section 9.5.7 [st box], page 246
st-fourswitch 7→ Section 9.5.24 [st fourswitch], page 262
st-glass 7→ Section 9.5.51 [st rawglass], page 294
st-glass move 7→ st_rawglass_movable, see Section 9.5.51 [st rawglass], page 294
st-glass1 7→ Section 9.5.35 [st lightglass], page 271
st-glass1 hole 7→ st_lightglass_hollow, see Section 9.5.35 [st lightglass], page 271
st-glass1 move 7→ st_lightglass_movable, see Section 9.5.35 [st lightglass], page 271
st-glass2 7→ Section 9.5.15 [st darkglass], page 252
st-glass2 hole 7→ st_darkglass_hollow, see Section 9.5.15 [st darkglass], page 252
st-glass2 move 7→ st_darkglass_movable, see Section 9.5.15 [st darkglass], page 252
st-glass3 7→ Section 9.5.52 [st redfiber], page 295
st-grate1 7→ st_grate_cross, see Section 9.5.26 [st grate], page 264
st-grate2 7→ st_grate_framed, see Section 9.5.26 [st grate], page 264
st-grate3 7→ st_portal_horse, see Section 9.5.47 [st portal], page 287
st-greenbrown 7→ Section 9.5.27 [st greenbrown], page 265
st-greenbrown hole 7→ st_greenbrown_hollow, see Section 9.5.27 [st greenbrown],
page 265
st-greenbrown move 7→ st_greenbrown_movable, see Section 9.5.27 [st greenbrown],
page 265
st-invisible 7→ Section 9.3.10 [st invisible], page 235
st-invisible hole 7→ st_invisible_hollow, see Section 9.3.10 [st invisible], page 235
st-invisible magic 7→ st_ghost_greenbrown, see Section 9.5.25 [st ghost], page 263
st-invisible move 7→ st_invisible_movable, see Section 9.3.10 [st invisible], page 235
st-key 7→ st_key, code=0, see Section 9.5.30 [st key], page 268
st-key a 7→ st_key, code=1, see Section 9.5.30 [st key], page 268
st-key b 7→ st_key, code=2, see Section 9.5.30 [st key], page 268
st-key c 7→ st_key, code=3, see Section 9.5.30 [st key], page 268
st-knight 7→ Section 9.5.31 [st knight], page 269
st-laserbreak 7→ st_break_laser, see Section 9.5.9 [st break], page 248
st-laserswitch 7→ Section 9.5.34 [st laserswitch], page 271
st-lasertimeswitch 7→ Section 9.5.33 [st laserflop], page 270
st-laser 7→ st_laser_e, see Section 9.5.32 [st laser], page 269
st-laser-e 7→ st_laser_e, see Section 9.5.32 [st laser], page 269
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st-laser-n 7→ st_laser_n, see Section 9.5.32 [st laser], page 269
st-laser-s 7→ st_laser_s, see Section 9.5.32 [st laser], page 269
st-laser-w 7→ st_laser_w, see Section 9.5.32 [st laser], page 269
st-lightpassenger 7→ Section 9.5.36 [st lightpassenger], page 272
st-lightpassenger off 7→ st_lightpassenger_off, see Section 9.5.36 [st lightpassenger],
page 272
st-likeoxyda 7→ st_fake_oxyda, see Section 9.5.20 [st fake], page 258
st-likeoxyda-open 7→ st_fake_oxyda, state=OPEN, see Section 9.5.20 [st fake], page 258
st-likeoxydb 7→ st_fake_oxydb, see Section 9.5.20 [st fake], page 258
st-likeoxydb-open 7→ st_fake_oxydb, state=OPEN, see Section 9.5.20 [st fake], page 258
st-likeoxydc 7→ st_fake_oxydc, see Section 9.5.20 [st fake], page 258
st-likeoxydc-open 7→ st_fake_oxydc, state=OPEN, see Section 9.5.20 [st fake], page 258
st-likeoxydd 7→ st_fake_oxydd, see Section 9.5.20 [st fake], page 258
st-likeoxydd-open 7→ st_fake_oxydd, state=OPEN, see Section 9.5.20 [st fake], page 258
st-mail-e 7→ st_mail_e, see Section 9.5.38 [st mail], page 274
st-mail-n 7→ st_mail_n, see Section 9.5.38 [st mail], page 274
st-mail-s 7→ st_mail_s, see Section 9.5.38 [st mail], page 274
st-mail-w 7→ st_mail_w, see Section 9.5.38 [st mail], page 274
st-marble 7→ Section 9.3.15 [st redbrown], page 236
st-marble hole 7→ st_redbrown_hollow, see Section 9.3.15 [st redbrown], page 236
st-marble move 7→ st_redbrown_movable, see Section 9.3.15 [st redbrown], page 236
st-metal 7→ Section 9.3.11 [st metal], page 235
st-metal hole 7→ st_metal_hollow, see Section 9.3.11 [st metal], page 235
st-mirror-p| 7→ st_mirror_slab_n, see Section 9.5.39 [st mirror], page 275
st-mirror-p/ 7→ st_mirror_slab_e, see Section 9.5.39 [st mirror], page 275
st-mirror-p- 7→ st_mirror_slab_s, see Section 9.5.39 [st mirror], page 275
st-mirror-p\\ 7→ st_mirror_slab_w, see Section 9.5.39 [st mirror], page 275
st-mirror-p|t 7→ st_mirror_slab_nt, see Section 9.5.39 [st mirror], page 275
st-mirror-p/t 7→ st_mirror_slab_et, see Section 9.5.39 [st mirror], page 275
st-mirror-p-t 7→ st_mirror_slab_st, see Section 9.5.39 [st mirror], page 275
st-mirror-p\\t 7→ st_mirror_slab_wt, see Section 9.5.39 [st mirror], page 275
st-mirror-p|m 7→ st_mirror_slab_nm, see Section 9.5.39 [st mirror], page 275
st-mirror-p/m 7→ st_mirror_slab_em, see Section 9.5.39 [st mirror], page 275
st-mirror-p-m 7→ st_mirror_slab_sm, see Section 9.5.39 [st mirror], page 275
st-mirror-p\\m 7→ st_mirror_slab_wm, see Section 9.5.39 [st mirror], page 275
st-mirror-p|tm 7→ st_mirror_slab_ntm, see Section 9.5.39 [st mirror], page 275
st-mirror-p/tm 7→ st_mirror_slab_etm, see Section 9.5.39 [st mirror], page 275
st-mirror-p-tm 7→ st_mirror_slab_stm, see Section 9.5.39 [st mirror], page 275
st-mirror-p\\tm 7→ st_mirror_slab_wtm, see Section 9.5.39 [st mirror], page 275
st-mirror-3^ 7→ st_mirror_triangle_n, see Section 9.5.39 [st mirror], page 275
st-mirror-3> 7→ st_mirror_triangle_e, see Section 9.5.39 [st mirror], page 275
st-mirror-3v 7→ st_mirror_triangle_s, see Section 9.5.39 [st mirror], page 275
st-mirror-3< 7→ st_mirror_triangle_w, see Section 9.5.39 [st mirror], page 275
st-mirror-3^t 7→ st_mirror_triangle_nt, see Section 9.5.39 [st mirror], page 275
st-mirror-3>t 7→ st_mirror_triangle_et, see Section 9.5.39 [st mirror], page 275
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st-mirror-3vt 7→ st_mirror_triangle_st, see Section 9.5.39 [st mirror], page 275
st-mirror-3<t 7→ st_mirror_triangle_wt, see Section 9.5.39 [st mirror], page 275
st-mirror-3^m 7→ st_mirror_triangle_nm, see Section 9.5.39 [st mirror], page 275
st-mirror-3>m 7→ st_mirror_triangle_em, see Section 9.5.39 [st mirror], page 275
st-mirror-3vm 7→ st_mirror_triangle_sm, see Section 9.5.39 [st mirror], page 275
st-mirror-3<m 7→ st_mirror_triangle_wm, see Section 9.5.39 [st mirror], page 275
st-mirror-3^tm 7→ st_mirror_triangle_ntm, see Section 9.5.39 [st mirror], page 275
st-mirror-3>tm 7→ st_mirror_triangle_etm, see Section 9.5.39 [st mirror], page 275
st-mirror-3vtm 7→ st_mirror_triangle_stm, see Section 9.5.39 [st mirror], page 275
st-mirror-3<tm 7→ st_mirror_triangle_wtm, see Section 9.5.39 [st mirror], page 275
st-oneway 7→ Section 9.5.41 [st oneway], page 279
st-oneway black" 7→ st_oneway_black, see Section 9.5.41 [st oneway], page 279
st-oneway black-e" 7→ st_oneway_black_e, see Section 9.5.41 [st oneway], page 279
st-oneway black-n" 7→ st_oneway_black_n, see Section 9.5.41 [st oneway], page 279
st-oneway black-s" 7→ st_oneway_black_s, see Section 9.5.41 [st oneway], page 279
st-oneway black-w" 7→ st_oneway_black_w, see Section 9.5.41 [st oneway], page 279
st-oneway-e" 7→ st_oneway_e, see Section 9.5.41 [st oneway], page 279
st-oneway-n" 7→ st_oneway_n, see Section 9.5.41 [st oneway], page 279
st-oneway-s" 7→ st_oneway_s, see Section 9.5.41 [st oneway], page 279
st-oneway-w" 7→ st_oneway_w, see Section 9.5.41 [st oneway], page 279
st-oneway white" 7→ st_oneway_white, see Section 9.5.41 [st oneway], page 279
st-oneway white-e" 7→ st_oneway_white_e, see Section 9.5.41 [st oneway], page 279
st-oneway white-n" 7→ st_oneway_white_n, see Section 9.5.41 [st oneway], page 279
st-oneway white-s" 7→ st_oneway_white_s, see Section 9.5.41 [st oneway], page 279
st-oneway white-w" 7→ st_oneway_white_w, see Section 9.5.41 [st oneway], page 279
st-oxyd 7→ Section 9.5.42 [st oxyd], page 281
st-plain 7→ Section 9.5.22 [st flat], page 260
st-plain break 7→ st_flat_breakable, see Section 9.5.22 [st flat], page 260
st-plain cracked 7→ st_flat_cracked, see Section 9.5.22 [st flat], page 260
st-plain hole 7→ st_flat_hollow, see Section 9.5.22 [st flat], page 260
st-plain move 7→ st_flat_movable, see Section 9.5.22 [st flat], page 260
st-pmirror 7→ st_mirror_slab_e, see Section 9.5.39 [st mirror], page 275
st-polarswitch 7→ Section 9.5.46 [st polarswitch], page 286
st-pull 7→ Section 9.5.48 [st pull], page 287
st-puzzle 7→ Section 9.5.49 [st puzzle], page 288
st-puzzle-e 7→ st_puzzle_blue_e, see Section 9.5.49 [st puzzle], page 288
st-puzzle-es 7→ st_puzzle_blue_es, see Section 9.5.49 [st puzzle], page 288
st-puzzle-esw 7→ st_puzzle_blue_esw, see Section 9.5.49 [st puzzle], page 288
st-puzzle-ew 7→ st_puzzle_blue_ew, see Section 9.5.49 [st puzzle], page 288
st-puzzle-hollow 7→ st_puzzle_blue_nesw_hollow, see Section 9.5.49 [st puzzle], page 288
st-puzzle-n 7→ st_puzzle_blue_n, see Section 9.5.49 [st puzzle], page 288
st-puzzle-ne 7→ st_puzzle_blue_ne, see Section 9.5.49 [st puzzle], page 288
st-puzzle-nes 7→ st_puzzle_blue_nes, see Section 9.5.49 [st puzzle], page 288
st-puzzle-nesw 7→ st_puzzle_blue_nesw, see Section 9.5.49 [st puzzle], page 288
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st-puzzle-new 7→ st_puzzle_blue_new, see Section 9.5.49 [st puzzle], page 288
st-puzzle-ns 7→ st_puzzle_blue_ns, see Section 9.5.49 [st puzzle], page 288
st-puzzle-nsw 7→ st_puzzle_blue_nsw, see Section 9.5.49 [st puzzle], page 288
st-puzzle-nw 7→ st_puzzle_blue_nw, see Section 9.5.49 [st puzzle], page 288
st-puzzle-s 7→ st_puzzle_blue_s, see Section 9.5.49 [st puzzle], page 288
st-puzzle-sw 7→ st_puzzle_blue_sw, see Section 9.5.49 [st puzzle], page 288
st-puzzle-w 7→ st_puzzle_blue_w, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-e 7→ st_puzzle_yellow_e, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-es 7→ st_puzzle_yellow_es, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-esw 7→ st_puzzle_yellow_esw, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-ew 7→ st_puzzle_yellow_ew, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-hollow 7→ st_puzzle_yellow_nesw_hollow, see Section 9.5.49 [st puzzle],
page 288
st-puzzle2-n 7→ st_puzzle_yellow_n, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-ne 7→ st_puzzle_yellow_ne, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-nes 7→ st_puzzle_yellow_nes, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-nesw 7→ st_puzzle_yellow_nesw, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-new 7→ st_puzzle_yellow_new, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-ns 7→ st_puzzle_yellow_ns, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-nsw 7→ st_puzzle_yellow_nsw, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-nw 7→ st_puzzle_yellow_nw, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-s 7→ st_puzzle_yellow_s, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-sw 7→ st_puzzle_yellow_sw, see Section 9.5.49 [st puzzle], page 288
st-puzzle2-w 7→ st_puzzle_yellow_w, see Section 9.5.49 [st puzzle], page 288
st-redrock 7→ Section 9.3.17 [st redrock], page 236
st-rock1 7→ Section 9.3.8 [st granite], page 235
st-rock1 hole 7→ st_granite_hollow, see Section 9.3.8 [st granite], page 235
st-rock1 move 7→ st_granite_movable, see Section 9.3.8 [st granite], page 235
st-rock2 7→ Section 9.3.7 [st darkgray], page 234
st-rock2 hole 7→ st_darkgray_hollow, see Section 9.3.7 [st darkgray], page 234
st-rock3 7→ Section 9.5.44 [st plaster], page 285
st-rock3 break 7→ st_plaster_breakable, see Section 9.5.44 [st plaster], page 285
st-rock3 hole 7→ st_plaster_hollow, see Section 9.5.44 [st plaster], page 285
st-rock3 move 7→ st_plaster_movable, see Section 9.5.44 [st plaster], page 285
st-rock3 movebreak 7→ st_plaster_movebreakable, see Section 9.5.44 [st plaster],
page 285
st-rock4 7→ Section 9.3.14 [st purplemarble], page 236
st-rock5 7→ Section 9.3.18 [st tigris], page 236
st-rock6 7→ Section 9.3.13 [st purplegray], page 236
st-rock7 7→ Section 9.3.9 [st greengray], page 235
st-rock8 7→ Section 9.3.6 [st concrete], page 234
st-rock9 7→ Section 9.3.1 [st ancient], page 233
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st-rock10 7→ Section 9.3.4 [st brownmarble], page 234
st-rotator-left 7→ st_rotator_ccw, see Section 9.5.53 [st rotator], page 295
st-rotator move-left 7→ st_rotator_ccw_movable, see Section 9.5.53 [st rotator], page 295
st-rotator move-right 7→ st_rotator_cw_movable, see Section 9.5.53 [st rotator],
page 295
st-rotator-right 7→ st_rotator_cw, see Section 9.5.53 [st rotator], page 295
st-rubberband 7→ Section 9.5.54 [st rubberband], page 296
st-scissors 7→ st_scissors, inverse=true, see Section 9.5.55 [st scissors], page 296
st-shogun 7→ Section 9.5.56 [st shogun], page 297
st-shogun-l 7→ st_shogun_l, see Section 9.5.56 [st shogun], page 297
st-shogun-m 7→ st_shogun_m, see Section 9.5.56 [st shogun], page 297
st-shogun-ml 7→ st_shogun_ml, see Section 9.5.56 [st shogun], page 297
st-shogun-s 7→ st_shogun_s, see Section 9.5.56 [st shogun], page 297
st-shogun-sl 7→ st_shogun_sl, see Section 9.5.56 [st shogun], page 297
st-shogun-sm 7→ st_shogun_sm, see Section 9.5.56 [st shogun], page 297
st-shogun-sml 7→ st_shogun_sml, see Section 9.5.56 [st shogun], page 297
st-spitter 7→ Section 9.5.57 [st spitter], page 298
st-stonebrush 7→ st_ghost_purplemarble, see Section 9.5.25 [st ghost], page 263
st-stoneimpulse 7→ Section 9.5.58 [st stoneimpulse], page 300
st-stoneimpulse-hollow 7→ st_stoneimpulse_hollow, see Section 9.5.58 [st stoneimpulse],
page 300
st-stoneimpulse movable 7→ st_stoneimpulse_movable, see Section 9.5.58
[st stoneimpulse], page 300
st-stone1 7→ Section 9.5.10 [st brownpyramid], page 249
st-stone2 7→ Section 9.3.16 [st redmarble], page 236
st-stone break 7→ st_break_oxydc, see Section 9.5.9 [st break], page 248
st-surprise 7→ Section 9.5.59 [st surprise], page 302
st-swap 7→ Section 9.5.60 [st swap], page 303
st-switch 7→ st_switch, instant=true, see Section 9.5.61 [st switch], page 303
st-switch black 7→ st_switch_black, instant=true, see Section 9.5.61 [st switch],
page 303
st-switch white 7→ st_switch_white, instant=true, see Section 9.5.61 [st switch],
page 303
st-thief 7→ Section 9.5.62 [st thief], page 304
st-timer 7→ Section 9.5.63 [st timer], page 305
st-timeswitch 7→ Section 9.5.40 [st monoflop], page 279
st-turnstile 7→ st_turnstile_red, see Section 9.5.64 [st turnstile], page 306
st-turnstile-green 7→ st_turnstile_green, see Section 9.5.64 [st turnstile], page 306
st-turnstile-e 7→ st_turnstilearm_e, see Section 9.5.65 [st turnstilearm], page 307
st-turnstile-n 7→ st_turnstilearm_n, see Section 9.5.65 [st turnstilearm], page 307
st-turnstile-s 7→ st_turnstilearm_s, see Section 9.5.65 [st turnstilearm], page 307
st-turnstile-w 7→ st_turnstilearm_w, see Section 9.5.65 [st turnstilearm], page 307
st-volcano 7→ Section 9.5.66 [st volcano], page 308
st-volcano active 7→ st_volcano_active, see Section 9.5.66 [st volcano], page 308
st-volcano-growing 7→ st_volcano_new, see Section 9.5.66 [st volcano], page 308
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st-volcano inactive 7→ st_volcano_idle, see Section 9.5.66 [st volcano], page 308
st-whiteballs 7→ st_jamb_white, see Section 9.5.29 [st jamb], page 266
st-white1 7→ st_passage_white_square, see Section 9.5.43 [st passage], page 284
st-white2 7→ st_passage_white_slash, see Section 9.5.43 [st passage], page 284
st-white3 7→ st_passage_white_cross, see Section 9.5.43 [st passage], page 284
st-white4 7→ st_passage_white_frame, see Section 9.5.43 [st passage], page 284
st-window 7→ Section 9.5.67 [st window], page 310
st-wood 7→ st_box_wood, see Section 9.5.7 [st box], page 246
st-wood1 7→ st_box_wood_h, see Section 9.5.7 [st box], page 246
st-wood2 7→ st_box_wood_v, see Section 9.5.7 [st box], page 246
st-wood-growing 7→ st_box_wood_growing, see Section 9.5.7 [st box], page 246
st-wood 001 7→ Section 9.4.4 [st panel], page 239
st-woven 7→ Section 9.3.19 [st woven], page 237
st-yellow 7→ Section 9.3.20 [st yellow], page 237
st-yinyang1 7→ st_blur_cross, see Section 9.5.5 [st blur], page 243
st-yinyang2 7→ st_blur_straight, see Section 9.5.5 [st blur], page 243
st-yinyang3 7→ st_blur_magic, see Section 9.5.5 [st blur], page 243
st-3mirror 7→ st_mirror_triangle_s, see Section 9.5.39 [st mirror], page 275
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