
Model for Collaborative Decision Making Based
on RDF Reification

Dmitry Borodaenko

angdraug@debian.org

Abstract. This paper presents a novel approach to online collaboration
on the Web, intended as technical means to make collective decisions in
situations when consensus fails. It is proposed that participants of the
process are allowed to create statements about site resources and, by the
means of RDF reification, to assert personal approval of such statements.
Arbitrary algorithms may then be used to determine validity of a state-
ment in a given context from the set of approval statements by different
participants. The paper goes on to discuss applicability of the proposed
approach in the areas of open-source development and independent me-
dia, and describes its implementation in the Samizdat open publishing
and collaboration system.

1 Introduction

Extensive growth of Internet over the last decades introduced a new form of
human collaboration: online communities. Availability of cheap digital commu-
nication media has made it possible to form large distributed projects, bringing
together participants who would be otherwise unable to cooperate.

As more and more projects go online and spread across the globe, it becomes
apparent that new opportunities in remote cooperation also bring forth new
challenges. As observed by Steven Talbott[9], technogical means do not provide
a full substitute for a real person-to-person relations, “technology is not a com-
munity”. A well-known example of this is the fact that it is vital for an online
communty to augment indirect and impersonal digital communications with live
meetings. However, even regular live meetings do not solve all of the remote
cooperation problems as they are limited in time and scope, and thus can’t hap-
pen often enough nor include all of the interested parties into communication.
In particular, one of the problems of online communities that is begging for a
new and better technical solution is decision making and dispute resolution.

While it is most common that online communities are formed by volun-
teers, their forms of governance are not necessarily democratic and vary widely,
from primitive single-person leadership and meritocracy in less formal technical
projects to consensus and majority voting in more complicated situations.

Usually, decision making in online volunteer projects is carried out via tra-
ditional communication means, such as IRC channels, mailing lists, newsgroups,
etc., with rare exceptions such as the Debian project which employs its own



Devotee voting system based on PGP authentication and Concorde vote count-
ing[6], and the Wikipedia project which relies on a Wiki collaborative publishing
system and enforces consensus among its contributors. The scale and the level of
quality achieved by the latter two projects demonstrates that formalized collabo-
ration process is as important for volunteer projects as elsewhere: while sufficient
to determine rough consensus, traditional communications require participants
to come up with informal means of dispute resolution, making the whole pro-
cess overly dependent on interpersonal attitudes and communicative skills within
group.

It is not to say that Debian or Wikipedia processes are perfect and need
not be improved. The strict consensus required by the Wikipedia Editors Policy
discourages dissenting minority from participation, while full-scale voting system
like Debian Devotee can’t be used for every minor day-to-day decision because
of the high overhead involved and the limits imposed by the ballot form.

This paper describes how RDF statement approval based on reification can
be applied to the problem of online decision making in diverse and politically
intensive distributed projects, and proposes a generic semantic model which can
be used in a wide range of applications involving online collaboration. The pro-
posed model is implemented in the Samizdat open-publishing and collaboration
engine, described later in the paper.

2 Collaboration Model

The collaboration model implemented by Samizdat evolves around the concept
of open editing [8], which includes the processes of publishing, structuring, and
filtering online content. “Open” part of open editing implies that the collabo-
ration process is visible to all participants, and roles of readers and editors are
available equally to everyone. Publishing involves posting new documents, com-
ments, and revised documents. Structuring involves categorization and appraisal
of publications and other actions of fellow participants. Filtering process is in-
tended to reduce information flow to a comprehensible level by presenting a user
with resources of highest quality and relevance. Each of these processes requires
a fair amount of decision making to be done, which means that its effectiveness
can be greatly improved by automating some aspects of the decision making
procedure.

3 Collective Statement Approval

3.1 Focus-Centered Site Structure

In the proposed collaboration model, RDF statements are used as a generic
mechanism for structuring site content. While it is possible to make any kinds
of statements about site resources, the most important kind of statement is the
one that relates a resource to a so-called “focus”[2]. Focus is a kind of resource
that, when related by an RDF statement to other resources, allows to group



similar resources together and to evaluate resources against different criteria. In
some sense, all activities of project members are represented as relations between
resources and focuses.

Dynamically grouping resources around different focuses allows project mem-
bers to concentrate on the resources that are most relevant to their area of in-
terests and provide best quality. Use of RDF for site structure description makes
it possible to store and exchange filters for site resource selection in the form of
RDF queries, thus allowing participants to share their preferences and ensuring
interoperability with RDF-aware agents.

Since any resource can be used as a focus, it is possible that project members
define their own focuses, and relate focuses one to another. In a sufficiently
large and intensive project, this feature should help site structure to evolve in
accordance with usage patterns of different groups of users.

3.2 RDF Reification

RDF reification provides a mechanism for describing RDF statements. As de-
fined in “RDF Semantics”[7], assertion of reification of RDF statement means
that a document exists containing a triple token instantiating the statement.
The reified triple is a resource which can be described in the same way as any
other resource. It is important to note that there can be several triple tokens
with the same subject, object, and predicate, and, according to RDF reification
semantics, such tokens should be treated as separate resources, possibly with
different composition or provenance information attached to each.

3.3 Proposition and Vote

In the proposed model, all statements are reified, and may be voted upon by
project members. To distinguish statements with attached votes, they are called
“propositions”. Proposition is a subclass of RDF statement which can be ap-
proved or disapproved by votes of project members. Accordingly, vote is a record
of vote cast in favor or against particular proposition by particular member, and
rating is a denotation of approval of the proposition as determined from indi-
vidual votes.

Exact mechanism of rating calculation can be determined by each site, or
even each user, individually, according to average value of votes cast, level of
trust existing between the user and particular voters, absolute number of votes
cast, etc. Since individual votes are recorded in RDF and are available for later
extraction, rating can be calculated at any time using any formula that suits the
end user best. Some users may choose to share their view of the site resources,
and publish their filters in the form of RDF queries.

Default rating system in Samizdat lets voter select from ratings “−2” (no),
“−1” (not likely), “0” (uncertain), “1” (likely), “2” (yes). Total rating of propo-
sition is equal to the average value of all votes cast for the proposition; resources
with rating below “−1” are hidden from view.



4 Target Applications and Use Cases

4.1 Open Publishing

While it is vital for any project to come up with fair and predictable methods
of decision making, it’s hard to find a more typical example than the Indymedia
network, international open publishing project with the aim of providing the
public with unbiased news source[1]. Since the main focus of Indymedia is poli-
tics, and since it is explicitly open for everyone, independent media centers are
used by people from all parts of political spectrum, and often become a place of
heated debate, or even target of flood attacks.

This conflict between fairness and political bias, as well as sheer amount of
information flowing through the news network, creates a need for a more flexible
categorization and filtering system that would take the burden and responsibility
of moderation off from site administrators. The issue of developing an open
editing system was raised by Indymedia project participants in January 2002,
but, to date, implementations of this concept are not ready for production use.
The Active2 project[10] which has set forth to fulfil that role is still in the
alpha stage of the development, and, unlike Samizdat, limits its use of RDF to
describing its resources with Dublin Core meta-data.

Implementation of an open editing system was one of the initial goals of
the Samizdat project[4], and deployment of the Samizdat engine by an inde-
pendent media center would become a deciding trial of vitality of the proposed
collaboration model in a real-world environment.

4.2 Documentation Development

Complexity level of modern computer systems makes it impossible to develop
and operate them without extensive user and developer manuals which document
intended behaviour of a system and describe solutions to typical user problems.
Ultimately, such manuals reflect collective knowledge about a system, and may
require input from many different people with different perspectives. On the
other hand, in order to be useful to different people, documentation should be
well-structured and easy to navigate.

The most popular solution for collaborative documentation development to
date is Wiki, a combination of very simple hypertext markup and ability to
edit documents within an HTML form. Such simplicity makes Wiki easy to use,
but in the same time limits its applicability to large bodies of documentation.
Due to being limited to basic hypertext without categorization and filtering
capabilities, Wiki sites require huge amount of manual editing done by trusted
maintainers in order to keep the site structure from falling behind a growing
amount of available information, and to protect it from vandals. Although there
are successful examples of large Wiki sites (most prominent being the Wikipedia
project), Wiki does not provide sufficient infrastructure for development and
maintainance of complex technical documentation.



Combination of the Wiki approach with RDF metadata, along with imple-
mentation of the proposed collaborative decision making model for determina-
tion of documentation structure, would allow to make significant progress in
the adoption of the open-source software which is often suffering from a lack of
comprehensive and up-to-date documentation.

4.3 Bug Tracking

Bug-tracking tools have grown to become essential component of any software
development process. However, despite wide adoption, bug-tracking software has
not yet reached maturity: interoperability between different tools is missing; in-
compatible issue classifications and work flows complicate status syncronization
between companies collaborating on a single project; lack of integration with
time-management, document management, version control and other kinds of
applications increases amount of routine work done by project manager.

On the other hand, development of integrated project management systems
shows that the most important problem in project management automation is
convergence of information from all sources in a single focal point. For such
convergence to become possible, unified process flow model, based on open stan-
dards such as RDF, should be adopted across all information sources, from source
code version control to developer forums. Since strict provenance tracking is a
key requirement for such model, the proposed reification-based approach may
be employed to satisfy it.

5 Samizdat Engine

5.1 Project Status

Samizdat engine is implemented in the Ruby programming language and relies on
the PostgreSQL database management system for RDF storage. Other programs
required for Samizdat deployment are Ruby/Postgres, Ruby/DBI, and YAML4R
libraries for Ruby, and Apache web server with mod ruby module. Samizdat is
free software and does not require any non-free software to run[5].

Samizdat project development started in December 2002, first public release
was announced in June 2003. As of the second beta version 0.5.1, released in
March 2004, Samizdat provided basic set of open publishing functionality, in-
cluding registering site members, publishing and replying to messages, uploading
multimedia messages, voting on relation of site focuses to resources, creating and
managing new focuses, hand-editing or using GUI for constructing and publish-
ing Squish queries that can be used to search and filter site resources. Next
major release 0.6.0 is expected to add collaborative documentation development
functionality.

5.2 Samizdat Schema

Core representation of Samizdat content is RDF. Any new resource published
on Samizdat site is automatically assigned a unique numberic ID, which, when



appended to the base site URL, forms resource URIref. This ID may be accessed
via id property. Publication time stamp is recorded in dc:date property (here
and below, “dc:” prefix refers to the Dublin Core namespace):

:id
rdfs:domain rdfs:Resource .

dc:date
rdfs:domain rdfs:Resource .

Member is a registered user of a Samizdat site (synonyms: poster, visitor,
reader, author, creator). Members can post messages, create focuses, relate mes-
sages to focuses, vote on relations, view messages, use and publish filters based
on relations between messages and focuses.

:Member
rdfs:subClassOf rdfs:Resource .

:login
rdfs:domain :Member ;
rdfs:range rdfs:Literal .

Resources are related to focuses with dc:relation property:

:Focus
rdfs:subClassOf rdfs:Resource .

dc:relation
rdfs:domain rdfs:Resource ;
rdfs:range :Focus .

Proposition is an RDF statement with rating property. Value of rating
is calculated from voteRating values of individual Vote resources attached to
this proposition via voteProposition property:

:Proposition
rdfs:subClassOf rdf:Statement .

:rating
rdfs:domain :Proposition ;
rdfs:range rdfs:Literal .

:Vote
rdfs:subClassOf rdfs:Resource .

:voteProposition
rdfs:domain :Vote ;



rdfs:range :Proposition .

:voteMember
rdfs:domain :Vote ;
rdfs:range :Member .

:voteRating
rdfs:domain :Vote ;
rdfs:range rdfs:Literal .

Parts of Samizdat schema that are not relevant to the discussed collective
decision making model, such as discussion threads, version control, and aggregate
messages, were omitted. Full Samizdat schema in N3 notation can be found in
Samizdat source code package.

5.3 RDF Storage Implementation

To address scalability concerns, Samizdat extends traditional relational repre-
sentation of RDF as a table of {subject, object, predicate} triples with a unique
RDF-to-relational query translation technology. Most highly used RDF proper-
ties of Samizdat schema are mapped into fields of internal resource tables corre-
sponding to resource classes, with id of the record referencing to the Resource
table; all other properties are recorded as triples in the Statement table. De-
tailed explanation of the RDF-to-relational mapping can be found in “Samizdat
RDF Storage”[3] document.

To demonstrate usage of the Samizdat RDF schema described earlier in this
section, the exerpt of Ruby code responsible for individual vote rating assignment
is quoted below.

def rating=(value)
value = Focus.validate_rating(value)
if value then

rdf.assert %{
UPDATE ?rating = ’#{value}’
WHERE (rdf::subject ?stmt #{resource.id})

(rdf::predicate ?stmt dc::relation)
(rdf::object ?stmt #{@id})
(s::voteProposition ?vote ?stmt)
(s::voteMember ?vote #{session.id})
(s::voteRating ?vote ?rating)

USING PRESET NS}
@rating = nil # invalidate rating cache

end
end

In this attribute assignment method of Focus class, RDF assertion is recorded
in extended Squish syntax and populated with variables storing the rating value,



resource identifier resource.id, focus identifier @id, and identifier of regis-
tered member session.id. When the Samizdat RDF storage layer updates
Vote.voteRating, average value of corresponding Proposition.rating is re-
calculated by a stored procedure.

6 Conclusions

Initially started as an RDF-based open-publishing engine, Samizdat project
opens a new approach to online collaboration in general. Proposed model of
collective statement approval via RDF reification is applicable in a large range
of problem domains, including documentation development and bug tracking.

Implementation of the proposed model in the Samizdat engine proves via-
bility of RDF not only as a metadata interchange format, but also as a data
model that may be employed by software architects in innovative ways. Key role
played by RDF reification in the described model shows that this comparatively
obscure part of RDF standard deserves broader mindshare among Semantic Web
developers.

References

1. Arnison, Matthew: Open publishing is the same as free software, 2002
http://www.cat.org.au/maffew/cat/openpub.html

2. Borodaenko, Dmitry: Samizdat Concepts, December 2002
http://savannah.nongnu.org/cgi-bin/viewcvs/samizdat/samizdat/doc/
concepts.txt

3. Borodaenko, Dmitry: Samizdat RDF Storage, December 2002
http://savannah.nongnu.org/cgi-bin/viewcvs/samizdat/samizdat/doc/
rdf-storage.txt

4. Borodaenko, Dmitry: Samizdat — RDF model for an open publishing and coopera-
tion engine. Third International OSCOM Conference, Berkman Center for Internet
and Society, Harvard Law School, May 2003
http://slideml.bitflux.ch/files/slidesets/503/title.html

5. Borodaenko, Dmitry: Samizdat RDF Implementation Report, September 2003
http://lists.w3.org/Archives/Public/www-rdf-interest/2003Sep/0043.html

6. Debian Constitution. Debian Project, 1999
http://www.debian.org/devel/constitution

7. Hayes, Patrick: RDF Semantics. W3C, February 2004
http://www.w3.org/TR/rdf-mt

8. Jay, Dru: Three Proposals for Open Publishing — Towards a transparent, collab-
orative editorial framework, 2002
http://dru.ca/imc/open pub.html

9. Talbott, Stephen L.: The Future Does Not Compute. O’Reilly & Associates, 1995
http://www.oreilly.com/˜stevet/fdnc/

10. Warren, Mike: Active2 Design. Indymedia, 2002.
http://docs.indymedia.org/view/Devel/DesignDocument


