AN EFFICIENT COST SCALING ALGORITHM
FOR THE ASSIGNMENT PROBLEM

ANDREW V. GOLDBERG
AND
ROBERT KENNEDY

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

STANFORD, CA 94305

GOLDBERG@CS.STANFORD.EDU
ROBERT@QCS.STANFORD.EDU

July 1993

ABSTRACT. The cost scaling push-relabel method has been shown to be efficient for
solving minimum-cost flow problems. In this paper we apply the method to the assign-
ment problem. We investigate implementations of the method that take advantage of
the problem structure. The results show that the method is very promising for practical
use; it outperforms all other codes on almost all problems in our study.

Andrew V. Goldberg was supported in part by ONR Young Investigator Award N00014-91-J-1855,
NSF Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T, DEC, and
3M, and a grant from the Powell Foundation.

Robert Kennedy was supported by the above mentioned ONR, and NSF grants.

1. INTRODUCTION.

Significant progress has been made in the last decade on the theory of algorithms for network
flow problems. Some of the algorithms that came out of this research have been shown to have
practical impact as well. In particular, the push-relabel method [9, 13] is the best currently
known way for solving the maximum flow problem [1, 6, 19]. This method extends to the
minimum-cost flow problem using cost scaling [9, 14]. Earlier implementations of this method
[3, 11] performed well on some problems but relatively poorly on others. A later implementation
[10] has been shown very competitive on a wide class of problems. In this paper we study

efficient implementations of the cost scaling push-relabel method for the assignment problem.

The most relevant theoretical results on the assignment problem are as follows. The best
currently known strongly polynomial time bound of O(n(m + nlogn)) is achieved by the
classical Hungarian method of Kuhn [17]. Here n denotes the number of nodes in the input
network and m denotes the number of edges. (Implementations of the Hungarian method and
related algorithms are discussed in [5].) Under the assumption that the input costs are integers
in the range [—C,...,C], Gabow and Tarjan [8] use cost scaling and blocking flow techniques
to obtain an O(y/nmlog(nC')) time algorithm. Algorithms with the same running time bound
based on the push-relabel method appeared in [12, 20].

In this paper we study implementations of the scaling push-relabel method in the context of
the assignment problem. We use the ideas behind the minimum-cost flow codes [3, 10, 11], the
assignment codes [2, 4], and the ideas of theoretical work on the push-relabel method for the
assignment problem [12], as well as new techniques aimed at improving practical performance
of the method. We develop several CSA (Cost Scaling Assignment) codes based on different
heuristics which improve the code performance on many problem classes. The “basic” code
CsA-B does not use any heuristics, the CcSA-Q code uses a “quick-minima” heuristic, and the
CSA-S code uses a “speculative arc fixing” heuristic. Another outcome of our research is a better
understanding of the cost scaling algorithm implementations which may lead to improved cost

scaling codes for the minimum-cost flow problem.

We compare the performance of the CSA codes to two other codes: SFR10, an implemen-
tation of the auction method for the assignment problem [4] and ADP/A, an implementation
of the interior-point method specialized for the assignment problem [21]. The comparison is
done on problem classes from generators developed for the First DIMACS Implementation
Challenge [15]' and on problems obtained from digital images as suggested by Don Knuth

!The DIMACS benchmark codes, problem generators, and other information we refer to are available
by anonymous £tp from dimacs.rutgers.edu

2
[16]. Out of our codes, csA-Q is best overall. This code outperforms ADP/A and SFR10 on

all problem instances in our tests, except those in one class. Although our second-best code,
CSA-s, is somewhat slower than CSA-Q on many problem classes, it outperforms cSA-Q on two
problem classes, always outperforms ADP /A, is worse than SFR10 by only a slight margin on
one problem class and by a significant margin on only one problem class. While we use the
CSA-B code primarily to gauge the effect of heuristics on performance, it is worth noting that

it outperforms ADP/A in all our tests, and SFR10 on all but one class of problems we tested.

This paper is organized as follows. Section 2 gives the relevant definitions. Section 3
outlines the scaling push-relabel method for the assignment problem. Section 4 discusses our
implementation, in particular the techniques used to improve the practical performance of our
code. Section 5 describes the experimental setup. Section 6 gives the experimental results. In

Section 7, we give our conclusions and suggest directions for further research.

2. BACKGROUND

Let G = (V = X UY, E) be an undirected bipartite graph and let n = |[V|, m = |E|. A
matching in G is a subset of edges M C FE that have no node in common. The cardinality
of the matching is |M]. Given a weight function ¢ : F — R, we define the weight of M
to be the sum of weights of edges in M. The assignment problem is to find a maximum
cardinality matching of maximum weight. We assume that the weights are integers in the
range [~C,...,C]. To simplify the presentation, we assume that |X| = |Y|, G has a perfect
matching (i.e., a matching of cardinality | X|), and every node degree in G is at least two. These
assumptions can be dispensed with without any significant decrease in performance by using
a slightly more complicated reduction to the transportation problem than the one described

below.

Our implementation reduces the assignment problem to the transportation problem defined
as follows. Let G = (V, E) be a digraph with a real-valued capacity u(a) and a real-valued cost
c(a) associated with each arc? ¢ and a real-valued supply d(v) associated with each node v.
We assume that 3", d(v) = 0. A pseudoflow is a function f : E' — R, satisfying the capacity
constraints: for each a € F, f(a) < u(a). For a pseudoflow f and a node v, the excess flow
into v, e;(v), is defined by e;(v) = d(v) + Xy ver f(U, V) = X wyer [(v, w0). A node v with
es(v) > 0is called active. Note that 37 .y e;(v) = 0.

2Sometimes we refer to an arc a by its endpoints, e.g., (v, w). This is ambiguous if there are multiple
arcs from v to w. An alternative if to refer to v as the tail of @ and to w as the head of @, which is
precise but inconvenient.

3
A flow is a pseudoflow f such that, for each node v, e;(v) = 0. Observe that a pseudoflow

[is a flow if and only if there are no active nodes. The cost of a pseudoflow f is given by

cost(f) = > ,cp c(a) f(a). The transportation problem is to find a flow of minimum cost.

We use a slight variation of the standard reduction from the assignment problem to the
minimum-cost flow problem (see e.g. [18]). Given an instance of the assignment problem
(G,), we construct a transportation problem instance (G = (V, E), ¢, u) as follows. We define
V =V = XUY. For every edge {v,w} € E such that v € X and w € Y, we add the arc (v, w)
to E and define ¢(v, w) = —¢(w) and u(v, w) = 1. Finally we define d(v) =1 for all v € X and
d(w) = —1 for all w € Y. Note that the graph G is bipartite.

For a given pseudoflow f, the residual capacity of an arc a« € E is uy(a) = u(a) — f(a).
The set of residual arcs E; contains the arcs ¢ € F with f(a) < u(a) and the reverse arcs,
a®t, for every a € E with f(a) > 0. The residual graph G; = (V, E}) is the graph induced
by the residual arcs. Note that if G is obtained by the above reduction, then for any integral
pseudoflow f and for any arc a € F, u(a), f(a) € {0,1}.

A price function is a function p : V — R. For a given price function p, the reduced cost
of an arc (v, w) is ¢,(v, w) = ¢(v,w) + p(v) — p(w) and the partial reduced cost is ¢, (v, w) =
c(v,w) — p(w).

For a constant € > 0, a pseudoflow f is said to be e-optimal with respect to a price function

p if, for every residual arc a € E;, we have

a€ E=cya) >0,
at € F = cy(a) > —e.

A pseudoflow f is e-optimal if f is e-optimal with respect to some price function p. If the arc

costs are integers and € < 1/n, any e-optimal flow is optimal.

For a given f and p, an arc a € Ey is admissible iff

a € Fandcy(a) <€ or
a € F and ¢,(a) < 0.

The admissible graph G 4 = (V, E4) is the graph induced by the admissible arcs.

3. THE METHOD

First we give a high-level description of the successive approximation algorithm (see Fig-
ure 1). The algorithm starts with € = C' and p(v) = 0 for all v € V. At the beginning of every
iteration, the algorithm divides € by a constant factor a and sets f to the zero pseudoflow. The

iteration modifies f and p so that f is a flow that is (¢/a)-optimal with respect to p. When

4

procedure MIN-cosT(V, E, u, ¢);
[initialization]
e+ C; Vv, p(v) « 0
[loop]
while ¢ > 1/n do
(e, f,p) « refine(e, p);
return(f);
end.

FicUrRe 1. The cost scaling algorithm.

procedure REFINE (¢, p);
[initialization]
ce—¢/a;Va € E f(a) « 0;
Yv € X p(v) ¢ —ming, ek ¢, (v, w);
[loop]
while f is not a flow
apply a push or a relabel operation;
return(e, f,p);
end.

F1GURE 2. The generic refine subroutine.

€ < 1/n, fis optimal and the algorithm terminates. The number of iterations of the algorithm
is [log, (nC)].
Reducing ¢ is the task of the subroutine refine. The input to refine is € and p such that

there exists a flow f that is e-optimal with respect to p. The output from refine is € = ¢/, a

flow f, and a price function p such that f is ¢-optimal with respect to p.

The generic refine subroutine (described in Figure 2) begins by decreasing the value of ¢,
setting f to the zero pseudoflow (thus creating some excesses and making some nodes active),
and setting p(v) = — min, yyer{c, (v, w)} for every v € X. This converts the flow f into an e
optimal pseudoflow (indeed, into a 0-optimal pseudoflow). Then the subroutine converts f into
an e-optimal flow by applying a sequence of push and relabel operations, each of which preserves
e-optimality. The generic algorithm does not specify the order in which these operations are

applied. Next, we describe the push and relabel operations for the unit-capacity case.

A push operation applies to an admissible arc (v, w) whose tail node v is active. It consists
of pushing one unit of flow from v to w, thereby decreasing e;(v) by one, increasing e;(w),
and either increasing f(v,w) by one if (v, w) € E or decreasing f(w,v) by one if (w,v) € E.

A relabel operation applies to a node v. The operation sets p(v) to the smallest value allowed

PUSH (v, w).
send a unit of flow from v to w.
end.

RELABEL(V).
ifveX
then replace p(v) by max(, wyer, {p(w) — c(v, w)}
else replace p(v) by max, v)er, {p(u) + c(u,v) — €}
end.

Ficure 3. The push and relabel operations
by the e-optimality constraints, namely max, vyeg, {p(w) — c(v,w) — €}.

The analysis of the cost scaling push-relabel algorithms are based on the following facts

[12, 14]. During a scaling iteration

e the node prices monotonically decrease;

e for any v € V, p(v) decreases by O(ne).

4. IMPLEMENTATION AND HEURISTICS

The efficiency of an implementation of refine depends on the number of operations performed

by the method and on the implementation details. We discuss the operation ordering first.

The implementation maintains the price function p and the flow f. For each node w € Y

with e;(w) = 0, we maintain a pointer to the unique node v = p(w) such that f(v,w)=1.

Our implementation maintains the invariant that only the nodes in X are active, except
possibly in the middle of the double-push operation described below. The implementation

picks an active node and applies the double-push operation to it.

The performance of the implementation depends on the strategy for selecting the next active
node to process. We experimented with several operation orderings, including those suggested
n [14]. Our implementation uses the LIFO ordering, i.e., the set of active nodes is maintained
as a stack. This ordering worked best in our tests; the FIFO ordering usually worked somewhat

WOorse.

4.1. The Double-Push Operation. The double-push operation is similar to a sequential
version of the match-and-push procedure from [12]. The operation applies to an active node

v. Recall that at the beginning of a double-push, all active nodes are in X, so v € X.

First the double-push operation processes v by relabeling v, pushing flow from v along an

DOUBLE-PUSH(v).
let (v, w) and (v, z) be the arcs with the smallest and the second-smallest reduced costs;
push(v, w);
p(v) = —c, (v, 2);
ifef(w) >0
push(w, p(w));
p(w) = v;
p(w) = p(v) + ¢(v,w) — ¢
end.

F1GURE 4. Efficient implementation of double-push

admissible arc (v, w), and then relabeling v again. If e;(w) becomes positive, the operation

pushes flow from w to p(w) and sets u(w) = v. Finally, double-push relabels w.

Lemma 4.1. The double-push operation is correct.

Proof. We only need to show that double-push applies the pushing operation correctly. Since
immediately before the flow is pushed out of v the node is relabeled, there is an admissible arc
out of v and the push is correct. If this push makes v active, then there us a second push from
w to pu(w).

Consider the last double-push into w which set p(w) to its current value. Because the
network is obtained via a reduction described in Section 2, (w, u(w)) is the only residual arc
out of w. So when the double-push relabeled w, ¢,(p(w), w) became €. From this double-push
to the current one, w and p(w) have not been relabeled (the latter holds because (w, u(w))
was the only residual arc into w during that time period). Thus during the current push from

w, ¢,(p(w), w) = ¢, so the push is valid. m
Lemma 4.2. A double-push operation decreases the price of a node w €'Y by al least e.

Proof. Just before the double-push, w is either unmatched or matched.

In the first case, the flow is pushed into w and at this point the only residual arc out of
w is the arc (w,v). Just before that the double-push relabeled v and ¢,(v,w) = 0. Next

double-push relabeles w and p(v) decreases by e.

In the second case, the flow is pushed to w and at this point w has two outgoing residual arcs,
(w,v) and (w, u(w)). As we have seen, ¢,(v,w) = 0 and ¢,(p(w), w) = e. Next double-push

pushes flow from w to p(w) and relabeles w, reducing p(w) by ¢. m

Corollary 4.3. There are O(n?) double-push operations per refine.

7

4.2. Efficient Implementation. Suppose we apply double-push to a node v. Let (v, w) and
(v, z) be the arcs out of v with the smallest and the second-smallest reduced costs, respectively.
These arcs can by found by scanning the adjacency list of v once. The effects of double-push
on v are equivalent to pushing flow along (v, w) and setting p(v) = —¢c, (v, z). To relabel w, we

set p(w) = p(v) + ¢(v, w) — e. This implementation of double-push is summarized in Figure 4.

It is not necessary to maintain the prices of nodes in X explicitly; for v € X, we can define
p(v) implicitly by p(v) = — min(, wyer{c,(v,w)} if e;(v) = 1 and p(v) = ¢'(v,w) +eif e;(v) = 0
and (v, w) is the unique arc with f(v,w) = 1. One can easily verify that using implicit prices
is equivalent to using explicit prices in the above implementation. The only time we need to
know the value of p(v) is when we relabel w in double-push, and at that time p(v) = —¢c; (v, 2)
which we compute during the previous relabel of v. Maintaining the prices implicitly saves
memory and time. The implementation of double-push operation with the implicit prices is

similar to the basic step of the auction algorithm of [2].

Our code csA-B implements the scaling push-relabel algorithm using and stack ordering of

active nodes and the implementation of double-push with implicit prices mentioned above.

4.3. Heuristics. In this section we describe two heuristics that often improve the algorithm

performance.

The kth-best heuristic [2] is aimed at reducing the number of scans of arc lists of nodes in
X. The idea of the kth-best heuristic is as follows. Recall that we scan the list of v to find
the arcs (v, w) and (v, z) with the smallest and second-smallest values of the partial reduced
cost. Let £ > 3 be an integer. When we scan the list of v € X, we compute the kth-smallest
value K of the partial reduced costs of the outgoing arcs and store the £ — 1 arcs with the
k — 1 smallest partial reduced costs. The node prices monotonically decrease during refine,
hence during the subsequent double-push operations we can first look for the smallest and the
second-smallest arcs among the stored arcs whose current partial reduced cost is at most K.
We need to scan the list of v again only when all except possibly one of the saved arcs have

partial reduced costs greater than K.
Our code csA-Q is a variation of cSA-B that uses the 4th-best heuristic.

The idea of the speculative arc fizing heuristic [7, 10] is to move the arcs with reduced costs
of large magnitude to a special list. These arcs are not examined by the double-push procedure
but are examined as follows at a (relatively large) periodic interval. When the arc (v, w) is
are examined, if the e-optimality condition is violated on (v, w), f(v,w) is modified to restore

e-optimality and (v, w) is moved back to the adjacency list of v; if |¢, (v, w)| is no longer large,

C benchmarks FORTRAN benchmarks
user times user times
Test 1 | Test 2 Test 1 Test 2
2.7 sec | 24.0 sec | 1.2 sec 2.2 sec

Ficure 5. DIMACS benchmark times

(v, w) is also moved back to the adjacency list. This heuristic takes advantage of the fact that

the flow is fized on arcs of high reduced cost [14].
Our code CsA-s is a variation of csA-B that uses the speculative arc fixing heuristic.

We implemented a number of other heuristics that are known to improve performance of
cost-scaling code for the minimum-cost flow problem [10]. Among these are: global price
updates which periodically ensure, via a specialized shortest-paths computation, that the ad-
missible graph contains a path from every node with flow excess to some node with flow deficit;
and price refinement which determines at each iteration whether the current assignment is ac-
tually €-optimal for some ¢ < ¢, and hence avoids unnecessary executions of refine. Our best
implementation uses neither of these heuristics, however, since even taking advantage of the
assignment problem’s structure to simplify and speed up these heuristics, a typical price re-
finement iteration used more time than simply executing refine in our tests. The double-push
operation seems to maintain a sufficiently “aggressive” price and function global price updates

cannot reduce the number of push and relabel operations enough to improve the running time.

5. EXPERIMENTAL SETUP

All the test runs were executed on a Sun SparcStation 2 with a clock rate of 40 MHz and 96
Megabytes of main memory. We compiled the SFR10 code supplied by David Castanon with
the Sun Fortran-77 compiler, release 2.0.1 using the -04 optimization switch. We compiled
our CSA codes with the Sun C compiler release 1.0, using the -fast optimization option;
these choices seemed to yield the fastest execution times. Times reported here are Unix user
CPU times, and were measured using the times() library function. During each run, the
programs collect time usage information after reading the input problem and initializing all data
structures and again after computing the optimum assignment; we take the difference between

the two figures to indicate the CPU time actually spent solving the assignment problem.

To give a baseline for comparison of our machine’s speed to others, we ran the DIMACS
benchmarks wmatch (to benchmark C performance) and netflo (to benchmark FORTRAN
performance) on our machines, with the timing results given in Figure 5. It is interesting

(though neither surprising nor critical to our conclusions) to note that the DIMACS bench-

9

marks do not precisely reflect the mix of operations in the codes we developed. Of two C
compilers available on our system, the one that consistently ran our code faster by a few per-
cent also ran the benchmarks more slowly by a few percent (the C benchmark times in Figure 5
are for code generated by the same compiler we used for our experiments). But even though
they should not be taken as the basis for extremely precise comparison, the benchmarks pro-
vide a useful way to estimate relative speeds of different machines on the sort of operations

typically performed by combinatorial optimization codes.

We did not run the ADP/A code on our machine, but because the benchmark times reported
in [21] differ only slightly from the times we obtained on our machine, we conclude that the
running times reported for ADP/A in [21] form a reasonable basis for comparison with our
codes. Therefore, we report running times directly from [21]. As the reader will see, even if
this benchmark-comparison introduces a significant amount of error, our conclusions about the

codes’ relative performance are justified by the large differences in performance between the
ADP/A code and the other codes we tested.

We collected performance data on a variety of problem classes, many of which we took from
the First DIMACS Implementation Challenge. Following is a brief description of each class;

details of the generator inputs that produced each set of instances are included in Appendix A.

5.1. The High-Cost Class. Each v € X is connected by an edge to 2log, |V| randomly-

selected nodes of Y, with integer edge costs uniformly distributed in the interval [0, 10%].

5.2. The Low-Cost Class. Each v € X is connected by an edge to 2log,|V| randomly-
selected nodes of Y, with integer edge costs uniformly distributed in the interval [0, 100].

5.3. The Two-Cost Class. Each v € X is connected by an edge to 2log, |V| randomly-
selected nodes of Y, each edge having cost 100 with probability 1/2, or cost 10® with probability
1/2.

5.4. The Fixed-Cost Class. For problems in this class, we view X as a copy of the set
{1,2,...,|V|/2},and Y as a copy of { |V|/2+1,|V|/2+2,...,|V|}. Each v € X is connected
by an edge to |V|/16 randomly-selected nodes of Y, with edge (z,y), if present, having cost
100 -z - y.

5.5. The Geometric Class. Geometric problems are generated by placing a collection of

integer-coordinate points uniformly at random in the square [0, 10°] x [0, 10°], coloring half the

10

FIGURE 6. Picture used to generate problems with |X| = 124735 and | X | = 500445

points blue and the other half red, and introducing an edge between every red point r and

every blue point b with cost equal to the floor of the distance between r and b.

5.6. The Dense Class. Like instances of the geometric class, dense problems are complete,

but edge costs are distributed uniformly at random in the range [0, 107].

5.7. Picture Problems. Picture problems, suggested by Don Knuth [16], are generated from
photographs scanned at various resolutions, with 256 greyscale values. The set V is the set of
pixels; the pixel at row r, column ¢ is a member of X if r 4+ ¢ is odd, and is a member of Y
otherwise. Each pixel has edges to its vertical and horizontal neighbors in the image, and the
cost of each edge is the absolute value of the greyscale difference between its two endpoints.

Note that picture problems are extremely sparse, with an average degree always below 4.

For our problems, we used two scanned photographs, one of each author of this paper. The

pictures we used are displayed in Figures 6 and 7.

11

FIGURE 7. Picture used to generate problem with | X| = 196608

6. EXPERIMENTAL OBSERVATIONS AND DISCUSSION

In the following tables and graphs, we present performance data for the codes. Note that
problem instances are characterized by the number of nodes on a single side, i.e., half the

number of nodes in the graph.

We report times on the test runs we conducted, along with performance data for the ADP/A
code taken from [21]. The instances on which ADP/A was timed in [21] are identical to those
we used in our tests. We give mean running time and standard deviations computed over three

instances for each problem size in each class; all times reported are in seconds.

6.1. The High-Cost Class. Figure 8 summarizes the timings on DIMACS high-cost in-

stances. The kth-best heuristic yields a clear advantage in running time on these instances.

12

running time (logscale)

Hi gh- Cost | nstances
100 i T T T T T T
P
,/w;/
/ﬁ/ o
10} ADPIA -
SFR10 -+
CSA-S o A A
CSA-B T
CSA-Q & X
/,f/’?/ /“/
1t
1024 2048 4096 8192 16384 32768
nunber of nodes (I ogscal e)

Nodes | ADP/A SFR10 CSA-B CSA-S CSA-Q
(|IX])| time | s |time| s |time| s |time| s |time| s
1024 17 06| 1.2|0.04| 0.7(0.03| 1.1]0.03| 0.5)|0.03
2048 36 2| 29011 1.9|0.11| 2.7|0.18| 1.3]0.13
4096 | 132 4| 6.4(0.17| 4.3|0.13| 6.2 |0.17| 2.8|0.14
8192 | 202 | 19|15.7(0.02|10.8| 0.3|15.3|0.19| 6.5|0.24
16384 | 545| 29|37.3(0.63|25.5| 0.6|38.3| 2.9|14.3|0.49
32768 | 1463 | 139 | 85.7 | 0.10 | 58.7 | 0.3 |84.0| 1.9|32.4|0.15

FiGure 8. Running Times for the High-Cost Class

13

CSA-Q beats CSA-B, its nearest competitor, by a factor of nearly 2 on large instances, and
CSA-Q seems to have an asymptotic advantage over the other codes, as well. The overhead of
speculative arc fixing is too great on high-cost instances; the running times of csa-s for large

graphs are essentially the same as those of SFR10.

6.2. The Low-Cost Class. The situation here is very similar to the high-cost case: csa-Q
enjoys a slight asymptotic advantage as well as a clear constant-factor advantage over the

competing codes. See Figure 9.

6.3. The Two-Cost Class. The two-cost data appear in Figure 10. It is difficult for robust
scaling algorithms to exploit the special structure of two-cost instances; the assignment problem
for most of the graphs in this class amounts to finding a perfect matching on the high-cost edges,
and none of the codes we tested is able to take special advantage of this observation. Speculative
arc fixing improves significantly upon the performance of the basic CSA implementation, and
the kth-best heuristic hurts performance on this class of problems. It seems that the kth-best
heuristic tends to speed up the last few iterations of refine, but it hurts in the early iterations.
Like kth-best, the speculative arc fixing heuristic is able to capitalize on the fact that later
iterations of refine can afford to ignore many of the arcs incident to each node, but by keeping
all arcs of similar cost under consideration in the beginning, speculative arc fixing allows early
iterations to run relatively fast. On this class, ¢SA-S is the winner, although for applications
limited to this sort of strongly bimodal cost distribution, an unscaled algorithm might perform
better than any of the codes we tested. No running times are given in [21] for ADP/A on
this problem class, but the authors suggest that their program performs very well on two-cost

problems.

6.4. The Fixed-Cost Class. Figure 11 gives the data for the fixed-cost problem class. On
smaller instances of this class, ¢SA-B and ¢SA-Q have nearly the same performance. The
cases where | X| = 1024 and |X| = 2048 seem to indicate that csa-q is asymptotically faster
on fixed-cost problems than csaA-B, or indeed any of the other codes. On smaller instances,
speculative arc fixing does not pay for itself; when | X | = 2048, the overhead is just paid for.
Perhaps on larger instances, speculative arc fixing would pay off. It is doubtful, though, that

csA-s would beat csA-Q on any instances of reasonable size.

6.5. The Geometric Class. On geometric problems, both heuristics improve performance
over the basic csa-B code. Performance of ¢sa-s and cSA-Q is similar and better than that of

the other codes. See Figure 12.

14

running time (logscale)

Low Cost | nstances

100 T T T T T T
,/ﬁ
o
//v, ,,><,v -
10 ADP/ A —— A
SFR10 -+ .
CSA-S o P
CSA-B &
CSA- Q -+ a
1t e
0.1 1 1 1 1 1 1
1024 2048 4096 8192 16384 32768
nunber of nodes (I ogscal e)
Nodes | ADP/A SFR10 CSA-B CSA-S CSA-Q
(IX])| time | s |time| s |time| s |time| s |time| s
1024 15 210.75]|0.030.48 | 0.03 | 0.64 | 0.02| 0.44 | 0.04
2048 29 1(1.83]0.04|1.21 | 0.08]1.77|0.24| 0.98 | 0.06
4096 | 178 214.3110.26 2.990.29|4.13 |0.19 | 2.43 | 0.14
8192 | 301 9110.7|0.29(7.39]0.23|10.3 |0.26|5.72|0.16
16384 | 803 | 38 |27.7|0.22|20.1 |0.85|27.8|0.82(13.4]0.67
32768 | 2464 | 139 | 68.5 | 3.10 | 46.9 | 1.90 | 64.6 | 4.41 | 30.3 | 1.51

FIGURE 9. Running Times for the Low-Cost Class

running time (logscale)

Two- Cost | nstances

1000 ¢ :
100 ¢ i
10 ¢]
1 1 1 1 1 1 1 1
1024 2048 4096 8192 16384 32768 65536
nunber of nodes (I ogscal e)
Nodes SFR10 CSA-B CSA-S CSA-Q
(|X])| time | s | time | s | time | s | time | s

1024 | 6.69|0.05| 3.03|0.24| 2.56 |0.15| 5.06 | 0.32
2048 | 17.11.15| 7.58 10.28| 6.14|0.16 | 11.2|1.09
4096 | 45.1 (1.08| 17.4|1.11| 14.0|1.54| 23.5|2.38
8192 1127.2 | 145 | 43.1| 3.5| 37.4|2.09| 63.5]|3.55
16384 | 434.3 | 96.0 | 100.8 | 2.8 | 87.0|3.21|144.0| 9.3
32768 | 1061 | 213 | 237.8 | 5.0 |188.7| 7.0|323.5| 7.1
65536 | 2084 | 79.3 | 527.3 | 17.8 | 426.9 | 11.3 | 678.9 | 25.6

Ficure 10. Running Times for the Two-Cost Class

16

running time (logscale)

Fi xed- Cost | nstances
100 ¢ g
/'Jg
< ’
10 r ”,:""
,‘,’.’Q,"
ADP/ A —— &
SFR10 -
1L CSA-S & ‘
CSA-B)
CSA-Q = A
,}."’l'
/;ﬁ'
0.1 ¢
Q,.
128 256 512 1024 2048
nunber of nodes (I ogscal e)

Nodes | ADP/A SFR10 CSA-B CSA-S CSA-Q
(X)) | time | s time | s |time| s |time| s |time| s
128 3 0.3| 0.16|0.01|0.06 |0.01|0.08]|0.01]|0.07|9e-10
256 11 0.1| 0.63|0.04]|0.30|0.02|0.37|0.03|0.32| 0.02
512 46 1 3.59(0.19| 1.6 |0.14| 1.8(0.06| 1.7| 0.10
1024 | 276 9| 20.5| 1.6| 7.8| 06| 8.2|0.46| 6.0 0.6
2048 | N/A [N/A |123.0| 48 (37.8| 1.3|37.6|1.32|27.9| 0.41

FiGure 11. Running Times for the Fixed-Cost Class

running time (logscale)

Ceonetri c | nstances

100 |
X
><
10 ADP/ A —— ’
SFRI0 —+
CSA-B = .
CSA- Q
CSA-S -+ o
//.:{'%‘/‘/
1t
128 256 512 1024
nunber of nodes (I ogscal e)
Nodes | ADP/A SFR10 CSA-B CSA-S CSA-Q
(IX]) | time | s | time | s | time | s |time| s |time| s

128 12| 05| 1.27|0.47| 0.79]0.29|0.62 | 0.05| 0.57 | 0.20

256 47 1| 6.12)|0.20| 3.63 |0.64|2.53 |0.07|2.43 |0.34

512 | 214 | 42| 31.0|4.12| 27.8 |8.06|11.9 | 0.87|16.7 | 3.71

1024 | 1316 | 288 | 191.2 | 18.7 | 113.6 | 23.7 | 54.8 | 1.45 | 62.4 | 2.68

FiGure 12. Running Times for the Geometric Class

18

running time (logscale)

Dense | nstances

100
10 ¢
1t
><
0. 1 1 1 1 1
128 256 512 1024
nunber of nodes (I ogscal e)
Nodes | SFRI10 CSA-B CSA-S CSA-Q
(|X]) | time | s |time| s |time| s |time| s
128 { 0.51 | 0.18 | 0.36 | 0.01 | 0.52 | 0.009 | 0.16 | 0.01
256 | 2.220.07)1.83 | 0.09|2.17| 0.08]|0.84 | 0.07
512 8.50 | 0.75 | 8.12 | 0.06 | 9.36 | 0.10 | 4.13 | 0.09
1024 | 41.2 | 2.71 | 42.0 | 3.03 | 47.1 | 0.62|18.9 | 0.96

FiGure 13. Running Times for the Dense Class

19

Nodes | SFR10 | CSA-B | CSA-S | CSA-Q |
(|X]) | time time time time
124735 | 354.5 | 434.5 | 462.6 | 590.3
196608 | 1426 1911 | 2041 2824
500445 | 1763 3104 | 3399 4512

FIGURE 14. Running Times for Picture Problems

6.6. The Dense Class. The difference between Figures 12 and 13 shows that the codes’
relative performance is significantly affected by the changes in cost distribution. csa-q is the
clear winner by a wide margin on these dense problems, with SFR10, CSA-B, and CSA-S nearly

in a three-way tie for second.

6.7. Picture Problems. Since we performed only a single trial for each problem size and
the pictures used had very similar characteristics, the tentative conclusions we draw here may
apply only to a limited class of pictures. Indeed, it seems from Figure 14 that picture problems
taken from the photograph of the second author may be more difficult for some reason than
those taken from the first author’s photograph. On the picture problems we tried, SFR10
performs better than any of the CSA implementations; we believe that the “reverse-auction”

phases performed by SFR10 [4] are critical to this performance difference.

7. CONCLUSIONS

Castanon [4] gives running times for an auction code called SF5 in addition to performance
data for SFR10; SF5 and SFR10 are the fastest among the robust codes discussed. The data
in [4] show that on several classes of problems, SE5 outperforms SFR10 by a noticeable margin.
Comparing Castanon’s reported running times for SFR10 with the data we obtained for the
same code allows us to estimate roughly how SF5 performs relative to our codes. The data
indicate that csa-s and csA-Q should perform at least as well as SF5 on all classes for which
data are available, and that csa-Q should outperform SEF5 by a wide margin on some classes.
A possible source of error in this technique of estimation is that Castanon reports times for
test runs on cost-minimization problems, whereas all the codes we test here (including SFR10)
are configured to maximize cost. The difference in every case is but a single line of code, but
while on some classes minimization and maximization problems are similar, on other classes we
observed that minimization problems were significantly easier for all the codes. This difference
is unlikely to be a large error source, however, since the relative performance of the codes we

tested was very similar for minimization problems and maximization problems.

20

From our tests and data from [21] and [4], we conclude that cSA-Q is a robust, competitive

implementation that should be considered for use by those who wish to solve assignment

problems in practice. It is the best of our codes overall, and is better than any of its competitors

we are aware of.

(¢6]

ACKNOWLEDGMENT

The authors would like to thank David Castanon for supplying and assisting with the SFR10

de, Anil Kamath and K. G. Ramakrishnan for their assistance in interpreting results reported

n [21], and Serge Plotkin for his help with producing the digital pictures.

10.

11.

12.

13.

REFERENCES

. R. J. Anderson and J. C. Setubal. Goldberg’s Algorithm for the Maximum Flow in Prespective:
a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, DIMACS Implementation
Challenge Workshop: Algorithms for Network Flows and Matching. AMS and ACM, to appear.

D. P. Bertsekas. The Auction Algorithm: A Distributed Relaxation Method for the Assignment
Problem. Annals of Oper. Res., 14:105-123, 1988.

R. G. Bland, J. Cheriyan, D. L. Jensen, and L. Ladanyi. An Empirical Study of Min Cost Flow
Algorithms. In D. S. Johnson and C. C. McGeoch, editors, DIMACS Implementation Challenge
Workshop: Algorithms for Network Flows and Matching. AMS and ACM, to appear.

D. A. Castanon. Reverse Auction Algorithms for the Assignment Problems. In D. S. Johnson and
C. C. McGeoch, editors, DIMACS Implementation Challenge Workshop: Algorithms for Network
Flows and Matching. AMS and ACM, to appear.

U. Derigs. The Shortest Augmenting Path Method for Solving Assignment Problems — Motivation
and Computational Experience. Annals of Oper. Res., 4:57-102, 1985/6.

U. Derigs and W. Meier. Implementing Goldberg’s Max-Flow Algorithm — A Computational In-
vestigation. ZOR — Methods and Models of Operations Research, 33:383-403, 1989.

S. Fujishige, K. Iwano, J. Nakano, and S. Tezuka. A Speculative Contraction Method for the Mini-
mum Cost Flows: Toward a Practical Algorithm. The First DIMACS International Implementation
Challenge, 1991.

H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems. STAM J. Comput.,
pages 1013-1036, 1989.

A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis,
M.IT., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science,
M.IT., 1987).

A. V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm. In Proc.
3rd Int. Prog. and Comb. Opt. Conf., pages 251-266, 1993.

A. V. Goldberg and M. Kharitonov. On Implementing Scaling Push-Relabel Algorithms for the
Minimum-Cost Flow Problem. In D. S. Johnson and C. C. McGeoch, editors, DIMACS Implemen-
tation Challenge Workshop: Algorithms for Network Flows and Matching. AMS and ACM, accepted
for publication.

A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-Time Parallel Algorithms for Matching
and Related Problems. J. Alg., 14:180-213, 1993.

A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc.
Comput. Mach., 35:921-940, 1988.

14.

15.

16.
17.

18.

19.

20.

21.

21

A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approxima-
tion. Math. of Oper. Res., 15:430-466, 1990.

D. S. Johnson and C. C. McGeoch, editors. DIMACS Implementation Challenge Workshop: Algo-
rithms for Network Flows and Matching. AMS and ACM, to appear.

D. Knuth. Personal communication. 1993.

H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Res. Logist. Quart.,
2:83-97, 1955.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston,
New York, NY., 1976.

Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algo-
rithm. In D. S. Johnson and C. C. McGeoch, editors, DIMACS Implementation Challenge Work-
shop: Algorithms for Network Flows and Matching. AMS and ACM, to appear.

J. B. Orlin and R. K. Ahuja. New Scaling Algorithms for Assignment and Minimum Cycle Mean
Problems. Sloan Working Paper 2019-88, Sloan School of Management, M.I.'T.; 1988.

K. G. Ramakrishnan, N. K. Karmarkar, and A. P. Kamath. An Approximate Dual Projective
Algorithm for Solving Assignment Problems. In D. S. Johnson and C. C. McGeoch, editors, DI-
MACS Implementation Challenge Workshop: Algorithms for Network Flows and Matching. AMS
and ACM, to appear.

22

APPENDIX A. GENERATOR INPUTS

The assignment instances on which we ran our tests were generated as follows: Problems
in the high-cost, low-cost, fixed-cost, and dense classes were generated using the DIMACS
generator assign.c. Problems in the two-cost class were generated using assign.c with
output post-processed by the DIMACS awk script twocost.a. Problems in the geometric
class were generated using the DIMACS generator dcube.c with output post-processed by
the DIMACS awk script geomasn.a. Picture problems were generated from images in the
Portable Grey Map format using our program p5pgmtoasn. To obtain the DIMACS generators,
use anonymous ftp to dimacs.rutgers.edu, or obtain the csa package (which includes the

generators) as described below.

In each class except the picture class, we generated instances of various numbers of nodes
N and using various seeds K for the random number generator. For each problem type and
each N, three values of K were used; in every case the values used were 270001, 270002, and

270003. For picture problems, we tested the codes on a single instance of each size.

A.1. The High-Cost Class. We generated high-cost problems using assign.c from the
DIMACS distribution. The input parameters given to the generator are as follows, with the
appropriate values substituted for N and K:

nodes N

sources N/2
degree 2log, N
maxcost 100000000

seed K

A.2. The Low-Cost Class. Like high-cost problems, low-cost problems are generated using
the DIMACS generator assign.c. The parameters to the generator are identical to those for

high-cost problems, except for the maximum edge cost:
nodes N
sources N/2
degree 2log, N
maxcost 100

seed K

23

A.3. The Two-Cost Class. Two-cost instances are derived from low-cost instances using
the Unix awk program and the DIMACS awk script twocost.a. The instance with N nodes
and seed K was generated using the following Unix command line, with input parameters

identical to those for the low-cost problem class:

assign | awk -f twocost.a

A.4. The Fixed-Cost Class. We generated fixed-cost instances using assign.c, with input

parameters as follows:
nodes N
sources N/2
degree N/16
maxcost 100
multiple

seed K

A.5. The Geometric Class. We generated geometric problems using the DIMACS genera-
tor dcube.c and the DIMACS awk script geomasn.a. We gave input parameters to dcube as

shown below, and used the following Unix command line:
dcube | awk -f geomasn.a

nodes N

dimension 2

maxloc 1000000

seed K

A.6. The Dense Class. We generated dense problems using assign.c, with input parame-

ters as follows:
nodes N
sources N/2
complete
maxcost 1000000

seed K

24

APPENDIX B. OBTAINING THE CSA CODES

To obtain a copy of the CSA codes, DIMACS generators referred to in this paper, and doc-
umentation files, send mail to ftp-request@theory.stanford.edu and use send csas.tar

as the subject line; you will automatically be mailed a uuencoded copy of a tar file.

