IsarMathLib
 Sławomir Kołodyński, Daniel de la Concepción Sáez

February 3, 2020

Abstract

This is the proof document of the IsarMathLib project version 1.11.0. IsarMathLib is a library of formalized mathematics for Isabelle2019 (ZF logic).

Contents

1 Introduction to the IsarMathLib project 9
1.1 How to read IsarMathLib proofs - a tutorial 10
1.2 Overview of the project 11
2 First Order Logic 15
2.1 Notions and lemmas in FOL 15
3 ZF set theory basics 18
3.1 Lemmas in Zermelo-Fraenkel set theory 18
4 Natural numbers in IsarMathLib 24
4.1 Induction 24
4.2 Intervals 29
5 Order relations - introduction 30
5.1 Definitions 31
5.2 Intervals 34
5.3 Bounded sets 35
6 More on order relations 42
6.1 Definitions and basic properties 42
6.2 Properties of (strict) total orders 44
7 Even more on order relations 47
7.1 Maximum and minimum of a set 47
7.2 Supremum and Infimum 54
7.3 Strict versions of order relations 57
8 Order on natural numbers 60
8.1 Order on natural numbers 60
9 Functions - introduction 61
9.1 Properties of functions, function spaces and (inverse) images. 62
9.2 Functions restricted to a set 76
9.3 Constant functions 78
9.4 Injections, surjections, bijections etc 79
9.5 Functions of two variables 87
10 Binary operations 91
10.1 Lifting operations to a function space 91
10.2 Associative and commutative operations 93
10.3 Restricting operations 96
10.4 Compositions 98
10.5 Identity function 99
10.6 Lifting to subsets 101
10.7 Distributive operations 106
11 More on functions 107
11.1 Functions and order 107
11.2 Projections in cartesian products 112
11.3 Induced relations and order isomorphisms 112
12 Finite sets - introduction 120
12.1 Definition and basic properties of finite powerset 120
13 Finite sets 129
13.1 Finite powerset 129
13.2 Finite range functions 137
14 Finite sets 1 138
14.1 Finite vs. bounded sets 138
15 Finite sets and order relations 141
15.1 Finite vs. bounded sets 142
15.2 Order isomorphisms of finite sets 143
16 Equivalence relations 149
16.1 Congruent functions and projections on the quotient 149
16.2 Projecting commutative, associative and distributive opera- tions. 155
16.3 Saturated sets 158
17 Finite sequences 160
17.1 Lists as finite sequences 160
17.2 Lists and cartesian products 174
18 Inductive sequences 177
18.1 Sequences defined by induction 177
18.2 Images of inductive sequences 185
18.3 Subsets generated by a binary operation 185
18.4 Inductive sequences with changing generating function 188
19 Folding in ZF 192
19.1 Folding in ZF 192
20 Partitions of sets 196
20.1 Bisections 196
20.2 Partitions 199
21 Enumerations 200
21.1 Enumerations: definition and notation 201
21.2 Properties of enumerations 202
22 Semigroups 204
22.1 Products of sequences of semigroup elements 205
22.2 Products over sets of indices 209
22.3 Commutative semigroups 212
23 Commutative Semigroups 223
23.1 Sum of a function over a set 224
24 Monoids 227
24.1 Definition and basic properties 227
25 Groups - introduction 232
25.1 Definition and basic properties of groups 232
25.2 Subgroups 243
26 Groups 1 248
26.1 Translations 249
26.2 Odd functions 255
27 Groups - and alternative definition 256
27.1 An alternative definition of group 257
28 Abelian Group 258
28.1 Rearrangement formulae 259
29 Groups 2 271
29.1 Lifting groups to function spaces 271
29.2 Equivalence relations on groups 276
29.3 Normal subgroups and quotient groups 279
29.4 Function spaces as monoids 284
30 Groups 3 285
30.1 Group valued finite range functions 285
30.2 Almost homomorphisms 287
30.3 The classes of almost homomorphisms 296
30.4 Compositions of almost homomorphisms 298
30.5 Shifting almost homomorphisms 307
31 Direct product 308
31.1 Definition 308
31.2 Associative and commutative operations 309
32 Ordered groups - introduction 310
32.1 Ordered groups 310
32.2 Inequalities 316
32.3 The set of positive elements 328
32.4 Intervals and bounded sets 335
33 More on ordered groups 341
33.1 Absolute value and the triangle inequality 341
33.2 Maximum absolute value of a set 353
33.3 Alternative definitions 355
33.4 Odd Extensions 359
33.5 Functions with infinite limits 361
34 Rings - introduction 364
34.1 Definition and basic properties 364
34.2 Rearrangement lemmas 372
35 More on rings 375
35.1 The ring of classes of almost homomorphisms 375
36 Ordered rings 378
36.1 Definition and notation 378
36.2 Absolute value for ordered rings 386
36.3 Positivity in ordered rings 388
37 Cardinal numbers 395
37.1 Some new ideas on cardinals 395
37.2 Main result on cardinals (without the Axiom of Choice) 399
37.3 Choice axioms 402
38 Groups 4 407
38.1 Conjugation of subgroups 407
38.2 Finite groups 412
38.3 Subgroups generated by sets 416
38.4 Homomorphisms 417
38.5 First isomorphism theorem 423
39 Fields - introduction 431
39.1 Definition and basic properties 431
39.2 Equations and identities 434
$39.31 / 0=0$ 436
40 Ordered fields 436
40.1 Definition and basic properties 437
40.2 Inequalities 440
40.3 Definition of real numbers 443
41 Integers - introduction 444
41.1 Addition and multiplication as ZF-functions. 444
41.2 Integers as an ordered group 451
41.3 Induction on integers 463
41.4 Bounded vs. finite subsets of integers 467
42 Integers 1 470
42.1 Integers as a ring 470
42.2 Rearrangement lemmas 472
42.3 Integers as an ordered ring 479
42.4 Maximum and minimum of a set of integers 490
42.5 The set of nonnegative integers 494
42.6 Functions with infinite limits 500
42.7 Miscelaneous 505
43 Division on integers 507
43.1 Quotient and reminder 507
44 Integers 2 509
44.1 Slopes 509
44.2 Composing slopes 531
45 Integers 3 537
45.1 Positive slopes 537
45.2 Inverting slopes 548
45.3 Completeness 557
46 Construction real numbers - the generic part 562
46.1 The definition of real numbers 563
47 Construction of real numbers 570
47.1 Definitions and notation 570
47.2 Multiplication of real numbers 573
47.3 The order on reals 576
47.4 Inverting reals 586
47.5 Completeness 589
48 Complex numbers 609
48.1 From complete ordered fields to complex numbers 609
48.2 Axioms of complex numbers 613
49 Topology - introduction 626
49.1 Basic definitions and properties 626
49.2 Interior of a set 630
49.3 Closed sets, closure, boundary. 631
50 Topology 1 636
50.1 Separation axioms. 636
50.2 Bases and subbases. 638
50.3 Product topology 642
51 Topology 1b 647
51.1 Compact sets are closed - no need for AC 647
52 Topology 2 649
52.1 Continuous functions. 649
52.2 Homeomorphisms 654
52.3 Topologies induced by mappings 656
52.4 Partial functions and continuity 658
52.5 Product topology and continuity 661
52.6 Pasting lemma 664
53 Topology 3 666
53.1 The base of the product topology 667
53.2 Finite product of topologies 669
54 Topology 4 678
54.1 Nets 678
54.2 Filters 681
54.3 Relation between nets and filters 687
55 Topology and neighborhoods 698
55.1 Neighborhood systems 698
55.2 Topology from neighborhood systems 699
55.3 Neighborhood system from topology 701
56 Topology - examples 703
56.1 CoCardinal Topology 703
56.2 Total set, Closed sets, Interior, Closure and Boundary 705
56.3 Excluded Set Topology 711
56.4 Total set, closed sets, interior, closure and boundary 712
56.5 Special cases and subspaces 716
56.6 Included Set Topology 717
56.7 Basic topological notions in included set topology 718
56.8 Special cases and subspaces 721
57 More examples in topology 723
57.1 New ideas using a base for a topology 723
57.2 The topology of a base 723
57.3 Dual Base for Closed Sets 727
57.4 Partition topology 729
57.5 Partition topology is a topology. 731
57.6 Total set, Closed sets, Interior, Closure and Boundary 731
57.7 Special cases and subspaces 737
57.8 Order topologies 739
57.9 Order topology is a topology 739
57.10Total set 750
57.11Right order and Left order topologies. 751
57.11.1 Right and Left Order topologies are topologies 752
57.11.2 Total set 753
57.12Union of Topologies 753
58 Properties in Topology 755
58.1 Properties of compactness 755
58.2 Properties of numerability 759
58.3 Relations between numerability properties and choice principles 761
58.4 Relation between numerability and compactness 767
59 Topology 5 780
59.1 Some results for separation axioms 780
59.2 Hereditability 797
59.3 Spectrum and anti-properties 800
60 Topology 6 830
60.1 Image filter 830
60.2 Continuous at a point vs. globally continuous 832
60.3 Continuous functions and filters 833
61 Topology 7 836
61.1 Connection Properties 836
62 Topology 8 867
62.1 Definition of quotient topology 868
62.2 Quotient topologies from equivalence relations 870
63 Topology 9 878
63.1 Group of homeomorphisms 878
63.2 Examples computed 880
63.3 Properties preserved by functions 892
64 Topology 10 897
64.1 Closure and closed sets in product space 897
64.2 Separation properties in product space 899
64.3 Connection properties in product space 904
65 Topology 11 908
65.1 Order topologies 908
65.2 Separation properties 908
65.3 Connectedness properties 911
65.4 Numerability axioms 931
66 Uniform spaces 940
66.1 Definition and motivation 940
67 Topological groups - introduction 944
67.1 Topological group: definition and notation 944
67.2 Interval arithmetic, translations and inverse of set 948
67.3 Neighborhoods of zero 949
67.4 Closure in topological groups 950
67.5 Sums of sequences of elements and subsets 952
68 Properties in topology 2 955
68.1 Local properties 955
68.2 First examples 956
68.3 Local compactness 957
68.4 Compactification by one point 965
68.5 Hereditary properties and local properties 975
69 Topological groups 1 1008
69.1 Separation properties of topological groups 1008
69.2 Existence of nice neighbourhoods. 1011
69.3 Rest of separation axioms 1014
69.4 Local properties 1019
70 Topological groups 2 1020
70.1 Quotients of topological groups 1020
71 Topological groups 3 1026
71.1 Subgroups topologies 1026
72 Metamath introduction 1035
72.1 Importing from Metamath - how is it done 1036
72.2 The context for Metamath theorems 1037
73 Logic and sets in Metamatah 1039
73.1 Basic Metamath theorems 1040
74 Complex numbers in Metamatah - introduction 1091
75 Metamath examples 1213
76 Metamath interface 1218
76.1 MMisar0 and complex0 contexts. 1218
77 Metamath sampler 1224
77.1 Extended reals and order 1225
77.2 Natural real numbers 1229
77.3 Infimum and supremum in real numbers 1231

1 Introduction to the IsarMathLib project

theory Introduction imports ZF.equalities
begin
This theory does not contain any formalized mathematics used in other theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle's formal proof language) was designed to be similar to the standard language of mathematics. Any person able to read proofs in a typical mathematical paper should be able to read and understand Isar proofs without having to learn a special proof language. However, Isar is a formal proof language and as such it does contain a couple of constructs whose meaning is hard to guess. In this tutorial we will define a notion and prove an example theorem about that notion, explaining Isar syntax along the way. This tutorial may also serve as a style guide for IsarMathLib contributors. Note that this tutorial aims to help in reading the presentation of the Isar language that is used in IsarMathLib proof document and HTML rendering on the FormalMath.org site, but does not teach how to write proofs that can be verified by Isabelle. This presentation is different than the source processed by Isabelle (the concept that the source and presentation look different should be familiar to any LaTeX user). To learn how to write Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar this is done with the definition keyword. In our case we define a notion of two sets being disjoint. We will use the infix notation, i.e. the string \{is disjoint with\} put between two sets to denote our notion of disjointness. The left side of the \equiv symbol is the notion being defined, the right side says how we define it. In Isabelle/ZF 0 is used to denote both zero (of natural numbers) and the empty set, which is not surprising as those two things are the same in set theory.

definition

AreDisjoint (infix \{is disjoint with\} 90) where
A \{is disjoint with\} $B \equiv A \cap B=0$
We are ready to prove a theorem. Here we show that the relation of being disjoint is symmetric. We start with one of the keywords "theorem", "lemma" or "corollary". In Isar they are synonymous. Then we provide a name for the theorem. In standard mathematics theorems are numbered. In Isar we can do that too, but it is considered better to give theorems meaningful names. After the "shows" keyword we give the statement to show. The \longleftrightarrow symbol denotes the equivalence in Isabelle/ZF. Here we want to show that " A is disjoint with B iff and only if B is disjoint with A ". To prove this fact we show two implications - the first one that A \{is disjoint with\} B implies B \{is disjoint with\} A and then the converse one. Each of these implications is formulated as a statement to be proved and then proved in a subproof like a mini-theorem. Each subproof uses a proof block to show the implication. Proof blocks are delimited with curly brackets in Isar. Proof block is one of the constructs that does not exist in informal mathematics, so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by looking at the first line or two of the block and then at the last statement. In our case the block starts with "assume A \{is disjoint with\} B and the last statement is "then have B \{is disjoint with\} A". It is a typical pattern when someone needs to prove an implication: one assumes the antecedent and then shows that the consequent follows from this assumption. Implications are denoted with the \longrightarrow symbol in Isabelle. After we prove both implications we collect them using the "moreover" construct. The keyword "ultimately" indicates that what follows is the conclusion of the statements collected with "moreover". The "show" keyword is like "have", except that it indicates that we have arrived at the claim of the theorem (or a subproof).

```
theorem disjointness_symmetric:
    shows A {is disjoint with} B \longleftrightarrow B {is disjoint with} A
proof -
    have A {is disjoint with} B \longrightarrow B {is disjoint with} A
    proof -
        { assume A {is disjoint with} B
            then have A \cap B = 0 using AreDisjoint_def by simp
            hence }B\capA=0 by aut
                then have B {is disjoint with} A
                    using AreDisjoint_def by simp
            } thus thesis by simp
    qed
    moreover have B {is disjoint with} A }\longrightarrow A {is disjoint with} B
    proof -
            { assume B {is disjoint with} A
                then have B \cap A = 0 using AreDisjoint_def by simp
                hence A \cap B = 0 by auto
                then have A {is disjoint with} B
                    using AreDisjoint_def by simp
        } thus thesis by simp
    qed
    ultimately show thesis by blast
qed
```


1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material that is needed for the remaining theories.
Order_ZF and Order_ZF_1a reformulate material from standard Isabelle's Order theory in terms of non-strict (less-or-equal) order relations. Order_ZF_1 on the other hand directly continues the Order theory file using strict order relations (less and not equal). This is useful for translating theorems from Metamath.
In NatOrder_ZF we prove that the usual order on natural numbers is linear. The func1 theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic properties of binary operations, like lifting a binary operation to a function space, associative, commutative and distributive operations and properties of functions related to order relations. func_ZF_1 is about properties of functions related to order relations.
The standard Isabelle's Finite theory defines the finite powerset of a set as a certain "datatype" (?) with some recursive properties. IsarMathLib's Finite1 and Finite_ZF_1 theories develop more facts about this notion. These two theories are obsolete now. They will be gradually replaced by an approach based on set theory rather than tools specific to Isabelle. This approach is presented in Finite_ZF theory file.
In FinOrd_ZF we talk about ordered finite sets.
The EquivClass1 theory file is a reformulation of the material in the standard Isabelle's EquivClass theory in the spirit of ZF set theory.
FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).
InductiveSeq_ZF provides the definition and properties of (what is known in basic calculus as) sequences defined by induction, i. e. by a formula of the form $a_{0}=x, a_{n+1}=f\left(a_{n}\right)$.
Fold_ZF shows how the familiar from functional programming notion of fold can be interpreted in set theory.
Partitions_ZF is about splitting a set into non-overlapping subsets. This is a common trick in proofs.
Semigroup_ZF treats the expressions of the form $a_{0} \cdot a_{1} \cdot . . \cdot a_{n}$, (i.e. products of finite sequences), where "." is an associative binary operation.
CommutativeSemigroup_ZF is another take on a similar subject. This time we consider the case when the operation is commutative and the result of depends only on the set of elements we are summing (additively speaking), but not the order.

The Topology_ZF series covers basics of general topology: interior, closure, boundary, compact sets, separation axioms and continuous functions.
Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the group theory. Group_ZF_3 considers the notion of almost homomorphisms that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and starts the subject of topological groups with some basic definitions and facts.
In DirectProduct_ZF we define direct product of groups and show some its basic properties.
The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly large theory for such relatively obscure topic.
Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear order to the ring algebraic structure.
Field_ZF and OrderedField_ZF contain basic facts about (you guessed it) fields and ordered fields.
Int_ZF_IML theory considers the integers as a monoid (multiplication) and an abelian ordered group (addition). In Int_ZF_1 we show that integers form a commutative ring. Int_ZF_2 contains some facts about slopes (almost homomorphisms on integers) needed for real numbers construction, used in Real_ZF_1.
In the IntDiv_ZF_IML theory we translate some properties of the integer quotient and reminder functions studied in the standard Isabelle's IntDiv_ZF theory to the notation used in IsarMathLib.
The Real_ZF and Real_ZF_1 theories contain the construction of real numbers based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and Int_ZF_2. Real_ZF contains the part of the construction that can be done starting from generic abelian groups (rather than additive group of integers). This allows to show that real numbers form a ring. Real_ZF_1 continues the construction using properties specific to the integers and showing that real numbers constructed this way form a complete ordered field.
Cardinal_ZF provides a couple of theorems about cardinals that are mostly used for studying properties of topological properties (yes, this is kind of meta). The main result (proven without AC) is that if two sets can be injectively mapped into an infinite cardinal, then so can be their union. There is also a definition of the Axiom of Choice specific for a given cardinal (so that the choice function exists for families of sets of given cardinality). Some properties are proven for such predicates, like that for finite families of sets the choice function always exists (in ZF) and that the axiom of choice for a larger cardinal implies one for a smaller cardinal.
Group_ZF_4 considers conjugate of subgroup and defines simple groups. A nice theorem here is that endomorphisms of an abelian group form a ring. The first isomorphism theorem (a group homomorphism h induces an isomorphism between the group divided by the kernel of h and the image of h) is proven.
Turns out given a property of a topological space one can define a local version of a property in general. This is studied in the the Topology_ZF_properties_2 theory and applied to local versions of the property of being finite or compact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff). There are a couple of nice applications, like one-point compactification that allows to show that every locally compact Hausdorff space is regular. Also there are some results on the interplay between hereditability of a property and local properties.

For a given surjection $f: X \rightarrow Y$, where X is a topological space one can consider the weakest topology on Y which makes f continuous, let's call it a quotient topology generated by f. The quotient topology generated by an equivalence relation r on X is actually a special case of this setup, where f is the natural projection of X on the quotient X / r. The properties of these two ways of getting new topologies are studied in Topology_ZF_8 theory. The main result is that any quotient topology generated by a function is homeomorphic to a topology given by an equivalence relation, so these two approaches to quotient topologies are kind of equivalent.
As we all know, automorphisms of a topological space form a group. This fact is proven in Topology_ZF_9 and the automorphism groups for co-cardinal, included-set, and excluded-set topologies are identified. For order topologies it is shown that order isomorphisms are homeomorphisms of the topology induced by the order. Properties preserved by continuous functions are studied and as an application it is shown for example that quotient topological spaces of compact (or connected) spaces are compact (or connected, resp.)
The Topology_ZF_10 theory is about products of two topological spaces. It is proven that if two spaces are T_{0} (or T_{1}, T_{2}, regular, connected) then their product is as well.
Given a total order on a set one can define a natural topology on it generated by taking the rays and intervals as the base. The Topology_ZF_11 theory studies relations between the order and various properties of generated topology. For example one can show that if the order topology is connected, then the order is complete (in the sense that for each set bounded from above the set of upper bounds has a minimum). For a given cardinal κ we can consider generalized notion of κ-separability. Turns out κ-separability is related to (order) density of sets of cardinality κ for order topologies.
Being a topological group imposes additional structure on the topology of the group, in particular its separation properties. In Topological_Group_ZF_1.thy theory it is shown that if a topology is T_{0}, then it must be T_{3}, and that the topology in a topological group is always regular.
For a given normal subgroup of a topological group we can define a topology on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy theory it is shown that such topology on the quotient group makes it a topological group.

The Topological_Group_ZF_3.thy theory studies the topologies on subgroups of a topological group. A couple of nice basic properties are shown, like that the closure of a subgroup is a subgroup, closure of a normal subgroup is normal and, a bit more surprising (to me) property that every locallycompact subgroup of a T_{0} group is closed.
In Complex_ZF we construct complex numbers starting from a complete ordered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers constructed there satisfies the axioms of complex numbers used in Metamath.
MMI_prelude defines the mmisar0 context in which most theorems translated from Metamath are proven. It also contains a chapter explaining how the translation works.
In the Metamath_interface theory we prove a theorem that the mmisar0 context is valid (can be used) in the complex0 context. All theories using the translated results will import the Metamath_interface theory. The Metamath_sampler theory provides some examples of using the translated theorems in the complex0 context.
The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2 contain the theorems imported from the Metamath's set.mm database. As the translated proofs are rather verbose these theories are not printed in this proof document. The full list of translated facts can be found in the Metamath_theorems.txt file included in the IsarMathLib distribution. The MMI_examples provides some theorems imported from Metamath that are printed in this proof document as examples of how translated proofs look like.
end

2 First Order Logic

theory Foll imports ZF. Trancl

begin

Isabelle/ZF builds on the first order logic. Almost everything one would like to have in this area is covered in the standard Isabelle libraries. The material in this theory provides some lemmas that are missing or allow for a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use more readable coding style.

The next lemma serves as a workaround to problems with applying the definition of transitivity (of a relation) in our coding style (any attempt to do something like using trans_def puts Isabelle in an infinite loop).

```
lemma Fol1_L2: assumes
    A1: }\forall\textrm{x y z. }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\wedge\langle\textrm{y},\textrm{z}\rangle\in\textrm{r}\longrightarrow\langle\textrm{x},\textrm{z}\rangle\in\textrm{r
    shows trans(r)
proof -
```

```
    from A1 have
        \forallx y z. \langlex, y\rangle\in r \longrightarrow <y, z\rangle\inr r\longrightarrow\langlex, z\rangle\in r
        using imp_conj by blast
    then show thesis unfolding trans_def by blast
qed
```

Another workaround for the problem of Isabelle simplifier looping when the transitivity definition is used.

```
lemma Fol1_L3: assumes A1: \(\operatorname{trans}(r)\) and A2: \(\langle a, b\rangle \in r \wedge\langle b, c\rangle \in r\)
    shows \(\langle a, c\rangle \in r\)
proof -
    from A1 have \(\forall \mathrm{x} y \mathrm{z} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{r}\)
        unfolding trans_def by blast
    with A2 show thesis using imp_conj by fast
qed
```

There is a problem with application of the definition of asymetry for relations. The next lemma is a workaround.

```
lemma Fol1_L4:
    assumes A1: antisym(r) and A2: \langlea,b\rangle\inr < b,a\rangle\inr
    shows a=b
proof -
    from A1 have }\forall\textrm{x y.}\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\longrightarrow\langle\textrm{y},\textrm{x}\rangle\in\textrm{r}\longrightarrow\textrm{x}=\textrm{y
            unfolding antisym_def by blast
    with A2 show a=b using imp_conj by fast
qed
```

The definition below implements a common idiom that states that (perhaps under some assumptions) exactly one of given three statements is true.

```
definition
    Exactly_1_of_3_holds(p,q,r) \(\equiv\)
    \((\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{p} \longrightarrow \neg \mathrm{q} \wedge \neg \mathrm{r}) \wedge(\mathrm{q} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{r}) \wedge(\mathrm{r} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{q})\)
```

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

```
lemma Fol1_L5:
    assumes p\veeq\veer
    and p\longrightarrow\negq}\wedge\neg
    and q}\longrightarrow\neg\textrm{p}\wedge\neg\textrm{r
    and r \longrightarrow }\longrightarrow\textrm{p}\wedge\neg
    shows Exactly_1_of_3_holds(p,q,r)
proof -
    from assms have
```



```
        by blast
    then show Exactly_1_of_3_holds (p,q,r)
        unfolding Exactly_1_of_3_holds_def by fast
qed
```

If exactly one of p, q, r holds and p is not true, then q or r.

```
lemma Fol1_L6:
    assumes A1: \negp and A2: Exactly_1_of_3_holds(p,q,r)
    shows q\veer
proof -
    from A2 have
```



```
        unfolding Exactly_1_of_3_holds_def by fast
    hence p \vee q \vee r by blast
    with A1 show q \vee r by simp
qed
```

If exactly one of p, q, r holds and q is true, then r can not be true.

```
lemma Fol1_L7:
    assumes A1: q and A2: Exactly_1_of_3_holds(p,q,r)
    shows }\neg\textrm{r
proof -
        from A2 have
            (p\veeq\veer) ^(p\longrightarrow ( 
            unfolding Exactly_1_of_3_holds_def by fast
    with A1 show }\neg\textrm{r}\mathrm{ by blast
qed
```

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds (p, q, r) predicate.

```
lemma Fol1_L8:
    shows Exactly_1_of_3_holds \((p, q, r) \longleftrightarrow(p \longleftrightarrow q \longleftrightarrow r) \wedge \neg(p \wedge q \wedge r)\)
proof
    assume Exactly_1_of_3_holds(p,q,r)
    then have
        \((\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{p} \longrightarrow \neg \mathrm{q} \wedge \neg \mathrm{r}) \wedge(\mathrm{q} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{r}) \wedge(\mathrm{r} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{q})\)
        unfolding Exactly_1_of_3_holds_def by fast
    thus \((p \longleftrightarrow q \longleftrightarrow r) \wedge \neg(p \wedge q \wedge r)\) by blast
next assume \((p \longleftrightarrow q \longleftrightarrow r) \wedge \neg(p \wedge q \wedge r)\)
    hence
        \((\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{p} \longrightarrow \neg \mathrm{q} \wedge \neg \mathrm{r}) \wedge(\mathrm{q} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{r}) \wedge(\mathrm{r} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{q})\)
        by auto
    then show Exactly_1_of_3_holds(p,q,r)
        unfolding Exactly_1_of_3_holds_def by fast
qed
A property of the Exactly_1_of_3_holds predicate.
lemma Fol1_L8A: assumes A1: Exactly_1_of_3_holds(p,q,r)
    shows \(p \longleftrightarrow \neg(q \vee r)\)
proof -
    from A1 have \((\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{p} \longrightarrow \neg \mathrm{q} \wedge \neg \mathrm{r}) \wedge(\mathrm{q} \longrightarrow \neg \mathrm{p} \wedge \neg \mathrm{r}) \wedge(\mathrm{r} \longrightarrow\)
\(\neg p \wedge \neg q)\)
            unfolding Exactly_1_of_3_holds_def by fast
    then show \(p \longleftrightarrow \neg(q \vee r)\) by blast
qed
```

Exclusive or definition. There is one also defined in the standard Isabelle, denoted xor, but it relates to boolean values, which are sets. Here we define a logical functor.

definition

Xor (infixl Xor 66) where
p Xor $q \equiv(p \vee q) \wedge \neg(p \wedge q)$
The "exclusive or" is the same as negation of equivalence.

```
lemma Fol1_L9: shows p Xor q \longleftrightarrow < (p\longleftrightarrowq)
    using Xor_def by auto
```

Equivalence relations are symmetric.

```
lemma equiv_is_sym: assumes A1: equiv( \(\mathrm{X}, \mathrm{r}\) ) and A2: \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\)
    shows \(\langle y, x\rangle \in r\)
proof -
    from A1 have sym(r) using equiv_def by simp
    then have \(\forall \mathrm{x} y .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r}\)
            unfolding sym_def by fast
    with A2 show \(\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r}\) by blast
qed
end
```


3 ZF set theory basics

theory ZF1 imports ZF.equalities
begin
The standard Isabelle distribution contains lots of facts about basic set theory. This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the standard Isabelle distribution.

If one collection is contained in another, then we can say the same about their unions.

```
lemma collection_contain: assumes A\subseteqB shows \bigcupA\subseteq\bigcupB
proof
    fix x assume x }\in\bigcup\
    then obtain }X\mathrm{ where }x\inX\mathrm{ and }X\inA\mathrm{ by auto
    with assms show }x\in\bigcupB\mathrm{ by auto
qed
```

If all sets of a nonempty collection are the same, then its union is the same.

```
lemma ZF1_1_L1: assumes C\not=0 and }\forally\inC. b(y) = A
    shows (\bigcupy\inC. b(y)) = A using assms by blast
The union af all values of a constant meta-function belongs to the same set as the constant.
```

```
lemma ZF1_1_L2: assumes A1:C\not=0 and A2: }\forall\textrm{x}\in\textrm{C}.\textrm{b}(\textrm{x})\in\textrm{A
```

lemma ZF1_1_L2: assumes A1:C\not=0 and A2: }\forall\textrm{x}\in\textrm{C}.\textrm{b}(\textrm{x})\in\textrm{A
and A3: \forallx y. x\inC ^ y\inC \longrightarrow b(x) = b(y)
and A3: \forallx y. x\inC ^ y\inC \longrightarrow b(x) = b(y)
shows (\bigcupx\inC. b(x))\inA
shows (\bigcupx\inC. b(x))\inA
proof -
proof -
from A1 obtain x where D1: x\inC by auto
from A1 obtain x where D1: x\inC by auto
with A3 have }\forally\inC. b(y) = b(x) by blas
with A3 have }\forally\inC. b(y) = b(x) by blas
with A1 have (}\cupy\inC.b(y))=b(x
with A1 have (}\cupy\inC.b(y))=b(x
using ZF1_1_L1 by simp
using ZF1_1_L1 by simp
with D1 A2 show thesis by simp
with D1 A2 show thesis by simp
qed

```
qed
```

If two meta-functions are the same on a cartesian product, then the subsets defined by them are the same. I am surprised Isabelle can not handle this automatically.

```
lemma ZF1_1_L4: assumes A1: \(\forall \mathrm{x} \in \mathrm{X} . \forall \mathrm{y} \in \mathrm{Y} . \mathrm{a}(\mathrm{x}, \mathrm{y})=\mathrm{b}(\mathrm{x}, \mathrm{y})\)
    shows \(\{\mathrm{a}(\mathrm{x}, \mathrm{y}) .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y}\}=\{\mathrm{b}(\mathrm{x}, \mathrm{y}) .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y}\}\)
proof
    show \(\{\mathrm{a}(\mathrm{x}, \mathrm{y}) .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y}\} \subseteq\{\mathrm{b}(\mathrm{x}, \mathrm{y}) .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y}\}\)
    proof
        fix \(z\) assume \(z \in\{a(x, y) .\langle x, y\rangle \in X \times Y\}\)
        with \(A 1\) show \(z \in\{b(x, y) .\langle x, y\rangle \in X \times Y\}\) by auto
    qed
    show \(\{\mathrm{b}(\mathrm{x}, \mathrm{y}) .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y}\} \subseteq\{\mathrm{a}(\mathrm{x}, \mathrm{y}) .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y}\}\)
    proof
        fix \(z\) assume \(z \in\{b(x, y) .\langle x, y\rangle \in X \times Y\}\)
        with \(A 1\) show \(z \in\{a(x, y) \cdot\langle x, y\rangle \in X \times Y\}\) by auto
    qed
qed
```

If two meta-functions are the same on a cartesian product, then the subsets defined by them are the same. This is similar to ZF1_1_L4, except that the set definition varies over $p \in X \times Y$ rather than $\langle x, y\rangle \in X \times Y$.

```
lemma ZF1_1_L4A: assumes A1: \(\forall x \in X . \forall y \in Y . a(\langle x, y\rangle)=b(x, y)\)
    shows \(\{a(p) . p \in X \times Y\}=\{b(x, y) .\langle x, y\rangle \in X \times Y\}\)
proof
    \(\{\) fix \(z\) assume \(z \in\{a(p) . p \in X \times Y\}\)
        then obtain \(p\) where D1: \(z=a(p) p \in X \times Y\) by auto
        let \(x=f s t(p)\) let \(y=s n d(p)\)
        from A1 D1 have \(z \in\{b(x, y) .\langle x, y\rangle \in X \times Y\}\) by auto
    \(\}\) then show \(\{a(p) . p \in X \times Y\} \subseteq\{b(x, y) .\langle x, y\rangle \in X \times Y\}\) by blast
next
    \(\{\) fix \(z\) assume \(z \in\{b(x, y) .\langle x, y\rangle \in X \times Y\}\)
```

```
        then obtain x y where \(\mathrm{D} 1:\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y} \mathrm{z}=\mathrm{b}(\mathrm{x}, \mathrm{y})\) by auto
        let \(p=\langle x, y\rangle\)
        from A1 D1 have \(p \in X \times Y z=a(p)\) by auto
        then have \(z \in\{a(p) . p \in X \times Y\}\) by auto
    \(\}\) then show \(\{b(x, y) .\langle x, y\rangle \in X \times Y\} \subseteq\{a(p) \cdot p \in X \times Y\}\) by blast
qed
```

A lemma about inclusion in cartesian products. Included here to remember that we need the $U \times V \neq \emptyset$ assumption.
lemma prod_subset: assumes $\mathrm{U} \times \mathrm{V} \neq 0 \mathrm{U} \times \mathrm{V} \subseteq \mathrm{X} \times \mathrm{Y}$ shows $\mathrm{U} \subseteq \mathrm{X}$ and $\mathrm{V} \subseteq \mathrm{Y}$ using assms by auto

A technical lemma about sections in cartesian products.

```
lemma section_proj: assumes A}\subseteqX\timesY\mathrm{ and U U V }\subseteqA\mathrm{ and }x\inU y v 
    shows U}\subseteq{t\inX. \langlet,y\rangle\inA} and V \subseteq{t\inY. \langlex,t\rangle\inA
    using assms by auto
```

If two meta-functions are the same on a set, then they define the same set by separation.

```
lemma ZF1_1_L4B: assumes }\forall\textrm{x}\in\textrm{X}.\textrm{a}(\textrm{x})=\textrm{b}(\textrm{x}
    shows {a(x). x\inX} = {b(x). x\inX}
    using assms by simp
```

A set defined by a constant meta-function is a singleton.

```
lemma ZF1_1_L5: assumes X\not=0 and }\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})=
```

 shows \(\{b(x) . x \in X\}=\{c\}\) using assms by blast
 Most of the time, auto does this job, but there are strange cases when the next lemma is needed.

```
lemma subset_with_property: assumes Y = {x\inX. b(x)}
    shows Y \subseteqX
    using assms by auto
```

We can choose an element from a nonempty set.

```
lemma nonempty_has_element: assumes X}=0\mathrm{ shows }\exists\textrm{x}.\textrm{x}\in\textrm{X
    using assms by auto
```

In Isabelle/ZF the intersection of an empty family is empty. This is exactly lemma Inter_0 from Isabelle's equalities theory. We repeat this lemma here as it is very difficult to find. This is one reason we need comments before every theorem: so that we can search for keywords.
lemma inter_empty_empty: shows $\bigcap 0=0$ by (rule Inter_0)
If an intersection of a collection is not empty, then the collection is not empty. We are (ab)using the fact the the intersection of empty collection is defined to be empty.

```
lemma inter_nempty_nempty: assumes \bigcapA \not=0 shows A\not=0
```

 using assms by auto
 For two collections S, T of sets we define the product collection as the collections of cartesian products $A \times B$, where $A \in S, B \in T$.

```
definition
    ProductCollection(T,S) \equiv\U\inT.{U\timesV. V GS}
```

The union of the product collection of collections S, T is the cartesian product of $\bigcup S$ and $\bigcup T$.

```
lemma ZF1_1_L6: shows U ProductCollection(S,T) = \S }\times\\
    using ProductCollection_def by auto
```

An intersection of subsets is a subset.

```
lemma ZF1_1_L7: assumes A1: \(I \neq 0\) and \(A 2: ~ \forall i \in I . P(i) \subseteq X\)
    shows ( \(\bigcap i \in I . P(i)) ~ \subseteq X\)
proof -
    from A1 obtain \(i_{0}\) where \(i_{0} \in I\) by auto
    with A2 have \((\bigcap i \in I . P(i)) \subseteq P\left(i_{0}\right)\) and \(P\left(i_{0}\right) \subseteq X\)
        by auto
    thus \((\bigcap i \in I . P(i)) \subseteq X\) by auto
qed
```

Isabelle/ZF has a "THE" construct that allows to define an element if there is only one such that is satisfies given predicate. In pure ZF we can express something similar using the indentity proven below.
lemma ZF1_1_L8: shows $\bigcup\{x\}=x$ by auto
Some properties of singletons.
lemma ZF1_1_L9: assumes A1: \exists ! $\mathrm{x} . \mathrm{x} \in \mathrm{A} \wedge \varphi(\mathrm{x})$
shows
$\exists \mathrm{a} .\{\mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\}=\{\mathrm{a}\}$
$\bigcup\{x \in \mathrm{~A} . \varphi(\mathrm{x})\} \in \mathrm{A}$
$\varphi(\bigcup\{x \in \mathrm{~A} . \varphi(\mathrm{x})\})$
proof -
from A1 show $\exists \mathrm{a} .\{\mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\}=\{\mathrm{a}\}$ by auto
then obtain a where $I:\{x \in A . \varphi(x)\}=\{a\}$ by auto
then have $\bigcup\{x \in A . \varphi(x)\}=$ a by auto
moreover
from I have $a \in\{x \in A . \varphi(x)\}$ by simp
hence $a \in A$ and $\varphi(a)$ by auto
ultimately show $\bigcup\{x \in A . \varphi(x)\} \in A$ and $\varphi(\bigcup\{x \in A . \varphi(x)\})$
by auto
qed
A simple version of ZF1_1_L9.
corollary singleton_extract: assumes \exists ! x. x $\in A$

```
    shows ( \(\bigcup\) A) \(\in A\)
proof -
    from assms have \(\exists\) ! x. \(x \in A \wedge\) True by simp
    then have \(\bigcup\{x \in A\). True \(\} \in A\) by (rule ZF1_1_L9)
    thus ( \(\bigcup\) A) \(\in\) A by simp
qed
```

A criterion for when a set defined by comprehension is a singleton.

```
lemma singleton_comprehension:
    assumes A1: y\inX and A2: }\forall\textrm{x}\in\textrm{X}.,\forall\textrm{y}\in\textrm{X}.\textrm{P}(\textrm{x})=P(y
    shows (U{P(x). x\inX}) = P(y)
proof -
    let A = {P(x). x\inX}
    have }\exists\mathrm{ ! c. c }\in
    proof
        from A1 show \existsc. c \in A by auto
    next
        fix a b assume a }\in\textrm{A}\mathrm{ and b }\in\textrm{A
        then obtain }x t wher
            x }\inX=a=P(x)\mathrm{ and }t\inX b = P(t
            by auto
        with A2 show a=b by blast
    qed
    then have (UA) \in A by (rule singleton_extract)
    then obtain }x\mathrm{ where }x\inX\mathrm{ and (UA) = P(x)
        by auto
    from A1 A2 }\langlex\inX\rangle\mathrm{ have P(x) = P(y)
        by blast
    with <(\A) = P(x)\rangle show (\A) = P(y) by simp
qed
```

Adding an element of a set to that set does not change the set.

```
lemma set_elem_add: assumes }\textrm{x}\in\textrm{X}\mathrm{ shows X }\cup{x}=X using assm
    by auto
```

Here we define a restriction of a collection of sets to a given set. In romantic math this is typically denoted $X \cap M$ and means $\{X \cap A: A \in M\}$. Note there is also restrict (f, A) defined for relations in ZF.thy.

```
definition
    RestrictedTo (infixl {restricted to} 70) where
    M {restricted to} X \equiv {X \cap A . A \in M}
```

A lemma on a union of a restriction of a collection to a set.

```
lemma union_restrict:
    shows \ (M {restricted to} X) = (UM) \cap X
    using RestrictedTo_def by auto
```

Next we show a technical identity that is used to prove sufficiency of some condition for a collection of sets to be a base for a topology.

```
lemma ZF1_1_L10: assumes A1: \(\forall \mathrm{U} \in \mathrm{C} . \exists \mathrm{A} \in \mathrm{B} . \mathrm{U}=\bigcup \mathrm{A}\)
    shows \(\bigcup \bigcup\{\bigcup\{A \in B . U=\bigcup A\} . U \in C\}=\bigcup C\)
proof
    show \(\bigcup(\bigcup U \in C . \bigcup\{A \in B . U=\bigcup A\}) \subseteq \bigcup C\) by blast
    show \(\bigcup C \subseteq \bigcup(\bigcup U \in C . \bigcup\{A \in B . U=\bigcup A\})\)
    proof
        fix \(x\) assume \(x \in \bigcup C\)
        show \(x \in \bigcup(\bigcup U \in C . \bigcup\{A \in B . U=\bigcup A\})\)
        proof -
            from \(\langle x \in \bigcup C\) obtain \(U\) where \(U \in C \wedge x \in U\) by auto
            with A1 obtain A where \(A \in B \wedge U=\bigcup A\) by auto
            from \(\langle U \in C \wedge x \in U\rangle\langle A \in B \wedge U=\bigcup A\rangle\) show \(x \in \bigcup(\bigcup U \in C . \bigcup\{A \in B . U\)
\(=\bigcup \mathrm{A}\}\) )
    by auto
        qed
    qed
qed
```

Standard Isabelle uses a notion of cons(A,a) that can be thought of as $A \cup\{a\}$.

```
lemma consdef: shows cons(a,A) = A U {a}
```

 using cons_def by auto
 If a difference between a set and a singleton is empty, then the set is empty or it is equal to the singleton.
lemma singl_diff_empty: assumes A - \{x\} = 0
shows $A=0 \vee A=\{x\}$
using assms by auto
If a difference between a set and a singleton is the set, then the only element of the singleton is not in the set.

```
lemma singl_diff_eq: assumes A1: A - \{x\} = A
    shows \(\mathrm{x} \notin \mathrm{A}\)
proof -
    have \(x \notin A-\{x\}\) by auto
    with \(A 1\) show \(x \notin A\) by simp
qed
```

A basic property of sets defined by comprehension.
lemma comprehension: assumes $a \in\{x \in X . p(x)\}$
shows $a \in X$ and $p(a)$ using assms by auto
The image of a set by a greater relation is greater.

```
lemma image_rel_mono: assumes r\subseteqs shows r(A) \subseteqs(A)
    using assms by auto
```

A technical lemma about relations: if x is in its image by a relation U and that image is contained in some set C, then the image of the singleton $\{x\}$ by the relation $U \cup C \times C$ equals C.

```
lemma image_greater_rel:
    assumes }x\inU{x} and U{x}\subseteq
    shows (U \cupC\timesC) {x} = C
    using assms image_Un_left by blast
```

end

4 Natural numbers in IsarMathLib

theory Nat_ZF_IML imports ZF.Arith
begin
The ZF set theory constructs natural numbers from the empty set and the notion of a one-element set. Namely, zero of natural numbers is defined as the empty set. For each natural number n the next natural number is defined as $n \cup\{n\}$. With this definition for every non-zero natural number we get the identity $n=\{0,1,2, . ., n-1\}$. It is good to remember that when we see an expression like $f: n \rightarrow X$. Also, with this definition the relation "less or equal than" becomes " \subseteq " and the relation "less than" becomes " \in ".

4.1 Induction

The induction lemmas in the standard Isabelle's Nat.thy file like for example nat_induct require the induction step to be a higher order statement (the one that uses the \Longrightarrow sign). I found it difficult to apply from Isar, which is perhaps more of an indication of my Isar skills than anything else. Anyway, here we provide a first order version that is easier to reference in Isar declarative style proofs.

The next theorem is a version of induction on natural numbers that I was thought in school.

```
theorem ind_on_nat:
    assumes A1: n\innat and A2: P(0) and A3: \forallk\innat. P(k)\longrightarrowP(succ(k))
    shows P(n)
proof -
    note A1 A2
    moreover
    { fix x
                assume x\innat P(x)
                with A3 have P(\operatorname{succ}(x)) by simp }
    ultimately show P(n) by (rule nat_induct)
qed
A nonzero natural number has a predecessor.
lemma Nat_ZF_1_L3: assumes A1: \(n \in\) nat and A2: \(n \neq 0\)
```

```
    shows \(\exists \mathrm{k} \in\) nat. \(\mathrm{n}=\operatorname{succ}(\mathrm{k})\)
proof -
    from A1 have \(n \in\{0\} \cup\{\operatorname{succ}(k) . k \in\) nat \(\}\)
            using nat_unfold by simp
    with A2 show thesis by simp
qed
```

What is succ, anyway?

```
lemma succ_explained: shows succ(n) = n U {n}
```

 using succ_iff by auto
 Empty set is an element of every natural number which is not zero.

```
lemma empty_in_every_succ: assumes A1: n \in nat
    shows 0 \in succ(n)
proof -
    note A1
    moreover have 0 \in succ(0) by simp
    moreover
    { fix k assume k \in nat and A2: 0 \in succ(k)
        then have succ(k) \subseteq succ(succ(k)) by auto
        with A2 have 0 G succ(succ(k)) by auto
    } then have }\forallk\in\mathrm{ nat. 0 G succ(k) }\longrightarrow0\in\operatorname{succ}(\operatorname{succ}(k)
        by simp
    ultimately show 0 \in succ(n) by (rule ind_on_nat)
qed
```

If one natural number is less than another then their successors are in the same relation.

```
lemma succ_ineq: assumes A1: \(\mathrm{n} \in\) nat
    shows \(\forall i \in n . \operatorname{succ}(i) \in \operatorname{succ}(n)\)
proof -
    note A1
    moreover have \(\forall k \in 0\). succ(k) \(\in \operatorname{succ}(0)\) by simp
    moreover
    \(\{\) fix \(k\) assume A2: \(\forall i \in k . \operatorname{succ}(i) \in \operatorname{succ}(k)\)
            \(\{\) fix \(i\) assume \(i \in \operatorname{succ}(k)\)
                then have \(i \in k \vee i=k\) by auto
                moreover
                \{ assume \(i \in k\)
    with A2 have \(\operatorname{succ}(i) \in \operatorname{succ}(k)\) by simp
    hence \(\operatorname{succ}(i) \in \operatorname{succ}(\operatorname{succ}(k))\) by auto \(\}\)
                moreover
                \{ assume i = k
    then have succ(i) \(\in \operatorname{succ}(\operatorname{succ}(k))\) by auto \(\}\)
                ultimately have succ(i) \(\in \operatorname{succ}(\operatorname{succ}(k))\) by auto
            \(\}\) then have \(\forall i \in \operatorname{succ}(k) . \operatorname{succ}(i) \in \operatorname{succ}(\operatorname{succ}(k))\)
                by simp
    \} then have \(\forall \mathrm{k} \in\) nat.
```

```
( (\foralli\ink. succ(i) \in succ(k)) \longrightarrow(\foralli\in\operatorname{succ}(k). succ(i) \in succ(succ(k)))
```

)
by simp
ultimately show $\forall i \in n . \operatorname{succ}(i) \in \operatorname{succ}(n)$ by (rule ind_on_nat)
qed

For natural numbers if $k \subseteq n$ the similar holds for their successors.

```
lemma succ_subset: assumes A1: k \in nat n f nat and A2: k\subseteqn
    shows succ(k) \subseteq succ(n)
proof -
    from A1 have T: Ord(k) and Ord(n)
        using nat_into_Ord by auto
    with A2 have succ(k) \leq succ(n)
        using subset_imp_le by simp
    then show succ(k) \subseteq succ(n) using le_imp_subset
        by simp
qed
```

For any two natural numbers one of them is contained in the other.
lemma nat_incl_total: assumes A1: i \in nat $j \in$ nat
shows $i \subseteq j \vee j \subseteq i$
proof -
from A1 have T : $\operatorname{Ord}(i) \quad \operatorname{Ord}(j)$
using nat_into_Ord by auto
then have $i \in j \vee i=j \vee j \in i$ using Ord_linear
by simp
moreover
\{ assume $i \in j$
with T have $i \subseteq j \vee j \subseteq i$
using lt_def leI le_imp_subset by simp \}
moreover
\{ assume $\mathrm{i}=\mathrm{j}$
then have $i \subseteq j \vee j \subseteq i$ by simp $\}$
moreover
\{ assume $\mathrm{j} \in \mathrm{i}$
with T have $i \subseteq j \vee j \subseteq i$
using lt_def leI le_imp_subset by simp \}
ultimately show $i \subseteq j \vee j \subseteq i$ by auto
qed

The set of natural numbers is the union of all successors of natural numbers.

```
lemma nat_union_succ: shows nat = (Un \in nat. succ(n))
proof
    show nat \subseteq(Un G nat. succ(n)) by auto
next
    { fix k assume A2: k \in (\bigcupn | nat. succ(n))
        then obtain n where T: n f nat and I: k \in succ(n)
            by auto
        then have k \leq n using nat_into_Ord lt_def
```

```
            by simp
            with T have k \in nat using le_in_nat by simp
    } then show (Un\in nat. succ(n)) \subseteq nat by auto
qed
```

Successors of natural numbers are subsets of the set of natural numbers.

```
lemma succnat_subset_nat: assumes A1: n \in nat shows succ(n) \subseteq nat
proof -
    from A1 have succ(n) \subseteq ( }\cupn\mp@code{n}\mathrm{ nat. succ(n)) by auto
    then show succ(n) \subseteq nat using nat_union_succ by simp
qed
```

Element of a natural number is a natural number.

```
lemma elem_nat_is_nat: assumes A1: n \in nat and A2: k\inn
    shows k < n k f nat k\leqn \langlek,n\rangle\in Le
proof -
    from A1 A2 show k < n using nat_into_Ord lt_def by simp
    with A1 show k \in nat using lt_nat_in_nat by simp
    from \k < n show k \leq n using leI by simp
    with A1 \langlek \in nat\rangle show }\langlek,n\rangle\in\mathrm{ Le using Le_def
        by simp
qed
```

The set of natural numbers is the union of its elements.

```
lemma nat_union_nat: shows nat = \ nat
    using elem_nat_is_nat by blast
```

A natural number is a subset of the set of natural numbers.

```
lemma nat_subset_nat: assumes A1: n \in nat shows n \subseteq nat
proof -
    from A1 have n \subseteq U nat by auto
    then show n \subseteq nat using nat_union_nat by simp
qed
```

Adding natural numbers does not decrease what we add to.

```
lemma add_nat_le: assumes A1: n \in nat and A2: k \in nat
```

 shows
 \(\mathrm{n} \leq \mathrm{n} \#+\mathrm{k}\)
 \(\mathrm{n} \subseteq \mathrm{n}\) \#+ k
 \(\mathrm{n} \subseteq \mathrm{k} \#+\mathrm{n}\)
 proof -
from A1 A2 have $n \leq n \quad 0 \leq k n \in$ nat $k \in$ nat
using nat_le_refl nat_0_le by auto
then have $\mathrm{n} \#+0 \leq \mathrm{n} \#+\mathrm{k}$ by (rule add_le_mono)
with A1 show $\mathrm{n} \leq \mathrm{n}$ \#+ k using add_0_right by simp
then show $\mathrm{n} \subseteq \mathrm{n} \#+\mathrm{k}$ using le_imp_subset by simp
then show $\mathrm{n} \subseteq \mathrm{k} \#+\mathrm{n}$ using add_commute by simp
qed

Result of adding an element of k is smaller than of adding k.

```
lemma add_lt_mono:
    assumes k \in nat and j\ink
    shows
    (n #+ j) < (n #+ k)
    (n #+ j) \in (n #+ k)
proof -
    from assms have j < k using elem_nat_is_nat by blast
    moreover note <k \in nat>
    ultimately show (n #+ j) < (n #+ k) (n #+ j) \in (n #+ k)
        using add_lt_mono2 ltD by auto
qed
```

A technical lemma about a decomposition of a sum of two natural numbers: if a number i is from $m+n$ then it is either from m or can be written as a sum of m and a number from n. The proof by induction w.r.t. to m seems to be a bit heavy-handed, but I could not figure out how to do this directly from results from standard Isabelle/ZF.

```
lemma nat_sum_decomp: assumes A1: n \in nat and A2: m \in nat
    shows }\foralli\inm #+ n. i f m V (\existsj\inn. i = m #+ j
proof -
    note A1
    moreover from A2 have }\forall\textrm{i}\in\textrm{m}#+0. i f m V (\existsj\in0. i = m #+ j)
        using add_0_right by simp
    moreover have }\forallk\innat
        (\foralli G m #+ k. i }\in\textrm{m}V(\existsj\ink. i = m #+ j)) \longrightarrow
        (\foralli\inm #+ succ(k). i }\in\textrm{m}V(\existsj\in\operatorname{succ}(k).i=m #+ j))
    proof -
        { fix k assume A3: k \in nat
                { assume A4: \foralli \in m #+ k. i }\in\textrm{m}\vee (\existsj\ink. i = m #+ j),
    { fix i assume i }\inm\mathrm{ #+ succ(k)
        then have i \in m #+ k V i = m #+ k using add_succ_right
                by auto
        moreover from A4 A3 have
                i f m #+ k \longrightarrow i f m V (\existsj \in succ(k). i = m #+ j)
                by auto
        ultimately have i }\inm\vee(\existsj\in\operatorname{succ}(\textrm{k}). i=m #+ j
                by auto
    } then have }\foralli\inm #+ succ(k). i \in m V (\existsj\in\operatorname{succ}(k). i = m #+ j
        by simp
            } then have ( }\forall\textrm{i}\in\textrm{m}#+\textrm{k}. i \in m \vee (\existsj \in k. i = m #+ j)) \longrightarrow
        (\foralli f m #+ succ(k). i }\in\textrm{m}V(\exists\textrm{j}\in\operatorname{succ}(k). i = m #+ j)) (
    by simp
        } then show thesis by simp
    qed
    ultimately show }\foralli\inm|+ n. i \in m V (\existsj f n. i = m #+ j)
        by (rule ind_on_nat)
qed
```

A variant of induction useful for finite sequences.

```
lemma fin_nat_ind: assumes A1: n \in nat and A2: k \in succ(n)
    and A3: P(0) and A4: \forallj\inn. P(j) \longrightarrowP(succ(j))
    shows P(k)
proof -
    from A2 have k \in n V k=n by auto
    with A1 have k \in nat using elem_nat_is_nat by blast
    moreover from A3 have 0 \in succ(n) \longrightarrowP(0) by simp
    moreover from A1 A4 have
        \forallk\in nat. (k \in succ(n) \longrightarrowP(k)) \longrightarrow(\operatorname{succ}(k) \in succ(n) \longrightarrowP(\operatorname{succ}(k)))
        using nat_into_Ord Ord_succ_mem_iff by auto
    ultimately have k f succ(n) \longrightarrowP(k)
        by (rule ind_on_nat)
    with A2 show P(k) by simp
qed
```

Some properties of positive natural numbers.

```
lemma succ_plus: assumes n \in nat k \in nat
    shows
    succ(n #+ j) \in nat
    succ(n) #+ succ(j) = \operatorname{succ}(\operatorname{succ}(n #+ j))
    using assms by auto
```


4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form $\{n+j: j \in 0 . . k-1\}$.

The interval is determined by two parameters: starting point and length. Recall that in standard Isabelle's Arith. thy the symbol \#+ is defined as the sum of natural numbers.

definition

```
NatInterval(n,k) \(\equiv\) \{n \#+ j. j \(\in \mathrm{k}\}\)
```

Subtracting the beginning af the interval results in a number from the length of the interval. It may sound weird, but note that the length of such interval is a natural number, hence a set.

```
lemma inter_diff_in_len:
    assumes A1: k \in nat and A2: i \in NatInterval(n,k)
    shows i #- n \in k
proof -
    from A2 obtain j where I: i = n #+ j and II: j \in k
        using NatInterval_def by auto
    from A1 II have j \in nat using elem_nat_is_nat by blast
    moreover from I have i #- n = natify(j) using diff_add_inverse
        by simp
```

ultimately have i \#- $n=j$ by simp
with II show thesis by simp
qed
Intervals don't overlap with their starting point and the union of an interval with its starting point is the sum of the starting point and the length of the interval.

```
lemma length_start_decomp: assumes A1: n \in nat k \in nat
    shows
    n \cap NatInterval(n,k) = 0
    n U NatInterval(n,k) = n #+ k
proof -
    { fix i assume A2: i }\in\textrm{n}\mathrm{ and i }\in\operatorname{NatInterval(n,k)
            then obtain j where I: i = n #+ j and II: j f k
                using NatInterval_def by auto
            from A1 have k \in nat using elem_nat_is_nat by blast
            with II have j \in nat using elem_nat_is_nat by blast
            with A1 I have n \leq i using add_nat_le by simp
            moreover from A1 A2 have i < n using elem_nat_is_nat by blast
            ultimately have False using le_imp_not_lt by blast
    } thus n \cap NatInterval(n,k) = 0 by auto
    from A1 have n \subseteq n #+ k using add_nat_le by simp
    moreover
    {fix i assume i }\in\operatorname{NatInterval(n,k)
            then obtain j where III: i = n #+ j and IV: j f k
                using NatInterval_def by auto
            with A1 have j < k using elem_nat_is_nat by blast
            with A1 III have i \in n #+ k using add_lt_mono2 ltD
                by simp }
    ultimately have n U NatInterval (n,k) \subseteq n #+ k by auto
    moreover from A1 have n #+ k \subseteq n U NatInterval(n,k)
        using nat_sum_decomp NatInterval_def by auto
    ultimately show n U NatInterval(n,k) = n #+ k by auto
qed
```

Sme properties of three adjacent intervals.

```
lemma adjacent_intervals3: assumes n \in nat k f nat m \in nat
    shows
    n #+ k #+ m = (n #+ k) U NatInterval(n #+ k,m)
    n #+ k #+ m = n U NatInterval(n,k #+ m)
    n #+ k #+ m = n U NatInterval(n,k) \cup NatInterval(n #+ k,m)
    using assms add_assoc length_start_decomp by auto
```

end

5 Order relations - introduction

[^0]
begin

This theory file considers various notion related to order. We redefine the notions of a total order, linear order and partial order to have the same terminology as Wikipedia (I found it very consistent across different areas of math). We also define and study the notions of intervals and bounded sets. We show the inclusion relations between the intervals with endpoints being in certain order. We also show that union of bounded sets are bounded. This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions

In this section we formulate the definitions related to order relations.
A relation r is "total" on a set X if for all elements a, b of X we have a is in relation with b or b is in relation with a. An example is the \leq relation on numbers.

```
definition
    IsTotal (infixl {is total on} 65) where
    r {is total on} X \equiv ( }\forall\textrm{a}\in\textrm{X}.\forall\textrm{b}\in\textrm{X}.\langle\textrm{a},\textrm{b}\rangle\in\textrm{r}\vee\langle\,\textrm{b},\textrm{a}\rangle\in\textrm{r}
```

A relation r is a partial order on X if it is reflexive on X (i.e. $\langle x, x\rangle$ for every $x \in X$), antisymmetric (if $\langle x, y\rangle \in r$ and $\langle y, x\rangle \in r$, then $x=y$) and transitive $\langle x, y\rangle \in r$ and $\langle y, z\rangle \in r$ implies $\langle x, z\rangle \in r$.

```
definition
    IsPartOrder(X,r) \equiv(refl(X,r) ^ antisym(r) ^ trans(r))
```

We define a linear order as a binary relation that is antisymmetric, transitive and total. Note that this terminology is different than the one used the standard Order.thy file.

```
definition
    IsLinOrder (X,r) \equiv( antisym(r) ^ trans(r) ^ (r {is total on} X))
```

A set is bounded above if there is that is an upper bound for it, i.e. there are some u such that $\langle x, u\rangle \in r$ for all $x \in A$. In addition, the empty set is defined as bounded.

```
definition
    IsBoundedAbove(A,r) \equiv( A=0 \vee ( \existsu. \forallx\inA. \langlex,u\rangle\inr))
```

We define sets bounded below analogously.

```
definition
    IsBoundedBelow(A,r) \equiv(A=0 \vee ( }\exists\textrm{l}.\forall\textrm{x}\in\textrm{A}.\langle\textrm{l},\textrm{x}\rangle\in\textrm{r})
```

A set is bounded if it is bounded below and above.

definition

```
IsBounded(A,r) \equiv(IsBoundedAbove(A,r) ^ IsBoundedBelow(A,r))
```

The notation for the definition of an interval may be mysterious for some readers, see lemma Order_ZF_2_L1 for more intuitive notation.

```
definition
    Interval(r,a,b) \equivr{a} \cap r-{b}
```

We also define the maximum (the greater of) two elemnts in the obvious way.

```
definition
    GreaterOf \((r, a, b) \equiv\) (if \(\langle a, b\rangle \in r\) then \(b\) else \(a)\)
```

The definition a a minimum (the smaller of) two elements.

```
definition
    SmallerOf(r,a,b) \equiv(if \langle a,b\rangle\in r then a else b)
```

We say that a set has a maximum if it has an element that is not smaller that any other one. We show that under some conditions this element of the set is unique (if exists).

```
definition
    \(\operatorname{HasAmaximum}(r, A) \equiv \exists M \in A . \forall x \in A .\langle x, M\rangle \in r\)
```

A similar definition what it means that a set has a minimum.

```
definition
    HasAminimum(r,A) \equiv\existsm\inA.\forallx\inA. \langlem,x\rangle\inr
```

Definition of the maximum of a set.

```
definition
    Maximum(r,A) \equiv THE M. M\inA ^(\forallx\inA. \langlex,M\rangle\inr)
```

Definition of a minimum of a set.

```
definition
    Minimum(r,A) \equiv THE m. m\inA ^(\forallx\inA. \langlem,x\rangle\inr)
```

The supremum of a set A is defined as the minimum of the set of upper bounds, i.e. the set $\left\{u . \forall_{a \in A}\langle a, u\rangle \in r\right\}=\bigcap_{a \in A} r\{a\}$. Recall that in Isabelle/ZF $\mathrm{r}-(\mathrm{A})$ denotes the inverse image of the set A by relation r (i.e. $\mathrm{r}-(\mathrm{A})=\{x:\langle x, y\rangle \in r$ for some $y \in A\}$).

```
definition
    Supremum(r,A) \equiv Minimum(r,\bigcapa\inA. r{a})
```

Infimum is defined analogously.

```
definition
    Infimum(r,A) \equiv Maximum(r,\bigcapa\inA. r-{a})
```

We define a relation to be complete if every nonempty bounded above set has a supremum.

```
definition
    IsComplete (_ {is complete}) where
    r {is complete} \equiv
    A. IsBoundedAbove(A,r) ^ A =0 \longrightarrow HasAminimum(r,\bigcapa\inA. r{a})
```

The essential condition to show that a total relation is reflexive.
lemma Order_ZF_1_L1: assumes r \{is total on\} X and $a \in X$ shows $\langle a, a\rangle \in \mathrm{r}$ using assms IsTotal_def by auto

A total relation is reflexive.
lemma total_is_refl:
assumes r \{is total on\} X
shows refl(X,r) using assms Order_ZF_1_L1 refl_def by simp
A linear order is partial order.

```
lemma Order_ZF_1_L2: assumes IsLinOrder(X,r)
    shows IsPartOrder(X,r)
    using assms IsLinOrder_def IsPartOrder_def refl_def Order_ZF_1_L1
    by auto
```

Partial order that is total is linear.

```
lemma Order_ZF_1_L3:
    assumes IsPartOrder(X,r) and r {is total on} X
    shows IsLinOrder(X,r)
    using assms IsPartOrder_def IsLinOrder_def
    by simp
```

Relation that is total on a set is total on any subset.

```
lemma Order_ZF_1_L4: assumes r {is total on} X and A\subseteqX
    shows r {is total on} A
    using assms IsTotal_def by auto
```

A linear relation is linear on any subset.

```
lemma ord_linear_subset: assumes IsLinOrder(X,r) and A\subseteqX
    shows IsLinOrder(A,r)
    using assms IsLinOrder_def Order_ZF_1_L4 by blast
```

If the relation is total, then every set is a union of those elements that are nongreater than a given one and nonsmaller than a given one.

```
lemma Order_ZF_1_L5:
    assumes r {is total on} X and A\subseteqX and a\inX
    shows A}={x\inA.\langlex,a\rangle\inr}\cup{x\inA. \langlea,x\rangle\inr
    using assms IsTotal_def by auto
```

A technical fact about reflexive relations.

```
lemma refl_add_point:
    assumes refl(X,r) and A}\subseteqB\cup{x} and B \subseteqX and
```

```
x \in X and }\forally\inB. \langley,x\rangle\in
shows }\forall\textrm{a}\in\textrm{A}.\langle\textrm{a},\textrm{x}\rangle\in\textrm{r
using assms refl_def by auto
```


5.2 Intervals

In this section we discuss intervals.
The next lemma explains the notation of the definition of an interval.

```
lemma Order_ZF_2_L1:
    shows x \in Interval(r,a,b) \longleftrightarrow < a,x\rangle\inr ( ) < x,b\rangle\inr
    using Interval_def by auto
```

Since there are some problems with applying the above lemma (seems that simp and auto don't handle equivalence very well), we split Order_ZF_2_L1 into two lemmas.

```
lemma Order_ZF_2_L1A: assumes x \in Interval(r,a,b)
    shows }\langle\textrm{a},\textrm{x}\rangle\in\textrm{r}\langlex,b\rangle\in\textrm{r
    using assms Order_ZF_2_L1 by auto
```

Order_ZF_2_L1, implication from right to left.

```
lemma Order_ZF_2_L1B: assumes }\langle\textrm{a},\textrm{x}\rangle\in\textrm{r}\langle\hat{x},\textrm{b}\rangle\in\textrm{r
    shows x \in Interval(r,a,b)
    using assms Order_ZF_2_L1 by simp
```

If the relation is reflexive, the endpoints belong to the interval.

```
lemma Order_ZF_2_L2: assumes refl(X,r)
    and a\inX b\inX and }\langlea,b\rangle\in
    shows
    a \in Interval(r,a,b)
    b \in Interval(r,a,b)
    using assms refl_def Order_ZF_2_L1 by auto
```

Under the assumptions of Order_ZF_2_L2, the interval is nonempty.

```
lemma Order_ZF_2_L2A: assumes refl(X,r)
    and \(a \in X \quad b \in X\) and \(\langle a, b\rangle \in r\)
    shows Interval \((\mathrm{r}, \mathrm{a}, \mathrm{b}) \neq 0\)
proof -
    from assms have a \(\in \operatorname{Interval}(\mathrm{r}, \mathrm{a}, \mathrm{b})\)
        using Order_ZF_2_L2 by simp
    then show Interval \((\mathrm{r}, \mathrm{a}, \mathrm{b}) \neq 0\) by auto
qed
```

If a, b, c, d are in this order, then $[b, c] \subseteq[a, d]$. We only need trasitivity for this to be true.
lemma Order_ZF_2_L3:
assumes A1: trans(r) and A2: $\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r} \quad\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{r} \quad\langle\mathrm{c}, \mathrm{d}\rangle \in \mathrm{r}$

```
shows Interval(r,b,c) \subseteq Interval(r,a,d)
proof
    fix x assume A3: x \in Interval(r, b, c)
    note A1
    moreover from A2 A3 have \langlea,b\rangle\in r ^ \langle b,x\rangle\in r using Order_ZF_2_L1A
        by simp
    ultimately have T1: \langlea,x\rangle\in r by (rule Fol1_L3)
    note A1
    moreover from A2 A3 have }\langle\textrm{x},\textrm{c}\rangle\in\textrm{r}\wedge\\langlec,d\rangle\in\textrm{r}\mathrm{ using Order_ZF_2_L1A
        by simp
    ultimately have }\langle\textrm{x},\textrm{d}\rangle\in\textrm{r}\mathrm{ by (rule Fol1_L3)
    with T1 show x \in Interval(r,a,d) using Order_ZF_2_L1B
        by simp
qed
```

For reflexive and antisymmetric relations the interval with equal endpoints consists only of that endpoint.

```
lemma Order_ZF_2_L4:
    assumes A1: refl(X,r) and A2: antisym(r) and A3: a }\in\textrm{X
    shows Interval(r,a,a) = {a}
proof
    from A1 A3 have }\langle\textrm{a},\textrm{a}\rangle\in\textrm{r}\mathrm{ using refl_def by simp
    with A1 A3 show {a} \subseteq Interval(r,a,a) using Order_ZF_2_L2 by simp
    from A2 show Interval(r,a,a) \subseteq{a} using Order_ZF_2_L1A Fol1_L4
        by fast
qed
```

For transitive relations the endpoints have to be in the relation for the interval to be nonempty.

```
lemma Order_ZF_2_L5: assumes A1: trans(r) and A2: \langle a,b\rangle\not\in r
    shows Interval(r,a,b) = 0
proof -
    { assume Interval(r,a,b)\not=0 then obtain x where x 
        by auto
    with A1 A2 have False using Order_ZF_2_L1A Fol1_L3 by fast
    } thus thesis by auto
qed
```

If a relation is defined on a set, then intervals are subsets of that set.

```
lemma Order_ZF_2_L6: assumes A1: r \subseteq X X X
    shows Interval(r,a,b) \subseteq X
    using assms Interval_def by auto
```


5.3 Bounded sets

In this section we consider properties of bounded sets.
For reflexive relations singletons are bounded.

```
lemma Order_ZF_3_L1: assumes refl(X,r) and a\inX
    shows IsBounded({a},r)
    using assms refl_def IsBoundedAbove_def IsBoundedBelow_def
        IsBounded_def by auto
```

Sets that are bounded above are contained in the domain of the relation.

```
lemma Order_ZF_3_L1A: assumes r \subseteq X X X
    and IsBoundedAbove(A,r)
    shows A\subseteqX using assms IsBoundedAbove_def by auto
```

Sets that are bounded below are contained in the domain of the relation.

```
lemma Order_ZF_3_L1B: assumes r \subseteq X X X
    and IsBoundedBelow(A,r)
    shows A\subseteqX using assms IsBoundedBelow_def by auto
```

For a total relation, the greater of two elements, as defined above, is indeed greater of any of the two.

```
lemma Order_ZF_3_L2: assumes r {is total on} X
    and }x\inX y\in
    shows
    <x,GreaterOf(r,x,y)\rangle\in r
    y,GreaterOf(r,x,y)\rangle\inr
    <SmallerOf(r,x,y),x\rangle\in r
    <SmallerOf(r,x,y),y\rangle\inr
    using assms IsTotal_def Order_ZF_1_L1 GreaterOf_def SmallerOf_def
    by auto
```

If A is bounded above by u, B is bounded above by w, then $A \cup B$ is bounded above by the greater of u, w.

```
lemma Order_ZF_3_L2B:
    assumes A1: \(r\) \{is total on\} \(X\) and A2: trans (r)
    and \(A 3: ~ u \in X \quad w \in X\)
    and A4: \(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{u}\rangle \in \mathrm{r} \forall \mathrm{x} \in \mathrm{B} .\langle\mathrm{x}, \mathrm{w}\rangle \in \mathrm{r}\)
    shows \(\forall x \in A \cup B\). \(\langle x, \operatorname{GreaterOf}(r, u, w)\rangle \in r\)
proof
    let \(v=\) GreaterOf (r,u,w)
    from A1 A3 have \(\mathrm{T} 1:\langle\mathrm{u}, \mathrm{v}\rangle \in \mathrm{r}\) and \(\mathrm{T} 2:\langle\mathrm{w}, \mathrm{v}\rangle \in \mathrm{r}\)
        using Order_ZF_3_L2 by auto
    fix \(x\) assume A5: \(x \in A \cup B\) show \(\langle x, v\rangle \in r\)
    proof -
        \{ assume \(\mathrm{x} \in \mathrm{A}\)
        with A4 T1 have \(\langle x, u\rangle \in r \wedge\langle u, v\rangle \in r\) by simp
        with A2 have \(\langle x, v\rangle \in \mathrm{r}\) by (rule Fol1_L3) \}
    moreover
    \{ assume \(\mathrm{x} \notin \mathrm{A}\)
        with A5 A4 T2 have \(\langle\mathrm{x}, \mathrm{w}\rangle \in \mathrm{r} \wedge\langle\mathrm{w}, \mathrm{v}\rangle \in \mathrm{r}\) by simp
        with A2 have \(\langle x, v\rangle \in \mathrm{r}\) by (rule Fol1_L3) \}
    ultimately show thesis by auto
```


qed
 qed

For total and transitive relation the union of two sets bounded above is bounded above.

```
lemma Order_ZF_3_L3:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: IsBoundedAbove(A,r) IsBoundedAbove(B,r)
    and A4: r \subseteq X }\times\textrm{X
    shows IsBoundedAbove(A\cupB,r)
proof -
    { assume A=0 \vee B=0
        with A3 have IsBoundedAbove(A\cupB,r) by auto }
    moreover
    { assume ᄀ(A = 0 \vee B = 0)
            then have T1: A}\not=0\textrm{B}\not=0\mathrm{ by auto
            with A3 obtain u w where D1: }\forall\textrm{x}\in\textrm{A}.{\textrm{x},\textrm{u}\rangle\in\textrm{r}\forall\textrm{x}\in\textrm{B}.\langle\textrm{x},\textrm{w}\rangle\in\textrm{r
                using IsBoundedAbove_def by auto
            let U = GreaterOf(r,u,w)
            from T1 A4 D1 have }u\inX w\inX by aut
            with A1 A2 D1 have }\forallx\inA\cupB.\langlex,U\rangle\in
                using Order_ZF_3_L2B by blast
            then have IsBoundedAbove(A\cupB,r)
                using IsBoundedAbove_def by auto }
    ultimately show thesis by auto
qed
```

For total and transitive relations if a set A is bounded above then $A \cup\{a\}$ is bounded above.

```
lemma Order_ZF_3_L4:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: IsBoundedAbove(A,r) and A4: a\inX and A5: r \subseteq X }\times\textrm{X
    shows IsBoundedAbove(A\cup{a},r)
proof -
    from A1 have refl(X,r)
                using total_is_refl by simp
    with assms show thesis using
        Order_ZF_3_L1 IsBounded_def Order_ZF_3_L3 by simp
qed
```

If A is bounded below by l, B is bounded below by m, then $A \cup B$ is bounded below by the smaller of u, w.

```
lemma Order_ZF_3_L5B:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: l\inX m\inX
    and A4: }\forall\textrm{x}\in\textrm{A}.\langlel,\textrm{x}\rangle\in\textrm{r}|\textrm{x}\in\textrm{B}.\langle\textrm{m},\textrm{x}\rangle\in\textrm{r
    shows }\forallx\inA\cupB. \langleSmallerOf(r,l,m),x\rangle\in r
proof
```

```
    let k = SmallerOf(r,l,m)
    from A1 A3 have T1: \langlek,l\rangle\inr and T2: \langlek,m\rangle\inr
        using Order_ZF_3_L2 by auto
    fix x assume A5: x\inA\cupB show }\langlek,x\rangle\in
    proof -
        { assume x\inA
                with A4 T1 have }\langle\textrm{k},\textrm{l}\rangle\in\textrm{r}\wedge\langle\l,x\rangle\in\textrm{r}|\mp@code{by simp
                with A2 have }\langle\textrm{k},\textrm{x}\rangle\in\textrm{r}\mathrm{ by (rule Fol1_L3) }
    moreover
    { assume x }\not\in\textrm{A
                with A5 A4 T2 have \langlek,m\rangle\inr ^ < m,x\rangle\in r by simp
            with A2 have }\langle\textrm{k},\textrm{x}\rangle\in\textrm{r}\mathrm{ by (rule Fol1_L3) }
        ultimately show thesis by auto
        qed
qed
```

For total and transitive relation the union of two sets bounded below is bounded below.

```
lemma Order_ZF_3_L6:
    assumes A1: \(r\) \{is total on\} \(X\) and \(A 2\) : trans \((r)\)
    and A3: IsBoundedBelow(A,r) IsBoundedBelow(B,r)
    and \(\mathrm{A} 4: \mathrm{r} \subseteq \mathrm{X} \times \mathrm{X}\)
    shows IsBoundedBelow \((A \cup B, r)\)
proof -
    \{ assume \(A=0 \vee B=0\)
            with A3 have thesis by auto \}
    moreover
    \{ assume \(\neg(A=0 \vee B=0)\)
            then have \(T 1: A \neq 0 \quad B \neq 0\) by auto
            with A3 obtain 1 m where \(\mathrm{D} 1: \forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{l}, \mathrm{x}\rangle \in \mathrm{r} \forall \mathrm{x} \in \mathrm{B} .\langle\mathrm{m}, \mathrm{x}\rangle \in \mathrm{r}\)
                using IsBoundedBelow_def by auto
            let L = SmallerOf (r,l,m)
            from T1 A4 D1 have T1: \(l \in X \quad m \in X\) by auto
            with A1 A2 D1 have \(\forall x \in A \cup B .\langle L, x\rangle \in r\)
                using Order_ZF_3_L5B by blast
            then have IsBoundedBelow (A \(\cup B, r\) )
                using IsBoundedBelow_def by auto \}
    ultimately show thesis by auto
qed
```

For total and transitive relations if a set A is bounded below then $A \cup\{a\}$ is bounded below.

```
lemma Order_ZF_3_L7:
    assumes A1: r \{is total on\} \(X\) and A2: trans(r)
    and A3: IsBoundedBelow (A,r) and A4: \(a \in X\) and \(A 5: r \subseteq X \times X\)
    shows IsBoundedBelow \((A \cup\{a\}, r)\)
proof -
    from A1 have refl( \(\mathrm{X}, \mathrm{r}\) )
            using total_is_refl by simp
```

```
    with assms show thesis using
    Order_ZF_3_L1 IsBounded_def Order_ZF_3_L6 by simp
qed
```

For total and transitive relations unions of two bounded sets are bounded.

```
theorem Order_ZF_3_T1:
    assumes r {is total on} X and trans(r)
    and IsBounded(A,r) IsBounded(B,r)
    and r }\subseteq\textrm{X}\times\textrm{X
    shows IsBounded(A\cupB,r)
    using assms Order_ZF_3_L3 Order_ZF_3_L6 Order_ZF_3_L7 IsBounded_def
    by simp
```

For total and transitive relations if a set A is bounded then $A \cup\{a\}$ is bounded.

```
lemma Order_ZF_3_L8:
    assumes r {is total on} X and trans(r)
    and IsBounded(A,r) and a\inX and r }\subseteqX\times
    shows IsBounded(A\cup{a},r)
    using assms total_is_refl Order_ZF_3_L1 Order_ZF_3_T1 by blast
```

A sufficient condition for a set to be bounded below.

```
lemma Order_ZF_3_L9: assumes A1: }\forall\textrm{a}\in\textrm{A}.{l,a\rangle\in\textrm{r
    shows IsBoundedBelow(A,r)
proof -
    from A1 have \existsl. }\forall\textrm{x}\in\textrm{A}.\langlel,x\rangle\in\textrm{r
        by auto
    then show IsBoundedBelow(A,r)
        using IsBoundedBelow_def by simp
qed
```

A sufficient condition for a set to be bounded above.

```
lemma Order_ZF_3_L10: assumes A1: }\forall\textrm{a}\in\textrm{A}.\langle\textrm{a},\textrm{u}\rangle\in\textrm{r
    shows IsBoundedAbove(A,r)
proof -
    from A1 have \existsu. }\forall\textrm{x}\in\textrm{A}.\langle\textrm{x},\textrm{u}\rangle\in\textrm{r
        by auto
    then show IsBoundedAbove(A,r)
        using IsBoundedAbove_def by simp
qed
```

Intervals are bounded.

```
lemma Order_ZF_3_L11: shows
    IsBoundedAbove(Interval(r,a,b),r)
    IsBoundedBelow(Interval(r,a,b),r)
    IsBounded(Interval(r,a,b),r)
proof -
    { fix x assume x f Interval(r,a,b)
```

```
        then have }\langle\textrm{x},\textrm{b}\rangle\in\textrm{r}\langle\hat{a},\textrm{x}\rangle\in\textrm{r
            using Order_ZF_2_L1A by auto
    } then have
        \existsu. }\forall\textrm{x}\in\operatorname{Interval(r,a,b). \langlex,u\rangle\in r
        \existsl. }\forall\textrm{x}\in\operatorname{Interval(r,a,b). \langlel,x\rangle}\in\textrm{r
        by auto
    then show
    IsBoundedAbove(Interval(r,a,b) ,r)
    IsBoundedBelow(Interval(r,a,b) ,r)
    IsBounded(Interval(r,a,b),r)
    using IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
    by auto
qed
```

A subset of a set that is bounded below is bounded below.

```
lemma Order_ZF_3_L12: assumes A1: IsBoundedBelow(A,r) and A2: B\subseteqA
    shows IsBoundedBelow(B,r)
proof -
    { assume A = 0
            with assms have IsBoundedBelow(B,r)
                using IsBoundedBelow_def by auto }
    moreover
    { assume A }=
            with A1 have \existsl. }\forall\textrm{x}\in\textrm{A}.\langlel,x\rangle\in\textrm{r
                using IsBoundedBelow_def by simp
            with A2 have }\existsl.\forallx\inB. \langlel,x\rangle\in r by aut
            then have IsBoundedBelow(B,r) using IsBoundedBelow_def
                by auto }
    ultimately show IsBoundedBelow(B,r) by auto
qed
```

A subset of a set that is bounded above is bounded above.
lemma Order_ZF_3_L13: assumes A1: IsBoundedAbove(A,r) and A2: B $\subseteq A$
shows IsBoundedAbove (B, r)
proof -
\{ assume $\mathrm{A}=0$
with assms have IsBoundedAbove (B, r)
using IsBoundedAbove_def by auto \}
moreover
\{ assume $\mathrm{A} \neq 0$
with A1 have $\exists \mathrm{u} . \forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{u}\rangle \in \mathrm{r}$
using IsBoundedAbove_def by simp
with A2 have $\exists u . \forall x \in B .\langle x, u\rangle \in r$ by auto
then have IsBoundedAbove(B,r) using IsBoundedAbove_def
by auto \}
ultimately show IsBoundedAbove(B, r) by auto
qed

If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and antisymmetric, (i.e. for linear order relations).

```
lemma Order_ZF_3_L14:
    assumes A1: r \{is total on\} X
    and A2: trans(r) and A3: antisym(r)
    and A4: \(r \subseteq X \times X\) and \(A 5: X \neq 0\)
    and A6: \(\forall x \in X . \exists a \in A . x \neq a \wedge\langle x, a\rangle \in r\)
    shows \(\neg\) IsBoundedAbove (A,r)
proof -
    \{ from A5 A6 have I: A \(\neq 0\) by auto
        moreover assume IsBoundedAbove(A,r)
        ultimately obtain \(u\) where II: \(\forall x \in A .\langle x, u\rangle \in r\)
            using IsBounded_def IsBoundedAbove_def by auto
            with A4 I have \(u \in X\) by auto
            with A6 obtain \(b\) where \(b \in A\) and III: \(u \neq b\) and \(\langle u, b\rangle \in r\)
                by auto
            with II have \(\langle\mathrm{b}, \mathrm{u}\rangle \in \mathrm{r}\langle\mathrm{u}, \mathrm{b}\rangle \in \mathrm{r}\) by auto
            with A3 have \(b=u\) by (rule Fol1_L4)
            with III have False by simp
    \} thus \(\neg\) IsBoundedAbove(A,r) by auto
qed
```

The set of elements in a set A that are nongreater than a given element is bounded above.
lemma Order_ZF_3_L15: shows IsBoundedAbove $(\{x \in A .\langle x, a\rangle \in r\}, r)$
using IsBoundedAbove_def by auto
If A is bounded below, then the set of elements in a set A that are nongreater than a given element is bounded.

```
lemma Order_ZF_3_L16: assumes A1: IsBoundedBelow(A,r)
    shows IsBounded (\{x \(\in A .\langle x, a\rangle \in r\}, r)\)
proof -
    \{ assume \(\mathrm{A}=0\)
            then have IsBounded ( \(\{x \in A .\langle x, a\rangle \in r\}, r\) )
                    using IsBoundedBelow_def IsBoundedAbove_def IsBounded_def
                    by auto \}
    moreover
    \{ assume \(\mathrm{A} \neq 0\)
            with A1 obtain 1 where \(I: \forall x \in A .\langle 1, x\rangle \in r\)
                using IsBoundedBelow_def by auto
            then have \(\forall y \in\{x \in A .\langle x, a\rangle \in r\} .\langle l, y\rangle \in r\) by simp
            then have IsBoundedBelow \((\{x \in A .\langle x, a\rangle \in r\}, r)\)
                by (rule Order_ZF_3_L9)
            then have IsBounded ( \(\{x \in A .\langle x, a\rangle \in r\}, r\) )
                using Order_ZF_3_L15 IsBounded_def by simp \}
    ultimately show thesis by blast
qed
```

end

6 More on order relations

theory Order_ZF_1 imports ZF.Order ZF1
begin
In Order_ZF we define some notions related to order relations based on the nonstrict orders (\leq type). Some people however prefer to talk about these notions in terms of the strict order relation (<type). This is the case for the standard Isabelle Order.thy and also for Metamath. In this theory file we repeat some developments from Order_ZF using the strict order relation as a basis.This is mostly useful for Metamath translation, but is also of some general interest. The names of theorems are copied from Metamath.

6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write as R Orders A is written ROrdA in Metamath.

```
definition
StrictOrder (infix Orders 65) where
    R Orders A \equiv \forallx y z. (x\inA ^ y\inA ^ z AA )}
    (\langlex,y\rangle\inR\longleftrightarrow \longleftrightarrow (x=y \vee \y,x\rangle\inR)) ^
    (\langlex,y\rangle\inR ^ \y,z\rangle\inR \longrightarrow < x,z\rangle\inR)
```

The definition of supremum for a (strict) linear order.

definition

```
    \(\operatorname{Sup}(B, A, R) \equiv\)
    \(\bigcup\{x \in A . \quad(\forall y \in B .\langle x, y\rangle \notin R) \wedge\)
    \((\forall y \in A .\langle y, x\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle \in R))\}\)
```

Definition of infimum for a linear order. It is defined in terms of supremum.

```
definition
    Infim(B,A,R) \equivSup(B,A,converse(R))
```

If relation R orders a set A, (in Metamath sense) then R is irreflexive, transitive and linear therefore is a total order on A (in Isabelle sense).

```
lemma orders_imp_tot_ord: assumes A1: R Orders A
    shows
    irrefl(A,R)
    trans[A](R)
    part_ord(A,R)
    linear(A,R)
    tot_ord(A,R)
proof -
```


from A1 have I:

$$
\begin{aligned}
& \forall x y z . \quad(x \in A \wedge y \in A \wedge z \in A) \longrightarrow \\
& (\langle x, y\rangle \in R \longleftrightarrow \neg(x=y \vee\langle y, x\rangle \in R)) \wedge \\
& (\langle x, y\rangle \in R \wedge\langle y, z\rangle \in R \longrightarrow\langle x, z\rangle \in R)
\end{aligned}
$$

unfolding StrictOrder_def by simp
then have $\forall x \in A .\langle x, x\rangle \notin R$ by blast
then show irrefl (A, R) using irrefl_def by simp
moreover
from I have
$\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{A} . \forall \mathrm{z} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{R} \longrightarrow\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{R} \longrightarrow\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{R}$
by blast
then show trans [A] (R) unfolding trans_on_def by blast
ultimately show part_ord(A,R) using part_ord_def
by simp
moreover
from I have

```
\forallx\inA.}\forally\inA.\langlex,y\rangle\inR\veex=y \vee\langley,x\rangle\in
```

by blast
then show linear (A, R) unfolding linear_def by blast
ultimately show tot_ord(A,R) using tot_ord_def
by simp
qed
A converse of orders_imp_tot_ord. Together with that theorem this shows that Metamath's notion of an order relation is equivalent to Isabelles tot_ord predicate.

```
lemma tot_ord_imp_orders: assumes A1: tot_ord(A,R)
    shows R Orders A
proof -
    from A1 have
        I: linear (A,R) and
        II: irrefl(A,R) and
        III: trans [A] (R) and
        IV: part_ord(A,R)
        using tot_ord_def part_ord_def by auto
    from IV have asym ( \(R \cap A \times A\) )
        using part_ord_Imp_asym by simp
    then have \(V: \forall x y .\langle x, y\rangle \in(R \cap A \times A) \longrightarrow \neg(\langle y, x\rangle \in(R \cap A \times A))\)
        unfolding asym_def by blast
    from I have VI: \(\forall x \in A . \forall y \in A .\langle x, y\rangle \in R \vee x=y \vee\langle y, x\rangle \in R\)
        unfolding linear_def by blast
    from III have VII:
        \(\forall x \in A . \forall y \in A . \forall z \in A .\langle x, y\rangle \in R \longrightarrow\langle y, z\rangle \in R \longrightarrow\langle x, z\rangle \in R\)
        unfolding trans_on_def by blast
    \{ fix x y z
        assume \(T: x \in A \quad y \in A \quad z \in A\)
        have \(\langle x, y\rangle \in R \longleftrightarrow \neg(x=y \vee\langle y, x\rangle \in R)\)
        proof
            assume A2: \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{R}\)
```

```
            with V T have }\neg(\langley,x\rangle\inR) by blas
            moreover from II T A2 have x\not=y using irrefl_def
    by auto
            ultimately show }\neg(\textrm{x}=\textrm{y}\vee\langle\textrm{y},\textrm{x}\rangle\in\textrm{R})\mathrm{ by simp
        next assume }\neg(x=y\vee\langley,x\rangle\inR
            with VI T show }\langlex,y\rangle\inR\mathrm{ by auto
        qed
        moreover from VII T have
            \langlex,y\rangle\inR ^ <y,z\rangle\inR \longrightarrow < x,z\rangle\inR
            by blast
        ultimately have (\langlex,y\rangle\inR\longleftrightarrow\neg(x=y \vee \ y,x\rangle\inR)) ^
            (\langlex,y\rangle\inR\wedge\langley,z\rangle\inR\longrightarrow\langlex,z\rangle\inR)
            by simp
    } then have }\forallxyz. (x\inA ^ y\inA ^ z\inA) \longrightarrow
        (\langlex,y\rangle\inR\longleftrightarrow \longleftrightarrow (x=y \vee \langley,x\rangle\inR)) ^
        (\langlex,y\rangle\inR\wedge \y,z\rangle\inR\longrightarrow\langlex,z\rangle\inR)
        by auto
    then show R Orders A using StrictOrder_def by simp
qed
```


6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This continues the development contained in the standard Isabelle's Order.thy with a view towards using the theorems translated from Metamath.

A relation orders a set iff the converse relation orders a set. Going one way we can use the the lemma tot_od_converse from the standard Isabelle's Order.thy. The other way is a bit more complicated (note that in Isabelle for converse (converse (r)) = r one needs r to consist of ordered pairs, which does not follow from the StrictOrder definition above).

```
lemma cnvso: shows R Orders A \longleftrightarrow converse(R) Orders A
proof
    let r = converse(R)
    assume R Orders A
    then have tot_ord(A,r) using orders_imp_tot_ord tot_ord_converse
        by simp
    then show r Orders A using tot_ord_imp_orders
        by simp
next
    let r = converse(R)
    assume r Orders A
    then have A2: }\forall\textrm{x}y\textrm{y}.(\textrm{x}\in\textrm{A}\wedge \ y\inA\wedge z\inA)
        (\langlex,y\rangle\inr \longleftrightarrow < (x=y \vee \langley,x\rangle\in r)) ^
        (\langlex,y\rangle\inr ^ \y,z\rangle\inr \longrightarrow 
        using StrictOrder_def by simp
    { fix x y z
        assume x\inA ^ y\inA ^ z\inA
```


with A2 have

I: $\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r} \longleftrightarrow \neg(\mathrm{x}=\mathrm{y} \vee\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r})$ and II: $\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r} \wedge\langle\mathrm{z}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{z}, \mathrm{x}\rangle \in \mathrm{r}$ by auto
from I have $\langle x, y\rangle \in R \longleftrightarrow \neg(x=y \vee\langle y, x\rangle \in R)$ by auto
moreover from II have $\langle x, y\rangle \in R \wedge\langle y, z\rangle \in R \longrightarrow\langle x, z\rangle \in R$ by auto
ultimately have $(\langle x, y\rangle \in R \longleftrightarrow \neg(x=y \vee\langle y, x\rangle \in R)) \wedge$ $(\langle x, y\rangle \in R \wedge\langle y, z\rangle \in R \longrightarrow\langle x, z\rangle \in R)$ by simp
$\}$ then have $\forall x y z .(x \in A \wedge y \in A \wedge z \in A) \longrightarrow$

$$
(\langle x, y\rangle \in R \longleftrightarrow \neg(x=y \vee\langle y, x\rangle \in R)) \wedge
$$

$$
(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{R} \wedge\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{R} \longrightarrow\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{R})
$$

by auto
then show R Orders A using StrictOrder_def by simp qed

Supremum is unique, if it exists.

```
lemma supeu: assumes A1: R Orders A and A2: x\inA and
    A3: }\forall\textrm{y}\in\textrm{B}.\langle\textrm{x},\textrm{y}\rangle\not\in\textrm{R}\mathrm{ and A4: }\forall\textrm{y}\in\textrm{A}.\langle\textrm{y},\textrm{x}\rangle\in\textrm{R}\longrightarrow\longrightarrow(\exists\textrm{z}\in\textrm{B}.\langley,z\rangle\inR
    shows
```



```
R))
proof
    from A2 A3 A4 show
        \existsx. x\inA^(\forally\inB. \langlex,y\rangle\not\inR)^(\forally\inA. \langley,x\rangle\inR \longrightarrow ( 
\inR))
        by auto
next fix }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\textrm{x}}{2}{
    assume A5:
        \mp@subsup{x}{1}{}}\in\textrm{A}\wedge(\forall\textrm{y}\in\textrm{B}.\langle\mp@subsup{\textrm{x}}{1}{},\textrm{y}\rangle\not\in\textrm{R})\wedge(\forall\textrm{y}\in\textrm{A}.\langley,\mp@subsup{x}{1}{}\rangle\in\textrm{R}\longrightarrow(\exists\textrm{z}\in\textrm{B}.\langley,z
\inR))
        x}\mp@subsup{x}{2}{}\in\textrm{A}\wedge(\forall\textrm{y}\in\textrm{B}.\langle\mp@subsup{x}{2}{},\textrm{y}\rangle\not\in\textrm{R})\wedge(\forally\in\textrm{A}.\langley,\mp@subsup{x}{2}{}\rangle\in\textrm{R}\longrightarrow(\exists\textrm{z}\in\textrm{B}.\langley,z
\inR))
    from A1 have linear(A,R) using orders_imp_tot_ord tot_ord_def
        by simp
    then have }\forallx\inA..\forally\inA. \langlex,y\rangle\inR \vee x=y V\langley,x\rangle\in
        unfolding linear_def by blast
    with A5 have }\langle\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{}\rangle\in\textrm{R}\vee\mp@subsup{\textrm{x}}{1}{}=\mp@subsup{\textrm{x}}{2}{}\vee\\langle\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{1}{}\rangle\in\textrm{R}\mathrm{ by blast
    moreover
    { assume }\langle\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{}\rangle\in
        with A5 obtain z where z\inB and }\langle\mp@subsup{x}{1}{},z\rangle\inR\mathrm{ by auto
        with A5 have False by auto }
    moreover
    { assume }\langle\mp@subsup{\textrm{x}}{2}{},\mp@subsup{\textrm{x}}{1}{}\rangle\in\textrm{R
        with A5 obtain z where z\inB and }\langle\mp@subsup{x}{2}{},z\rangle\inR\mathrm{ by auto
        with A5 have False by auto }
    ultimately show }\mp@subsup{x}{1}{}=\mp@subsup{x}{2}{}\mathrm{ by auto
qed
```

Supremum has expected properties if it exists.

```
lemma sup_props: assumes A1: \(R\) Orders A and
    A2: \(\exists \mathrm{x} \in \mathrm{A} .(\forall \mathrm{y} \in \mathrm{B} .\langle\mathrm{x}, \mathrm{y}\rangle \notin \mathrm{R}) \wedge(\forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{R} \longrightarrow(\exists \mathrm{z} \in \mathrm{B} .\langle\mathrm{y}, \mathrm{z}\rangle \in\)
R))
    shows
    \(\operatorname{Sup}(B, A, R) \in A\)
    \(\forall y \in B . \quad\langle\operatorname{Sup}(B, A, R), y\rangle \notin R\)
    \(\forall y \in A .\langle y, \operatorname{Sup}(B, A, R)\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle \in R)\)
proof -
    let \(S=\{x \in A . \quad(\forall y \in B .\langle x, y\rangle \notin R) \wedge(\forall y \in A .\langle y, x\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle\)
\(\in R\) ) ) \}
    from A2 obtain \(x\) where
        \(x \in A\) and \((\forall y \in B .\langle x, y\rangle \notin R)\) and \(\forall y \in A .\langle y, x\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle\)
\(\in R\) )
        by auto
    with A1 have I:
        \(\exists!\mathrm{x} . \mathrm{x} \in \mathrm{A} \wedge(\forall \mathrm{y} \in \mathrm{B} .\langle\mathrm{x}, \mathrm{y}\rangle \notin \mathrm{R}) \wedge(\forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{R} \longrightarrow(\exists \mathrm{z} \in \mathrm{B} .\langle\mathrm{y}, \mathrm{z}\rangle\)
\(\in R)\) )
            using supeu by simp
    then have ( \(\cup S\) ) \(\in\) A by (rule ZF1_1_L9)
    then show \(\operatorname{Sup}(B, A, R) \in A\) using Sup_def by simp
    from I have II:
        \((\forall \mathrm{y} \in \mathrm{B} .\langle\bigcup \mathrm{S}, \mathrm{y}\rangle \notin \mathrm{R}) \wedge(\forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{y}, \bigcup \mathrm{S}\rangle \in \mathrm{R} \longrightarrow(\exists \mathrm{z} \in \mathrm{B} .\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{R}))\)
        by (rule ZF1_1_L9)
    hence \(\forall y \in B .\langle\bigcup S, y\rangle \notin R\) by blast
    moreover have III: (US) = Sup(B,A,R) using Sup_def by simp
    ultimately show \(\forall y \in B .\langle\operatorname{Sup}(B, A, R), y\rangle \notin R\) by simp
    from II have IV: \(\forall y \in A .\langle y, \bigcup S\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle \in R)\)
        by blast
    \{ fix y assume \(A 3: y \in A\) and \(\langle y, \operatorname{Sup}(B, A, R)\rangle \in R\)
        with III have \(\langle\mathrm{y}, \bigcup \mathrm{S}\rangle \in \mathrm{R}\) by simp
        with IV A3 have \(\exists \mathrm{z} \in \mathrm{B} .\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{R}\) by blast
    \} thus \(\forall y \in A .\langle y, \operatorname{Sup}(B, A, R)\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle \in R)\)
        by simp
qed
```

Elements greater or equal than any element of B are greater or equal than supremum of B.

```
lemma supnub: assumes A1: \(R\) Orders \(A\) and A2:
    \(\exists \mathrm{x} \in \mathrm{A} .(\forall \mathrm{y} \in \mathrm{B} .\langle\mathrm{x}, \mathrm{y}\rangle \notin \mathrm{R}) \wedge(\forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{R} \longrightarrow(\exists \mathrm{z} \in \mathrm{B} .\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{R}))\)
    and A3: \(c \in A\) and \(A 4: \forall z \in B .\langle c, z\rangle \notin R\)
    shows \(\langle c, \operatorname{Sup}(B, A, R)\rangle \notin R\)
proof -
    from A1 A2 have
        \(\forall y \in A .\langle y, \operatorname{Sup}(B, A, R)\rangle \in R \longrightarrow(\exists z \in B .\langle y, z\rangle \in R)\)
        by (rule sup_props)
    with A3 A4 show \(\langle c, \operatorname{Sup}(B, A, R)\rangle \notin R\) by auto
qed
```

end

7 Even more on order relations

theory Order_ZF_1a imports Order_ZF
begin
This theory is a continuation of Order_ZF and talks about maximuma and minimum of a set, supremum and infimum and strict (not reflexive) versions of order relations.

7.1 Maximum and minimum of a set

In this section we show that maximum and minimum are unique if they exist. We also show that union of sets that have maxima (minima) has a maximum (minimum). We also show that singletons have maximum and minimum. All this allows to show (in Finite_ZF) that every finite set has well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

```
lemma Order_ZF_4_L1: assumes A1: antisym(r) and A2: HasAmaximum(r,A)
    shows }\exists!M.M\inA ^(\forallx\inA. \langlex,M\rangle\inr
proof
    from A2 show }\exists\textrm{M}.\textrm{M}\in\textrm{A}\wedge(\forall\textrm{x}\in\textrm{A}.\langlex,M\rangle\in\textrm{r}
        using HasAmaximum_def by auto
    fix M1 M2 assume
        A2: M1 \in A ^ ( }\forall\textrm{x}\in\textrm{A}.\langlex,M1\rangle\in\textrm{r})\textrm{M}2\in\textrm{A}\wedge(\forallx\inA.\langlex, M2\rangle\inr
        then have }\langle\textrm{M}1,\textrm{M}2\rangle\in\textrm{r}\langle\textrm{M}2,\textrm{M}1\rangle\in\textrm{r}\mathrm{ by auto
        with A1 show M1=M2 by (rule Fol1_L4)
qed
```

For antisymmetric relations minimum of a set is unique if it exists.

```
lemma Order_ZF_4_L2: assumes A1: antisym(r) and A2: HasAminimum(r,A)
    shows }\exists!\textrm{m}.\textrm{m}\in\textrm{A}\wedge^(\forall\textrm{x}\in\textrm{A}.\langle\textrm{m},\textrm{x}\rangle\in\textrm{r}
proof
    from A2 show }\exists\textrm{m}.\textrm{m}\in\textrm{A}\wedge(\forall\textrm{x}\in\textrm{A}.{\textrm{m},\textrm{x}\rangle\in\textrm{r}
        using HasAminimum_def by auto
    fix m1 m2 assume
        A2: m1 \in A ^ ( }\forall\textrm{x}\in\textrm{A}.{\textrm{m}1,\textrm{x}\rangle\in\textrm{r})\textrm{m}2\in\textrm{A}\wedge (\forall\textrm{x}\in\textrm{A}.\langle\textrm{m}2,\textrm{x}\rangle\in\textrm{r}
        then have }\langle\textrm{m}1,\textrm{m}2\rangle\in\textrm{r}\langle\textrm{m}2,\textrm{m}1\rangle\in\textrm{r}\mathrm{ by auto
        with A1 show m1=m2 by (rule Fol1_L4)
qed
```

Maximum of a set has desired properties.

```
lemma Order_ZF_4_L3: assumes A1: antisym(r) and A2: HasAmaximum(r,A)
    shows Maximum(r,A) \in A \forallx\inA. \langlex,Maximum (r,A)\rangle\in r
```

```
proof -
    let Max = THE M. M\inA ^ ( }\forall\textrm{x}\in\textrm{A}.\langle\textrm{x},\textrm{M}\rangle\in\textrm{r}
    from A1 A2 have }\exists!M. M\inA ^(\forallx\inA. \langlex,M\rangle\inr
        by (rule Order_ZF_4_L1)
    then have Max }\in\textrm{A}\wedge(\forall\textrm{x}\in\textrm{A}.\langle\textrm{x},\textrm{Max}\rangle\in\textrm{r}
        by (rule theI)
    then show Maximum(r,A) \in A \forallx\inA. \langlex,Maximum(r,A)\rangle\in r
        using Maximum_def by auto
qed
```

Minimum of a set has desired properties.

```
lemma Order_ZF_4_L4: assumes A1: \(\operatorname{antisym}(r)\) and A2: HasAminimum(r,A)
    shows \(\operatorname{Minimum}(r, A) \in A \quad \forall x \in A .\langle\operatorname{Minimum}(r, A), x\rangle \in r\)
proof -
    let \(\operatorname{Min}=\) THE m. \(m \in A \wedge(\forall x \in A .\langle m, x\rangle \in r)\)
    from A1 A2 have \(\exists!\mathrm{m} . \mathrm{m} \in \mathrm{A} \wedge(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{m}, \mathrm{x}\rangle \in \mathrm{r})\)
        by (rule Order_ZF_4_L2)
    then have Min \(\in \mathrm{A} \wedge(\forall \mathrm{x} \in \mathrm{A} .\langle\operatorname{Min}, \mathrm{x}\rangle \in \mathrm{r})\)
        by (rule theI)
    then show \(\operatorname{Minimum}(r, A) \in A \forall x \in A .\langle\operatorname{Minimum}(r, A), x\rangle \in r\)
        using Minimum_def by auto
qed
```

For total and transitive relations a union a of two sets that have maxima has a maximum.

```
lemma Order_ZF_4_L5:
    assumes A1: r {is total on} (A\cupB) and A2: trans(r)
    and A3: HasAmaximum(r,A) HasAmaximum(r,B)
    shows HasAmaximum(r,A\cupB)
proof -
    from A3 obtain M K where
            D1: M\inA ^ ( }\forall\textrm{x}\in\textrm{A}.\langle\textrm{x},\textrm{M}\rangle\in\textrm{r})\textrm{K}\in\textrm{B}\wedge\wedge(\forall\textrm{x}\in\textrm{B}.\langle\textrm{x},\textrm{K}\rangle\in\textrm{r}
            using HasAmaximum_def by auto
    let L = GreaterOf(r,M,K)
    from D1 have T1: M \in A\cupB K \in A\cupB
        \forallx\inA. \langlex,M\rangle\inr \forallx\inB. }\langle\textrm{x},\textrm{K}\rangle\in\textrm{r
        by auto
    with A1 A2 have }\forallx\inA\cupB.\langlex,L\rangle\inr by (rule Order_ZF_3_L2B
    moreover from T1 have L \in A\cupB using GreaterOf_def IsTotal_def
        by simp
    ultimately show HasAmaximum(r,A\cupB) using HasAmaximum_def by auto
qed
```

For total and transitive relations A union a of two sets that have minima has a minimum.

```
lemma Order_ZF_4_L6:
    assumes A1: r {is total on} (A\cupB) and A2: trans(r)
    and A3: HasAminimum(r,A) HasAminimum(r,B)
```

```
    shows HasAminimum(r,A\cupB)
proof -
    from A3 obtain m k where
        D1: m\inA ^ ( }\forall\textrm{x}\in\textrm{A}.\langle\textrm{m},\textrm{x}\rangle\in\textrm{r})\textrm{k}\in\textrm{B}\wedge ^(\forall\textrm{x}\in\textrm{B}.\langle\textrm{k},\textrm{x}\rangle\in\textrm{r}
        using HasAminimum_def by auto
    let l = SmallerOf(r,m,k)
    from D1 have T1: m \in A\cupB k }\inA\cup
            x}\in\textrm{A}.\langle\textrm{m},\textrm{x}\rangle\in\textrm{r}|\textrm{x}\in\textrm{B}.\langle\textrm{k},\textrm{x}\rangle\in\textrm{r
            by auto
    with A1 A2 have }\forallx\inA\cupB.\langlel,x\rangle\in r by (rule Order_ZF_3_L5B
    moreover from T1 have l }\inA\cupB using SmallerOf_def IsTotal_de
        by simp
    ultimately show HasAminimum(r,A\cupB) using HasAminimum_def by auto
qed
```

Set that has a maximum is bounded above.
lemma Order_ZF_4_L7:
assumes HasAmaximum (r, A)
shows IsBoundedAbove (A, r)
using assms HasAmaximum_def IsBoundedAbove_def by auto
Set that has a minimum is bounded below.

```
lemma Order_ZF_4_L8A:
    assumes HasAminimum(r,A)
    shows IsBoundedBelow(A,r)
    using assms HasAminimum_def IsBoundedBelow_def by auto
```

For reflexive relations singletons have a minimum and maximum.

```
lemma Order_ZF_4_L8: assumes refl(X,r) and a\inX
    shows HasAmaximum(r,{a}) HasAminimum(r,{a})
    using assms refl_def HasAmaximum_def HasAminimum_def by auto
```

For total and transitive relations if we add an element to a set that has a maximum, the set still has a maximum.

```
lemma Order_ZF_4_L9:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: A\subseteqX and A4: a\inX and A5: HasAmaximum(r,A)
    shows HasAmaximum(r,A\cup{a})
proof -
    from A3 A4 have A\cup{a} \subseteq X by auto
    with A1 have r {is total on} (A\cup{a})
        using Order_ZF_1_L4 by blast
    moreover from A1 A2 A4 A5 have
        trans(r) HasAmaximum(r,A) by auto
    moreover from A1 A4 have HasAmaximum(r,{a})
        using total_is_refl Order_ZF_4_L8 by blast
    ultimately show HasAmaximum(r,A\cup{a}) by (rule Order_ZF_4_L5)
qed
```

For total and transitive relations if we add an element to a set that has a minimum, the set still has a minimum.

```
lemma Order_ZF_4_L10:
    assumes A1: \(r\) \{is total on\} \(X\) and A2: trans (r)
    and \(A 3: A \subseteq X\) and \(A 4: a \in X\) and \(A 5: H a s A m i n i m u m(r, A)\)
    shows HasAminimum ( \(\mathrm{r}, \mathrm{A} \cup\{\mathrm{a}\}\) )
proof -
    from A3 A4 have \(A \cup\{a\} \subseteq X\) by auto
    with A1 have \(r\) \{is total on\} ( \(A \cup\{a\}\) )
        using Order_ZF_1_L4 by blast
    moreover from A1 A2 A4 A5 have
        trans(r) HasAminimum (r,A) by auto
    moreover from A1 A4 have HasAminimum ( \(r,\{a\}\) )
        using total_is_refl Order_ZF_4_L8 by blast
    ultimately show HasAminimum(r,A \(\cup a\}\) ) by (rule Order_ZF_4_L6)
qed
```

If the order relation has a property that every nonempty bounded set attains a minimum (for example integers are like that), then every nonempty set bounded below attains a minimum.

```
lemma Order_ZF_4_L11:
    assumes A1: r {is total on} X and
    A2: trans(r) and
    A3: r \subseteq X }\times\textrm{X}\mathrm{ and
    A4: }\forall\textrm{A}.\operatorname{IsBounded}(A,r) \wedge A\not=0\longrightarrowHasAminimum(r,A) and
    A5: B}\not=0\mathrm{ and A6: IsBoundedBelow(B,r)
    shows HasAminimum(r,B)
proof -
    from A5 obtain b where T: b\inB by auto
    let L = {x\inB. \langlex,b\rangle\in r}
    from A3 A6 T have T1: b\inX using Order_ZF_3_L1B by blast
    with A1 T have T2: b \in L
        using total_is_refl refl_def by simp
    then have L }\not=0\mathrm{ by auto
    moreover have IsBounded(L,r)
    proof -
        have L \subseteq B by auto
        with A6 have IsBoundedBelow(L,r)
            using Order_ZF_3_L12 by simp
        moreover have IsBoundedAbove(L,r)
            by (rule Order_ZF_3_L15)
            ultimately have IsBoundedAbove(L,r) ^ IsBoundedBelow(L,r)
                by blast
            then show IsBounded(L,r) using IsBounded_def
                by simp
    qed
    ultimately have IsBounded(L,r) ^ L \not=0 by blast
    with A4 have HasAminimum(r,L) by simp
    then obtain m where I: m\inL and II: }\forallx\inL.{m,x\rangle\in
```

using HasAminimum_def by auto
then have III: $\langle\mathrm{m}, \mathrm{b}\rangle \in \mathrm{r}$ by simp
from I have $m \in B$ by simp
moreover have $\forall x \in B .\langle m, x\rangle \in r$
proof
fix x assume A7: $x \in B$
from A3 A6 have $B \subseteq X$ using Order_ZF_3_L1B by blast
with A1 A7 T1 have $x \in L \cup\{x \in B .\langle b, x\rangle \in r\}$ using Order_ZF_1_L5 by simp
then have $x \in L \vee\langle b, x\rangle \in r$ by auto
moreover
\{ assume $x \in L$ with II have $\langle m, x\rangle \in r$ by simp \}
moreover
$\{$ assume $\langle\mathrm{b}, \mathrm{x}\rangle \in \mathrm{r}$ with A2 III have trans(r) and $\langle\mathrm{m}, \mathrm{b}\rangle \in \mathrm{r} \wedge\langle\mathrm{b}, \mathrm{x}\rangle \in \mathrm{r}$
by auto then have $\langle\mathrm{m}, \mathrm{x}\rangle \in \mathrm{r}$ by (rule Fol1_L3) \}
ultimately show $\langle\mathrm{m}, \mathrm{x}\rangle \in \mathrm{r}$ by auto
qed
ultimately show HasAminimum (r, B) using HasAminimum_def
by auto
qed
A dual to Order_ZF_4_L11: If the order relation has a property that every nonempty bounded set attains a maximum (for example integers are like that), then every nonempty set bounded above attains a maximum.

```
lemma Order_ZF_4_L11A:
    assumes A1: r {is total on} X and
    A2: trans(r) and
    A3: r \subseteq X }\times\textrm{X}\mathrm{ and
    A4: \forallA. IsBounded(A,r) ^ A =0 \longrightarrow HasAmaximum(r,A) and
    A5: B\not=0 and A6: IsBoundedAbove(B,r)
    shows HasAmaximum(r,B)
proof -
    from A5 obtain b where T: b\inB by auto
    let U = {x\inB. \langleb,x\rangle\inr}
    from A3 A6 T have T1: b\inX using Order_ZF_3_L1A by blast
    with A1 T have T2: b \in U
        using total_is_refl refl_def by simp
    then have U }\not=0\mathrm{ by auto
    moreover have IsBounded(U,r)
    proof -
        have U \subseteq B by auto
        with A6 have IsBoundedAbove(U,r)
            using Order_ZF_3_L13 by blast
            moreover have IsBoundedBelow(U,r)
                using IsBoundedBelow_def by auto
            ultimately have IsBoundedAbove(U,r) ^ IsBoundedBelow(U,r)
```

```
        by blast
    then show IsBounded(U,r) using IsBounded_def
        by simp
    qed
    ultimately have IsBounded(U,r) ^ U # O by blast
    with A4 have HasAmaximum(r,U) by simp
    then obtain m where I: m\inU and II: }\forall\textrm{x}\in\textrm{U}.{\textrm{L},\langle\textrm{m}\rangle\in\textrm{r
        using HasAmaximum_def by auto
    then have III: \langleb,m\rangle\inr by simp
    from I have m\inB by simp
    moreover have }\forallx\inB.\langlex,m\rangle\in
    proof
        fix x assume A7: }x\in
        from A3 A6 have B\subseteqX using Order_ZF_3_L1A by blast
        with A1 A7 T1 have }x\in{x\inB.\langlex,b\rangle\inr}\cup
            using Order_ZF_1_L5 by simp
        then have }x\inU\vee\langlex,b\rangle\inr by aut
        moreover
        { assume }x\in
            with II have }\langle\textrm{x},\textrm{m}\rangle\in\textrm{r}\mathrm{ by simp }
    moreover
    { assume }\langle\textrm{x},\textrm{b}\rangle\in\textrm{r
        with A2 III have trans(r) and \langlex,b\rangle\inr r \ \langleb,m\rangle\in r
by auto
            then have }\langlex,m\rangle\inr by (rule Fol1_L3) 
    ultimately show }\langlex,m\rangle\inr by aut
    qed
    ultimately show HasAmaximum(r,B) using HasAmaximum_def
        by auto
qed
```

If a set has a minimum and L is less or equal than all elements of the set, then L is less or equal than the minimum.

```
lemma Order_ZF_4_L12:
    assumes antisym(r) and HasAminimum(r,A) and \foralla\inA. <L,a\rangle\in r
    shows \langleL,Minimum(r,A)\rangle\in r
    using assms Order_ZF_4_L4 by simp
```

If a set has a maximum and all its elements are less or equal than M, then the maximum of the set is less or equal than M.

```
lemma Order_ZF_4_L13:
    assumes antisym(r) and HasAmaximum(r,A) and }\forall\textrm{a}\in\textrm{A}.\langle\textrm{a},\textrm{M}\rangle\in\textrm{r
    shows <Maximum(r,A),M\rangle\in r
    using assms Order_ZF_4_L3 by simp
```

If an element belongs to a set and is greater or equal than all elements of that set, then it is the maximum of that set.

```
lemma Order_ZF_4_L14:
```

```
    assumes A1: antisym(r) and A2: M \in A and
    A3: }\forall\textrm{a}\in\textrm{A}.\langle\textrm{a},\textrm{M}\rangle\in\textrm{r
    shows Maximum(r,A) = M
proof -
    from A2 A3 have I: HasAmaximum(r,A) using HasAmaximum_def
        by auto
    with A1 have }\exists\mathrm{ !M. M M A ^ ( }\forall\textrm{x}\in\textrm{A}.\langlex,M\rangle\inr
        using Order_ZF_4_L1 by simp
    moreover from A2 A3 have M\inA ^ ( }\forall\textrm{x}\in\textrm{A}.\langle\textrm{x},\textrm{M}\rangle\in\textrm{r})\mathrm{ by simp
    moreover from A1 I have
        Maximum(r,A) \in A ^ (\forallx\inA. \langlex,Maximum (r,A)\rangle\in r)
        using Order_ZF_4_L3 by simp
    ultimately show Maximum(r,A) = M by auto
qed
```

If an element belongs to a set and is less or equal than all elements of that set, then it is the minimum of that set.

```
lemma Order_ZF_4_L15:
    assumes A1: antisym(r) and A2: \(m \in A\) and
    A3: \(\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{m}, \mathrm{a}\rangle \in \mathrm{r}\)
    shows Minimum (r,A) \(=m\)
proof -
    from A2 A3 have I: HasAminimum (r,A) using HasAminimum_def
        by auto
    with A1 have \(\exists!\mathrm{m} . \mathrm{m} \in \mathrm{A} \wedge(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{m}, \mathrm{x}\rangle \in \mathrm{r})\)
        using Order_ZF_4_L2 by simp
    moreover from A2 A3 have \(m \in A \wedge(\forall x \in A .\langle m, x\rangle \in r)\) by simp
    moreover from A1 I have
        \(\operatorname{Minimum}(r, A) \in A \wedge(\forall x \in A .\langle\operatorname{Minimum}(r, A), x\rangle \in r)\)
        using Order_ZF_4_L4 by simp
    ultimately show Minimum ( \(\mathrm{r}, \mathrm{A}\) ) \(=\mathrm{m}\) by auto
qed
```

If a set does not have a maximum, then for any its element we can find one that is (strictly) greater.

```
lemma Order_ZF_4_L16:
    assumes A1: antisym(r) and A2: \(r\) \{is total on\} \(X\) and
    A3: \(A \subseteq X\) and
    A4: \(\neg\) HasAmaximum (r,A) and
    A5: \(x \in A\)
    shows \(\exists \mathrm{y} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \wedge \mathrm{y} \neq \mathrm{x}\)
proof -
    \{ assume A6: \(\forall y \in A .\langle x, y\rangle \notin r \vee y=x\)
        have \(\forall y \in A .\langle y, x\rangle \in r\)
        proof
                fix y assume A7: \(y \in A\)
                with A6 have \(\langle x, y\rangle \notin r \vee y=x\) by simp
                with A2 A3 A5 A7 show \(\langle y, x\rangle \in r\)
    using IsTotal_def Order_ZF_1_L1 by auto
```


qed

with A5 have $\exists x \in A . \forall y \in A .\langle y, x\rangle \in r$
by auto
with A4 have False using HasAmaximum_def by simp
$\}$ then show $\exists y \in A .\langle x, y\rangle \in r \wedge y \neq x$ by auto
qed

7.2 Supremum and Infimum

In this section we consider the notions of supremum and infimum a set.
Elements of the set of upper bounds are indeed upper bounds. Isabelle also thinks it is obvious.
lemma Order_ZF_5_L1: assumes $u \in(\bigcap a \in A . r\{a\})$ and $a \in A$
shows $\langle a, u\rangle \in r$
using assms by auto
Elements of the set of lower bounds are indeed lower bounds. Isabelle also thinks it is obvious.

```
lemma Order_ZF_5_L2: assumes l \in (\bigcapa\inA. r-{a}) and a\inA
    shows }\langlel,a\rangle\in
    using assms by auto
```

If the set of upper bounds has a minimum, then the supremum is less or equal than any upper bound. We can probably do away with the assumption that A is not empty, (ab)using the fact that intersection over an empty family is defined in Isabelle to be empty.

```
lemma Order_ZF_5_L3: assumes A1: antisym(r) and A2: A \(\neq 0\) and
    A3: \(\operatorname{HasAminimum}(r, \bigcap a \in A . r\{a\})\) and
    A4: \(\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{a}, \mathrm{u}\rangle \in \mathrm{r}\)
    shows \(\langle\operatorname{Supremum}(r, A), u\rangle \in r\)
proof -
    let \(U=\bigcap a \in A . r\{a\}\)
    from A4 have \(\forall \mathrm{a} \in \mathrm{A} . \mathrm{u} \in \mathrm{r}\{\mathrm{a}\}\) using image_singleton_iff
        by simp
    with A2 have \(u \in U\) by auto
    with A1 A3 show \(\langle\operatorname{Supremum}(r, A), u\rangle \in r\)
        using Order_ZF_4_L4 Supremum_def by simp
qed
Infimum is greater or equal than any lower bound.
```

```
lemma Order_ZF_5_L4: assumes A1: antisym(r) and A2: A \(\neq 0\) and
```

lemma Order_ZF_5_L4: assumes A1: antisym(r) and A2: A $\neq 0$ and
A3: HasAmaximum(r,@a $\in \mathrm{A} . \mathrm{r}-\{\mathrm{a}\}$) and
A3: HasAmaximum(r,@a $\in \mathrm{A} . \mathrm{r}-\{\mathrm{a}\}$) and
A4: $\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{l}, \mathrm{a}\rangle \in \mathrm{r}$
A4: $\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{l}, \mathrm{a}\rangle \in \mathrm{r}$
shows $\langle 1, \operatorname{Infimum}(r, A)\rangle \in r$
shows $\langle 1, \operatorname{Infimum}(r, A)\rangle \in r$
proof -
proof -
let $L=\bigcap a \in A . r-\{a\}$
let $L=\bigcap a \in A . r-\{a\}$
from A4 have $\forall a \in A . l \in r-\{a\}$ using vimage_singleton_iff

```
    from A4 have \(\forall a \in A . l \in r-\{a\}\) using vimage_singleton_iff
```

```
        by simp
    with A2 have l\inL by auto
    with A1 A3 show <l,Infimum(r,A)\rangle\in r
    using Order_ZF_4_L3 Infimum_def by simp
qed
```

If z is an upper bound for A and is greater or equal than any other upper bound, then z is the supremum of A.
lemma Order_ZF_5_L5: assumes A1: antisym(r) and A2: A $\neq 0$ and
A3: $\forall x \in A .\langle x, z\rangle \in r$ and
A4: $\forall \mathrm{y} .(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}) \longrightarrow\langle\mathrm{z}, \mathrm{y}\rangle \in \mathrm{r}$
shows
HasAminimum($\mathrm{r}, \bigcap \mathrm{a} \in \mathrm{A} . \mathrm{r}\{\mathrm{a}\}$)
z = Supremum (r,A)
proof -
let $B=\bigcap a \in A . r\{a\}$
from A2 A3 A4 have $I: z \in B \quad \forall y \in B .\langle z, y\rangle \in r$ by auto
then show HasAminimum ($r, \bigcap a \in A$. $r\{a\}$)
using HasAminimum_def by auto
from A1 I show $z=\operatorname{Supremum}(r, A)$
using Order_ZF_4_L15 Supremum_def by simp
qed
If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:

assumes A1: antisym(r) and A2: A $\neq 0$ and
A3: HasAmaximum (r,A)
shows
HasAminimum ($\mathrm{r}, \bigcap \mathrm{a} \in \mathrm{A} . \mathrm{r}\{\mathrm{a}\}$)
$\operatorname{Maximum}(r, A)=\operatorname{Supremum}(r, A)$
proof -
let $M=\operatorname{Maximum}(r, A)$
from A1 A3 have I: $M \in A$ and II: $\forall x \in A .\langle x, M\rangle \in r$
using Order_ZF_4_L3 by auto
from I have III: $\forall \mathrm{y} .(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}) \longrightarrow\langle\mathrm{M}, \mathrm{y}\rangle \in \mathrm{r}$ by simp
with A1 A2 II show HasAminimum($r, \bigcap a \in A$. $r\{a\}$) by (rule Order_ZF_5_L5)
from A1 A2 II III show M $=\operatorname{Supremum}(r, A)$ by (rule Order_ZF_5_L5)
qed
Properties of supremum of a set for complete relations.
lemma Order_ZF_5_L7:
assumes A1: $r \subseteq X \times X$ and A2: antisym(r) and
A3: r \{is complete\} and
A4: $A \subseteq X \quad A \neq 0$ and $A 5: ~ \exists x \in X . \forall y \in A .\langle y, x\rangle \in r$
shows

```
    Supremum(r,A) \in X
    \forallx\inA. \langlex,Supremum (r,A)\rangle\inr
proof -
    from A5 have IsBoundedAbove(A,r) using IsBoundedAbove_def
        by auto
    with A3 A4 have HasAminimum(r,\bigcapa\inA. r{a})
        using IsComplete_def by simp
    with A2 have Minimum(r,\bigcapa\inA.r{a}) \in ( \bigcapa\inA. r{a} )
        using Order_ZF_4_L4 by simp
    moreover have Minimum(r,\bigcapa\inA. r{a}) = Supremum(r,A)
        using Supremum_def by simp
    ultimately have I: Supremum(r,A) \in ( \bigcapa\inA.r{a})
        by simp
    moreover from A4 obtain a where a\inA by auto
    ultimately have {a,Supremum(r,A)\rangle\in r using Order_ZF_5_L1
        by simp
    with A1 show Supremum(r,A) \in X by auto
    from I show }\forallx\inA.{x,\operatorname{Supremum(r,A)\rangle\inr using Order_ZF_5_L1
        by simp
qed
```

If the relation is a linear order then for any element y smaller than the supremum of a set we can find one element of the set that is greater than y.

```
lemma Order_ZF_5_L8:
    assumes A1: \(\mathrm{r} \subseteq \mathrm{X} \times \mathrm{X}\) and A2: IsLinOrder \((\mathrm{X}, \mathrm{r})\) and
    A3: r \{is complete\} and
    A4: \(A \subseteq X \quad A \neq 0\) and A5: \(\exists x \in X . \forall y \in A .\langle y, x\rangle \in r\) and
    A6: \(\langle y, \operatorname{Supremum}(r, A)\rangle \in r \quad y \neq \operatorname{Supremum}(r, A)\)
    shows \(\exists \mathrm{z} \in \mathrm{A} .\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{r} \wedge \mathrm{y} \neq \mathrm{z}\)
proof -
    from A2 have
        I: antisym(r) and
        II: trans(r) and
        III: r \{is total on\} X
        using IsLinOrder_def by auto
    from A1 A6 have T1: \(\mathrm{y} \in \mathrm{X}\) by auto
    \{ assume A7: \(\forall z \in A .\langle y, z\rangle \notin r \vee y=z\)
        from A4 I have antisym(r) and \(A \neq 0\) by auto
        moreover have \(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\)
        proof
                fix \(x\) assume A8: \(x \in A\)
                with A4 have T2: \(x \in X\) by auto
                from A7 A8 have \(\langle y, x\rangle \notin r \vee y=x\) by simp
                with III T1 T2 show \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\)
    using IsTotal_def total_is_refl refl_def by auto
        qed
        moreover have \(\forall \mathrm{u} .(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{u}\rangle \in \mathrm{r}) \longrightarrow\langle\mathrm{y}, \mathrm{u}\rangle \in \mathrm{r}\)
        proof-
            \{ fix \(u\) assume A9: \(\forall x \in A .\langle x, u\rangle \in r\)
```

```
from A4 A5 have IsBoundedAbove(A,r) and \(A \neq 0\)
        using IsBoundedAbove_def by auto
    with A3 A4 A6 I A9 have
        \(\langle y, \operatorname{Supremum}(r, A)\rangle \in r \wedge\langle\operatorname{Supremum}(r, A), u\rangle \in r\)
        using IsComplete_def Order_ZF_5_L3 by simp
    with II have \(\langle\mathrm{y}, \mathrm{u}\rangle \in \mathrm{r}\) by (rule Fol1_L3)
            \(\}\) then show \(\forall \mathrm{u} .(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{u}\rangle \in \mathrm{r}) \longrightarrow\langle\mathrm{y}, \mathrm{u}\rangle \in \mathrm{r}\)
    by simp
        qed
        ultimately have y \(=\operatorname{Supremum}(r, A)\)
            by (rule Order_ZF_5_L5)
        with A6 have False by simp
    \(\}\) then show \(\exists z \in A .\langle y, z\rangle \in r \wedge y \neq z\) by auto
qed
```


7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Metamath to IsarMathLib is that Metamath uses strict orders (of the < type) while in IsarMathLib we mostly use nonstrict orders (of the \leq type). This doesn't really make any difference, but is annoying as we have to prove many theorems twice. In this section we prove some theorems to make it easier to translate the statements about strict orders to statements about the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the $y=x$ line from the relation.

```
definition
    StrictVersion(r) \equivr - {\langlex,x\rangle. x \in domain(r)}
```

A reformulation of the definition of a strict version of an order.

```
lemma def_of_strict_ver: shows
    <x,y\rangle\in StrictVersion(r) \longleftrightarrow < x,y\rangle\in r ^ x\not=y
    using StrictVersion_def domain_def by auto
```

The next lemma is about the strict version of an antisymmetric relation.

```
lemma strict_of_antisym:
    assumes A1: antisym(r) and A2: \langlea,b\rangle\in StrictVersion(r)
    shows \langleb,a\rangle & StrictVersion(r)
proof -
    { assume A3: \langleb,a\rangle \in StrictVersion(r)
            with A2 have }\langle\textrm{a},\textrm{b}\rangle\in\textrm{r}\mathrm{ and }\langle\textrm{b},\textrm{a}\rangle\in\textrm{r
                using def_of_strict_ver by auto
            with A1 have a=b by (rule Fol1_L4)
            with A2 have False using def_of_strict_ver
                by simp
    } then show \langleb,a\rangle\not\inStrictVersion(r) by auto
qed
```

The strict version of totality.

```
lemma strict_of_tot:
    assumes r {is total on} }X\mathrm{ and }a\inX b\inX a\not=
    shows }\langle\textrm{a},\textrm{b}\rangle\in\operatorname{StrictVersion(r) V \langleb,a\rangle}\in\operatorname{StrictVersion(r)
    using assms IsTotal_def def_of_strict_ver by auto
```

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

```
lemma strict_ans_tot_trich:
    assumes A1: antisym(r) and A2: r {is total on} X
    and A3: a\inX b\inX
    and A4: s = StrictVersion(r)
    shows Exactly_1_of_3_holds(\langlea,b\rangle\in s, a=b,\langleb,a\rangle\in s)
proof -
    let p = \langlea,b\rangle\ins
    let q = a=b
    let r = <b,a\rangle\ins
    from A2 A3 A4 have p V q V r
        using strict_of_tot by auto
    moreover from A1 A4 have p \longrightarrow }\neg\textrm{q}\wedge\wedge\neg
        using def_of_strict_ver strict_of_antisym by simp
    moreover from A4 have q }\longrightarrow\negp\wedge\neg
        using def_of_strict_ver by simp
    moreover from A1 A4 have r }\longrightarrow\negp\wedge\neg
        using def_of_strict_ver strict_of_antisym by auto
    ultimately show Exactly_1_of_3_holds(p, q, r)
        by (rule Fol1_L5)
qed
```

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

```
corollary strict_lin_trich: assumes A1: IsLinOrder(X,r) and
    A2: a\inX b\inX and
    A3: s = StrictVersion(r)
    shows Exactly_1_of_3_holds(\langlea,b\rangle\in s, a=b,\langleb,a\rangle\in s)
    using assms IsLinOrder_def strict_ans_tot_trich by auto
```

For an antisymmetric relation if a pair is in relation then the reversed pair is not in the strict version of the relation.

```
lemma geq_impl_not_less:
    assumes A1: antisym(r) and A2: \langlea,b\rangle\in r
    shows \langleb,a\rangle}\not\in\operatorname{StrictVersion(r)
proof -
    { assume A3: \langleb,a\rangle\in StrictVersion(r)
        with A2 have \langlea,b\rangle\inStrictVersion(r)
            using def_of_strict_ver by auto
        with A1 A3 have False using strict_of_antisym
            by blast
    } then show \langleb,a\rangle}\not\in\operatorname{StrictVersion(r) by auto
```

qed
If an antisymmetric relation is transitive, then the strict version is also transitive, an explicit version strict_of_transB below.

```
lemma strict_of_transA:
    assumes A1: trans(r) and A2: antisym(r) and
    A3: s= StrictVersion(r) and A4: \langlea,b\rangle}\in\textrm{s}\langle\textrm{b},\textrm{c}\rangle\in\textrm{s
    shows }\langle\textrm{a},\textrm{c}\rangle\in\textrm{s
proof -
    from A3 A4 have I: }\langle\textrm{a},\textrm{b}\rangle\in\textrm{r}\wedge\langle\langleb,c\rangle\in
        using def_of_strict_ver by simp
    with A1 have }\langle\textrm{a},\textrm{c}\rangle\in\textrm{r}\mathrm{ by (rule Fol1_L3)
    moreover
    { assume a=c
            with I have }\langle\textrm{a},\textrm{b}\rangle\in\textrm{r}\mathrm{ and }\langle\textrm{b},\textrm{a}\rangle\in\textrm{r}\mathrm{ by auto
            with A2 have a=b by (rule Fol1_L4)
            with A3 A4 have False using def_of_strict_ver by simp
    } then have a\not=c by auto
    ultimately have }\langle\textrm{a},\textrm{c}\rangle\in\mathrm{ StrictVersion(r)
            using def_of_strict_ver by simp
    with A3 show thesis by simp
qed
```

If an antisymmetric relation is transitive, then the strict version is also transitive.

```
lemma strict_of_transB:
    assumes A1: trans(r) and A2: antisym(r)
    shows trans(StrictVersion(r))
proof -
    let s = StrictVersion(r)
    from A1 A2 have
        |x y z. \langlex, y\rangle\in s ^ \y, z\rangle}\in\textrm{s}\longrightarrow\langle\textrm{x},\textrm{z}\rangle\in\textrm{s
        using strict_of_transA by blast
    then show trans(StrictVersion(r)) by (rule Fol1_L2)
qed
```

The next lemma provides a condition that is satisfied by the strict version of a relation if the original relation is a complete linear order.

```
lemma strict_of_compl:
    assumes A1: \(r \subseteq X \times X\) and A2: IsLinOrder ( \(\mathrm{X}, \mathrm{r}\) ) and
    A3: \(r\) \{is complete\} and
    A4: \(A \subseteq X \quad A \neq 0\) and \(A 5: s=S t r i c t V e r s i o n(r)\) and
    A6: \(\exists \mathrm{u} \in \mathrm{X} . \forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{y}, \mathrm{u}\rangle \in \mathrm{s}\)
    shows
    \(\exists \mathrm{x} \in \mathrm{X} .(\forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \notin \mathrm{s}) \wedge(\forall \mathrm{y} \in \mathrm{X} .\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{s} \longrightarrow(\exists \mathrm{z} \in \mathrm{A} .\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{s}))\)
proof -
    let \(\mathrm{x}=\operatorname{Supremum}(\mathrm{r}, \mathrm{A})\)
    from A2 have I: antisym(r) using IsLinOrder_def
```

```
    by simp
    moreover from A5 A6 have }\exists\textrm{u}\in\textrm{X}.\forall\textrm{y}\in\textrm{A}.\langley,u\rangle\in\textrm{r
    using def_of_strict_ver by auto
    moreover note A1 A3 A4
    ultimately have II: x }\in\textrm{X}\quad\forall\textrm{y}\in\textrm{A}.\langley,x\rangle\in\textrm{r
        using Order_ZF_5_L7 by auto
    then have III: \existsx\inX. }\forall\textrm{y}\in\textrm{A}.\langle\textrm{y},\textrm{x}\rangle\in\textrm{r}\mathrm{ by auto
    from A5 I II have x }\inX\quadX\quad\forally\inA.\langlex,y\rangle\not\in
    using geq_impl_not_less by auto
    moreover from A1 A2 A3 A4 A5 III have
        \forally\inX. \y,x\rangle\ins \longrightarrow ( 
        using def_of_strict_ver Order_ZF_5_L8 by simp
    ultimately show
        \existsx\inX. ( }\forall\textrm{y}\in\textrm{A}.\langle\textrm{x},\textrm{y}\rangle\not\in\textrm{s})\wedge(\forall\textrm{y}\in\textrm{X}.\langley,x\rangle\in\textrm{s}\longrightarrow(\exists\textrm{z}\in\textrm{A}.\langley,z\rangle
s))
    by auto
qed
```

Strict version of a relation on a set is a relation on that set.

```
lemma strict_ver_rel: assumes A1: r \subseteq A }\times\textrm{A
    shows StrictVersion(r) \subseteqA\timesA
    using assms StrictVersion_def by auto
```

end

8 Order on natural numbers

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF
begin
This theory proves that \leq is a linear order on \mathbb{N}. \leq is defined in Isabelle's Nat theory, and linear order is defined in Order_ZF theory. Contributed by Seo Sanghyeon.

8.1 Order on natural numbers

This is the only section in this theory.
To prove that \leq is a total order, we use a result on ordinals.

```
lemma NatOrder_ZF_1_L1:
    assumes a\innat and b\innat
    shows a 
proof -
    from assms have I: Ord(a) ^ Ord(b)
        using nat_into_Ord by auto
    then have a }\in\textrm{b}\vee\textrm{a}=\textrm{b}\vee\textrm{b}\in\textrm{a
        using Ord_linear by simp
```

```
    with I have a < b V a = b V b < a
        using ltI by auto
    with I show a 
        using le_iff by auto
qed
\leq is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.
lemma NatOrder_ZF_1_L2:
    shows
    antisym(Le)
    trans(Le)
    Le {is total on} nat
    IsLinOrder(nat,Le)
proof -
    show antisym(Le)
        using antisym_def Le_def le_anti_sym by auto
    moreover show trans(Le)
        using trans_def Le_def le_trans by blast
    moreover show Le {is total on} nat
        using IsTotal_def Le_def NatOrder_ZF_1_L1 by simp
    ultimately show IsLinOrder(nat,Le)
        using IsLinOrder_def by simp
qed
The order on natural numbers is linear on every natural number. Recall that each natural number is a subset of the set of all natural numbers (as well as a member).
```

```
lemma natord_lin_on_each_nat:
```

lemma natord_lin_on_each_nat:
assumes A1: n \in nat shows IsLinOrder(n,Le)
assumes A1: n \in nat shows IsLinOrder(n,Le)
proof -
proof -
from A1 have n \subseteq nat using nat_subset_nat
from A1 have n \subseteq nat using nat_subset_nat
by simp
by simp
then show thesis using NatOrder_ZF_1_L2 ord_linear_subset
then show thesis using NatOrder_ZF_1_L2 ord_linear_subset
by blast
by blast
qed
qed
end

```
end
```


9 Functions - introduction

theory func1 imports ZF.func Fol1 ZF1
begin
This theory covers basic properties of function spaces. A set of functions with domain X and values in the set Y is denoted in Isabelle as $X \rightarrow Y$. It just happens that the colon ":" is a synonym of the set membership symbol
\in in Isabelle/ZF so we can write $f: X \rightarrow Y$ instead of $f \in X \rightarrow Y$. This is the only case that we use the colon instead of the regular set membership symbol.

9.1 Properties of functions, function spaces and (inverse) images.

Functions in ZF are sets of pairs. This means that if $f: X \rightarrow Y$ then $f \subseteq X \times Y$. This section is mostly about consequences of this understanding of the notion of function.

We define the notion of function that preserves a collection here. Given two collection of sets a function preserves the collections if the inverse image of sets in one collection belongs to the second one. This notion does not have a name in romantic math. It is used to define continuous functions in Topology_ZF_2 theory. We define it here so that we can use it for other purposes, like defining measurable functions. Recall that $f-(A)$ means the inverse image of the set A.

```
definition
    PresColl(f,S,T) \equiv }\forall\textrm{A}\in\textrm{T}.\textrm{f}-(\textrm{A})\in\textrm{S
```

A definition that allows to get the first factor of the domain of a binary function $f: X \times Y \rightarrow Z$.

```
definition
    fstdom(f) \equiv domain(domain(f))
```

If a function maps A into another set, then A is the domain of the function.

```
lemma func1_1_L1: assumes f:A }->\mathrm{ C shows domain(f) = A
    using assms domain_of_fun by simp
```

Standard Isabelle defines a function(f) predicate. The next lemma shows that our functions satisfy that predicate. It is a special version of Isabelle's fun_is_function.

```
lemma fun_is_fun: assumes f:X }->\textrm{Y}\mathrm{ shows function(f)
    using assms fun_is_function by simp
```

A lemma explains what fstdom is for.

```
lemma fstdomdef: assumes A1: f: X }\times\textrm{Y}->\textrm{Z}\mathrm{ and A2: Y}\not=
    shows fstdom(f) = X
proof -
    from A1 have domain(f) = X X Y using func1_1_L1
            by simp
        with A2 show fstdom(f) = X unfolding fstdom_def by auto
qed
```

A version of the Pi_type lemma from the standard Isabelle/ZF library.

```
lemma func1_1_L1A: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: }\forallx\inX. f(x) \in Z
    shows f:X->Z
proof -
    { fix x assume }x\in
            with A2 have f(x) \in Z by simp }
    with A1 show f:X }->\textrm{Z}\mathrm{ by (rule Pi_type)
qed
A variant of func1_1_L1A.
lemma func1_1_L1B: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: Y¢Z
    shows f:X->Z
proof -
    from A1 A2 have }\forallx\inX. f(x) \in Z
            using apply_funtype by auto
    with A1 show f:X }->\textrm{Z}\mathrm{ using func1_1_L1A by blast
qed
```

There is a value for each argument.

```
lemma func1_1_L2: assumes A1: \(f: X \rightarrow Y \quad x \in X\)
    shows \(\exists \mathrm{y} \in \mathrm{Y} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{f}\)
proof-
    from A1 have \(f(x) \in Y\) using apply_type by simp
    moreover from A1 have \(\langle x, f(x)\rangle \in f\) using apply_Pair by simp
    ultimately show thesis by auto
qed
```

The inverse image is the image of converse. True for relations as well.

```
lemma vimage_converse: shows r-(A) = converse(r)(A)
    using vimage_iff image_iff converse_iff by auto
```

The image is the inverse image of converse.

```
lemma image_converse: shows converse(r)-(A) = r(A)
    using vimage_iff image_iff converse_iff by auto
```

The inverse image by a composition is the composition of inverse images.

```
lemma vimage_comp: shows (r O s)-(A) = s-(r-(A))
    using vimage_converse converse_comp image_comp image_converse by simp
```

A version of vimage_comp for three functions.

```
lemma vimage_comp3: shows (r O s O t)-(A) = t-(s-(r-(A)))
    using vimage_comp by simp
```

Inverse image of any set is contained in the domain.

```
lemma func1_1_L3: assumes A1: f:X }->\textrm{Y}\mathrm{ shows f-(D) }\subseteq
proof-
    have }\forallx. x\inf-(D)\longrightarrowx\in domain(f
            using vimage_iff domain_iff by auto
        with A1 have }\forall\textrm{x}.(\textrm{x}\in\textrm{f}-(\textrm{D}))\longrightarrow(\textrm{x}\in\textrm{X})\mathrm{ using func1_1_L1 by simp
```

then show thesis by auto
qed
The inverse image of the range is the domain.

```
lemma func1_1_L4: assumes f:X }->\textrm{Y}\mathrm{ shows f-(Y) = X
    using assms func1_1_L3 func1_1_L2 vimage_iff by blast
```

The arguments belongs to the domain and values to the range.

```
lemma func1_1_L5:
    assumes A1: \langlex,y\rangle\inf and A2: f:X }->\textrm{Y
    shows }x\inX\wedgey\in
proof
    from A1 A2 show x\inX using apply_iff by simp
    with A2 have f(x)\in Y using apply_type by simp
    with A1 A2 show y\inY using apply_iff by simp
qed
```

Function is a subset of cartesian product.

```
lemma fun_subset_prod: assumes A1: f:X->Y shows f \subseteq X }\times\textrm{Y
proof
    fix p assume p f f
    with A1 have \existsx\inX. p = \langlex, f(x)\rangle
        using Pi_memberD by simp
    then obtain x where I: p = <x, f(x)\rangle
        by auto
    with A1 }\langlep\in\textrm{f}\rangle\mathrm{ have }x\inX\wedgef(x)\in
            using func1_1_L5 by blast
    with I show p \in X XY by auto
qed
```

The (argument, value) pair belongs to the graph of the function.

```
lemma func1_1_L5A:
    assumes A1: f:X }->Y\quadx\inX\quady=f(x
    shows }\langle\textrm{x},\textrm{y}\rangle\in\textrm{f}\quad\textrm{y}\in\mathrm{ range(f)
proof -
    from A1 show }\langle\textrm{x},\textrm{y}\rangle\in\textrm{f}\mathrm{ using apply_Pair by simp
    then show y }\in\mathrm{ range(f) using rangeI by simp
qed
```

The next theorem illustrates the meaning of the concept of function in ZF.

```
theorem fun_is_set_of_pairs: assumes A1: f:X X Y
    shows f = {\langlex, f(x)\rangle. x \in X}
proof
    from A1 show {\langlex, f(x)\rangle. x \in X} \subseteq f using func1_1_L5A
        by auto
next
    { fix p assume p f f
        with A1 have p \in X XY using fun_subset_prod
```

```
            by auto
        with A1 {p\inf\rangle have p f {{x, f(x)\rangle. x \in X}
            using apply_equality by auto
    } thus f \subseteq{{\langlex, f(x)\rangle. x \in X} by auto
qed
```

The range of function that maps X into Y is contained in Y.

```
lemma func1_1_L5B:
    assumes A1: f:X }->\textrm{Y}\mathrm{ shows range(f) }\subseteq
proof
    fix y assume y \in range(f)
    then obtain x where \langlex,y\rangle\inf
            using range_def converse_def domain_def by auto
    with A1 show y\inY using func1_1_L5 by blast
qed
```

The image of any set is contained in the range.

```
lemma func1_1_L6: assumes A1: f:X }->\textrm{Y
    shows f(B)\subseteq range(f) and f(B)\subseteqY
proof -
    show f(B) \subseteq range(f) using image_iff rangeI by auto
    with A1 show f(B) \subseteq Y using func1_1_L5B by blast
qed
```

The inverse image of any set is contained in the domain.

```
lemma func1_1_L6A: assumes A1: f:X }->\textrm{Y}\mathrm{ shows f-(A)}\subseteq
proof
    fix x
    assume A2: x\inf-(A) then obtain y where }\langlex,y\rangle\in
        using vimage_iff by auto
    with A1 show }x\inX using func1_1_L5 by fas
qed
```

Image of a greater set is greater.
lemma func1_1_L8: assumes A1: $A \subseteq B$ shows $f(A) \subseteq f(B)$ using assms image_Un by auto

A set is contained in the the inverse image of its image. There is similar theorem in equalities.thy (function_image_vimage) which shows that the image of inverse image of a set is contained in the set.

```
lemma func1_1_L9: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: A¢X
    shows A\subseteqf-(f(A))
proof -
    from A1 A2 have }\forallx\inA. \langlex,f(x)\rangle\inf using apply_Pair by aut
    then show thesis using image_iff by auto
qed
```

The inverse image of the image of the domain is the domain.

```
lemma inv_im_dom: assumes A1: f:X }->\textrm{Y}\mathrm{ shows f-(f(X)) = X
proof
    from A1 show f-(f(X)) \subseteqX using func1_1_L3 by simp
    from A1 show X \subseteqf-(f(X)) using func1_1_L9 by simp
qed
```

A technical lemma needed to make the func1_1_L11 proof more clear.

```
lemma func1_1_L10:
    assumes A1: f \subseteq X X Y and A2: \exists!y. (y\inY ^ <x,y\rangle\in f)
    shows \exists!y. \langlex,y\rangle\inf
proof
    from A2 show \existsy. \langlex, y\rangle\inf by auto
    fix y n assume \langlex,y\rangle\inf and \langlex,n\rangle\inf
    with A1 A2 show y=n by auto
qed
```

If $f \subseteq X \times Y$ and for every $x \in X$ there is exactly one $y \in Y$ such that $(x, y) \in f$ then f maps X to Y.
lemma func1_1_L11:
assumes $\mathrm{f} \subseteq \mathrm{X} \times \mathrm{Y}$ and $\forall \mathrm{x} \in \mathrm{X} . \exists \mathrm{y} \mathrm{y} . \mathrm{y} \in \mathrm{Y} \wedge\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{f}$
shows $f: X \rightarrow Y$ using assms func1_1_L10 Pi_iff_old by simp
A set defined by a lambda-type expression is a fuction. There is a similar lemma in func.thy, but I had problems with lambda expressions syntax so I could not apply it. This lemma is a workaround for this. Besides, lambda expressions are not readable.

```
lemma func1_1_L11A: assumes A1: \(\forall x \in X . b(x) \in Y\)
        shows \(\{\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y} . \mathrm{b}(\mathrm{x})=\mathrm{y}\}: \mathrm{X} \rightarrow \mathrm{Y}\)
proof -
        let \(f=\{\langle x, y\rangle \in X \times Y\). \(b(x)=y\}\)
        have \(f \subseteq X \times Y\) by auto
        moreover have \(\forall x \in X . \exists!y . y \in Y \wedge\langle x, y\rangle \in f\)
        proof
            fix \(x\) assume A2: \(x \in X\)
            show \(\exists!\mathrm{y} . \mathrm{y} \in \mathrm{Y} \wedge\langle\mathrm{x}, \mathrm{y}\rangle \in\{\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y} . \mathrm{b}(\mathrm{x})=\mathrm{y}\}\)
            proof
                from A2 A1 show
                    \(\exists \mathrm{y} . \mathrm{y} \in \mathrm{Y} \wedge\langle\mathrm{x}, \mathrm{y}\rangle \in\{\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y} . \mathrm{b}(\mathrm{x})=\mathrm{y}\}\)
    by simp
        next
            fix y y1
            assume \(y \in Y \wedge\langle x, y\rangle \in\{\langle x, y\rangle \in X \times Y\). \(b(x)=y\}\)
    and \(\mathrm{y} 1 \in \mathrm{Y} \wedge\langle\mathrm{x}, \mathrm{y} 1\rangle \in\{\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y} \cdot \mathrm{b}(\mathrm{x})=\mathrm{y}\}\)
                then show \(\mathrm{y}=\mathrm{y} 1\) by simp
        qed
    qed
    ultimately show \(\{\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X} \times \mathrm{Y} . \mathrm{b}(\mathrm{x})=\mathrm{y}\}: \mathrm{X} \rightarrow \mathrm{Y}\)
        using func1_1_L11 by simp
```


qed

The next lemma will replace func1_1_L11A one day.

```
lemma ZF_fun_from_total: assumes A1: }\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})\in\textrm{Y
    shows {\langlex,b(x)\rangle. x\inX} : X }->\textrm{Y
proof -
    let f = {\langlex,b(x)\rangle. x\inX}
    { fix x assume A2: x\inX
        have \exists!y. y\inY ^ <x, y\rangle}\in\textrm{f
        proof
    from A1 A2 show \existsy. y\inY ^ <x, y\rangle\inf
    by simp
        next fix y y1 assume y\inY ^ <x, y\rangle\inf
    and y1\inY ^ <x, y1\rangle\inf
                then show y = y1 by simp
            qed
    } then have }\forall\textrm{x}\in\textrm{X}.\exists!\textrm{y}.\textrm{y}\in\textrm{Y}\wedge\\langle\textrm{x},\textrm{y}\rangle\in\textrm{f
        by simp
    moreover from A1 have f \subseteq X }\times\mathrm{ Y by auto
    ultimately show thesis using func1_1_L11
        by simp
qed
```

The value of a function defined by a meta-function is this meta-function.

```
lemma func1_1_L11B:
    assumes A1: \(f: X \rightarrow Y \quad x \in X\)
    and \(A 2: f=\{\langle x, y\rangle \in X \times Y\). \(b(x)=y\}\)
    shows \(f(x)=b(x)\)
proof -
    from A1 have \(\langle x, f(x)\rangle \in f\) using apply_iff by simp
    with A2 show thesis by simp
qed
```

The next lemma will replace func1_1_L11B one day.

```
lemma ZF_fun_from_tot_val:
    assumes A1: \(f: X \rightarrow Y \quad x \in X\)
    and \(A 2: f=\{\langle x, b(x)\rangle . x \in X\}\)
    shows \(f(x)=b(x)\)
proof -
    from A1 have \(\langle x, f(x)\rangle \in f\) using apply_iff by simp
        with A2 show thesis by simp
qed
```

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

```
lemma ZF_fun_from_tot_val0:
    assumes f:X->Y and f = {\langlex,b(x)\rangle. x\inX}
    shows }\forallx\inX.f(x)=b(x
    using assms ZF_fun_from_tot_val by simp
```

Another way of expressing that lambda expression is a function.

```
lemma lam_is_fun_range: assumes f={\langlex,g(x)\rangle. x\inX}
    shows f:X }->\mathrm{ range(f)
proof -
    have }\forall\textrm{x}\in\textrm{X}.\textrm{g}(\textrm{x})\in\operatorname{range({\langlex,g(x)\rangle. x\inX}) unfolding range_def
        by auto
    then have {\langlex,g(x)\rangle. x\inX} : X }->\mathrm{ range({{x,g(x) |. x XX}) by (rule ZF_fun_from_total)
    with assms show thesis by auto
qed
```

Yet another way of expressing value of a function.

```
lemma ZF_fun_from_tot_val1:
    assumes }x\inX\mathrm{ shows {\x,b(x)\. x X X ( }\textrm{x})=\textrm{b}(\textrm{x}
proof -
    let f = {\langlex,b(x)\rangle. x\inX}
    have f:X }->\mathrm{ range(f) using lam_is_fun_range by simp
    with assms show thesis using ZF_fun_from_tot_val0 by simp
qed
```

We can extend a function by specifying its values on a set disjoint with the domain.

```
lemma func1_1_L11C: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: }\forall\textrm{x}\in\textrm{A}.\textrm{b}(\textrm{x})\in\textrm{B
    and A3: X\capA = 0 and Dg: g = f U {\langlex,b(x)\rangle. x\inA}
    shows
    g : X\cupA }->\textrm{Y}\cup
    \forallx\inX. g(x) = f(x)
    |x\inA.g(x) = b(x)
proof -
    let h = {\langlex,b(x)\rangle. x\inA}
    from A1 A2 A3 have
        I: f:X }->\textrm{Y}\mathrm{ h : A }->\textrm{B}\quad\textrm{X}\cap\textrm{A}=
        using ZF_fun_from_total by auto
    then have f\cuph : X AA -> Y\cupB
            by (rule fun_disjoint_Un)
    with Dg show g : X\cupA }->\mathrm{ Y }\cupB\mathrm{ by simp
    { fix x assume A4: x\inA
            with A1 A3 have (f\cuph) (x) = h(x)
                using func1_1_L1 fun_disjoint_apply2
                by blast
            moreover from I A4 have h(x) = b(x)
                using ZF_fun_from_tot_val by simp
            ultimately have (f\cuph)(x) = b(x)
                by simp
    } with Dg show }\forall\textrm{x}\in\textrm{A}.\textrm{g}(\textrm{x})=\textrm{b}(\textrm{x})\mathrm{ by simp
    { fix x assume A5: }x\in
            with A3 I have x }\not\in\mathrm{ domain(h)
                using func1_1_L1 by auto
            then have (f\cuph) (x) = f(x)
```

```
            using fun_disjoint_apply1 by simp
    } with Dg show }\forallx\inX.g(x)=f(x) by sim
qed
```

We can extend a function by specifying its value at a point that does not belong to the domain.

```
lemma func1_1_L11D: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: a }\not\in\textrm{X
    and Dg: g = f U {\langlea,b\rangle}
    shows
    g : X\cup{a} }->\textrm{Y}\cup{b
    \forallx\inX. g(x) = f(x)
    g(a) = b
proof -
    let h = {\langlea,b\rangle}
    from A1 A2 Dg have I:
        f:X->Y \forallx\in{a}. b\in{b} X\cap{a}=0 g=f U {\langlex,b\rangle. x\in{a}}
        by auto
    then show g : X\cup{a} }->\textrm{Y}\cup{b
        by (rule func1_1_L11C)
    from I show }\forallx\inX.g(x)=f(x
        by (rule func1_1_L11C)
    from I have }\forallx\in{a}.g(x)=
        by (rule func1_1_L11C)
    then show g(a) = b by auto
qed
```

A technical lemma about extending a function both by defining on a set disjoint with the domain and on a point that does not belong to any of those sets.

```
lemma func1_1_L11E:
    assumes A1: f:X }->\textrm{Y}\mathrm{ and
    A2: }\forall\textrm{x}\in\textrm{A}.\textrm{b}(\textrm{x})\in\textrm{B}\mathrm{ and
    A3: X\capA = 0 and A4: a\not\in X\cupA
    and Dg:g = f \cup {\langlex,b(x)\rangle. x\inA} \cup{\langlea,c\rangle}
    shows
    g : X }\cupA\cup{a} -> Y\cupB\cup{c
    \forallx\inX. g(x) = f(x)
    x}\in\textrm{A}.\textrm{g}(\textrm{x})=\textrm{b}(\textrm{x}
    g(a) = c
proof -
    let h = f U {\langlex,b(x)\rangle. x\inA}
    from assms show g : X\cupA\cup{a} }->\textrm{Y}\cupB\cup{c
        using func1_1_L11C func1_1_L11D by simp
    from A1 A2 A3 have I:
        f:X->Y }\forall\textrm{x}\in\textrm{A}.\textrm{b}(\textrm{x})\in\textrm{B}\quad\textrm{X}\capA=0\quadh=f \cup{{\langlex,b(x)\rangle. x\inA
        by auto
    from assms have
        II: h : X\cupA }->\textrm{Y}\cupB\quad\textrm{a}\not=\textrm{X}\cupA\quadg=h\cup{\langlea,c\rangle
        using func1_1_L11C by auto
```

```
    then have III: }\forall\textrm{x}\in\textrm{X}\cupA.g(x)=h(x) by (rule func1_1_L11D)
    moreover from I have }\forallx\inX.h(x)=f(x
        by (rule func1_1_L11C)
    ultimately show }\forallx\inX.g(x)=f(x) by sim
    from I have }\forall\textrm{x}\in\textrm{A}.\textrm{h}(\textrm{x})=\textrm{b}(\textrm{x})\mathrm{ by (rule func1_1_L11C)
    with III show }\forall\textrm{x}\in\textrm{A}.\textrm{g}(\textrm{x})=\textrm{b}(\textrm{x})\mathrm{ by simp
    from II show g(a) = c by (rule func1_1_L11D)
qed
```

A way of defining a function on a union of two possibly overlapping sets. We decompose the union into two differences and the intersection and define a function separately on each part.

```
lemma fun_union_overlap: assumes \(\forall x \in A \cap B . h(x) \in Y \quad \forall x \in A-B . f(x) \in\)
Y \(\forall x \in B-A . g(x) \in Y\)
    shows \(\{\langle x\), if \(x \in A-B\) then \(f(x)\) else if \(x \in B-A\) then \(g(x)\) else \(h(x)\rangle\). \(x\)
\(\in A \cup B\}: A \cup B \rightarrow Y\)
proof -
    let \(F=\{\langle x\), if \(x \in A-B\) then \(f(x)\) else if \(x \in B-A\) then \(g(x)\) else \(h(x)\rangle . x\)
\(\in \mathrm{A} \cap \mathrm{B}\}\)
    from assms have \(\forall x \in A \cup B\). (if \(x \in A-B\) then \(f(x)\) else if \(x \in B-A\) then \(g(x)\)
else \(h(x)) \in Y\)
        by auto
    then show thesis by (rule ZF_fun_from_total)
qed
Inverse image of intersection is the intersection of inverse images.
```

```
lemma invim_inter_inter_invim: assumes f:X }->\textrm{Y
```

lemma invim_inter_inter_invim: assumes f:X }->\textrm{Y
shows f-(A\capB) = f-(A) \cap f-(B)
shows f-(A\capB) = f-(A) \cap f-(B)
using assms fun_is_fun function_vimage_Int by simp

```
    using assms fun_is_fun function_vimage_Int by simp
```

The inverse image of an intersection of a nonempty collection of sets is the intersection of the inverse images. This generalizes invim_inter_inter_invim which is proven for the case of two sets.

```
lemma func1_1_L12:
    assumes A1: B \subseteq Pow(Y) and A2: B}=0\mathrm{ and A3: f:X }->\textrm{Y
    shows f-(\bigcapB) = (\bigcapU\inB. f-(U))
proof
    from A2 show f-(\bigcapB)\subseteq(\bigcapU\inB. f-(U)) by blast
    show (\bigcapU\inB. f-(U)) \subseteqf-(\bigcapB)
    proof
        fix x assume A4: x }\in(\bigcapU\inB. f-(U)
        from A3 have }\forall\textrm{U}\in\textrm{B}.f-(U)\subseteqX using func1_1_L6A by simp
        with A4 have }\forallU\inB. x\inX by aut
        with A2 have }x\inX\mathrm{ by auto
        with A3 have }\exists\textrm{ly.}\langlex,y\rangle\inf using Pi_iff_old by sim
        with A2 A4 show }x\inf-(\bigcapB) using vimage_iff by blas
    qed
qed
```

The inverse image of a set does not change when we intersect the set with the image of the domain.

```
lemma inv_im_inter_im: assumes f:X }->\textrm{Y
    shows f-(A \cap f(X)) = f-(A)
    using assms invim_inter_inter_invim inv_im_dom func1_1_L6A
    by blast
```

If the inverse image of a set is not empty, then the set is not empty. Proof by contradiction.
lemma func1_1_L13: assumes A1:f-(A) $\neq 0$ shows $A \neq 0$
using assms by auto
If the image of a set is not empty, then the set is not empty. Proof by contradiction.
lemma func1_1_L13A: assumes A1: $f(A) \neq 0$ shows $A \neq 0$ using assms by auto

What is the inverse image of a singleton?

```
lemma func1_1_L14: assumes f f X }->\textrm{Y
    shows f-({y}) = {x\inX. f(x) = y}
    using assms func1_1_L6A vimage_singleton_iff apply_iff by auto
```

A lemma that can be used instead fun_extension_iff to show that two functions are equal

```
lemma func_eq: assumes f: X }->\textrm{Y}\mathrm{ g: X }->\textrm{Z
    and }\forallx\inX.f(x)=g(x
    shows f = g using assms fun_extension_iff by simp
```

Function defined on a singleton is a single pair.

```
lemma func_singleton_pair: assumes A1: f : \{a\} \(\rightarrow\) X
    shows \(f=\{\langle a, f(a)\rangle\}\)
proof -
    let \(g=\{\langle a, f(a)\rangle\}\)
    note A1
    moreover have \(\mathrm{g}:\{\mathrm{a}\} \rightarrow\{\mathrm{f}(\mathrm{a})\}\) using singleton_fun by simp
    moreover have \(\forall x \in\{a\}\). \(f(x)=g(x)\) using singleton_apply
        by simp
    ultimately show \(f=g\) by (rule func_eq)
qed
```

A single pair is a function on a singleton. This is similar to singleton_fun from standard Isabelle/ZF.
lemma pair_func_singleton: assumes A1: y $\in Y$
shows $\{\langle\mathrm{x}, \mathrm{y}\rangle\}:\{\mathrm{x}\} \rightarrow \mathrm{Y}$
proof -
have $\{\langle\mathrm{x}, \mathrm{y}\rangle\}:\{\mathrm{x}\} \rightarrow\{\mathrm{y}\}$ using singleton_fun by simp moreover from A1 have $\{y\} \subseteq Y$ by simp

```
    ultimately show {\langlex,y\rangle} : {x} -> Y
    by (rule func1_1_L1B)
qed
```

The value of a pair on the first element is the second one.

```
lemma pair_val: shows {\langlex,y\rangle}(x)= y
    using singleton_fun apply_equality by simp
```

A more familiar definition of inverse image.

```
lemma func1_1_L15: assumes A1: f:X \(\rightarrow \mathrm{Y}\)
    shows \(f-(A)=\{x \in X . f(x) \in A\}\)
proof -
    have \(f-(A)=(\bigcup y \in A . f-\{y\})\)
            by (rule vimage_eq_UN)
    with A1 show thesis using func1_1_L14 by auto
qed
```

A more familiar definition of image.

```
lemma func_imagedef: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: A}\
    shows f(A) = {f(x). x f A}
proof
    from A1 show f(A) \subseteq{f(x). x \in A}
            using image_iff apply_iff by auto
    show {f(x). x \in A} \subseteqf(A)
    proof
        fix y assume y \in {f(x). x \in A}
        then obtain }x\mathrm{ where }x\inA\mathrm{ and }y=f(x
            by auto
        with A1 A2 have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{f}\mathrm{ using apply_iff by force
        with A1 A2 }\langlex\inA\rangle\mathrm{ show }y\inf(A) using image_iff by aut
    qed
qed
```

The image of a set contained in domain under identity is the same set.

```
lemma image_id_same: assumes A\subseteqX shows id(X)(A) = A
    using assms id_type id_conv by auto
```

The inverse image of a set contained in domain under identity is the same set.
lemma vimage_id_same: assumes $A \subseteq X$ shows $i d(X)-(A)=A$
using assms id_type id_conv by auto
What is the image of a singleton?
lemma singleton_image:
assumes $f \in X \rightarrow Y$ and $x \in X$
shows $f\{x\}=\{f(x)\}$
using assms func_imagedef by auto

If an element of the domain of a function belongs to a set, then its value belongs to the imgage of that set.

```
lemma func1_1_L15D: assumes f:X }->\textrm{Y}\quad\textrm{x}\in\textrm{A}\quad\textrm{A}\subseteq
    shows f(x) \in f(A)
    using assms func_imagedef by auto
```

Range is the image of the domain. Isabelle/ZF defines range (f) as domain(converse(f)), and that's why we have something to prove here.

```
lemma range_image_domain:
    assumes A1: f:X }->\textrm{Y}\mathrm{ shows f(X) = range(f)
proof
    show f(X) \subseteq range(f) using image_def by auto
    { fix y assume y \in range(f)
        then obtain x where }\langle\textrm{y},\textrm{x}\rangle\in\mathrm{ converse(f) by auto
        with A1 have }x\inX using func1_1_L5 by blast
        with A1 have f(x) f f(X) using func_imagedef
            by auto
        with A1 \langle\y,x\rangle\in converse(f)\rangle have y \in f(X)
            using apply_equality by auto
    } then show range(f) \subseteqf(X) by auto
qed
```

The difference of images is contained in the image of difference.

```
lemma diff_image_diff: assumes A1: f: X }->\textrm{Y}\mathrm{ and A2: A}\\
    shows f(X) - f(A) \subseteqf(X-A)
proof
    fix y assume y f f(X) - f(A)
    hence y }\inf(X)\mathrm{ and I: y }\not\inf(A) by aut
    with A1 obtain x where x\inX and II: y = f(x)
        using func_imagedef by auto
    with A1 A2 I have x\not\inA
        using func1_1_L15D by auto
    with {x\inX\rangle have x }\inX-A X-A\subseteqX by aut
    with A1 II show y }\inf(X-A
        using func1_1_L15D by simp
qed
```

The image of an intersection is contained in the intersection of the images.

```
lemma image_of_Inter: assumes A1: f:X }->\textrm{Y}\mathrm{ and
    A2: I\not=0 and A3: }\foralli\inI. P(i) \subseteqX
    shows f(\bigcapi\inI. P(i))\subseteq(\bigcapi\inI. f(P(i)) )
proof
    fix y assume A4: y f f(\bigcapi\inI. P(i))
    from A1 A2 A3 have f(\bigcapi\inI. P(i)) = {f(x). x f (\bigcapi\inI. P(i) )}
        using ZF1_1_L7 func_imagedef by simp
    with A4 obtain }x\mathrm{ where }x\in(\bigcapi\inI.P(i)) and y = f(x
        by auto
    with A1 A2 A3 show y }\in(\bigcapi\inI. f(P(i)) ) using func_imagede
```


by auto
 qed

The image of union is the union of images.

```
lemma image_of_Union: assumes A1: f:X->Y and A2: }\forall\textrm{A}\in\textrm{M}.\textrm{A}\subseteq
    shows }f(\bigcup\M)=\bigcup{f(A). A\inM
proof
    from A2 have \M \subseteq X by auto
    { fix y assume y \in f(UM)
        with A1 \M \subseteq X obtain x where x\in\bigcupM and I: y = f(x)
            using func_imagedef by auto
            then obtain A where }A\inM\mathrm{ and }x\inA\mathrm{ by auto
            with assms I have y }\in\bigcup{{(A). A\inM} using func_imagedef by aut
    } thus f(UM)\subseteq\bigcup{f(A). A\inM} by auto
    { fix y assume y }\in\bigcup{{(A). A\inM
                then obtain A where A\inM and y f f(A) by auto
                with assms \UM\subseteqX` have y \in f(\bigcupM) using func_imagedef by auto
    } thus \{f(A). A\inM} \subseteqf(\bigcupM) by auto
qed
```

The image of a nonempty subset of domain is nonempty.

```
lemma func1_1_L15A:
    assumes A1: f: X }->\textrm{Y}\mathrm{ and A2: A¢X and A3: A}=
    shows f(A) f= 0
proof -
    from A3 obtain x where }x\inA\mathrm{ by auto
    with A1 A2 have f(x) \in f(A)
            using func_imagedef by auto
    then show f(A) f 0 by auto
qed
```

The next lemma allows to prove statements about the values in the domain of a function given a statement about values in the range.

```
lemma func1_1_L15B:
    assumes f:X->Y and A\subseteqX and }\forally\inf(A). P(y
    shows }\forallx\inA.P(f(x)
    using assms func_imagedef by simp
```

An image of an image is the image of a composition.

```
lemma func1_1_L15C: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: g:Y }->\textrm{Z
    and A3: A\subseteqX
    shows
    g(f(A)) = {g(f(x)). x\inA}
    g(f(A)) = (g O f)(A)
proof -
    from A1 A3 have {f(x). x\inA} \subseteq Y
            using apply_funtype by auto
    with A2 have g{f(x). x\inA} = {g(f(x)). x\inA}
```

using func_imagedef by auto
with A1 A3 show I: $g(f(A))=\{g(f(x)) . x \in A\}$ using func_imagedef by simp
from A1 A3 have $\forall x \in A$. ($g \quad \mathrm{f}$) (x) $=g(f(x))$ using comp_fun_apply by auto
with I have $g(f(A))=\{(g \quad f)(x) . x \in A\}$ by simp
moreover from A1 A2 A3 have (g (f) $(A)=\{(g \circ f)(x) . x \in A\}$ using comp_fun func_imagedef by blast
ultimately show $g(f(A))=(g \circ f)(A)$ by simp
qed
What is the image of a set defined by a meta-fuction?

```
lemma func1_1_L17:
    assumes A1: f \in X }->\textrm{Y}\mathrm{ and A2: }\forall\textrm{x}\in\textrm{A}.\textrm{b}(\textrm{x})\in\textrm{X
    shows f({b(x). x\inA}) = {f(b(x)). x\inA}
proof -
    from A2 have {b(x). x\inA} \subseteqX by auto
    with A1 show thesis using func_imagedef by auto
qed
```

What are the values of composition of three functions?

```
lemma func1_1_L18: assumes A1: \(f: A \rightarrow B \quad g: B \rightarrow C \quad h: C \rightarrow D\)
    and \(\mathrm{A} 2: \mathrm{x} \in \mathrm{A}\)
    shows
    (hogof)(x) \(\in D\)
    (h O g O f \()(x)=h(g(f(x)))\)
proof -
    from A1 have ( h 0 g 0 f ) : \(\mathrm{A} \rightarrow \mathrm{D}\)
        using comp_fun by blast
    with A2 show (h 0 g 0 f )(x) \(\in \mathrm{D}\) using apply_funtype
        by simp
    from A1 A2 have (h 0 g 0 f\()(\mathrm{x})=\mathrm{h}(\mathrm{g} 0 \mathrm{f})(\mathrm{x})\) )
        using comp_fun comp_fun_apply by blast
    with A1 A2 show (h O g 0 f) (x) \(=h(g(f(x)))\)
        using comp_fun_apply by simp
qed
A composition of functions is a function. This is a slight generalization of standard Isabelle's comp_fun
lemma comp_fun_subset:
    assumes \(\mathrm{A} 1: \mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}\) and \(\mathrm{A} 2: \mathrm{f}: \mathrm{C} \rightarrow \mathrm{D}\) and \(\mathrm{A} 3: \mathrm{B} \subseteq \mathrm{C}\)
    shows \(f 0 \mathrm{~g}: \mathrm{A} \rightarrow \mathrm{D}\)
proof -
    from A1 A3 have \(g: A \rightarrow C\) by (rule func1_1_L1B)
    with A2 show f \(\mathrm{O} \mathrm{g}: \mathrm{A} \rightarrow \mathrm{D}\) using comp_fun by simp
qed
```

This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Contributed by Victor Porton.

```
lemma comp_eq_id_iff1: assumes A1: g: B }->\textrm{A}\mathrm{ and A2: f: A }->\textrm{C
    shows ( }\forall\textrm{y}\in\textrm{B}.\textrm{f}(\textrm{g}(\textrm{y}))=\textrm{y})\longleftrightarrow\textrm{f}0\textrm{g}=\textrm{id}(\textrm{B}
proof -
    from assms have f O g: B}->C\mathrm{ and id(B): B }->\textrm{B
        using comp_fun id_type by auto
    then have ( }\forall\textrm{y}\in\textrm{B}.(\textrm{f}0\textrm{g})\textrm{y}=\textrm{id}(\textrm{B})(\textrm{y}))\longleftrightarrow\textrm{f}0\textrm{g}=\textrm{id}(\textrm{B}
        by (rule fun_extension_iff)
    moreover from A1 have
        \forally\inB. (f O g)y = f(gy) and }\forally\inB. id(B)(y) = y
        by auto
    ultimately show ( }\forall\textrm{y}\in\textrm{B}.\textrm{f}(\textrm{gy})=\textrm{y})\longleftrightarrow\textrm{f}0\textrm{g}=\textrm{id}(\textrm{B})\mathrm{ by simp
qed
```

A lemma about a value of a function that is a union of some collection of functions.

```
lemma fun_Union_apply: assumes A1: \F : X }->\textrm{Y}\mathrm{ and
    A2: f\inF and A3: f:A->B and A4: }x\in
    shows (UF)(x) = f(x)
proof -
    from A3 A4 have }\langle\textrm{x},\textrm{f}(\textrm{x})\rangle\in\textrm{f}\mathrm{ using apply_Pair
        by simp
    with A2 have \langlex, f(x)\rangle\in\bigcup \F by auto
    with A1 show (UF)(x) = f(x) using apply_equality
        by simp
qed
```


9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict (f, A) of to mean a function (or relation) f restricted to a set. This means that if f is a function defined on X and A is a subset of X then restrict (f, A) is a function whith the same values as f, but whose domain is A.

What is the inverse image of a set under a restricted fuction?

```
lemma func1_2_L1: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: B@X
    shows restrict(f,B)-(A) = f-(A) \cap B
proof -
    let g = restrict(f,B)
    from A1 A2 have g:B }->\textrm{Y
        using restrict_type2 by simp
    with A2 A1 show g-(A) = f-(A) \cap B
        using func1_1_L15 restrict_if by auto
qed
```

A criterion for when one function is a restriction of another. The lemma
below provides a result useful in the actual proof of the criterion and applications.

```
lemma func1_2_L2:
    assumes A1: \(f: X \rightarrow Y\) and \(A 2: g \in A \rightarrow Z\)
    and \(A 3: A \subseteq X\) and \(A 4: f \cap A \times Z=g\)
    shows \(\forall x \in A . g(x)=f(x)\)
proof
    fix \(x\) assume \(x \in A\)
    with A2 have \(\langle x, g(x)\rangle \in g\) using apply_Pair by simp
    with A4 A1 show \(g(x)=f(x)\) using apply_iff by auto
qed
```

Here is the actual criterion.
lemma func1_2_L3:
assumes A1: $f: X \rightarrow Y$ and $A 2: g: A \rightarrow Z$
and $A 3: A \subseteq X$ and $A 4: f \cap A \times Z=g$
shows $g=$ restrict (f, A)
proof
from A4 show $g \subseteq$ restrict (f, A) using restrict_iff by auto
show restrict (f, A) \subseteq g
proof
fix z assume $A 5: z \in \operatorname{restrict}(f, A)$
then obtain x y where $D 1: z \in f \wedge x \in A \wedge z=\langle x, y\rangle$
using restrict_iff by auto
with A1 have $y=f(x)$ using apply_iff by auto
with A1 A2 A3 A4 D1 have $y=g(x)$ using func1_2_L2 by simp
with A2 D1 show $z \in g$ using apply_Pair by simp
qed
qed

Which function space a restricted function belongs to?

```
lemma func1_2_L4:
    assumes A1: f:X->Y and A2: A\subseteqX and A3: }\forallx\inA.f(x) \in Z
    shows restrict(f,A) : A }->\textrm{Z
proof -
    let g = restrict(f,A)
    from A1 A2 have g : A }->\textrm{Y
            using restrict_type2 by simp
    moreover {
            fix x assume }x\in
            with A1 A3 have g(x) \in Z using restrict by simp}
    ultimately show thesis by (rule Pi_type)
qed
```

A simpler case of func1_2_L4, where the range of the original and restricted function are the same.
corollary restrict_fun: assumes $A 1: f: X \rightarrow Y$ and $A 2: A \subseteq X$
shows restrict(f,A) : A \rightarrow Y

```
proof -
    from assms have }\forallx\inA.f(x)\inY using apply_funtyp
        by auto
    with assms show thesis using func1_2_L4 by simp
qed
```

A composition of two functions is the same as composition with a restriction.

```
lemma comp_restrict:
    assumes A1: f : A }->\textrm{B}\mathrm{ and A2: g : X }->\textrm{C}\mathrm{ and A3: B¢X
    shows g O f = restrict(g,B) O f
proof -
    from assms have g O f : A }->\mathrm{ C using comp_fun_subset
        by simp
    moreover from assms have restrict(g,B) O f : A }->\mathrm{ C
        using restrict_fun comp_fun by simp
    moreover from A1 have
        \forallx\inA. (g O f)(x) = (restrict(g,B) O f)(x)
        using comp_fun_apply apply_funtype restrict
        by simp
    ultimately show g O f = restrict(g,B) O f
        by (rule func_eq)
qed
```

A way to look at restriction. Contributed by Victor Porton.

```
lemma right_comp_id_any: shows r O id(C) = restrict(r,C)
```

 unfolding restrict_def by auto

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to shorten proofs.

We define constant $(=c)$ functions on a set X in a natural way as ConstantFunction (X, c).

```
definition
    ConstantFunction(X,c) \equiv X }\times{c
```

Constant function belongs to the function space.

```
lemma func1_3_L1:
    assumes A1: c\inY shows ConstantFunction(X,c) : X }->\textrm{Y
proof -
        from A1 have X }\times{c}={\langlex,y\rangle\inX\timesY.c = y
            by auto
        with A1 show thesis using func1_1_L11A ConstantFunction_def
            by simp
qed
```

Constant function is equal to the constant on its domain.
lemma func1_3_L2: assumes A1: $x \in X$

```
    shows ConstantFunction(X, \(c)(x)=c\)
proof -
    have ConstantFunction \((X, c) \in X \rightarrow\{c\}\)
            using func1_3_L1 by simp
    moreover from A1 have \(\langle x, c\rangle \in\) ConstantFunction( \(X, c\) )
            using ConstantFunction_def by simp
    ultimately show thesis using apply_iff by simp
qed
```


9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections and bijections that we can't find in the standard Isabelle's Perm.thy.

For injections the image a difference of two sets is the difference of images

```
lemma inj_image_dif:
    assumes A1: f \in inj(A,B) and A2: C \subseteq A
    shows f(A-C) = f(A) - f(C)
proof
    show f(A - C) \subseteqf(A) - f(C)
    proof
        fix y assume A3: y f f(A - C)
        from A1 have f:A->B using inj_def by simp
        moreover have A-C \subseteqA by auto
        ultimately have f(A-C) = {f(x). x f A-C}
            using func_imagedef by simp
        with A3 obtain x where I: f(x) = y and x f A-C
            by auto
        hence x\inA by auto
        with \f:A->B\rangle I have y f f(A)
            using func_imagedef by auto
        moreover have y }\not=f(C
        proof -
            { assume y f f(C)
    with A2 \langlef:A->B\rangle}\mathrm{ obtain }\mp@subsup{x}{0}{
        where II: f( }\mp@subsup{x}{0}{}\mathrm{ ) = y and }\mp@subsup{x}{0}{}\in
        using func_imagedef by auto
    with A1 A2 I <x\inA\rangle have
        f}\in\operatorname{inj(A,B) f(x) = f(x (x) x\inA x m |A
        by auto
    then have x = x }\mp@subsup{x}{0}{}\mathrm{ by (rule inj_apply_equality)
    with \langlex \in A-C\rangle\langle\mp@subsup{x}{0}{}\inC\rangle
            } thus thesis by auto
            qed
            ultimately show y f f(A) - f(C) by simp
    qed
    from A1 A2 show f(A) - f(C) \subseteqf(A-C)
        using inj_def diff_image_diff by auto
qed
```

For injections the image of intersection is the intersection of images.

```
lemma inj_image_inter: assumes A1: f \in inj(X,Y) and A2: A\subseteqX B\subseteqX
    shows f(A\capB) = f(A) \cap f(B)
proof
    show f(A\capB)\subseteqf(A) \capf(B) using image_Int_subset by simp
    { from A1 have f:X }->\textrm{Y}\mathrm{ using inj_def by simp
        fix y assume y \inf(A) \cap f(B)
        then have }y\inf(A) and y f f(B) by aut
        with A2 \langlef:X }->\textrm{Y}\rangle\mathrm{ obtain }\mp@subsup{\textrm{x}}{A}{}\mp@subsup{\textrm{x}}{B}{}\mathrm{ where
        x}
            using func_imagedef by auto
        with A2 have }\mp@subsup{\textrm{x}}{A}{}\in\textrm{X}\mp@subsup{\textrm{x}}{B}{}\in\textrm{X}\mathrm{ and f( }\textrm{f}A)=\textrm{f}(\mp@subsup{\textrm{x}}{B}{})\mathrm{ by auto
        with A1 have }\mp@subsup{x}{A}{}=\mp@subsup{x}{B}{}\mathrm{ using inj_def by auto
        with }\langle\mp@subsup{\textrm{x}}{A}{}\in\textrm{A}\rangle\langle\mp@subsup{\textrm{x}}{B}{}\in\textrm{B}\rangle\mathrm{ have f( }\textrm{x}
        moreover from A2 \langlef:X->Y\rangle have f(A\capB) = {f(x). x f A\capB}
            using func_imagedef by blast
        ultimately have f(x}(\mp@subsup{x}{A}{})\inf(A\capB) by sim
        with I have y }\inf(A\capB)\mathrm{ by simp
    } thus f(A) \capf(B)\subseteqf(A\capB) by auto
qed
```

For surjection from A to B the image of the domain is B.

```
lemma surj_range_image_domain: assumes A1: f \in surj(A,B)
    shows f(A) = B
proof -
    from A1 have f(A) = range(f)
        using surj_def range_image_domain by auto
    with A1 show f(A) = B using surj_range
        by simp
qed
```

For injections the inverse image of an image is the same set.

```
lemma inj_vimage_image: assumes \(f \in \operatorname{inj}(X, Y)\) and \(A \subseteq X\)
    shows \(f-(f(A))=A\)
proof -
    have \(f-(f(A))=(\) converse (f) 0 f) (A)
        using vimage_converse image_comp by simp
    with assms show thesis using left_comp_inverse image_id_same
        by simp
qed
```

For surjections the image of an inverse image is the same set.

```
lemma surj_image_vimage: assumes A1: f \in surj(X,Y) and A2: A\subseteqY
    shows f(f-(A)) = A
proof -
    have f(f-(A)) = (f O converse(f))(A)
            using vimage_converse image_comp by simp
    with assms show thesis using right_comp_inverse image_id_same
```

```
    by simp
qed
A lemma about how a surjection maps collections of subsets in domain and rangge.
```

```
lemma surj_subsets: assumes A1: \(f \in \operatorname{surj}(X, Y)\) and A2: B \(\subseteq \operatorname{Pow}(Y)\)
```

lemma surj_subsets: assumes A1: $f \in \operatorname{surj}(X, Y)$ and A2: B $\subseteq \operatorname{Pow}(Y)$
shows $\{f(U) . U \in\{f-(V) . V \in B\}\}=B$
shows $\{f(U) . U \in\{f-(V) . V \in B\}\}=B$
proof
proof
$\{$ fix W assume $W \in\{f(U) . U \in\{f-(V) . V \in B\}\}$
$\{$ fix W assume $W \in\{f(U) . U \in\{f-(V) . V \in B\}\}$
then obtain U where $I: U \in\{f-(V) . V \in B\}$ and II: $W=f(U)$ by auto
then obtain U where $I: U \in\{f-(V) . V \in B\}$ and II: $W=f(U)$ by auto
then obtain V where $V \in B$ and $U=f-(V)$ by auto
then obtain V where $V \in B$ and $U=f-(V)$ by auto
with II have $W=f(f-(V))$ by simp
with II have $W=f(f-(V))$ by simp
moreover from assms $\langle V \in B\rangle$ have $f \in \operatorname{sur} j(X, Y)$ and $V \subseteq Y$ by auto
moreover from assms $\langle V \in B\rangle$ have $f \in \operatorname{sur} j(X, Y)$ and $V \subseteq Y$ by auto
ultimately have $\mathrm{W}=\mathrm{V}$ using surj_image_vimage by simp
ultimately have $\mathrm{W}=\mathrm{V}$ using surj_image_vimage by simp
with $\langle V \in B\rangle$ have $W \in B$ by simp
with $\langle V \in B\rangle$ have $W \in B$ by simp
$\}$ thus $\{f(U) . U \in\{f-(V) . V \in B\}\} \subseteq B$ by auto
$\}$ thus $\{f(U) . U \in\{f-(V) . V \in B\}\} \subseteq B$ by auto
\{ fix W assume $W \in B$
\{ fix W assume $W \in B$
let $U=f-(W)$
let $U=f-(W)$
from $\langle W \in B\rangle$ have $U \in\{f-(V) . V \in B\}$ by auto
from $\langle W \in B\rangle$ have $U \in\{f-(V) . V \in B\}$ by auto
moreover from A1 A2 $\langle W \in B\rangle$ have $W=f(U)$ using surj_image_vimage by
moreover from A1 A2 $\langle W \in B\rangle$ have $W=f(U)$ using surj_image_vimage by
auto
auto
ultimately have $\mathrm{W} \in\{\mathrm{f}(\mathrm{U}) . \mathrm{U} \in\{\mathrm{f}-(\mathrm{V}) . \mathrm{V} \in \mathrm{B}\}\}$ by auto
ultimately have $\mathrm{W} \in\{\mathrm{f}(\mathrm{U}) . \mathrm{U} \in\{\mathrm{f}-(\mathrm{V}) . \mathrm{V} \in \mathrm{B}\}\}$ by auto
$\}$ thus $B \subseteq\{f(U) . U \in\{f-(V) . V \in B\}\}$ by auto
$\}$ thus $B \subseteq\{f(U) . U \in\{f-(V) . V \in B\}\}$ by auto
qed

```
qed
```

Restriction of an bijection to a set without a point is a a bijection.

```
lemma bij_restrict_rem:
    assumes A1: \(f \in \operatorname{bij}(A, B)\) and A2: \(a \in A\)
    shows restrict(f, \(A-\{a\}) \in \operatorname{bij}(A-\{a\}, B-\{f(a)\})\)
proof -
    let \(C=A-\{a\}\)
    from A1 have \(f \in \operatorname{inj}(A, B) \quad C \subseteq A\)
            using bij_def by auto
    then have restrict (f,C) \(\in \operatorname{bij}(C, f(C))\)
            using restrict_bij by simp
    moreover have \(f(C)=B-\{f(a)\}\)
    proof -
            from \(A 2\langle f \in \operatorname{inj}(A, B)\rangle\) have \(f(C)=f(A)-f\{a\}\)
                    using inj_image_dif by simp
            moreover from A1 have \(f(A)=B\)
                    using bij_def surj_range_image_domain by auto
            moreover from A1 A2 have \(f\{a\}=\{f(a)\}\)
                    using bij_is_fun singleton_image by blast
            ultimately show \(f(C)=B-\{f(a)\}\) by simp
    qed
    ultimately show thesis by simp
qed
```

The domain of a bijection between X and Y is X.

```
lemma domain_of_bij:
    assumes A1: f \in bij(X,Y) shows domain(f) = X
proof -
    from A1 have f:X }->\textrm{Y}\mathrm{ using bij_is_fun by simp
    then show domain(f) = X using func1_1_L1 by simp
qed
```

The value of the inverse of an injection on a point of the image of a set belongs to that set.

```
lemma inj_inv_back_in_set:
    assumes A1: f \in inj(A,B) and A2: C\subseteqA and A3: y }\inf(C
    shows
    converse(f)(y) \in C
    f(converse(f)(y)) = y
proof -
    from A1 have I: f:A }->\mathrm{ B using inj_is_fun by simp
    with A2 A3 obtain }x\mathrm{ where II: }x\inC\quady=f(x
        using func_imagedef by auto
    with A1 A2 show converse(f)(y) \in C using left_inverse
        by auto
    from A1 A2 I II show f(converse(f)(y)) = y
        using func1_1_L5A right_inverse by auto
qed
```

For injections if a value at a point belongs to the image of a set, then the point belongs to the set.

```
lemma inj_point_of_image:
    assumes A1: \(f \in \operatorname{inj}(A, B)\) and \(A 2: C \subseteq A\) and
    A3: \(x \in A\) and A4: \(f(x) \in f(C)\)
    shows \(\mathrm{x} \in \mathrm{C}\)
proof -
    from A1 A2 A4 have converse (f) \((\mathrm{f}(\mathrm{x})) \in \mathrm{C}\)
        using inj_inv_back_in_set by simp
    moreover from A1 A3 have converse(f) \((\mathrm{f}(\mathrm{x})\) ) \(=\mathrm{x}\)
        using left_inverse_eq by simp
    ultimately show \(x \in C\) by simp
qed
```

For injections the image of intersection is the intersection of images.

```
lemma inj_image_of_Inter: assumes A1: f \in inj(A,B) and
    A2: I\not=0 and A3: }\foralli\inI. P(i) \subseteq
    shows f(\bigcapi\inI. P(i)) = (\bigcapi\inI. f(P(i)) )
proof
    from A1 A2 A3 show f(\bigcapi\inI. P(i)) \subseteq(\bigcapi\inI. f(P(i)))
        using inj_is_fun image_of_Inter by auto
    from A1 A2 A3 have f:A->B and ( \bigcapi\inI. P(i)) \subseteqA
        using inj_is_fun ZF1_1_L7 by auto
    then have I: f(\bigcapi\inI. P(i)) = { f(x). x f (\bigcapi\inI.P(i)) }
```

using func_imagedef by simp
\{ fix y assume A4: $y \in(\bigcap i \in I . f(P(i)))$
let $\mathrm{x}=$ converse (f) (y)
from A2 obtain i_{0} where $i_{0} \in I$ by auto
with A1 A4 have II: y \in range (f) using inj_is_fun func1_1_L6 by auto
with A1 have III: $f(x)=y$ using right_inverse by simp
from A1 II have IV: $x \in A$ using inj_converse_fun apply_funtype by blast
\{ fix i assume $i \in I$
with A3 A4 III have $P(i) \subseteq A$ and $f(x) \in f(P(i))$
by auto
with A1 IV have $x \in P(i)$ using inj_point_of_image
by blast
$\}$ then have $\forall i \in I . x \in P(i)$ by simp
with A2 I have $f(x) \in f(\bigcap i \in I . P(i))$
by auto
with III have $y \in f(\bigcap i \in I . P(i))$ by simp
$\}$ then show $\left(\bigcap_{i \in I .} f(P(i))\right) \subseteq f\left(\bigcap_{i \in I .} P(i)\right)$
by auto
qed
An injection is injective onto its range. Suggested by Victor Porton.

```
lemma inj_inj_range: assumes f \in inj(A,B)
    shows f \in inj(A,range(f))
    using assms inj_def range_of_fun by auto
```

An injection is a bijection on its range. Suggested by Victor Porton.

```
lemma inj_bij_range: assumes f \in inj(A,B)
    shows f \in bij(A,range(f))
proof -
    from assms have f \in surj(A,range(f)) using inj_def fun_is_surj
        by auto
    with assms show thesis using inj_inj_range bij_def by simp
qed
```

A lemma about extending a surjection by one point.

```
lemma surj_extend_point:
    assumes A1: \(f \in \operatorname{surj}(X, Y)\) and A2: \(a \notin X\) and
    A3: \(g=f \cup\{\langle a, b\rangle\}\)
    shows \(g \in \operatorname{surj}(X \cup\{a\}, Y \cup\{b\})\)
proof -
    from A1 A2 A3 have \(g: X \cup\{a\} \rightarrow Y \cup\{b\}\)
        using surj_def func1_1_L11D by simp
    moreover have \(\forall y \in Y \cup\{b\} . \exists x \in X \cup\{a\}\). \(y=g(x)\)
    proof
        fix \(y\) assume \(y \in Y \cup\{b\}\)
        then have \(y \in Y \vee y=b\) by auto
        moreover
```

```
    { assume y \in Y
        with A1 obtain }x\mathrm{ where }x\inX\mathrm{ and }y=f(x
    using surj_def by auto
    with A1 A2 A3 have }x\inX\cup{a} and y = g(x
    using surj_def func1_1_L11D by auto
        then have \existsx f X\cup{a}. y = g(x) by auto }
    moreover
    { assume y = b
        with A1 A2 A3 have y = g(a)
using surj_def func1_1_L11D by auto
            then have }\exists\textrm{x}\in\textrm{X}\cup{a}. y=g(x) by auto 
    ultimately show }\exists\textrm{x}\in\textrm{X}\cup{a}.\textrm{y}=\textrm{g}(\textrm{x}
        by auto
    qed
    ultimately show g \in surj(X\cup{a},Y\cup{b})
        using surj_def by auto
qed
```

A lemma about extending an injection by one point. Essentially the same as standard Isabelle's inj_extend.

```
lemma inj_extend_point: assumes f \in inj(X,Y) a\not\inX b\not\inY
    shows (f \cup {\langlea,b\rangle}) \in inj(X\cup{a},Y\cup{b})
proof -
    from assms have cons(\langlea,b\rangle,f) \in inj(cons(a, X), cons(b, Y))
        using assms inj_extend by simp
    moreover have cons(\langlea,b\rangle,f)=f \cup {\langlea,b\rangle} and
        cons(a, X) = X\cup{a} and cons(b, Y) = Y \{b}
        by auto
    ultimately show thesis by simp
qed
```

A lemma about extending a bijection by one point.

```
lemma bij_extend_point: assumes f \in bij(X,Y) a\not\inX b\not\inY
    shows (f \cup {\langlea,b\rangle}) \in bij(X\cup{a},Y\cup{b})
    using assms surj_extend_point inj_extend_point bij_def
    by simp
```

A quite general form of the $a^{-1} b=1$ implies $a=b$ law.
lemma comp_inv_id_eq:
assumes A1: converse(b) O a = id(A) and
A2: $a \subseteq A \times B b \in \operatorname{surj}(A, B)$
shows $\mathrm{a}=\mathrm{b}$
proof -
from A1 have (b 0 converse(b)) $0 \mathrm{a}=\mathrm{b} 0$ id(A)
using comp_assoc by simp
with $A 2$ have id(B) $0 \mathrm{a}=\mathrm{b} 0$ id(A)
using right_comp_inverse by simp
moreover
from $A 2$ have $a \subseteq A \times B$ and $b \subseteq A \times B$
using surj_def fun_subset_prod
by auto
then have $\operatorname{id}(B) \quad 0 a=a$ and $b 0 \operatorname{id}(A)=b$
using left_comp_id right_comp_id by auto
ultimately show $\mathrm{a}=\mathrm{b}$ by simp
qed
A special case of comp_inv_id_eq - the $a^{-1} b=1$ implies $a=b$ law for bijections.

```
lemma comp_inv_id_eq_bij:
    assumes A1: a \in bij(A,B) b \in bij(A,B) and
    A2: converse(b) O a = id(A)
    shows a = b
proof -
    from A1 have a \subseteqA\timesB and b \in surj(A,B)
        using bij_def surj_def fun_subset_prod
        by auto
    with A2 show a = b by (rule comp_inv_id_eq)
qed
```

Converse of a converse of a bijection is the same bijection. This is a special case of converse_converse from standard Isabelle's equalities theory where it is proved for relations.

```
lemma bij_converse_converse: assumes a \in bij(A,B)
    shows converse(converse(a)) = a
proof -
    from assms have a \subseteqA\timesB using bij_def surj_def fun_subset_prod by
simp
    then show thesis using converse_converse by simp
qed
```

If a composition of bijections is identity, then one is the inverse of the other.

```
lemma comp_id_conv: assumes A1: \(a \in \operatorname{bij}(A, B) b \in \operatorname{bij}(B, A)\) and
    A2: b 0 a \(=i d(A)\)
    shows \(a=\) converse(b) and \(b=\) converse (a)
proof -
    from A1 have \(a \in \operatorname{bij}(A, B)\) and converse(b) \(\in \operatorname{bij}(A, B)\) using bij_converse_bij
        by auto
    moreover from assms have converse(converse(b)) 0 a \(=i d(A)\)
        using bij_converse_converse by simp
    ultimately show a = converse(b) by (rule comp_inv_id_eq_bij)
    with assms show \(b=\) converse (a) using bij_converse_converse by simp
qed
```

A version of comp_id_conv with weaker assumptions.

```
lemma comp_conv_id: assumes A1: a }\in\operatorname{bij}(A,B) and A2: b:B->A an
    A3: }\forall\textrm{x}\in\textrm{A}.\textrm{b}(\textrm{a}(\textrm{x}))=\textrm{x
```

```
    shows b \in bij(B,A) and a = converse(b) and b = converse(a)
proof -
    have b \in \operatorname{surj}(B,A)
    proof -
        have }\forallx\inA.\existsy\inB. b(y) = x
        proof -
            { fix x assume }x\in
                    let y = a(x)
                    from A1 A3 }\langlex\inA\rangle\mathrm{ have }y\inB\mathrm{ and }b(y)=
                        using bij_def inj_def apply_funtype by auto
                    hence }\exists\textrm{y}\in\textrm{B}.\textrm{b}(\textrm{y})=x\mathrm{ by auto
            } thus thesis by simp
        qed
        with A2 show b \in surj(B,A) using surj_def by simp
    qed
    moreover have b \in inj(B,A)
    proof -
        have }\forall\textrm{w}\in\textrm{B}.\forall\textrm{y}\in\textrm{B}.\quad\textrm{b}(\textrm{w})=\textrm{b}(\textrm{y})\longrightarrow\textrm{w}=\textrm{y
        proof -
            { fix w y assume w\inB y\inB and I: b w) = b (y)
                from A1 have a }\in\operatorname{surj}(A,B) unfolding bij_def by sim
                with }\langle\textrm{w}\in\textrm{B}\rangle\mathrm{ obtain }\mp@subsup{\textrm{x}}{w}{}\mathrm{ where }\mp@subsup{\textrm{x}}{w}{}\in\textrm{A}\mathrm{ and II: }\textrm{a}(\mp@subsup{\textrm{x}}{w}{})=\textrm{w
                    using surj_def by auto
                with I have b}\textrm{b}(\textrm{a}(\mp@subsup{\textrm{x}}{w}{}))=\textrm{b}(\textrm{y})\mathrm{ by simp
                moreover from \langlea \in surj(A,B)\rangle\langley\inB\rangle}\mathrm{ obtain }\mp@subsup{x}{y}{}\mathrm{ where
                    \mp@subsup{x}{y}{}}\in\textrm{A}\mathrm{ and III: a( }\mp@subsup{\textrm{x}}{y}{})=\textrm{y
                using surj_def by auto
                moreover from A3 }\langle\mp@subsup{\textrm{x}}{w}{}\in\textrm{A}\rangle\langle\mp@subsup{\textrm{x}}{y}{}\in\textrm{A}\rangle\mathrm{ have }\textrm{b}(\textrm{a}(\mp@subsup{\textrm{x}}{w}{}))=\mp@subsup{\textrm{x}}{w}{}\mathrm{ and }\textrm{b}(\textrm{a}(\mp@subsup{\textrm{x}}{y}{})
= x
                by auto
                ultimately have }\mp@subsup{\textrm{x}}{w}{}=\mp@subsup{\textrm{x}}{y}{}\mathrm{ by simp
                with II III have w=y by simp
            } thus thesis by auto
        qed
        with A2 show b \in inj(B,A) using inj_def by auto
    qed
    ultimately show b \in bij(B,A) using bij_def by simp
    from assms have b O a = id(A) using bij_def inj_def comp_eq_id_iff1
by auto
    with A1 <b \in bij(B,A) show a = converse(b) and b = converse(a)
        using comp_id_conv by auto
qed
```

For a surjection the union if images of singletons is the whole range.
lemma surj_singleton_image: assumes A1: $f \in \operatorname{surj}(X, Y)$
shows $(\bigcup x \in X .\{f(x)\})=Y$
proof
from A1 show $(\bigcup x \in X .\{f(x)\}) \subseteq Y$
using surj_def apply_funtype by auto

```
next
    { fix y assume y }\in
        with A1 have y }\in(\bigcupx\inX.{f(x)}
            using surj_def by auto
    } then show }Y\subseteq(\bigcupx\inX.{f(x)}) by aut
qed
```


9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product of two sets. Such functions are called functions of two variables (although really in ZF all functions admit only one argument). For every function of two variables we can define families of functions of one variable by fixing the other variable. This section establishes basic definitions and results for this concept.

We can create functions of two variables by combining functions of one variable.

```
lemma cart_prod_fun: assumes f}\mp@subsup{f}{1}{}:\mp@subsup{X}{1}{}->\mp@subsup{Y}{1}{}\quad\mp@subsup{f}{2}{}:\mp@subsup{X}{2}{}->\mp@subsup{Y}{2}{}\mathrm{ and
    g = {\langlep,\langleff
    shows g: X X }\times\mp@subsup{X}{2}{}->\mp@subsup{Y}{1}{}\times\mp@subsup{Y}{2}{}\mathrm{ using assms apply_funtype ZF_fun_from_total
by simp
```

A reformulation of cart_prod_fun above in a sligtly different notation.

```
lemma prod_fun:
```

 assumes \(f: X_{1} \rightarrow X_{2} \quad g: X_{3} \rightarrow X_{4}\)
 shows \(\left\{\langle\langle\mathrm{x}, \mathrm{y}\rangle,\langle\mathrm{fx}, \mathrm{gy}\rangle\rangle .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X}_{1} \times \mathrm{X}_{3}\right\}: \mathrm{X}_{1} \times \mathrm{X}_{3} \rightarrow \mathrm{X}_{2} \times \mathrm{X}_{4}\)
 proof -
have $\left\{\langle\langle\mathrm{x}, \mathrm{y}\rangle,\langle\mathrm{fx}, \mathrm{gy}\rangle\rangle .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X}_{1} \times \mathrm{X}_{3}\right\}=\{\langle\mathrm{p},\langle\mathrm{f}(\mathrm{fst}(\mathrm{p})), \mathrm{g}($ snd $(\mathrm{p}))\rangle\rangle . \mathrm{p} \in$
$\left.\mathrm{X}_{1} \times \mathrm{X}_{3}\right\}$
by auto
with assms show thesis using cart_prod_fun by simp
qed

Product of two surjections is a surjection.
theorem prod_functions_surj:
assumes $f \in \operatorname{surj}(A, B) g \in \operatorname{surj}(C, D)$
shows $\{\langle\langle\mathrm{a} 1, \mathrm{a} 2\rangle,\langle\mathrm{fa} 1, \mathrm{ga} 2\rangle\rangle \cdot\langle\mathrm{a} 1, \mathrm{a} 2\rangle \in \mathrm{A} \times \mathrm{C}\} \in \operatorname{surj}(\mathrm{A} \times \mathrm{C}, \mathrm{B} \times \mathrm{D})$
proof -
let $h=\{\langle\langle x, y\rangle, f(x), g(y)\rangle .\langle x, y\rangle \in A \times C\}$
from assms have fun: $f: A \rightarrow B g: C \rightarrow D$ unfolding surj_def by auto
then have pfun: $h: A \times C \rightarrow B \times D$ using prod_fun by auto
\{
fix b assume $b \in B \times D$
then obtain $b 1 \mathrm{~b} 2$ where $\mathrm{b}=\langle\mathrm{b} 1, \mathrm{~b} 2\rangle \mathrm{b} 1 \in \mathrm{~B}$ b2 $\in \mathrm{D}$ by auto
with assms obtain a1 a2 where $f(a 1)=b 1 g(a 2)=b 2$ a1 $\in A \quad a 2 \in C$
unfolding surj_def by blast
hence $\langle\langle\mathrm{a} 1, \mathrm{a} 2\rangle,\langle\mathrm{b} 1, \mathrm{~b} 2\rangle\rangle \in \mathrm{h}$ by auto
with pfun have $h\langle a 1, a 2\rangle=\langle b 1, b 2\rangle$ using apply_equality by auto
with $\langle\mathrm{b}=\langle\mathrm{b} 1, \mathrm{~b} 2\rangle\rangle\langle\mathrm{a} 1 \in \mathrm{~A}\rangle\langle\mathrm{a} 2 \in \mathrm{C}\rangle$ have $\exists \mathrm{a} \in \mathrm{A} \times \mathrm{C} . \mathrm{h}(\mathrm{a})=\mathrm{b}$
by auto
\} hence $\forall \mathrm{b} \in \mathrm{B} \times \mathrm{D} . \exists \mathrm{a} \in \mathrm{A} \times \mathrm{C} . \mathrm{h}(\mathrm{a})=\mathrm{b}$ by auto
with pfun show thesis unfolding surj_def by auto
qed
For a function of two variables created from functions of one variable as in cart_prod_fun above, the inverse image of a cartesian product of sets is the cartesian product of inverse images.

```
lemma cart_prod_fun_vimage: assumes \(f_{1}: X_{1} \rightarrow Y_{1} \quad f_{2}: X_{2} \rightarrow Y_{2}\) and
    \(g=\left\{\left\langle p,\left\langle f_{1}(f s t(p)), f_{2}(\operatorname{snd}(p))\right\rangle\right\rangle . p \in X_{1} \times X_{2}\right\}\)
    shows \(g-\left(A_{1} \times A_{2}\right)=f_{1}-\left(A_{1}\right) \times f_{2}-\left(A_{2}\right)\)
proof -
    from assms have \(\mathrm{g}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}\) using cart_prod_fun
        by simp
    then have \(g-\left(A_{1} \times A_{2}\right)=\left\{p \in X_{1} \times X_{2} . g(p) \in A_{1} \times A_{2}\right\}\) using func1_1_L15
        by simp
    with assms \(\left\langle g: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}\right.\) 〉 show \(g-\left(A_{1} \times A_{2}\right)=f_{1}-\left(A_{1}\right) \times f_{2}-\left(A_{2}\right)\)
        using ZF_fun_from_tot_val func1_1_L15 by auto
qed
```

For a function of two variables defined on $X \times Y$, if we fix an $x \in X$ we obtain a function on Y. Note that if domain(f) is $X \times Y$, range(domain(f)) extracts Y from $X \times Y$.

definition

```
    Fix1stVar (f,x) \(\equiv\{\langle\mathrm{y}, \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle\rangle . \mathrm{y} \in \operatorname{range}(\operatorname{domain}(\mathrm{f}))\}\)
```

For every $y \in Y$ we can fix the second variable in a binary function f : $X \times Y \rightarrow Z$ to get a function on X.

```
definition
    Fix2ndVar(f,y) \equiv{\langlex,f\langlex,y\rangle\rangle. x \in domain(domain(f))}
```

We defined Fix1stVar and Fix2ndVar so that the domain of the function is not listed in the arguments, but is recovered from the function. The next lemma is a technical fact that makes it easier to use this definition.

```
lemma fix_var_fun_domain: assumes A1: f : X×Y \(\rightarrow \mathrm{Z}\)
    shows
    \(x \in X \longrightarrow\) Fix1stVar \((f, x)=\{\langle y, f\langle x, y\rangle\rangle . y \in Y\}\)
    \(y \in Y \longrightarrow \operatorname{Fix} 2 \operatorname{ndVar}(f, y)=\{\langle x, f\langle x, y\rangle\rangle . x \in X\}\)
proof -
    from A1 have I: domain(f) \(=\mathrm{X} \times \mathrm{Y}\) using func1_1_L1 by simp
    \{ assume \(\mathrm{x} \in \mathrm{X}\)
        with I have range(domain(f)) \(=Y\) by auto
        then have \(\operatorname{Fix} 1 \mathrm{st} \operatorname{Var}(\mathrm{f}, \mathrm{x})=\{\langle\mathrm{y}, \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle\rangle . \mathrm{y} \in \mathrm{Y}\}\)
            using Fix1stVar_def by simp
```

```
    \(\}\) then show \(x \in X \longrightarrow\) Fix1stVar \((f, x)=\{\langle y, f\langle x, y\rangle\rangle . y \in Y\}\)
        by simp
    \{ assume \(\mathrm{y} \in \mathrm{Y}\)
        with I have domain(domain(f)) \(=X\) by auto
        then have \(\operatorname{Fix} 2 \operatorname{ndVar}(\mathrm{f}, \mathrm{y})=\{\langle\mathrm{x}, \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle\rangle . \mathrm{x} \in \mathrm{X}\}\)
            using Fix2ndVar_def by simp
    \(\}\) then show \(y \in Y \longrightarrow\) Fix2ndVar \((f, y)=\{\langle x, f\langle x, y\rangle\rangle . x \in X\}\)
        by simp
qed
```

If we fix the first variable, we get a function of the second variable.

```
lemma fix_1st_var_fun: assumes A1: f : X X Y }->\textrm{Z}\mathrm{ and A2: x XX
```

 shows Fix1stVar (f,x) : Y \(\rightarrow \mathrm{Z}\)
 proof -
from A1 A2 have $\forall y \in Y$. $f\langle x, y\rangle \in Z$
using apply_funtype by simp
then have $\{\langle\mathrm{y}, \mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle\rangle . \mathrm{y} \in \mathrm{Y}\}: \mathrm{Y} \rightarrow \mathrm{Z}$ using ZF _fun_from_total by simp
with A1 A2 show Fix1stVar (f,x) : Y \rightarrow Z using fix_var_fun_domain by
simp
qed

If we fix the second variable, we get a function of the first variable.

```
lemma fix_2nd_var_fun: assumes A1: \(f: X \times Y \rightarrow Z\) and A2: \(y \in Y\)
    shows Fix2ndVar(f,y) : X \(\rightarrow\) Z
proof -
    from A1 A2 have \(\forall x \in X . f\langle x, y\rangle \in Z\)
        using apply_funtype by simp
    then have \(\{\langle x, f\langle x, y\rangle\rangle . x \in X\}: X \rightarrow Z\)
            using ZF_fun_from_total by simp
    with A1 A2 show Fix2ndVar (f,y) : X \(\rightarrow \mathrm{Z}\)
        using fix_var_fun_domain by simp
qed
```

What is the value of $\operatorname{Fix} 1 \mathrm{stVar}(\mathrm{f}, \mathrm{x})$ at $y \in Y$ and the value of $\operatorname{Fix} 2 \mathrm{ndVar}(\mathrm{f}, \mathrm{y})$
at $x \in X^{\prime \prime}$?

```
lemma fix_var_val:
    assumes A1: f : X XY }->\textrm{Z}\mathrm{ and A2: x X X y}y=
    shows
    Fix1stVar(f,x)(y) = f < x,y\rangle
    Fix2ndVar(f,y)(x) = f < x,y\rangle
proof -
    let f}\mp@subsup{f}{1}{}={\langley,f\langlex,y\rangle\rangle. y\inY
    let f}\mp@subsup{f}{2}{}={\langlex,f\langlex,y\rangle\rangle. x { X
    from A1 A2 have I:
        Fix1stVar(f,x) = fi
        Fix2ndVar(f,y) = fa
        using fix_var_fun_domain by auto
    moreover from A1 A2 have
        Fix1stVar(f,x) : Y }->\mathrm{ Z
```

```
    Fix2ndVar(f,y) : X -> Z
    using fix_1st_var_fun fix_2nd_var_fun by auto
    ultimately have f}\mp@subsup{f}{1}{}:Y->Z\mathrm{ and }\mp@subsup{f}{2}{}:X->
    by auto
    with A2 have f}\mp@subsup{f}{1}{}(y)=f\langlex,y\rangle\mathrm{ and }\mp@subsup{f}{2}{}(x)=f\langlex,y
    using ZF_fun_from_tot_val by auto
    with I show
        Fix1stVar(f,x)(y) = f < x,y\rangle
        Fix2ndVar(f,y)(x) = f <x,y\rangle
        by auto
qed
```

Fixing the second variable commutes with restrictig the domain.

```
lemma fix_2nd_var_restr_comm:
    assumes A1: \(f: X \times Y \rightarrow Z\) and \(A 2: y \in Y\) and \(A 3: X_{1} \subseteq X\)
    shows Fix2ndVar(restrict (f, \(\mathrm{X}_{1} \times \mathrm{Y}\) ), y ) \(=\) restrict \(\left(\mathrm{Fix} 2 \operatorname{ndVar}(\mathrm{f}, \mathrm{y}), \mathrm{X}_{1}\right.\) )
proof -
    let \(\mathrm{g}=\mathrm{Fix} 2 \mathrm{ndVar}\left(\right.\) restrict \(\left(\mathrm{f}, \mathrm{X}_{1} \times \mathrm{Y}\right)\), y\()\)
    let \(h=r e s t r i c t\left(F i x 2 n d V a r(f, y), X_{1}\right)\)
    from A3 have I: \(X_{1} \times Y \subseteq X \times Y\) by auto
    with A1 have II: restrict \(\left(f, X_{1} \times Y\right): X_{1} \times Y \rightarrow Z\)
        using restrict_type 2 by simp
    with A2 have \(\mathrm{g}: \mathrm{X}_{1} \rightarrow \mathrm{Z}\)
        using fix_2nd_var_fun by simp
    moreover
    from A1 A2 have III: Fix2ndVar (f,y) : X \(\rightarrow \mathrm{Z}\)
        using fix_2nd_var_fun by simp
    with A3 have \(\mathrm{h}: \mathrm{X}_{1} \rightarrow \mathrm{Z}\)
        using restrict_type2 by simp
    moreover
    \{ fix \(z\) assume A4: \(z \in X_{1}\)
        with A2 I II have \(g(z)=f\langle z, y\rangle\)
            using restrict fix_var_val by simp
        also from A1 A2 A3 A4 have \(f\langle z, y\rangle=h(z)\)
            using restrict fix_var_val by auto
        finally have \(g(z)=h(z)\) by simp
    \} then have \(\forall z \in X_{1} \cdot g(z)=h(z)\) by simp
    ultimately show \(g=h\) by (rule func_eq)
qed
```

The next lemma expresses the inverse image of a set by function with fixed first variable in terms of the original function.

```
lemma fix_1st_var_vimage:
    assumes A1: f : X }\times\textrm{Y}->\textrm{Z}\mathrm{ and A2: x}x\in
    shows Fix1stVar(f,x)-(A) = {y\inY. \langlex,y\rangle\inf-(A)}
proof -
    from assms have Fix1stVar(f,x)-(A) = {y\inY. Fix1stVar(f,x) (y) \in A}
        using fix_1st_var_fun func1_1_L15 by blast
    with assms show thesis using fix_var_val func1_1_L15 by auto
```


qed

The next lemma expresses the inverse image of a set by function with fixed second variable in terms of the original function.

```
lemma fix_2nd_var_vimage:
    assumes A1: f : X XY }->\textrm{Z}\mathrm{ and A2: y }\in\textrm{Y
    shows Fix2ndVar(f,y)-(A) = {x\inX. \langlex,y\rangle\inf-(A)}
proof -
    from assms have I: Fix2ndVar(f,y)-(A) = {x\inX. Fix2ndVar(f,y)(x) \in A}
        using fix_2nd_var_fun func1_1_L15 by blast
    with assms show thesis using fix_var_val func1_1_L15 by auto
qed
end
```


10 Binary operations

theory func_ZF imports func1
begin
In this theory we consider properties of functions that are binary operations, that is they map $X \times X$ into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and we need a similar operation that is defined for functions on that set. For example once we know how to add real numbers we also know how to add real-valued functions: for $f, g: X \rightarrow \mathbf{R}$ we define $(f+g)(x)=f(x)+g(x)$. Note that formally the + means something different on the left hand side of this equality than on the right hand side. This section aims at formalizing this process. We will call it "lifting to a function space", if you have a suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit complicated. Here it what it says: Given a set X and another set f (that represents a binary function on X) we are defining f lifted to function space over X as the binary function (a set of pairs) on the space $F=X \rightarrow \operatorname{range}(f)$ such that the value of this function on pair $\langle a, b\rangle$ of functions on X is another function c on X with values defined by $c(x)=f\langle a(x), b(x)\rangle$.

```
definition
Lift2FcnSpce (infix {lifted to function space over} 65) where
    f {lifted to function space over} X \equiv
    {\langle p,{\langlex,f\langlefst(p)(x), snd(p)(x)\rangle\rangle. x 隻}\rangle.
    p}\in(X->\mathrm{ range(f)) }\times(X->\mathrm{ range(f)) }
```

The result of the lift belongs to the function space.

```
lemma func_ZF_1_L1:
    assumes A1: f : Y }\timesY->
    and A2: p \in(X }->\mathrm{ range(f)) }\times(X->\mathrm{ range(f))
    shows
    {\langlex,f\langlefst(p)(x),snd(p)(x) \\rangle. x \in X} : X }->\mathrm{ range(f)
    proof -
        have }\forallx\inX.f\langlefst(p)(x),snd(p)(x)\rangle\in range(f
        proof
            fix x assume x\inX
            let p = \langlefst(p)(x), snd(p)(x)\rangle
            from A2 \langlex\inX\rangle have
    fst(p)(x) \in range(f) snd(p)(x) \in range(f)
    using apply_type by auto
        with A1 have p \in Y }\times
    using func1_1_L5B by blast
        with A1 have <p, f(p)\rangle\in f
    using apply_Pair by simp
        with A1 show
    f(p) \in range(f)
    using rangeI by simp
        qed
        then show thesis using ZF_fun_from_total by simp
qed
```

The values of the lift are defined by the value of the liftee in a natural way.

```
lemma func_ZF_1_L2:
    assumes A1: f : Y XY }->\textrm{Y
    and A2: p \in (X }->\mathrm{ range(f)) }\times(X->range(f)) and A3: x\inX
    and A4: P = {\langlex,f\langlefst(p)(x), snd(p)(x) \\rangle. x }\inX=
    shows P(x) = f {fst(p)(x), snd(p)(x)\rangle
proof -
    from A1 A2 have
        {\langlex,f\langlefst(p)(x),snd(p)(x)\rangle\rangle. x \in X} : X }->\mathrm{ range(f)
        using func_ZF_1_L1 by simp
    with A4 have P : X }->\mathrm{ range(f) by simp
    with A3 A4 show P(x) = f fist (p) (x), snd (p) (x) \rangle
        using ZF_fun_from_tot_val by simp
qed
```

Function lifted to a function space results in function space operator.

```
theorem func_ZF_1_L3:
    assumes f : Y }\times\textrm{Y}->\textrm{Y
    and F = f {lifted to function space over} X
    shows F : (X }->\mathrm{ range(f)) }\times(X->\mathrm{ range(f)) }->\mathrm{ (X }->\mathrm{ range(f))
    using assms Lift2FcnSpce_def func_ZF_1_L1 ZF_fun_from_total
    by simp
```

The values of the lift are defined by the values of the liftee in the natural

way.

```
theorem func_ZF_1_L4:
    assumes A1: \(f: Y \times Y \rightarrow Y\)
    and A2: \(F=f\) \{lifted to function space over\} X
    and A3: \(s: X \rightarrow\) range(f) \(r: X \rightarrow r a n g e(f)\)
    and A4: \(x \in X\)
    shows \((F\langle s, r\rangle)(x)=f\langle s(x), r(x)\rangle\)
proof -
    let \(p=\langle s, r\rangle\)
    let \(P=\{\langle x, f\langle f \operatorname{st}(p)(x), \operatorname{snd}(p)(x)\rangle\rangle . x \in X\}\)
    from A1 A3 A4 have
        \(f: Y \times Y \rightarrow Y \quad p \in(X \rightarrow\) range \((f)) \times(X \rightarrow\) range \((f))\)
        \(x \in X \quad P=\{\langle x, f\langle f s t(p)(x), \operatorname{snd}(p)(x)\rangle\rangle . x \in X\}\)
        by auto
    then have \(P(x)=f\langle f s t(p)(x)\), snd \((p)(x)\rangle\)
        by (rule func_ZF_1_L2)
    hence \(P(x)=f\langle s(x), r(x)\rangle\) by auto
    moreover have \(P=F\langle s, r\rangle\)
    proof -
        from A1 A2 have F : (X \(\rightarrow\) range \((f)) \times(X \rightarrow\) range \((f)) \rightarrow(X \rightarrow\) range \((f))\)
                using func_ZF_1_L3 by simp
            moreover from \(A 3\) have \(p \in(X \rightarrow\) range (f)) \(\times(X \rightarrow\) range (f))
                by auto
            moreover from A2 have
                \(F=\{\langle p,\{\langle x, f\langle f s t(p)(x), \operatorname{snd}(p)(x)\rangle\rangle . x \in X\}\rangle\).
                \(p \in(X \rightarrow\) range \((f)) \times(X \rightarrow\) range \((f))\}\)
                using Lift2FcnSpce_def by simp
            ultimately show thesis using ZF_fun_from_tot_val
                by simp
    qed
    ultimately show \((F\langle s, r\rangle)(x)=f\langle s(x), r(x)\rangle\) by auto
qed
```


10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove that they remain such when we lift them to a function space.

Typically we say that a binary operation "." on a set G is "associative" if $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ for all $x, y, z \in G$. Our actual definition below does not use the multiplicative notation so that we can apply it equally to the additive notation + or whatever infix symbol we may want to use. Instead, we use the generic set theory notation and write $P\langle x, y\rangle$ to denote the value of the operation P on a pair $\langle x, y\rangle \in G \times G$.

```
definition
    IsAssociative (infix {is associative on} 65) where
    P {is associative on} G \equiv P : G \G->G ^
    (}\forall\textrm{x}\inG.|y\inG.\forall\textrm{z}\in\textrm{G}
```

```
( P(\langleP(\langlex,y\rangle),z\rangle) = P( \langlex,P(\langley,z\rangle)\rangle)))
```

A binary function $f: X \times X \rightarrow Y$ is commutative if $f\langle x, y\rangle=f\langle y, x\rangle$. Note that in the definition of associativity above we talk about binary "operation" and here we say use the term binary "function". This is not set in stone, but usually the word "operation" is used when the range is a factor of the domain, while the word "function" allows the range to be a completely unrelated set.

```
definition
    IsCommutative (infix {is commutative on} 65) where
    f {is commutative on} G \equiv \forall x\inG. \forally\inG. f {x,y\rangle=f\langley,x\rangle
```

The lift of a commutative function is commutative.

```
lemma func_ZF_2_L1:
    assumes A1: f : G\timesG GG
    and A2: F = f {lifted to function space over} X
    and A3: s : X }->\mathrm{ range(f) r : X }->\mathrm{ range(f)
    and A4: f {is commutative on} G
    shows F}\textrm{F}\langle\textrm{s},\textrm{r}\rangle=\textrm{F}\langler,\textrm{s}
proof -
    from A1 A2 have
            F : (X }->\mathrm{ range(f)) }\times(X->\mathrm{ range(f)) }->(X->\mathrm{ range(f))
            using func_ZF_1_L3 by simp
    with A3 have
        F\langles,r\rangle : X }->\mathrm{ range(f) and F
        using apply_type by auto
    moreover have
        \forallx\inX. (F/s,r\rangle)(x) = (F\langler,s\rangle)(x)
    proof
        fix }x\mathrm{ assume }x\in
        from A1 have range(f)\subseteqG
                using func1_1_L5B by simp
            with A3 {x\inX\rangle have s(x) \inG and r(x) \inG
                using apply_type by auto
            with A1 A2 A3 A4 (x\inX\rangle show
                (F\langles,r\rangle)(x) = (F\langler,s\rangle)(x)
                using func_ZF_1_L4 IsCommutative_def by simp
    qed
    ultimately show thesis using fun_extension_iff
        by simp
qed
```

The lift of a commutative function is commutative on the function space.

```
lemma func_ZF_2_L2:
    assumes f : G\timesG }->\textrm{G
    and f {is commutative on} G
    and F = f {lifted to function space over} X
    shows F {is commutative on} (X }->\mathrm{ range(f))
```

using assms IsCommutative_def func_ZF_2_L1 by simp
The lift of an associative function is associative.

```
lemma func_ZF_2_L3:
    assumes A2: F = f {lifted to function space over} X
    and A3: s : X }->\mathrm{ range(f) r : X }->\mathrm{ range(f) q : X }->\mathrm{ range(f)
    and A4: f {is associative on} G
    shows F}\textrm{F}\langle\textrm{F}\langle\textrm{s},\textrm{r}\rangle,\textrm{q}\rangle=\textrm{F}\langle\textrm{s},\textrm{F}\langle\textrm{r},\textrm{q}\rangle
proof -
    from A4 A2 have
        F : (X }->\mathrm{ range (f)) }\times(X->\mathrm{ range (f)) }->(X->\mathrm{ range (f))
        using IsAssociative_def func_ZF_1_L3 by auto
    with A3 have I:
        F\langles,r\rangle : X }->\mathrm{ range(f)
        F}\langler,q\rangle: X ->range(f
        F}\langle\textrm{F}\langle\textrm{s},\textrm{r}\rangle,\textrm{q}\rangle:X->\mathrm{ : (ange(f)
        F\langles,F\langler,q\rangle\rangle: X }->\mathrm{ range(f)
        using apply_type by auto
    moreover have
        \forallx\inX. (F\langleF\langles,r\rangle,q\rangle)(x) = (F\langles,F\langler,q\rangle\rangle)(x)
    proof
            fix }x\mathrm{ assume }x\in
            from A4 have f:G\timesG->G
                using IsAssociative_def by simp
            then have range(f)\subseteqG
                using func1_1_L5B by simp
            with A3 {x\inX\rangle have
                s(x) \inGr(x) \inG q(x) \inG
                using apply_type by auto
            with A2 I A3 A4 (x\inX\rangle {f:G G G }->\textrm{G}\rangle\mathrm{ show
                (F}\langle\textrm{F}\langle\textrm{s},\textrm{r}\rangle,\textrm{q}\rangle)(\textrm{x})=(\textrm{F}\langle\textrm{s},\textrm{F}\langle\textrm{r},\textrm{q}\rangle\rangle)(\textrm{x}
                using func_ZF_1_L4 IsAssociative_def by simp
    qed
    ultimately show thesis using fun_extension_iff
        by simp
qed
```

The lift of an associative function is associative on the function space.

```
lemma func_ZF_2_L4:
    assumes A1: f {is associative on} G
    and A2: F = f {lifted to function space over} X
    shows F {is associative on} (X }->\mathrm{ range(f))
proof -
    from A1 A2 have
        F : (X }->\mathrm{ range(f)) }\times(X->\mathrm{ range (f)) }->(X->\mathrm{ range(f))
        using IsAssociative_def func_ZF_1_L3 by auto
    moreover from A1 A2 have
        s \in X }->\mathrm{ range(f). }\forall\textrm{r}\in\textrm{X}->\textrm{range(f). }\forall\textrm{q}\in\textrm{X}->\textrm{range(f).
        F}\langle\textrm{F}\langle\textrm{s},\textrm{r}\rangle,\textrm{q}\rangle=\textrm{F}\langle\textrm{s},\textrm{F}\langle\textrm{r},\textrm{q}\rangle
```

using func_ZF_2_L3 by simp
ultimately show thesis using IsAssociative_def by simp
qed

10.3 Restricting operations

In this section we consider conditions under which restriction of the operation to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

```
lemma func_ZF_4_L1:
    assumes A1: f:X X X }->\textrm{Y}\mathrm{ and A2: A}\
    and A3: f {is commutative on} X
    shows restrict(f,A\timesA) {is commutative on} A
proof -
    { fix x y assume }x\inA\mathrm{ and }y\in
        with A2 have }x\inX\mathrm{ and }y\inX by aut
        with A3 \langlex\inA\rangle}\langley\inA\rangle hav
            restrict(f,A\timesA)\langlex,y\rangle= restrict(f,A\timesA) \ y , x\rangle
            using IsCommutative_def restrict_if by simp }
    then show thesis using IsCommutative_def by simp
qed
```

Next we define what it means that a set is closed with respect to an operation.

```
definition
    IsOpClosed (infix {is closed under} 65) where
    A {is closed under} f }\equiv\forall\textrm{x}\in\textrm{A}.\forall\textrm{l},\textrm{A}.\textrm{f}\langle\textrm{x},\textrm{y}\rangle\in\textrm{A
```

Associative operation restricted to a set that is closed with resp. to this operation is associative.

```
lemma func_ZF_4_L2:assumes A1: f {is associative on} X
    and A2: A\subseteqX and A3: A {is closed under} f
    and A4: }x\inA\quady\inA z\in
    and A5: g = restrict(f,A\timesA)
    shows g}\\textrm{g}\langle\textrm{x},\textrm{y}\rangle,\textrm{z}\rangle=\textrm{g}\langle\textrm{x},\textrm{g}\langle\textrm{y},\textrm{z}\rangle
proof -
    from A4 A2 have I: }x\inX y\inX z\in
            by auto
    from A3 A4 A5 have
            g}\langle\textrm{g}\langle\textrm{x},\textrm{y}\rangle,\textrm{z}\rangle=\textrm{f}\langle\textrm{f}\langle\textrm{x},\textrm{y}\rangle,\textrm{z}
            g\langlex,g\langley,z\rangle\rangle}=\textrm{f}\langle\textrm{x},\textrm{f}\langle\textrm{y},\textrm{z}\rangle
            using IsOpClosed_def restrict_if by auto
    moreover from A1 I have
            f}\langlef\langlex,y\rangle,z\rangle=f\langlex,f\langley,z\rangle
            using IsAssociative_def by simp
    ultimately show thesis by simp
```

qed
An associative operation restricted to a set that is closed with resp. to this operation is associative on the set.

```
lemma func_ZF_4_L3: assumes A1: f {is associative on} X
    and A2: A\subseteqX and A3: A {is closed under} f
    shows restrict(f,A\timesA) {is associative on} A
proof -
    let g = restrict(f,A\timesA)
    from A1 have f:X XX }->\textrm{X
        using IsAssociative_def by simp
    moreover from A2 have A }\timesA\subseteqX\timesX by aut
    moreover from A3 have }\forall\textrm{p}\in\textrm{A}\times\textrm{A}.g(p)\in
        using IsOpClosed_def restrict_if by auto
    ultimately have g : A}\times\textrm{A}->\textrm{A
        using func1_2_L4 by simp
    moreover from A1 A2 A3 have
        |x\inA.}\forally,A.\forallz\inA
        g}\langle\textrm{g}\langle\textrm{x},\textrm{y}\rangle,\textrm{z}\rangle=\textrm{g}\langle\textrm{x},\textrm{g}\langle\textrm{y},\textrm{z}\rangle
        using func_ZF_4_L2 by simp
    ultimately show thesis
        using IsAssociative_def by simp
qed
```

The essential condition to show that if a set A is closed with respect to an operation, then it is closed under this operation restricted to any superset of A.

```
lemma func_ZF_4_L4: assumes A {is closed under} f
    and }A\subseteqB\mathrm{ and }x\inA\quady\inA\mathrm{ and }g=restrict(f,B\timesB
    shows g}\textrm{g}\langle\textrm{x},\textrm{y}\rangle\in\textrm{A
    using assms IsOpClosed_def restrict by auto
```

If a set A is closed under an operation, then it is closed under this operation restricted to any superset of A.

```
lemma func_ZF_4_L5:
    assumes A1: A \{is closed under\} f
    and \(A 2\) : \(A \subseteq B\)
    shows A \{is closed under\} restrict ( \(f, B \times B\) )
proof -
    let \(\mathrm{g}=\) restrict \((\mathrm{f}, \mathrm{B} \times \mathrm{B})\)
    from A1 A2 have \(\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{A} . \mathrm{g}\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{A}\)
        using func_ZF_4_L4 by simp
    then show thesis using IsOpClosed_def by simp
qed
```

The essential condition to show that intersection of sets that are closed with respect to an operation is closed with respect to the operation.
lemma func_ZF_4_L6:

```
assumes A {is closed under} f
and B {is closed under} f
and }x\inA\capBy\inA\cap
shows f}\\langlex,y\rangle\inA\capB using assms IsOpClosed_def by aut
```

Intersection of sets that are closed with respect to an operation is closed under the operation.

```
lemma func_ZF_4_L7:
    assumes A {is closed under} f
    B {is closed under} f
    shows A\capB {is closed under} f
    using assms IsOpClosed_def by simp
```


10.4 Compositions

For any set X we can consider a binary operation on the set of functions f : $X \rightarrow X$ defined by $C(f, g)=f \circ g$. Composition of functions (or relations) is defined in the standard Isabelle distribution as a higher order function and denoted with the letter 0 . In this section we consider the corresponding two-argument ZF-function (binary operation), that is a subset of ($(X \rightarrow$ $X) \times(X \rightarrow X)) \times(X \rightarrow X)$.

We define the notion of composition on the set X as the binary operation on the function space $X \rightarrow X$ that takes two functions and creates the their composition.

```
definition
    Composition(X) \equiv
    {\p,fst(p) O snd(p)\rangle. p \in (X }->\textrm{X})\times(\textrm{X}->\textrm{X})
```

Composition operation is a function that maps $(X \rightarrow X) \times(X \rightarrow X)$ into $X \rightarrow X$.

```
lemma func_ZF_5_L1: shows Composition(X) : (X }->\textrm{X})\times(\textrm{X}->\textrm{X})->(X->X
    using comp_fun Composition_def ZF_fun_from_total by simp
```

The value of the composition operation is the composition of arguments.

```
lemma func_ZF_5_L2: assumes f:X X X and g:X X X
    shows Composition(X)\langlef,g\rangle = f Og
proof -
    from assms have
        Composition(X) : (X }->\textrm{X})\times(\textrm{X}->\textrm{X})->(\textrm{X}->\textrm{X}
        |f,g\rangle \in(X }->\textrm{X})\times(\textrm{X}->\textrm{X}
        Composition(X) = {\langlep,fst(p) 0 snd(p)\rangle. p \in (X X X) }\times(\textrm{X}->\textrm{X})
        using func_ZF_5_L1 Composition_def by auto
    then show Composition(X)\langlef,g\rangle=f0g
        using ZF_fun_from_tot_val by auto
qed
```

What is the value of a composition on an argument?

```
lemma func_ZF_5_L3: assumes \(f: X \rightarrow X\) and \(g: X \rightarrow X\) and \(x \in X\)
    shows (Composition(X) \(\langle f, g\rangle)(x)=f(g(x))\)
    using assms func_ZF_5_L2 comp_fun_apply by simp
```

The essential condition to show that composition is associative.

```
lemma func_ZF_5_L4: assumes A1: \(f: X \rightarrow X \quad g: X \rightarrow X ~ h: X \rightarrow X\)
    and A2: C = Composition(X)
    shows \(\mathrm{C}\langle\mathrm{C}\langle\mathrm{f}, \mathrm{g}\rangle, \mathrm{h}\rangle=\mathrm{C}\langle\mathrm{f}, \mathrm{C}\langle\mathrm{g}, \mathrm{h}\rangle\rangle\)
proof -
    from \(A 2\) have \(C:((X \rightarrow X) \times(X \rightarrow X)) \rightarrow(X \rightarrow X)\)
                using func_ZF_5_L1 by simp
    with A1 have I:
                \(\mathrm{C}\langle\mathrm{f}, \mathrm{g}\rangle: \mathrm{X} \rightarrow \mathrm{X}\)
                \(\mathrm{C}\langle\mathrm{g}, \mathrm{h}\rangle: \mathrm{X} \rightarrow \mathrm{X}\)
                \(\mathrm{C}\langle\mathrm{C}\langle\mathrm{f}, \mathrm{g}\rangle, \mathrm{h}\rangle: \mathrm{X} \rightarrow \mathrm{X}\)
                \(\mathrm{C}\langle\mathrm{f}, \mathrm{C}\langle\mathrm{g}, \mathrm{h}\rangle\rangle: \mathrm{X} \rightarrow \mathrm{X}\)
                using apply_funtype by auto
    moreover have
            \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{C}\langle\mathrm{C}\langle\mathrm{f}, \mathrm{g}\rangle, \mathrm{h}\rangle(\mathrm{x})=\mathrm{C}\langle\mathrm{f}, \mathrm{C}\langle\mathrm{g}, \mathrm{h}\rangle\rangle(\mathrm{x})\)
    proof
                fix \(x\) assume \(x \in X\)
                with A1 A2 I have
                    \(\mathrm{C}\langle\mathrm{C}\langle\mathrm{f}, \mathrm{g}\rangle, \mathrm{h}\rangle \quad(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{h}(\mathrm{x})))\)
                \(C\langle f, C\langle g, h\rangle\rangle(x)=f(g(h(x)))\)
                using func_ZF_5_L3 apply_funtype by auto
            then show \(C\langle C\langle f, g\rangle, h\rangle(x)=C\langle f, C\langle g, h\rangle\rangle(x)\)
                by simp
            qed
        ultimately show thesis using fun_extension_iff by simp
qed
```

Composition is an associative operation on $X \rightarrow X$ (the space of functions that map X into itself).

```
lemma func_ZF_5_L5: shows Composition(X) {is associative on} (X }->\textrm{X}\mathrm{ )
proof -
    let C = Composition(X)
    have }\forall\textrm{f}\in\textrm{X}->\textrm{X}.\quad\forall\textrm{g}\in\textrm{X}->\textrm{X}.\quad\forall\textrm{h}\in\textrm{X}->\textrm{X}
        C}\langle\textrm{C}\langle\textrm{f},\textrm{g}\rangle,\textrm{h}\rangle=\textrm{C}\langle\textrm{f},\textrm{C}\langle\textrm{g},\textrm{h}\rangle
        using func_ZF_5_L4 by simp
    then show thesis using func_ZF_5_L1 IsAssociative_def
        by simp
qed
```


10.5 Identity function

In this section we show some additional facts about the identity function defined in the standard Isabelle's Perm theory.

A function that maps every point to itself is the identity on its domain.

```
lemma indentity_fun: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: }\forall\textrm{x}\in\textrm{X}.\textrm{f}(\textrm{x})=\textrm{x
    shows f = id(X)
proof -
    from assms have f:X->Y and id(X):X->X and }\forallx\inX.f(x)=id(X)(x
        using id_type id_conv by auto
    then show thesis by (rule func_eq)
qed
```

Composing a function with identity does not change the function.

```
lemma func_ZF_6_L1A: assumes A1: f : X \(\rightarrow\) X
    shows Composition(X) \(\langle\mathrm{f}, \mathrm{id}(\mathrm{X})\rangle=\mathrm{f}\)
    Composition(X) \(\langle\mathrm{id}(\mathrm{X}), \mathrm{f}\rangle=\mathrm{f}\)
proof -
    have Composition \((\mathrm{X}):(\mathrm{X} \rightarrow \mathrm{X}) \times(\mathrm{X} \rightarrow \mathrm{X}) \rightarrow(\mathrm{X} \rightarrow \mathrm{X})\)
        using func_ZF_5_L1 by simp
    with A1 have Composition(X) \(\langle\mathrm{id}(\mathrm{X}), \mathrm{f}\rangle: \mathrm{X} \rightarrow \mathrm{X}\)
        Composition(X) \(\langle\mathrm{f}, \mathrm{id}(\mathrm{X})\rangle: \mathrm{X} \rightarrow \mathrm{X}\)
        using id_type apply_funtype by auto
    moreover note A1
    moreover from A1 have
        \(\forall x \in X\). (Composition(X) \(\langle i d(X), f\rangle)(x)=f(x)\)
        \(\forall x \in X\). (Composition(X) \(\langle\mathrm{f}, \mathrm{id}(\mathrm{X})\rangle)(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
        using id_type func_ZF_5_L3 apply_funtype id_conv
        by auto
    ultimately show Composition(X) \(\langle\mathrm{id}(\mathrm{X}), \mathrm{f}\rangle=\mathrm{f}\)
        Composition(X) \(\langle\mathrm{f}, \mathrm{id}(\mathrm{X})\rangle=\mathrm{f}\)
        using fun_extension_iff by auto
qed
```

An intuitively clear, but surprsingly nontrivial fact:identity is the only function from a singleton to itself.

```
lemma singleton_fun_id: shows ({x} -> {x}) = {id({x})}
proof
    show {id({x})}\subseteq({x} -> {x})
        using id_def by simp
    { let g = id({x})
        fix f assume f : {x} }->{x
        then have f : {x} }->{x}\mathrm{ and g : {x} }->{x
            using id_def by auto
        moreover from <f : {x} }->{x}\mathrm{ \have }\forallx\in{x}. f(x)=g(x
            using apply_funtype id_def by auto
        ultimately have f = g by (rule func_eq)
    } then show ({x} -> {x}) \subseteq{id({x})} by auto
qed
```

Another trivial fact: identity is the only bijection of a singleton with itself.

```
lemma single_bij_id: shows bij({x},{x}) = {id({x})}
proof
    show {id({x})} \subseteq bij({x},{x}) using id_bij
```

```
        by simp
    { fix f assume f \in bij({x},{x})
        then have f : {x} }->{x}\mathrm{ using bij_is_fun
        by simp
        then have f \in {id({x})} using singleton_fun_id
        by simp
    } then show bij({x},{x}) \subseteq{id({x})} by auto
qed
```

A kind of induction for the identity: if a function f is the identity on a set with a fixpoint of f removed, then it is the indentity on the whole set.

```
lemma id_fixpoint_rem: assumes A1: f:X }->\textrm{X}\mathrm{ and
    A2: p\inX and A3: f(p) = p and
    A4: restrict(f, X-{p}) = id(X-{p})
    shows f = id(X)
proof -
    from A1 have f: X }->\textrm{X}\mathrm{ and id(X) : X }->\textrm{X
            using id_def by auto
    moreover
    { fix }x\mathrm{ assume }x\in
            { assume }x\inX-{p
            then have f(x) = restrict(f, X-{p})(x)
    using restrict by simp
                with A4 {x \in X-{p}> have f(x) = x
    using id_def by simp }
        with A2 A3 { }x\in
    } then have }\forallx\inX.f(x)=id(X)(x
        using id_def by simp
    ultimately show f = id(X) by (rule func_eq)
qed
```


10.6 Lifting to subsets

Suppose we have a binary operation $f: X \times X \rightarrow X$ written additively as $f\langle x, y\rangle=x+y$. Such operation naturally defines another binary operation on the subsets of X that satisfies $A+B=\{x+y: x \in A, y \in B\}$. This new operation which we will call " f lifted to subsets" inherits many properties of f, such as associativity, commutativity and existence of the neutral element. This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to subsets. It is written in a way that might be a bit unexpected, but really it is the same as the intuitive definition, but shorter. In the definition we take a pair $p \in \operatorname{Pow}(X) \times \operatorname{Pow}(X)$, say $p=\langle A, B\rangle$, where $A, B \subseteq X$. Then we assign this pair of sets the set $\{f\langle x, y\rangle: x \in A, y \in B\}=\left\{f\left(x^{\prime}\right): x^{\prime} \in A \times B\right\}$ The set on the right hand side is the same as the image of $A \times B$ under f. In the definition we don't use A and B symbols, but write fst (p) and $\operatorname{snd}(\mathrm{p})$, resp. Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
components of an ordered pair p. See the lemma lift_subsets_explained for a more intuitive notation.

```
definition
    Lift2Subsets (infix {lifted to subsets of} 65) where
    f {lifted to subsets of} X \equiv
    {\langlep, f(fst(p)\timessnd(p))\rangle. p \in Pow(X) \Pow(X)}
```

The lift to subsets defines a binary operation on the subsets.

```
lemma lift_subsets_binop: assumes A1: f : X }\times\textrm{X}->\textrm{Y
    shows (f {lifted to subsets of} X) : Pow(X) }\times\mathrm{ Pow(X) }->\mathrm{ Pow(Y)
proof -
    let F = {\langlep,f(fst (p) }\times\mathrm{ snd (p)) \. p G Pow (X) }\times\operatorname{Pow}(X)
    from A1 have }\forall\textrm{p}\in\operatorname{Pow}(X)\times\operatorname{Pow}(X).f(fst(p)\times\operatorname{snd}(p))\in\operatorname{Pow}(Y
        using func1_1_L6 by simp
    then have F : Pow(X) }\times\mathrm{ Pow(X) }->\mathrm{ Pow(Y)
        by (rule ZF_fun_from_total)
    then show thesis unfolding Lift2Subsets_def by simp
qed
```

The definition of the lift to subsets rewritten in a more intuitive notation. We would like to write the last assertion as $F\langle A, B\rangle=\{f\langle x, y\rangle . x \in A, y \in$ B\}, but Isabelle/ZF does not allow such syntax.

```
lemma lift_subsets_explained: assumes A1: \(f: X \times X \rightarrow Y\)
    and A2: \(A \subseteq X \quad B \subseteq X\) and \(A 3: F=f\) \{lifted to subsets of \(X\)
    shows
    \(\mathrm{F}\langle\mathrm{A}, \mathrm{B}\rangle \subseteq \mathrm{Y}\) and
    \(F\langle A, B\rangle=f(A \times B)\)
    \(F\langle A, B\rangle=\{f(p) \cdot p \in A \times B\}\)
    \(F\langle A, B\rangle=\{f\langle x, y\rangle .\langle x, y\rangle \in A \times B\}\)
proof -
    let \(p=\langle A, B\rangle\)
    from assms have
        I: \(\mathrm{F}: \operatorname{Pow}(\mathrm{X}) \times \operatorname{Pow}(\mathrm{X}) \rightarrow \operatorname{Pow}(\mathrm{Y})\) and \(\mathrm{p} \in \operatorname{Pow}(\mathrm{X}) \times \operatorname{Pow}(\mathrm{X})\)
        using lift_subsets_binop by auto
    moreover from A3 have \(F=\{\langle p, f(f s t(p) \times \operatorname{snd}(p))\rangle . p \in \operatorname{Pow}(X) \times \operatorname{Pow}(X)\}\)
        unfolding Lift2Subsets_def by simp
    ultimately show \(F\langle A, B\rangle=f(A \times B)\)
        using ZF_fun_from_tot_val by auto
    also
    from A1 A2 have \(A \times B \subseteq X \times X\) by auto
    with \(A 1\) have \(f(A \times B)=\{f(p) \cdot p \in A \times B\}\)
        by (rule func_imagedef)
    finally show \(F\langle A, B\rangle=\{f(p) \cdot p \in A \times B\}\) by simp
    also
    have \(\forall x \in A . \forall y \in B . f\langle x, y\rangle=f\langle x, y\rangle\) by simp
    then have \(\{f(p) . p \in A \times B\}=\{f\langle x, y\rangle . \quad\langle x, y\rangle \in A \times B\}\)
        by (rule ZF1_1_L4A)
    finally show \(F\langle A, B\rangle=\{f\langle x, y\rangle .\langle x, y\rangle \in A \times B\}\)
```

by simp
from A2 I show $F\langle A, B\rangle \subseteq Y$ using apply_funtype by blast qed

A sufficient condition for a point to belong to a result of lifting to subsets.

```
lemma lift_subset_suff: assumes A1: \(f: X \times X \rightarrow Y\) and
    A2: \(A \subseteq X \quad B \subseteq X\) and \(A 3: x \in A y \in B\) and
    A4: \(F=f\) \{lifted to subsets of \(\}\)
    shows \(f\langle x, y\rangle \in F\langle A, B\rangle\)
proof -
    from A3 have \(f\langle x, y\rangle \in\{f(p) . p \in A \times B\}\) by auto
    moreover from A1 A2 A4 have \(\{f(p) . p \in A \times B\}=F\langle A, B\rangle\)
            using lift_subsets_explained by simp
    ultimately show \(f\langle x, y\rangle \in F\langle A, B\rangle\) by simp
qed
```

A kind of converse of lift_subset_apply, providing a necessary condition for a point to be in the result of lifting to subsets.

```
lemma lift_subset_nec: assumes A1: \(f: X \times X \rightarrow Y\) and
    \(\mathrm{A} 2: \mathrm{A} \subseteq \mathrm{X} \quad \mathrm{B} \subseteq \mathrm{X}\) and
    A3: \(F=f\) \{lifted to subsets of \(X\) and
    A4: \(z \in F\langle A, B\rangle\)
    shows \(\exists x\) y. \(x \in A \wedge y \in B \wedge z=f\langle x, y\rangle\)
proof -
    from A1 A2 A3 have \(F\langle A, B\rangle=\{f(p) \cdot p \in A \times B\}\)
        using lift_subsets_explained by simp
    with A4 show thesis by auto
qed
```

Lifting to subsets inherits commutativity.

```
lemma lift_subset_comm: assumes A1: f : X \(\times \mathrm{X} \rightarrow \mathrm{Y}\) and
    A2: \(f\) \{is commutative on\} \(X\) and
    A3: \(F=f\) \{lifted to subsets of \(\}\)
    shows F \{is commutative on\} Pow (X)
proof -
    have \(\forall A \in \operatorname{Pow}(X) . \forall B \in \operatorname{Pow}(X) . F\langle A, B\rangle=F\langle B, A\rangle\)
    proof -
        \{ fix \(A\) assume \(A \in \operatorname{Pow}(X)\)
                fix \(B\) assume \(B \in \operatorname{Pow}(X)\)
                have \(F\langle A, B\rangle=F\langle B, A\rangle\)
                proof -
    have \(\forall z \in F\langle A, B\rangle . z \in F\langle B, A\rangle\)
    proof
        fix z assume I: \(z \in F\langle A, B\rangle\)
        with A1 \(A 3\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\) have
            \(\exists x y . x \in A \wedge y \in B \wedge z=f\langle x, y\rangle\)
            using lift_subset_nec by simp
            then obtain \(x\) y where \(x \in A\) and \(y \in B\) and \(z=f\langle x, y\rangle\)
                by auto
```

```
    with \(A 2\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\) have \(z=f\langle y, x\rangle\)
        using IsCommutative_def by auto
    with A1 A3 \(I\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\langle x \in A\rangle\langle y \in B\rangle\)
    show \(z \in F\langle B, A\rangle\) using lift_subset_suff by simp
qed
moreover have \(\forall z \in F\langle B, A\rangle . z \in F\langle A, B\rangle\)
proof
    fix \(z\) assume \(I: z \in F\langle B, A\rangle\)
    with A1 \(A 3\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\) have
        \(\exists x y . x \in B \wedge y \in A \wedge z=f\langle x, y\rangle\)
        using lift_subset_nec by simp
    then obtain \(x\) where \(x \in B\) and \(y \in A\) and \(z=f\langle x, y\rangle\)
        by auto
    with \(A 2\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\) have \(z=f\langle y, x\rangle\)
        using IsCommutative_def by auto
    with A1 A3 \(I\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\langle x \in B\rangle\langle y \in A\rangle\)
    show \(z \in F\langle A, B\rangle\) using lift_subset_suff by simp
qed
ultimately show \(F\langle A, B\rangle=F\langle B, A\rangle\) by auto
            qed
    \} thus thesis by auto
    qed
    then show F \{is commutative on\} Pow (X)
    unfolding IsCommutative_def by auto
qed
```

Lifting to subsets inherits associativity. To show that $F\langle\langle A, B\rangle C\rangle=F\langle A, F\langle B, C\rangle\rangle$ we prove two inclusions and the proof of the second inclusion is very similar to the proof of the first one.

```
lemma lift_subset_assoc: assumes A1: f : X \(\times \mathrm{X} \rightarrow \mathrm{X}\) and
    A2: f \{is associative on\} \(X\) and
    A3: \(F=f\) \{lifted to subsets of \(X\)
    shows \(F\) \{is associative on\} Pow(X)
proof -
    from A1 A3 have F : Pow \((X) \times \operatorname{Pow}(X) \rightarrow \operatorname{Pow}(X)\)
        using lift_subsets_binop by simp
    moreover have \(\forall \mathrm{A} \in \operatorname{Pow}(\mathrm{X}) . \forall \mathrm{B} \in \operatorname{Pow}(\mathrm{X}) . \forall \mathrm{C} \in \operatorname{Pow}(\mathrm{X})\).
        \(\mathrm{F}\langle\mathrm{F}\langle\mathrm{A}, \mathrm{B}\rangle, \mathrm{C}\rangle=\mathrm{F}\langle\mathrm{A}, \mathrm{F}\langle\mathrm{B}, \mathrm{C}\rangle\rangle\)
    proof -
        \{ fix A B C
            assume \(A \in \operatorname{Pow}(X) \quad B \in \operatorname{Pow}(X) \quad C \in \operatorname{Pow}(X)\)
            have \(F\langle F\langle A, B\rangle, C\rangle \subseteq F\langle A, F\langle B, C\rangle\rangle\)
            proof
    fix \(z\) assume \(I: ~ z \in F\langle F\langle A, B\rangle, C\rangle\)
    from A1 \(A 3\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\)
    have \(F\langle A, B\rangle \in \operatorname{Pow}(X)\)
        using lift_subsets_binop apply_funtype by blast
    with A1 A3 《C \(\in \operatorname{Pow}(X)\) ) I have
        \(\exists \mathrm{x} y . \mathrm{x} \in \mathrm{F}\langle\mathrm{A}, \mathrm{B}\rangle \wedge \mathrm{y} \in \mathrm{C} \wedge \mathrm{z}=\mathrm{f}\langle\mathrm{x}, \mathrm{y}\rangle\)
```

using lift_subset_nec by simp
then obtain x y where
II: $x \in F\langle A, B\rangle$ and $y \in C$ and III: $z=f\langle x, y\rangle$
by auto
from A1 A3 $\langle\mathrm{A} \in \operatorname{Pow}(\mathrm{X})\rangle\langle\mathrm{B} \in \operatorname{Pow}(\mathrm{X})\rangle$ II have
$\exists \mathrm{st} . \mathrm{s} \in \mathrm{A} \wedge \mathrm{t} \in \mathrm{B} \wedge \mathrm{x}=\mathrm{f}\langle\mathrm{s}, \mathrm{t}\rangle$
using lift_subset_nec by auto
then obtain $s t$ where $s \in A$ and $t \in B$ and $x=f\langle s, t\rangle$
by auto
with $\mathrm{A} 2\langle\mathrm{~A} \in \operatorname{Pow}(\mathrm{X})\rangle\langle\mathrm{B} \in \operatorname{Pow}(\mathrm{X})\rangle\langle\mathrm{C} \in \operatorname{Pow}(\mathrm{X})\rangle$ III
$\langle s \in A\rangle\langle t \in B\rangle\langle y \in C\rangle$ have IV: $z=f\langle s, f\langle t, y\rangle\rangle$
using IsAssociative_def by blast
from $A 1 A 3\langle B \in \operatorname{Pow}(X)\rangle\langle C \in \operatorname{Pow}(X)\rangle\langle t \in B\rangle\langle y \in C\rangle$
have $f\langle t, y\rangle \in F\langle B, C\rangle$ using lift_subset_suff by simp
moreover from $A 1 A 3\langle B \in \operatorname{Pow}(X)\rangle\langle C \in \operatorname{Pow}(X)$ 〉
have $F\langle B, C\rangle \subseteq X$ using lift_subsets_binop apply_funtype by blast
moreover note $A 1 \mathrm{~A} 3\langle\mathrm{~A} \in \operatorname{Pow}(X)\rangle\langle\mathrm{s} \in \mathrm{A}\rangle \mathrm{IV}$
ultimately show $z \in F\langle A, F\langle B, C\rangle\rangle$
using lift_subset_suff by simp
qed
moreover have $F\langle A, F\langle B, C\rangle\rangle \subseteq F\langle F\langle A, B\rangle, C\rangle$
proof
fix z assume $I: ~ z \in F\langle A, F\langle B, C\rangle\rangle$
from $A 1 A 3\langle B \in \operatorname{Pow}(X)\rangle\langle C \in \operatorname{Pow}(X)\rangle$
have $F\langle B, C\rangle \in \operatorname{Pow}(X)$
using lift_subsets_binop apply_funtype by blast
with A1 A3 $\langle\mathrm{A} \in \operatorname{Pow}(\mathrm{X})\rangle \mathrm{I}$ have
$\exists x y . x \in A \wedge y \in F\langle B, C\rangle \wedge z=f\langle x, y\rangle$
using lift_subset_nec by simp
then obtain x y where
$x \in A$ and II: $y \in F\langle B, C\rangle$ and III: $z=f\langle x, y\rangle$
by auto
from A1 $A 3\langle B \in \operatorname{Pow}(X)\rangle\langle C \in \operatorname{Pow}(X)\rangle$ II have
$\exists \mathrm{st} .\mathrm{~s} \in \mathrm{~B} \wedge \mathrm{t} \in \mathrm{C} \wedge \mathrm{y}=\mathrm{f}\langle\mathrm{s}, \mathrm{t}\rangle$
using lift_subset_nec by auto
then obtain $s t$ where $s \in B$ and $t \in C$ and $y=f\langle s, t\rangle$
by auto
with III have $z=f\langle x, f\langle s, t\rangle\rangle$ by simp
moreover from $A 2\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\langle C \in \operatorname{Pow}(X)\rangle$
$\langle x \in A\rangle\langle s \in B\rangle\langle t \in C\rangle$ have $f\langle f\langle x, s\rangle, t\rangle=f\langle x, f\langle s, t\rangle\rangle$
using IsAssociative_def by blast
ultimately have IV: $z=f\langle f\langle x, s\rangle, t\rangle$ by simp
from A1 A3 $\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle\langle x \in A\rangle\langle s \in B\rangle$
have $f\langle x, s\rangle \in F\langle A, B\rangle$ using lift_subset_suff by simp
moreover from $A 1$ A3 $\langle A \in \operatorname{Pow}(X)\rangle\langle B \in \operatorname{Pow}(X)\rangle$
have $F\langle A, B\rangle \subseteq X$ using lift_subsets_binop apply_funtype
by blast
moreover note A1 A3 $\langle\mathrm{C} \in \operatorname{Pow}(\mathrm{X})\rangle\langle\mathrm{t} \in \mathrm{C}\rangle \mathrm{IV}$

```
ultimately show z }\inF/F\langleA,B\rangle,C
    using lift_subset_suff by simp
            qed
            ultimately have F}\{F\langleA,B\rangle,C\rangle=F\langleA,F\langleB,C\rangle\rangle by aut
        } thus thesis by auto
    qed
    ultimately show thesis unfolding IsAssociative_def
        by auto
qed
```


10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive with respect to the other, that is $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$. We show that this property is preserved under restriction to a set closed with respect to both operations. In EquivClass1 theory we show that this property is preserved by projections to the quotient space if both operations are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the set on which the operations act. The second set is the additive operation (a ZF function) and the third is the multiplicative operation.

```
definition
    IsDistributive(X,A M) \equiv ( }\forall\textrm{a}\in\textrm{X}.\forall\textrm{b}\in\textrm{X}.\forall\textrm{c}\in\textrm{X}
    M\langlea,A\langleb,c\rangle\rangle=A\langleM\langlea,b\rangle,M\langlea,c\rangle\rangle^
    M\langleA\langleb,c\rangle,a\rangle=A\langleM\langleb,a\rangle,M\langlec,a\rangle\rangle)
```

The essential condition to show that distributivity is preserved by restrictions to sets that are closed with respect to both operations.

```
lemma func_ZF_7_L1:
    assumes A1: IsDistributive(X,A,M)
    and A2: Y\subseteqX
    and A3: Y {is closed under} A Y {is closed under} M
    and A4: A}\mp@subsup{A}{r}{}=r\mathrm{ restrict(A,Y }\times\textrm{Y})\mp@subsup{\textrm{M}}{r}{}=\operatorname{restrict(M,Y}\textrm{Y}\times\textrm{Y}
    and A5: a\inY b b Y c\inY
    shows }\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\mp@subsup{\textrm{A}}{r}{}\langle\textrm{b},\textrm{c}\rangle\rangle=\mp@subsup{\textrm{A}}{r}{}\langle\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\textrm{b}\rangle,\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\textrm{c}\rangle\rangle
```



```
proof -
    from A3 A5 have A\langleb,c\rangle\inY M M a,b\rangle\in Y M Ma,c\rangle\in Y
        M\langleb,a\rangle \in Y M M c,a\rangle\in Y using IsOpClosed_def by auto
    with A5 A4 have
        \mp@subsup{A}{r}{}}\langle\textrm{b},\textrm{c}\rangle\in\textrm{Y}\quad\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\textrm{b}\rangle\in\textrm{Y}\quad\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\textrm{c}\rangle\in\textrm{Y
        M
        using restrict by auto
    with A1 A2 A4 A5 show thesis
        using restrict IsDistributive_def by auto
qed
```

Distributivity is preserved by restrictions to sets that are closed with respect to both operations.

```
lemma func_ZF_7_L2:
    assumes IsDistributive(X,A,M)
    and Y\subseteqX
    and Y {is closed under} A
    Y {is closed under} M
    and A}\mp@subsup{A}{r}{}=\operatorname{restrict}(\textrm{A},\textrm{Y}\times\textrm{Y}) M M = restrict( ( , Y X Y )
    shows IsDistributive(Y, A},\mp@subsup{\textrm{M}}{r}{}\mathrm{ )
proof -
    from assms have }\forall\textrm{a}\in\textrm{Y}.\forall\textrm{b}\in\textrm{Y}.\forall\textrm{c}\in\textrm{Y}
        M}\mp@subsup{M}{r}{}\langle\textrm{a},\mp@subsup{\textrm{A}}{r}{}\langle\textrm{b},\textrm{c}\rangle\rangle=\mp@subsup{\textrm{A}}{r}{}\langle\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\textrm{b}\rangle,\mp@subsup{\textrm{M}}{r}{}\langle\textrm{a},\textrm{c}\rangle\rangle
        M
        using func_ZF_7_L1 by simp
    then show thesis using IsDistributive_def by simp
qed
```

end

11 More on functions

theory func_ZF_1 imports ZF.Order Order_ZF_1a func_ZF

begin

In this theory we consider some properties of functions related to order relations

11.1 Functions and order

This section deals with functions between ordered sets.
If every value of a function on a set is bounded below by a constant, then the image of the set is bounded below.

```
lemma func_ZF_8_L1:
    assumes f:X->Y and A\subseteqX and }\forallx\inA.\langleL,f(x)\rangle\in
    shows IsBoundedBelow(f(A),r)
proof -
    from assms have }\forally\inf(A).\langleL,y\rangle\in
        using func_imagedef by simp
    then show IsBoundedBelow(f(A),r)
        by (rule Order_ZF_3_L9)
qed
```

If every value of a function on a set is bounded above by a constant, then the image of the set is bounded above.

```
lemma func_ZF_8_L2:
    assumes f:X->Y and A\subseteqX and }\forallx\inA.\langlef(x),U\rangle\in
    shows IsBoundedAbove(f(A),r)
proof -
    from assms have }\forally\inf(A). \langley,U\rangle\in
        using func_imagedef by simp
    then show IsBoundedAbove(f(A),r)
        by (rule Order_ZF_3_L10)
qed
```

Identity is an order isomorphism.

```
lemma id_ord_iso: shows id(X) \in ord_iso(X,r,X,r)
    using id_bij id_def ord_iso_def by simp
```

Identity is the only order automorphism of a singleton.

```
lemma id_ord_auto_singleton:
    shows ord_iso({x},r,{x},r) = {id({x})}
    using id_ord_iso ord_iso_def single_bij_id
    by auto
```

The image of a maximum by an order isomorphism is a maximum. Note that from the fact the r is antisymmetric and f is an order isomorphism between (A, r) and (B, R) we can not conclude that R is antisymmetric (we can only show that $R \cap(B \times B)$ is).

```
lemma max_image_ord_iso:
    assumes A1: antisym(r) and A2: antisym(R) and
    A3: f \in ord_iso(A,r,B,R) and
    A4: HasAmaximum(r,A)
    shows HasAmaximum(R,B) and Maximum(R,B) = f(Maximum(r,A))
proof -
    let M = Maximum(r,A)
    from A1 A4 have M \in A using Order_ZF_4_L3 by simp
    from A3 have f:A }->\textrm{B}\mathrm{ using ord_iso_def bij_is_fun
        by simp
    with \M G A have I: f(M) \in B
        using apply_funtype by simp
    { fix y assume y \in B
        let x = converse(f)(y)
        from A3 have converse(f) \in ord_iso(B,R,A,r)
            using ord_iso_sym by simp
        then have converse(f): B }->\mathrm{ A
            using ord_iso_def bij_is_fun by simp
        with }\langley\inB\rangle\mathrm{ have x }\in
            by simp
        with A1 A3 A4 }\langlex\inA\rangle\langleM A A have \langlef(x), f(M)\rangle\in
            using Order_ZF_4_L3 ord_iso_apply by simp
        with A3 }\langle\textrm{y}\in\textrm{B}\rangle\mathrm{ have }\langle\textrm{y},\textrm{f}(\textrm{M})\rangle\in\textrm{R
            using right_inverse_bij ord_iso_def by auto
```

```
    } then have II: }\forall\textrm{y}\in\textrm{B}.\langle\textrm{y},\textrm{f}(\textrm{M})\rangle\in\textrm{R}\mathrm{ by simp
    with A2 I show Maximum(R,B) = f(M)
        by (rule Order_ZF_4_L14)
    from I II show HasAmaximum (R,B)
    using HasAmaximum_def by auto
qed
```

Maximum is a fixpoint of order automorphism.

```
lemma max_auto_fixpoint:
    assumes antisym(r) and f \in ord_iso(A,r,A,r)
    and HasAmaximum(r,A)
    shows Maximum(r,A) = f(Maximum(r,A))
    using assms max_image_ord_iso by blast
```

If two sets are order isomorphic and we remove x and $f(x)$, respectively, from the sets, then they are still order isomorphic.

```
lemma ord_iso_rem_point:
    assumes A1: f \in ord_iso(A,r,B,R) and A2: a \in A
    shows restrict(f,A-{a}) \in ord_iso(A-{a},r,B-{f(a)},R)
proof -
    let ff = restrict(f,A-{a})
    have A-{a} \subseteqA by auto
    with A1 have f}\mp@subsup{f}{0}{}\in\mathrm{ ord_iso(A-{a},r,f(A-{a}),R)
        using ord_iso_restrict_image by simp
    moreover
    from A1 have f \in inj(A,B)
        using ord_iso_def bij_def by simp
    with A2 have f(A-{a}) = f(A) - f{a}
        using inj_image_dif by simp
    moreover from A1 have f(A) = B
        using ord_iso_def bij_def surj_range_image_domain
        by auto
    moreover
    from A1 have f: A->B
        using ord_iso_def bij_is_fun by simp
    with A2 have f{a} = {f(a)}
        using singleton_image by simp
    ultimately show thesis by simp
qed
```

If two sets are order isomorphic and we remove maxima from the sets, then they are still order isomorphic.

```
corollary ord_iso_rem_max:
    assumes A1: antisym(r) and f \in ord_iso(A,r,B,R) and
    A4: HasAmaximum(r,A) and A5: M = Maximum(r,A)
    shows restrict(f,A-{M}) \in ord_iso(A-{M}, r, B-{f(M)},R)
    using assms Order_ZF_4_L3 ord_iso_rem_point by simp
```

Lemma about extending order isomorphisms by adding one point to the
domain.
lemma ord_iso_extend: assumes A1: $f \in \operatorname{ord}$ iso($A, r, B, R)$ and
A2: $\mathrm{M}_{A} \notin \mathrm{~A} \mathrm{M}_{B} \notin \mathrm{~B}$ and
A3: $\forall \mathrm{a} \in \mathrm{A} .\left\langle\mathrm{a}, \mathrm{M}_{A}\right\rangle \in \mathrm{r} \quad \forall \mathrm{b} \in \mathrm{B} .\left\langle\mathrm{b}, \mathrm{M}_{B}\right\rangle \in \mathrm{R}$ and
A4: antisym(r) antisym(R) and
A5: $\left\langle\mathrm{M}_{A}, \mathrm{M}_{A}\right\rangle \in \mathrm{r} \longleftrightarrow\left\langle\mathrm{M}_{B}, \mathrm{M}_{B}\right\rangle \in \mathrm{R}$
shows $f \cup\left\{\left\langle M_{A}, M_{B}\right\rangle\right\} \in$ ord_iso $\left(A \cup\left\{M_{A}\right\}, r, B \cup\left\{M_{B}\right\}, R\right)$
proof -
let $\mathrm{g}=\mathrm{f} \cup\left\{\left\langle\mathrm{M}_{A}, \mathrm{M}_{B}\right\rangle\right\}$
from A1 A2 have
$\mathrm{g}: \mathrm{A} \cup\left\{\mathrm{M}_{A}\right\} \rightarrow \mathrm{B} \cup\left\{\mathrm{M}_{B}\right\}$ and I: $\forall \mathrm{x} \in \mathrm{A} \cdot \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ and II: $\mathrm{g}\left(\mathrm{M}_{A}\right)=\mathrm{M}_{B}$
using ord_iso_def bij_def inj_def func1_1_L11D
by auto
from A1 A2 have $g \in \operatorname{bij}\left(A \cup\left\{M_{A}\right\}, B \cup\left\{M_{B}\right\}\right)$
using ord_iso_def bij_extend_point by simp
moreover have $\forall x \in A \cup\left\{M_{A}\right\} . \forall y \in A \cup\left\{M_{A}\right\}$.
$\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longleftrightarrow\langle\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\rangle \in \mathrm{R}$
proof -
\{ fix $\mathrm{x} y$
assume $\mathrm{x} \in \mathrm{A} \cup\left\{\mathrm{M}_{A}\right\}$ and $\mathrm{y} \in \mathrm{A} \cup\left\{\mathrm{M}_{A}\right\}$
then have $x \in A \wedge y \in A \vee x \in A \wedge y=M_{A} \vee$
$\mathrm{x}=\mathrm{M}_{A} \wedge \mathrm{y} \in \mathrm{A} \vee \mathrm{x}=\mathrm{M}_{A} \wedge \mathrm{y}=\mathrm{M}_{A}$
by auto
moreover
\{ assume $x \in A \wedge y \in A$
with A1 I have $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longleftrightarrow\langle\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\rangle \in \mathrm{R}$
using ord_iso_def by simp \}
moreover \{ assume $\mathrm{x} \in \mathrm{A} \wedge \mathrm{y}=\mathrm{M}_{A}$
with A1 A3 I II have $\langle x, y\rangle \in \mathrm{r} \longleftrightarrow\langle\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\rangle \in \mathrm{R}$
using ord_iso_def bij_def inj_def apply_funtype
by auto \}
moreover \{ assume $\mathrm{x}=\mathrm{M}_{A} \wedge \mathrm{y} \in \mathrm{A}$
with A2 A3 A4 have $\langle x, y\rangle \notin r$
using antisym_def by auto
moreover
\{ assume A6: $\langle\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\rangle \in \mathrm{R}$
from A1 I II $\left\langle x=M_{A} \wedge y \in A\right\rangle$ have
III: $\mathrm{g}(\mathrm{y}) \in \mathrm{B} \mathrm{g}(\mathrm{x})=\mathrm{M}_{B}$
using ord_iso_def bij_def inj_def apply_funtype
by auto
with A3 have $\langle g(y), g(x)\rangle \in R$ by simp
with A4 A6 have $g(y)=g(x)$ using antisym_def
by auto
with A2 III have False by simp
$\}$ hence $\langle g(x), g(y)\rangle \notin R$ by auto
ultimately have $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longleftrightarrow\langle\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})\rangle \in \mathrm{R}$

```
by simp }
        moreover
        { assume x = M M ^ y = M M
    with A5 II have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\longleftrightarrow\langle\textrm{g}(\textrm{x}),\textrm{g}(\textrm{y})\rangle\in\textrm{R
    by simp }
        ultimately have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\longleftrightarrow\langle\textrm{g}(\textrm{x}),\textrm{g}(\textrm{y})\rangle\in\textrm{R
    by auto
        } thus thesis by auto
    qed
    ultimately show thesis using ord_iso_def
        by simp
qed
A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are order isomorphic after removing the maxima, then they are order isomorphic.
lemma rem_max_ord_iso:
    assumes A1: IsLinOrder(X,r) IsLinOrder(Y,R) and
    A2: HasAmaximum(r,X) HasAmaximum(R,Y)
    ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) \not= 0
    shows ord_iso(X,r,Y,R) f= 0
proof -
    let M}\mp@subsup{M}{A}{}=\operatorname{Maximum(r,X)
    let A = X - {M M
    let M M M Maximum(R,Y)
    let B = Y - {M M }
    from A2 obtain f where f \in ord_iso(A,r,B,R)
        by auto
    moreover have }\mp@subsup{\textrm{M}}{A}{}\not\in\textrm{A}\mathrm{ and }\mp@subsup{\textrm{M}}{B}{}\not\in\textrm{B
        by auto
    moreover from A1 A2 have
        \foralla\inA. \langlea, M }\mp@subsup{A}{A}{}\rangle\in\textrm{r}\mathrm{ and }\forall\textrm{b}\in\textrm{B}.\langle\textrm{b},\mp@subsup{\textrm{M}}{B}{}\rangle\in\textrm{R
        using IsLinOrder_def Order_ZF_4_L3 by auto
    moreover from A1 have antisym(r) and antisym(R)
        using IsLinOrder_def by auto
    moreover from A1 A2 have }\langle\mp@subsup{\textrm{M}}{A}{},\mp@subsup{\textrm{M}}{A}{}\rangle\in\textrm{r}\longleftrightarrow\langle\langle\mp@subsup{\textrm{M}}{B}{},\mp@subsup{\textrm{M}}{B}{}\rangle\in\textrm{R
        using IsLinOrder_def Order_ZF_4_L3 IsLinOrder_def
            total_is_refl refl_def by auto
    ultimately have
        f \cup {\langle M M , M M \ } \in ord_iso(A\cup{MA
        by (rule ord_iso_extend)
    moreover from A1 A2 have
        A\cup{\mp@subsup{M}{A}{}}=X and B\cup{\mp@subsup{M}{B}{}}=Y
    using IsLinOrder_def Order_ZF_4_L3 by auto
    ultimately show ord_iso(X,r,Y,R) }=
        using ord_iso_extend by auto
qed
```


11.2 Projections in cartesian products

In this section we consider maps arising naturally in cartesian products.
There is a natural bijection etween $X=Y \times\{y\}$ (a "slice") and Y. We will call this the SliceProjection $(\mathrm{Y} \times\{\mathrm{y}\})$. This is really the ZF equivalent of the meta-function $\mathrm{fst}(\mathrm{x})$.

```
definition
    SliceProjection(X) \equiv{\langlep,fst(p)\rangle. p \in X }
```

A slice projection is a bijection between $X \times\{y\}$ and X.

```
lemma slice_proj_bij: shows
    SliceProjection(X }\times{y}): X X {y} -> X
    domain(SliceProjection(X }\times{y}))=X\times{y
    \forallp\inX }\times{y}\mathrm{ . SliceProjection(X }\times{y})(p)= fst(p
    SliceProjection(X }\times{y})\in\operatorname{bij}(X\times{y},X
proof -
    let P = SliceProjection(X }\times{y}
    have }\forallp\inX\times{y}. fst(p)\inX by sim
    moreover from this have
        {\langlep,fst(p)\rangle. p \in X X {y} } : X X {y} -> X
        by (rule ZF_fun_from_total)
    ultimately show
        I: P: X }\times{y}->X and II: \forallp\inX X{y}. P(p) = fst(p
        using ZF_fun_from_tot_val SliceProjection_def by auto
    hence
        \foralla\inX\times{y}. }\forall\textrm{b}\in\textrm{X}\times{\textrm{y}}.\textrm{P}(\textrm{a})=P(\textrm{b})\longrightarrow\textrm{a}=\textrm{b
        by auto
    with I have P \in inj(X X{y},X) using inj_def
        by simp
    moreover from II have }\forall\textrm{x}\in\textrm{X}.\exists\textrm{p}\in\textrm{X}\times{y}. P(p)=
        by simp
    with I have P \in surj(X X{y},X) using surj_def
        by simp
    ultimately show P \in bij(X }\times{y},X
        using bij_def by simp
    from I show domain(SliceProjection(X }\times{y}))=X\times{y
        using func1_1_L1 by simp
qed
```


11.3 Induced relations and order isomorphisms

When we have two sets X, Y, function $f: X \rightarrow Y$ and a relation R on Y we can define a relation r on X by saying that $x r y$ if and only if $f(x) R f(y)$. This is especially interesting when f is a bijection as all reasonable properties of R are inherited by r. This section treats mostly the case when R is an order relation and f is a bijection. The standard Isabelle's Order theory defines the notion of a space of order isomorphisms
between two sets relative to a relation. We expand that material proving that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping $f: X \rightarrow Y$ the InducedRelation (f, R).

```
definition
    InducedRelation(f,R) \equiv
    {p\in\operatorname{domain}(f)\timesdomain(f). \langlef(fst(p)),f(snd(p))\rangle\inR}
```

A reformulation of the definition of the relation induced by a function.

```
lemma def_of_ind_relA:
    assumes }\langle\textrm{x},\textrm{y}\rangle\in\operatorname{InducedRelation(f,R)
    shows }\langle\textrm{f}(\textrm{x}),\textrm{f}(\textrm{y})\rangle\in\textrm{R
    using assms InducedRelation_def by simp
```

A reformulation of the definition of the relation induced by a function, kind of converse of def_of_ind_relA.
lemma def_of_ind_relB: assumes $f: A \rightarrow B$ and
$x \in A \quad y \in A$ and $\langle f(x), f(y)\rangle \in R$
shows $\langle x, y\rangle \in \operatorname{InducedRelation(f,R)}$
using assms func1_1_L1 InducedRelation_def by simp
A property of order isomorphisms that is missing from standard Isabelle's Order.thy.

```
lemma ord_iso_apply_conv:
    assumes f \in ord_iso(A,r,B,R) and
    |f(x),f(y)\rangle\inR and x\inA y\inA
    shows }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r
    using assms ord_iso_def by simp
```

The next lemma tells us where the induced relation is defined

```
lemma ind_rel_domain:
    assumes R\subseteqB\timesB and f:A->B
    shows InducedRelation(f,R) \subseteqA\timesA
    using assms func1_1_L1 InducedRelation_def
    by auto
```

A bijection is an order homomorphisms between a relation and the induced one.

```
lemma bij_is_ord_iso: assumes A1: f \in bij(A,B)
    shows f \in ord_iso(A,InducedRelation(f,R),B,R)
proof -
    let r = InducedRelation(f,R)
    { fix x y assume A2: x\inA y\inA
        have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\longleftrightarrow\langle\textrm{f}(\textrm{x}),\textrm{f}(\textrm{y})\rangle\in\textrm{R
        proof
                assume }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\mathrm{ then show }\langle\textrm{f}(\textrm{x}),\textrm{f}(\textrm{y})\rangle\in\textrm{R
```

```
    using def_of_ind_relA by simp
        next assume }\langle\textrm{f}(\textrm{x}),\textrm{f}(\textrm{y})\rangle\in\textrm{R
            with A1 A2 show }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r
using bij_is_fun def_of_ind_relB by blast
        qed }
    with A1 show f \in ord_iso(A,InducedRelation(f,R),B,R)
        using ord_isoI by simp
qed
```

An order isomoprhism preserves antisymmetry.

```
lemma ord_iso_pres_antsym: assumes A1: \(f \in \operatorname{ord}\) _iso( \(A, r, B, R\) ) and
    A2: \(\mathrm{r} \subseteq \mathrm{A} \times \mathrm{A}\) and A 3 : antisym( R )
    shows antisym(r)
proof -
    \(\{\) fix \(x y\)
            assume A4: \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \quad\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r}\)
            from A1 have \(f \in \operatorname{inj}(A, B)\)
                using ord_iso_is_bij bij_is_inj by simp
            moreover
            from A1 A2 A4 have
                    \(\langle f(x), f(y)\rangle \in R\) and \(\langle f(y), f(x)\rangle \in R\)
                    using ord_iso_apply by auto
            with A3 have \(f(x)=f(y)\) by (rule Fol1_L4)
            moreover from A2 A4 have \(x \in A \quad y \in A\) by auto
            ultimately have \(x=y\) by (rule inj_apply_equality)
    \(\}\) then have \(\forall \mathrm{x} y .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \wedge\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r} \longrightarrow \mathrm{x}=\mathrm{y}\) by auto
    then show antisym(r) using imp_conj antisym_def
            by simp
qed
```

Order isomoprhisms preserve transitivity.

```
lemma ord_iso_pres_trans: assumes A1: f \in ord_iso(A,r,B,R) and
    A2: r \subseteqA\timesA and A3: trans(R)
    shows trans(r)
proof -
    { fix x y z
            assume A4: }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\langle\hat{y},\textrm{z}\rangle\in\textrm{r
            note A1
            moreover
            from A1 A2 A4 have
                f(x), f(y)\rangle\inR}^|\langlef(y),f(z)\rangle\in
            using ord_iso_apply by auto
            with A3 have }\langlef(x),f(z)\rangle\inR by (rule Fol1_L3
            moreover from A2 A4 have }x\inA\quadz\inA by aut
            ultimately have }\langle\textrm{x},\textrm{z}\rangle\in\textrm{r}\mathrm{ using ord_iso_apply_conv
                by simp
    } then have }\forall\textrm{x y z. \x, y\rangle}\in\textrm{r}\wedge\langle\textrm{y},\textrm{z}\rangle\in\textrm{r}\longrightarrow\langle\textrm{x},\textrm{z}\rangle\in\textrm{r
            by blast
    then show trans(r) by (rule Fol1_L2)
```

qed
Order isomorphisms preserve totality.

```
lemma ord_iso_pres_tot: assumes A1: f \in ord_iso(A,r,B,R) and
    A2: r\subseteqA\timesA and A3: R {is total on} B
    shows r {is total on} A
proof -
    { fix x y
        assume x\inA y\inA \langlex,y\rangle\not\inr
        with A1 have }\langle\textrm{f}(\textrm{x}),\textrm{f}(\textrm{y})\rangle\not\in\textrm{R}\mathrm{ using ord_iso_apply_conv
                by auto
            moreover
            from A1 have f:A->B using ord_iso_is_bij bij_is_fun
                by simp
            with A3 \langlex\inA\rangle \langley\inA\rangle have
                |f(x),f(y)\rangle\in R V <f(y),f(x)\rangle\in R
                using apply_funtype IsTotal_def by simp
            ultimately have }\langle\textrm{f}(\textrm{y}),\textrm{f}(\textrm{x})\rangle\in\textrm{R}\mathrm{ by simp
            with A1 \langlex\inA\rangle \langley\inA\rangle have \langley,x\rangle\in r
                using ord_iso_apply_conv by simp
    } then have }\forallx\inA.\forally\inA. \langlex,y\rangle\inr\veeV \langley,x\rangle\in
            by blast
    then show r {is total on} A using IsTotal_def
            by simp
qed
```

Order isomorphisms preserve linearity.

```
lemma ord_iso_pres_lin: assumes f \in ord_iso(A,r,B,R) and
    r\subseteqA\timesA and IsLinOrder(B,R)
    shows IsLinOrder(A,r)
    using assms ord_iso_pres_antsym ord_iso_pres_trans ord_iso_pres_tot
                IsLinOrder_def by simp
```

If a relation is a linear order, then the relation induced on another set by a bijection is also a linear order.

```
lemma ind_rel_pres_lin:
    assumes A1: f \in bij(A,B) and A2: IsLinOrder(B,R)
    shows IsLinOrder(A,InducedRelation(f,R))
proof -
    let r = InducedRelation(f,R)
    from A1 have f \in ord_iso(A,r,B,R) and r \subseteqA\timesA
        using bij_is_ord_iso domain_of_bij InducedRelation_def
        by auto
    with A2 show IsLinOrder(A,r) using ord_iso_pres_lin
        by simp
qed
```

The image by an order isomorphism of a bounded above and nonempty set is bounded above.

```
lemma ord_iso_pres_bound_above:
    assumes A1: f \in ord_iso(A,r,B,R) and A2: r \subseteq A A A and
    A3: IsBoundedAbove(C,r) C}=
    shows IsBoundedAbove(f(C),R) f(C) \not=0
proof -
    from A3 obtain u where I: }\forall\textrm{x}\in\textrm{C}.{\textrm{l},\textrm{u}\rangle\in\textrm{r
        using IsBoundedAbove_def by auto
    from A1 have f:A->B using ord_iso_is_bij bij_is_fun
        by simp
    from A2 A3 have C\subseteqA using Order_ZF_3_L1A by blast
    from A3 obtain x where x\inC by auto
    with A2 I have u\inA by auto
    { fix y assume y f f(C)
        with \langlef:A->B\rangle\langleC\subseteqA\rangle obtain x where x\inC and y = f(x)
                using func_imagedef by auto
            with A1 I \langleC\subseteqA\rangle \langleu\inA\rangle have \langley,f(u)\rangle\inR
                using ord_iso_apply by auto
    } then have }\forally\inf(C). \langley,f(u)\rangle\inR by sim
    then show IsBoundedAbove(f(C),R) by (rule Order_ZF_3_L10)
    from A3 }\langlef:A->B\rangle\langleC\subseteqA\rangle show f(C) \not= 0 using func1_1_L15
        by simp
qed
```

Order isomorphisms preserve the property of having a minimum.

```
lemma ord_iso_pres_has_min:
    assumes A1: f \in ord_iso(A,r,B,R) and A2: r \subseteq A A A and
    A3: C\subseteqA and A4: HasAminimum(R,f(C))
    shows HasAminimum(r,C)
proof -
    from A4 obtain m where
        I:m}\in\textrm{f}(\textrm{C})\mathrm{ and II: }\forall\textrm{y}\in\textrm{f}(\textrm{C}).\langlem,y\rangle\in
        using HasAminimum_def by auto
    let k = converse(f)(m)
    from A1 have f:A->B using ord_iso_is_bij bij_is_fun
        by simp
    from A1 have f \in inj(A,B) using ord_iso_is_bij bij_is_inj
        by simp
    with A3 I have k G C and III: f(k) = m
        using inj_inv_back_in_set by auto
    moreover
    { fix x assume A5: x\inC
        with A3 II {f:A->B\rangle\langlek G C \ III have
                k \inA }\quad\textrm{x}\in\textrm{A}\quad\langle\textrm{f}(\textrm{k}),\textrm{f}(\textrm{x})\rangle\in\textrm{R
                using func_imagedef by auto
        with A1 have }\langle\textrm{k},\textrm{x}\rangle\in\textrm{r}\mathrm{ using ord_iso_apply_conv
                by simp
    } then have }\forallx\inC. \langlek,x\rangle\inr by sim
    ultimately show HasAminimum(r,C) using HasAminimum_def by auto
qed
```

Order isomorhisms preserve the images of relations. In other words taking the image of a point by a relation commutes with the function.

```
lemma ord_iso_pres_rel_image:
    assumes A1: \(f \in\) ord_iso(A,r,B,R) and
    A2: \(r \subseteq A \times A \quad R \subseteq B \times B\) and
    A3: \(a \in A\)
    shows \(f(r\{a\})=R\{f(a)\}\)
proof
    from A1 have \(f: A \rightarrow B\) using ord_iso_is_bij bij_is_fun
        by simp
    moreover from A2 A3 have I: r\{a\} \(\subseteq\) A by auto
    ultimately have \(I: f(r\{a\})=\{f(x) . x \in r\{a\}\}\)
        using func_imagedef by simp
    \{ fix y assume A4: \(y \in f(r\{a\})\)
        with I obtain x where
                \(x \in r\{a\}\) and II: \(y=f(x)\)
                by auto
            with A1 A2 have \(\langle f(a), f(x)\rangle \in R\) using ord_iso_apply
                by auto
            with II have \(y \in R\{f(a)\}\) by auto
    \(\}\) then show \(f(r\{a\}) \subseteq R\{f(a)\}\) by auto
    \{ fix y assume A5: y \(\in R\{f(a)\}\)
        let \(x=\) converse( \(f\) ) ( \(y\) )
        from A2 A5 have
                \(\langle f(a), y\rangle \in R \quad f(a) \in B \quad\) and \(I V: y \in B\)
                by auto
            with A1 have III: 〈converse(f) (f(a)), x〉 \(\in\) r
                using ord_iso_converse by simp
            moreover from A1 A3 have converse(f) (f(a)) = a
                using ord_iso_is_bij left_inverse_bij by blast
            ultimately have \(f(x) \in\{f(x) . x \in r\{a\}\}\)
                by auto
            moreover from A1 IV have \(f(x)=y\)
                using ord_iso_is_bij right_inverse_bij by blast
            moreover from A1 I have \(f(r\{a\})=\{f(x) . x \in r\{a\}\}\)
                using ord_iso_is_bij bij_is_fun func_imagedef by blast
            ultimately have \(y \in f(r\{a\})\) by simp
    \(\}\) then show \(R\{f(a)\} \subseteq f(r\{a\})\) by auto
qed
```

Order isomorphisms preserve collections of upper bounds.

```
lemma ord_iso_pres_up_bounds:
    assumes A1: f \in ord_iso(A,r,B,R) and
    A2: r\subseteqA}\subseteqA\timesA R\subseteqB\timesB an
    A3: C\subseteqA
    shows {f(r{a}). a\inC} = {R{b}. b \in f(C)}
proof
    from A1 have f:A->B
                using ord_iso_is_bij bij_is_fun by simp
```

```
    { fix Y assume Y \in {f(r{a}). a }=C
        then obtain a where a\inC and I: Y = f(r{a})
            by auto
    from A3 {a\inC` have a\inA by auto
    with A1 A2 have f(r{a}) = R{f(a)}
            using ord_iso_pres_rel_image by simp
    moreover from A3 \langlef:A->B\rangle\langlea\inC\rangle have f(a) f f(C)
                using func_imagedef by auto
    ultimately have f(r{a}) \in { R{b}. b \in f(C) }
                by auto
    with I have Y \in { R{b}. b \in f(C) } by simp
    } then show {f(r{a}).a\inC} \subseteq{R{b}. b \inf(C)}
    by blast
    { fix Y assume Y }\in{R{b}. b \in f(C)
    then obtain b where b f f(C) and II: Y = R{b}
            by auto
    with A3 \langlef:A }->\textrm{B}\mathrm{ \ obtain a where a }=C\mathrm{ and b = f(a)
                using func_imagedef by auto
    with A3 II have a\inA and Y = R{f(a)} by auto
    with A1 A2 have Y = f(r{a})
                using ord_iso_pres_rel_image by simp
    with \langlea\inC` have Y \in {f(r{a}). a\inC} by auto
    } then show {R{b}. b \in f(C)} \subseteq{f(r{a}). a\inC}
    by auto
qed
```

The image of the set of upper bounds is the set of upper bounds of the image.

```
lemma ord_iso_pres_min_up_bounds:
    assumes A1: \(f \in\) ord_iso \((A, r, B, R)\) and \(A 2: r \subseteq A \times A \quad R \subseteq B \times B\) and
    A3: \(C \subseteq A\) and A4: \(C \neq 0\)
    shows \(f(\bigcap a \in C . r\{a\})=(\bigcap b \in f(C) . R\{b\})\)
proof -
    from A1 have \(f \in \operatorname{inj}(A, B)\)
        using ord_iso_is_bij bij_is_inj by simp
    moreover note A4
    moreover from A2 A3 have \(\forall \mathrm{a} \in \mathrm{C}\). \(\mathrm{r}\{\mathrm{a}\} \subseteq \mathrm{A}\) by auto
    ultimately have
        \(f(\bigcap \mathrm{a} \in \mathrm{C} . \mathrm{r}\{\mathrm{a}\})=(\bigcap \mathrm{a} \in \mathrm{C} . \mathrm{f}(\mathrm{r}\{\mathrm{a}\}))\)
        using inj_image_of_Inter by simp
    also from A1 A2 A3 have
        \((\bigcap a \in C . f(r\{a\}))=(\bigcap b \in f(C) . R\{b\})\)
        using ord_iso_pres_up_bounds by simp
    finally show \(f(\bigcap a \in C . r\{a\})=(\bigcap b \in f(C) . R\{b\})\)
        by simp
qed
```

Order isomorphisms preserve completeness.

```
lemma ord_iso_pres_compl:
```

```
    assumes A1: f \in ord_iso(A,r,B,R) and
    A2: r \subseteq A A A R \subseteq B }\times\textrm{B}\mathrm{ and A3: R {is complete}
    shows r {is complete}
proof -
    { fix C
        assume A4: IsBoundedAbove(C,r) C}=
        with A1 A2 A3 have
            HasAminimum(R,\bigcapb 
            using ord_iso_pres_bound_above IsComplete_def
            by simp
        moreover
        from A2 〈IsBoundedAbove(C,r)〉 have I: C \subseteq A using Order_ZF_3_L1A
            by blast
        with A1 A2 〈C\not=0\rangle have f(\bigcapa\inC. r{a}) = (\bigcapb\inf(C). R{b})
            using ord_iso_pres_min_up_bounds by simp
        ultimately have HasAminimum(R,f(\bigcapa\inC. r{a}))
            by simp
        moreover
        from A2 have }\forall\textrm{a}\in\textrm{C}.\textrm{r}{\textrm{a}}\subseteq\textrm{A
            by auto
        with \langleC\not=0\rangle have ( \bigcapa\inC. r{a} ) \subseteq A using ZF1_1_L7
                by simp
            moreover note A1 A2
            ultimately have HasAminimum(r, \bigcapa\inC. r{a} )
            using ord_iso_pres_has_min by simp
    } then show r {is complete} using IsComplete_def
        by simp
qed
If the original relation is complete，then the induced one is complete．
```

```
lemma ind_rel_pres_compl: assumes A1: f \in bij(A,B)
```

lemma ind_rel_pres_compl: assumes A1: f \in bij(A,B)
and A2: R \subseteq B }\times\textrm{B}\mathrm{ and A3: R {is complete}
and A2: R \subseteq B }\times\textrm{B}\mathrm{ and A3: R {is complete}
shows InducedRelation(f,R) {is complete}
shows InducedRelation(f,R) {is complete}
proof -
proof -
let r = InducedRelation(f,R)
let r = InducedRelation(f,R)
from A1 have f \in ord_iso(A,r,B,R)
from A1 have f \in ord_iso(A,r,B,R)
using bij_is_ord_iso by simp
using bij_is_ord_iso by simp
moreover from A1 A2 have r \subseteqA A A
moreover from A1 A2 have r \subseteqA A A
using bij_is_fun ind_rel_domain by simp
using bij_is_fun ind_rel_domain by simp
moreover note A2 A3
moreover note A2 A3
ultimately show r {is complete}
ultimately show r {is complete}
using ord_iso_pres_compl by simp
using ord_iso_pres_compl by simp
qed
qed
end

```
end
```


12 Finite sets - introduction

```
theory Finite_ZF imports ZF1 Nat_ZF_IML ZF.Cardinal
begin
```

Standard Isabelle Finite.thy contains a very useful notion of finite powerset: the set of finite subsets of a given set. The definition, however, is specific to Isabelle and based on the notion of "datatype", obviously not something that belongs to ZF set theory. This theory file devolops the notion of finite powerset similarly as in Finite.thy, but based on standard library's Cardinal.thy. This theory file is intended to replace IsarMathLib's Finite1 and Finite_ZF_1 theories that are currently derived from the "datatype" approach.

12.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite powersets: if the empty set has some property and this property is preserved by adding a single element of a set, then this property is true for all finite subsets of this set.

We defined the finite powerset $\operatorname{FinPow}(X)$ as those elements of the powerset that are finite.

```
definition
    FinPow(X) \equiv{A \in Pow(X). Finite(A)}
```

The cardinality of an element of finite powerset is a natural number.

```
lemma card_fin_is_nat: assumes A \in FinPow(X)
    shows |A| \in nat and A \approx |A|
    using assms FinPow_def Finite_def cardinal_cong nat_into_Card
        Card_cardinal_eq by auto
```

A reformulation of card_fin_is_nat: for a finit set A there is a bijection between $|A|$ and A.

```
lemma fin_bij_card: assumes A1: A \in FinPow(X)
    shows \existsb. b \in bij(|A|, A)
proof -
    from A1 have |A| \approx A using card_fin_is_nat eqpoll_sym
        by blast
    then show thesis using eqpoll_def by auto
qed
```

If a set has the same number of elements as $n \in \mathbb{N}$, then its cardinality is n. Recall that in set theory a natural number n is a set that has n elements.

```
lemma card_card: assumes A }\approx\textrm{n}\mathrm{ and n }\in\mathrm{ nat
```

```
shows |A| = n
using assms cardinal_cong nat_into_Card Card_cardinal_eq
by auto
```

If we add a point to a finite set, the cardinality increases by one. To understand the second assertion $|A \cup\{a\}|=|A| \cup\{|A|\}$ recall that the cardinality $|A|$ of A is a natural number and for natural numbers we have $n+1=n \cup\{n\}$.
lemma card_fin_add_one: assumes A1: A $\in \operatorname{FinPow}(X)$ and A2: a $\in X-A$ shows
$|A \cup\{a\}|=\operatorname{succ}(|A|)$
$|A \cup\{a\}|=|A| \cup\{|A|\}$
proof -
from A1 A2 have cons $(a, A) \approx \operatorname{cons}(|A|,|A|)$
using card_fin_is_nat mem_not_refl cons_eqpoll_cong
by auto
moreover have cons $(a, A)=A \cup\{a\}$ by (rule consdef)
moreover have cons $(|A|,|A|)=|A| \cup\{|A|\}$
by (rule consdef)
ultimately have $A \cup\{a\} \approx \operatorname{succ}(|A|)$ using succ_explained
by simp
with A1 show
$|A \cup\{a\}|=\operatorname{succ}(|A|)$ and $|A \cup\{a\}|=|A| \cup\{|A|\}$
using card_fin_is_nat card_card by auto
qed

We can decompose the finite powerset into collection of sets of the same natural cardinalities.

```
lemma finpow_decomp:
    shows FinPow(X) = ( Un \in nat. {A \in Pow(X). A \approx n})
    using Finite_def FinPow_def by auto
```

Finite powerset is the union of sets of cardinality bounded by natural numbers.

```
lemma finpow_union_card_nat:
    shows FinPow(X) = (Un \in nat. {A \in Pow(X). A \lesssim n})
proof -
    have FinPow(X) \subseteq(Un\in nat. {A \in Pow(X). A § n})
            using finpow_decomp FinPow_def eqpoll_imp_lepoll
            by auto
    moreover have
            (Un\in nat. {A \in Pow(X). A \lesssimn})\subseteq FinPow(X)
            using lepoll_nat_imp_Finite FinPow_def by auto
    ultimately show thesis by auto
qed
```

A different form of finpow_union_card_nat (see above) - a subset that has not more elements than a given natural number is in the finite powerset.
lemma lepoll_nat_in_finpow:

```
assumes n nat A}\subseteq\textrm{X}\quad\textrm{A}\lesssim\textrm{n
shows A \in FinPow(X)
using assms finpow_union_card_nat by auto
```

Natural numbers are finite subsets of the set of natural numbers.

```
lemma nat_finpow_nat: assumes n \in nat shows n \in FinPow(nat)
    using assms nat_into_Finite nat_subset_nat FinPow_def
    by simp
```

A finite subset is a finite subset of itself.
lemma fin_finpow_self: assumes A $\in \operatorname{FinPow}(X)$ shows $A \in$ FinPow(A) using assms FinPow_def by auto

If we remove an element and put it back we get the set back.
lemma rem_add_eq: assumes $a \in A$ shows $(A-\{a\}) \cup\{a\}=A$ using assms by auto

Induction for finite powerset. This is smilar to the standard Isabelle's Fin_induct.

```
theorem FinPow_induct: assumes A1: P(0) and
    A2: }\forall\textrm{A}\in\operatorname{FinPow(X). P(A) \longrightarrow ( }\forall\textrm{a}\in\textrm{X}.\textrm{P}(\textrm{A}\cup{\textrm{a}})) an
    A3: B \in FinPow(X)
    shows P(B)
proof -
    { fix n assume n \in nat
        moreover from A1 have I: }\forall\textrm{B}\in\textrm{Pow}(\textrm{X}).\textrm{B}\lesssim0\longrightarrowP(B
            using lepoll_0_is_0 by auto
        moreover have }\forallk\in\mathrm{ nat.
```



```
                (\forallB \in Pow(X). (B \lesssim succ(k) \longrightarrow P(B)))
        proof -
            { fix k assume A4: k \in nat
    assume A5: }\forall\textrm{B}\in\operatorname{Pow}(X).(B\lesssimk\longrightarrowP(B)
    fix B assume A6: B \in Pow(X) B \lesssim succ(k)
    have P(B)
    proof -
        have B = 0 \longrightarrowP(B)
        proof -
            { assume B = 0
            then have B \lesssim 0 using lepoll_0_iff
        by simp
            with I A6 have P(B) by simp
            } thus B = 0 }\longrightarrowP(B)\mathrm{ by simp
        qed
        moreover have B}=0\longrightarrowP(B
        proof -
            { assume B }=
                then obtain a where II: a\inB by auto
```

```
        let A = B - {a}
        from A6 II have A\subseteqX and A}\lesssim
    using Diff_sing_lepoll by auto
    with A4 A5 have A G FinPow(X) and P(A)
    using lepoll_nat_in_finpow finpow_decomp
    by auto
    with A2 A6 II have P(A U {a})
    by auto
        moreover from II have A \cup{a} = B
    by auto
            ultimately have P(B) by simp
            } thus }B\not=0\longrightarrowP(B)\mathrm{ by simp
    qed
    ultimately show P(B) by auto
qed
            } thus thesis by blast
    qed
    ultimately have }\forall\textrm{B}\in\operatorname{Pow}(\textrm{X}).(\textrm{B}\lesssim\textrm{n}\longrightarrow\textrm{P}(\textrm{B})
            by (rule ind_on_nat)
    } then have }\forall\textrm{n}\in\mathrm{ nat. }\forall\textrm{B}\in\operatorname{Pow}(\textrm{X}).(B\lesssim\textrm{n}\longrightarrow\textrm{P}(\textrm{B})
    by auto
    with A3 show P(B) using finpow_union_card_nat
    by auto
qed
A subset of a finite subset is a finite subset.
```

```
lemma subset_finpow: assumes A }\in\operatorname{FinPow(X) and B \subseteq A
```

lemma subset_finpow: assumes A }\in\operatorname{FinPow(X) and B \subseteq A
shows B \in FinPow(X)
shows B \in FinPow(X)
using assms FinPow_def subset_Finite by auto

```
    using assms FinPow_def subset_Finite by auto
```

If we subtract anything from a finite set, the resulting set is finite.
lemma diff_finpow:
assumes $A \in \operatorname{FinPow}(X)$ shows $A-B \in \operatorname{FinPow}(X)$
using assms subset_finpow by blast
If we remove a point from a finites subset, we get a finite subset.

```
corollary fin_rem_point_fin: assumes A \in FinPow(X)
    shows A - {a} \in FinPow(X)
    using assms diff_finpow by simp
```

Cardinality of a nonempty finite set is a successsor of some natural number.

```
lemma card_non_empty_succ:
    assumes A1: A }\in\operatorname{FinPow(X) and A2: A}\not=
    shows }\exists\textrm{n}\in\mathrm{ nat. }|\textrm{A}|=\operatorname{succ}(\textrm{n}
proof -
    from A2 obtain a where a }\in\textrm{A}\mathrm{ by auto
    let B = A - {a}
    from A1 }\langle\textrm{a}\in\textrm{A}\rangle\mathrm{ have
```

```
        B G FinPow(X) and a \in X - B
        using FinPow_def fin_rem_point_fin by auto
    then have |B \cup{a}| = succ( |B| )
    using card_fin_add_one by auto
    moreover from <a G A \ <B \in FinPow(X) \ have
    A = B \cup {a} and |B| \in nat
    using card_fin_is_nat by auto
    ultimately show }\exists\textrm{n}\in\mathrm{ nat. |A| = succ(n) by auto
qed
```

Nonempty set has non-zero cardinality. This is probably true without the assumption that the set is finite, but I couldn't derive it from standard Isabelle theorems.

```
lemma card_non_empty_non_zero:
    assumes A G FinPow(X) and A}\not=
    shows |A| \not=0
proof -
    from assms obtain n where |A| = succ(n)
        using card_non_empty_succ by auto
    then show |A| }=0\mathrm{ using succ_not_0
        by simp
qed
```

Another variation on the induction theme: If we can show something holds for the empty set and if it holds for all finite sets with at most k elements then it holds for all finite sets with at most $k+1$ elements, the it holds for all finite sets.

```
theorem FinPow_card_ind: assumes A1: P(0) and
    A2: }\forall\textrm{k}\in\mathrm{ nat.
    (\forallA G FinPow(X). A \lesssimk }\longrightarrow\textrm{P}(\textrm{A}))
    (\forallA G FinPow (X). A \lesssim succ(k) \longrightarrow P(A))
    and A3: A }\in\mathrm{ FinPow(X) shows P(A)
proof -
    from A3 have |A| 的倝 and A \in FinPow(X) and A \lesssim |A|
            using card_fin_is_nat eqpoll_imp_lepoll by auto
    moreover have }\forall\textrm{n}\in\mathrm{ nat. ( }\forall\textrm{A}\in\textrm{FinPow(X).
        A}\lesssim\textrm{n}\longrightarrow\textrm{P}(\textrm{A})
    proof
            fix n assume n \in nat
            moreover from A1 have }\forall\textrm{A}\in\operatorname{FinPow(X). A }\lesssim0\longrightarrow\textrm{P}(\textrm{A}
                using lepoll_0_is_0 by auto
            moreover note A2
            ultimately show
                A G FinPow(X). A }\lesssim\textrm{n}\longrightarrow\textrm{P}(\textrm{A}
                by (rule ind_on_nat)
    qed
    ultimately show P(A) by simp
qed
```

Another type of induction (or, maybe recursion). In the induction step we try to find a point in the set that if we remove it, the fact that the property holds for the smaller set implies that the property holds for the whole set.

```
lemma FinPow_ind_rem_one: assumes A1: \(\mathrm{P}(0)\) and
    A2: \(\forall A \in \operatorname{FinPow}(X) . A \neq 0 \longrightarrow(\exists a \in A . P(A-\{a\}) \longrightarrow P(A))\)
    and A3: \(B \in \operatorname{FinPow}(X)\)
    shows \(P(B)\)
proof -
    note A1
    moreover have \(\forall \mathrm{k} \in\) nat.
    ( \(\forall \mathrm{B} \in\) FinPow \((\mathrm{X}) . \mathrm{B} \lesssim \mathrm{k} \longrightarrow \mathrm{P}(\mathrm{B})) \longrightarrow\)
    \((\forall \mathrm{C} \in \operatorname{FinPow}(\mathrm{X}) . \mathrm{C} \lesssim \operatorname{succ}(\mathrm{k}) \longrightarrow \mathrm{P}(\mathrm{C}))\)
    proof -
        \{ fix \(k\) assume \(k \in\) nat
            assume \(\mathrm{A} 4: \forall \mathrm{B} \in \operatorname{FinPow}(\mathrm{X}) . \mathrm{B} \lesssim \mathrm{k} \longrightarrow \mathrm{P}(\mathrm{B})\)
            have \(\forall C \in \operatorname{FinPow}(X) . C \lesssim \operatorname{succ}(k) \longrightarrow P(C)\)
            proof -
    \{ fix \(C\) assume \(C \in \operatorname{FinPow}(X)\)
        assume \(C \lesssim \operatorname{succ}(k)\)
        note A1
        moreover
        \{ assume \(\mathrm{C} \neq 0\)
            with A2 \(\langle\mathrm{C} \in \operatorname{FinPow}(\mathrm{X})\rangle\) obtain a where
                \(a \in C\) and \(P(C-\{a\}) \longrightarrow P(C)\)
                by auto
            with \(\mathrm{A} 4\langle\mathrm{C} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{C} \lesssim \operatorname{succ}(\mathrm{k})\) 〉
            have \(P(C)\) using Diff_sing_lepoll fin_rem_point_fin
            by simp \}
        ultimately have \(P(C)\) by auto
    \} thus thesis by simp
                qed
            \} thus thesis by blast
    qed
    moreover note A3
    ultimately show \(P(B)\) by (rule FinPow_card_ind)
qed
```

Yet another induction theorem. This is similar, but slightly more complicated than FinPow_ind_rem_one. The difference is in the treatment of the empty set to allow to show properties that are not true for empty set.

```
lemma FinPow_rem_ind: assumes A1: }\forall\textrm{A}\in\operatorname{FinPow(X).
    A = 0 V ( \existsa\inA. A = {a} \vee P(A-{a}) \longrightarrowP(A))
    and A2: A }\in\mathrm{ FinPow(X) and A3: A}\not=
    shows P(A)
proof -
    have 0 = 0 V P(0) by simp
    moreover have
        k}\in\mathrm{ nat.
```

```
        (}\forall\textrm{B}\in\operatorname{FinPow (X). B }\lesssimk\longrightarrow(B=0\veeP(B)))
        (\forallA G FinPow(X). A }\lesssim< \operatorname{succ}(\textrm{k})\longrightarrow(A=0\veeP(A))
    proof -
    { fix k assume k f nat
        assume A4: \forallB G FinPow(X). B \lesssimk 
        have }\forallA\in\operatorname{FinPow}(X).A \\operatorname{succ}(k)\longrightarrow(A=0\veeP(A)
        proof -
    { fix A assume A \in FinPow(X)
    assume A }\lesssim\operatorname{succ(k) A}=
    from A1 }\langle\textrm{A}\in\operatorname{FinPow(X)\rangle\langleA}=0\rangle\mathrm{ obtain a
        where a\inA and A = {a} \veeP(A-{a}) \longrightarrowP(A)
        by auto
    let B = A-{a}
    from A4 <A \in FinPow(X)\rangle\langleA}\lesssim\operatorname{succ}(\textrm{k})\rangle\langle\textrm{a}\in\textrm{A}
    have B = 0 \vee P(B)
        using Diff_sing_lepoll fin_rem_point_fin
        by simp
    with \langlea\inA\rangle\langleA={a}\veeP(A-{a})\longrightarrowP(A)\rangle
    have P(A) by auto
    } thus thesis by auto
        qed
        } thus thesis by blast
    qed
    moreover note A2
    ultimately have A=0 \vee P(A) by (rule FinPow_card_ind)
    with A3 show P(A) by simp
qed
```

If a family of sets is closed with respect to taking intersections of two sets then it is closed with respect to taking intersections of any nonempty finite collection.

```
lemma inter_two_inter_fin:
    assumes A1: }\forall\textrm{V}\in\textrm{T}.\forall\textrm{W}\in\textrm{T}.\textrm{V}\cap\textrm{W}\in\textrm{T}\mathrm{ and
    A2: N \not= O and A3: N \in FinPow(T)
    shows (\bigcapN }\in\textrm{T}
proof -
    have 0=0 V (\bigcap0\inT) by simp
    moreover have }\forall\textrm{M}\in\operatorname{FinPow(T). (M = 0 V \bigcapM \in T) }
        (\forallW G T. M\cup{W} = 0 V \bigcap(M\cup{W}) \inT)
    proof -
        { fix M assume M G FinPow(T)
            assume A4: M = 0 V \bigcapM }\in
            { assume M = 0
    hence }\forall\textrm{W}\in\textrm{T}.\textrm{M}\cup{W}=0\vee\cap(M\cup{W})\in
    by auto }
            moreover
            { assume M }\not=
    with A4 have }\bigcapM\inT\mathrm{ by simp
    { fix W assume W G T
```

```
    from }\langleM\not=0\rangle\mathrm{ have }\bigcap(M\cup{W})=(\bigcapM)\cap
            by auto
        with A1 }\langle\bigcapM\inT\rangle\langleW\inT\rangle\mathrm{ have }\bigcap(M\cup{W})\in
        by simp
    } hence }\forall\textrm{W}\in\textrm{T}.\textrm{M}\cup{W}=0\vee\cap(M\cup{W})\in
    by simp }
        ultimately have }\forall\textrm{W}\in\textrm{T}.\textrm{M}\cup{\textrm{W}}=0\vee\bigcap(M\cup{W})\in
    by blast
    } thus thesis by simp
    qed
    moreover note <N \in FinPow(T)\rangle
    ultimately have N = 0 V (\bigcapN \in T)
        by (rule FinPow_induct)
    with A2 show ( }\capN\inT) by sim
qed
```

If a family of sets contains the empty set and is closed with respect to taking unions of two sets then it is closed with respect to taking unions of any finite collection.

```
lemma union_two_union_fin:
    assumes A1: \(0 \in C\) and \(A 2: ~ \forall A \in C . \forall B \in C . A \cup B \in C\) and
    A3: \(N \in\) FinPow (C)
    shows \(\cup N \in C\)
proof -
    from \(\langle 0 \in C\rangle\) have \(\bigcup 0 \in C\) by simp
    moreover have \(\forall M \in \operatorname{FinPow}(C) . \bigcup M \in C \longrightarrow(\forall A \in C . \bigcup(M \cup\{A\}) \in C)\)
    proof -
            \{ fix \(M\) assume \(M \in \operatorname{FinPow}(C)\)
                assume \(\bigcup M \in C\)
                fix \(A\) assume \(A \in C\)
                have \(\cup(M \cup\{A\})=(\bigcup M) \cup A\) by auto
                with \(A 2\langle M \in C\rangle\langle A \in C\rangle\) have \(\cup(M \cup\{A\}) \in C\)
    by simp
            \} thus thesis by simp
        qed
        moreover note \(\langle\mathrm{N} \in\) FinPow (C) >
        ultimately show \(\bigcup N \in C\) by (rule FinPow_induct)
qed
```

Empty set is in finite power set.

```
lemma empty_in_finpow: shows 0 \in FinPow(X)
```

 using FinPow_def by simp
 Singleton is in the finite powerset.

```
lemma singleton_in_finpow: assumes x \in X
    shows {x} \in FinPow(X) using assms FinPow_def by simp
```

Union of two finite subsets is a finite subset.

```
lemma union_finpow: assumes A \in FinPow(X) and B \in FinPow(X)
    shows A \cup B \in FinPow(X)
    using assms FinPow_def by auto
```

Union of finite number of finite sets is finite.

```
lemma fin_union_finpow: assumes M G FinPow(FinPow(X))
    shows \M G FinPow(X)
    using assms empty_in_finpow union_finpow union_two_union_fin
    by simp
```

If a set is finite after removing one element, then it is finite.

```
lemma rem_point_fin_fin:
    assumes A1: x }\in\textrm{X}\mathrm{ and A2: A - {x} }\in\mathrm{ FinPow(X)
    shows A \in FinPow(X)
proof -
    from assms have (A - {x}) U {x} \in FinPow(X)
        using singleton_in_finpow union_finpow by simp
    moreover have A}\subseteq(A-{x})\cup{x} by aut
    ultimately show A \in FinPow(X)
        using FinPow_def subset_Finite by auto
qed
```

An image of a finite set is finite.

```
lemma fin_image_fin: assumes \(\forall V \in B . K(V) \in C\) and \(N \in \operatorname{FinPow(B)}\)
    shows \(\{\mathrm{K}(\mathrm{V}) . \mathrm{V} \in \mathrm{N}\} \in \operatorname{FinPow}(\mathrm{C})\)
proof -
    have \(\{\mathrm{K}(\mathrm{V}) . \mathrm{V} \in 0\} \in\) FinPow ( C ) using FinPow_def
        by auto
    moreover have \(\forall \mathrm{A} \in\) FinPow \((\mathrm{B})\).
        \(\{K(V) . V \in A\} \in \operatorname{FinPow}(C) \longrightarrow(\forall a \in B .\{K(V) . V \in(A \cup\{a\})\} \in\) FinPow \((C))\)
    proof -
        \(\{\) fix \(A\) assume \(A \in \operatorname{FinPow}(B)\)
            assume \(\{\mathrm{K}(\mathrm{V}) . \mathrm{V} \in \mathrm{A}\} \in\) FinPow \((\mathrm{C})\)
            fix a assume \(a \in B\)
            have \(\{K(V) . V \in(A \cup\{a\})\} \in\) FinPow \((C)\)
            proof -
    have \(\{K(V) . V \in(A \cup\{a\})\}=\{K(V) . V \in A\} \cup\{K(a)\}\)
        by auto
    moreover note \(\langle\{\mathrm{K}(\mathrm{V}) . \mathrm{V} \in \mathrm{A}\} \in \mathrm{FinPow}(\mathrm{C})\rangle\)
    moreover from \(\langle\forall \mathrm{V} \in \mathrm{B} . \mathrm{K}(\mathrm{V}) \in \mathrm{C}\rangle\langle\mathrm{a} \in \mathrm{B}\rangle\) have \(\{\mathrm{K}(\mathrm{a})\} \in \operatorname{FinPow}(\mathrm{C})\)
    using singleton_in_finpow by simp
    ultimately show thesis using union_finpow by simp
            qed
        \} thus thesis by simp
    qed
    moreover note \(\langle\mathrm{N} \in\) FinPow \((\mathrm{B})\) 〉
    ultimately show \(\{\mathrm{K}(\mathrm{V}) . \mathrm{V} \in \mathrm{N}\} \in\) FinPow (C)
        by (rule FinPow_induct)
qed
```

Union of a finite indexed family of finite sets is finite.

```
lemma union_fin_list_fin:
    assumes A1: n \in nat and A2: \forallk \in n. N(k) \in FinPow(X)
    shows
    {N(k).k \in n} \in FinPow(FinPow(X)) and (Uk f n. N(k)) \in FinPow(X)
proof -
    from A1 have n }\in\operatorname{FinPow(n)
        using nat_finpow_nat fin_finpow_self by auto
    with A2 show {N(k).k f n} \in FinPow(FinPow(X))
        by (rule fin_image_fin)
    then show ( Uk \in n.N(k)) \in FinPow(X)
        using fin_union_finpow by simp
qed
end
```


13 Finite sets

theory Finite1 imports ZF.EquivClass ZF.Finite func1 ZF1

begin

This theory extends Isabelle standard Finite theory. It is obsolete and should not be used for new development. Use the Finite_ZF instead.

13.1 Finite powerset

In this section we consider various properties of Fin datatype (even though there are no datatypes in ZF set theory).

In Topology_ZF theory we consider induced topology that is obtained by taking a subset of a topological space. To show that a topology restricted to a subset is also a topology on that subset we may need a fact that if T is a collection of sets and A is a set then every finite collection $\left\{V_{i}\right\}$ is of the form $V_{i}=U_{i} \cap A$, where $\left\{U_{i}\right\}$ is a finite subcollection of T. This is one of those trivial facts that require suprisingly long formal proof. Actually, the need for this fact is avoided by requiring intersection two open sets to be open (rather than intersection of a finite number of open sets). Still, the fact is left here as an example of a proof by induction. We will use Fin_induct lemma from Finite.thy. First we define a property of finite sets that we want to show.

```
definition
    Prfin(T,A,M) \equiv((M=0)| (\existsN\in Fin(T). \forallV\inM. \exists U N N. (V = U\capA)))
```

Now we show the main induction step in a separate lemma. This will make the proof of the theorem FinRestr below look short and nice. The premises
of the ind_step lemma are those needed by the main induction step in lemma Fin_induct (see standard Isabelle's Finite.thy).
lemma ind_step: assumes $A: \forall \mathrm{V} \in \mathrm{TA} . \exists \mathrm{U} \in \mathrm{T} . \mathrm{V}=\mathrm{U} \cap \mathrm{A}$
and $A 1: W \in T A$ and $A 2: M \in \operatorname{Fin}(T A)$
and $A 3: W \notin M$ and $A 4: \operatorname{Prfin}(T, A, M)$
shows Prfin(T,A, cons(W,M))
proof -
\{ assume A7: M=0 have $\operatorname{Prfin}(T, A$, cons (W, M)) prooffrom A1 A obtain U where $A 5: U \in T$ and $A 6: W=U \cap A$ by fast let $N=\{U\}$ from A5 have $T 1: N \in \operatorname{Fin}(T)$ by simp from A7 A6 have $\mathrm{T} 2: \forall \mathrm{V} \in \operatorname{cons}(\mathrm{W}, \mathrm{M}) . \exists \mathrm{U} \in \mathrm{N} . \mathrm{V}=\mathrm{U} \cap \mathrm{A}$ by simp from A7 T1 T2 show $\operatorname{Prfin}(T, A, \operatorname{cons}(W, M))$
using Prfin_def by auto qed \}
moreover
\{ assume $A 8: M \neq 0$ have $\operatorname{Prfin}(T, A, \operatorname{cons}(W, M)$)
proof-
from A1 A obtain U where $A 5: ~ U \in T$ and $A 6: W=U \cap A$ by fast
from A8 A4 obtain NO

using Prfin_def by auto
let $N=\operatorname{cons}(U, N O)$
from A5 A9 have $N \in \operatorname{Fin}(T)$ by simp
moreover from A10 A6 have $\forall \mathrm{V} \in \operatorname{cons}(\mathrm{W}, \mathrm{M}) . \exists \mathrm{U} \in \mathrm{N} . \mathrm{V}=\mathrm{U} \cap \mathrm{A}$ by simp ultimately have $\exists \mathrm{N} \in \operatorname{Fin}(\mathrm{T}) . \forall \mathrm{V} \in \operatorname{cons}(\mathrm{W}, \mathrm{M}) . \exists \mathrm{U} \in \mathrm{N} . \mathrm{V}=\mathrm{U} \cap \mathrm{A}$ by auto
with A8 show $\operatorname{Prfin}(T, A$, cons (W, M))
using Prfin_def by simp
qed \}
ultimately show thesis by auto
qed
Now we are ready to prove the statement we need.
theorem FinRestr0: assumes $\mathrm{A}: \forall \mathrm{V} \in \mathrm{TA} . \exists \mathrm{U} \in \mathrm{T} . \mathrm{V}=\mathrm{U} \cap \mathrm{A}$
shows $\forall M \in \operatorname{Fin}(T A)$. Prfin(T,A,M)
proof -
\{ fix M
assume $M \in \operatorname{Fin}(T A)$
moreover have Prfin(T,A, $)$ using Prfin_def by simp moreover
\{ fix W M assume $W \in T A M \in \operatorname{Fin}(T A) W \notin M \operatorname{Prfin}(T, A, M)$
with A have Prfin(T,A, cons(W,M)) by (rule ind_step) \}
ultimately have $\operatorname{Prfin}(T, A, M)$ by (rule Fin_induct)
\} thus thesis by simp
qed
This is a different form of the above theorem:
theorem ZF1FinRestr:

```
    assumes A1:M\in Fin(TA) and A2: M\not=0
    and A3: }\forall\textrm{V}\in\textrm{TA.}.\exists\textrm{U}\in\textrm{T}.\textrm{V}=\textrm{U}\cap\textrm{A
    shows }\exists\textrm{N}\in\operatorname{Fin}(T).(\forallV\inM. \exists U\inN. (V = U\capA)) ^N\not=
proof -
    from A3 A1 have Prfin(T,A,M) using FinRestr0 by blast
    then have }\exists\textrm{N}\in\operatorname{Fin}(\textrm{T}).\forallV\inM.\exists\textrm{U}\in\textrm{N}.(V=U\capA
        using A2 Prfin_def by simp
    then obtain N where
        D1:N\inFin(T) ^( }\forall\textrm{V}\in\textrm{M}.\exists\textrm{J
    with A2 have N\not=0 by auto
    with D1 show thesis by auto
qed
```

Purely technical lemma used in Topology_ZF_1 to show that if a topology is T_{2}, then it is T_{1}.

```
lemma Finite1_L2:
    assumes A:\existsU V. (U\inT ^ V\inT ^ x\inU ^ y\inV ^ U\capV=0)
    shows }\exists\textrm{U}\in\textrm{T}.(x\inU\wedge y\not\inU
proof -
    from A obtain U V where D1:U\inT ^ V\inT ^ x\inU ^ y\inV ^ U\capV=0 by auto
    with D1 show thesis by auto
qed
```

A collection closed with respect to taking a union of two sets is closed under taking finite unions. Proof by induction with the induction step formulated in a separate lemma.

```
lemma Finite1_L3_IndStep:
    assumes A1: }\forall\textrm{A}B.((A\inC ^ B\inC) \longrightarrow A\cupB\inC
    and A2: A\inC and A3: N\inFin(C) and A4:A\not\inN and A5:\bigcupN }\in
    shows Ucons(A,N) \in C
proof -
    have U cons(A,N) = AU UN by blast
    with A1 A2 A5 show thesis by simp
qed
```

The lemma: a collection closed with respect to taking a union of two sets is closed under taking finite unions.

```
lemma Finite1_L3:
    assumes A1: 0 G C and A2: \forallA B. ((A\inC ^ B\inC) \longrightarrow A\cupB\inC) and
    A3: N\in Fin(C)
    shows \N\inC
proof -
    note A3
    moreover from A1 have }\bigcup0\inC by sim
    moreover
    { fix A N
        assume A\inC N\inFin(C) A\not\inN \N G C
        with A2 have Ucons(A,N) \in C by (rule Finite1_L3_IndStep) }
```

```
    ultimately show \ \ N C by (rule Fin_induct)
qed
```

A collection closed with respect to taking a intersection of two sets is closed under taking finite intersections. Proof by induction with the induction step formulated in a separate lemma. This is sligltly more involved than the union case in Finite1_L3, because the intersection of empty collection is undefined (or should be treated as such). To simplify notation we define the property to be proven for finite sets as a separate notion.

```
definition
    IntPr (T,N) \equiv(N = 0 | \bigcapN N G T)
```

The induction step.

```
lemma Finite1_L4_IndStep:
    assumes A1: \forallA B. ((A\inT ^ B\inT) \longrightarrowA\capB\inT)
    and A2: A\inT and A3:N\inFin(T) and A4:A\not\inN and A5:IntPr(T,N)
    shows IntPr(T,cons(A,N))
proof -
    { assume A6: N=0
            with A2 have IntPr(T,cons(A,N))
                using IntPr_def by simp }
    moreover
    { assume A7: N\not=0 have IntPr(T, cons(A,N))
            proof -
                    from A7 A5 A2 A1 have }\bigcapN~A A\inT using IntPr_def by sim
                    moreover from A7 have \bigcapcons(A, N) = \bigcapN \cap A by auto
                    ultimately show IntPr(T, cons(A,N)) using IntPr_def by simp
        qed }
    ultimately show thesis by auto
qed
```

The lemma.

```
lemma Finite1_L4:
    assumes A1: }\forall\textrm{A}B.\textrm{A}\in\textrm{T}\wedge\textrm{B}\in\textrm{T}\longrightarrow\textrm{A}\cap\textrm{B}\in\textrm{T
    and A2: N\inFin(T)
    shows IntPr(T,N)
proof -
    note A2
    moreover have IntPr(T,0) using IntPr_def by simp
    moreover
    { fix A N
        assume A\inT N\inFin(T) A\not\inN IntPr(T,N)
        with A1 have IntPr(T,cons(A,N)) by (rule Finite1_L4_IndStep) }
    ultimately show IntPr(T,N) by (rule Fin_induct)
qed
```

Next is a restatement of the above lemma that does not depend on the IntPr meta-function.

```
lemma Finite1_L5:
    assumes A1: }\forall\textrm{A}B.((A\inT\wedge B\inT)\longrightarrowA\capB\inT
    and A2: N\not=0 and A3: N\inFin(T)
    shows \bigcapN N T
proof -
    from A1 A3 have IntPr(T,N) using Finite1_L4 by simp
    with A2 show thesis using IntPr_def by simp
qed
```

The images of finite subsets by a meta-function are finite. For example in topology if we have a finite collection of sets, then closing each of them results in a finite collection of closed sets. This is a very useful lemma with many unexpected applications. The proof is by induction. The next lemma is the induction step.

```
lemma fin_image_fin_IndStep:
    assumes }\forall\textrm{V}\in\textrm{B}.\textrm{K}(\textrm{V})\in\textrm{C
    and U\inB and N\inFin(B) and U\not\inN and {K(V). V\inN}\inFin(C)
    shows {K(V). V\incons(U,N)} \in Fin(C)
    using assms by simp
```

The lemma:

```
lemma fin_image_fin:
    assumes A1: }\forall\textrm{V}\in\textrm{B}.\textrm{K}(\textrm{V})\in\textrm{C}\mathrm{ and A2: N }\in\textrm{Fin}(\textrm{B}
    shows {K(V). V\inN} \in Fin(C)
proof -
    note A2
    moreover have {K(V). V\in0} \in Fin(C) by simp
    moreover
    { fix U N
        assume U\inB N\inFin(B) U\not\inN {K(V). V\inN}\inFin(C)
        with A1 have {K(V). V\incons(U,N)} \in Fin(C)
            by (rule fin_image_fin_IndStep) }
    ultimately show thesis by (rule Fin_induct)
qed
```

The image of a finite set is finite.

```
lemma Finite1_L6A: assumes A1: f:X }->\textrm{Y}\mathrm{ and A2: N }\in\operatorname{Fin(X)
    shows f(N) \in Fin(Y)
proof -
    from A1 have }\forallx\inX. f(x) \in Y
        using apply_type by simp
    moreover note A2
    ultimately have {f(x). x\inN} \in Fin(Y)
        by (rule fin_image_fin)
    with A1 A2 show thesis
        using FinD func_imagedef by simp
qed
```

If the set defined by a meta-function is finite, then every set defined by a composition of this meta function with another one is finite.

```
lemma Finite1_L6B:
    assumes A1: }\forall\textrm{x}\in\textrm{X}.\textrm{a}(\textrm{x})\in\textrm{Y}\mathrm{ and A2: {b(y).y@Y} G Fin(Z)
    shows {b(a(x)). x\inX} \in Fin(Z)
proof -
    from A1 have {b(a(x)). x\inX} \subseteq {b(y).y\inY} by auto
    with A2 show thesis using Fin_subset_lemma by blast
qed
```

If the set defined by a meta-function is finite, then every set defined by a composition of this meta function with another one is finite.

```
lemma Finite1_L6C:
    assumes A1: }\forall\textrm{y}\in\textrm{Y}.\textrm{b}(\textrm{y})\in\textrm{Z}\mathrm{ and A2: {a(x). x 
    shows {b(a(x)). x\inX} \in Fin(Z)
proof -
    let N = {a(x). x\inX}
    from A1 A2 have {b(y). y \inN} \in Fin(Z)
        by (rule fin_image_fin)
    moreover have {b(a(x)). x\inX} = {b(y). y\inN}
        by auto
    ultimately show thesis by simp
qed
```

Cartesian product of finite sets is finite.

```
lemma Finite1_L12: assumes A1: A \in Fin(A) and A2: B \in Fin(B)
    shows }A\timesB\in\operatorname{Fin}(A\timesB
proof -
    have T1:\foralla\inA. }\forall\textrm{b}\in\textrm{B}.{\, a,b\rangle}\in\operatorname{Fin}(\textrm{A}\times\textrm{B})\mathrm{ by simp
    have }\forall\textrm{a}\in\textrm{A}.{{{\langlea,b\rangle}. b \in B} \in Fin(Fin(A\timesB))
    proof
        fix a assume A3: a }\in
        with T1 have }\forall\textrm{b}\in\textrm{B}.{\{\textrm{a},\textrm{b}\rangle}\in\operatorname{Fin}(\textrm{A}\times\textrm{B}
            by simp
        moreover note A2
        ultimately show {{{\langlea,b\rangle}. b \in B} \in Fin(Fin(A}\,B)
            by (rule fin_image_fin)
    qed
    then have }\forall\textrm{a}\in\textrm{A}.\{{{\langle\textrm{a},\textrm{b}\rangle}.\textrm{b}\in\textrm{B}}\in\operatorname{Fin}(\textrm{A}\times\textrm{B}
        using Fin_UnionI by simp
    moreover have
        \foralla\inA. \bigcup {{\langle a,b\rangle}. b \in B} = {a} }\times\mathrm{ B by blast
    ultimately have }\forall\textrm{a}\in\textrm{A}.{a}\timesB\inFin(A\timesB) by sim
    moreover note A1
    ultimately have {{a}\times B. a\inA} \in Fin(Fin(A M B))
        by (rule fin_image_fin)
    then have }\bigcup{{a}\times B. a\inA} \in Fin(A\timesB
            using Fin_UnionI by simp
```

```
    moreover have }\bigcup{{a}\times B. a\inA} = A A B by blas
    ultimately show thesis by simp
qed
```

We define the characterisic meta-function that is the identity on a set and assigns a default value everywhere else.

```
definition
    Characteristic(A,default,x) \equiv (if x\inA then x else default)
```

A finite subset is a finite subset of itself.

```
lemma Finite1_L13:
    assumes A1:A \in Fin(X) shows A \in Fin(A)
proof -
    { assume A=0 hence A }\in\operatorname{Fin}(A)\mathrm{ by simp }
    moreover
    { assume A2: A}\not=0\mathrm{ then obtain c where D1:c&A
                by auto
            then have }\forallx\inX. Characteristic(A,c,x) \in 
                using Characteristic_def by simp
            moreover note A1
            ultimately have
                {Characteristic(A,c,x). x\inA} \in Fin(A) by (rule fin_image_fin)
            moreover from D1 have
                {Characteristic(A,c,x). x\inA} = A using Characteristic_def by simp
            ultimately have A \in Fin(A) by simp }
    ultimately show thesis by blast
qed
```

Cartesian product of finite subsets is a finite subset of cartesian product.

```
lemma Finite1_L14: assumes A1: A }\in\operatorname{Fin}(\textrm{X}) B \in Fin(Y
    shows }A\timesB\in\operatorname{Fin}(\textrm{X}\times\textrm{Y}
proof -
    from A1 have A }\times\textrm{B}\subseteqX\timesY using FinD by aut
    then have Fin(A\timesB) \subseteq Fin(X\timesY) using Fin_mono by simp
    moreover from A1 have A }\timesB\in\operatorname{Fin}(A\timesB
            using Finite1_L13 Finite1_L12 by simp
        ultimately show thesis by auto
qed
```

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

```
lemma Finite1_L15:
    assumes A1: {b(x). x\inA} \in Fin(B) {c(x). x\inA} \in Fin(C)
    and A2: f : B }\timesC->
    shows {f\langle b(x),c(x)\rangle. x\inA} \in Fin(E)
proof -
    from A1 have {b(x). x\inA} }\times{c(x). x\inA} \in Fin(B\timesC
        using Finite1_L14 by simp
    moreover have
```

```
        {\langle b(x),c(x)\rangle. x\inA} \subseteq{b(x). x\inA} }\times{c(x). x\inA
        by blast
    ultimately have T0: {\langle b (x), c(x)\rangle. x\inA} \in Fin(B\timesC)
        by (rule Fin_subset_lemma)
    with A2 have T1: f{\ b(x),c(x)\rangle. x\inA} \in Fin(E)
        using Finite1_L6A by auto
    from T0 have }\forallx\inA. \langleb(x),c(x)\rangle\inB\times
        using FinD by auto
    with A2 have
        f{\langle b(x),c(x)\rangle. x\inA} = {f\ b (x),c(x)\rangle. x\inA}
        using func1_1_L17 by simp
    with T1 show thesis by simp
qed
```

Singletons are in the finite powerset.

```
lemma Finite1_L16: assumes x\inX shows {x} \in Fin(X)
    using assms emptyI consI by simp
```

A special case of Finite1_L15 where the second set is a singleton. In Group_ZF_3 theory this corresponds to the situation where we multiply by a constant.

```
lemma Finite1_L16AA: assumes {b(x). x\inA} \in Fin(B)
    and c\inC and f : B }\timesC->
    shows {f\langle b(x),c\rangle. x\inA} \in Fin(E)
proof -
    from assms have
            y\inB. f}\y,c\rangle\in
            {b(x). x\inA} \in Fin(B)
            using apply_funtype by auto
    then show thesis by (rule Finite1_L6C)
qed
```

First order version of the induction for the finite powerset.

```
lemma Finite1_L16B: assumes A1: \(P(0)\) and A2: \(B \in F i n(X)\)
    and \(\mathrm{A} 3: ~ \forall \mathrm{~A} \in \mathrm{Fin}(\mathrm{X}) . \forall \mathrm{x} \in \mathrm{X} . \mathrm{x} \notin \mathrm{A} \wedge \mathrm{P}(\mathrm{A}) \longrightarrow \mathrm{P}(\mathrm{A} \cup\{\mathrm{x}\})\)
    shows \(P(B)\)
proof -
    note \(\langle B \in \operatorname{Fin}(X)\rangle\) and \(\langle P(0)\rangle\)
    moreover
    \{ fix A x
        assume \(\quad x \in X \quad A \in \operatorname{Fin}(X) \quad x \notin A \quad P(A)\)
        moreover have cons \((x, A)=A \cup\{x\}\) by auto
        moreover note A3
        ultimately have \(P(\) cons \((x, A))\) by simp \}
    ultimately show \(P(B)\) by (rule Fin_induct)
qed
```


13.2 Finite range functions

In this section we define functions $f: X \rightarrow Y$, with the property that $f(X)$ is a finite subset of Y. Such functions play a important role in the construction of real numbers in the Real_ZF series.

Definition of finite range functions.

definition

```
    FinRangeFunctions(X,Y) \(\equiv\{f: X \rightarrow Y . f(X) \in \operatorname{Fin}(Y)\}\)
```

Constant functions have finite range.

```
lemma Finite1_L17: assumes c\inY and X\not=0
    shows ConstantFunction(X,c) \in FinRangeFunctions(X,Y)
    using assms func1_3_L1 func_imagedef func1_3_L2 Finite1_L16
        FinRangeFunctions_def by simp
```

Finite range functions have finite range.

```
lemma Finite1_L18: assumes f \in FinRangeFunctions(X,Y)
    shows {f(x). x\inX} \in Fin(Y)
    using assms FinRangeFunctions_def func_imagedef by simp
```

An alternative form of the definition of finite range functions.

```
lemma Finite1_L19: assumes f:X }->\textrm{Y
    and {f(x). x\inX} \in Fin(Y)
    shows f \in FinRangeFunctions(X,Y)
    using assms func_imagedef FinRangeFunctions_def by simp
```

A composition of a finite range function with another function is a finite range function.

```
lemma Finite1_L20: assumes A1:f \in FinRangeFunctions(X,Y)
    and A2: g : Y }->\textrm{Z
    shows g O f \in FinRangeFunctions(X,Z)
proof -
    from A1 A2 have g{f(x). x\inX} G Fin(Z)
        using Finite1_L18 Finite1_L6A
        by simp
    with A1 A2 have {(g 0 f)(x). x\inX} \in Fin(Z)
        using FinRangeFunctions_def apply_funtype
            func1_1_L17 comp_fun_apply by auto
    with A1 A2 show thesis using
        FinRangeFunctions_def comp_fun Finite1_L19
        by auto
qed
```

Image of any subset of the domain of a finite range function is finite.

```
lemma Finite1_L21:
    assumes f \in FinRangeFunctions(X,Y) and A\subseteqX
```

```
    shows f(A) \in Fin(Y)
proof -
    from assms have f(X) \in Fin(Y) f(A) \subseteqf(X)
        using FinRangeFunctions_def func1_1_L8
        by auto
    then show f(A) \in Fin(Y) using Fin_subset_lemma
        by blast
qed
end
```


14 Finite sets 1

```
theory Finite_ZF_1 imports Finite1 Order_ZF_1a
```


begin

This theory is based on Finite1 theory and is obsolete. It contains properties of finite sets related to order relations. See the FinOrd theory for a better approach.

14.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have maxima and minima.

Finite set has a maximum - induction step.

```
lemma Finite_ZF_1_1_L1:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: A\inFin(X) and A4: }x\inX\mathrm{ and A5: A=0 V HasAmaximum(r,A)
    shows }A\cup{x}=0\vee HasAmaximum(r,A\cup{x}
proof -
    { assume A=0 then have T1: A\cup{x} = {x} by simp
            from A1 have refl(X,r) using total_is_refl by simp
            with T1 A4 have A\cup{x} = 0 \vee HasAmaximum(r,A\cup{x})
            using Order_ZF_4_L8 by simp }
    moreover
    { assume A\not=0
            with A1 A2 A3 A4 A5 have A\cup{x} = 0 V HasAmaximum(r,A\cup{x})
                using FinD Order_ZF_4_L9 by simp }
    ultimately show thesis by blast
qed
```

For total and transitive relations finite set has a maximum.

```
theorem Finite_ZF_1_1_T1A:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: B\inFin(X)
```

```
    shows B=0 V HasAmaximum(r,B)
proof -
    have 0=0 \vee HasAmaximum(r,0) by simp
    moreover note A3
    moreover from A1 A2 have }\forall\textrm{A}\in\textrm{Fin}(\textrm{X}).\forallx\inX
        x\not\inA ^(A=0 \vee HasAmaximum(r,A)) \longrightarrow(A\cup{x}=0 \vee HasAmaximum(r,A\cup{x}))
        using Finite_ZF_1_1_L1 by simp
    ultimately show B=0 \vee HasAmaximum(r,B) by (rule Finite1_L16B)
qed
```

Finite set has a minimum - induction step.

```
lemma Finite_ZF_1_1_L2:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: A\inFin(X) and A4: }x\inX\mathrm{ and A5: A=0 V HasAminimum(r,A)
    shows }\textrm{A}\cup{\textrm{X}}=0\vee\vee HasAminimum(r,A\cup{x}
proof -
    { assume A=0 then have T1: A\cup{x} = {x} by simp
        from A1 have refl(X,r) using total_is_refl by simp
        with T1 A4 have A\cup{x} = 0 \vee HasAminimum(r,A\cup{x})
            using Order_ZF_4_L8 by simp }
    moreover
    { assume A\not=0
        with A1 A2 A3 A4 A5 have A\cup{x} = 0 V HasAminimum(r,A\cup{x})
            using FinD Order_ZF_4_L10 by simp }
    ultimately show thesis by blast
qed
```

For total and transitive relations finite set has a minimum.

```
theorem Finite_ZF_1_1_T1B:
    assumes A1: \(r\) \{is total on\} \(X\) and A2: trans \((r)\)
    and \(A 3: B \in \operatorname{Fin}(X)\)
    shows \(B=0 \quad \vee\) HasAminimum ( \(r, B\) )
proof -
    have \(0=0 \vee \operatorname{HasAminimum}(r, 0)\) by simp
    moreover note A3
    moreover from A1 A2 have \(\forall A \in F i n(X) . \forall x \in X\)
        \(x \notin A \wedge(A=0 \vee \operatorname{HasAminimum}(r, A)) \longrightarrow(A \cup\{x\}=0 \vee \operatorname{HasAminimum}(r, A \cup\{x\}))\)
        using Finite_ZF_1_1_L2 by simp
    ultimately show \(B=0 \vee\) HasAminimum ( \(r, B\) ) by (rule Finite1_L16B)
qed
For transitive and total relations finite sets are bounded.
theorem Finite_ZF_1_T1:
    assumes A1: \(r\) \{is total on\} \(X\) and A2: trans ( \(r\) )
    and A3: \(B \in F i n(X)\)
    shows IsBounded ( \(\mathrm{B}, \mathrm{r}\) )
proof -
    from A1 A2 A3 have \(B=0 \vee \operatorname{HasAminimum}(r, B) B=0 \vee \operatorname{HasAmaximum}(r, B)\)
        using Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B by auto
```

```
    then have
    B = 0 V IsBoundedBelow(B,r) B = 0 V IsBoundedAbove(B,r)
    using Order_ZF_4_L7 Order_ZF_4_L8A by auto
    then show IsBounded(B,r) using
    IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
    by simp
qed
```

For linearly ordered finite sets maximum and minimum have desired properties. The reason we need linear order is that we need the order to be total and transitive for the finite sets to have a maximum and minimum and then we also need antisymmetry for the maximum and minimum to be unique.

```
theorem Finite_ZF_1_T2:
    assumes A1: IsLinOrder(X,r) and A2: A }\in\operatorname{Fin}(X)\mathrm{ and A3: A}=
    shows
    Maximum(r,A) \in A
    Minimum(r,A) \in A
    \forallx\inA. \langlex,Maximum(r,A)\rangle}\in
    \forallx\inA. \langleMinimum(r,A),x\rangle}\in\textrm{r
proof -
    from A1 have T1: r {is total on} X trans(r) antisym(r)
        using IsLinOrder_def by auto
    moreover from T1 A2 A3 have HasAmaximum(r,A)
        using Finite_ZF_1_1_T1A by auto
    moreover from T1 A2 A3 have HasAminimum(r,A)
        using Finite_ZF_1_1_T1B by auto
    ultimately show
        Maximum(r,A) \in A
        Minimum(r,A) \in A
        \forallx\inA. \langlex,Maximum(r,A)\rangle\inr \forallx\inA. \langleMinimum(r,A),x\rangle\inr
        using Order_ZF_4_L3 Order_ZF_4_L4 by auto
qed
```

A special case of Finite_ZF_1_T2 when the set has three elements.

```
corollary Finite_ZF_1_L2A:
    assumes A1: IsLinOrder(X,r) and A2: a }\in\textrm{X
    shows
    Maximum(r,{a,b,c}) \in {a,b,c}
    Minimum(r,{a,b,c}) \in {a,b,c}
    Maximum(r,{a,b,c}) \in X
    Minimum(r,{a,b,c}) \in X
    <a,Maximum(r,{a,b,c})\rangle\inr
    <b,Maximum(r,{a,b,c})\rangle\inr
    <c,Maximum(r,{a,b,c})\rangle\inr
proof -
    from A2 have I: {a,b,c} \in Fin(X) {a,b,c} \not=0
        by auto
    with A1 show II: Maximum(r,{a,b,c}) \in {a,b,c}
        by (rule Finite_ZF_1_T2)
```

```
    moreover from A1 I show III: Minimum(r,{a,b,c}) \in {a,b,c}
    by (rule Finite_ZF_1_T2)
    moreover from A2 have {a,b,c}\subseteqX
        by auto
    ultimately show
        Maximum(r,{a,b,c}) \in X
        Minimum(r,{a,b,c})\inX
        by auto
    from A1 I have }\forall\textrm{x}\in{\mp@code{a,b,c}. {x,Maximum(r,{a,b,c})\rangle\inr
        by (rule Finite_ZF_1_T2)
    then show
        <a,Maximum(r,{a,b,c})\rangle\inr
        <b,Maximum(r,{a,b,c})\rangle\inr
        <c,Maximum(r,{a,b,c})\rangle\inr
        by auto
qed
```

If for every element of X we can find one in A that is greater, then the A can not be finite. Works for relations that are total, transitive and antisymmetric.

```
lemma Finite_ZF_1_1_L3:
    assumes A1: r {is total on} X
    and A2: trans(r) and A3: antisym(r)
    and A4: r \subseteqX X X and A5: X\not=0
    and A6: }\forall\textrm{x}\in\textrm{X}.|\textrm{a}\in\textrm{A}.\textrm{x}\not=\textrm{a}\wedge\langlex,a\rangle\in\textrm{r
    shows A & Fin(X)
proof -
    from assms have }\neg\mathrm{ IsBounded(A,r)
        using Order_ZF_3_L14 IsBounded_def
        by simp
    with A1 A2 show A & Fin(X)
        using Finite_ZF_1_T1 by auto
qed
end
```


15 Finite sets and order relations

theory FinOrd_ZF imports Finite_ZF func_ZF_1
begin
This theory file contains properties of finite sets related to order relations. Part of this is similar to what is done in Finite_ZF_1 except that the development is based on the notion of finite powerset defined in Finite_ZF rather the one defined in standard Isabelle Finite theory.

15.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

```
theorem fin_has_max:
    assumes A1: r {is total on} X and A2: trans(r)
    and A3: B \in FinPow(X) and A4: B }\not=
    shows HasAmaximum(r,B)
proof -
    have 0=0 V HasAmaximum(r,0) by simp
    moreover have
        A G FinPow(X). A=0 V HasAmaximum(r,A) \longrightarrow
        (\forallx\inX. (A \cup {x}) = 0 V HasAmaximum(r,A \cup{x}))
    proof -
        { fix A
            assume A G FinPow(X) A = 0 V HasAmaximum(r,A)
            have }\forallx\inX.(A\cup{x})=0 \vee HasAmaximum(r,A \cup{x}
            proof -
    { fix }x\mathrm{ assume }x\in
        note <A = 0 V HasAmaximum(r,A)>
        moreover
        { assume A = 0
            then have A\cup{x} = {x} by simp
            from A1 have refl(X,r) using total_is_refl
                by simp
            with }\langle\textrm{x}\in\textrm{X}\rangle\langle\textrm{A}\cup{\textrm{x}}={{\textrm{x}}\rangle\mathrm{ have HasAmaximum(r,A}\textrm{A}\cup{\textrm{x}}
                using Order_ZF_4_L8 by simp }
        moreover
        { assume HasAmaximum(r,A)
            with A1 A2 <A \in FinPow(X)\rangle \langlex\inX\rangle
            have HasAmaximum(r,A\cup{x})
                using FinPow_def Order_ZF_4_L9 by simp }
        ultimately have A \cup{x} = 0 \vee HasAmaximum(r,A \cup{x})
            by auto
    } thus }\forallx\inX.(A\cup{x})=0\vee HasAmaximum(r,A \cup{x}
        by simp
            qed
        } thus thesis by simp
    qed
    moreover note A3
    ultimately have B = 0 V HasAmaximum(r,B)
        by (rule FinPow_induct)
    with A4 show HasAmaximum(r,B) by simp
qed
```

For linearly ordered nonempty finite sets the maximum is in the set and indeed it is the greatest element of the set.

```
lemma linord_max_props: assumes A1: IsLinOrder(X,r) and
    A2: A }\in\mathrm{ FinPow(X) A }=
    shows
    Maximum(r,A) \in A
    Maximum(r,A) \in X
    \foralla\inA. \langlea,Maximum(r,A)\rangle\inr
proof -
    from A1 A2 show
        Maximum(r,A) \in A and }\forall\textrm{a}\in\textrm{A}.\langlea,Maximum(r,A)\rangle\in
        using IsLinOrder_def fin_has_max Order_ZF_4_L3
        by auto
    with A2 show Maximum(r,A) \in X using FinPow_def
        by auto
qed
```


15.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the same number of elements, then they are order-isomorphic and the isomorphism is unique. This allows us to talk about "enumeration" of a linearly ordered finite set. We define the enumeration as the order isomorphism between the number of elements of the set (which is a natural number $n=\{0,1, . ., n-1\})$ and the set.

A really weird corner case - empty set is order isomorphic with itself.

```
lemma empty_ord_iso: shows ord_iso(0,r,0,R) \not=0
proof -
    have 0 \approx 0 using eqpoll_refl by simp
    then obtain f where f \in bij(0,0)
        using eqpoll_def by blast
    then show thesis using ord_iso_def by auto
qed
```

Even weirder than empty_ord_iso The order automorphism of the empty set is unique.

```
lemma empty_ord_iso_uniq:
    assumes f \in ord_iso(0,r,0,R) g G ord_iso(0,r,0,R)
    shows f = g
proof -
    from assms have f : 0 }->0\mathrm{ and g: 0 }->
        using ord_iso_def bij_def surj_def by auto
        moreover have }\forallx\in0.f(x)=g(x) by sim
        ultimately show f = g by (rule func_eq)
qed
```

The empty set is the only order automorphism of itself.
lemma empty_ord_iso_empty: shows ord_iso $(0, r, 0, R)=\{0\}$
proof -

```
    have 0 G ord_iso(0,r,0,R)
    proof -
        have ord_iso(0,r,0,R) f= 0 by (rule empty_ord_iso)
        then obtain f where f \in ord_iso( ( ,r,0,R) by auto
        then show 0 \in ord_iso(0,r,0,R)
            using ord_iso_def bij_def surj_def fun_subset_prod
            by auto
qed
then show ord_iso(0,r,0,R) = {0} using empty_ord_iso_uniq
    by blast
qed
```

An induction (or maybe recursion?) scheme for linearly ordered sets. The induction step is that we show that if the property holds when the set is a singleton or for a set with the maximum removed, then it holds for the set. The idea is that since we can build any finite set by adding elements on the right, then if the property holds for the empty set and is invariant with respect to this operation, then it must hold for all finite sets.

```
lemma fin_ord_induction:
    assumes A1: IsLinOrder (X,r) and A2: \(\mathrm{P}(0)\) and
    A3: \(\forall A \in \operatorname{FinPow}(X) . A \neq 0 \longrightarrow(P(A-\{\operatorname{Maximum}(r, A)\}) \longrightarrow P(A))\)
    and A4: \(B \in \operatorname{FinPow}(X)\) shows \(P(B)\)
proof -
    note A2
    moreover have \(\forall A \in \operatorname{FinPow}(X) . A \neq 0 \longrightarrow(\exists \mathrm{a} \in \mathrm{A} . \mathrm{P}(\mathrm{A}-\{\mathrm{a}\}) \longrightarrow \mathrm{P}(\mathrm{A}))\)
    proof -
            \(\{\) fix \(A\) assume \(A \in \operatorname{FinPow}(X)\) and \(A \neq 0\)
                with A1 A3 have \(\exists a \in A . P(A-\{a\}) \longrightarrow P(A)\)
    using IsLinOrder_def fin_has_max
        IsLinOrder_def Order_ZF_4_L3
    by blast
        \} thus thesis by simp
    qed
    moreover note A4
    ultimately show \(\mathrm{P}(\mathrm{B})\) by (rule FinPow_ind_rem_one)
qed
```

A sligltly more complicated version of fin_ord_induction that allows to prove properties that are not true for the empty set.

```
lemma fin_ord_ind:
    assumes A1: IsLinOrder (X,r) and A2: \(\forall \mathrm{A} \in \operatorname{FinPow}(\mathrm{X})\).
    \(A=0 \vee(A=\{\operatorname{Maximum}(r, A)\} \vee P(A-\{\operatorname{Maximum}(r, A)\}) \longrightarrow P(A))\)
    and \(A 3: B \in \operatorname{FinPow}(X)\) and \(A 4: B \neq 0\)
    shows \(P(B)\)
proof -
    \(\{\) fix \(A\) assume \(A \in \operatorname{FinPow}(X)\) and \(A \neq 0\)
        with A1 A2 have
            \(\exists \mathrm{a} \in \mathrm{A} . \mathrm{A}=\{\mathrm{a}\} \vee \mathrm{P}(\mathrm{A}-\{\mathrm{a}\}) \longrightarrow \mathrm{P}(\mathrm{A})\)
```

```
            using IsLinOrder_def fin_has_max
IsLinOrder_def Order_ZF_4_L3
            by blast
    } then have }\forall\textrm{A}\in\textrm{FinPow(X).
                A=0\vee (\existsa\inA. A = {a} \veeP(A-{a}) \longrightarrowP(A))
    by auto
    with A3 A4 show P(B) using FinPow_rem_ind
    by simp
qed
```

Yet another induction scheme. We build a linearly ordered set by adding elements that are greater than all elements in the set.

```
lemma fin_ind_add_max:
    assumes A1: IsLinOrder (X,r) and A2: \(P(0)\) and A3: \(\forall A \in \operatorname{FinPow}(X)\).
    \((\forall \mathrm{x} \in \mathrm{X}-\mathrm{A} . \mathrm{P}(\mathrm{A}) \wedge(\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{a}, \mathrm{x}\rangle \in \mathrm{r}) \longrightarrow \mathrm{P}(\mathrm{A} \cup\{\mathrm{x}\}))\)
    and A4: \(B \in \operatorname{FinPow}(X)\)
    shows \(P(B)\)
proof -
    note A1 A2
    moreover have
        \(\forall C \in \operatorname{FinPow}(X) . C \neq 0 \longrightarrow(P(C-\{\operatorname{Maximum}(r, C)\}) \longrightarrow P(C))\)
        proof -
            \(\{\) fix \(C\) assume \(C \in \operatorname{FinPow}(X)\) and \(C \neq 0\)
    let \(\mathrm{x}=\operatorname{Maximum}(\mathrm{r}, \mathrm{c})\)
    let \(\mathrm{A}=\mathrm{C}-\{\mathrm{x}\}\)
    assume \(P(A)\)
    moreover from \(\langle C \in \operatorname{FinPow}(X)\rangle\) have \(A \in \operatorname{FinPow}(X)\)
        using fin_rem_point_fin by simp
    moreover from A1 \(\langle C \in \operatorname{FinPow}(X)\rangle\langle C \neq 0\rangle\) have
        \(\mathrm{x} \in \mathrm{C}\) and \(\mathrm{x} \in \mathrm{X}-\mathrm{A}\) and \(\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{a}, \mathrm{x}\rangle \in \mathrm{r}\)
        using linord_max_props by auto
    moreover note \(A 3\)
    ultimately have \(\mathrm{P}(\mathrm{A} \cup\{\mathrm{x}\})\) by auto
    moreover from \(\langle x \in C\) have \(A \cup\{x\}=C\)
        by auto
    ultimately have \(P(C)\) by simp
            \} thus thesis by simp
        qed
        moreover note A4
    ultimately show \(P(B)\) by (rule fin_ord_induction)
qed
```

The only order automorphism of a linearly ordered finite set is the identity.

```
theorem fin_ord_auto_id: assumes A1: IsLinOrder(X,r)
    and A2: B }\in\operatorname{FinPow(X) and A3: B}=
    shows ord_iso(B,r,B,r) = {id(B)}
proof -
    note A1
```

moreover
\{ fix A assume $A \in \operatorname{FinPow}(X) A \neq 0$
let $M=\operatorname{Maximum}(r, A)$
let $A_{0}=A-\{M\}$
assume $A=\{M\} \vee$ ord_iso $\left(A_{0}, r, A_{0}, r\right)=\left\{i d\left(A_{0}\right)\right\}$
moreover
\{ assume $A=\{M\}$
have ord_iso(\{M\},r,\{M\},r)=\{id(\{M\})\}
using id_ord_auto_singleton by simp with $\langle A=\{M\}\rangle$ have ord_iso(A,r,A,r) $=\{i d(A)\}$
by simp \}
moreover
$\left\{\right.$ assume ord_iso $\left(A_{0}, r, A_{0}, r\right)=\left\{i d\left(A_{0}\right)\right\}$
have ord_iso(A,r,A,r) =\{id(A)\} proof
show $\{i d(A)\} \subseteq$ ord_iso(A,r,A,r)
using id_ord_iso by simp
\{ fix f assume $f \in \operatorname{ord_ iso(A,r,A,r)}$
with $A 1\langle A \in \operatorname{FinPow}(X)\rangle\langle A \neq 0\rangle$ have restrict(f, A_{0}) \in ord_iso($\left.A_{0}, r, A-\{f(M)\}, r\right)$ using IsLinOrder_def fin_has_max ord_iso_rem_max by auto
with $\mathrm{A} 1\langle\mathrm{~A} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{A} \neq 0\rangle\langle\mathrm{f} \in$ ord_iso(A,r,A,r)\rangle <ord_iso $\left(A_{0}, r, A_{0}, r\right)=\left\{i d\left(A_{0}\right)\right\}$ 〉
have restrict $\left(f, A_{0}\right)=\operatorname{id}\left(A_{0}\right)$
using IsLinOrder_def fin_has_max max_auto_fixpoint by auto
moreover from A1 $\langle f \in$ ord_iso($A, r, A, r)\rangle$
$\langle A \in \operatorname{FinPow}(X)\rangle\langle A \neq 0\rangle$ have
$f: A \rightarrow A$ and $M \in A$ and $f(M)=M$
using ord_iso_def bij_is_fun IsLinOrder_def
fin_has_max Order_ZF_4_L3 max_auto_fixpoint
by auto
ultimately have $f=i d(A)$ using id_fixpoint_rem
by simp
$\}$ then show ord_iso $(A, r, A, r) \subseteq\{i d(A)\}$
by auto
qed
\}
ultimately have ord_iso $(A, r, A, r)=\{i d(A)\}$
by auto
$\}$ then have $\forall A \in \operatorname{FinPow}(X) . A=0 V$ ($\mathrm{A}=\{\operatorname{Maximum}(\mathrm{r}, \mathrm{A})\} \vee$ ord_iso(A-\{Maximum(r,A)\},r,A-\{Maximum(r,A)\},r) = $\{\operatorname{id}(A-\{\operatorname{Maximum}(r, A)\})\} \longrightarrow \quad$ ord_iso $(A, r, A, r)=\{i d(A)\})$
by auto
moreover note A2 A3
ultimately show ord_iso($B, r, B, r)=\{i d(B)\}$
by (rule fin_ord_ind)
qed
Every two finite linearly ordered sets are order isomorphic. The statement is formulated to make the proof by induction on the size of the set easier, see fin_ord_iso_ex for an alternative formulation.

```
lemma fin_order_iso:
    assumes A1: IsLinOrder(X,r) IsLinOrder(Y,R) and
    A2: \(n \in\) nat
    shows \(\forall \mathrm{A} \in \operatorname{FinPow}(\mathrm{X}) . \forall \mathrm{B} \in \operatorname{FinPow}(\mathrm{Y})\).
    \(A \approx n \wedge B \approx n \longrightarrow\) ord_iso(A,r, \(B, R) \neq 0\)
proof -
    note A2
    moreover have \(\forall A \in \operatorname{FinPow}(X) . \forall B \in \operatorname{FinPow}(Y)\).
        \(A \approx 0 \wedge B \approx 0 \longrightarrow\) ord_iso( \(A, r, B, R) \neq 0\)
        using eqpoll_0_is_0 empty_ord_iso by blast
    moreover have \(\forall \mathrm{k} \in\) nat.
        \((\forall \mathrm{A} \in \operatorname{FinPow}(\mathrm{X}) . \forall \mathrm{B} \in \operatorname{FinPow}(\mathrm{Y})\).
        \(A \approx k \wedge B \approx k \longrightarrow\) ord_iso \((A, r, B, R) \neq 0) \longrightarrow\)
        \((\forall C \in \operatorname{FinPow}(X) . \forall D \in \operatorname{FinPow}(Y)\).
        \(\left.C \approx \operatorname{succ}(k) \wedge D \approx \operatorname{succ}(k) \longrightarrow \operatorname{ord}_{1} i s o(C, r, D, R) \neq 0\right)\)
    proof -
        \{ fix \(k\) assume \(k \in\) nat
            assume A3: \(\forall \mathrm{A} \in \mathrm{FinPow}(\mathrm{X}) . \forall \mathrm{B} \in \operatorname{FinPow}(\mathrm{Y})\).
\(\mathrm{A} \approx \mathrm{k} \wedge \mathrm{B} \approx \mathrm{k} \longrightarrow\) ord_iso( \(\mathrm{A}, \mathrm{r}, \mathrm{B}, \mathrm{R}) \neq 0\)
            have \(\forall C \in \operatorname{FinPow}(X) . \forall D \in \operatorname{FinPow}(Y)\).
\(C \approx \operatorname{succ}(k) \wedge D \approx \operatorname{succ}(k) \longrightarrow\) ord_iso(C,r,D,R) \(\neq 0\)
            proof -
    \{ fix \(C\) assume \(C \in \operatorname{FinPow}(X)\)
    fix \(D\) assume \(D \in \operatorname{FinPow}(Y)\)
    assume \(C \approx \operatorname{succ}(k) \quad D \approx \operatorname{succ}(k)\)
    then have \(C \neq 0\) and \(D \neq 0\)
        using eqpoll_succ_imp_not_empty by auto
    let \(\mathrm{M}_{C}=\operatorname{Maximum}(\mathrm{r}, \mathrm{C})\)
    let \(M_{D}=\operatorname{Maximum}(R, D)\)
    let \(\mathrm{C}_{0}=\mathrm{C}-\left\{\mathrm{M}_{C}\right\}\)
    let \(D_{0}=D-\left\{M_{D}\right\}\)
    from \(\langle C \in \operatorname{FinPow}(X)\rangle\) have \(C \subseteq X\)
        using FinPow_def by simp
    with A1 have IsLinOrder (C,r)
        using ord_linear_subset by blast
    from \(\langle\mathrm{D} \in \operatorname{FinPow}(\mathrm{Y})\rangle\) have \(\mathrm{D} \subseteq \mathrm{Y}\)
        using FinPow_def by simp
    with A1 have IsLinOrder ( \(D, R\) )
        using ord_linear_subset by blast
    from \(\mathrm{A} 1\langle\mathrm{C} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{D} \in \operatorname{FinPow}(\mathrm{Y})\rangle\)
        \(\langle C \neq 0\rangle\langle D \neq 0\rangle\) have
        HasAmaximum ( \(r, C\) ) and HasAmaximum ( \(R, D\) )
        using IsLinOrder_def fin_has_max
        by auto
```

with A 1 have $\mathrm{M}_{C} \in \mathrm{C}$ and $\mathrm{M}_{D} \in \mathrm{D}$
using IsLinOrder＿def Order＿ZF＿4＿L3 by auto
with $\langle\mathrm{C} \approx \operatorname{succ}(\mathrm{k})\rangle\langle\mathrm{D} \approx \operatorname{succ}(\mathrm{k})\rangle$ have $C_{0} \approx k$ and $D_{0} \approx k$ using Diff＿sing＿eqpoll by auto
from $\langle C \in \operatorname{FinPow}(X)\rangle\langle D \in \operatorname{FinPow}(Y)\rangle$
have $C_{0} \in \operatorname{FinPow}(X)$ and $D_{0} \in \operatorname{FinPow}(Y)$ using fin＿rem＿point＿fin by auto
with $A 3\left\langle C_{0} \approx k\right\rangle\left\langle D_{0} \approx k\right\rangle$ have ord＿iso $\left(C_{0}, r, D_{0}, R\right) \neq 0$ by simp
with 〈IsLinOrder（C，r）〉（IsLinOrder（D，R）〉〈HasAmaximum（ r, C ）〉〈HasAmaximum（ R, D ）〉
have ord＿iso（C，r，D，R）$\neq 0$ by（rule rem＿max＿ord＿iso）
\} thus thesis by simp qed
\} thus thesis by blast
qed
ultimately show thesis by（rule ind＿on＿nat）
qed
Every two finite linearly ordered sets are order isomorphic．
lemma fin＿ord＿iso＿ex：
assumes A1：IsLinOrder（X，r）IsLinOrder（Y，R）and
A2：$A \in \operatorname{FinPow}(X) B \in \operatorname{FinPow}(Y)$ and $A 3: B \approx A$
shows ord＿iso（A，r，B，R）$\neq 0$
proof－
from $A 2$ obtain n where $n \in$ nat and $A \approx n$ using finpow＿decomp by auto
from $A 3\langle A \approx n\rangle$ have $B \approx n$ by（rule eqpoll＿trans）
with A1 A2 $\langle A \approx n\rangle\langle n \in$ nat show ord＿iso（A，r，B，R）$\neq 0$
using fin＿order＿iso by simp
qed
Existence and uniqueness of order isomorphism for two linearly ordered sets with the same number of elements．

```
theorem fin_ord_iso_ex_uniq:
    assumes A1: IsLinOrder(X,r) IsLinOrder(Y,R) and
    A2: A \in FinPow(X) B \in FinPow(Y) and A3: B }\approx 
    shows \exists!f. f \in ord_iso(A,r,B,R)
proof
    from assms show \existsf. f \in ord_iso(A,r,B,R)
        using fin_ord_iso_ex by blast
    fix f g
    assume A4: f \in ord_iso(A,r,B,R) g G ord_iso(A,r,B,R)
    then have converse(g) \in ord_iso(B,R,A,r)
        using ord_iso_sym by simp
    with <f \in ord_iso(A,r,B,R)\ have
        I: converse(g) O f \in ord_iso(A,r,A,r)
        by (rule ord_iso_trans)
```

```
    { assume A }=
        with A1 A2 I have converse(g) O f = id(A)
            using fin_ord_auto_id by auto
    with A4 have f = g
                using ord_iso_def comp_inv_id_eq_bij by auto }
    moreover
    { assume A = 0
        then have A }\approx0\mathrm{ using eqpoll_0_iff
            by simp
    with A3 have B \approx 0 by (rule eqpoll_trans)
    with A4 \langleA = 0\rangle have
                f \in ord_iso(0,r,0,R) and g E ord_iso(0,r,0,R)
                using eqpoll_0_iff by auto
    then have f = g by (rule empty_ord_iso_uniq) }
    ultimately show f = g
    using ord_iso_def comp_inv_id_eq_bij
    by auto
qed
```

end

16 Equivalence relations

theory EquivClass1 imports ZF.EquivClass func_ZF ZF1
begin
In this theory file we extend the work on equivalence relations done in the standard Isabelle's EquivClass theory. That development is very good and all, but we really would prefer an approach contained within the a standard ZF set theory, without extensions specific to Isabelle. That is why this theory is written.

16.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation $r \subseteq X \times X$ and a function $f: X \rightarrow$ X. The function f can be compatible (congruent) with r in the sense that if two elements x, y are related then the values $f(x), f(x)$ are also related. This is especially useful if r is an equivalence relation as it allows to "project" the function to the quotient space X / r (the set of equivalence classes of $r)$ and create a new function F that satifies the formula $F\left([x]_{r}\right)=[f(x)]_{r}$. When f is congruent with respect to r such definition of the value of F on the equivalence class $[x]_{r}$ does not depend on which x we choose to represent the class. In this section we also consider binary operations that are congruent with respect to a relation. These are important in algebra - the congruency
condition allows to project the operation to obtain the operation on the quotient space.

First we define the notion of function that maps equivalent elements to equivalent values. We use similar names as in the Isabelle's standard EquivClass theory to indicate the conceptual correspondence of the notions.

```
definition
    Congruent(r,f) \equiv
    (\forall\textrm{x y.}|\textrm{x},\textrm{y}\rangle\in\textrm{r}}\longrightarrow\langle\langlef(x),\textrm{f}(\textrm{y})\rangle\in\textrm{r}
```

Now we will define the projection of a function onto the quotient space. In standard math the equivalence class of x with respect to relation r is usually denoted $[x]_{r}$. Here we reuse notation $r\{x\}$ instead. This means the image of the set $\{x\}$ with respect to the relation, which, for equivalence relations is exactly its equivalence class if you think about it.

```
definition
    ProjFun(A,r,f) \equiv
    {\langlec,\x\inc. r{f(x)}\rangle.c\in(A//r)}
```

Elements of equivalence classes belong to the set.

```
lemma EquivClass_1_L1:
    assumes A1: equiv \((A, r)\) and \(A 2: C \in A / / r\) and \(A 3: x \in C\)
    shows \(\mathrm{x} \in \mathrm{A}\)
proof -
    from A2 have \(C \subseteq \bigcup(A / / r)\) by auto
    with A1 A3 show \(x \in A\)
        using Union_quotient by auto
qed
```

The image of a subset of X under projection is a subset of A / r.

```
lemma EquivClass_1_L1A:
    assumes A\subseteqX shows {r{x}. x\inA}\subseteq X//r
    using assms quotientI by auto
```

If an element belongs to an equivalence class, then its image under relation is this equivalence class.

```
lemma EquivClass_1_L2:
    assumes A1: equiv(A,r) C G A//r and A2: x\inC
    shows r{x} = C
proof -
    from A1 A2 have x }\in{{x
            using EquivClass_1_L1 equiv_class_self by simp
    with A2 have I: r{x}\capC }\not=0\mathrm{ by auto
    from A1 A2 have r{x} \in A//r
        using EquivClass_1_L1 quotientI by simp
    with A1 I show thesis
        using quotient_disj by blast
```


qed

Elements that belong to the same equivalence class are equivalent.

```
lemma EquivClass_1_L2A:
    assumes equiv(A,r) C G A//r x\inC y\inC
    shows }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r
    using assms EquivClass_1_L2 EquivClass_1_L1 equiv_class_eq_iff
    by simp
```

Every x is in the class of y, then they are equivalent.

```
lemma EquivClass_1_L2B:
    assumes A1: equiv( \(\mathrm{A}, \mathrm{r}\) ) and \(\mathrm{A} 2: \mathrm{y} \in \mathrm{A}\) and \(\mathrm{A} 3: \mathrm{x} \in \mathrm{r}\{\mathrm{y}\}\)
    shows \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\)
proof -
    from \(A 2\) have \(r\{y\} \in A / / r\)
        using quotientI by simp
    with A1 A3 show thesis using
        EquivClass_1_L1 equiv_class_self equiv_class_nondisjoint by blast
qed
```

If a function is congruent then the equivalence classes of the values that come from the arguments from the same class are the same.

```
lemma EquivClass_1_L3:
    assumes A1: equiv(A,r) and A2: Congruent(r,f)
    and A3: C \inA//r x\inC y\inC
    shows r{f(x)}=r{f(y)}
proof -
    from A1 A3 have }\langlex,y\rangle\in
        using EquivClass_1_L2A by simp
    with A2 have }\langle\textrm{f}(\textrm{x}),\textrm{f}(\textrm{y})\rangle\in\textrm{r
            using Congruent_def by simp
    with A1 show thesis using equiv_class_eq by simp
qed
```

The values of congruent functions are in the space.

```
lemma EquivClass_1_L4:
    assumes A1: equiv(A,r) and A2: C }\inA//r x\in
    and A3: Congruent(r,f)
    shows f(x) \in A
proof -
    from A1 A2 have x\inA
        using EquivClass_1_L1 by simp
    with A1 have \langlex,x\rangle\in r
        using equiv_def refl_def by simp
    with A3 have }\langlef(x),f(x)\rangle\in
        using Congruent_def by simp
    with A1 show thesis using equiv_type by auto
qed
```

Equivalence classes are not empty.

```
lemma EquivClass_1_L5:
    assumes A1: refl(A,r) and A2: C }\in\textrm{A}//\textrm{r
    shows C\not=0
proof -
    from A2 obtain x where I: C = r{x} and }x\in
        using quotient_def by auto
    from A1 {x\inA\rangle have x }\in\textrm{r}{\textrm{x}
    with I show thesis by auto
qed
```

To avoid using an axiom of choice, we define the projection using the expression $\bigcup_{x \in C} r(\{f(x)\})$. The next lemma shows that for congruent function this is in the quotient space A / r.

```
lemma EquivClass_1_L6:
    assumes A1: equiv(A,r) and A2: Congruent(r,f)
    and A3: C }\in\textrm{A}//\textrm{r
    shows (Ux\inC. r{f(x)}) \inA//r
proof -
    from A1 have refl(A,r) unfolding equiv_def by simp
    with A3 have C}=0\mathrm{ using EquivClass_1_L5 by simp
    moreover from A2 A3 A1 have }\forallx\inC. r{f(x)}\inA//
        using EquivClass_1_L4 quotientI by auto
    moreover from A1 A2 A3 have
        \forall y. x\inC ^ y\inC \longrightarrowr{f(x)}=r{f(y)}
        using EquivClass_1_L3 by blast
    ultimately show thesis by (rule ZF1_1_L2)
qed
```

Congruent functions can be projected.

```
lemma EquivClass_1_T0:
    assumes equiv(A,r) Congruent(r,f)
    shows ProjFun(A,r,f) : A//r -> A//r
    using assms EquivClass_1_L6 ProjFun_def ZF_fun_from_total
    by simp
```

We now define congruent functions of two variables (binary funtions). The predicate Congruent2 corresponds to congruent2 in Isabelle's standard EquivClass theory, but uses ZF-functions rather than meta-functions.

```
definition
    Congruent2(r,f) \equiv
    (\forall\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\textrm{x}}{2}{}\mp@subsup{\textrm{y}}{1}{}\mp@subsup{\textrm{y}}{2}{}.\langle\mp@subsup{\textrm{x}}{1}{},\mp@subsup{\textrm{x}}{2}{}\rangle\in\textrm{r}\wedge\langle\mp@subsup{\textrm{y}}{1}{},\mp@subsup{\textrm{y}}{2}{}\rangle\in\textrm{r}\longrightarrow
```


Next we define the notion of projecting a binary operation to the quotient space. This is a very important concept that allows to define quotient groups, among other things.

definition

ProjFun2(A,r,f) \equiv
$\{\langle p, \bigcup z \in \operatorname{fst}(p) \times \operatorname{snd}(p) \cdot r\{f(z)\}\rangle . p \in(A / / r) \times(A / / r)\}$
The following lemma is a two-variables equivalent of EquivClass_1_L3.

```
lemma EquivClass_1_L7:
    assumes A1: equiv(A,r) and A2: Congruent2(r,f)
    and \(A 3: C_{1} \in A / / r \quad C_{2} \in A / / r\)
    and A4: \(z_{1} \in C_{1} \times C_{2} \quad z_{2} \in C_{1} \times C_{2}\)
    shows \(\left.\left.\operatorname{rff}\left(\mathrm{z}_{1}\right)\right\}=\operatorname{rff}\left(\mathrm{z}_{2}\right)\right\}\)
proof -
    from A4 obtain \(x_{1} y_{1} x_{2} y_{2}\) where
        \(\mathrm{x}_{1} \in \mathrm{C}_{1}\) and \(\mathrm{y}_{1} \in \mathrm{C}_{2}\) and \(\mathrm{z}_{1}=\left\langle\mathrm{x}_{1}, \mathrm{y}_{1}\right\rangle\) and
        \(\mathrm{x}_{2} \in \mathrm{C}_{1}\) and \(\mathrm{y}_{2} \in \mathrm{C}_{2}\) and \(\mathrm{z}_{2}=\left\langle\mathrm{x}_{2}, \mathrm{y}_{2}\right\rangle\)
        by auto
    with A1 A3 have \(\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}\right\rangle \in \mathrm{r}\) and \(\left\langle\mathrm{y}_{1}, \mathrm{y}_{2}\right\rangle \in \mathrm{r}\)
        using EquivClass_1_L2A by auto
    with A2 have \(\left\langle\mathrm{f}\left\langle\mathrm{x}_{1}, \mathrm{y}_{1}\right\rangle, \mathrm{f}\left\langle\mathrm{x}_{2}, \mathrm{y}_{2}\right\rangle\right\rangle \in \mathrm{r}\)
        using Congruent2_def by simp
    with \(\mathrm{A} 1\left\langle\mathrm{z}_{1}=\left\langle\mathrm{x}_{1}, \mathrm{y}_{1}\right\rangle\right\rangle\left\langle\mathrm{z}_{2}=\left\langle\mathrm{x}_{2}, \mathrm{y}_{2}\right\rangle\right\rangle\) show thesis
        using equiv_class_eq by simp
qed
```

The values of congruent functions of two variables are in the space.

```
lemma EquivClass_1_L8:
    assumes A1: equiv(A,r) and A2: C C }\in\textrm{A}//\textrm{r}\mathrm{ and A3: C C }\in\textrm{A}//\textrm{r
    and A4: z \in C C }\times\mp@subsup{C}{2}{\prime}\mathrm{ and A5: Congruent2(r,f)
    shows f(z) \in A
proof -
    from A4 obtain }x\mathrm{ y where }x\in\mp@subsup{C}{1}{}\mathrm{ and }y\in\mp@subsup{C}{2}{}\mathrm{ and }z=\langlex,y
        by auto
    with A1 A2 A3 have }x\inA\mathrm{ and }y\in
        using EquivClass_1_L1 by auto
    with A1 A4 have }\langlex,x\rangle\inr and \langley,y\rangle\in r
        using equiv_def refl_def by auto
    with A5 have }\langle\textrm{f}\langle\textrm{x},\textrm{y}\rangle,\textrm{f}\langle\textrm{x},\textrm{y}\rangle\rangle\rangle\in\textrm{r
        using Congruent2_def by simp
    with A1 \langlez = \langlex,y\rangle\rangle show thesis using equiv_type by auto
qed
```

The values of congruent functions are in the space. Note that although this lemma is intended to be used with functions, we don't need to assume that f is a function.
lemma EquivClass_1_L8A:
assumes A1: equiv (A, r) and A2: $x \in A \quad y \in A$
and A3: Congruent2(r, f)
shows $f\langle x, y\rangle \in A$
proof -

```
    from A1 A2 have \(r\{x\} \in A / / r \operatorname{r}\{y\} \in A / / r\)
        \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\{\mathrm{x}\} \times \mathrm{r}\{\mathrm{y}\}\)
        using equiv_class_self quotientI by auto
    with A1 A3 show thesis using EquivClass_1_L8 by simp
qed
```

The following lemma is a two-variables equivalent of EquivClass_1_L6.

```
lemma EquivClass_1_L9:
    assumes A1: equiv(A,r) and A2: Congruent2(r,f)
    and A3: p\in(A//r)\times(A//r)
    shows (\bigcup z f fst(p) \snd(p). r{f(z)}) \inA//r
proof -
    from A3 have fst(p) \in A//r and snd(p) \in A//r
        by auto
    with A1 A2 have
        I: }\forallz\infst(p)\timessnd(p). f(z) \in A
        using EquivClass_1_L8 by simp
    from A3 A1 have fst (p) }\times\mathrm{ snd (p) }\not=
        using equiv_def EquivClass_1_L5 Sigma_empty_iff
        by auto
    moreover from A1 I have
        z f fst(p) }\times\mathrm{ snd(p). r{f(z)} }\in\textrm{A}//\textrm{r
        using quotientI by simp
    moreover from A1 A2 \fst(p) \in A//r\rangle\langlesnd(p) \in A//r\rangle have
        |}\mp@subsup{\textrm{l}}{1}{}\mp@subsup{\textrm{z}}{2}{}.\mp@subsup{\textrm{z}}{1}{}\in\textrm{fst}(\textrm{p})\times\mathrm{ snd(p) }\wedge\mp@subsup{\textrm{z}}{2}{}\in\textrm{fst}(\textrm{p})\times\mathrm{ snd (p) }
        r{f(\mp@subsup{z}{1}{})}=r{f(\mp@subsup{z}{2}{\prime})}
        using EquivClass_1_L7 by blast
        ultimately show thesis by (rule ZF1_1_L2)
qed
```

Congruent functions of two variables can be projected.
theorem EquivClass_1_T1:
assumes equiv(A, r) Congruent2(r, f)
shows ProjFun2(A, r, f) : $(A / / r) \times(A / / r) \rightarrow A / / r$
using assms EquivClass_1_L9 ProjFun2_def ZF_fun_from_total
by simp
The projection diagram commutes. I wish I knew how to draw this diagram in LaTeX.
lemma EquivClass_1_L10:
assumes A1: equiv(A,r) and A2: Congruent2(r,f)
and A3: $x \in A \quad y \in A$
shows ProjFun2 $(A, r, f)\langle r\{x\}, r\{y\}\rangle=r\{f\langle x, y\rangle\}$
proof -
from A3 A1 have $r\{x\} \times r\{y\} \neq 0$
using quotientI equiv_def EquivClass_1_L5 Sigma_empty_iff
by auto
moreover have
$\forall z \in \operatorname{rx}\} \times r\{y\} . \quad r\{f(z)\}=r\{f\langle x, y\rangle\}$

```
    proof
        fix z assume A4: z }\in\textrm{r}{\textrm{x}}\timesr{y
        from A1 A3 have
            r{x} \inA//r r{y} \inA//r
            <x,y\rangle\in r{x} }\timesr{y
            using quotientI equiv_class_self by auto
    with A1 A2 A4 show
            r{f(z)} = r{f {x,y\rangle}
            using EquivClass_1_L7 by blast
    qed
    ultimately have
        (\bigcupz f r{x} \r{y}. r{f(z)})=r{f <x,y\rangle}
        by (rule ZF1_1_L1)
    moreover have
    ProjFun2(A,r,f) {r{x},r{y}\rangle=(Uz\in r{x} }\timesr{y}. r{f(z)}
    proof -
        from assms have
    ProjFun2(A,r,f) : (A//r) > (A//r) }->\textrm{A}//\textrm{r
    <r{x},r{y}\rangle\in(A//r) }\times(A//r
    using EquivClass_1_T1 quotientI by auto
        then show thesis using ProjFun2_def ZF_fun_from_tot_val
    by auto
    qed
    ultimately show thesis by simp
qed
```


16.2 Projecting commutative, associative and distributive operations.

In this section we show that if the operations are congruent with respect to an equivalence relation then the projection to the quotient space preserves commutativity, associativity and distributivity.

The projection of commutative operation is commutative.

```
lemma EquivClass_2_L1: assumes
    A1: equiv(A,r) and A2: Congruent2(r,f)
    and A3: f {is commutative on} A
    and A4: c1 }\in\textrm{A}//\textrm{r} c2 \in A//r
    shows ProjFun2(A,r,f) <c1,c2\rangle = ProjFun2(A,r,f) <c2, c1\rangle
proof -
    from A4 obtain x y where D1:
        c1 = r{x} c2 = r{y}
        x\inA y\inA
        using quotient_def by auto
    with A1 A2 have ProjFun2(A,r,f)\langlec1,c2\rangle=r{f}\langlex,y\rangle
        using EquivClass_1_L10 by simp
    also from A3 D1 have
        r{f {x,y\rangle} = r{f {y,x\rangle}
        using IsCommutative_def by simp
```

```
    also from A1 A2 D1 have
    r{f {y,x\rangle} = ProjFun2(A,r,f) \langlec2,c1\rangle
    using EquivClass_1_L10 by simp
    finally show thesis by simp
qed
```

The projection of commutative operation is commutative.

```
theorem EquivClass_2_T1:
    assumes equiv(A,r) and Congruent2(r,f)
    and f {is commutative on} A
    shows ProjFun2(A,r,f) {is commutative on} A//r
    using assms IsCommutative_def EquivClass_2_L1 by simp
```

The projection of an associative operation is associative.

```
lemma EquivClass_2_L2:
    assumes A1: equiv(A,r) and A2: Congruent2(r,f)
    and A3: f {is associative on} A
```



```
    and A5: g = ProjFun2(A,r,f)
    shows g}\textrm{g}\langle\textrm{g}\langle\textrm{c}1,\textrm{c}2\rangle,\textrm{c}3\rangle=\textrm{g}\langle\textrm{c}1,\textrm{g}\langle\textrm{c}2,\textrm{c}3\rangle
proof -
    from A4 obtain x y z where D1:
        c1 = r{x} c2 = r{y} c3 =r{z}
        x\inA y\inA z\inA
        using quotient_def by auto
    with A3 have T1:f <x,y\rangle & A f}\y,z\rangle\in
        using IsAssociative_def apply_type by auto
    with A1 A2 D1 A5 have
        g}\langle\textrm{g}\langle\textrm{c}1,\textrm{c}2\rangle,\textrm{c}}\rangle=\textrm{r}{\textrm{f}\langle\textrm{f}\langle\textrm{x},\textrm{y}\rangle,\textrm{z}\rangle
        using EquivClass_1_L10 by simp
    also from D1 A3 have
        ... = r{f <x,f\langley,z\rangle\rangle}
        using IsAssociative_def by simp
    also from T1 A1 A2 D1 A5 have
        \ldots.= g\langlec1,g\langlec2,c3\rangle\rangle
        using EquivClass_1_L10 by simp
    finally show thesis by simp
qed
```

The projection of an associative operation is associative on the quotient.

```
theorem EquivClass_2_T2:
    assumes A1: equiv(A,r) and A2: Congruent2(r,f)
    and A3: f {is associative on} A
    shows ProjFun2(A,r,f) {is associative on} A//r
proof -
    let g = ProjFun2(A,r,f)
    from A1 A2 have
        g}\in(A//r)\times(A//r)->A//
        using EquivClass_1_T1 by simp
```

```
moreover from A1 A2 A3 have
    *c1\inA//r.}\forall\textrm{c}2\in\textrm{A}//\textrm{r}.\forall\textrm{c}3\in\textrm{A}//\textrm{r}
    g\langleg\langlec1, c2\rangle,c3\rangle = g\langlec1,g\langlec2, c3\rangle\rangle
    using EquivClass_2_L2 by simp
ultimately show thesis
    using IsAssociative_def by simp
qed
```

The essential condition to show that distributivity is preserved by projections to quotient spaces, provided both operations are congruent with respect to the equivalence relation.

```
lemma EquivClass_2_L3:
    assumes A1: IsDistributive(X,A,M)
    and A2: equiv(X,r)
    and A3: Congruent2(r,A) Congruent2(r,M)
    and A4: a }\inX//r b E X//r c f X//r
    and A5: }\mp@subsup{\textrm{A}}{p}{}=\operatorname{ProjFun2(X,r,A) M
    shows }\mp@subsup{\textrm{M}}{p}{}\langle\textrm{a},\mp@subsup{\textrm{A}}{p}{}\langle\textrm{b},\textrm{c}\rangle\rangle=\mp@subsup{\textrm{A}}{p}{}\langle\mp@subsup{\textrm{M}}{p}{}\langle\textrm{a},\textrm{b}\rangle,\mp@subsup{\textrm{M}}{p}{}\langle\textrm{a},\textrm{c}\rangle\rangle
    M
proof
    from A4 obtain x y z where }x\inX\quady\inX z\in
        a = r{x} b = r{y} c=r raz
        using quotient_def by auto
    with A1 A2 A3 A5 show
        M
        M
        using EquivClass_1_L8A EquivClass_1_L10 IsDistributive_def
        by auto
qed
```

Distributivity is preserved by projections to quotient spaces, provided both operations are congruent with respect to the equivalence relation.

```
lemma EquivClass_2_L4: assumes A1: IsDistributive(X,A,M)
    and A2: equiv(X,r)
    and A3: Congruent2(r,A) Congruent2(r,M)
    shows IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))
proof-
    let A}\mp@subsup{A}{p}{}=\operatorname{ProjFun2(X,r,A)
    let M}\mp@subsup{M}{p}{}=\operatorname{ProjFun2(X,r,M)
    from A1 A2 A3 have
        |a\inX//r.}\forall\textrm{b}\in\textrm{X}//\textrm{r}.\forall\textrm{c}\in\textrm{X}//\textrm{r}
        M}\mp@subsup{\textrm{M}}{p}{}\langle\textrm{a},\mp@subsup{\textrm{A}}{p}{}\langle\textrm{b},\textrm{c}\rangle\rangle=\mp@subsup{\textrm{A}}{p}{}\langle\mp@subsup{\textrm{M}}{p}{}\langle\textrm{a},\textrm{b}\rangle,\mp@subsup{\textrm{M}}{p}{}\langle\textrm{a},\textrm{c}\rangle\rangle
        M
        using EquivClass_2_L3 by simp
    then show thesis using IsDistributive_def by simp
qed
```


16.3 Saturated sets

In this section we consider sets that are saturated with respect to an equivalence relation. A set A is saturated with respect to a relation r if $A=$ $r^{-1}(r(A))$. For equivalence relations saturated sets are unions of equivalence classes. This makes them useful as a tool to define subsets of the quoutient space using properties of representants. Namely, we often define a set $B \subseteq X / r$ by saying that $[x]_{r} \in B$ iff $x \in A$. If A is a saturated set, this definition is consistent in the sense that it does not depend on the choice of x to represent $[x]_{r}$.

The following defines the notion of a saturated set. Recall that in Isabelle r-(A) is the inverse image of A with respect to relation r. This definition is not specific to equivalence relations.

```
definition
    IsSaturated(r,A) \equivA=r-(r(A))
```

For equivalence relations a set is saturated iff it is an image of itself.

```
lemma EquivClass_3_L1: assumes A1: equiv(X,r)
    shows IsSaturated (r,A) \longleftrightarrowA = r(A)
proof
    assume IsSaturated(r,A)
    then have A = (converse(r) O r)(A)
        using IsSaturated_def vimage_def image_comp
        by simp
    also from A1 have ... = r(A)
        using equiv_comp_eq by simp
    finally show A = r(A) by simp
next assume A = r(A)
    with A1 have A = (converse(r) O r)(A)
        using equiv_comp_eq by simp
    also have ... = r-(r(A))
        using vimage_def image_comp by simp
    finally have A = r-(r(A)) by simp
    then show IsSaturated(r,A) using IsSaturated_def
        by simp
qed
```

For equivalence relations sets are contained in their images.

```
lemma EquivClass_3_L2: assumes A1: equiv(X,r) and A2: A\subseteqX
    shows A}\subseteqr(A
proof
    fix a assume a\inA
    with A1 A2 have a }\in\textrm{r}{\textrm{a}
        using equiv_class_self by auto
    with \langlea\inA\rangle show a }\in\textrm{r}(\textrm{A})\mathrm{ by auto
qed
```

The next lemma shows that if " \sim " is an equivalence relation and a set A is such that $a \in A$ and $a \sim b$ implies $b \in A$, then A is saturated with respect to the relation.

```
lemma EquivClass_3_L3: assumes A1: equiv(X,r)
    and A2: \(\mathrm{r} \subseteq \mathrm{X} \times \mathrm{X}\) and \(\mathrm{A} 3: \mathrm{A} \subseteq \mathrm{X}\)
    and A4: \(\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{X} .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow \mathrm{y} \in \mathrm{A}\)
    shows IsSaturated (r,A)
proof -
    from A2 A4 have \(r(A) \subseteq A\)
        using image_iff by blast
    moreover from A1 A3 have \(A \subseteq r(A)\)
        using EquivClass_3_L2 by simp
    ultimately have \(A=r(A)\) by auto
    with A1 show IsSaturated(r,A) using EquivClass_3_L1
        by simp
qed
```

If $A \subseteq X$ and A is saturated and $x \sim y$, then $x \in A$ iff $y \in A$. Here we show only one direction.

```
lemma EquivClass_3_L4: assumes A1: equiv(X,r)
    and A2: IsSaturated(r,A) and A3: A\subseteqX
    and A4: }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r
    and A5: x\inX y\inA
    shows }x\in
proof -
    from A1 A5 have x }\in{{x
        using equiv_class_self by simp
    with A1 A3 A4 A5 have x }\in\textrm{r}(\textrm{A}
        using equiv_class_eq equiv_class_self
        by auto
    with A1 A2 show }x\in
        using EquivClass_3_L1 by simp
qed
```

If $A \subseteq X$ and A is saturated and $x \sim y$, then $x \in A$ iff $y \in A$.
lemma EquivClass_3_L5: assumes A1: equiv(X,r)
and A2: IsSaturated (r, A) and $\mathrm{A} 3: \mathrm{A} \subseteq \mathrm{X}$
and A4: $x \in X \quad y \in X$
and A5: $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}$
shows $x \in A \longleftrightarrow y \in A$
proof
assume $y \in A$
with assms show $x \in A$ using EquivClass_3_L4
by simp
next assume $x \in A$
from A1 A5 have $\langle y, x\rangle \in \mathrm{r}$
using equiv_is_sym by blast
with A1 A2 A3 A4 $\langle x \in A\rangle$ show $y \in A$
using EquivClass_3_L4 by simp
qed
If A is saturated then $x \in A$ iff its class is in the projection of A.

```
lemma EquivClass_3_L6: assumes A1: equiv(X,r)
    and A2: IsSaturated \((r, A)\) and \(A 3: A \subseteq X\) and \(A 4: x \in X\)
    and \(A 5: B=\{r\{x\} . x \in A\}\)
    shows \(x \in A \longleftrightarrow r\{x\} \in B\)
proof
    assume \(x \in A\)
    with \(A 5\) show \(r\{x\} \in B\) by auto
next assume \(r\{x\} \in B\)
    with A5 obtain \(y\) where \(y \in A\) and \(r\{x\}=r\{y\}\)
        by auto
    with A1 A3 have \(\langle x, y\rangle \in r\)
        using eq_equiv_class by auto
    with A1 A2 A3 A4 \(\langle y \in A\) show \(x \in A\)
        using EquivClass_3_L4 by simp
qed
```

A technical lemma involving a projection of a saturated set and a logical epression with exclusive or. Note that we don't really care what Xor is here, this is true for any predicate.

```
lemma EquivClass_3_L7: assumes equiv(X,r)
    and IsSaturated(r,A) and A\subseteqX
    and }x\inX\quady\in
    and B = {r{x}. x\inA}
    and ( }x\inA)\mathrm{ Xor ( }y\inA
    shows (r{x} \in B) Xor (r{y} \in B)
    using assms EquivClass_3_L6 by simp
```

end

17 Finite sequences

theory FiniteSeq_ZF imports Nat_ZF_IML func1
begin
This theory treats finite sequences (i.e. maps $n \rightarrow X$, where $n=\{0,1, . ., n-$ $1\}$ is a natural number) as lists. It defines and proves the properties of basic operations on lists: concatenation, appending and element etc.

17.1 Lists as finite sequences

A natural way of representing (finite) lists in set theory is through (finite) sequences. In such view a list of elements of a set X is a function that maps
the set $\{0,1, . . n-1\}$ into X. Since natural numbers in set theory are defined so that $n=\{0,1, . . n-1\}$, a list of length n can be understood as an element of the function space $n \rightarrow X$.

We define the set of lists with values in set X as Lists(X).

```
definition
    Lists(X) \equiv\n\innat.(n->X)
```

The set of nonempty X-value listst will be called NELists(X).

```
definition
    NELists(X) \equiv \bigcupn\innat.(succ(n) }->\textrm{X}
```

We first define the shift that moves the second sequence to the domain $\{n, . ., n+k-1\}$, where n, k are the lengths of the first and the second sequence, resp. To understand the notation in the definitions below recall that in Isabelle/ZF pred(n) is the previous natural number and denotes the difference between natural numbers n and k.

```
definition
    ShiftedSeq(b,n) \equiv{\langlej, b(j #- n)\rangle. j \in NatInterval(n,domain(b))}
```

We define concatenation of two sequences as the union of the first sequence with the shifted second sequence. The result of concatenating lists a and b is called Concat (a, b).

```
definition
    Concat(a,b) \equiva \cup ShiftedSeq(b,domain(a))
```

For a finite sequence we define the sequence of all elements except the first one. This corresponds to the "tail" function in Haskell. We call it Tail here as well.

```
definition
    Tail(a) \equiv{\k, a(succ(k))\rangle. k \in pred(domain(a))}
```

A dual notion to Tail is the list of all elements of a list except the last one. Borrowing the terminology from Haskell again, we will call this Init.

```
definition
    Init(a) \equiv restrict(a,pred(domain(a)))
```

Another obvious operation we can talk about is appending an element at the end of a sequence. This is called Append.

```
definition
    Append(a,x) \equiva \cup{\langledomain(a),x\rangle}
```

If lists are modeled as finite sequences (i.e. functions on natural intervals $\{0,1, . ., n-1\}=n)$ it is easy to get the first element of a list as the value of the sequence at 0 . The last element is the value at $n-1$. To hide this behind a familiar name we define the Last element of a list.

```
definition
    Last(a) \equiva(pred(domain(a)))
```

Shifted sequence is a function on a the interval of natural numbers.

```
lemma shifted_seq_props:
    assumes A1: n \in nat k nat and A2: b:k->X
    shows
    ShiftedSeq(b,n): NatInterval(n,k) -> X
    \foralli G NatInterval(n,k). ShiftedSeq(b,n)(i) = b(i #- n)
    \forallj\ink. ShiftedSeq(b,n)(n #+ j) = b(j)
proof -
    let I = NatInterval(n,domain(b))
    from A2 have Fact: I = NatInterval(n,k) using func1_1_L1 by simp
    with A1 A2 have }\forall\textrm{j}\in\textrm{I}.\textrm{b}(\textrm{j #- n) \in X
        using inter_diff_in_len apply_funtype by simp
    then have
        {\langlej, b(j #- n)\rangle. j \in I} : I }->\mathrm{ X by (rule ZF_fun_from_total)
    with Fact show thesis_1: ShiftedSeq(b,n): NatInterval(n,k) -> X
        using ShiftedSeq_def by simp
    { fix i
        from Fact thesis_1 have ShiftedSeq(b,n): I }->\mathrm{ X by simp
        moreover
        assume i \in NatInterval(n,k)
        with Fact have i \in I by simp
        moreover from Fact have
            ShiftedSeq(b,n) = {\langlei, b(i #- n) \. i G I}
            using ShiftedSeq_def by simp
        ultimately have ShiftedSeq(b,n)(i) = b(i #- n)
            by (rule ZF_fun_from_tot_val)
    } then show thesis1:
                \foralli N NatInterval(n,k). ShiftedSeq(b,n)(i) = b(i #- n)
            by simp
    { fix j
        let i = n #+ j
        assume A3: j\ink
        with A1 have j \in nat using elem_nat_is_nat by blast
        then have i #- n = j using diff_add_inverse by simp
        with A3 thesis1 have ShiftedSeq(b,n)(i) = b(j)
            using NatInterval_def by auto
    } then show }\forall\textrm{j}\in\textrm{k}.\operatorname{ShiftedSeq(b,n)(n #+ j) = b(j)
        by simp
qed
```

Basis properties of the contatenation of two finite sequences.
theorem concat_props:
assumes A1: $n \in$ nat $k \in$ nat and A2: $a: n \rightarrow X \quad b: k \rightarrow X$
shows
Concat (a, b) : n \#+ k \rightarrow X
$\forall i \in \mathrm{n}$. Concat $(\mathrm{a}, \mathrm{b})(\mathrm{i})=\mathrm{a}(\mathrm{i})$

```
    \foralli\inNatInterval(n,k). Concat(a,b)(i) = b(i #- n)
    \forallj\ink. Concat(a,b)(n #+ j) = b(j)
proof -
    from A1 A2 have
        a:n->X and I: ShiftedSeq(b,n): NatInterval(n,k) -> X
        and n \cap NatInterval(n,k) = 0
        using shifted_seq_props length_start_decomp by auto
    then have
        a U ShiftedSeq(b,n): n U NatInterval(n,k) -> X U X
        by (rule fun_disjoint_Un)
    with A1 A2 show Concat(a,b): n #+ k }->\textrm{X
        using func1_1_L1 Concat_def length_start_decomp by auto
    { fix i assume i }\in\textrm{n
        with A1 I have i }\not\in\operatorname{domain(ShiftedSeq(b,n))
            using length_start_decomp func1_1_L1 by auto
        with A2 have Concat(a,b) (i) = a(i)
            using func1_1_L1 fun_disjoint_apply1 Concat_def by simp
    } thus }\foralli\inn.Concat(a,b) (i) = a(i) by simp
    { fix i assume A3: i \in NatInterval(n,k)
        with A1 A2 have i }\not\in\mathrm{ domain(a)
            using length_start_decomp func1_1_L1 by auto
        with A1 A2 A3 have Concat(a,b)(i) = b(i #- n)
            using func1_1_L1 fun_disjoint_apply2 Concat_def shifted_seq_props
            by simp
    } thus II: \foralli G NatInterval(n,k). Concat(a,b)(i) = b(i #- n)
        by simp
    { fix j
        let i = n #+ j
        assume A3: j\ink
        with A1 have j \in nat using elem_nat_is_nat by blast
        then have i #- n = j using diff_add_inverse by simp
            with A3 II have Concat(a,b)(i) = b(j)
                using NatInterval_def by auto
    } thus }\forall\textrm{j}\in\textrm{k}.\operatorname{Concat(a,b)(n #+ j) = b (j)
        by simp
qed
```

Properties of concatenating three lists.

```
lemma concat_concat_list:
    assumes A1: \(n \in\) nat \(k \in\) nat \(m \in\) nat and
    A2: \(a: n \rightarrow X \quad b: k \rightarrow X \quad c: m \rightarrow X\) and
    A3: \(d=\) Concat (Concat (a,b), c)
    shows
    d : n \#+k \#+ m \(\rightarrow\) X
    \(\forall j \in n . d(j)=a(j)\)
    \(\forall j \in k . d(n \#+j)=b(j)\)
    \(\forall j \in m . d(n \#+k\) \#+ \(j)=c(j)\)
proof -
    from A1 A2 have I:
```

```
    n #+ k \in nat m G nat
    Concat(a,b): n #+ k -> X c:m->X
    using concat_props by auto
    with A3 show d: n #+k #+ m -> X
    using concat_props by simp
    from I have II: }\forall\textrm{i}\in\textrm{n}|+\textrm{k}
        Concat(Concat(a,b), c) (i) = Concat(a,b) (i)
        by (rule concat_props)
    { fix j assume A4: j \in n
    moreover from A1 have n \subseteq n #+ k using add_nat_le by simp
    ultimately have j \in n #+ k by auto
    with A3 II have d(j) = Concat(a,b)(j) by simp
    with A1 A2 A4 have d(j) = a(j)
        using concat_props by simp
    } thus }\forall\textrm{j}\in\textrm{n}.\textrm{d}(\textrm{j})=\textrm{a}(\textrm{j}) by sim
    { fix j assume A5: j \in k
        with A1 A3 II have d(n #+ j) = Concat(a,b) (n #+ j)
            using add_lt_mono by simp
        also from A1 A2 A5 have ... = b(j)
            using concat_props by simp
        finally have d(n #+ j) = b(j) by simp
    } thus }\forallj\ink.d(n #+ j) = b(j) by simp
    from I have }\forallj\inm. Concat(Concat(a,b),c)(n #+ k #+ j) = c(j
        by (rule concat_props)
    with A3 show }\forallj\inm.d(n #+ k #+ j) = c(j
    by simp
qed
```

Properties of concatenating a list with a concatenation of two other lists.

```
lemma concat_list_concat:
    assumes A1: n \in nat k f nat m f nat and
    A2: a:n->X b:k->X c:m->X and
    A3: e = Concat(a, Concat(b,c))
    shows
    e : n #+k #+ m -> X
    \forallj \in n. e(j) = a(j)
    \forallj\ink.e(n #+ j) = b(j)
    \forallj\inm.e(n #+ k #+ j) = c(j)
proof -
    from A1 A2 have I:
        n \in nat k #+ m \in nat
        a:n->X Concat(b,c): k #+ m -> X
        using concat_props by auto
    with A3 show e : n #+k #+ m -> X
        using concat_props add_assoc by simp
    from I have }\forallj\inn. Concat(a, Concat(b,c))(j) = a(j
        by (rule concat_props)
    with A3 show }\forall\textrm{j}\in\textrm{n}.e(\textrm{e})=\textrm{a}(\textrm{j})\mathrm{ by simp
    from I have II:
```

$\forall j \in k \#+m . \operatorname{Concat}(a, \operatorname{Concat}(b, c))(n \#+j)=\operatorname{Concat}(b, c)(j)$ by (rule concat_props)
\{ fix j assume A4: $j \in k$
moreover from A1 have $\mathrm{k} \subseteq \mathrm{k}$ \#+ m using add_nat_le by simp
ultimately have $j \in k$ \#+ m by auto
with A3 II have $e(n$ \#+ j) = Concat (b, c) (j) by simp
also from A1 A2 A4 have ... = b(j)
using concat_props by simp
finally have $e(n$ \#+ j) $=b(j)$ by simp
\} thus $\forall j \in k \cdot e(n \#+j)=b(j)$ by simp
\{ fix j assume A5: $j \in m$
with A1 II A3 have e(n \#+ k \#+ j) $=\operatorname{Concat}(b, c)(k \#+j)$
using add_lt_mono add_assoc by simp
also from A1 A2 A5 have $\ldots=c(j)$
using concat_props by simp
finally have $e(n$ \#+ k \#+ j) $=c(j)$ by simp
$\}$ then show $\forall j \in m$. e(n \#+ $k \#+j)=c(j)$
by simp
qed
Concatenation is associative.
theorem concat_assoc:
assumes A1: $n \in$ nat $k \in$ nat $m \in$ nat and
A2: $\mathrm{a}: \mathrm{n} \rightarrow \mathrm{X} \quad \mathrm{b}: \mathrm{k} \rightarrow \mathrm{X} \quad \mathrm{c}: \mathrm{m} \rightarrow \mathrm{X}$
shows Concat (Concat(a,b), c) $=$ Concat (a, Concat(b, c))
proof -
let $\mathrm{d}=$ Concat (Concat $(\mathrm{a}, \mathrm{b}), \mathrm{c})$
let $e=$ Concat $(a$, Concat $(b, c))$
from A1 A2 have
$\mathrm{d}: \mathrm{n} \#+\mathrm{k} \#+\mathrm{m} \rightarrow \mathrm{X}$ and $\mathrm{e}: \mathrm{n}$ \#+k \#+ m $\rightarrow \mathrm{X}$
using concat_concat_list concat_list_concat by auto
moreover have $\forall i \in n \#+k$ \#+ m. $d(i)=e(i)$
proof -
\{ fix i assume $i \in n \#+\mathrm{k} \#+\mathrm{m}$ moreover from A1 have
$\mathrm{n} \#+\mathrm{k} \#+\mathrm{m}=\mathrm{n} \cup \operatorname{NatInterval}(\mathrm{n}, \mathrm{k}) \cup \operatorname{NatInterval}(\mathrm{n} \#+\mathrm{k}, \mathrm{m})$
using adjacent_intervals3 by simp ultimately have
$\mathrm{i} \in \mathrm{n} \vee \mathrm{i} \in \operatorname{NatInterval}(\mathrm{n}, \mathrm{k}) \vee \mathrm{i} \in \operatorname{NatInterval}(\mathrm{n} \#+\mathrm{k}, \mathrm{m})$
by simp
moreover
\{ assume $\mathrm{i} \in \mathrm{n}$
with A1 A2 have $d(i)=e(i)$
using concat_concat_list concat_list_concat by simp \} moreover \{ assume i $\in \operatorname{NatInterval(n,k)}$
then obtain j where $j \in k$ and $i=n \#+j$
using NatInterval_def by auto
with A1 A2 have $d(i)=e(i)$

```
    using concat_concat_list concat_list_concat by simp }
        moreover
        { assume i \in NatInterval(n #+ k,m)
    then obtain j where j \inm and i = n #+ k #+ j
    using NatInterval_def by auto
    with A1 A2 have d(i) = e(i)
    using concat_concat_list concat_list_concat by simp }
        ultimately have d(i) = e(i) by auto
    } thus thesis by simp
    qed
    ultimately show d = e by (rule func_eq)
qed
```

Properties of Tail.

```
theorem tail_props:
    assumes A1: n \in nat and A2: a: succ(n) }->\textrm{X
    shows
    Tail(a) : n -> X
    \forallk G n. Tail(a)(k) = a(succ(k))
proof -
    from A1 A2 have }\forall\textrm{k}\in\textrm{n}.\textrm{a}(\operatorname{succ}(\textrm{k}))\in\textrm{X
        using succ_ineq apply_funtype by simp
    then have {\langlek, a(succ(k))\rangle. k \in n} : n -> X
        by (rule ZF_fun_from_total)
    with A2 show I: Tail(a) : n }->\textrm{X
        using func1_1_L1 pred_succ_eq Tail_def by simp
    moreover from A2 have Tail(a) = {\langlek, a(\operatorname{succ}(k))\rangle. k f n}
        using func1_1_L1 pred_succ_eq Tail_def by simp
    ultimately show }\forall\textrm{k}\in\textrm{n}.\operatorname{Tail(a)(k) = a(succ(k))
        by (rule ZF_fun_from_tot_val0)
qed
```

Properties of Append. It is a bit surprising that the we don't need to assume that n is a natural number.
theorem append_props:
assumes A1: $\mathrm{a}: \mathrm{n} \rightarrow \mathrm{X}$ and $\mathrm{A} 2: \mathrm{x} \in \mathrm{X}$ and $\mathrm{A} 3: \mathrm{b}=\operatorname{Append}(\mathrm{a}, \mathrm{x})$
shows
b : succ (n) $\rightarrow \mathrm{X}$
$\forall \mathrm{k} \in \mathrm{n} . \mathrm{b}(\mathrm{k})=\mathrm{a}(\mathrm{k})$
$b(n)=x$
proof -
note A1
moreover have I: $\mathrm{n} \notin \mathrm{n}$ using mem_not_refl by simp
moreover from A1 A3 have II: $b=a \cup\{\langle n, x\rangle\}$
using func1_1_L1 Append_def by simp
ultimately have $\mathrm{b}: \mathrm{n} \cup\{\mathrm{n}\} \rightarrow \mathrm{X} \cup\{\mathrm{x}\}$
by (rule func1_1_L11D)
with A2 show $b: \operatorname{succ}(n) \rightarrow X$
using succ_explained set_elem_add by simp
from A1 I II show $\forall k \in n . b(k)=a(k)$ and $b(n)=x$
using func1_1_L11D by auto
qed
A special case of append_props: appending to a nonempty list does not change the head (first element) of the list.
corollary head_of_append:
assumes $n \in$ nat and $a: \operatorname{succ}(n) \rightarrow X$ and $x \in X$
shows Append $(a, x)(0)=a(0)$
using assms append_props empty_in_every_succ by auto
Tail commutes with Append.

```
theorem tail_append_commute:
    assumes A1: n f nat and A2: a: }\operatorname{succ}(\textrm{n})->\textrm{X}\mathrm{ and A3: }\textrm{x}\in\textrm{X
    shows Append(Tail(a),x) = Tail(Append(a,x))
proof -
    let b = Append(Tail(a),x)
    let c = Tail(Append(a,x))
    from A1 A2 have I: Tail(a) : n }->\mathrm{ X using tail_props
        by simp
    from A1 A2 A3 have
        succ(n) \in nat and Append(a,x) : succ(succ(n)) ->X
        using append_props by auto
    then have II: }\forall\textrm{k}\in\operatorname{succ}(\textrm{n}).c(k)=\operatorname{Append}(\textrm{a},\textrm{x})(\operatorname{succ}(\textrm{k})
        by (rule tail_props)
    from assms have
        b : succ(n) }->\textrm{X}\mathrm{ and c : succ(n) }->\textrm{X
        using tail_props append_props by auto
    moreover have }\forallk\in\operatorname{succ}(n). b(k)=c(k
    proof -
        { fix k assume k f succ(n)
            hence k }\in\textrm{n}\vee\textrm{k}=\textrm{n}\mathrm{ by auto
            moreover
            { assume A4: k f n
    with assms II have c(k) = a(succ(k))
        using succ_ineq append_props by simp
moreover
from A3 I have }\forallk\inn. b(k) = Tail(a) (k
        using append_props by simp
    with A1 A2 A4 have b(k) = a(succ(k))
    using tail_props by simp
ultimately have b(k) = c(k) by simp }
            moreover
            { assume A5: k = n
with A2 A3 I II have b(k) = c(k)
    using append_props by auto }
            ultimately have b(k) =c(k) by auto
        } thus thesis by simp
    qed
```

```
    ultimately show b = c by (rule func_eq)
qed
Properties of Init.
theorem init_props:
    assumes A1: n \in nat and A2: a: }\operatorname{succ}(\textrm{n})->\textrm{X
    shows
    Init(a) : n }->\textrm{X
    \forallk\inn. Init(a)(k) = a(k)
    a = Append(Init(a), a(n))
proof -
    have n \subseteq succ(n) by auto
    with A2 have restrict(a,n): n }->\textrm{X
        using restrict_type2 by simp
    moreover from A1 A2 have I: restrict(a,n) = Init(a)
        using func1_1_L1 pred_succ_eq Init_def by simp
    ultimately show thesis1: Init(a) : n }->\textrm{X}\mathrm{ by simp
    { fix k assume k\inn
        then have restrict(a,n)(k) = a(k)
            using restrict by simp
        with I have Init(a)(k) = a(k) by simp
    } then show thesis2: }\forall\textrm{k}\in\textrm{n}\mathrm{ . Init(a)(k) = a(k) by simp
    let b = Append(Init(a), a(n))
    from A2 thesis1 have II:
        Init(a) : n -> X a(n) \in X
        b = Append(Init(a), a(n))
        using apply_funtype by auto
    note A2
    moreover from II have b : succ(n) }->\textrm{X
        by (rule append_props)
    moreover have }\forallk\in\operatorname{succ}(n).a(k)=b(k
    proof -
        { fix k assume A3: k f n
            from II have }\forall\textrm{j}\in\textrm{n}.\textrm{b}(\textrm{j})=\operatorname{Init(a)(j)
    by (rule append_props)
        with thesis2 A3 have a(k) = b(k) by simp }
        moreover
        from II have b(n) = a(n)
                by (rule append_props)
            hence a(n) = b(n) by simp
            ultimately show }\forall\textrm{k}\in\operatorname{succ}(\textrm{n}).\textrm{a}(\textrm{k})=\textrm{b}(\textrm{k}
                by simp
    qed
    ultimately show a = b by (rule func_eq)
qed
```

If we take init of the result of append, we get back the same list.
lemma init_append: assumes A1: $\mathrm{n} \in$ nat and $\mathrm{A} 2: \mathrm{a}: \mathrm{n} \rightarrow \mathrm{X}$ and $\mathrm{A} 3: \mathrm{x} \in \mathrm{X}$ shows Init(Append $(\mathrm{a}, \mathrm{x}))=\mathrm{a}$

```
proof -
    from A2 A3 have Append(a,x): succ(n)->X using append_props by simp
    with A1 have Init(Append(a,x)):n->X and }\forallk\inn.\operatorname{Init}(Append(a,x))(k
= Append(a,x)(k)
            using init_props by auto
    with A2 A3 have }\forallk\inn. Init(Append (a,x))(k) = a(k) using append_prop
by simp
    with <Init(Append(a,x)):n->X`A2 show thesis by (rule func_eq)
qed
```

A reformulation of definition of Init.

```
lemma init_def: assumes n f nat and x:succ(n) }->\textrm{X
```

 shows \(\operatorname{Init}(\mathrm{x})=\) restrict \((\mathrm{x}, \mathrm{n})\)
 using assms func1_1_L1 Init_def by simp
 A lemma about extending a finite sequence by one more value. This is just a more explicit version of append_props.

```
lemma finseq_extend:
    assumes \(\quad a: n \rightarrow X \quad y \in X \quad b=a \cup\{\langle n, y\rangle\}\)
    shows
    \(\mathrm{b}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X}\)
    \(\forall \mathrm{k} \in \mathrm{n} . \mathrm{b}(\mathrm{k})=\mathrm{a}(\mathrm{k})\)
    \(b(n)=y\)
    using assms Append_def func1_1_L1 append_props by auto
```

The next lemma is a bit displaced as it is mainly about finite sets. It is proven here because it uses the notion of Append. Suppose we have a list of element of A is a bijection. Then for every element that does not belong to A we can we can construct a bijection for the set $A \cup\{x\}$ by appending x. This is just a specialised version of lemma bij_extend_point from func1.thy.

```
lemma bij_append_point:
    assumes A1: \(n \in\) nat and A2: \(b \in \operatorname{bij}(n, X)\) and A3: \(x \notin X\)
    shows Append \((b, x) \in \operatorname{bij}(\operatorname{succ}(n), X \cup\{x\})\)
proof -
    from A2 A3 have \(\mathrm{b} \cup\{\langle\mathrm{n}, \mathrm{x}\rangle\} \in \operatorname{bij}(\mathrm{n} \cup\{\mathrm{n}\}, \mathrm{X} \cup\{\mathrm{x}\})\)
            using mem_not_refl bij_extend_point by simp
    moreover have Append \((b, x)=b \cup\{\langle n, x\rangle\}\)
    proof -
            from A2 have \(\mathrm{b}: \mathrm{n} \rightarrow \mathrm{X}\)
                using bij_def surj_def by simp
            then have \(\mathrm{b}: \mathrm{n} \rightarrow \mathrm{X} \cup\{\mathrm{x}\}\) using func1_1_L1B
                by blast
            then show Append \((\mathrm{b}, \mathrm{x})=\mathrm{b} \cup\{\langle\mathrm{n}, \mathrm{x}\rangle\}\)
                using Append_def func1_1_L1 by simp
    qed
    ultimately show thesis using succ_explained by auto
qed
```

The next lemma rephrases the definition of Last. Recall that in ZF we have $\{0,1,2, . ., n\}=n+1=\operatorname{succ}(n)$.

```
lemma last_seq_elem: assumes a: succ(n) }->\textrm{X}\mathrm{ shows Last(a) = a(n)
    using assms func1_1_L1 pred_succ_eq Last_def by simp
```

If two finite sequences are the same when restricted to domain one shorter than the original and have the same value on the last element, then they are equal.

```
lemma finseq_restr_eq: assumes A1: n \in nat and
    A2: a: succ(n) }->\textrm{X}\mathrm{ b: succ(n) }->\textrm{X}\mathrm{ and
    A3: restrict(a,n) = restrict(b,n) and
    A4: a(n) = b(n)
    shows a = b
proof -
    { fix k assume k \in succ(n)
        then have k f n V k = n by auto
        moreover
        { assume k f n
            then have
    restrict(a,n)(k) = a(k) and restrict(b,n) (k) = b(k)
    using restrict by auto
                with A3 have a(k) = b(k) by simp }
        moreover
        { assume k = n
            with A4 have a(k) = b(k) by simp }
            ultimately have a(k) = b(k) by auto
    } then have }\forallk\in\operatorname{succ}(n).a(k)=b(k) by sim
    with A2 show a = b by (rule func_eq)
qed
```

Concatenating a list of length 1 is the same as appending its first (and only) element. Recall that in ZF set theory $1=\{0\}$.

```
lemma append_1elem: assumes A1: n \in nat and
    A2: a: n }->\textrm{X}\mathrm{ and A3: b : 1 }->\textrm{X
    shows Concat(a,b) = Append(a,b(0))
proof -
    let C = Concat(a,b)
    let A = Append(a,b(0))
    from A1 A2 A3 have I:
        n}\in\mathrm{ nat }1\in\mathrm{ nat
        a:n->X b:1->X by auto
    have C : succ(n) }->\textrm{X
    proof -
        from I have C : n #+ 1 }->\textrm{X
            by (rule concat_props)
            with A1 show C : succ(n) }->\textrm{X}\mathrm{ by simp
    qed
    moreover from A2 A3 have A : succ(n) }->\textrm{X
```

```
        using apply_funtype append_props by simp
    moreover have }\forall\textrm{k}\in\operatorname{succ}(\textrm{n}).\textrm{C}(\textrm{k})=\textrm{A}(\textrm{k}
    proof
        fix k assume k \in succ(n)
        moreover
        { assume k f n
            moreover from I have }\forall\textrm{i}\in\textrm{n}.\textrm{C}(\textrm{i})=\textrm{a}(\textrm{i}
    by (rule concat_props)
        moreover from A2 A3 have }\forall\textrm{i}\in\textrm{n}.\textrm{A}(\textrm{i})=\textrm{a}(\textrm{i}
    using apply_funtype append_props by simp
                ultimately have C(k) = A(k) by simp }
            moreover have C(n) = A(n)
            proof -
                from I have }\forallj\in1.C(n #+ j) = b(j
    by (rule concat_props)
                with A1 A2 A3 show C(n) = A(n)
    using apply_funtype append_props by simp
        qed
        ultimately show C(k) = A(k) by auto
    qed
    ultimately show C = A by (rule func_eq)
qed
```

A simple lemma about lists of length 1.

```
lemma list_len1_singleton: assumes A1: x\inX
    shows {\langle0,x\rangle} : 1 }->\textrm{X
proof -
    from A1 have {{0,x\rangle} : {0} }->\textrm{X}\mathrm{ using pair_func_singleton
            by simp
    moreover have {0} = 1 by auto
    ultimately show thesis by simp
qed
```

A singleton list is in fact a singleton set with a pair as the only element.

```
lemma list_singleton_pair: assumes A1: x:1->X shows x = {\langle0,x(0)\rangle}
proof -
    from A1 have x = {\langlet,x(t)\rangle. t\in1} by (rule fun_is_set_of_pairs)
    hence }x={\langlet,x(t)\rangle.t\in{0} } by sim
    thus thesis by simp
qed
```

When we append an element to the empty list we get a list with length 1.

```
lemma empty_append1: assumes A1: x }\in\textrm{X
    shows Append(0,x): 1 }->\textrm{X}\mathrm{ and Append (0,x) (0) = x
proof -
    let a = Append(0,x)
    have a = {\langle0,x\rangle} using Append_def by auto
    with A1 show a : 1 }->\textrm{X}\mathrm{ and a(0) = x
        using list_len1_singleton pair_func_singleton
```

```
    by auto
qed
```

Appending an element is the same as concatenating with certain pair.

```
lemma append_concat_pair:
    assumes n f nat and a: n }->\textrm{X}\mathrm{ and }\textrm{x}\in\textrm{X
    shows Append(a,x) = Concat (a, {\langle0,x\rangle})
    using assms list_len1_singleton append_1elem pair_val
    by simp
```

An associativity property involving concatenation and appending. For proof we just convert appending to concatenation and use concat_assoc.

```
lemma concat_append_assoc: assumes A1: n \in nat k \in nat and
    A2: a: n->X b:k->X and A3: x }\in\textrm{X
    shows Append(Concat(a,b),x) = Concat(a, Append(b,x))
proof -
    from A1 A2 A3 have
        n #+ k f nat Concat(a,b) : n #+ k -> X x f X
        using concat_props by auto
    then have
        Append(Concat(a,b) ,x) = Concat(Concat(a,b),{\langle0, x\rangle})
        by (rule append_concat_pair)
    moreover
    from A1 A2 A3 have
        n}\in\mathrm{ nat }k\in\mathrm{ nat }1\in\mathrm{ nat
                a:n->X b:k->X {\langle0,x\rangle} : 1 -> X
            using list_len1_singleton by auto
    then have
        Concat(Concat(a,b),{\langle0, x\rangle}) = Concat(a, Concat(b, {\langle0, x\rangle}))
        by (rule concat_assoc)
    moreover from A1 A2 A3 have Concat(b, {\langle0,x\rangle}) = Append(b,x)
        using list_len1_singleton append_1elem pair_val by simp
    ultimately show Append(Concat(a,b),x) = Concat(a, Append(b,x))
        by simp
qed
```

An identity involving concatenating with init and appending the last element.

```
lemma concat_init_last_elem:
    assumes n \in nat k nat and
    a: n }->\textrm{X}\mathrm{ and b : succ(k) }->\textrm{X
    shows Append(Concat(a,Init(b)),b(k)) = Concat(a,b)
    using assms init_props apply_funtype concat_append_assoc
    by simp
```

A lemma about creating lists by composition and how Append behaves in such case.
lemma list_compose_append:

```
    assumes A1: \(\mathrm{n} \in\) nat and A2: \(\mathrm{a}: \mathrm{n} \rightarrow \mathrm{X}\) and
    A3: \(x \in X\) and A4: \(c: X \rightarrow Y\)
    shows
    c O Append (a,x) : succ(n) \(\rightarrow Y\)
    c O Append (a,x) = Append (c O a, c(x))
proof -
    let \(\mathrm{b}=\operatorname{Append}(\mathrm{a}, \mathrm{x})\)
    let \(d=\operatorname{Append}(c 0 a, c(x))\)
    from A2 A4 have \(c\) O a \(: n \rightarrow Y\)
        using comp_fun by simp
    from A2 A3 have b : succ(n) \(\rightarrow X\)
        using append_props by simp
    with A4 show c 0 b : \(\operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{Y}\)
        using comp_fun by simp
    moreover from A3 A4 〈c 0 a : \(\mathrm{n} \rightarrow \mathrm{Y}\) 〉 have
        \(\mathrm{d}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{Y}\)
        using apply_funtype append_props by simp
    moreover have \(\forall k \in \operatorname{succ}(\mathrm{n})\). ( c 0 b ) \((\mathrm{k})=\mathrm{d}(\mathrm{k})\)
    proof -
        \{ fix \(k\) assume \(k \in \operatorname{succ}(n)\)
            with \(\langle\mathrm{b}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X}\rangle\) have
    (c 0 b) (k) = c(b(k))
    using comp_fun_apply by simp
        with A2 A3 A4 〈c O a : \(\mathrm{n} \rightarrow \mathrm{Y}\rangle\langle\mathrm{c} 0 \mathrm{a}: \mathrm{n} \rightarrow \mathrm{Y}\rangle\langle\mathrm{k} \in \operatorname{succ}(\mathrm{n})\rangle\)
        have ( \(c \quad 0 \quad b)(k)=d(k)\)
    using append_props comp_fun_apply apply_funtype
    by auto
        \} thus thesis by simp
    qed
    ultimately show c 0 b \(=\) d by (rule func_eq)
qed
```

A lemma about appending an element to a list defined by set comprehension．

```
lemma set_list_append: assumes
    A1: \(\forall i \in \operatorname{succ}(k) . b(i) \in X\) and
    A2: \(a=\{\langle i, b(i)\rangle . i \in \operatorname{succ}(k)\}\)
    shows
    a: \(\operatorname{succ}(k) \rightarrow X\)
    \(\{\langle i, b(i)\rangle . i \in k\}: k \rightarrow X\)
    \(\mathrm{a}=\operatorname{Append}(\{\langle\mathrm{i}, \mathrm{b}(\mathrm{i})\rangle . \mathrm{i} \in \mathrm{k}\}, \mathrm{b}(\mathrm{k}))\)
proof -
    from A1 have \(\{\langle i, b(i)\rangle\). i \(\in \operatorname{succ}(k)\}: \operatorname{succ}(k) \rightarrow X\)
        by (rule ZF_fun_from_total)
    with A2 show a: \(\operatorname{succ}(k) \rightarrow X\) by simp
    from A1 have \(\forall i \in k\). \(b(i) \in X\)
        by simp
    then show \(\{\langle\mathrm{i}, \mathrm{b}(\mathrm{i})\rangle . \mathrm{i} \in \mathrm{k}\}: \mathrm{k} \rightarrow \mathrm{X}\)
        by (rule ZF_fun_from_total)
    with \(A 2\) show \(a=\operatorname{Append}(\{\langle i, b(i)\rangle . i \in k\}, b(k))\)
```

using func1＿1＿L1 Append＿def by auto
qed
An induction theorem for lists．

```
lemma list_induct: assumes \(\mathrm{A} 1: ~ \forall \mathrm{~b} \in 1 \rightarrow \mathrm{X} . \mathrm{P}(\mathrm{b})\) and
    A2: \(\forall \mathrm{b} \in\) NELists \((\mathrm{X}) . \mathrm{P}(\mathrm{b}) \longrightarrow(\forall \mathrm{x} \in \mathrm{X} . \mathrm{P}(\) Append \((\mathrm{b}, \mathrm{x})))\) and
    A3: \(\mathrm{d} \in\) NELists \((\mathrm{X})\)
    shows \(P(d)\)
proof -
    \{ fix \(n\)
        assume \(n \in\) nat
        moreover from A1 have \(\forall \mathrm{b} \in \operatorname{succ}(0) \rightarrow \mathrm{X}\). \(\mathrm{P}(\mathrm{b})\) by simp
        moreover have \(\forall \mathrm{k} \in\) nat. \(((\forall \mathrm{b} \in \operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{X} . \mathrm{P}(\mathrm{b})) \longrightarrow(\forall \mathrm{c} \in \operatorname{succ}(\operatorname{succ}(\mathrm{k})) \rightarrow \mathrm{X}\).
P(c)))
        proof -
            \{ fix \(k\) assume \(k \in\) nat assume \(\forall b \in \operatorname{succ}(k) \rightarrow X . P(b)\)
                have \(\forall c \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow X . P(c)\)
                proof
                        fix \(c\) assume \(c: \operatorname{succ}(\operatorname{succ}(k)) \rightarrow X\)
                        let \(\mathrm{b}=\operatorname{Init}(\mathrm{c})\)
                        let \(x=c(\operatorname{succ}(k))\)
                        from \(\langle k \in\) nat〉 \(\langle\mathrm{c}\) : \(\operatorname{succ}(\operatorname{succ}(k)) \rightarrow X\) 〉 have \(b: \operatorname{succ}(k) \rightarrow X\)
                            using init_props by simp
                                with A2 \(\langle\mathrm{k} \in\) nat \(\langle\forall \mathrm{b} \in \operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{X}\). \(\mathrm{P}(\mathrm{b})\rangle\) have \(\forall \mathrm{x} \in \mathrm{X}\). \(\mathrm{P}(\operatorname{Append}(\mathrm{b}, \mathrm{x}))\)
                                    using NELists_def by auto
                                    with \(\langle c: \operatorname{succ}(\operatorname{succ}(k)) \rightarrow X\) 〉 have \(P(\operatorname{Append}(b, x))\) using apply_funtype
by simp
                with \(\langle k \in\) nat 〉 \(\langle\mathrm{c}\) : \(\operatorname{succ}(\operatorname{succ}(k)) \rightarrow X\) show \(P(c)\)
                        using init_props by simp
                qed
            \} thus thesis by simp
        qed
        ultimately have \(\forall \mathrm{b} \in \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X}\). \(\mathrm{P}(\mathrm{b})\) by (rule ind_on_nat)
    \} with A3 show thesis using NELists_def by auto
qed
```


17．2 Lists and cartesian products

Lists of length n of elements of some set X can be thought of as a model of the cartesian product X^{n} which is more convenient in many applications．

There is a natural bijection between the space $(n+1) \rightarrow X$ of lists of length $n+1$ of elements of X and the cartesian product $(n \rightarrow X) \times X$ ．
lemma lists＿cart＿prod：assumes $n \in$ nat
shows $\{\langle x,\langle\operatorname{Init}(x), x(n)\rangle\rangle . x \in \operatorname{succ}(n) \rightarrow X\} \in \operatorname{bij}(\operatorname{succ}(n) \rightarrow X,(n \rightarrow X) \times X)$
proof -
let $f=\{\langle x,\langle\operatorname{Init}(x), x(n)\rangle\rangle . x \in \operatorname{succ}(n) \rightarrow X\}$
from assms have $\forall x \in \operatorname{succ}(n) \rightarrow X .\langle\operatorname{Init}(x), x(n)\rangle \in(n \rightarrow X) \times X$
using init_props succ_iff apply_funtype by simp
then have I: $f:(\operatorname{succ}(n) \rightarrow X) \rightarrow((n \rightarrow X) \times X)$ by (rule ZF_fun_from_total) moreover from assms I have $\forall x \in \operatorname{succ}(n) \rightarrow X . \forall y \in \operatorname{succ}(n) \rightarrow X . f(x)=f(y)$
$\longrightarrow \mathrm{x}=\mathrm{y}$
using ZF_fun_from_tot_val init_def finseq_restr_eq by auto
moreover have $\forall \mathrm{p} \in(\mathrm{n} \rightarrow \mathrm{X}) \times X . \exists \mathrm{x} \in \operatorname{succ}(\mathrm{n}) \rightarrow X$. $\mathrm{f}(\mathrm{x})=\mathrm{p}$
proof
fix p assume $p \in(n \rightarrow X) \times X$
let $x=\operatorname{Append}(f s t(p), \operatorname{snd}(p))$
from assms $\langle p \in(n \rightarrow X) \times X\rangle$ have $x: \operatorname{succ}(n) \rightarrow X$ using append_props by simp
with I have $f(x)=\langle\operatorname{Init}(x), x(n)\rangle$ using succ_iff $Z F$ _fun_from_tot_val by simp
moreover from assms $\langle p \in(n \rightarrow X) \times X\rangle$ have $\operatorname{Init}(x)=$ fst (p) and $x(n)$ $=\operatorname{snd}(p)$
using init_append append_props by auto
ultimately have $f(x)=\langle f s t(p)$, snd $(p)\rangle$ by auto
with $\langle p \in(n \rightarrow X) \times X\rangle\langle x: \operatorname{succ}(n) \rightarrow X\rangle$ show $\exists x \in \operatorname{succ}(n) \rightarrow X . f(x)=p$ by auto
qed
ultimately show thesis using inj_def surj_def bij_def by auto qed

We can identify a set X with lists of length one of elements of X.

```
lemma singleton_list_bij: shows \(\{\langle\mathrm{x}, \mathrm{x}(0)\rangle . \mathrm{x} \in 1 \rightarrow \mathrm{X}\} \in \operatorname{bij}(1 \rightarrow \mathrm{X}, \mathrm{X})\)
proof -
    let \(f=\{\langle x, x(0)\rangle . x \in 1 \rightarrow x\}\)
    have \(\forall x \in 1 \rightarrow X . x(0) \in X\) using apply_funtype by simp
    then have I: \(f:(1 \rightarrow X) \rightarrow X\) by (rule \(\left.Z F_{-} f u n_{-} f r o m \_t o t a l\right)\)
    moreover have \(\forall x \in 1 \rightarrow X . \forall y \in 1 \rightarrow X . f(x)=f(y) \longrightarrow x=y\)
    proof -
        \(\{\) fix \(x y\)
            assume \(x: 1 \rightarrow X \quad y: 1 \rightarrow X\) and \(f(x)=f(y)\)
            with I have \(\mathrm{x}(0)=\mathrm{y}(0)\) using ZF _fun_from_tot_val by auto
            moreover from \(\langle\mathrm{x}: 1 \rightarrow \mathrm{X}\rangle\langle\mathrm{y}: 1 \rightarrow \mathrm{X}\rangle\) have \(\mathrm{x}=\{\langle 0, \mathrm{x}(0)\rangle\}\) and \(\mathrm{y}=\{\langle 0, \mathrm{y}(0)\rangle\}\)
                    using list_singleton_pair by auto
            ultimately have \(x=y\) by simp
        \} thus thesis by auto
    qed
    moreover have \(\forall y \in X . \exists x \in 1 \rightarrow X . f(x)=y\)
    proof
        fix \(y\) assume \(y \in X\)
        let \(\mathrm{x}=\{\langle 0, \mathrm{y}\rangle\}\)
        from \(I\langle y \in X\rangle\) have \(x: 1 \rightarrow X\) and \(f(x)=y\)
            using list_len1_singleton ZF _fun_from_tot_val pair_val by auto
        thus \(\exists x \in 1 \rightarrow X . f(x)=y\) by auto
    qed
    ultimately show thesis using inj_def surj_def bij_def by simp
qed
```

We can identify a set of X-valued lists of length with X.

```
lemma list_singleton_bij: shows
    {\langlex,{\langle0, x\rangle}\rangle.x\inX} 㱚ij(X,1->X) and
    {\langley,y(0)\rangle. y\in1->X} = converse({\langlex,{\langle0,x\rangle}\rangle.x\inX}) and
    {\langlex,{\langle0,x\rangle}\rangle.x\inX} = converse({\langley,y(0)\rangle. y\in1->X})
proof -
    let f = {\langley,y(0)\rangle. y\in1->X}
    let g = {\langlex,{\langle0,x\rangle}\rangle.x\inX}
    have 1 = {0} by auto
    then have f \in bij(1 TX,X) and g:X }->(1->\textrm{X}
        using singleton_list_bij pair_func_singleton ZF_fun_from_total
        by auto
    moreover have }\forally\in1->X.g(f(y))=
    proof
        fix y assume y:1->X
        have f:(1->X)->X using singleton_list_bij bij_def inj_def by simp
        with <1 = {0}\rangle\langley:1->X\rangle\langleg:X ( }1->\textrm{X})\rangle\mathrm{ show }\textrm{g}(\textrm{f}(\textrm{y}))=\textrm{y
                using ZF_fun_from_tot_val apply_funtype func_singleton_pair
                by simp
    qed
    ultimately show g \in bij(X,1 隹) and f = converse(g) and g = converse(f)
        using comp_conv_id by auto
qed
```

What is the inverse image of a set by the natural bijection between X-valued singleton lists and X ?

```
lemma singleton_vimage: assumes \(U \subseteq X\) shows \(\{x \in 1 \rightarrow X . x(0) \in U\}=\{\{\langle 0, y\rangle\}\).
\(\mathrm{y} \in \mathrm{U}\}\)
proof
    have \(1=\{0\}\) by auto
    \(\{\) fix \(x\) assume \(x \in\{x \in 1 \rightarrow X . x(0) \in U\}\)
        with \(\langle 1=\{0\}\rangle\) have \(\mathrm{x}=\{\langle 0, \mathrm{x}(0)\rangle\}\) using func_singleton_pair by auto
    \(\}\) thus \(\{x \in 1 \rightarrow X . x(0) \in U\} \subseteq\{\{\langle 0, y\rangle\} . y \in U\}\) by auto
    \{ fix x assume \(\mathrm{x} \in\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\}\)
        then obtain \(y\) where \(x=\{\langle 0, y\rangle\}\) and \(y \in U\) by auto
        with \(\langle 1=\{0\}\rangle\) assms have \(x: 1 \rightarrow X\) using pair_func_singleton by auto
    \(\}\) thus \(\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} \subseteq\{\mathrm{x} \in 1 \rightarrow \mathrm{X} . \mathrm{x}(0) \in \mathrm{U}\}\) by auto
qed
```

A technical lemma about extending a list by values from a set.

```
lemma list_append_from: assumes A1: \(n \in\) nat and A2: \(\mathrm{U} \subseteq \mathrm{n} \rightarrow \mathrm{X}\) and A3:
\(\mathrm{V} \subseteq \mathrm{X}\)
    shows
    \(\{x \in \operatorname{succ}(n) \rightarrow X . \operatorname{Init}(x) \in U \wedge x(n) \in V\}=(U y \in V .\{\operatorname{Append}(x, y) \cdot x \in U\})\)
proof -
    \(\{\) fix \(x\) assume \(x \in\{x \in \operatorname{succ}(n) \rightarrow X\). Init \((x) \in U \wedge x(n) \in V\}\)
        then have \(x \in \operatorname{succ}(n) \rightarrow X\) and \(\operatorname{Init}(x) \in U\) and \(I: x(n) \in V\)
```

```
            by auto
            let y = x(n)
            from A1 and }\langlex\in\operatorname{succ}(n)->X\rangle have x = Append(Init(x),y
            using init_props by simp
            with I and <Init(x) \inU` have x }\in(\\y\inV.{Append(a,y).a\inU}) by aut
}
    moreover
    { fix x assume x }\in(\cupy\inV.{Append(a,y).a\inU}
        then obtain a y where }\textrm{y}\in\textrm{V}\mathrm{ and a}a\inU\mathrm{ and }x=Append(a,y) by aut
        with A2 A3 have x: succ(n) }->\textrm{X}\mathrm{ using append_props by blast
        from A2 A3 }\langley\inV\rangle\langlea\inU\rangle\mathrm{ have a:n }->\textrm{X}\mathrm{ and }y\inX\mathrm{ by auto
        with A1 \langlea\inU\rangle \langley\inV\rangle\langlex = Append(a,y)\rangle have Init(x) \inU and }x(n)
V
            using append_props init_append by auto
        with <x: succ(n)->X` have }x\in{x\in\operatorname{succ}(n)->X. Init(x) \inU \ ( x (n
E V}
            by auto
    }
    ultimately show thesis by blast
qed
end
```


18 Inductive sequences

theory InductiveSeq_ZF imports Nat_ZF_IML FiniteSeq_ZF
begin
In this theory we discuss sequences defined by conditions of the form $a_{0}=$ $x, a_{n+1}=f\left(a_{n}\right)$ and similar.

18.1 Sequences defined by induction

One way of defining a sequence (that is a function $a: \mathbb{N} \rightarrow X$) is to provide the first element of the sequence and a function to find the next value when we have the current one. This is usually called "defining a sequence by induction". In this section we set up the notion of a sequence defined by induction and prove the theorems needed to use it.

First we define a helper notion of the sequence defined inductively up to a given natural number n.

```
definition
    InductiveSequenceN(x,f,n) \equiv
    THE a. a: succ(n) -> domain(f) ^ a(0) = x ^ ( }\forall\textrm{k}\in\textrm{n}.\textrm{a}(\operatorname{succ}(\textrm{k}))=f(a(k))
```

From that we define the inductive sequence on the whole set of natural
numbers. Recall that in Isabelle/ZF the set of natural numbers is denoted nat.

definition

```
    InductiveSequence( \(x, f\) ) \(\equiv\) Un nat. InductiveSequenceN( \(x, f, n\) )
```

First we will consider the question of existence and uniqueness of finite inductive sequences. The proof is by induction and the next lemma is the $P(0)$ step. To understand the notation recall that for natural numbers in set theory we have $n=\{0,1, . ., n-1\}$ and $\operatorname{succ}(\mathrm{n})=\{0,1, . ., n\}$.

```
lemma indseq_exun0: assumes A1: \(f: X \rightarrow X\) and A2: \(x \in X\)
    shows
    \(\exists!\) a. \(a: \operatorname{succ}(0) \rightarrow X \wedge a(0)=x \wedge(\forall k \in 0 . a(\operatorname{succ}(k))=f(a(k)))\)
proof
    fix a b
    assume A3:
            \(a: \operatorname{succ}(0) \rightarrow X \wedge a(0)=x \wedge(\forall k \in 0 . a(\operatorname{succ}(k))=f(a(k)))\)
            \(b: \operatorname{succ}(0) \rightarrow X \wedge b(0)=x \wedge(\forall k \in 0 . b(\operatorname{succ}(k))=f(b(k)))\)
    moreover have \(\operatorname{succ}(0)=\{0\}\) by auto
    ultimately have \(\mathrm{a}:\{0\} \rightarrow \mathrm{X}\) b: \(\{0\} \rightarrow \mathrm{X}\) by auto
    then have \(\mathrm{a}=\{\langle 0, \mathrm{a}(0)\rangle\} \quad \mathrm{b}=\{\langle 0, \mathrm{~b}(0)\rangle\}\) using func_singleton_pair
        by auto
    with A3 show \(a=b\) by simp
next
    let \(a=\{\langle 0, x\rangle\}\)
    have a : \(\{0\} \rightarrow\{x\}\) using singleton_fun by simp
    moreover from A1 A2 have \(\{x\} \subseteq X\) by simp
    ultimately have a : \(\{0\} \rightarrow \mathrm{X}\)
        using func1_1_L1B by blast
    moreover have \(\{0\}=\operatorname{succ}(0)\) by auto
    ultimately have a : succ (0) \(\rightarrow \mathrm{X}\) by simp
    with A1 show
        \(\exists\) a. a: \(\operatorname{succ}(0) \rightarrow X \wedge a(0)=x \wedge(\forall k \in 0 . a(\operatorname{succ}(k))=f(a(k)))\)
        using singleton_apply by auto
qed
```

A lemma about restricting finite sequences needed for the proof of the inductive step of the existence and uniqueness of finite inductive seqences.

```
lemma indseq_restrict:
    assumes A1: f: X }->\textrm{X}\mathrm{ and A2: x}\textrm{x}X\mathrm{ X and A3: n }\in\mathrm{ nat and
    A4: a: succ(succ(n)) }->\textrm{X}\wedge a(0) = x ^ ( \forallk\in\operatorname{succ}(n). a(succ(k)) = f(a(k))
    and A5: arr = restrict(a,succ(n))
    shows
    \mp@subsup{a}{r}{}}:\operatorname{succ}(\textrm{n})->\textrm{X}\wedge \mp@subsup{\textrm{a}}{r}{}(0)=\textrm{x}\wedge(\forall\textrm{k}\in\textrm{n}.\mp@subsup{\textrm{a}}{r}{}(\operatorname{succ}(\textrm{k}))=f(\mp@subsup{\textrm{a}}{r}{}(\textrm{k}))
proof -
    from A3 have succ(n) \subseteq succ(succ(n)) by auto
    with A4 A5 have }\mp@subsup{\textrm{a}}{r}{}:\operatorname{succ}(\textrm{n})->\textrm{X}\mathrm{ using restrict_type2 by auto
    moreover
    from A3 have 0 G succ(n) using empty_in_every_succ by simp
```

```
    with A4 A5 have arr (0) = x using restrict_if by simp
    moreover from A3 A4 A5 have }\forallk\inn. ar (\operatorname{succ}(k)) = f(ar (k)
        using succ_ineq restrict_if by auto
    ultimately show thesis by simp
qed
```

Existence and uniqueness of finite inductive sequences. The proof is by induction and the next lemma is the inductive step.

```
lemma indseq_exun_ind:
    assumes A1: \(f: X \rightarrow X\) and \(A 2: x \in X\) and \(A 3: n \in\) nat and
    A4: \(\exists\) ! a. \(a: \operatorname{succ}(n) \rightarrow X \wedge a(0)=x \wedge(\forall k \in n . a(\operatorname{succ}(k))=f(a(k)))\)
    shows
    \(\exists\) ! a. a: \(\operatorname{succ}(\operatorname{succ}(n)) \rightarrow X \wedge a(0)=x \wedge\)
    ( \(\forall \mathrm{k} \in \operatorname{succ}(\mathrm{n}) . \mathrm{a}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}(\mathrm{a}(\mathrm{k}))\) )
proof
    fix a b assume
        A5: \(a: \operatorname{succ}(\operatorname{succ}(n)) \rightarrow X \wedge a(0)=x \wedge\)
        \((\forall \mathrm{k} \in \operatorname{succ}(\mathrm{n}) \cdot \mathrm{a}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}(\mathrm{a}(\mathrm{k})))\) and
        A6: \(b: \operatorname{succ}(\operatorname{succ}(n)) \rightarrow X \wedge b(0)=x \wedge\)
        \((\forall k \in \operatorname{succ}(n) . b(\operatorname{succ}(k))=f(b(k)))\)
    show \(\mathrm{a}=\mathrm{b}\)
    proof -
        let \(\mathrm{a}_{r}=\operatorname{restrict}(\mathrm{a}, \operatorname{succ}(\mathrm{n}))\)
        let \(\mathrm{b}_{r}=\) restrict \((\mathrm{b}, \operatorname{succ}(\mathrm{n}))\)
        note A1 A2 A3 A5
        moreover have \(\mathrm{a}_{r}=\) restrict(a,succ(n)) by simp
        ultimately have I:
                \(\mathrm{a}_{r}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X} \wedge \mathrm{a}_{r}(0)=\mathrm{x} \wedge\left(\forall \mathrm{k} \in \mathrm{n} . \mathrm{a}_{r}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}\left(\mathrm{a}_{r}(\mathrm{k})\right)\right)\)
                by (rule indseq_restrict)
        note A1 A2 A3 A6
        moreover have \(\mathrm{b}_{r}=\) restrict(b,succ(n)) by simp
        ultimately have
                \(\mathrm{b}_{r}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X} \wedge \mathrm{b}_{r}(0)=\mathrm{x} \wedge\left(\forall \mathrm{k} \in \mathrm{n} . \mathrm{b}_{r}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}\left(\mathrm{b}_{r}(\mathrm{k})\right)\right)\)
            by (rule indseq_restrict)
        with A4 I have II: \(\mathrm{a}_{r}=\mathrm{b}_{r}\) by blast
        from \(A 3\) have \(\operatorname{succ}(n) \in\) nat by simp
        moreover from A5 A6 have
                a: \(\operatorname{succ}(\operatorname{succ}(n)) \rightarrow X\) and \(b: \operatorname{succ}(\operatorname{succ}(n)) \rightarrow X\)
                by auto
            moreover note II
            moreover
            have \(T: n \in \operatorname{succ}(n)\) by simp
            then have \(\mathrm{a}_{r}(\mathrm{n})=\mathrm{a}(\mathrm{n})\) and \(\mathrm{b}_{r}(\mathrm{n})=\mathrm{b}(\mathrm{n})\) using restrict
                by auto
            with A5 A6 II T have \(a(\operatorname{succ}(n))=b(\operatorname{succ}(n))\) by simp
            ultimately show \(\mathrm{a}=\mathrm{b}\) by (rule finseq_restr_eq)
    qed
next show
            \(\exists\) a. a: \(\operatorname{succ}(\operatorname{succ}(n)) \rightarrow X \wedge a(0)=x \wedge\)
```

```
        ( }\forall\textrm{k}\in\operatorname{succ}(\textrm{n}).\textrm{a}(\operatorname{succ}(\textrm{k}))=f(a(k))
    proof -
        from A4 obtain a where III: a: succ(n) }->\textrm{X}\mathrm{ and IV: a(0) = x
            and V: \forallk\inn. a(succ(k)) = f(a(k)) by auto
    let b = a \cup {\langle|\operatorname{succ}(n), f(a(n))\rangle}
    from A1 III have
        VI: b : succ(succ(n)) -> X and
        VII: }\forall\textrm{k}\in\operatorname{succ}(\textrm{n}).\textrm{b}(\textrm{k})=\textrm{a}(\textrm{k})\mathrm{ and
        VIII: b(succ(n)) = f(a(n))
        using apply_funtype finseq_extend by auto
    from A3 have 0 G succ(n) using empty_in_every_succ by simp
    with IV VII have IX: b(0) = x by auto
    { fix k assume k \in succ(n)
        then have k\inn \vee k = n by auto
        moreover
        { assume A7: k f n
    with A3 VII have b(succ(k)) = a(succ(k))
    using succ_ineq by auto
also from A7 V VII have a(succ(k)) = f(b(k)) by simp
finally have b(\operatorname{succ}(k)) = f(b(k)) by simp }
    moreover
    { assume A8: k = n
with VIII have b(\operatorname{succ}(k)) = f(a(k)) by simp
with A8 VII VIII have b(succ(k)) = f(b(k)) by simp }
            ultimately have b(succ(k)) = f(b(k)) by auto
        } then have }\forallk\in\operatorname{succ}(n). b(\operatorname{succ}(k))=f(b(k)) by sim
        with VI IX show thesis by auto
    qed
qed
```

The next lemma combines indseq_exun0 and indseq_exun_ind to show the existence and uniqueness of finite sequences defined by induction.

```
lemma indseq_exun:
    assumes A1: f: X }->\textrm{X}\mathrm{ and A2: x}x\inX\mathrm{ and A3: n }\in\mathrm{ nat
    shows
    \exists! a. a: succ(n) -> X ^ a(0) = x ^ (\forallk\inn. a(succ(k)) = f(a(k)))
proof -
    note A3
    moreover from A1 A2 have
        \exists! a. a: succ(0) -> X ^a(0) = x ^ ( \forallk\in0. a(succ(k)) = f(a(k)) )
        using indseq_exun0 by simp
    moreover from A1 A2 have }\forall\textrm{k}\in\mathrm{ nat.
            ( \exists! a. a: succ(k) -> X ^ a(0) = x ^
            ( \foralli\ink. a(succ(i)) = f(a(i)) )) \longrightarrow
            ( \exists! a. a: succ(succ(k)) -> X ^ a(0) = x ^
            ( }\forall\textrm{i}\in\operatorname{succ}(k).a(\operatorname{succ}(i)) = f(a(i)) ) ),
            using indseq_exun_ind by simp
    ultimately show
        \exists! a. a: succ(n) -> X ^ a(0) = x ^ ( \forallk\inn. a(succ(k)) = f(a(k)) )
```

```
    by (rule ind_on_nat)
qed
```

We are now ready to prove the main theorem about finite inductive sequences.
theorem fin_indseq_props:
assumes A1: $f: X \rightarrow X$ and $A 2: x \in X$ and $A 3: n \in$ nat and
A4: $a=\operatorname{InductiveSequenceN(x,f,n)}$
shows
a: $\operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X}$
$\mathrm{a}(0)=\mathrm{x}$
$\forall \mathrm{k} \in \mathrm{n} . \mathrm{a}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}(\mathrm{a}(\mathrm{k}))$
proof -
let $i=T H E$ a. $a: \operatorname{succ}(n) \rightarrow X \wedge a(0)=x \wedge$ $(\forall k \in \mathrm{n} . \mathrm{a}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}(\mathrm{a}(\mathrm{k})))$
from A1 A2 A3 have $\exists!$ a. $a: \operatorname{succ}(n) \rightarrow X \wedge a(0)=x \wedge(\forall k \in n . a(\operatorname{succ}(k))=f(a(k)))$ using indseq_exun by simp
then have

```
                i: succ(n) -> X ^ i(0) = x ^ ( }\forall\textrm{k}\in\textrm{n}.\textrm{i}(\operatorname{succ}(k)) = f(i(k)) )
```

 by (rule theI)
 moreover from A1 A4 have \(\mathrm{a}=\mathrm{i}\)
 using InductiveSequenceN_def func1_1_L1 by simp
 ultimately show
 \(\mathrm{a}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X} \quad \mathrm{a}(0)=\mathrm{x} \quad \forall \mathrm{k} \in \mathrm{n} . \mathrm{a}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}(\mathrm{a}(\mathrm{k}))\)
 by auto
 qed
A corollary about the domain of a finite inductive sequence.

```
corollary fin_indseq_domain:
    assumes A1: f: X }->\textrm{X}\mathrm{ and A2: }x\inX\mathrm{ and A3: n }\in\mathrm{ nat
    shows domain(InductiveSequenceN(x,f,n)) = succ(n)
proof -
    from assms have InductiveSequenceN(x,f,n) : succ(n) }->\textrm{X
        using fin_indseq_props by simp
    then show thesis using func1_1_L1 by simp
qed
```

The collection of finite sequences defined by induction is consistent in the sense that the restriction of the sequence defined on a larger set to the smaller set is the same as the sequence defined on the smaller set.

```
lemma indseq_consistent: assumes A1: f: X }->\textrm{X}\mathrm{ and A2: x 
    A3: i }\in\mathrm{ nat j }\in\mathrm{ nat and A4: i }\subseteq
    shows
    restrict(InductiveSequenceN(x,f,j),succ(i)) = InductiveSequenceN(x,f,i)
proof -
    let a = InductiveSequenceN(x,f,j)
    let b = restrict(InductiveSequenceN(x,f,j),succ(i))
```

```
    let c = InductiveSequenceN(x,f,i)
    from A1 A2 A3 have
        a: succ(j) -> X a(0) = x }\quad\forallk\inj. a(succ(k)) = f(a(k))
        using fin_indseq_props by auto
    with A3 A4 have
        b: succ(i) }->\textrm{X}\wedge b(0)= x ^ ( \forallk\ini. b(\operatorname{succ}(k)) = f(b(k)))
        using succ_subset restrict_type2 empty_in_every_succ restrict succ_ineq
        by auto
    moreover from A1 A2 A3 have
        c: succ(i) }->\textrm{X}\wedge ^c(0) = x ^ ( \forallk\ini. c(succ(k)) = f(c(k))
        using fin_indseq_props by simp
    moreover from A1 A2 A3 have
        \exists! a. a: succ(i) }->\textrm{X}\wedge a(0)= x ^ ( \forallk\ini. a(succ(k)) = f(a(k)) )
        using indseq_exun by simp
    ultimately show b = c by blast
qed
```

For any two natural numbers one of the corresponding inductive sequences is contained in the other.

```
lemma indseq_subsets: assumes A1: \(f: X \rightarrow X\) and A2: \(x \in X\) and
    A3: i \(\in\) nat \(j \in\) nat and
    A4: \(a=\operatorname{InductiveSequenceN(x,f,i)~} b=\operatorname{InductiveSequenceN(x,f,j)~}\)
    shows \(\mathrm{a} \subseteq \mathrm{b} \vee \mathrm{b} \subseteq \mathrm{a}\)
proof -
    from A3 have \(i \subseteq j \vee j \subseteq i\) using nat_incl_total by simp
    moreover
    \{ assume \(i \subseteq j\)
        with A1 A2 A3 A4 have restrict(b,succ(i)) = a
                using indseq_consistent by simp
            moreover have restrict(b,succ(i)) \(\subseteq b\)
                using restrict_subset by simp
            ultimately have \(\mathrm{a} \subseteq \mathrm{b} \vee \mathrm{b} \subseteq \mathrm{a}\) by simp \(\}\)
    moreover
    \{ assume \(\mathrm{j} \subseteq i\)
            with A1 A2 A3 A4 have restrict(a,succ(j)) = b
                using indseq_consistent by simp
            moreover have restrict (a, succ (j)) \(\subseteq a\)
                using restrict_subset by simp
            ultimately have \(\mathrm{a} \subseteq \mathrm{b} \vee \mathrm{b} \subseteq \mathrm{a}\) by simp \(\}\)
    ultimately show \(\mathrm{a} \subseteq \mathrm{b} \vee \mathrm{b} \subseteq \mathrm{a}\) by auto
qed
```

The first theorem about properties of infinite inductive sequences: inductive sequence is a indeed a sequence (i.e. a function on the set of natural numbers.

```
theorem indseq_seq: assumes A1: f: X }->\textrm{X}\mathrm{ and A2: x 
    shows InductiveSequence(x,f) : nat }->\textrm{X
proof -
    let S = {InductiveSequenceN(x,f,n). n \in nat}
    { fix a assume a\inS
```

then obtain n where $n \in$ nat and $a=\operatorname{InductiveSequenceN(x,f,n)~}$ by auto
with A1 A2 have a : succ(n) $\rightarrow \mathrm{X}$ using fin_indseq_props by simp
then have $\exists \mathrm{A} B . \mathrm{a}: \mathrm{A} \rightarrow \mathrm{B}$ by auto
$\}$ then have $\forall a \in S . \exists A B . a: A \rightarrow B$ by auto
moreover
\{ fix a b assume $a \in S \quad b \in S$
then obtain $i \quad j$ where $i \in$ nat $j \in$ nat and $\mathrm{a}=\operatorname{InductiveSequenceN}(\mathrm{x}, \mathrm{f}, \mathrm{i}) \quad \mathrm{b}=$ InductiveSequenceN $(\mathrm{x}, \mathrm{f}, \mathrm{j})$ by auto
with A1 A2 have $\mathrm{a} \subseteq \mathrm{b} \vee \mathrm{b} \subseteq a$ using indseq_subsets by simp
$\}$ then have $\forall \mathrm{a} \in \mathrm{S} . \forall \mathrm{b} \in \mathrm{S} . \mathrm{a} \subseteq \mathrm{b} \vee \mathrm{b} \subseteq \mathrm{a}$ by auto
ultimately have $\cup S:$ domain (US) \rightarrow range ($\cup S$)
using fun_Union by simp
with A1 A2 have I: US : nat \rightarrow range (US)
using domain_UN fin_indseq_domain nat_union_succ by simp
moreover
\{ fix k assume A3: $k \in$ nat
let $\mathrm{y}=(\mathrm{US})(\mathrm{k})$
note I A3
moreover have $\mathrm{y}=(\bigcup \mathrm{S})(\mathrm{k})$ by simp
ultimately have $\langle k, y\rangle \in$ ($\cup S$) by (rule func1_1_L5A)
then obtain n where $n \in$ nat and II: $\langle\mathrm{k}, \mathrm{y}\rangle \in \operatorname{InductiveSequenceN(x,f,n)}$
by auto
with A1 A2 have InductiveSequenceN $(x, f, n): \operatorname{succ}(n) \rightarrow X$
using fin_indseq_props by simp
with II have $\mathrm{y} \in \mathrm{X}$ using func1_1_L5 by blast
\} then have $\forall k \in$ nat. ($\cup S$) (k) $\in X$ by simp
ultimately have $\cup S:$ nat $\rightarrow X$ using func1_1_L1A
by blast
then show InductiveSequence (x, f) : nat $\rightarrow \mathrm{X}$
using InductiveSequence_def by simp
qed
Restriction of an inductive sequence to a finite domain is the corresponding
finite inductive sequence.

```
lemma indseq_restr_eq:
    assumes A1: f: X }->\textrm{X}\mathrm{ and A2: x}\textrm{x}=\textrm{X}\mathrm{ and A3: n }\in\mathrm{ nat
    shows
    restrict(InductiveSequence(x,f),succ(n)) = InductiveSequenceN(x,f,n)
proof -
    let a = InductiveSequence(x,f)
    let b = InductiveSequenceN(x,f,n)
    let S = {InductiveSequenceN(x,f,n). n \in nat}
    from A1 A2 A3 have
        I: a : nat }->\textrm{X}\mathrm{ and succ(n) }\subseteq\mathrm{ nat
            using indseq_seq succnat_subset_nat by auto
    then have restrict(a,succ(n)) : succ(n) -> X
```

using restrict_type2 by simp
moreover from A1 A2 A3 have $b: \operatorname{succ}(n) \rightarrow X$
using fin_indseq_props by simp
moreover
\{ fix k assume A4: $k \in \operatorname{succ}(n)$
from A1 A2 A3 I have
$\bigcup S:$ nat $\rightarrow X \quad b \in S \quad b: \operatorname{succ}(n) \rightarrow X$
using InductiveSequence_def fin_indseq_props by auto
with A4 have restrict $(\mathrm{a}, \operatorname{succ}(\mathrm{n}))(\mathrm{k})=\mathrm{b}(\mathrm{k})$
using fun_Union_apply InductiveSequence_def restrict_if
by simp
$\}$ then have $\forall k \in \operatorname{succ}(n)$. restrict $(a, \operatorname{succ}(n))(k)=b(k)$ by simp
ultimately show thesis by (rule func_eq)
qed
The first element of the inductive sequence starting at x and generated by f is indeed x.
theorem indseq_valat0: assumes A1: $f: X \rightarrow X$ and $A 2: x \in X$
shows InductiveSequence (x, f) (0) = x
proof -
let $\mathrm{a}=$ InductiveSequence($\mathrm{x}, \mathrm{f})$
let $\mathrm{b}=$ InductiveSequenceN $(\mathrm{x}, \mathrm{f}, 0)$
have T : $0 \in$ nat $0 \in \operatorname{succ}(0)$ by auto
with A1 A2 have $b(0)=x$
using fin_indseq_props by simp
moreover from T have restrict (a,succ(0))(0) $=\mathrm{a}(0)$
using restrict_if by simp
moreover from A1 A2 T have
restrict(a, succ (0)) = b
using indseq_restr_eq by simp
ultimately show a(0) = x by simp
qed
An infinite inductive sequence satisfies the inductive relation that defines it.

```
theorem indseq_vals:
    assumes A1: f: X }->\textrm{X}\mathrm{ and A2: }x\inX\mathrm{ and A3: n }\in\mathrm{ nat
    shows
    InductiveSequence(x,f)(succ(n)) = f(InductiveSequence(x,f)(n))
proof -
    let a = InductiveSequence(x,f)
    let b = InductiveSequenceN(x,f,\operatorname{succ}(n))
    from A3 have T:
        succ(n) \in succ(succ(n))
        succ(succ(n)) \in nat
        n \in succ(succ(n))
        by auto
    then have a(succ(n)) = restrict(a,\operatorname{succ}(\operatorname{succ}(n)))(\operatorname{succ}(n))
        using restrict_if by simp
```

```
    also from A1 A2 T have ... = f(restrict(a,\operatorname{succ}(\operatorname{succ}(n)))(n))
    using indseq_restr_eq fin_indseq_props by simp
    also from T have ... = f(a(n)) using restrict_if by simp
    finally show a(\operatorname{succ}(n)) = f(a(n)) by simp
qed
```


18.2 Images of inductive sequences

In this section we consider the properties of sets that are images of inductive sequences, that is are of the form $\left\{f^{(n)}(x): n \in N\right\}$ for some x in the domain of f, where $f^{(n)}$ denotes the n 'th iteration of the function f. For a function $f: X \rightarrow X$ and a point $x \in X$ such set is set is sometimes called the orbit of x generated by f.

The basic properties of orbits.

```
theorem ind_seq_image: assumes A1: f: X }->\textrm{X}\mathrm{ and A2: x }\in\textrm{X}\mathrm{ and
    A3: A = InductiveSequence(x,f)(nat)
    shows }x\inA\mathrm{ and }\forally\inA.f(y)\in
proof -
    let a = InductiveSequence(x,f)
    from A1 A2 have a : nat }->\textrm{X}\mathrm{ using indseq_seq
        by simp
    with A3 have I: A = {a(n). n \in nat} using func_imagedef
        by auto hence a(0) \in A by auto
    with A1 A2 show }x\inA\mathrm{ using indseq_valat0 by simp
    { fix y assume y\inA
        with I obtain n where II: n \in nat and III: y = a(n)
                by auto
        with A1 A2 have a(succ(n)) = f(y)
            using indseq_vals by simp
        moreover from I II have a(succ(n)) \in A by auto
        ultimately have f(y) \in A by simp
    } then show }\forally\inA.f(y)\inA by sim
qed
```


18.3 Subsets generated by a binary operation

In algebra we often talk about sets "generated" by an element, that is sets of the form (in multiplicative notation) $\left\{a^{n} \mid n \in Z\right\}$. This is a related to a general notion of "power" (as in $a^{n}=a \cdot a \cdot . . \cdot a$) or multiplicity $n \cdot a=$ $a+a+. .+a$. The intuitive meaning of such notions is obvious, but we need to do some work to be able to use it in the formalized setting. This sections is devoted to sequences that are created by repeatedly applying a binary operation with the second argument fixed to some constant.

Basic propertes of sets generated by binary operations.
theorem binop_gen_set:

```
    assumes A1: f: X X Y }->X\mathrm{ and A2: }x\inX y\inY an
    A3: a = InductiveSequence(x,Fix2ndVar(f,y))
    shows
    a : nat }->\textrm{X
    a(nat) \in Pow(X)
    x f a(nat)
    \forallz\ina(nat). Fix2ndVar(f,y)(z) \in a(nat)
proof -
    let g = Fix2ndVar(f,y)
    from A1 A2 have I: g : X }->\textrm{X
        using fix_2nd_var_fun by simp
    with A2 A3 show a : nat }->\mathrm{ X
        using indseq_seq by simp
    then show a(nat) \in Pow(X) using func1_1_L6 by simp
    from A2 A3 I show x }\in\mathrm{ a(nat) using ind_seq_image by blast
    from A2 A3 I have
        g : X }->\textrm{X}\mathrm{ ( x X X a(nat) = InductiveSequence(x,g) (nat)
        by auto
    then show }\forallz\ina(nat). Fix2ndVar(f,y)(z) \ina(nat
        by (rule ind_seq_image)
qed
```

A simple corollary to the theorem binop_gen_set: a set that contains all iterations of the application of a binary operation exists.
lemma binop_gen_set_ex: assumes A1: f: $X \times Y \rightarrow X$ and A2: $x \in X \quad y \in Y$
shows $\{A \in \operatorname{Pow}(X) . x \in A \wedge(\forall z \in A . f\langle z, y\rangle \in A)\} \neq 0$
proof -
let $\mathrm{a}=$ InductiveSequence($\mathrm{x}, \mathrm{Fix} 2 \mathrm{ndVar}(\mathrm{f}, \mathrm{y})$)
let $A=a(n a t)$
from A1 A2 have $I: A \in \operatorname{Pow}(X)$ and $x \in A$ using binop_gen_set by auto
moreover
\{ fix z assume $T: ~ z \in A$
with A1 A2 have $\operatorname{Fix} 2 \mathrm{ndVar}(\mathrm{f}, \mathrm{y})(\mathrm{z}) \in \mathrm{A}$
using binop_gen_set by simp
moreover
from I T have $z \in X$ by auto
with A1 A2 have $\operatorname{Fix} 2 \mathrm{ndVar}(\mathrm{f}, \mathrm{y})(\mathrm{z})=\mathrm{f}\langle\mathrm{z}, \mathrm{y}\rangle$
using fix_var_val by simp
ultimately have $f\langle z, y\rangle \in A$ by simp
$\}$ then have $\forall z \in A . f\langle z, y\rangle \in A$ by simp
ultimately show thesis by auto
qed
A more general version of binop_gen_set where the generating binary operation acts on a larger set.
theorem binop_gen_set1: assumes A1: $f: X \times Y \rightarrow X$ and
A2: $X_{1} \subseteq X$ and A3: $x \in X_{1} \quad y \in Y$ and
A4: $\forall \mathrm{t} \in \mathrm{X}_{1} . \mathrm{f}\langle\mathrm{t}, \mathrm{y}\rangle \in \mathrm{X}_{1}$ and

```
    A5: a = InductiveSequence(x,Fix2ndVar(restrict(f, X 
shows
    a : nat }->\mp@subsup{\textrm{X}}{1}{
    a(nat) \in Pow(X ( )
    x f a(nat)
    \forallz\ina(nat). Fix2ndVar(f,y)(z) \in a(nat)
    \forallz\ina(nat). f}\langle\textrm{z},\textrm{y}\rangle\in\textrm{a}(\mathrm{ nat)
proof -
    let h = restrict(f, X 
    let g = Fix2ndVar(h,y)
    from A2 have }\mp@subsup{X}{1}{}\timesY\subseteqX\timesY by aut
    with A1 have I: h : }\mp@subsup{\textrm{X}}{1}{}\times\textrm{Y}->\textrm{X
        using restrict_type2 by simp
    with A3 have II: g: X }\mp@subsup{\textrm{X}}{1}{}->\textrm{X}\mathrm{ using fix_2nd_var_fun by simp
    from A3 A4 I have }\forall\textrm{t}\in\mp@subsup{\textrm{X}}{1}{}.\textrm{g}(\textrm{t})\in\mp@subsup{\textrm{X}}{1}{
        using restrict fix_var_val by simp
    with II have III: g : X 
    with A3 A5 show a : nat }->\mp@subsup{X}{1}{}\mathrm{ using indseq_seq by simp
    then show IV: a(nat) \in Pow ( }\mp@subsup{X}{1}{}\mathrm{ ) using func1_1_L6 by simp
    from A3 A5 III show x }\in a(nat) using ind_seq_image by blas
    from A3 A5 III have
        g : X X }->\mp@subsup{X}{1}{}\quad\textrm{x}\in\mp@subsup{\textrm{X}}{1}{}\quad\textrm{a}(\mathrm{ nat) = InductiveSequence(x,g)(nat)
        by auto
    then have }\forallz\ina(nat). Fix2ndVar(h,y)(z)\ina(nat
        by (rule ind_seq_image)
    moreover
    { fix z assume z \in a(nat)
        with IV have z }\in\mp@subsup{X}{1}{}\mathrm{ by auto
        with A1 A2 A3 have g(z) = Fix2ndVar(f,y)(z)
            using fix_2nd_var_restr_comm restrict by simp
    } then have }\forallz\ina(nat).g(z) = Fix2ndVar(f,y)(z) by sim
    ultimately show }\forallz\ina(nat). Fix2ndVar(f,y)(z) \in a(nat) by sim
    moreover
    { fix z assume z \in a(nat)
        with A2 IV have z\inX by auto
        with A1 A3 have Fix2ndVar(f,y)(z)=f\langlez,y\rangle
            using fix_var_val by simp
    } then have }\forallz\ina(nat). Fix2ndVar(f,y)(z) = f z z,y
        by simp
    ultimately show }\forallz\ina(nat). f {z,y\rangle\ina(nat
        by simp
qed
```

A generalization of binop_gen_set_ex that applies when the binary operation acts on a larger set. This is used in our Metamath translation to prove the existence of the set of real natural numbers. Metamath defines the real natural numbers as the smallest set that cantains 1 and is closed with respect to operation of adding 1 .
lemma binop_gen_set_ex1: assumes A1: f: X $\times Y \rightarrow X$ and

```
    A2: }\mp@subsup{\textrm{X}}{1}{}\subseteq\textrm{X}\mathrm{ and A3: }\textrm{x}\in\mp@subsup{\textrm{X}}{1}{}\quad\textrm{y}\in\textrm{Y}\mathrm{ and
    A4: }\forall\textrm{t}\in\mp@subsup{\textrm{X}}{1}{}.\textrm{f}\langle\textrm{t},\textrm{y}\rangle\in\mp@subsup{\textrm{X}}{1}{
    shows {A \in Pow(X ( ) . x\inA ^(\forallz\inA. f {z,y\rangle\inA)}
proof -
    let a = InductiveSequence(x,Fix2ndVar(restrict(f,X ( }\times\textrm{Y}\mathrm{ ) , y))
    let A = a(nat)
    from A1 A2 A3 A4 have
        A}\in\operatorname{Pow}(\mp@subsup{X}{1}{})\quadx\inA\quad\forallz\inA.f\langlez,y\rangle\in
        using binop_gen_set1 by auto
    thus thesis by auto
qed
```


18.4 Inductive sequences with changing generating function

A seemingly more general form of a sequence defined by induction is a sequence generated by the difference equation $x_{n+1}=f_{n}\left(x_{n}\right)$ where $n \mapsto f_{n}$ is a given sequence of functions such that each maps X into inself. For example when $f_{n}(x):=x+x_{n}$ then the equation $S_{n+1}=f_{n}\left(S_{n}\right)$ describes the sequence $n \mapsto S_{n}=s_{0}+\sum_{i=0}^{n} x_{n}$, i.e. the sequence of partial sums of the sequence $\left\{s_{0}, x_{0}, x_{1}, x_{3}, ..\right\}$.

The situation where the function that we iterate changes with n can be derived from the simpler case if we define the generating function appropriately. Namely, we replace the generating function in the definitions of InductiveSequencen by the function $f: X \times n \rightarrow X \times n, f\langle x, k\rangle=$ $\left\langle f_{k}(x), k+1\right\rangle$ if $k<n,\left\langle f_{k}(x), k\right\rangle$ otherwise. The first notion defines the expression we will use to define the generating function. To understand the notation recall that in standard Isabelle/ZF for a pair $s=\langle x, n\rangle$ we have $\mathrm{fst}(s)=x$ and $\operatorname{snd}(s)=n$.
definition

```
    StateTransfFunNMeta(F,n,s) \equiv
    if (snd(s) \in n) then \langleF(snd(s))(fst(s)), succ(snd(s))\rangle else s
```

Then we define the actual generating function on sets of pairs from $X \times$ $\{0,1, . ., n\}$.

```
definition
    StateTransfFunN(X,F,n) \equiv{\langles, StateTransfFunNMeta(F,n,s)\rangle. s \in X X succ(n)}
```

Having the generating function we can define the expression that we cen use to define the inductive sequence generates.

```
definition
    StatesSeq(x,X,F,n) \equiv
    InductiveSequenceN(\langlex,0\rangle, StateTransfFunN(X,F,n),n)
```

Finally we can define the sequence given by a initial point x, and a sequence F of n functions.

```
definition
    InductiveSeqVarFN(x,X,F,n) \equiv {\langlek,fst(StatesSeq(x,X,F,n)(k))\rangle.k f succ(n)}
```

The state transformation function (StateTransfFunN is a function that transforms $X \times n$ into itself.

```
lemma state_trans_fun: assumes A1: \(\mathrm{n} \in\) nat and A2: \(\mathrm{F}: \mathrm{n} \rightarrow\) ( \(\mathrm{X} \rightarrow \mathrm{X}\) )
    shows StateTransfFunN(X,F,n): X \(\times \operatorname{succ}(n) \rightarrow X \times \operatorname{succ}(n)\)
proof -
    \{ fix \(s\) assume A3: \(s \in X \times \operatorname{succ}(n)\)
        let \(\mathrm{x}=\mathrm{fst}(\mathrm{s})\)
        let \(k=\operatorname{snd}(s)\)
        let \(S=\) StateTransfFunNMeta( \(F, n, s\) )
        from A3 have \(T: x \in X \quad k \in \operatorname{succ}(n)\) and \(\langle x, k\rangle=s\) by auto
        \{ assume A4: \(k \in n\)
            with A1 have \(\operatorname{succ}(k) \in \operatorname{succ}(n)\) using succ_ineq by simp
            with A2 T A4 have \(S \in X \times \operatorname{succ}(n)\)
    using apply_funtype StateTransfFunNMeta_def by simp \}
        with A2 A3 T have \(S \in X \times \operatorname{succ}(n)\)
            using apply_funtype StateTransfFunNMeta_def by auto
    \(\}\) then have \(\forall s \in X \times \operatorname{succ}(n)\). StateTransfFunNMeta(F, \(n, s) \in X \times \operatorname{succ}(n)\)
        by simp
    then have
        \(\{\langle\mathrm{s}\), StateTransfFunNMeta(F,n,s) \(\rangle . s \in X \times \operatorname{succ}(n)\}: X \times \operatorname{succ}(n) \rightarrow X \times \operatorname{succ}(n)\)
        by (rule ZF_fun_from_total)
    then show StateTransfFunN(X,F,n): X \(\times \operatorname{succ}(n) \rightarrow X \times \operatorname{succ}(n)\)
        using StateTransfFunN_def by simp
qed
```

We can apply fin_indseq_props to the sequence used in the definition of InductiveSeqVarFN to get the properties of the sequence of states generated by the StateTransfFunN.

```
lemma states_seq_props:
    assumes A1: \(\mathrm{n} \in\) nat and A2: \(\mathrm{F}: \mathrm{n} \rightarrow(\mathrm{X} \rightarrow \mathrm{X})\) and \(\mathrm{A} 3: \mathrm{x} \in \mathrm{X}\) and
    A4: b \(=\operatorname{StatesSeq}(\mathrm{x}, \mathrm{X}, \mathrm{F}, \mathrm{n})\)
    shows
    \(\mathrm{b}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X} \times \operatorname{succ}(\mathrm{n})\)
    \(b(0)=\langle x, 0\rangle\)
    \(\forall \mathrm{k} \in \operatorname{succ}(\mathrm{n}) . \operatorname{snd}(\mathrm{b}(\mathrm{k}))=\mathrm{k}\)
    \(\forall \mathrm{k} \in \mathrm{n} . \mathrm{b}(\operatorname{succ}(\mathrm{k}))=\langle\mathrm{F}(\mathrm{k})(\mathrm{fst}(\mathrm{b}(\mathrm{k}))), \operatorname{succ}(\mathrm{k})\rangle\)
proof -
    let \(\mathrm{f}=\) StateTransfFunN(X,F,n)
    from A1 A2 have I: \(f: X \times \operatorname{succ}(n) \rightarrow X \times \operatorname{succ}(n)\)
        using state_trans_fun by simp
    moreover from A1 A3 have II: \(\langle x, 0\rangle \in X \times \operatorname{succ}(n)\)
        using empty_in_every_succ by simp
    moreover note A1
    moreover from A4 have III: \(\mathrm{b}=\) InductiveSequenceN \((\langle\mathrm{x}, 0\rangle, \mathrm{f}, \mathrm{n})\)
        using StatesSeq_def by simp
    ultimately show IV: b : \(\operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X} \times \operatorname{succ}(\mathrm{n})\)
```

```
    by (rule fin_indseq_props)
    from I II A1 III show V: b (0) = <x,0\rangle
    by (rule fin_indseq_props)
    from I II A1 III have VI: \forallk\inn. b(succ(k)) = f(b(k))
    by (rule fin_indseq_props)
    { fix k
    note I
    moreover
    assume A5: k \in n hence k }\in\operatorname{succ}(n) by aut
    with IV have b(k) \in X X succ(n) using apply_funtype by simp
    moreover have f = {\langles, StateTransfFunNMeta(F,n,s)\rangle. s \in X }\times\mathrm{ succ(n)}
        using StateTransfFunN_def by simp
    ultimately have f(b(k)) = StateTransfFunNMeta(F,n,b(k))
        by (rule ZF_fun_from_tot_val)
    } then have VII: \forallk G n. f(b(k)) = StateTransfFunNMeta(F,n,b(k))
    by simp
    { fix k assume A5: k \in succ(n)
        note A1 A5
        moreover from V have snd(b(0)) = 0 by simp
        moreover from VI VII have
            \forallj\inn. snd(b(j)) = j }\longrightarrow\mathrm{ snd(b(succ(j))) = succ(j)
            using StateTransfFunNMeta_def by auto
        ultimately have snd(b(k)) = k by (rule fin_nat_ind)
    } then show }\forallk\in\operatorname{succ}(\textrm{n}).\operatorname{snd}(\textrm{b}(\textrm{k}))=k by sim
    with VI VII show }\forall\textrm{k}\in\textrm{n}.\textrm{b}(\operatorname{succ}(\textrm{k}))=\langle\textrm{F}(\textrm{k})(fst(b(k))), succ(k)
    using StateTransfFunNMeta_def by auto
qed
Basic properties of sequences defined by equation \(x_{n+1}=f_{n}\left(x_{n}\right)\).
theorem fin_indseq_var_f_props:
assumes A1: \(n \in\) nat and \(A 2: x \in X\) and \(A 3: F: n \rightarrow(X \rightarrow X)\) and
A4: a = InductiveSeqVarFN( \(\mathrm{x}, \mathrm{X}, \mathrm{F}, \mathrm{n}\) )
shows
a: \(\operatorname{succ}(n) \rightarrow X\)
\(\mathrm{a}(0)=\mathrm{x}\)
\(\forall k \in \mathrm{n} . \mathrm{a}(\operatorname{succ}(\mathrm{k}))=\mathrm{F}(\mathrm{k})(\mathrm{a}(\mathrm{k}))\)
proof -
let \(f=\operatorname{StateTransfFunN}(X, F, n)\)
let \(\mathrm{b}=\operatorname{StatesSeq}(\mathrm{x}, \mathrm{X}, \mathrm{F}, \mathrm{n})\)
from A1 A2 A3 have \(b: \operatorname{succ}(n) \rightarrow X \times \operatorname{succ}(n)\)
using states_seq_props by simp
then have \(\forall \mathrm{k} \in \operatorname{succ}(\mathrm{n}) . \mathrm{b}(\mathrm{k}) \in \mathrm{X} \times \operatorname{succ}(\mathrm{n})\)
using apply_funtype by simp
hence \(\forall k \in \operatorname{succ}(\mathrm{n})\). fst \((\mathrm{b}(\mathrm{k})) \in \mathrm{X}\) by auto
then have \(I:\{\langle k, f \operatorname{st}(b(k))\rangle . k \in \operatorname{succ}(n)\}: \operatorname{succ}(n) \rightarrow X\)
by (rule ZF_fun_from_total)
with A4 show II: a: succ(n) \(\rightarrow\) X using InductiveSeqVarFN_def by simp
moreover from A1 have \(0 \in \operatorname{succ}(\mathrm{n})\) using empty_in_every_succ
```

```
    by simp
    moreover from A4 have III:
        a = {\langlek,fst(StatesSeq(x,X,F,n)(k))\rangle.k { succ(n)}
        using InductiveSeqVarFN_def by simp
    ultimately have a(0) = fst(b(0))
    by (rule ZF_fun_from_tot_val)
    with A1 A2 A3 show a(0) = x using states_seq_props by auto
    { fix k
        assume A5: k \in n
        with A1 have T1: succ(k) \in succ(n) and T2: k \in succ(n)
            using succ_ineq by auto
    from II T1 III have a(succ(k)) = fst(b(succ(k)))
        by (rule ZF_fun_from_tot_val)
    with A1 A2 A3 A5 have a(succ(k)) = F(k) (fst(b(k)))
        using states_seq_props by simp
    moreover from II T2 III have a(k) = fst(b(k))
        by (rule ZF_fun_from_tot_val)
    ultimately have a(\operatorname{succ}(k)) = F(k)(a(k))
        by simp
    } then show }\forallk\inn.a(\operatorname{succ}(k))=F(k)(a(k)
    by simp
qed
```

A consistency condition: if we make the sequence of generating functions shorter, then we get a shorter inductive sequence with the same values as in the original sequence.

```
lemma fin_indseq_var_f_restrict: assumes
```



```
    and A2: i \subseteqn and A3: }\forall\textrm{j}\in\textrm{i}.\textrm{G}(\textrm{j})=F(j) and A4: k \in succ(i
    shows InductiveSeqVarFN(x,X,G,i)(k) = InductiveSeqVarFN(x,X,F,n)(k)
proof -
    let a = InductiveSeqVarFN(x,X,F,n)
    let b = InductiveSeqVarFN(x,X,G,i)
    from A1 A4 have i }\in\mathrm{ nat }k\in\operatorname{succ(i) by auto
    moreover from A1 have b(0) =a(0)
        using fin_indseq_var_f_props by simp
    moreover from A1 A2 A3 have
        \forallj\ini. b(j) = a(j) \longrightarrow b(succ(j)) = a(succ(j))
        using fin_indseq_var_f_props by auto
    ultimately show b(k) = a(k)
        by (rule fin_nat_ind)
qed
```

end

19 Folding in ZF

theory Fold_ZF imports InductiveSeq_ZF

begin

Suppose we have a binary operation $P: X \times X \rightarrow X$ written multiplicatively as $P\langle x, y\rangle=x \cdot y$. In informal mathematics we can take a sequence $\left\{x_{k}\right\}_{k \in 0 . . n}$ of elements of X and consider the product $x_{0} \cdot x_{1} \cdot \ldots \cdot x_{n}$. To do the same thing in formalized mathematics we have to define precisely what is meant by that "...". The definitition we want to use is based on the notion of sequence defined by induction discussed in InductiveSeq_ZF. We don't really want to derive the terminology for this from the word "product" as that would tie it conceptually to the multiplicative notation. This would be awkward when we want to reuse the same notions to talk about sums like $x_{0}+x_{1}+. .+x_{n}$. In functional programming there is something called "fold". Namely for a function f, initial point a and list $[b, c, d]$ the expression fold (f, a, [b, c, d]) is defined to be $\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}, \mathrm{b}), \mathrm{c}), \mathrm{d}$) (in Haskell something like this is called foldl). If we write f in multiplicative notation we get $a \cdot b \cdot c \cdot d$, so this is exactly what we need. The notion of folds in functional programming is actually much more general that what we need here (not that I know anything about that). In this theory file we just make a slight generalization and talk about folding a list with a binary operation $f: X \times Y \rightarrow X$ with X not necessarily the same as Y.

19.1 Folding in ZF

Suppose we have a binary operation $f: X \times Y \rightarrow X$. Then every $y \in Y$ defines a transformation of X defined by $T_{y}(x)=f\langle x, y\rangle$. In IsarMathLib such transformation is called as $\operatorname{Fix} 2$ ndVar (f, y). Using this notion, given a function $f: X \times Y \rightarrow X$ and a sequence $y=\left\{y_{k}\right\}_{k \in N}$ of elements of X we can get a sequence of transformations of X. This is defined in Seq2TransSeq below. Then we use that sequence of tranformations to define the sequence of partial folds (called FoldSeq) by means of InductiveSeqVarFN (defined in InductiveSeq_ZF theory) which implements the inductive sequence determined by a starting point and a sequence of transformations. Finally, we define the fold of a sequence as the last element of the sequence of the partial folds.

Definition that specifies how to convert a sequence a of elements of Y into a sequence of transformations of X, given a binary operation $f: X \times Y \rightarrow X$.

```
definition
    Seq2TrSeq(f,a) \equiv{\langlek,Fix2ndVar(f,a(k))\rangle.k f domain(a)}
```

Definition of a sequence of partial folds.

```
definition
    FoldSeq(f,x,a) \equiv
    InductiveSeqVarFN(x,fstdom(f),Seq2TrSeq(f,a),domain(a))
```

Definition of a fold.

```
definition
    Fold(f,x,a) \equiv Last(FoldSeq(f,x,a))
```

If X is a set with a binary operation $f: X \times Y \rightarrow X$ then $\operatorname{Seq} 2 \operatorname{TransSeqN}(\mathrm{f}, \mathrm{a})$ converts a sequence a of elements of Y into the sequence of corresponding transformations of X.

```
lemma seq2trans_seq_props:
    assumes A1: \(\mathrm{n} \in\) nat and A2: \(\mathrm{f}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X}\) and \(\mathrm{A} 3: \mathrm{a}: \mathrm{n} \rightarrow \mathrm{Y}\) and
    A4: \(T=\operatorname{Seq} 2 \operatorname{TrSeq}(f, a)\)
    shows
    \(\mathrm{T}: \mathrm{n} \rightarrow(\mathrm{X} \rightarrow \mathrm{X})\) and
    \(\forall \mathrm{k} \in \mathrm{n} . \forall \mathrm{x} \in \mathrm{X}\). \((\mathrm{T}(\mathrm{k}))(\mathrm{x})=\mathrm{f}\langle\mathrm{x}, \mathrm{a}(\mathrm{k})\rangle\)
proof -
    from \(\langle\mathrm{a}: \mathrm{n} \rightarrow \mathrm{Y}\rangle\) have D : domain(a) = n using func1_1_L1 by simp
    with A2 A3 A4 show \(T: n \rightarrow(X \rightarrow X)\)
        using apply_funtype fix_2nd_var_fun ZF_fun_from_total Seq2TrSeq_def
        by simp
    with A4 D have \(I: \forall k \in n . T(k)=\operatorname{Fix} 2 \operatorname{ndVar}(f, a(k))\)
        using Seq2TrSeq_def ZF_fun_from_tot_val0 by simp
    \{ fix \(k\) fix \(x\) assume A5: \(k \in n \quad x \in X\)
        with A1 A3 have a(k) \(\in\) Y using apply_funtype
                by auto
            with A2 A5 I have \((T(k))(x)=f\langle x, a(k)\rangle\)
                using fix_var_val by simp
    \} thus \(\forall k \in n . \forall x \in X\). ( \(T(k))(x)=f\langle x, a(k)\rangle\)
        by simp
qed
```

Basic properties of the sequence of partial folds of a sequence $a=\left\{y_{k}\right\}_{k \in\{0, \ldots, n\}}$.
theorem fold_seq_props:
assumes A1: $\mathrm{n} \in$ nat and $\mathrm{A} 2: \mathrm{f}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X}$ and
A3: $\mathrm{y}: \mathrm{n} \rightarrow \mathrm{Y}$ and $\mathrm{A} 4: \mathrm{x} \in \mathrm{X}$ and $\mathrm{A} 5: \mathrm{Y} \neq 0$ and
A6: $F=\operatorname{FoldSeq}(f, x, y)$
shows
$\mathrm{F}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{X}$
$F(0)=x$ and
$\forall \mathrm{k} \in \mathrm{n} . \mathrm{F}(\operatorname{succ}(\mathrm{k}))=\mathrm{f}\langle\mathrm{F}(\mathrm{k}), \mathrm{y}(\mathrm{k})\rangle$
proof -
let $T=\operatorname{Seq} 2 \operatorname{TrSeq}(f, y)$
from A1 A3 have D : domain(y) $=n$
using func1_1_L1 by simp
from $\langle f: X \times Y \rightarrow X\rangle\langle Y \neq 0\rangle$ have $I: f s t d o m(f)=X$
using fstdomdef by simp

```
    with A1 A2 A3 A4 A6 D show
    II: F: succ(n) ->X and F(0) = x
    using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props
    by auto
    from A1 A2 A3 A4 A6 I D have }\forallk\inn. F(succ(k)) = T(k) (F(k)
    using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props
    by simp
    moreover
    { fix k assume A5: k\inn hence k }\in\operatorname{succ}(n)\mathrm{ by auto
    with A1 A2 A3 II A5 have (T(k)) (F(k)) = f {F(k),y(k)\rangle
            using apply_funtype seq2trans_seq_props by simp }
    ultimately show }\forallk\inn.F(\operatorname{succ}(\textrm{k}))=\textrm{f}\langle\textrm{F}(\textrm{k}),\textrm{y}(\textrm{k})
    by simp
qed
```

A consistency condition: if we make the list shorter, then we get a shorter sequence of partial folds with the same values as in the original sequence. This can be proven as a special case of fin_indseq_var_f_restrict but a proof using fold_seq_props and induction turns out to be shorter.

```
lemma foldseq_restrict: assumes
    \(n \in\) nat \(k \in \operatorname{succ}(n)\) and
    i \(\in\) nat \(f: X \times Y \rightarrow X \quad a: n \rightarrow Y\) b : i \(\rightarrow Y\) and
    \(\mathrm{n} \subseteq i \quad \forall j \in \mathrm{n} . \mathrm{b}(\mathrm{j})=\mathrm{a}(\mathrm{j}) \quad \mathrm{x} \in \mathrm{X} \quad \mathrm{Y} \neq 0\)
    shows FoldSeq(f,x,b)(k) = FoldSeq(f,x,a)(k)
proof -
    let \(P=\operatorname{FoldSeq}(f, x, a)\)
    let \(Q=\operatorname{FoldSeq}(f, x, b)\)
    from assms have
        \(\mathrm{n} \in\) nat \(\mathrm{k} \in \operatorname{succ}(\mathrm{n})\)
        \(Q(0)=P(0)\) and
        \(\forall j \in \mathrm{n} \cdot \mathrm{Q}(\mathrm{j})=\mathrm{P}(\mathrm{j}) \longrightarrow \mathrm{Q}(\operatorname{succ}(\mathrm{j}))=P(\operatorname{succ}(j))\)
        using fold_seq_props by auto
    then show \(Q(k)=P(k)\) by (rule fin_nat_ind)
qed
```

A special case of foldseq_restrict when the longer sequence is created from the shorter one by appending one element.

```
corollary fold_seq_append:
    assumes \(\mathrm{n} \in\) nat \(\mathrm{f}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X} \quad \mathrm{a}: \mathrm{n} \rightarrow \mathrm{Y}\) and
    \(x \in X \quad k \in \operatorname{succ}(n) \quad y \in Y\)
    shows FoldSeq(f,x,Append (a,y))(k) = FoldSeq(f,x,a)(k)
proof -
    let \(\mathrm{b}=\operatorname{Append}(\mathrm{a}, \mathrm{y})\)
    from assms have \(b: \operatorname{succ}(n) \rightarrow Y \quad \forall j \in n . b(j)=a(j)\)
        using append_props by auto
    with assms show thesis using foldseq_restrict by blast
qed
```

What we really will be using is the notion of the fold of a sequence, which we
define as the last element of (inductively defined) sequence of partial folds. The next theorem lists some properties of the product of the fold operation.

```
theorem fold_props:
    assumes A1: \(\mathrm{n} \in\) nat and
    A2: \(f: X \times Y \rightarrow X \quad a: n \rightarrow Y \quad x \in X \quad Y \neq 0\)
    shows
    \(\operatorname{Fold}(f, x, a)=\operatorname{FoldSeq}(f, x, a)(n)\) and
    Fold \((f, x, a) \in X\)
proof -
    from assms have FoldSeq(f,x,a): succ(n) \(\rightarrow X\)
        using fold_seq_props by simp
    with A1 show
        Fold \((f, x, a)=\operatorname{FoldSeq}(f, x, a)(n)\) and Fold \((f, x, a) \in X\)
        using last_seq_elem apply_funtype Fold_def by auto
qed
```

A corner case: what happens when we fold an empty list?

```
theorem fold_empty: assumes A1: \(f: X \times Y \rightarrow X\) and
    A2: \(a: 0 \rightarrow Y \quad x \in X \quad Y \neq 0\)
    shows Fold \((f, x, a)=x\)
proof -
    let \(F=\operatorname{FoldSeq}(f, x, a)\)
    from assms have \(I\) :
            \(0 \in\) nat \(f: X \times Y \rightarrow X \quad a: 0 \rightarrow Y \quad x \in X \quad Y \neq 0\)
            by auto
    then have \(\operatorname{Fold}(f, x, a)=F(0)\) by (rule fold_props)
    moreover
    from I have
            \(0 \in\) nat \(f: X \times Y \rightarrow X \quad a: 0 \rightarrow Y \quad x \in X \quad Y \neq 0\) and
            F = FoldSeq(f,x,a) by auto
    then have \(F(0)=x\) by (rule fold_seq_props)
    ultimately show Fold \((f, x, a)=x\) by simp
qed
```

The next theorem tells us what happens to the fold of a sequence when we add one more element to it.

```
theorem fold_append:
    assumes A1: \(\mathrm{n} \in\) nat and \(\mathrm{A} 2: \mathrm{f}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{X}\) and
    A3: \(a: n \rightarrow Y\) and \(A 4: x \in X\) and \(A 5: y \in Y\)
    shows
    FoldSeq( \(f, x, \operatorname{Append}(a, y))(n)=F o l d(f, x, a)\) and
    Fold (f,x,Append (a,y)) \(=f\langle\) Fold (f,x,a), \(y\rangle\)
proof -
    let \(\mathrm{b}=\operatorname{Append}(\mathrm{a}, \mathrm{y})\)
    let \(P=\operatorname{FoldSeq}(f, x, b)\)
    from A5 have \(I: Y \neq 0\) by auto
    with assms show thesis1: \(P(n)=F o l d(f, x, a)\)
        using fold_seq_append fold_props by simp
```

```
    from assms I have II:
        succ(n) \in nat f : X XY }->\textrm{X
        b : succ(n) -> Y x\inX Y = 0
        P = FoldSeq(f,x,b)
        using append_props by auto
    then have
        \forallk\in\operatorname{succ}(n). P(succ(k)) = f {P(k), b(k)\rangle
        by (rule fold_seq_props)
    with A3 A5 thesis1 have P(succ(n)) = f { Fold(f,x,a), y\rangle
        using append_props by auto
    moreover
    from II have P : succ(\operatorname{succ}(n)) }->\textrm{X
        by (rule fold_seq_props)
    then have Fold(f,x,b) = P(\operatorname{succ}(n))
        using last_seq_elem Fold_def by simp
    ultimately show Fold(f,x,Append(a,y)) = f f Fold(f,x,a), y\rangle
    by simp
qed
end
```


20 Partitions of sets

theory Partitions_ZF imports Finite_ZF FiniteSeq_ZF

begin

It is a common trick in proofs that we divide a set into non-overlapping subsets. The first case is when we split the set into two nonempty disjoint sets. Here this is modeled as an ordered pair of sets and the set of such divisions of set X is called Bisections(X). The second variation on this theme is a set-valued function (aren't they all in ZF?) whose values are nonempty and mutually disjoint.

20.1 Bisections

This section is about dividing sets into two non-overlapping subsets.
The set of bisections of a given set A is a set of pairs of nonempty subsets of A that do not overlap and their union is equal to A.

definition

```
    Bisections (X) \(=\{p \in \operatorname{Pow}(X) \times \operatorname{Pow}(X)\).
    fst \((p) \neq 0 \wedge \operatorname{snd}(p) \neq 0 \wedge\) fst \((p) \cap \operatorname{snd}(p)=0 \wedge\) fst \((p) \cup \operatorname{snd}(p)=X\}\)
```

Properties of bisections.
lemma bisec_props: assumes $\langle A, B\rangle \in$ Bisections(X) shows

```
A\not=0 B\not=0 A\subseteqX B\subseteqX A \cap B = 0 A \cup B = X X = 0
using assms Bisections_def by auto
```

Kind of inverse of bisec_props: a pair of nonempty disjoint sets form a bisection of their union.

```
lemma is_bisec:
    assumes \(A \neq 0 \quad B \neq 0 \quad A \cap B=0\)
    shows \(\langle A, B\rangle \in\) Bisections \((A \cup B)\) using assms Bisections_def
    by auto
```

Bisection of X is a pair of subsets of X.

```
lemma bisec_is_pair: assumes \(Q \in\) Bisections(X)
    shows \(Q=\langle f s t(Q)\), snd (Q) \(\rangle\)
    using assms Bisections_def by auto
```

The set of bisections of the empty set is empty.

```
lemma bisec_empty: shows Bisections(0) = 0
    using Bisections_def by auto
```

The next lemma shows what can we say about bisections of a set with another element added.

```
lemma bisec_add_point:
    assumes \(A 1: ~ x \notin X\) and \(A 2:\langle A, B\rangle \in\) Bisections \((X \cup\{x\})\)
    shows \((A=\{x\} \vee B=\{x\}) \vee(\langle A-\{x\}, B-\{x\}\rangle \in\) Bisections \((X))\)
    proof -
        \(\{\) assume \(A \neq\{x\}\) and \(B \neq\{x\}\)
            with \(A 2\) have \(A-\{x\} \neq 0\) and \(B-\{x\} \neq 0\)
    using singl_diff_empty Bisections_def
    by auto
        moreover have \((A-\{x\}) \cup(B-\{x\})=X\)
        proof -
    have \((A-\{x\}) \cup(B-\{x\})=(A \cup B)-\{x\}\)
        by auto
    also from assms have \((A \cup B)-\{x\}=X\)
    using Bisections_def by auto
finally show thesis by simp
            qed
            moreover from A2 have \((A-\{x\}) \cap(B-\{x\})=0\)
using Bisections_def by auto
            ultimately have \(\langle A-\{x\}, B-\{x\}\rangle \in\) Bisections \((X)\)
using Bisections_def by auto
        \} thus thesis by auto
qed
```

A continuation of the lemma bisec_add_point that refines the case when the pair with removed point bisects the original set.

```
lemma bisec_add_point_case3:
    assumes A1: \langleA,B\rangle\in Bisections(X \cup {x})
```

```
    and A2: \langleA - {x}, B - {x}\rangle \in Bisections(X)
    shows
    (\langleA, B - {x}\rangle}\in\mathrm{ Bisections(X) ^ x 隹) V
    (\langleA - {x}, B\rangle\in Bisections(X) ^ x G A)
proof -
    from A1 have x }\inA\cup
        using Bisections_def by auto
    hence }x\inA\veex\inB\mathrm{ by simp
    from A1 have A - {x} = A \vee B - {x} = B
        using Bisections_def by auto
    moreover
    { assume A - {x} = A
        with A2 }\langlex\inA\cupB\rangle\mathrm{ have
            A, B - {x}\rangle E Bisections(X) ^ x }\in
            using singl_diff_eq by simp }
    moreover
    { assume B - {x} = B
        with A2 }{x\inA\cupB) hav
            |A - {x}, B\rangle\in Bisections(X) ^ x \in A
            using singl_diff_eq by simp }
    ultimately show thesis by auto
qed
```

Another lemma about bisecting a set with an added point.

```
lemma point_set_bisec:
    assumes A1: \(\mathrm{x} \notin \mathrm{X}\) and \(\mathrm{A} 2:\langle\{\mathrm{x}\}, \mathrm{A}\rangle \in \operatorname{Bisections(X\cup \{ x\} )}\)
    shows \(A=X\) and \(X \neq 0\)
proof -
    from A2 have \(A \subseteq X\) using Bisections_def by auto
    moreover
    \{ fix a assume \(a \in X\)
        with A2 have \(a \in\{x\} \cup A\) using Bisections_def by simp
        with \(A 1\langle a \in X\rangle\) have \(a \in A\) by auto \(\}\)
    ultimately show \(\mathrm{A}=\mathrm{X}\) by auto
    with A2 show \(X \neq 0\) using Bisections_def by simp
qed
```

Yet another lemma about bisecting a set with an added point, very similar to point_set_bisec with almost the same proof.
lemma set_point_bisec:
assumes A1: $\mathrm{x} \notin \mathrm{X}$ and $\mathrm{A} 2:\langle\mathrm{A},\{\mathrm{x}\}\rangle \in \operatorname{Bisections}(\mathrm{X} \cup\{\mathrm{x}\})$
shows $A=X$ and $X \neq 0$
proof -
from A2 have $A \subseteq X$ using Bisections_def by auto
moreover
\{ fix a assume $a \in X$
with A2 have $a \in A \cup\{x\}$ using Bisections_def by simp
with $A 1\langle a \in X\rangle$ have $a \in A$ by auto $\}$
ultimately show $\mathrm{A}=\mathrm{X}$ by auto

```
    with A2 show X }=0\mathrm{ using Bisections_def by simp
qed
```

If a pair of sets bisects a finite set, then both elements of the pair are finite.

```
lemma bisect_fin:
    assumes A1: A \in FinPow(X) and A2: Q \in Bisections(A)
    shows fst(Q) \in FinPow(X) and snd(Q) \in FinPow(X)
proof -
    from A2 have \langlefst(Q), snd(Q)\rangle}\in\mathrm{ Bisections(A)
        using bisec_is_pair by simp
    then have fst(Q)\subseteqA and snd(Q)\subseteqA
        using bisec_props by auto
    with A1 show fst(Q) \in FinPow(X) and snd(Q) \in FinPow(X)
        using FinPow_def subset_Finite by auto
qed
```


20.2 Partitions

This sections covers the situation when we have an arbitrary number of sets we want to partition into.

We define a notion of a partition as a set valued function such that the values for different arguments are disjoint. The name is derived from the fact that such function "partitions" the union of its arguments. Please let me know if you have a better idea for a name for such notion. We would prefer to say "is a partition", but that reserves the letter "a" as a keyword(?) which causes problems.

```
definition
    Partition (_ {is partition} [90] 91) where
    P {is partition} \equiv }\forall\textrm{x}\in\operatorname{domain(P).
    P(x) \not=0^(\forally\in\operatorname{domain}(P). x\not=y\longrightarrowP(x)\capP(y)=0)
```

A fact about lists of mutually disjoint sets.

```
lemma list_partition: assumes A1: n \in nat and
    A2: a : succ(n) -> X a {is partition}
    shows (Ui\inn. a(i)) \cap a(n) = 0
proof -
    { assume (\bigcupi\inn. a(i)) \cap a(n) \not=0
        then have \existsx. x f (\bigcupi\inn. a(i)) \cap a(n)
                by (rule nonempty_has_element)
            then obtain }x\mathrm{ where }x\in(\bigcupi\inn.a(i)) and I: x \ina(n
                by auto
            then obtain i where i }\in\textrm{n}\mathrm{ and x }\in\textrm{a}(\textrm{i})\mathrm{ by auto
            with A2 I have False
                using mem_imp_not_eq func1_1_L1 Partition_def
                by auto
    } thus thesis by auto
qed
```

We can turn every injection into a partition.

```
lemma inj_partition:
    assumes A1: b \in inj(X,Y)
    shows
    \forallx\inX. {\langlex, {b(x)}\rangle. x 
    {\langlex, {b(x)}\rangle. x \in X} {is partition}
proof -
    let p = {\langlex, {b(x)}\rangle. x 
    { fix x assume x }\in
        from A1 have b : X }->\textrm{Y}\mathrm{ using inj_def
            by simp
        with }\langlex\inX\rangle\mathrm{ have {b(x)} }\in\operatorname{Pow}(Y
            using apply_funtype by simp
    } hence }\forallx\inX.{b(x)}\inPow(Y) by sim
    then have p : X }->\mathrm{ Pow(Y) using ZF_fun_from_total
        by simp
    then have domain(p) = X using func1_1_L1
        by simp
    from <p : X }->\mathrm{ Pow(Y) show I: }\forallx\inX. p(x) = {b(x)
        using ZF_fun_from_tot_val0 by simp
    { fix }x\mathrm{ assume }x\in
        with I have }p(x)={b(x)} by sim
        hence p(x) f 0 by simp
        moreover
        {fix t assume t }\inX\mathrm{ and }x\not=
            with A1 }\langlex\inX\rangle\mathrm{ have b(x) f b(t) using inj_def
    by auto
                with I \langlex\inX\rangle\langlet\inX\rangle have p(x) \cap p(t) = 0
    by auto }
        ultimately have
            p(x) f=0^(\forallt ( 
            by simp
    } with <domain (p) = X show {\langlex, {b(x)}\rangle. x 位X} {is partition}
        using Partition_def by simp
qed
```

end

21 Enumerations

theory Enumeration_ZF imports NatOrder_ZF FiniteSeq_ZF FinOrd_ZF
begin
Suppose r is a linear order on a set A that has n elements, where $n \in \mathbb{N}$. In the FinOrd_ZF theory we prove a theorem stating that there is a unique
order isomorphism between $n=\{0,1, . ., n-1\}$ (with natural order) and A. Another way of stating that is that there is a unique way of counting the elements of A in the order increasing according to relation r. Yet another way of stating the same thing is that there is a unique sorted list of elements of A. We will call this list the Enumeration of A.

21.1 Enumerations: definition and notation

In this section we introduce the notion of enumeration and define a proof context (a "locale" in Isabelle terms) that sets up the notation for writing about enumarations.

We define enumeration as the only order isomorphism beween a set A and the number of its elements. We are using the formula $\bigcup\{x\}=x$ to extract the only element from a singleton. Le is the (natural) order on natural numbers, defined is Nat_ZF theory in the standard Isabelle library.

```
definition
    Enumeration(A,r) \equiv \ ord_iso(|A|,Le,A,r)
```

To set up the notation we define a locale enums. In this locale we will assume that r is a linear order on some set X. In most applications this set will be just the set of natural numbers. Standard Isabelle uses \leq to denote the "less or equal" relation on natural numbers. We will use the \leq symbol to denote the relation r. Those two symbols usually look the same in the presentation, but they are different in the source. To shorten the notation the enumeration Enumeration (A, r) will be denoted as $\sigma(A)$. Similarly as in the Semigroup theory we will write $a \hookleftarrow x$ for the result of appending an element x to the finite sequence (list) a. Finally, $a \sqcup b$ will denote the concatenation of the lists a and b.
locale enums =

```
fixes X r
assumes linord: IsLinOrder (X,r)
fixes ler (infix \(\leq 70\) )
defines ler_def[simp]: \(\mathrm{x} \leq \mathrm{y} \equiv\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\)
fixes \(\sigma\)
defines \(\sigma_{-}\)def [simp]: \(\sigma(\mathrm{A}) \equiv\) Enumeration(A,r)
fixes append (infix \(\hookleftarrow 72\) )
defines append_def[simp]: \(\mathrm{a} \hookleftarrow \mathrm{x} \equiv\) Append (a, x )
fixes concat (infixl \(\sqcup\) 69)
defines concat_def[simp]: a \(\sqcup \mathrm{b} \equiv \operatorname{Concat(a,b)}\)
```


21.2 Properties of enumerations

In this section we prove basic facts about enumerations.
A special case of the existence and uniqueess of the order isomorphism for finite sets when the first set is a natural number.

```
lemma (in enums) ord_iso_nat_fin:
    assumes A}\in\operatorname{FinPow(X) and n }\in\mathrm{ nat and A }\approx
    shows \exists!f. f \in ord_iso(n,Le,A,r)
    using assms NatOrder_ZF_1_L2 linord nat_finpow_nat
        fin_ord_iso_ex_uniq by simp
```

An enumeration is an order isomorhism, a bijection, and a list.

```
lemma (in enums) enum_props: assumes A \in FinPow(X)
    shows
    \sigma(A) \in ord_iso(|A|,Le, A,r)
    \sigma(A) \in bij(|A|,A)
    \sigma(A): |A| -> A
proof -
    from assms have
        IsLinOrder(nat,Le) and |A| \in FinPow(nat) and A 
        using NatOrder_ZF_1_L2 card_fin_is_nat nat_finpow_nat
        by auto
    with assms show \sigma(A) \in ord_iso(|A|,Le, A,r)
        using linord fin_ord_iso_ex_uniq singleton_extract
            Enumeration_def by simp
    then show }\sigma(\textrm{A})\in\operatorname{bij}(|\textrm{A}|,\textrm{A})\mathrm{ and }\sigma(\textrm{A}):|\textrm{A}|->\textrm{A
        using ord_iso_def bij_def surj_def
        by auto
qed
```

A corollary from enum_props. Could have been attached as another assertion, but this slows down verification of some other proofs.

```
lemma (in enums) enum_fun: assumes \(A \in \operatorname{FinPow}(X)\)
    shows \(\sigma(\mathrm{A}):|\mathrm{A}| \rightarrow \mathrm{X}\)
proof -
    from assms have \(\sigma(\mathrm{A}):|\mathrm{A}| \rightarrow \mathrm{A}\) and \(\mathrm{A} \subseteq \mathrm{X}\)
        using enum_props FinPow_def by auto
    then show \(\sigma(\mathrm{A}):|\mathrm{A}| \rightarrow \mathrm{X}\) by (rule func1_1_L1B)
qed
```

If a list is an order isomorphism then it must be the enumeration.

```
lemma (in enums) ord_iso_enum: assumes A1: A \in FinPow(X) and
    A2: n \in nat and A3: f \in ord_iso(n,Le,A,r)
    shows f = \sigma(A)
proof -
    from A3 have n \approx A using ord_iso_def eqpoll_def
        by auto
```

```
    then have \(\mathrm{A} \approx \mathrm{n}\) by (rule eqpoll_sym)
    with A1 A2 have \(\exists\) !f. f \(\in\) ord_iso( \(n, L e, A, r\) )
    using ord_iso_nat_fin by simp
    with assms \(\langle\mathrm{A} \approx \mathrm{n}\rangle\) show \(\mathrm{f}=\sigma(\mathrm{A})\)
        using enum_props card_card by blast
qed
```

What is the enumeration of the empty set?

```
lemma (in enums) empty_enum: shows \sigma(0) = 0
proof -
    have
        0 f FinPow(X) and 0 E nat and 0 \in ord_iso(0,Le,0,r)
        using empty_in_finpow empty_ord_iso_empty
        by auto
    then show }\sigma(0)=0\mathrm{ using ord_iso_enum
        by blast
qed
```

Adding a new maximum to a set appends it to the enumeration.

```
lemma (in enums) enum_append:
    assumes A1: \(\mathrm{A} \in \operatorname{FinPow}(\mathrm{X})\) and \(\mathrm{A} 2: \mathrm{b} \in \mathrm{X}-\mathrm{A}\) and
    A3: \(\forall \mathrm{a} \in \mathrm{A} . \mathrm{a} \leq \mathrm{b}\)
    shows \(\sigma(\mathrm{A} \cup\{\mathrm{b}\})=\sigma(\mathrm{A}) \hookleftarrow \mathrm{b}\)
proof -
    let \(\mathrm{f}=\sigma(\mathrm{A}) \cup\{\langle | \mathrm{A}|, \mathrm{b}\rangle\}\)
    from A1 have \(|A| \in\) nat using card_fin_is_nat
        by simp
    from A1 A2 have \(A \cup\{b\} \in \operatorname{FinPow}(X)\)
        using singleton_in_finpow union_finpow by simp
    moreover from this have \(|A \cup\{b\}| \in\) nat
        using card_fin_is_nat by simp
    moreover have \(f \in\) ord_iso \((|A \cup\{b\}|\), Le, \(A \cup\{b\}, r)\)
    proof -
        from A1 A2 have
            \(\sigma(A) \in\) ord_iso(|A|,Le, A,r) and
            \(|\mathrm{A}| \notin|\mathrm{A}|\) and \(\mathrm{b} \notin \mathrm{A}\)
            using enum_props mem_not_refl by auto
        moreover from \(\langle | A \mid \in\) nat have
                \(\forall \mathrm{k} \in|\mathrm{A}| .\langle\mathrm{k}| ,\mathrm{A}| \rangle \in \mathrm{Le}\)
                using elem_nat_is_nat by blast
            moreover from \(A 3\) have \(\forall \mathrm{a} \in \mathrm{A} .\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r}\) by simp
            moreover have antisym(Le) and antisym(r)
                using linord NatOrder_ZF_1_L2 IsLinOrder_def by auto
            moreover
            from \(A 2\langle | A \mid \in\) nat \(\rangle\) have
                \(\langle | A|,|A|\rangle \in\) Le and \(\langle b, b\rangle \in r\)
                using linord NatOrder_ZF_1_L2 IsLinOrder_def
    total_is_refl refl_def by auto
            hence \(\langle | A|,|A|\rangle \in \operatorname{Le} \longleftrightarrow\langle b, b\rangle \in \mathrm{r}\) by simp
```

```
    ultimately have f \in ord_iso(|A| \cup {|A|} , Le, A \cup {b} ,r)
        by (rule ord_iso_extend)
    with A1 A2 show f \in ord_iso(|A \cup {b}| , Le, A \cup {b} ,r)
        using card_fin_add_one by simp
    qed
    ultimately have f = \sigma (A \cup {b})
    using ord_iso_enum by simp
    moreover have }\sigma(\textrm{A})\hookleftarrow\textrm{b}=\textrm{f
    proof -
        have }\sigma(\textrm{A})\hookleftarrow\textrm{b}=\sigma(\textrm{A})\cup{\langle\operatorname{domain}(\sigma(\textrm{A})),\textrm{b}\rangle
        using Append_def by simp
    moreover from A1 have domain}(\sigma(A))=|A
        using enum_props func1_1_L1 by blast
    ultimately show }\sigma(\textrm{A})\hookleftarrow\textrm{b}=\textrm{f}\mathrm{ by simp
    qed
    ultimately show }\sigma(\textrm{A}\cup{\textrm{b}})=\sigma(\textrm{A})\hookleftarrow\textrm{b}\mathrm{ by simp
qed
```

What is the enumeration of a singleton?

```
lemma (in enums) enum_singleton:
    assumes A1: x\inX shows }\sigma({\textrm{x}}):1->\textrm{X}\mathrm{ and }\sigma({\textrm{x}})(0)=\textrm{x
    proof -
        from A1 have
            0 G FinPow(X) and x ( 
            using empty_in_finpow by auto
        then have }\sigma(0\cup{x})=\sigma(0)\hookleftarrow\textrm{x}\mathrm{ by (rule enum_append)
        with A1 show }\sigma({x}):1->\textrm{X}\mathrm{ and }\sigma({\textrm{x}})(0)=\textrm{x
            using empty_enum empty_append1 by auto
qed
```

end

22 Semigroups

theory Semigroup_ZF imports Partitions_ZF Fold_ZF Enumeration_ZF
begin
It seems that the minimal setup needed to talk about a product of a sequence is a set with a binary operation. Such object is called "magma". However, interesting properties show up when the binary operation is associative and such alebraic structure is called a semigroup. In this theory file we define and study sequences of partial products of sequences of magma and semigroup elements.

22.1 Products of sequences of semigroup elements

Semigroup is a a magma in which the binary operation is associative. In this section we mostly study the products of sequences of elements of semigroup. The goal is to establish the fact that taking the product of a sequence is distributive with respect to concatenation of sequences, i.e for two sequences a, b of the semigroup elements we have $\Pi(a \sqcup b)=\left(\prod a\right) \cdot(\Pi b)$, where " $a \sqcup b$ " is concatenation of a and b ($a++b$ in Haskell notation). Less formally, we want to show that we can discard parantheses in expressions of the form $\left(a_{0} \cdot a_{1} \cdot . . a_{n}\right) \cdot\left(b_{0} \cdot . . b_{k}\right)$.
First we define a notion similar to Fold, except that that the initial element of the fold is given by the first element of sequence. By analogy with Haskell fold we call that Fold1

```
definition
    Fold1(f,a) \equiv Fold(f,a(0),Tail(a))
```

The definition of the semigro context below introduces notation for writing about finite sequences and semigroup products. In the context we fix the carrier and denote it G. The binary operation on G is called f. All theorems proven in the context semigr0 will implicitly assume that f is an associative operation on G. We will use multiplicative notation for the semigroup operation. The product of a sequence a is denoted $\prod a$. We will write $a \hookleftarrow x$ for the result of appending an element x to the finite sequence (list) a. This is a bit nonstandard, but I don't have a better idea for the "append" notation. Finally, $a \sqcup b$ will denote the concatenation of the lists a and b.

```
locale semigr0 =
    fixes G f
assumes assoc_assum: f {is associative on} G
fixes prod (infixl . 72)
defines prod_def [simp]: x · y \equiv f \x,y\rangle
fixes seqprod (П _ 71)
defines seqprod_def [simp]: \ a \equiv Fold1(f,a)
fixes append (infix \hookleftarrow 72)
defines append_def [simp]: a \hookleftarrow x \equiv Append(a,x)
fixes concat (infixl \sqcup 69)
defines concat_def [simp]: a \sqcup b \equiv Concat(a,b)
```

The next lemma shows our assumption on the associativity of the semigroup operation in the notation defined in in the semigro context.

```
lemma (in semigr0) semigr_assoc: assumes }x\inG y G G z G G
```

```
shows \(x \cdot y \cdot z=x \cdot(y \cdot z)\)
using assms assoc_assum IsAssociative_def by simp
```

In the way we define associativity the assumption that f is associative on G also implies that it is a binary operation on X.

```
lemma (in semigr0) semigr_binop: shows f : G \ G ->G
    using assoc_assum IsAssociative_def by simp
```

Semigroup operation is closed.

```
lemma (in semigr0) semigr_closed:
    assumes a\inG b\inG shows a\cdotb }\in
    using assms semigr_binop apply_funtype by simp
```

Lemma append_1elem written in the notation used in the semigr0 context.
lemma (in semigr0) append_1elem_nice:
assumes $\mathrm{n} \in$ nat and $\mathrm{a}: \mathrm{n} \rightarrow \mathrm{X}$ and $\mathrm{b}: 1 \rightarrow \mathrm{X}$
shows $\mathrm{a} \sqcup \mathrm{b}=\mathrm{a} \hookleftarrow \mathrm{b}(0)$
using assms append_1elem by simp
Lemma concat_init_last_elem rewritten in the notation used in the semigr0 context.

```
lemma (in semigr0) concat_init_last:
    assumes n n nat k nat and
    a: n }->\textrm{X}\mathrm{ and b : succ(k) }->\textrm{X
    shows (a }\sqcup\operatorname{Init(b)) \hookleftarrow b(k) = a }\sqcup\textrm{b
    using assms concat_init_last_elem by simp
```

The product of semigroup (actually, magma - we don't need associativity for this) elements is in the semigroup.

```
lemma (in semigr0) prod_type:
    assumes \(n \in\) nat and \(a: \operatorname{succ}(n) \rightarrow G\)
    shows \(\left(\prod\right.\) a) \(\in G\)
proof -
    from assms have
        \(\operatorname{succ}(\mathrm{n}) \in\) nat \(\mathrm{f}: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}\) Tail(a) \(: \mathrm{n} \rightarrow \mathrm{G}\)
        using semigr_binop tail_props by auto
    moreover from assms have \(a(0) \in G\) and \(G \neq 0\)
        using empty_in_every_succ apply_funtype
        by auto
    ultimately show ( \(\prod_{\text {a }}\) ) \(\in\) G using Fold1_def fold_props
        by simp
qed
```

What is the product of one element list?
lemma (in semigr0) prod_of_1elem: assumes A1: a: $1 \rightarrow \mathrm{G}$
shows $\left(\prod\right.$ a) $=a(0)$
proof -

```
    have f : G\timesG -> G using semigr_binop by simp
    moreover from A1 have Tail(a) : 0 G G using tail_props
        by blast
    moreover from A1 have a(0) }\in\textrm{G}\mathrm{ and G }\not=
        using apply_funtype by auto
    ultimately show (\Pi a) = a(0) using fold_empty Fold1_def
        by simp
qed
```

What happens to the product of a list when we append an element to the list?

```
lemma (in semigr0) prod_append: assumes A1: n \in nat and
    A2: a : succ(n) }->\textrm{G}\mathrm{ and A3: xGG
    shows (\prod a\hookleftarrowx) = (\prod a) \cdot x
proof -
    from A1 A2 have I: Tail(a) : n -> G a(0) \in G
        using tail_props empty_in_every_succ apply_funtype
        by auto
    from assms have (\prod a\hookleftarrowx) = Fold(f,a(0),Tail(a)\hookleftarrowx)
        using head_of_append tail_append_commute Fold1_def
        by simp
    also from A1 A3 I have ... = (П a) . x
            using semigr_binop fold_append Fold1_def
            by simp
    finally show thesis by simp
qed
```

The main theorem of the section: taking the product of a sequence is distributive with respect to concatenation of sequences. The proof is by induction on the length of the second list.

```
theorem (in semigr0) prod_conc_distr:
    assumes A1: \(n \in\) nat \(k \in\) nat and
    A2: \(a: \operatorname{succ}(n) \rightarrow G \quad b: \operatorname{succ}(k) \rightarrow G\)
    shows \(\left(\prod \mathrm{a}\right) \cdot\left(\prod \mathrm{b}\right)=\prod(\mathrm{a} \sqcup \mathrm{b})\)
proof -
    from A1 have \(k \in\) nat by simp
    moreover have \(\forall \mathrm{b} \in \operatorname{succ}(0) \rightarrow \mathrm{G} .\left(\prod \mathrm{a}\right) \cdot\left(\prod \mathrm{b}\right)=\Pi(\mathrm{a} \sqcup \mathrm{b})\)
    proof -
        \(\{\) fix b assume \(A 3: b: \operatorname{succ}(0) \rightarrow G\)
        with A1 A2 have
    \(\operatorname{succ}(\mathrm{n}) \in\) nat \(\mathrm{a}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{G} \quad \mathrm{b}: 1 \rightarrow \mathrm{G}\)
    by auto
        then have \(\mathrm{a} ~ \sqcup \mathrm{~b}=\mathrm{a} \hookleftarrow \mathrm{b}(0)\) by (rule append_1elem_nice)
        with A1 A2 A3 have ( \(\Pi\) a) \(\cdot\left(\prod \mathrm{b}\right)=\prod(\mathrm{a} \sqcup \mathrm{b})\)
    using apply_funtype prod_append semigr_binop prod_of_1elem
by simp
            \} thus thesis by simp
qed
moreover have \(\forall j \in\) nat.
```

```
    (\forallb 的cc(j) ->G. (\prod a) . (П b) = П (a \sqcupb)) \longrightarrow
    (\forall\textrm{b}\in\operatorname{succ}(\operatorname{succ}(j))->G.(\Pia)\cdot(\Pi\textrm{b})=\Pi(a\sqcupb))
    proof -
    { fix j assume A4: j \in nat and
        A5: ( }\forall\textrm{b}\in\operatorname{succ}(\textrm{j})->G.(\prod\textrm{a})\cdot(\\textrm{b})=\(\textrm{a }\sqcup\textrm{b})
        { fix b assume A6: b : succ(\operatorname{succ}(j)) ->G
let c = Init(b)
from A4 A6 have T: b (succ (j)) \inG and
    I:c: succ(j) ->G and II: b = c\hookleftarrowb (succ(j))
    using apply_funtype init_props by auto
from A1 A2 A4 A6 have
    succ(n) \in nat succ(j) \in nat
    a : succ(n) }->\textrm{G}\quad\textrm{b}:\operatorname{succ}(\operatorname{succ}(j))->
    by auto
then have III: (a }\sqcup\textrm{c})\hookleftarrow\textrm{b}(\operatorname{succ}(j))=a \sqcup b 
    by (rule concat_init_last)
from A4 I T have (П c\hookleftarrowb (\operatorname{succ}(j))) = (П c) . b (\operatorname{succ}(j))
    by (rule prod_append)
with II have
    (П a) \cdot (П b) = (П a) \cdot ((П c) \cdot b (\operatorname{succ}(j)))
    by simp
moreover from A1 A2 A4 T I have
    (\proda) \inG (П c) \inG b (\operatorname{succ}(j)) \inG
    using prod_type by auto
ultimately have
```



```
    using semigr_assoc by auto
with A5 I have (П a) . (П b) = (П (a \sqcupc))\cdotb(\operatorname{succ}(j))
    by simp
moreover
from A1 A2 A4 I have
    T1: succ(n) \in nat succ(j) \in nat and
    a : succ(n) }->\textrm{G}\quad\textrm{c}:\operatorname{succ}(\textrm{j})->
    by auto
then have Concat(a,c): succ(n) #+ succ(j) -> G
    by (rule concat_props)
with A1 A4 T have
    succ(n #+ j) \in nat
    a \sqcupc : succ(succ(n #+j)) ->G
    b(\operatorname{succ}(j)) \inG
    using succ_plus by auto
then have
    (П (a \sqcup c)\hookleftarrowb (\operatorname{succ}(j))) = (П (a \sqcup c))\cdotb (\operatorname{succ}(j))
    by (rule prod_append)
with III have (П (a \sqcupc))\cdotb(\operatorname{succ}(j))= \Pi (a \sqcupb)
    by simp
ultimately have (\Pi a) . (П b) = П (a \sqcup b)
    by simp
        } hence ( }\forall\textrm{b}\in\operatorname{succ}(\operatorname{succ}(\textrm{j}))->G.(\prod\textrm{a})\cdot(\\textrm{b})=\(\textrm{a }\sqcup\textrm{b})
```

```
by simp
    } thus thesis by blast
    qed
    ultimately have }\forall\textrm{b}\in\operatorname{succ}(\textrm{k})->\textrm{G}.(\\textrm{a})\cdot(\\textrm{b})=\(\textrm{a }\sqcup\textrm{b}
        by (rule ind_on_nat)
    with A2 show (\prod a) \cdot (\prod b) = П (a \sqcupb) by simp
qed
```


22.2 Products over sets of indices

In this section we study the properties of expressions of the form $\prod_{i \in \Lambda} a_{i}=$ $a_{i_{0}} \cdot a_{i_{1}} \cdot . . \cdot a_{i-1}$, i.e. what we denote as $\Pi(\Lambda, \mathrm{a}) . \Lambda$ here is a finite subset of some set X and a is a function defined on X with values in the semigroup G.

Suppose $a: X \rightarrow G$ is an indexed family of elements of a semigroup G and $\Lambda=\left\{i_{0}, i_{1}, . ., i_{n-1}\right\} \subseteq \mathbb{N}$ is a finite set of indices. We want to define $\prod_{i \in \Lambda} a_{i}=a_{i_{0}} \cdot a_{i_{1}} \cdot . . \cdot a_{i-1}$. To do that we use the notion of Enumeration defined in the Enumeration_ZF theory file that takes a set of indices and lists them in increasing order, thus converting it to list. Then we use the Fold1 to multiply the resulting list. Recall that in Isabelle/ZF the capital letter "O" denotes the composition of two functions (or relations).

definition

$\operatorname{SetFold}(f, a, \Lambda, r)=\operatorname{Fold} 1(f, a \quad 0$ Enumeration $(\Lambda, r))$
For a finite subset Λ of a linearly ordered set X we will write $\sigma(\Lambda)$ to denote the enumeration of the elements of Λ, i.e. the only order isomorphism $|\Lambda| \rightarrow$ Λ, where $|\Lambda| \in \mathbb{N}$ is the number of elements of Λ. We also define notation for taking a product over a set of indices of some sequence of semigroup elements. The product of semigroup elements over some set $\Lambda \subseteq X$ of indices of a sequence $a: X \rightarrow G$ (i.e. $\left.\prod_{i \in \Lambda} a_{i}\right)$ is denoted $\Pi(\Lambda, \mathrm{a})$. In the semigr1 context we assume that a is a function defined on some linearly ordered set X with values in the semigroup G.

```
locale semigr1 = semigr0 +
    fixes X r
    assumes linord: IsLinOrder(X,r)
    fixes a
    assumes a_is_fun: a : X }->\mathrm{ G
    fixes }
    defines \sigma_def [simp]: \sigma(A) \equiv Enumeration(A,r)
    fixes setpr (П)
    defines setpr_def [simp]: \( }\Lambda,\textrm{b})\equiv\operatorname{SetFold(f,b,\Lambda,r)
```

We can use the enums locale in the semigr0 context.

```
lemma (in semigr1) enums_valid_in_semigr1: shows enums(X,r)
    using linord enums_def by simp
```

Definition of product over a set expressed in notation of the semigr0 locale.

```
lemma (in semigr1) setproddef:
    shows \Pi(\Lambda,a)= \ (a O \sigma(\Lambda))
    using SetFold_def by simp
```

A composition of enumeration of a nonempty finite subset of \mathbb{N} with a sequence of elements of G is a nonempty list of elements of G. This implies that a product over set of a finite set of indices belongs to the (carrier of) semigroup.

```
lemma (in semigr1) setprod_type: assumes
    A1: }\Lambda\in\operatorname{FinPow(X) and A2: }\Lambda\not=
    shows
    \existsn\innat. | | | = succ(n) ^ a 0 \sigma(\Lambda) : succ(n) ->G
    and }\Pi(\Lambda,a)\in
proof -
    from assms obtain n where n f nat and |\Lambda| = succ(n)
        using card_non_empty_succ by auto
    from A1 have }\sigma(\Lambda): |\Lambda| -> 
        using enums_valid_in_semigr1 enums.enum_props
        by simp
    with A1 have a 0 \sigma (\Lambda): |\Lambda| }->\textrm{G
        using a_is_fun FinPow_def comp_fun_subset
        by simp
    with <n \in nat\rangle and \langle| \Lambda| = succ(n) \ show
        \existsn\in nat. | || = succ(n) ^ a O \sigma(\Lambda) : succ(n) ->G
        by auto
    from <n \in nat\rangle\langle|\Lambda| = succ(n)\rangle\langlea 0 \sigma(\Lambda): | \| -> G\rangle
    show }\Pi(\Lambda,a)\inG using prod_type setproddef
        by auto
qed
```

The enum_append lemma from the Enemeration theory specialized for natural numbers.
lemma (in semigr1) semigr1_enum_append:
assumes $\Lambda \in$ FinPow (X) and
$\mathrm{n} \in \mathrm{X}-\Lambda$ and $\forall \mathrm{k} \in \Lambda .\langle\mathrm{k}, \mathrm{n}\rangle \in \mathrm{r}$
shows $\sigma(\Lambda \cup\{n\})=\sigma(\Lambda) \hookleftarrow \mathrm{n}$
using assms FinPow_def enums_valid_in_semigr1 enums.enum_append by simp

What is product over a singleton?

```
lemma (in semigr1) gen_prod_singleton:
```

 assumes A1: \(\mathrm{x} \in \mathrm{X}\)
    ```
    shows \(\Pi(\{x\}, a)=a(x)\)
proof -
    from A1 have \(\sigma(\{x\}): 1 \rightarrow X\) and \(\sigma(\{x\})(0)=x\)
        using enums_valid_in_semigr1 enums.enum_singleton
        by auto
    then show \(\prod(\{x\}, a)=a(x)\)
        using a_is_fun comp_fun setproddef prod_of_1elem
            comp_fun_apply by simp
qed
```

A generalization of prod_append to the products over sets of indices.

```
lemma (in semigr1) gen_prod_append:
    assumes
    A1: \(\Lambda \in \operatorname{FinPow}(X)\) and A2: \(\Lambda \neq 0\) and
    A3: \(n \in X-\Lambda\) and
    A4: \(\forall k \in \Lambda .\langle k, n\rangle \in r\)
    shows \(\Pi(\Lambda \cup\{n\}, a)=(\Pi(\Lambda, a)) \cdot a(n)\)
proof -
    have \(\Pi(\Lambda \cup\{n\}, a)=\prod(a 0 \sigma(\Lambda \cup\{n\}))\)
        using setproddef by simp
    also from A1 A3 A4 have \(\ldots=\prod(\mathrm{a} O(\sigma(\Lambda) \hookleftarrow \mathrm{n}))\)
        using semigr1_enum_append by simp
    also have \(\ldots=\Pi((\mathrm{a} 0 \sigma(\Lambda)) \hookleftarrow \mathrm{a}(\mathrm{n}))\)
    proof -
        from A1 A3 have
            \(|\Lambda| \in\) nat and \(\sigma(\Lambda):|\Lambda| \rightarrow \mathrm{X}\) and \(\mathrm{n} \in \mathrm{X}\)
                using card_fin_is_nat enums_valid_in_semigr1 enums.enum_fun
                by auto
            then show thesis using a_is_fun list_compose_append
                by simp
    qed
    also from assms have \(\ldots=\left(\prod(\mathrm{a} 0 \sigma(\Lambda))\right) \cdot \mathrm{a}(\mathrm{n})\)
        using a_is_fun setprod_type apply_funtype prod_append
        by blast
    also have \(\ldots=\left(\prod(\Lambda, a)\right) \cdot a(n)\)
        using SetFold_def by simp
    finally show \(\Pi(\Lambda \cup\{n\}, a)=(\Pi(\Lambda, a)) \cdot a(n)\)
        by simp
qed
```

Very similar to gen_prod_append: a relation between a product over a set of indices and the product over the set with the maximum removed.
lemma (in semigr1) gen_product_rem_point:
assumes A1: A $\in \operatorname{FinPow}(X)$ and
A2: $\mathrm{n} \in \mathrm{A}$ and $\mathrm{A} 4: \mathrm{A}-\{\mathrm{n}\} \neq 0$ and
A3: $\forall \mathrm{k} \in \mathrm{A} .\langle\mathrm{k}, \mathrm{n}\rangle \in \mathrm{r}$
shows
$\left(\prod(A-\{n\}, a)\right) \cdot a(n)=\Pi(A, a)$
proof -

```
    let }\Lambda=A-{n
    from A1 A2 have }\Lambda\in\operatorname{FinPow(X) and n }\in\textrm{X}-
    using fin_rem_point_fin FinPow_def by auto
    with A3 A4 have }\Pi(\Lambda\cup{n}, a) = (\prod(\Lambda,a)) \cdot a(n
        using a_is_fun gen_prod_append by blast
    with A2 show thesis using rem_add_eq by simp
qed
```


22.3 Commutative semigroups

Commutative semigroups are those whose operation is commutative, i.e. $a \cdot b=b \cdot a$. This implies that for any permutation $s: n \rightarrow n$ we have $\prod_{j=0}^{n} a_{j}=\prod_{j=0}^{n} a_{s(j)}$, or, closer to the notation we are using in the semigro context, $\Pi a=\Pi(a \circ s)$. Maybe one day we will be able to prove this, but for now the goal is to prove something simpler: that if the semigroup operation is commutative taking the product of a sequence is distributive with respect to the operation: $\left.\left.\prod_{j=0}^{n}\left(a_{j} \cdot b_{j}\right)=\left(\prod_{j=0}^{n} a_{j}\right)\right)\left(\prod_{j=0}^{n} b_{j}\right)\right)$. Many of the rearrangements (namely those that don't use the inverse) proven in the AbelianGroup_ZF theory hold in fact in semigroups. Some of them will be reproven in this section.

A rearrangement with 3 elements.

```
lemma (in semigr0) rearr3elems:
    assumes f {is commutative on} G and a\inG b b\inG c\inG
    shows a}\textrm{a}\cdot\textrm{b}\cdot\textrm{c}=\textrm{a}\cdot\textrm{c}\cdot\textrm{b
    using assms semigr_assoc IsCommutative_def by simp
```

A rearrangement of four elements.

```
lemma (in semigr0) rearr4elems:
    assumes A1: f {is commutative on} G and
    A2: a\inG b\inG c\inG d\inG
    shows a\cdotb.(c.d) = a.c.(b.d)
proof -
    from A2 have a.b.(c.d) = a.b.c.d
        using semigr_closed semigr_assoc by simp
    also have a.b.c.d = a.c.(b.d)
    proof -
        from A1 A2 have a\cdotb\cdotc\cdotd = c.(a\cdotb).d
            using IsCommutative_def semigr_closed
            by simp
        also from A2 have ... = c.a.b.d
            using semigr_closed semigr_assoc
            by simp
        also from A1 A2 have ... = a.c.b.d
            using IsCommutative_def semigr_closed
            by simp
        also from A2 have ... = a.c.(b.d)
```

```
        using semigr_closed semigr_assoc
        by simp
    finally show a.b.c.d = a.c.(b.d) by simp
    qed
    finally show a\cdotb}(c\cdotd)=a\cdotc\cdot(b\cdotd
        by simp
qed
```

We start with a version of prod_append that will shorten a bit the proof of the main theorem.

```
lemma (in semigr0) shorter_seq: assumes A1: k \in nat and
    A2: a }\in\operatorname{succ}(\operatorname{succ}(k))->
    shows (П a) = (\prod Init(a)) \cdot a(succ(k))
proof -
    let x = Init(a)
    from assms have
        a(\operatorname{succ}(k)) \inG and x : succ(k) -> G
        using apply_funtype init_props by auto
    with A1 have (\ x\hookleftarrowa(\operatorname{succ}(k))) = (П x) · a(succ(k))
        using prod_append by simp
    with assms show thesis using init_props
        by simp
qed
```

A lemma useful in the induction step of the main theorem.

```
lemma (in semigr0) prod_distr_ind_step:
    assumes A1: \(k \in\) nat and
    A2: a : succ(succ(k)) \(\rightarrow\) G and
    A3: b : succ(succ(k)) \(\rightarrow\) G and
    A4: c : succ(succ(k)) \(\rightarrow G\) and
    A5: \(\forall j \in \operatorname{succ}(\operatorname{succ}(k)) \cdot c(j)=a(j) \cdot b(j)\)
    shows
    Init (a) : \(\operatorname{succ}(k) \rightarrow G\)
    Init (b) : succ(k) \(\rightarrow\) G
    Init(c) : succ(k) \(\rightarrow\) G
    \(\forall j \in \operatorname{succ}(k) \cdot \operatorname{Init}(c)(j)=\operatorname{Init}(a)(j) \cdot \operatorname{Init}(b)(j)\)
proof -
    from A1 A2 A3 A4 show
        Init(a) : succ(k) \(\rightarrow\) G
        Init(b) : succ(k) \(\rightarrow\) G
        Init(c) : succ(k) \(\rightarrow\) G
        using init_props by auto
    from A1 have \(T\) : \(\operatorname{succ}(k) \in\) nat by simp
    from T A2 have \(\forall \mathrm{j} \in \operatorname{succ}(\mathrm{k})\). \(\operatorname{Init}(\mathrm{a})(\mathrm{j})=\mathrm{a}(\mathrm{j})\)
        by (rule init_props)
    moreover from T A3 have \(\forall j \in \operatorname{succ}(k)\). Init \((b)(j)=b(j)\)
        by (rule init_props)
    moreover from T A4 have \(\forall j \in \operatorname{succ}(k)\). Init \((c)(j)=c(j)\)
        by (rule init_props)
```

```
    moreover from A5 have }\forall\textrm{j}\in\operatorname{succ}(k).c(j) = a(j) \cdot b(j
    by simp
    ultimately show }\forall\textrm{j}\in\operatorname{succ}(\textrm{k})\cdot\operatorname{Init}(c)(j)=\operatorname{Init}(a)(j)\cdot\operatorname{Init(b)(j)
        by simp
qed
```

For commutative operations taking the product of a sequence is distributive with respect to the operation. This version will probably not be used in applications, it is formulated in a way that is easier to prove by induction. For a more convenient formulation see prod_comm_distrib. The proof by induction on the length of the sequence.

```
theorem (in semigr0) prod_comm_distr:
    assumes A1: f {is commutative on} G and A2: n\innat
    shows }\forall\textrm{a b c.
    (a : succ}(n)->G ^ b : \operatorname{succ}(n)->G ^ c : succ (n) ->G ^
    (\forallj\in\operatorname{succ}(n)\cdotc(j) = a(j) \cdot b(j))) \longrightarrow
    (П c) = (П a) . (П b)
proof -
    note A2
    moreover have }\forall\textrm{a}b\textrm{c}
        (a : succ (0) }->\textrm{G}\wedge b : \operatorname{succ}(0)->G ^c: succ(0) ->G ^
        (\forallj\in\operatorname{succ}(0).c(j) = a(j) \cdot b(j))) \longrightarrow
        (П c) = (П a) \cdot (П b)
    proof -
        {fix a b c
            assume a : succ(0) }->\textrm{G}\wedge\textrm{b}:\operatorname{succ}(0)->G\wedgec:\operatorname{succ}(0)->G
    (}\forallj\in\operatorname{succ}(0)\cdotc(j)=a(j) \cdot b(j)
        then have
    I: a : 1->G b : 1->G c : 1 }->\textrm{G}\mathrm{ and
    II: c(0) = a(0) \cdot b(0) by auto
            from I have
    (\prod a) = a(0) and ( \ b) = b(0) and (\prod c) = c(0)
    using prod_of_1elem by auto
            with II have (П c) = (П a) . (П b) by simp
            } then show thesis using Fold1_def by simp
    qed
    moreover have }\forall\textrm{k}\in\mathrm{ nat.
        (}\forall a b c.
        (a : succ(k) }->\textrm{G}\wedge\textrm{b}:\operatorname{succ}(\textrm{k})->\textrm{G}\wedge ^ : : succ(k) ->G ^
        (\forallj\in\operatorname{succ}(k).c(j) = a(j) \cdot b(j))) \longrightarrow
        (П c) = (П a) \cdot (П b)) \longrightarrow
        (}\forall\textrm{a b c.
        (a : succ(\operatorname{succ}(k))->G ^b : succ(succ(k)) }->\textrm{G}\wedge\textrm{c}:\operatorname{succ}(\operatorname{succ}(k))->
^
    (\forallj\in\operatorname{succ}(\operatorname{succ}(k)).c(j) = a(j) \cdot b(j))) \longrightarrow
    (П c) = (П a) . (П b))
    proof
        fix k assume k \in nat
        show (\foralla b c.
```

```
    a \in succ(k) -> G ^
    b \in succ(k) }->\textrm{G}\wedge\textrm{c}\in\operatorname{succ}(\textrm{k})->\textrm{G}
    (}\forallj\in\operatorname{succ}(k).c(j) = a(j) \cdot b(j)) \longrightarrow
    (П c) = (П a) \cdot (П b)) \longrightarrow
    (}\forall\textrm{a b c.
    a }\in\operatorname{succ}(\operatorname{succ}(k)) ->G 
    b \in \operatorname{succ}(\operatorname{succ}(k)) ->G ^
    c \in \operatorname{succ}(\operatorname{succ}(k)) ->G ^
    (\forallj\in\operatorname{succ}(\operatorname{succ}(k)).c(j) = a(j) \cdot b(j)) \longrightarrow
    (П c) = (П a) . (П b))
    proof
    assume A3: }\forall\textrm{a b c.
a }\in\operatorname{succ}(k)->G
b \in succ(k) }->\textrm{G}\wedge\textrm{c}\in\operatorname{succ}(\textrm{k})->\textrm{G}
(\forallj\in\operatorname{succ}(k).c(j) = a(j) \cdot b(j)) \longrightarrow
(П c) = (П a) . (П b)
    show }\forall\textrm{a b c.
a }\in\operatorname{succ}(\operatorname{succ}(k)) ->G
b \in \operatorname{succ}(\operatorname{succ}(k)) ->G ^
c \in \operatorname{succ}(\operatorname{succ}(k)) ->G ^
(\forallj\in\operatorname{succ}(\operatorname{succ}(k)).c(j) = a(j) \cdot b(j)) \longrightarrow
(П c) = (П a) . (П b)
    proof -
{ fix a b c
    assume
    a \in succ(succ(k)) ->G ^
    b \in succ(succ(k)) ->G ^
    c \in succ(succ(k)) ->G ^
    (\forallj\in\operatorname{succ}(\operatorname{succ}(k)).c(j) = a(j) \cdot b(j))
    with «k \in nat> have I:
    a : succ(succ(k)) }->\textrm{G
    b : succ(succ(k)) -> G
    c : succ(succ(k)) }->\mathrm{ G
    and II: }\forall\textrm{j}\in\operatorname{succ}(\operatorname{succ}(k)).c(j) = a(j) \cdot b(j
    by auto
let x = Init(a)
                let y = Init(b)
        let z = Init(c)
    from <k \in nat> I have III:
    (\prod a) = (\prod x) \cdota(\operatorname{succ}(k))
    (\prod b) = (\prod y) \cdot b(\operatorname{succ}(k)) and
    IV: (П c) = ( \ z) .c(succ(k))
    using shorter_seq by auto
moreover
from }\langlek\in\mathrm{ nat I II have
    x : succ(k) }->\textrm{G
    y : succ(k) }->\textrm{G
    z : \operatorname{succ}(k) ->G and
    \forallj\in\operatorname{succ}(k). z(j) = x(j) \cdot y(j)
```

```
        using prod_distr_ind_step by auto
    with A3 II IV have
        (\prod c) = (П x)}\cdot(\\textrm{y})\cdot(\textrm{a}(\operatorname{succ}(\textrm{k}))\cdot\textrm{b}(\operatorname{succ}(\textrm{k}))
        by simp
    moreover from A1 <k \in nat> I III have
        (\prod x)}\cdot(\\textrm{y})\cdot(\textrm{a}(\operatorname{succ}(\textrm{k}))\cdot\textrm{b}(\operatorname{succ}(\textrm{k})))
        (\prod a). (\prod b)
        using init_props prod_type apply_funtype
        rearr4elems by simp
    ultimately have ( П c) = (П a) \cdot (П b)
    by simp
    } thus thesis by auto
        qed
        qed
    qed
    ultimately show thesis by (rule ind_on_nat)
qed
```

A reformulation of prod_comm_distr that is more convenient in applications.
theorem (in semigr0) prod_comm_distrib:
assumes f \{is commutative on\} G and $n \in$ nat and a : $\operatorname{succ}(n) \rightarrow G \quad b: \operatorname{succ}(n) \rightarrow G \quad c: \operatorname{succ}(n) \rightarrow G$ and $\forall j \in \operatorname{succ}(n) \cdot c(j)=a(j) \cdot b(j)$
shows $\left(\prod \mathrm{c}\right)=\left(\prod \mathrm{a}\right) \cdot\left(\prod \mathrm{b}\right)$
using assms prod_comm_distr by simp
A product of two products over disjoint sets of indices is the product over the union.

```
lemma (in semigr1) prod_bisect:
    assumes A1: f {is commutative on} G and A2: \Lambda \in FinPow(X)
    shows
    \forallP\in Bisections(\Lambda). \( }\Lambda,a)=(\prod(fst(P),a))\cdot(\prod(\operatorname{snd}(P),a)
proof -
    have IsLinOrder(X,r) using linord by simp
    moreover have
        \forallP\in Bisections(0). \Pi(0,a)=(\prod(fst (P),a))\cdot(\prod(\operatorname{snd}(P),a))
        using bisec_empty by simp
    moreover have }\forall\textrm{A}\in\operatorname{FinPow(X).
        ( }\forall\textrm{n}\in\textrm{X}-\textrm{A}
        (\forallP Bisections(A). П(A,a) = (\prod(fst(P),a))\cdot(\prod(snd(P),a)))
            \wedge ( }\forall\textrm{k}\in\textrm{A}.\langle\textrm{k},\textrm{n}\rangle\in\textrm{r})
        (\forallQ\in Bisections(A \cup{n}).
        \Pi(A\cup{n},a)=(\prod(fst(Q),a))\cdot(\prod(\operatorname{snd}(Q),a))))
    proof -
        { fix A assume A \in FinPow(X)
                fix n assume n \in X - A
                have ( }\forall\textrm{P}\in\mathrm{ Bisections(A).
    \Pi(A,a)=(\prod(fst (P),a))\cdot(\prod(\operatorname{snd}(P),a)))
    ^(\forallk\inA. \langlek,n\rangle\inr) \longrightarrow
```

$(\forall Q \in$ Bisections (A $\cup\{n\})$.
$\left.\Pi(A \cup\{n\}, a)=\left(\prod(f s t(Q), a)\right) \cdot\left(\prod(\operatorname{snd}(Q), a)\right)\right)$ proof -
\{ assume I:
$\forall \mathrm{P} \in \operatorname{Bisections}(\mathrm{A}) \cdot \prod(\mathrm{A}, \mathrm{a})=\left(\prod(\mathrm{fst}(\mathrm{P}), \mathrm{a})\right) \cdot\left(\prod(\operatorname{snd}(\mathrm{P}), \mathrm{a})\right)$
and II: $\forall \mathrm{k} \in \mathrm{A} .\langle\mathrm{k}, \mathrm{n}\rangle \in \mathrm{r}$
have $\forall Q \in$ Bisections $(A \cup\{n\})$.
$\Pi(A \cup\{n\}, a)=\left(\prod(f s t(Q), a)\right) \cdot\left(\prod(\operatorname{snd}(Q), a)\right)$
proof -
$\{$ fix Q assume $Q \in$ Bisections $(A \cup\{n\})$
let $Q_{0}=f s t(Q)$
let $Q_{1}=\operatorname{snd}(Q)$
from $\langle\mathrm{A} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle$ have $\mathrm{A} \cup\{\mathrm{n}\} \in \operatorname{FinPow}(\mathrm{X})$
using singleton_in_finpow union_finpow by auto
with $\langle Q \in$ Bisections $(A \cup\{n\})\rangle$ have
$Q_{0} \in \operatorname{FinPow}(X) Q_{0} \neq 0$ and $Q_{1} \in \operatorname{FinPow}(X) Q_{1} \neq 0$
using bisect_fin bisec_is_pair Bisections_def by auto
then have $\Pi\left(Q_{0}, a\right) \in G$ and $\Pi\left(Q_{1}, a\right) \in G$
using a_is_fun setprod_type by auto
from $\langle\mathrm{Q} \in$ Bisections $(\mathrm{A} \cup\{\mathrm{n}\})\rangle\langle\mathrm{A} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle$
have $\operatorname{refl}(X, r) \quad Q_{0} \subseteq A \cup\{n\} \quad Q_{1} \subseteq A \cup\{n\}$
$\mathrm{A} \subseteq \mathrm{X}$ and $\mathrm{n} \in \mathrm{X}$
using linord IsLinOrder_def total_is_refl Bisections_def
FinPow_def by auto
from $\langle r e f l(X, r)\rangle\left\langle Q_{0} \subseteq A \cup\{n\}\right\rangle\langle A \subseteq X\rangle\langle n \in X\rangle$ II
have III: $\forall \mathrm{k} \in \mathrm{Q}_{0} .\langle\mathrm{k}, \mathrm{n}\rangle \in \mathrm{r}$ by (rule refl_add_point)
from $\langle r e f l(X, r)\rangle\left\langle Q_{1} \subseteq A \cup\{n\}\right\rangle\langle A \subseteq X\rangle\langle n \in X\rangle$ II
have IV: $\forall \mathrm{k} \in \mathrm{Q}_{1} .\langle\mathrm{k}, \mathrm{n}\rangle \in \mathrm{r}$ by (rule refl_add_point)
from $\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle\langle\mathrm{Q} \in$ Bisections $(\mathrm{A} \cup\{\mathrm{n}\})\rangle$ have
$Q_{0}=\{n\} \vee Q_{1}=\{n\} \vee\left\langle Q_{0}-\{n\}, Q_{1}-\{n\}\right\rangle \in$ Bisections (A)
using bisec_is_pair bisec_add_point by simp
moreover
\{ assume $Q_{1}=\{n\}$
from $\langle n \in X-A\rangle$ have $n \notin A$ by auto
moreover
from $\langle Q \in$ Bisections $(A \cup\{n\})\rangle$
have $\left\langle\mathrm{Q}_{0}, \mathrm{Q}_{1}\right\rangle \in$ Bisections $(\mathrm{A} \cup\{\mathrm{n}\})$
using bisec_is_pair by simp
with $\left\langle Q_{1}=\{n\}\right\rangle$ have $\left\langle Q_{0},\{n\}\right\rangle \in$ Bisections $(A \cup\{n\})$
by simp
ultimately have $Q_{0}=A$ and $A \neq 0$
using set_point_bisec by auto
with $\langle\mathrm{A} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle \mathrm{II}\left\langle\mathrm{Q}_{1}=\{\mathrm{n}\}\right\rangle$
have $\Pi(A \cup\{n\}, a)=\left(\prod\left(Q_{0}, a\right)\right) \cdot \prod\left(Q_{1}, a\right)$
using a_is_fun gen_prod_append gen_prod_singleton
by simp \}
moreover
\{ assume $Q_{0}=\{n\}$
from $\langle n \in X-A\rangle$ have $n \in X$ by auto
then have $\{n\} \in \operatorname{FinPow}(X)$ and $\{n\} \neq 0$
using singleton_in_finpow by auto
from $\langle n \in X-A\rangle$ have $n \notin A$ by auto
moreover
from $\langle Q \in$ Bisections ($A \cup\{n\})\rangle$
have $\left\langle Q_{0}, Q_{1}\right\rangle \in$ Bisections $(A \cup\{n\})$
using bisec_is_pair by simp
with $\left\langle Q_{0}=\{n\}\right\rangle$ have $\left\langle\{n\}, Q_{1}\right\rangle \in$ Bisections $(A \cup\{n\})$ by simp
ultimately have $Q_{1}=A$ and $A \neq 0$ using point_set_bisec by auto
with $\mathrm{A} 1\langle\mathrm{~A} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle \mathrm{II}$ $\langle\{n\} \in \operatorname{FinPow}(X)\rangle\langle\{n\} \neq 0\rangle\left\langle Q_{0}=\{n\}\right\rangle$
have $\Pi(A \cup\{n\}, a)=\left(\prod\left(Q_{0}, a\right)\right) \cdot\left(\prod\left(Q_{1}, a\right)\right)$
using a_is_fun gen_prod_append gen_prod_singleton setprod_type IsCommutative_def by auto \}
moreover
\{ assume A4: $\left\langle Q_{0}-\{n\}, Q_{1}-\{n\}\right\rangle \in$ Bisections (A)
with $\langle\mathrm{A} \in \operatorname{FinPow}(\mathrm{X})$ 〉 have
$Q_{0}-\{n\} \in \operatorname{FinPow}(X) Q_{0}-\{n\} \neq 0$ and $Q_{1}-\{n\} \in \operatorname{FinPow}(X) Q_{1}-\{n\} \neq 0$
using FinPow_def Bisections_def by auto
with $\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle$ have $\prod\left(Q_{0}-\{n\}, a\right) \in G \quad \prod\left(Q_{1}-\{n\}, a\right) \in G \quad$ and $\mathrm{T}: \mathrm{a}(\mathrm{n}) \in \mathrm{G}$
using a_is_fun setprod_type apply_funtype by auto
from $\langle Q \in$ Bisections $(A \cup\{n\})\rangle A 4$ have $\left(\left\langle Q_{0}, Q_{1}-\{n\}\right\rangle \in\right.$ Bisections $\left.(A) \wedge n \in Q_{1}\right) \vee$ $\left(\left\langle\mathrm{Q}_{0}-\{\mathrm{n}\}, \mathrm{Q}_{1}\right\rangle \in\right.$ Bisections $\left.(\mathrm{A}) \wedge \mathrm{n} \in \mathrm{Q}_{0}\right)$ using bisec_is_pair bisec_add_point_case3 by auto
moreover
$\left\{\right.$ assume $\left\langle\mathrm{Q}_{0}, \mathrm{Q}_{1}-\{\mathrm{n}\}\right\rangle \in$ Bisections (A) and $\mathrm{n} \in \mathrm{Q}_{1}$ then have $A \neq 0$ using bisec_props by simp with $\mathrm{A} 2\langle\mathrm{~A} \in \mathrm{FinPow}(\mathrm{X})\rangle\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle \mathrm{I}$ II T IV
$\left\langle\left\langle Q_{0}, Q_{1}-\{n\}\right\rangle \in \operatorname{Bisections}(A)\right\rangle\left\langle\prod\left(Q_{0}, a\right) \in G\right\rangle$
$\left\langle\prod\left(Q_{1}-\{n\}, a\right) \in G\right\rangle\left\langle Q_{1} \in \operatorname{FinPow}(X)\right\rangle$
$\left\langle\mathrm{n} \in \mathrm{Q}_{1}\right\rangle\left\langle\mathrm{Q}_{1}-\{\mathrm{n}\} \neq 0\right\rangle$
have $\Pi(A \cup\{n\}, a)=\left(\prod\left(Q_{0}, a\right)\right) \cdot\left(\prod\left(Q_{1}, a\right)\right)$
using gen_prod_append semigr_assoc gen_product_rem_point by simp $\}$
moreover
$\left\{\right.$ assume $\left\langle Q_{0}-\{n\}, Q_{1}\right\rangle \in$ Bisections (A) and $n \in Q_{0}$ then have $A \neq 0$ using bisec_props by simp with A1 A2 $\langle\mathrm{A} \in \operatorname{FinPow}(\mathrm{X})\rangle\langle\mathrm{n} \in \mathrm{X}-\mathrm{A}\rangle \mathrm{I}$ II III T
$\left\langle\left\langle Q_{0}-\{n\}, Q_{1}\right\rangle \in\right.$ Bisections $\left.(A)\right\rangle\left\langle\prod\left(Q_{0}-\{n\}, a\right) \in G\right\rangle$
$\left\langle\prod\left(\mathrm{Q}_{1}, \mathrm{a}\right) \in \mathrm{G}\right\rangle\left\langle\mathrm{Q}_{0} \in \operatorname{FinPow}(\mathrm{X})\right\rangle\left\langle\mathrm{n} \in \mathrm{Q}_{0}\right\rangle\left\langle\mathrm{Q}_{0}-\{\mathrm{n}\} \neq 0\right\rangle$
have $\Pi(A \cup\{n\}, a)=\left(\prod\left(Q_{0}, a\right)\right) \cdot\left(\prod\left(Q_{1}, a\right)\right)$
using gen_prod_append rearr3elems gen_product_rem_point by simp \}

```
    ultimately have
        \Pi(A\cup{n},a)=(\Pi(Q Q ,a))\cdot(\Pi(Q (Q ,a))
        by auto }
            ultimately have }\Pi(\textrm{A}\cup{n},a)=(\Pi(\mp@subsup{Q}{0}{},a))\cdot(\Pi(\mp@subsup{Q}{1}{},a)
    by auto
            } thus thesis by simp
        qed
    } thus thesis by simp
            qed
        } thus thesis by simp
    qed
    moreover note A2
    ultimately show thesis by (rule fin_ind_add_max)
qed
A better looking reformulation of prod_bisect.
theorem (in semigr1) prod_disjoint: assumes
    A1: f {is commutative on} G and
    A2: A \in FinPow(X) A \not=0 and
    A3: B \in FinPow(X) B }\not=0\mathrm{ and
    A4: A \cap B = 0
    shows \Pi(A\cupB,a) = (П(A,a))\cdot(П(B,a))
proof -
    from A2 A3 A4 have }\langle\textrm{A},\textrm{B}\rangle\in\mathrm{ Bisections(AUB)
            using is_bisec by simp
    with A1 A2 A3 show thesis
            using a_is_fun union_finpow prod_bisect by simp
qed
A generalization of prod_disjoint.
```

```
lemma (in semigr1) prod_list_of_lists: assumes
```

lemma (in semigr1) prod_list_of_lists: assumes
A1: f \{is commutative on\} G and $\mathrm{A} 2: \mathrm{n} \in$ nat
A1: f \{is commutative on\} G and $\mathrm{A} 2: \mathrm{n} \in$ nat
shows $\forall M \in \operatorname{succ}(\mathrm{n}) \rightarrow \operatorname{FinPow}(X)$.
shows $\forall M \in \operatorname{succ}(\mathrm{n}) \rightarrow \operatorname{FinPow}(X)$.
M \{is partition \longrightarrow
M \{is partition \longrightarrow
$(\Pi\{\langle i, \Pi(M(i), a)\rangle . i \in \operatorname{succ}(n)\})=$
$(\Pi\{\langle i, \Pi(M(i), a)\rangle . i \in \operatorname{succ}(n)\})=$
$(\Pi(\cup i \in \operatorname{succ}(n) \cdot M(i), a))$
$(\Pi(\cup i \in \operatorname{succ}(n) \cdot M(i), a))$
proof -
proof -
note A2
note A2
moreover have $\forall \mathrm{M} \in \operatorname{succ}(0) \rightarrow \operatorname{FinPow}(\mathrm{X})$.
moreover have $\forall \mathrm{M} \in \operatorname{succ}(0) \rightarrow \operatorname{FinPow}(\mathrm{X})$.
M \{is partition\} \longrightarrow
M \{is partition\} \longrightarrow
$(\Pi\{\langle i, \Pi(M(i), a)\rangle . i \in \operatorname{succ}(0)\})=\left(\prod(\cup i \in \operatorname{succ}(0) . M(i), a)\right)$
$(\Pi\{\langle i, \Pi(M(i), a)\rangle . i \in \operatorname{succ}(0)\})=\left(\prod(\cup i \in \operatorname{succ}(0) . M(i), a)\right)$
using a_is_fun func1_1_L1 Partition_def apply_funtype setprod_type
using a_is_fun func1_1_L1 Partition_def apply_funtype setprod_type
list_len1_singleton prod_of_1elem
list_len1_singleton prod_of_1elem
by simp
by simp
moreover have $\forall \mathrm{k} \in$ nat.
moreover have $\forall \mathrm{k} \in$ nat.
($\forall \mathrm{M} \in \operatorname{succ}(\mathrm{k}) \rightarrow$ FinPow (X).
($\forall \mathrm{M} \in \operatorname{succ}(\mathrm{k}) \rightarrow$ FinPow (X).
M \{is partition\} \longrightarrow
M \{is partition\} \longrightarrow
$(\Pi\{\langle i, \Pi(\mathrm{M}(\mathrm{i}), \mathrm{a})\rangle . \mathrm{i} \in \operatorname{succ}(\mathrm{k})\})=$
$(\Pi\{\langle i, \Pi(\mathrm{M}(\mathrm{i}), \mathrm{a})\rangle . \mathrm{i} \in \operatorname{succ}(\mathrm{k})\})=$
$(\Pi(\cup i \in \operatorname{succ}(k) \cdot M(i), a))) \longrightarrow$

```
            \((\Pi(\cup i \in \operatorname{succ}(k) \cdot M(i), a))) \longrightarrow\)
```

```
    (\forallM G succ(succ(k)) -> FinPow(X).
    M {is partition} \longrightarrow
    (\prod {\langlei,\prod(M(i),a)\rangle. i }\in\operatorname{succ}(\operatorname{succ}(k))})
    (\prod(Ui \in succ(succ(k)). M(i),a)))
    proof -
    { fix k assume k \in nat
        assume A3: }\forall\textrm{M}\in\operatorname{succ}(k)->FinPow(X)
M {is partition} \longrightarrow
    (П {\langlei,\prod(M(i),a)\rangle. i \in succ(k)}) =
    (\prod(Ui G succ(k). M(i),a))
        have ( }\forall\textrm{N}\in\operatorname{succ}(\operatorname{succ}(k)) -> FinPow(X)
N {is partition} \longrightarrow
(\prod {\langlei, \Pi(N(i),a)\rangle.i }\in\operatorname{succ}(\operatorname{succ}(k))})
(\prod(Ui \in succ(succ(k)).N(i),a)))
        proof -
{ fix N assume A4: N : succ(succ(k)) -> FinPow(X)
    assume A5: N {is partition}
    with A4 have I: }\forall\textrm{i}\in\operatorname{succ}(\operatorname{succ}(k)).N(i)\not=
        using func1_1_L1 Partition_def by simp
    let b = {\langlei, \(N(i),a)\rangle. i \in succ(succ(k))}
    let c = {\langlei, \(N(i),a)\rangle. i \in succ(k)}
    have II: \foralli \in succ(succ(k)). \(N(i),a) \in G
    proof
        fix i assume i }\in\operatorname{succ}(\operatorname{succ}(k)
        with A4 I have N(i) \in FinPow(X) and N(i) }=
            using apply_funtype by auto
        then show \\(N(i),a) \in G using setprod_type
            by simp
    qed
    hence }\foralli\in\operatorname{succ}(k). \(N(i),a)\inG by aut
    then have c : succ(k) -> G by (rule ZF_fun_from_total)
    have b = {\langlei,\prod(N(i),a)\rangle. i \in succ(succ(k))}
        by simp
    with II have b = Append(c, \(N(\operatorname{succ}(k)),a))
        by (rule set_list_append)
    with II {k \in nat> <c : succ(k) -> G >
    have (\prod b) = (П c)\cdot(\prod(N(\operatorname{succ}(k)),a))
        using prod_append by simp
    also have
    \ldots.= (\prod(Ui G succ(k).N(i),a))\cdot(\prod(N(\operatorname{succ}(k)),a))
    proof -
        let M = restrict(N,succ(k))
        have succ(k) \subseteq succ(succ(k)) by auto
        with <N : succ(succ(k)) -> FinPow(X))
        have M : succ(k) }->\mathrm{ FinPow(X) and
        III: }\forall\textrm{i}\in\operatorname{succ}(\textrm{k}).M(i)=N(i
        using restrict_type2 restrict apply_funtype
        by auto
    with A5 <M : succ(k) -> FinPow(X)\have M {is partition}
```

```
            using func1_1_L1 Partition_def by simp
            with A3 \M : succ(k) -> FinPow(X) ) have
            (\prod {\langlei, \(M(i),a)\rangle. i \in succ(k)}) =
            (\prod(Ui \in succ(k). M(i),a))
            by blast
        with III show thesis by simp
    qed
    also have ...= (\prod(Ui G \operatorname{succ}(\operatorname{succ}(k)).N(i),a))
    proof -
        let A = \i G succ(k). N(i)
        let B = N(\operatorname{succ}(k))
        from A4 <k \in nat have succ(k) \in nat and
            i}\in\operatorname{succ}(\textrm{k}).N(i) \in FinPow(X
            using apply_funtype by auto
        then have A G FinPow(X) by (rule union_fin_list_fin)
        moreover from I have A }\not=0\mathrm{ by auto
        moreover from A4 I have
            N(\operatorname{succ}(k)) \in FinPow(X) and N(succ(k)) \not= 0
            using apply_funtype by auto
        moreover from <succ(k) \in nat` A4 A5 have A }\cap\textrm{B}=
            by (rule list_partition)
        moreover note A1
    ultimately have }\Pi(A\cupB,a)=(\prod(A,a))\cdot(\prod(B,a)
            using prod_disjoint by simp
        moreover have A \cup B = (Ui \in succ(succ(k)). N(i))
            by auto
            ultimately show thesis by simp
        qed
        finally have ( }\{\langlei,\Pi(N(i),a)\rangle. i \in succ(\operatorname{succ}(k))})
        (\prod(Ui \in succ(succ(k)).N(i),a))
        by simp
    } thus thesis by auto
qed
    } thus thesis by simp
    qed
    ultimately show thesis by (rule ind_on_nat)
qed
```

A more convenient reformulation of prod_list_of_lists.
theorem (in semigr1) prod_list_of_sets:
assumes A1: f \{is commutative on\} G and
A2: $\mathrm{n} \in$ nat $\mathrm{n} \neq 0$ and
A3: M : $\mathrm{n} \rightarrow$ FinPow (X) M \{is partition\}
shows
$\left(\prod\left\{\left\langle i, \prod(M(i), a)\right\rangle . i \in n\right\}\right)=\left(\prod(\bigcup i \in n . M(i), a)\right)$
proof -
from A2 obtain k where $k \in$ nat and $n=\operatorname{succ}(k)$
using Nat_ZF_1_L3 by auto
with A1 A3 show thesis using prod_list_of_lists

```
    by simp
qed
```

The definition of the product $\Pi(A, a) \equiv \operatorname{SetFold}(f, a, A, r)$ of a some (finite) set of semigroup elements requires that r is a linear order on the set of indices A. This is necessary so that we know in which order we are multiplying the elements. The product over A is defined so that we have $\prod_{A} a=\prod a \circ \sigma(A)$ where $\sigma:|A| \rightarrow A$ is the enumeration of A (the only order isomorphism between the number of elements in A and A), see lemma setproddef. However, if the operation is commutative, the order is irrelevant. The next theorem formalizes that fact stating that we can replace the enumeration $\sigma(A)$ by any bijection between $|A|$ and A. In a way this is a generalization of setproddef. The proof is based on application of prod_list_of_sets to the finite collection of singletons that comprise A.

```
theorem (in semigr1) prod_order_irr:
    assumes A1: f {is commutative on} G and
    A2: A \in FinPow(X) A # 0 and
    A3: b \in bij(|A|,A)
    shows (\prod (a O b)) = \prod(A,a)
proof -
    let n = |A|
    let M = {\langlek, {b(k)}\rangle. k f n}
    have (\prod (a O b)) = (П {\langlei, \(M(i),a)\rangle. i \in n})
    proof -
        have }\foralli\inn. \(M(i),a)=(a O b)(i
        proof
            fix i assume i \in n
            with A2 A3 {i }\in\textrm{n}\rangle\mathrm{ have b(i) E X
    using bij_def inj_def apply_funtype FinPow_def
    by auto
            then have \}\{b(i)},a)=a(b(i)
    using gen_prod_singleton by simp
            with A3 }\langlei\inn\rangle\mathrm{ have \({b(i)},a) = (a O b)(i)
    using bij_def inj_def comp_fun_apply by auto
            with <i G n` A3 show \Pi(M(i),a) = (a O b)(i)
    using bij_def inj_partition by auto
        qed
        hence {\langlei, \(M(i),a)\rangle. i \in n} = {\langlei,(a O b)(i)\rangle. i f n}
            by simp
            moreover have {\langlei,(a O b)(i)\rangle. i \in n} = a O b
            proof -
            from A3 have b : n }->\mathrm{ A using bij_def inj_def by simp
            moreover from A2 have A}\subseteqX\mathrm{ using FinPow_def by simp
            ultimately have b : n }->\textrm{X}\mathrm{ by (rule func1_1_L1B)
            then have a O b: n }->\mathrm{ G using a_is_fun comp_fun
    by simp
            then show {\langlei,(a O b)(i)\rangle. i \in n} = a O b
    using fun_is_set_of_pairs by simp
```

```
        qed
        ultimately show thesis by simp
    qed
    also have ... = (\prod(Ui \in n. M(i),a))
    proof -
    note A1
    moreover from A2 have n }\in\mathrm{ nat and n }\not=
        using card_fin_is_nat card_non_empty_non_zero by auto
    moreover have M : n }->\mathrm{ FinPow(X) and M {is partition}
    proof -
        from A2 A3 have }\forall\textrm{k}\in\textrm{n}.{\textrm{b}(\textrm{k})}\in\operatorname{FinPow(X)
using bij_def inj_def apply_funtype FinPow_def
    singleton_in_finpow by auto
        then show M : n }->\mathrm{ FinPow(X) using ZF_fun_from_total
        by simp
            from A3 show M {is partition} using bij_def inj_partition
        by auto
    qed
    ultimately show
        (П {\langlei,\Pi(M(i),a)\rangle. i \in n}) = (\prod(Ui\in n. M(i),a))
        by (rule prod_list_of_sets)
    qed
    also from A3 have ( \(Ui\inn. M(i),a)) = П(A,a)
        using bij_def inj_partition surj_singleton_image
        by auto
    finally show thesis by simp
qed
```

Another way of expressing the fact that the product dos not depend on the order.

```
corollary (in semigr1) prod_bij_same:
```

 assumes \(f\) \{is commutative on\} \(G\) and
 \(\mathrm{A} \in \operatorname{FinPow}(\mathrm{X}) \mathrm{A} \neq 0\) and
 \(\mathrm{b} \in \operatorname{bij}(|\mathrm{A}|, \mathrm{A}) \mathrm{c} \in \operatorname{bij}(|\mathrm{A}|, \mathrm{A})\)
 shows \((\Pi \quad(\mathrm{a} 0 \mathrm{~b}))=\left(\begin{array}{l}\text { (a } 0 \quad c))\end{array}\right.\)
 using assms prod_order_irr by simp
 end

23 Commutative Semigroups

theory CommutativeSemigroup_ZF imports Semigroup_ZF
begin
In the Semigroup theory we introduced a notion of SetFold(f,a, Λ, r) that represents the sum of values of some function a valued in a semigroup where the arguments of that function vary over some set Λ. Using the additive
notation something like this would be expressed as $\sum_{x \in \Lambda} f(x)$ in informal mathematics. This theory considers an alternative to that notion that is more specific to commutative semigroups.

23.1 Sum of a function over a set

The r parameter in the definition of SetFold(f,a, Λ, r) (from Semigroup_ZF) represents a linear order relation on Λ that is needed to indicate in what order we are summing the values $f(x)$. If the semigroup operation is commutative the order does not matter and the relation r is not needed. In this section we define a notion of summing up values of some function $a: X \rightarrow G$ over a finite set of indices $\Gamma \subseteq X$, without using any order relation on X.

We define the sum of values of a function $a: X \rightarrow G$ over a set Λ as the only element of the set of sums of lists that are bijections between the number of values in Λ (which is a natural number $n=\{0,1, \ldots, n-1\}$ if Λ is finite) and Λ. The notion of Fold1 (f, c) is defined in Semigroup_ZF as the fold (sum) of the list c starting from the first element of that list. The intention is to use the fact that since the result of summing up a list does not depend on the order, the set $\{\operatorname{Fold}(\mathrm{f}, \mathrm{a} 0 \mathrm{~b}) . \mathrm{b} \in \operatorname{bij}(|\Lambda|, \Lambda)\}$ is a singleton and we can extract its only value by taking its union.

```
definition
    CommSetFold(f,a,\Lambda) = \{Fold1(f,a O b). b \in bij(|\Lambda|, \Lambda)}
```

the next locale sets up notation for writing about summation in commutative semigroups. We define two kinds of sums. One is the sum of elements of a list (which are just functions defined on a natural number) and the second one represents a more general notion the sum of values of a semigroup valued function over some set of arguments. Since those two types of sums are different notions they are represented by different symbols. However in the presentations they are both intended to be printed as \sum.
locale commsemigr =
fixes $G f$
assumes csgassoc: f \{is associative on\} G
assumes csgcomm: f \{is commutative on\} G
fixes csgsum (infixl + 69)
defines csgsum_def[simp]: $x+y \equiv f\langle x, y\rangle$
fixes X a
assumes csgaisfun: a : X \rightarrow G
fixes csglistsum ($\sum_{\text {_ 70 }}$)

```
defines csglistsum_def[simp]: \(\sum \mathrm{k} \equiv\) Fold1(f,k)
fixes csgsetsum ( \(\sum\) )
defines csgsetsum_def[simp]: \(\sum(\mathrm{A}, \mathrm{h}) \equiv \operatorname{CommSetFold}(\mathrm{f}, \mathrm{h}, \mathrm{A})\)
```

Definition of a sum of function over a set in notation defined in the commsemigr locale.

```
lemma (in commsemigr) CommSetFolddef:
    shows \(\left(\sum(A, a)\right)=\left(\bigcup\left\{\sum(\mathrm{a} 0 \mathrm{~b}) . \mathrm{b} \in \operatorname{bij}(|\mathrm{A}|, \mathrm{A})\right\}\right)\)
    using CommSetFold_def by simp
```

The next lemma states that the result of a sum does not depend on the order we calculate it. This is similar to lemma prod_order_irr in the Semigroup theory, except that the semigr1 locale assumes that the domain of the function we sum up is linearly ordered, while in commsemigr we don't have this assumption.
lemma (in commsemigr) sum_over_set_bij:
assumes A1: $A \in \operatorname{FinPow}(X) A \neq 0$ and $A 2: b \in \operatorname{bij}(|A|, A)$
shows $\left(\sum(A, a)\right)=\left(\sum(a \cup b)\right)$
proof -
have
$\forall c \in \operatorname{bij}(|A|, A) . \forall d \in \operatorname{bij}(|A|, A) .\left(\sum(\mathrm{a} O c)\right)=\left(\sum(\mathrm{a} O d)\right)$
proof -
$\{$ fix c assume $c \in \operatorname{bij}(|A|, A)$
fix d assume $d \in \operatorname{bij}(|A|, A)$ let $r=$ InducedRelation(converse(c), Le) have semigr1(G,f,A,r,restrict(a, A)) proof -
have semigr0(G,f) using csgassoc semigr0_def by simp
moreover from A1 $\langle c \in \operatorname{bij}(|A|, A)\rangle$ have $\operatorname{IsLin} \operatorname{Order}(A, r)$
using bij_converse_bij card_fin_is_nat
natord_lin_on_each_nat ind_rel_pres_lin by simp
moreover from A1 have restrict(a, A) : A \rightarrow G
using FinPow_def csgaisfun restrict_fun by simp
ultimately show thesis using semigr1_axioms.intro semigr1_def
by simp
qed
moreover have f \{is commutative on\} G using csgcomm
by simp
moreover from A1 have $A \in \operatorname{FinPow}(A) A \neq 0$
using FinPow_def by auto
moreover note $\langle c \in \operatorname{bij}(|A|, A)\rangle\langle d \in \operatorname{bij}(|A|, A)\rangle$ ultimately have
Fold1(f,restrict(a,A) O c) = Fold1(f,restrict(a,A) O d)
by (rule semigr1.prod_bij_same)
hence $\left(\sum(\right.$ restrict $\left.(a, A) O c)\right)=\left(\sum(r e s t r i c t(a, A) O d)\right)$
by simp moreover from $A 1\langle c \in \operatorname{bij}(|A|, A)\rangle\langle d \in \operatorname{bij}(|A|, A)\rangle$
have
restrict(a, A) O c = a 0 c and restrict (a, A) O d = a 0 d using bij_def surj_def csgaisfun FinPow_def comp_restrict by auto
ultimately have $\left(\sum(\mathrm{a} 0 \mathrm{c})\right)=\left(\sum(\mathrm{a} 0 \mathrm{~d})\right)$ by simp
\} thus thesis by blast
qed
with A2 have $\left(\bigcup\left\{\sum(\mathrm{a} 0 \mathrm{~b}) . \mathrm{b} \in \operatorname{bij}(|\mathrm{A}|, \mathrm{A})\right\}\right)=\left(\sum(\mathrm{a} 0 \mathrm{~b})\right)$
by (rule singleton_comprehension)
then show thesis using CommSetFolddef by simp qed

The result of a sum is in the semigroup. Also, as the second assertion we show that every semigroup valued function generates a homomorphism between the finite subsets of a semigroup and the semigroup. Adding an element to a set coresponds to adding a value.

```
lemma (in commsemigr) sum_over_set_add_point:
    assumes A1: A \(\in \operatorname{FinPow}(X) \quad A \neq 0\)
    shows \(\sum(\mathrm{A}, \mathrm{a}) \in \mathrm{G}\) and
    \(\forall x \in X-A . \sum(A \cup\{x\}, a)=\left(\sum(A, a)\right)+a(x)\)
proof -
    from A1 obtain \(b\) where \(b \in \operatorname{bij}(|A|, A)\)
        using fin_bij_card by auto
    with A1 have \(\sum(A, a)=\left(\sum(a \quad 0 \quad b)\right)\)
        using sum_over_set_bij by simp
    from A1 have \(|A| \in\) nat using card_fin_is_nat by simp
    have semigr0(G,f) using csgassoc semigr0_def by simp
    moreover
    from A1 obtain \(n\) where \(n \in\) nat and \(|A|=\operatorname{succ}(n)\)
        using card_non_empty_succ by auto
    with A1 \(\langle\mathrm{b} \in \operatorname{bij}(|\mathrm{A}|, \mathrm{A})\rangle\) have
        \(\mathrm{n} \in\) nat and \(\mathrm{a} 0 \mathrm{~b}: \operatorname{succ}(\mathrm{n}) \rightarrow \mathrm{G}\)
        using bij_def inj_def FinPow_def comp_fun_subset csgaisfun
        by auto
    ultimately have Fold1 (f,a 0 b) \(\in G\) by (rule semigr0.prod_type)
    with \(\left\langle\sum(A, a)=\left(\sum(a \quad 0 \quad b)\right)\right\rangle\) show \(\sum(A, a) \in G\)
        by simp
    \(\{\) fix \(x\) assume \(x \in X-A\)
        with A1 have \((A \cup\{x\}) \in \operatorname{FinPow}(X)\) and \(A \cup\{x\} \neq 0\)
            using singleton_in_finpow union_finpow by auto
        moreover have Append \((b, x) \in \operatorname{bij}(|A \cup\{x\}|, A \cup\{x\})\)
        proof -
            note \(\langle | A \mid \in\) nat \(\rangle\langle b \in \operatorname{bij}(|A|, A)\rangle\)
            moreover from \(\langle x \in X-A\) ) have \(x \notin A\) by simp
            ultimately have Append \((b, x) \in \operatorname{bij}(\operatorname{succ}(|A|), A \cup\{x\})\)
    by (rule bij_append_point)
        with A1 \(\langle x \in X-A\) ) show thesis
    using card_fin_add_one by auto
        qed
```

```
    ultimately have (\sum(A \cup {x},a)) = (\sum (a O Append(b,x)))
    using sum_over_set_bij by simp
    also have \ldots..= (\sum Append(a O b, a(x)))
    proof -
        note 〈|A| \in nat`
        moreover
        from A1 <b G bij(|A|, A)\rangle have
b : |A| ->A and A\subseteq X
using bij_def inj_def using FinPow_def by auto
        then have b : |A| }->\textrm{X}\mathrm{ by (rule func1_1_L1B)
        moreover from < }\textrm{x}\in\textrm{X}-\textrm{A}\rangle\mathrm{ have }\textrm{x}\in\textrm{X}\mathrm{ and a : X }->\textrm{G
using csgaisfun by auto
        ultimately show thesis using list_compose_append
by simp
    qed
    also have ... = (\sum(A,a)) + a(x)
    proof -
        note <semigr0(G,f)\rangle <n \in nat\rangle <a 0 b : succ(n) -> G\rangle
        moreover from }\langlex\inX-A\rangle have a(x) \in
using csgaisfun apply_funtype by simp
        ultimately have
Fold1(f,Append(a O b, a(x))) = f {Fold1(f,a O b),a(x)\rangle
by (rule semigr0.prod_append)
        with A1 <b \in bij(|A|,A) show thesis
using sum_over_set_bij by simp
    qed
    finally have (\sum(A\cup{x},a)) = (\sum(A,a)) + a(x)
        by simp
    } thus }\forallx\inX-A.\sum(A\cup{x},a)=(\sum(A,a))+a(x
        by simp
qed
end
```


24 Monoids

theory Monoid_ZF imports func_ZF
begin
This theory provides basic facts about monoids.

24.1 Definition and basic properties

In this section we talk about monoids. The notion of a monoid is similar to the notion of a semigroup except that we require the existence of a neutral element. It is also similar to the notion of group except that we don't require existence of the inverse.

Monoid is a set G with an associative operation and a neutral element. The operation is a function on $G \times G$ with values in G. In the context of ZF set theory this means that it is a set of pairs $\langle x, y\rangle$, where $x \in G \times G$ and $y \in G$. In other words the operation is a certain subset of $(G \times G) \times G$. We express all this by defing a predicate IsAmonoid(G,f). Here G is the "carrier" of the group and f is the binary operation on it.

definition

IsAmonoid(G,f) \equiv
f \{is associative on\} $G \wedge$
$(\exists \mathrm{e} \in \mathrm{G} . \quad(\forall \mathrm{g} \in \mathrm{G} .((\mathrm{f}(\langle\mathrm{e}, \mathrm{g}\rangle)=\mathrm{g}) \wedge(\mathrm{f}(\langle\mathrm{g}, \mathrm{e}\rangle)=\mathrm{g}))))$
The next locale called "monoid0" defines a context for theorems that concern monoids. In this contex we assume that the pair (G, f) is a monoid. We will use the \oplus symbol to denote the monoid operation (for no particular reason).

```
locale monoid0 =
    fixes G
    fixes f
    assumes monoidAsssum: IsAmonoid(G,f)
    fixes monoper (infixl }\oplus\mathrm{ 70)
    defines monoper_def [simp]: a }\oplus\textrm{b}\equiv\textrm{f}\langle\textrm{a},\textrm{b}
```

The result of the monoid operation is in the monoid (carrier).

```
lemma (in monoid0) group0_1_L1:
    assumes a\inG b\inG shows a }\oplus\textrm{b}\in
    using assms monoidAsssum IsAmonoid_def IsAssociative_def apply_funtype
    by auto
```

There is only one neutral element in a monoid.

```
lemma (in monoid0) group0_1_L2: shows
    \(\exists!\mathrm{e} . \mathrm{e} \in \mathrm{G} \wedge(\forall \mathrm{g} \in \mathrm{G} .((\mathrm{e} \oplus \mathrm{g}=\mathrm{g}) \wedge \mathrm{g} \oplus \mathrm{e}=\mathrm{g}))\)
proof
    fix e y
    assume \(e \in G \wedge(\forall g \in G . e \oplus g=g \wedge g \oplus e=g)\)
        and \(\mathrm{y} \in \mathrm{G} \wedge(\forall \mathrm{g} \in \mathrm{G} . \mathrm{y} \oplus \mathrm{g}=\mathrm{g} \wedge \mathrm{g} \oplus \mathrm{y}=\mathrm{g})\)
    then have \(\mathrm{y} \oplus \mathrm{e}=\mathrm{y} \mathrm{y} \oplus \mathrm{e}=\mathrm{e}\) by auto
    thus \(e=y\) by simp
next from monoidAsssum show
        \(\exists \mathrm{e} . \mathrm{e} \in \mathrm{G} \wedge(\forall \mathrm{g} \in \mathrm{G} . \mathrm{e} \oplus \mathrm{g}=\mathrm{g} \wedge \mathrm{g} \oplus \mathrm{e}=\mathrm{g})\)
        using IsAmonoid_def by auto
qed
```

We could put the definition of neutral element anywhere, but it is only usable in conjuction with the above lemma.

```
definition
    TheNeutralElement(G,f) \equiv
    ( THE e. e\inG ^ ( }\forall\textrm{g}\in\textrm{G}.\textrm{f}\langle\textrm{e},\textrm{g}\rangle=\textrm{g}\wedge \ f (g,e\rangle=g))
```

The neutral element is neutral.

```
lemma (in monoidO) unit_is_neutral:
    assumes A1: e = TheNeutralElement(G,f)
    shows e }\inG\(\forallg\inG.e e g = g ^ g \oplus e = g)
proof -
    let n = THE b. b G G ^( }\forall\textrm{g}\in\textrm{G}.\textrm{b}\oplus\textrm{g}=\textrm{g}\wedge\textrm{g}\oplus\textrm{b}=\textrm{g}
    have }\exists\textrm{lb}.\textrm{b}\in\textrm{G}\wedge(\forallg\inG.b\oplusg=g^g\oplusb=g
        using group0_1_L2 by simp
    then have n\inG ^( }\forall\textrm{g}\in\textrm{G}.\textrm{n}\oplus\textrm{g}=\textrm{g}\wedge\textrm{g}\oplus\textrm{n}=\textrm{g}
        by (rule theI)
    with A1 show thesis
        using TheNeutralElement_def by simp
qed
```

The monoid carrier is not empty.

```
lemma (in monoid0) group0_1_L3A: shows G\not=0
proof -
    have TheNeutralElement(G,f) \in G using unit_is_neutral
        by simp
    thus thesis by auto
qed
```

The range of the monoid operation is the whole monoid carrier.

```
lemma (in monoid0) group0_1_L3B: shows range(f) = G
proof
    from monoidAsssum have f : G }\times\textrm{G}->\textrm{G
            using IsAmonoid_def IsAssociative_def by simp
    then show range(f) \subseteqG
        using func1_1_L5B by simp
    show G\subseteq range(f)
    proof
        fix g assume A1: g\inG
        let e = TheNeutralElement(G,f)
        from A1 have }\langlee,g\rangle\inG\timesG g=f\langlee,g
            using unit_is_neutral by auto
        with <f : G \G GG` show g \in range(f)
            using func1_1_L5A by blast
    qed
qed
```

Another way to state that the range of the monoid operation is the whole monoid carrier.

```
lemma (in monoid0) range_carr: shows f(G\timesG) = G
    using monoidAsssum IsAmonoid_def IsAssociative_def
        group0_1_L3B range_image_domain by auto
```

In a monoid any neutral element is the neutral element.
lemma (in monoid0) group0_1_L4:

```
    assumes A1: e }\inG\(\forallg\inG.e e g = g ^ g \oplus e = g
    shows e = TheNeutralElement(G,f)
proof -
    let n = THE b. b G G ^( }\forall\textrm{g}\in\textrm{G}.\textrm{b}\oplus\textrm{g}=\textrm{g}\wedge\textrm{g}\oplus\textrm{b}=\textrm{g}
    have }\exists\textrm{lb}.\textrm{b}\in\textrm{G}\wedge(\forall g\inG. b\oplusg=g ^g\oplusb=g
        using group0_1_L2 by simp
    moreover note A1
    ultimately have n = e by (rule the_equality2)
    then show thesis using TheNeutralElement_def by simp
qed
```

The next lemma shows that if the if we restrict the monoid operation to a subset of G that contains the neutral element, then the neutral element of the monoid operation is also neutral with the restricted operation.

```
lemma (in monoid0) group0_1_L5:
    assumes A1: }\forall\textrm{x}\in\textrm{H}.\forall\textrm{y}\in\textrm{H}.\textrm{x}\oplus\textrm{y}\in\textrm{H
    and A2: H\subseteqG
    and A3: e = TheNeutralElement(G,f)
    and A4: g = restrict(f,H\timesH)
    and A5: e\inH
    and A6: }\textrm{h}\in\textrm{H
    shows g\langlee,h\rangle=h}^\textrm{h}\langle\textrm{h},\textrm{e}\rangle=\textrm{h
proof -
    from A4 A6 A5 have
        g}\langle\textrm{e},\textrm{h}\rangle=\textrm{e}\oplus\textrm{h}\wedge \ g\langleh,e\rangle=h h\oplus
        using restrict_if by simp
    with A3 A4 A6 A2 show
        g}\langle\textrm{e},\textrm{h}\rangle=\textrm{h}\wedge\textrm{g}\langle\textrm{h},\textrm{e}\rangle=\textrm{h
        using unit_is_neutral by auto
qed
```

The next theorem shows that if the monoid operation is closed on a subset of G then this set is a (sub)monoid (although we do not define this notion). This fact will be useful when we study subgroups.

```
theorem (in monoid0) group0_1_T1:
    assumes A1: H {is closed under} f
    and A2: H\subseteqG
    and A3: TheNeutralElement(G,f) \in H
    shows IsAmonoid(H,restrict(f,H\timesH))
proof -
    let g = restrict(f,H\timesH)
    let e = TheNeutralElement(G,f)
    from monoidAsssum have f }\inG\timesG->
        using IsAmonoid_def IsAssociative_def by simp
    moreover from A2 have H\timesH\subseteqG\timesG by auto
    moreover from A1 have }\forall\textrm{p}\in\textrm{H}\times\textrm{H}.\textrm{f}(\textrm{p})\in
        using IsOpClosed_def by auto
    ultimately have g G H\timesH->H
        using func1_2_L4 by simp
```

```
    moreover have }\forall\textrm{x}\in\textrm{H}.\forall\textrm{y}\in\textrm{H}.\forall\textrm{z}\in\textrm{H}
        g{g\langlex,y\rangle,z\rangle=g{x,g(y,z)\rangle
    proof -
        from A1 have }\forall\textrm{x}\in\textrm{H}.\forall\textrm{y}\in\textrm{H}.\forall\textrm{z}\in\textrm{H}
            g\langleg\langlex,y\rangle,z\rangle = x\oplusy\oplusz
        using IsOpClosed_def restrict_if by simp
    moreover have }\forall\textrm{x}\in\textrm{H}.\forall\textrm{y}\in\textrm{H}.\forall\textrm{z}\in\textrm{H}.\textrm{x}\oplus\textrm{y}\oplus\textrm{z}=\textrm{x}\oplus(\textrm{y}\oplus\textrm{z}
    proof -
        from monoidAsssum have
\forallx\inG.\forally\inG.\forallz\inG. x }\oplus\textrm{y}\oplus\textrm{z}=\textrm{x}\oplus(\textrm{y}\oplus\textrm{z}
using IsAmonoid_def IsAssociative_def
by simp
        with A2 show thesis by auto
    qed
    moreover from A1 have
        \forallx\inH.}.\forall\textrm{y}\in\textrm{H}.\forall\textrm{z}\in\textrm{H}.\textrm{x}\oplus(\textrm{y}\oplus\textrm{z})=\textrm{g}\langle\textrm{x},\textrm{g}\langle\textrm{y},\textrm{z}\rangle
        using IsOpClosed_def restrict_if by simp
    ultimately show thesis by simp
    qed
    moreover have
    \exists\textrm{n}\in\textrm{H}.}.(\forall\textrm{h}\in\textrm{H}.\textrm{g}\langle\textrm{n},\textrm{h}\rangle=\textrm{h}\wedge\textrm{g}\langle\textrm{h},\textrm{n}\rangle=\textrm{h}
    proof -
    from A1 have }\forall\textrm{x}\in\textrm{H}.\forall\textrm{y}\in\textrm{H}.\textrm{x}\oplus\textrm{y}\in\textrm{H
        using IsOpClosed_def by simp
    with A2 A3 have
                | h\inH. g <e,h}\rangle=\textrm{h}\wedge\textrm{g}\langle\textrm{h},\textrm{e}\rangle=\textrm{h
                using group0_1_L5 by blast
    with A3 show thesis by auto
    qed
    ultimately show thesis using IsAmonoid_def IsAssociative_def
    by simp
qed
```

Under the assumptions of group0_1_T1 the neutral element of a submonoid is the same as that of the monoid.

```
lemma group0_1_L6:
    assumes A1: IsAmonoid(G,f)
    and A2: H {is closed under} f
    and A3: H\subseteqG
    and A4: TheNeutralElement(G,f) \in H
    shows TheNeutralElement(H,restrict(f,H\timesH)) = TheNeutralElement(G,f)
proof -
    let e = TheNeutralElement(G,f)
    let g = restrict(f,H\timesH)
    from assms have monoid0(H,g)
        using monoid0_def monoid0.group0_1_T1
        by simp
    moreover have
        e \in H ^ ( }\forall\textrm{h}\in\textrm{H}.\textrm{g}\langle\textrm{e},\textrm{h}\rangle=\textrm{h}\wedge\textrm{g}\langle\textrm{h},\textrm{e}\rangle=\textrm{h}
```

```
    proof -
        { fix h assume h \in H
        with assms have
monoid0(G,f) }\forallx\inH.\forally\inH.f\langlex,y\rangle\in
H\subseteqG e = TheNeutralElement(G,f) g = restrict(f,H\timesH)
e GH h G H
using monoidO_def IsOpClosed_def by auto
            then have g}|e,h\rangle=h \ g \h,e\rangle=
by (rule monoid0.group0_1_L5)
    } hence }\forall\textrm{h}\in\textrm{H}.\textrm{g}\langlee,\textrm{h}\rangle=\textrm{h}\wedge\textrm{g}\langle\textrm{h},\textrm{e}\rangle=\textrm{h}\mathrm{ by simp
    with A4 show thesis by simp
    qed
    ultimately have e = TheNeutralElement(H,g)
        by (rule monoid0.group0_1_L4)
    thus thesis by simp
qed
```

If a sum of two elements is not zero, then at least one has to be nonzero.

```
lemma (in monoid0) sum_nonzero_elmnt_nonzero:
    assumes a }\oplus\textrm{b}\not=\mathrm{ TheNeutralElement(G,f)
    shows a }\not=\mathrm{ TheNeutralElement(G,f) }\vee b \not= TheNeutralElement(G,f
    using assms unit_is_neutral by auto
end
```


25 Groups - introduction

theory Group_ZF imports Monoid_ZF

begin

This theory file covers basics of group theory.

25.1 Definition and basic properties of groups

In this section we define the notion of a group and set up the notation for discussing groups. We prove some basic theorems about groups.

To define a group we take a monoid and add a requirement that the right inverse needs to exist for every element of the group.

```
definition
    IsAgroup(G,f) \(\equiv\)
    (IsAmonoid(G,f) \(\wedge(\forall \mathrm{g} \in \mathrm{G} . \exists \mathrm{b} \in \mathrm{G} . \mathrm{f}\langle\mathrm{g}, \mathrm{b}\rangle=\) TheNeutralElement \((\mathrm{G}, \mathrm{f}))\) )
```

We define the group inverse as the set $\{\langle x, y\rangle \in G \times G: x \cdot y=e\}$, where e is the neutral element of the group. This set (which can be written as $\left.(\cdot)^{-1}\{e\}\right)$ is a certain relation on the group (carrier). Since, as we show
later, for every $x \in G$ there is exactly one $y \in G$ such that $x \cdot y=e$ this relation is in fact a function from G to G.

```
definition
    \(\operatorname{GroupInv}(G, f) \equiv\{\langle x, y\rangle \in G \times G . f\langle x, y\rangle=\) TheNeutralElement \((G, f)\}\)
```

We will use the miltiplicative notation for groups. The neutral element is denoted 1.

```
locale group0 \(=\)
    fixes \(G\)
    fixes \(P\)
    assumes groupAssum: IsAgroup (G,P)
    fixes neut (1)
    defines neut_def[simp]: \(1 \equiv\) TheNeutralElement (G,P)
    fixes groper (infixl • 70)
    defines groper_def[simp]: a \(\cdot \mathrm{b} \equiv \mathrm{P}\langle\mathrm{a}, \mathrm{b}\rangle\)
    fixes inv (_- [90] 91)
    defines inv_def[simp]: \(\mathrm{x}^{-1} \equiv \operatorname{GroupInv(G,P)(x)}\)
```

First we show a lemma that says that we can use theorems proven in the monoido context (locale).
lemma (in group0) group0_2_L1: shows monoidO (G,P)
using groupAssum IsAgroup_def monoid0_def by simp
In some strange cases Isabelle has difficulties with applying the definition of a group. The next lemma defines a rule to be applied in such cases.

```
lemma definition_of_group: assumes IsAmonoid(G,f)
    and \forallg\inG. \existsb\inG. f \g,b\rangle= TheNeutralElement(G,f)
    shows IsAgroup(G,f)
    using assms IsAgroup_def by simp
```

A technical lemma that allows to use 1 as the neutral element of the group without referencing a list of lemmas and definitions.

```
lemma (in group0) group0_2_L2:
    shows }1\inG\wedge(\forallg\inG.(1\cdotg=g^g\cdot1=g)
    using group0_2_L1 monoid0.unit_is_neutral by simp
```

The group is closed under the group operation. Used all the time, useful to have handy.

```
lemma (in group0) group_op_closed: assumes a\inG b\inG
    shows a·b G G using assms group0_2_L1 monoid0.group0_1_L1
    by simp
```

The group operation is associative. This is another technical lemma that allows to shorten the list of referenced lemmas in some proofs.

```
lemma (in group0) group_oper_assoc:
    assumes a\inG b\inG c\inG shows a.(b\cdotc) = a\cdotb\cdotc
    using groupAssum assms IsAgroup_def IsAmonoid_def
        IsAssociative_def group_op_closed by simp
```

The group operation maps $G \times G$ into G. It is conveniet to have this fact easily accessible in the group0 context.
lemma (in group0) group_oper_assocA: shows P : $G \times G \rightarrow G$
using groupAssum IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
The definition of a group requires the existence of the right inverse. We show that this is also the left inverse.

```
theorem (in group0) group0_2_T1:
    assumes A1: \(\mathrm{g} \in \mathrm{G}\) and \(\mathrm{A} 2: \mathrm{b} \in \mathrm{G}\) and \(\mathrm{A} 3: \mathrm{g} \cdot \mathrm{b}=1\)
    shows \(\mathrm{b} \cdot \mathrm{g}=1\)
proof -
    from A2 groupAssum obtain \(c\) where \(I: c \in G \wedge b \cdot c=1\)
            using IsAgroup_def by auto
    then have \(c \in G\) by simp
    have \(1 \in G\) using group0_2_L2 by simp
    with A1 A2 I have \(\mathrm{b} \cdot \mathrm{g}=\mathrm{b} \cdot(\mathrm{g} \cdot(\mathrm{b} \cdot \mathrm{c})\) )
        using group_op_closed group0_2_L2 group_oper_assoc
        by simp
    also from A1 A2 \(\langle\mathrm{c} \in \mathrm{G}\rangle\) have \(\mathrm{b} \cdot(\mathrm{g} \cdot(\mathrm{b} \cdot \mathrm{c}))=\mathrm{b} \cdot(\mathrm{g} \cdot \mathrm{b} \cdot \mathrm{c})\)
        using group_oper_assoc by simp
    also from A3 A2 I have b•(g.b•c) \(=1\) using group0_2_L2 by simp
    finally show \(\mathrm{b} \cdot \mathrm{g}=1\) by simp
qed
```

For every element of a group there is only one inverse.

```
lemma (in group0) group0_2_L4:
    assumes A1: \(\mathrm{x} \in \mathrm{G}\) shows \(\exists!\mathrm{y} . \mathrm{y} \in \mathrm{G} \wedge \mathrm{x} \cdot \mathrm{y}=1\)
proof
    from A1 groupAssum show \(\exists y \cdot y \in G \wedge x \cdot y=1\)
        using IsAgroup_def by auto
    fix y n
    assume A2: \(y \in G \wedge x \cdot y=1\) and \(A 3: n \in G \wedge x \cdot n=1\) show \(y=n\)
    proof -
        from A1 A2 have T1: \(y \cdot x=1\)
            using group0_2_T1 by simp
        from A2 A3 have \(y=y \cdot(x \cdot n)\)
            using group0_2_L2 by simp
        also from A1 A2 A3 have ... = \((y \cdot x) \cdot n\)
            using group_oper_assoc by blast
        also from T1 A3 have ... = n
            using group0_2_L2 by simp
        finally show \(\mathrm{y}=\mathrm{n}\) by simp
```


qed
 qed

The group inverse is a function that maps G into G.

```
theorem group0_2_T2:
    assumes A1: \(\operatorname{IsAgroup}(G, f)\) shows \(\operatorname{GroupInv}(G, f): G \rightarrow G\)
proof -
    have \(\operatorname{GroupInv}(\mathrm{G}, \mathrm{f}) \subseteq \mathrm{G} \times \mathrm{G}\) using GroupInv_def by auto
    moreover from \(A 1\) have
        \(\forall \mathrm{x} \in \mathrm{G} . \exists!\mathrm{y} . \mathrm{y} \in \mathrm{G} \wedge\langle\mathrm{x}, \mathrm{y}\rangle \in \operatorname{GroupInv}(\mathrm{G}, \mathrm{f})\)
        using group0_def group0.group0_2_L4 GroupInv_def by simp
    ultimately show thesis using func1_1_L11 by simp
qed
```

We can think about the group inverse (the function) as the inverse image of the neutral element. Recall that in Isabelle f-(A) denotes the inverse image of the set A.
theorem (in group0) group0_2_T3: shows P-\{1\} $=\operatorname{GroupInv}(G, P)$
proof -
from groupAssum have $P: G \times G \rightarrow G$
using IsAgroup_def IsAmonoid_def IsAssociative_def
by simp
then show $P-\{1\}=\operatorname{GroupInv}(G, P)$
using func1_1_L14 GroupInv_def by auto
qed
The inverse is in the group.
lemma (in group0) inverse_in_group: assumes A1: $x \in G$ shows $x^{-1} \in G$
proof -
from groupAssum have $\operatorname{GroupInv}(\mathrm{G}, \mathrm{P})$: $\mathrm{G} \rightarrow \mathrm{G}$ using group0_2_T2 by simp
with A1 show thesis using apply_type by simp
qed
The notation for the inverse means what it is supposed to mean.

```
lemma (in group0) group0_2_L6:
    assumes A1: \(x \in G\) shows \(x \cdot x^{-1}=1 \wedge \mathrm{x}^{-1} \cdot \mathrm{x}=1\)
proof
    from groupAssum have \(\operatorname{GroupInv}(G, P): G \rightarrow G\)
        using group0_2_T2 by simp
    with A1 have \(\left\langle\mathrm{x}, \mathrm{x}^{-1}\right\rangle \in \operatorname{GroupInv}(\mathrm{G}, \mathrm{P})\)
        using apply_Pair by simp
    then show \(x \cdot x^{-1}=1\) using GroupInv_def by simp
    with A1 show \(\mathrm{x}^{-1} \cdot \mathrm{x}=1\) using inverse_in_group group0_2_T1
        by blast
qed
```

The next two lemmas state that unless we multiply by the neutral element, the result is always different than any of the operands.

```
lemma (in group0) group0_2_L7:
    assumes A1: a\inG and A2: b\inG and A3: a b = a
    shows b=1
proof -
    from A3 have a-1 . (a\cdotb) = a }\mp@subsup{\textrm{a}}{}{-1}\cdot\textrm{a}\mathrm{ by simp
    with A1 A2 show thesis using
        inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
        by simp
qed
```

See the comment to group0_2_L7.
lemma (in group0) group0_2_L8:
assumes $\mathrm{A} 1: \mathrm{a} \in \mathrm{G}$ and $\mathrm{A} 2: \mathrm{b} \in \mathrm{G}$ and $\mathrm{A} 3: \mathrm{a} \cdot \mathrm{b}=\mathrm{b}$
shows $\mathrm{a}=1$
proof -
from A3 have $(a \cdot b) \cdot b^{-1}=b \cdot b^{-1}$ by simp
with A1 A2 have $a \cdot\left(b \cdot b^{-1}\right)=b \cdot b^{-1}$ using
inverse_in_group group_oper_assoc by simp
with A1 A2 show thesis
using group0_2_L6 group0_2_L2 by simp
qed

The inverse of the neutral element is the neutral element.

```
lemma (in group0) group_inv_of_one: shows 1 1 = 1
    using group0_2_L2 inverse_in_group group0_2_L6 group0_2_L7 by blast
```

if $a^{-1}=1$, then $a=1$.
lemma (in group0) group0_2_L8A:
assumes A1: $\mathrm{a} \in \mathrm{G}$ and A2: $\mathrm{a}^{-1}=1$
shows $\mathrm{a}=1$
proof -
from A1 have $\mathrm{a} \cdot \mathrm{a}^{-1}=1$ using group0_2_L6 by simp
with A1 A2 show a = 1 using group0_2_L2 by simp
qed

If a is not a unit, then its inverse is not a unit either.

```
lemma (in group0) group0_2_L8B:
    assumes a\inG and a }\not=
    shows a-1 }=1\mathrm{ using assms group0_2_L8A by auto
```

If a^{-1} is not a unit, then a is not a unit either.
lemma (in group0) group0_2_L8C:
assumes $a \in G$ and $a^{-1} \neq 1$
shows $\mathrm{a} \neq 1$
using assms group0_2_L8A group_inv_of_one by auto
If a product of two elements of a group is equal to the neutral element then they are inverses of each other.

```
lemma (in group0) group0_2_L9:
    assumes A1: a\inG and A2: b\inG and A3: a}b=
    shows a = b
proof -
    from A3 have a\cdotb\cdotb}\mp@subsup{}{}{-1}=1\cdot\mp@subsup{b}{}{-1}\mathrm{ by simp
    with A1 A2 have a.(b\cdotb}\mp@subsup{}{}{-1})=1\cdot\mp@subsup{b}{}{-1}\mathrm{ using
        inverse_in_group group_oper_assoc by simp
    with A1 A2 show a = b 
        group0_2_L6 inverse_in_group group0_2_L2 by simp
    from A3 have a }\mp@subsup{a}{}{-1}\cdot(a\cdotb)=\mp@subsup{a}{}{-1}.1 by sim
    with A1 A2 show b = a }\mp@subsup{}{}{-1}\mathrm{ using
        inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
        by simp
qed
```

It happens quite often that we know what is (have a meta-function for) the right inverse in a group. The next lemma shows that the value of the group inverse (function) is equal to the right inverse (meta-function).

```
lemma (in group0) group0_2_L9A:
    assumes A1: \(\forall \mathrm{g} \in \mathrm{G} . \mathrm{b}(\mathrm{g}) \in \mathrm{G} \wedge \mathrm{g} \cdot \mathrm{b}(\mathrm{g})=1\)
    shows \(\forall \mathrm{g} \in \mathrm{G} . \mathrm{b}(\mathrm{g})=\mathrm{g}^{-1}\)
proof
    fix \(g\) assume \(g \in G\)
    moreover from \(A 1\langle g \in G\rangle\) have \(b(g) \in G\) by simp
    moreover from \(\mathrm{A} 1\langle\mathrm{~g} \in \mathrm{G}\rangle\) have \(\mathrm{g} \cdot \mathrm{b}(\mathrm{g})=1\) by simp
    ultimately show \(\mathrm{b}(\mathrm{g})=\mathrm{g}^{-1}\) by (rule group0_2_L9)
qed
```

What is the inverse of a product?

```
lemma (in group0) group_inv_of_two:
    assumes A1: a }\in\textrm{G}\mathrm{ and A2: b}\in
    shows }\mp@subsup{b}{}{-1}\cdot\mp@subsup{a}{}{-1}=(a\cdotb\mp@subsup{)}{}{-1
proof -
    from A1 A2 have
        b}\mp@subsup{}{}{-1}\inG\quad\mp@subsup{a}{}{-1}\inG\quada\cdotb\inG\quad\mp@subsup{b}{}{-1}\cdot\mp@subsup{a}{}{-1}\in
        using inverse_in_group group_op_closed
        by auto
    from A1 A2 }\langle\mp@subsup{\textrm{b}}{}{-1}\cdot\mp@subsup{\textrm{a}}{}{-1}\inG\rangle have a\cdotb\cdot(\mp@subsup{b}{}{-1}\cdot\mp@subsup{\textrm{a}}{}{-1})=a\cdot(\textrm{b}\cdot(\textrm{b
        using group_oper_assoc by simp
    moreover from A2 \langleb
        using group_oper_assoc by simp
    moreover from A2 \langlea-1\inG\rangle have b
        using group0_2_L6 group0_2_L2 by simp
    ultimately have a\cdotb}\cdot(\mp@subsup{b}{}{-1}\cdot\mp@subsup{a}{}{-1})=a\cdot\mp@subsup{a}{}{-1
        by simp
    with A1 have a\cdotb}(\textrm{b}-1\cdot\mp@subsup{\textrm{a}}{}{-1})=
        using group0_2_L6 by simp
    with \langlea\cdotb G G\rangle \langleb-1}\cdot\mp@subsup{\textrm{a}}{}{-1}\inG\rangle\mathrm{ show b b 
        using group0_2_L9 by simp
```


qed

What is the inverse of a product of three elements?

```
lemma (in group0) group_inv_of_three:
    assumes A1: a\inG b\inG c
    shows
    (a\cdotb\cdotc)-1}=\mp@subsup{c}{}{-1}\cdot(a\cdotb\mp@subsup{)}{}{-1
    (a\cdotb\cdotc)-1 = c
    (a\cdotb\cdotc)}\mp@subsup{)}{}{-1}=\mp@subsup{c}{}{-1}\cdot\mp@subsup{b}{}{-1}\cdot\mp@subsup{a}{}{-1
proof -
    from A1 have T:
        a\cdotb}\inG\quad\mp@subsup{a}{}{-1}\inG\quad\mp@subsup{b}{}{-1}\inG\quad\mp@subsup{c}{}{-1}\in
        using group_op_closed inverse_in_group by auto
    with A1 show
        (a\cdotb\cdotc)}\mp@subsup{)}{}{-1}=\mp@subsup{c}{}{-1}\cdot(a\cdotb\mp@subsup{)}{}{-1}\mathrm{ and (a}b\cdotb\cdotc\mp@subsup{)}{}{-1}=\mp@subsup{c}{}{-1}\cdot(\mp@subsup{b}{}{-1}\cdot\mp@subsup{a}{}{-1}
            using group_inv_of_two by auto
        with T show (a\cdotb\cdotc)}\mp@subsup{)}{}{-1}=\mp@subsup{c}{}{-1}\cdot\mp@subsup{b}{}{-1}\cdot\mp@subsup{a}{}{-1}\mathrm{ using group_oper_assoc
            by simp
qed
```

The inverse of the inverse is the element.
lemma (in group0) group_inv_of_inv:
assumes $a \in G$ shows $a=\left(a^{-1}\right)^{-1}$
using assms inverse_in_group group0_2_L6 group0_2_L9
by simp
Group inverse is nilpotent, therefore a bijection and involution.

```
lemma (in group0) group_inv_bij:
    shows GroupInv(G,P) O GroupInv(G,P) = id(G) and GroupInv(G,P) \in bij(G,G)
and
    GroupInv(G,P) = converse(GroupInv(G,P))
proof -
    have I: GroupInv(G,P): G GG using groupAssum group0_2_T2 by simp
    then have GroupInv(G,P) O GroupInv(G,P): G >G and id(G):G->G
        using comp_fun id_type by auto
    moreover
    { fix g assume g\inG
        with I have (GroupInv(G,P) O GroupInv(G,P))(g) = id(G)(g)
            using comp_fun_apply group_inv_of_inv id_conv by simp
    } hence }\forall\textrm{g}\in\textrm{G}.(GroupInv(G,P) O GroupInv(G,P))(g) = id(G)(g) by simp
    ultimately show GroupInv(G,P) O GroupInv(G,P) = id(G)
        by (rule func_eq)
    with I show GroupInv(G,P) \in bij(G,G) using nilpotent_imp_bijective
        by simp
    with 〈GroupInv(G,P) O GroupInv(G,P) = id(G)` show
        GroupInv(G,P) = converse(GroupInv(G,P)) using comp_id_conv by simp
qed
```

For the group inverse the image is the same as inverse image.
lemma (in group0) inv_image_vimage: shows $\operatorname{GroupInv}(G, P)(V)=\operatorname{GroupInv}(G, P)-(V)$ using group_inv_bij vimage_converse by simp

If the unit is in a set then it is in the inverse of that set.

```
lemma (in group0) neut_inv_neut: assumes A\subseteqG and 1\inA
    shows 1 G GroupInv(G,P)(A)
proof -
    have GroupInv(G,P):G->G using groupAssum group0_2_T2 by simp
    with assms have 1-1 }\in\operatorname{GroupInv(G,P)(A) using func_imagedef by auto
    then show thesis using group_inv_of_one by simp
qed
```

The group inverse is onto.

```
lemma (in group0) group_inv_surj: shows GroupInv(G,P)(G) = G
    using group_inv_bij bij_def surj_range_image_domain by auto
```

If $a^{-1} \cdot b=1$, then $a=b$.
lemma (in group0) group0_2_L11:
assumes A1: $\mathrm{a} \in \mathrm{G} \quad \mathrm{b} \in \mathrm{G}$ and A2: $\mathrm{a}^{-1} \cdot \mathrm{~b}=1$
shows $\mathrm{a}=\mathrm{b}$
proof -
from A1 A2 have $a^{-1} \in G \quad b \in G \quad a^{-1} \cdot b=1$
using inverse_in_group by auto
then have $\mathrm{b}=\left(\mathrm{a}^{-1}\right)^{-1}$ by (rule group0_2_L9)
with A1 show a=b using group_inv_of_inv by simp
qed
If $a \cdot b^{-1}=1$, then $a=b$.
lemma (in group0) group0_2_L11A:
assumes A1: $a \in G \quad b \in G$ and $A 2: ~ a \cdot b^{-1}=1$
shows $\mathrm{a}=\mathrm{b}$
proof -
from A1 A2 have $a \in G \quad b^{-1} \in G \quad a \cdot b^{-1}=1$
using inverse_in_group by auto
then have $a=\left(b^{-1}\right)^{-1}$ by (rule group0_2_L9)
with A1 show a=b using group_inv_of_inv by simp
qed

If if the inverse of b is different than a, then the inverse of a is different than b.

```
lemma (in group0) group0_2_L11B:
    assumes \(A 1: a \in G\) and \(A 2: b^{-1} \neq a\)
    shows \(\mathrm{a}^{-1} \neq \mathrm{b}\)
proof -
    \{ assume \(\mathrm{a}^{-1}=\mathrm{b}\)
        then have \(\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{b}^{-1}\) by simp
        with A1 A2 have False using group_inv_of_inv
            by simp
```

$\}$ then show $a^{-1} \neq b$ by auto
qed
What is the inverse of $a b^{-1}$?

```
lemma (in group0) group0_2_L12:
    assumes A1: \(a \in G \quad b \in G\)
    shows
    \(\left(\mathrm{a} \cdot \mathrm{b}^{-1}\right)^{-1}=\mathrm{b} \cdot \mathrm{a}^{-1}\)
    \(\left(\mathrm{a}^{-1} \cdot \mathrm{~b}\right)^{-1}=\mathrm{b}^{-1} \cdot \mathrm{a}\)
proof -
    from A1 have
        \(\left(a \cdot b^{-1}\right)^{-1}=\left(b^{-1}\right)^{-1} \cdot a^{-1}\) and \(\left(a^{-1} \cdot b\right)^{-1}=b^{-1} \cdot\left(a^{-1}\right)^{-1}\)
        using inverse_in_group group_inv_of_two by auto
    with \(A 1\) show \(\left(a \cdot b^{-1}\right)^{-1}=b \cdot a^{-1} \quad\left(a^{-1} \cdot b\right)^{-1}=b^{-1} \cdot a\)
        using group_inv_of_inv by auto
qed
```

A couple useful rearrangements with three elements: we can insert a $b \cdot b^{-1}$ between two group elements (another version) and one about a product of an element and inverse of a product, and two others.

```
lemma (in group0) group0_2_L14A:
    assumes A1: \(a \in G \quad b \in G \quad c \in G\)
    shows
    \(a \cdot c^{-1}=\left(a \cdot b^{-1}\right) \cdot\left(b \cdot c^{-1}\right)\)
    \(a^{-1} \cdot c=\left(a^{-1} \cdot b\right) \cdot\left(b^{-1} \cdot c\right)\)
    \(a \cdot(b \cdot c)^{-1}=a \cdot c^{-1} \cdot b^{-1}\)
    \(a \cdot\left(b \cdot c^{-1}\right)=a \cdot b \cdot c^{-1}\)
    \(\left(a \cdot b^{-1} \cdot c^{-1}\right)^{-1}=c \cdot b \cdot a^{-1}\)
    \(a \cdot b \cdot c^{-1} \cdot\left(c \cdot b^{-1}\right)=a\)
    \(a \cdot(b \cdot c) \cdot c^{-1}=a \cdot b\)
proof -
    from A1 have T :
        \(\mathrm{a}^{-1} \in \mathrm{G} \quad \mathrm{b}^{-1} \in \mathrm{G} \quad \mathrm{c}^{-1} \in \mathrm{G}\)
        \(a^{-1} \cdot b \in G \quad a \cdot b^{-1} \in G \quad a \cdot b \in G\)
        \(\mathrm{c} \cdot \mathrm{b}^{-1} \in \mathrm{G} \quad \mathrm{b} \cdot \mathrm{c} \in \mathrm{G}\)
        using inverse_in_group group_op_closed
        by auto
        from A1 \(T\) have
            \(a \cdot c^{-1}=a \cdot\left(b^{-1} \cdot b\right) \cdot c^{-1}\)
            \(a^{-1} \cdot c=a^{-1} \cdot\left(b \cdot b^{-1}\right) \cdot c\)
        using group0_2_L2 group0_2_L6 by auto
        with A1 T show
            \(\mathrm{a} \cdot \mathrm{c}^{-1}=\left(\mathrm{a} \cdot \mathrm{b}^{-1}\right) \cdot\left(\mathrm{b} \cdot \mathrm{c}^{-1}\right)\)
            \(a^{-1} \cdot c=\left(a^{-1} \cdot b\right) \cdot\left(b^{-1} \cdot c\right)\)
            using group_oper_assoc by auto
    from A1 have \(a \cdot(b \cdot c)^{-1}=a \cdot\left(c^{-1} \cdot b^{-1}\right)\)
        using group_inv_of_two by simp
    with A1 T show \(a \cdot(b \cdot c)^{-1}=a \cdot c^{-1} \cdot b^{-1}\)
        using group_oper_assoc by simp
```

```
    from A1 \(T\) show \(a \cdot\left(b \cdot c^{-1}\right)=a \cdot b \cdot c^{-1}\)
    using group_oper_assoc by simp
    from A1 T show \(\left(a \cdot b^{-1} \cdot c^{-1}\right)^{-1}=c \cdot b \cdot a^{-1}\)
    using group_inv_of_three group_inv_of_inv
    by simp
    from \(T\) have \(a \cdot b \cdot c^{-1} \cdot\left(c \cdot b^{-1}\right)=a \cdot b \cdot\left(c^{-1} \cdot\left(c \cdot b^{-1}\right)\right)\)
        using group_oper_assoc by simp
    also from A1 \(T\) have ... = \(a \cdot b \cdot b^{-1}\)
        using group_oper_assoc group0_2_L6 group0_2_L2
        by simp
    also from A1 T have \(\ldots=\mathrm{a} \cdot\left(\mathrm{b} \cdot \mathrm{b}^{-1}\right)\)
        using group_oper_assoc by simp
    also from A1 have ... = a
        using group0_2_L6 group0_2_L2 by simp
    finally show \(a \cdot b \cdot c^{-1} \cdot\left(c \cdot b^{-1}\right)=a\) by simp
    from A1 T have \(a \cdot(b \cdot c) \cdot c^{-1}=a \cdot\left(b \cdot\left(c \cdot c^{-1}\right)\right)\)
        using group_oper_assoc by simp
    also from A 1 T have \(\ldots=\mathrm{a} \cdot \mathrm{b}\)
        using group0_2_L6 group0_2_L2 by simp
    finally show \(a \cdot(b \cdot c) \cdot c^{-1}=a \cdot b\)
        by simp
qed
```

Another lemma about rearranging a product of four group elements.

```
lemma (in group0) group0_2_L15:
    assumes A1: a\inG b\inG c\inG d\inG
    shows (a\cdotb)\cdot(c\cdotd)}\mp@subsup{)}{}{-1}=\textrm{a}\cdot(\textrm{b}\cdot\mp@subsup{\textrm{d}}{}{-1})\cdot\mp@subsup{\textrm{a}}{}{-1}\cdot(\textrm{a}\cdot\mp@subsup{\textrm{c}}{}{-1}
proof -
    from A1 have T1:
        d
        using inverse_in_group group_op_closed
        by auto
    with A1 have (a\cdotb)\cdot(c\cdotd)}\mp@subsup{)}{}{-1}=(a\cdotb)\cdot(\mp@subsup{d}{}{-1}\cdot\mp@subsup{c}{}{-1}
        using group_inv_of_two by simp
```



```
        using group_oper_assoc by simp
    also from A1 T1 have ... = a.(b\cdotd-1)}\cdot\mp@subsup{\textrm{a}}{}{-1}\cdot(\textrm{a}\cdot\mp@subsup{\textrm{c}}{}{-1}
        using group0_2_L14A by blast
    finally show thesis by simp
qed
```

We can cancel an element with its inverse that is written next to it.
lemma (in group0) inv_cancel_two:
assumes A1: $a \in G \quad b \in G$
shows
$a \cdot b^{-1} \cdot b=a$
$a \cdot b \cdot b^{-1}=a$
$a^{-1} \cdot(a \cdot b)=b$
$a \cdot\left(a^{-1} \cdot b\right)=b$

```
proof -
    from A1 have
        a\cdotb}\mp@subsup{}{}{-1}\cdot\textrm{b}=\textrm{a}\cdot(\mp@subsup{b}{}{-1}\cdot\textrm{b})\quada\cdotb\cdot\mp@subsup{b}{}{-1}=a\cdot(b\cdot\mp@subsup{b}{}{-1}
        a}=\mp@subsup{\mp@code{-1}}{}{1}\cdot(a\cdotb)=\mp@subsup{a}{}{-1}\cdota\cdotb\quada\cdot(\mp@subsup{a}{}{-1}\cdotb)=a\cdot\mp@subsup{a}{}{-1}\cdot
        using inverse_in_group group_oper_assoc by auto
    with A1 show
        a}\cdot\mp@subsup{b}{}{-1}\cdot\textrm{b}=\textrm{a
        a}\cdot\textrm{b}\cdot\mp@subsup{\textrm{b}}{}{-1}=\textrm{a
        a
        a}\cdot(\mp@subsup{a}{}{-1}\cdotb)=
        using group0_2_L6 group0_2_L2 by auto
qed
```

Another lemma about cancelling with two group elements.

```
lemma (in group0) group0_2_L16A:
    assumes A1: a\inG b
    shows a.(b\cdota)-1}=\mp@subsup{b}{}{-1
proof -
    from A1 have (b\cdota)-1 = a a }\mp@subsup{\mp@code{M}}{}{-1}\cdot\mp@subsup{b}{}{-1}\quad\mp@subsup{b}{}{-1}\in
        using group_inv_of_two inverse_in_group by auto
    with A1 show a.(b\cdota) -1 = b - using inv_cancel_two
        by simp
qed
```

Adding a neutral element to a set that is closed under the group operation results in a set that is closed under the group operation.

```
lemma (in group0) group0_2_L17:
    assumes H\subseteqG
    and H {is closed under} P
    shows (H U {1}) {is closed under} P
    using assms IsOpClosed_def groupO_2_L2 by auto
```

We can put an element on the other side of an equation.

```
lemma (in group0) group0_2_L18:
    assumes A1: a\inG b\inG c\inG
    and A2: c = a.b
    shows c.b
proof-
    from A2 A1 have c.b}\mp@subsup{}{}{-1}=a\cdot(b\cdot\mp@subsup{b}{}{-1}) \mp@subsup{a}{}{-1}\cdotc=(\mp@subsup{a}{}{-1}\cdota)\cdot
        using inverse_in_group group_oper_assoc by auto
    moreover from A1 have a\cdot(b\cdot\mp@subsup{b}{}{-1})=a (a (a)}\textrm{a})\cdot\textrm{b}=\textrm{b
        using group0_2_L6 group0_2_L2 by auto
    ultimately show c}\cdot\mp@subsup{b}{}{-1}=\textrm{a}\quad\mp@subsup{\textrm{a}}{}{-1}\cdot\textrm{c}=\textrm{b
        by auto
qed
```

Multiplying different group elements by the same factor results in different group elements.

```
lemma (in group0) group0_2_L19:
    assumes A1: a\inG b\inG c\inG and A2: a\not=b
    shows a\cdotc \not= b}\cdot\textrm{c}\mathrm{ and c.a }\not=\textrm{c}\cdot\textrm{b
proof -
    { assume a.c = b
        then have a.c.c-1 = b}c\cdotc\cdot\mp@subsup{c}{}{-1}\vee\mp@subsup{c}{}{-1}\cdot(c\cdota)=\mp@subsup{c}{}{-1}\cdot(c\cdotb
            by auto
        with A1 A2 have False using inv_cancel_two by simp
    } then show a\cdotc \not=b}\textrm{b}\cdot\textrm{c}\mathrm{ and c.a }\not=\textrm{c}\cdot\textrm{b}\mathrm{ by auto
qed
```


25.2 Subgroups

There are two common ways to define subgroups. One requires that the group operation is closed in the subgroup. The second one defines subgroup as a subset of a group which is itself a group under the group operations. We use the second approach because it results in shorter definition.
The rest of this section is devoted to proving the equivalence of these two definitions of the notion of a subgroup.

A pair (H, P) is a subgroup if H forms a group with the operation P restricted to $H \times H$. It may be surprising that we don't require H to be a subset of G. This however can be inferred from the definition if the pair (G, P) is a group, see lemma group0_3_L2.

```
definition
    IsAsubgroup(H,P) \equiv IsAgroup(H, restrict(P,H\timesH))
```

Formally the group operation in a subgroup is different than in the group as they have different domains. Of course we want to use the original operation with the associated notation in the subgroup. The next couple of lemmas will allow for that.
The next lemma states that the neutral element of a subgroup is in the subgroup and it is both right and left neutral there. The notation is very ugly because we don't want to introduce a separate notation for the subgroup operation.

```
lemma group0_3_L1:
    assumes A1: IsAsubgroup(H,f)
    and A2: n = TheNeutralElement(H,restrict(f,H\timesH))
    shows n \in H
    \forallh\inH. restrict (f,H\timesH) \n,h}\rangle=
    |h\inH. restrict(f,H\timesH)\langleh,n\rangle=h
proof -
    let b = restrict(f,H\timesH)
    let e = TheNeutralElement(H,restrict(f,H\timesH))
    from A1 have group0(H,b)
        using IsAsubgroup_def group0_def by simp
```


then have I :

$e \in H \wedge(\forall h \in H .(b\langle e, h\rangle=h \wedge b\langle h, e\rangle=h))$
by (rule group0.group0_2_L2)
with A2 show $n \in H$ by simp
from A2 I show $\forall \mathrm{h} \in \mathrm{H} . \mathrm{b}\langle\mathrm{n}, \mathrm{h}\rangle=\mathrm{h}$ and $\forall \mathrm{h} \in \mathrm{H} . \mathrm{b}\langle\mathrm{h}, \mathrm{n}\rangle=\mathrm{h}$ by auto
qed
A subgroup is contained in the group.

```
lemma (in group0) group0_3_L2:
    assumes A1: IsAsubgroup(H,P)
    shows H}\subseteq
proof
    fix h assume h\inH
    let b = restrict(P,H\timesH)
    let n = TheNeutralElement(H,restrict(P,H\timesH))
        from A1 have b \in H\timesH->H
            using IsAsubgroup_def IsAgroup_def
                IsAmonoid_def IsAssociative_def by simp
    moreover from A1 \langleh\inH\rangle have \langlen,h\rangle | H\timesH
        using group0_3_L1 by simp
    moreover from A1 }\langle\textrm{h}\in\textrm{H}\rangle\mathrm{ have h = b}\langlen,h
        using group0_3_L1 by simp
    ultimately have }\langle\langlen,h\rangle,h\rangle\in\textrm{b
        using func1_1_L5A by blast
    then have }\langle\langle\textrm{n},\textrm{h}\rangle,\textrm{h}\rangle\in\textrm{P}\mathrm{ using restrict_subset by auto
    moreover from groupAssum have P:G\timesG->G
        using IsAgroup_def IsAmonoid_def IsAssociative_def
        by simp
    ultimately show h\inG using func1_1_L5
        by blast
qed
```

The group's neutral element (denoted 1 in the group0 context) is a neutral element for the subgroup with respect to the group action.

```
lemma (in group0) group0_3_L3:
    assumes IsAsubgroup(H,P)
    shows }\forall\textrm{h}\in\textrm{H}.1\cdot\textrm{h}=\textrm{h}\wedge\textrm{h}\cdot1=
    using assms groupAssum group0_3_L2 group0_2_L2
    by auto
```

The neutral element of a subgroup is the same as that of the group.

```
lemma (in group0) group0_3_L4: assumes A1: IsAsubgroup(H,P)
    shows TheNeutralElement(H,restrict(P,H\timesH)) = 1
proof -
    let n = TheNeutralElement(H,restrict(P,H\timesH))
    from A1 have n \in H using group0_3_L1 by simp
    with groupAssum A1 have n\inG using group0_3_L2 by auto
    with A1 <n }\inH\mathrm{ H show thesis using
```

```
    group0_3_L1 restrict_if group0_2_L7 by simp
```

qed

The neutral element of the group (denoted 1 in the group0 context) belongs to every subgroup.

```
lemma (in group0) group0_3_L5: assumes A1: IsAsubgroup(H,P)
    shows 1 \in H
proof -
    from A1 show 1\inH using group0_3_L1 group0_3_L4
        by fast
qed
```

Subgroups are closed with respect to the group operation.

```
lemma (in group0) group0_3_L6: assumes A1: IsAsubgroup(H,P)
    and A2: a\inH b\inH
    shows a\cdotb \in H
proof -
    let f = restrict(P,H\timesH)
    from A1 have monoidO(H,f) using
                IsAsubgroup_def IsAgroup_def monoidO_def by simp
    with A2 have f (\langlea,b\rangle) \in H using monoid0.group0_1_L1
        by blast
    with A2 show a\cdotb \in H using restrict_if by simp
qed
```

A preliminary lemma that we need to show that taking the inverse in the subgroup is the same as taking the inverse in the group.

```
lemma group0_3_L7A:
    assumes A1: IsAgroup(G,f)
    and A2: IsAsubgroup(H,f) and A3: g = restrict(f,H\timesH)
    shows GroupInv(G,f) \cap H\timesH=GroupInv(H,g)
proof -
    let e = TheNeutralElement(G,f)
    let e}\mp@subsup{e}{1}{}=\mathrm{ TheNeutralElement(H,g)
    from A1 have group0(G,f) using group0_def by simp
    from A2 A3 have group0(H,g)
        using IsAsubgroup_def group0_def by simp
    from <group0(G,f)`A2 A3 have GroupInv(G,f) = f-{e, }
        using group0.group0_3_L4 group0.group0_2_T3
        by simp
    moreover have g-{\mp@subsup{e}{1}{}}=f-{\mp@subsup{e}{1}{}}\capH\timesH
    proof -
        from A1 have f }\in\textrm{G}\times\textrm{G}->\textrm{G
            using IsAgroup_def IsAmonoid_def IsAssociative_def
            by simp
        moreover from A2 {group0(G,f)> have H\timesH \subseteqG G CG
            using group0.group0_3_L2 by auto
        ultimately show g-{\mp@subsup{e}{1}{}}=f-{\mp@subsup{e}{1}{}}\capH\timesH
```

```
        using A3 func1_2_L1 by simp
    qed
    moreover from A3 <group0(H,g)> have GroupInv(H,g) = g-{e, }
        using group0.group0_2_T3 by simp
    ultimately show thesis by simp
qed
```

Using the lemma above we can show the actual statement: taking the inverse in the subgroup is the same as taking the inverse in the group.

```
theorem (in group0) group0_3_T1:
    assumes A1: IsAsubgroup(H,P)
    and A2: g = restrict(P,H\timesH)
    shows GroupInv(H,g) = restrict(GroupInv(G,P),H)
proof -
    from groupAssum have GroupInv(G,P) : G }->\textrm{G
        using group0_2_T2 by simp
    moreover from A1 A2 have GroupInv(H,g) : H}->
        using IsAsubgroup_def group0_2_T2 by simp
    moreover from A1 have H\subseteqG
        using group0_3_L2 by simp
    moreover from groupAssum A1 A2 have
        GroupInv(G,P) \cap H}\timesH=GroupInv(H,g
        using group0_3_L7A by simp
    ultimately show thesis
        using func1_2_L3 by simp
qed
```

A sligtly weaker, but more convenient in applications, reformulation of the above theorem.
theorem (in group0) group0_3_T2:
assumes IsAsubgroup (H, P)
and $g=$ restrict $(\mathrm{P}, \mathrm{H} \times \mathrm{H})$
shows $\forall h \in H$. GroupInv (H, g) (h) $=\mathrm{h}^{-1}$
using assms group0_3_T1 restrict_if by simp
Subgroups are closed with respect to taking the group inverse.

```
theorem (in group0) group0_3_T3A:
    assumes A1: IsAsubgroup(H,P) and A2: h\inH
    shows }\mp@subsup{h}{}{-1}\in
proof -
    let g = restrict(P,H\timesH)
    from A1 have GroupInv(H,g) \in H}->\textrm{H
        using IsAsubgroup_def group0_2_T2 by simp
    with A2 have GroupInv(H,g)(h) \in H
        using apply_type by simp
    with A1 A2 show h}\mp@subsup{}{}{-1}\inH\mathrm{ using group0_3_T2 by simp
qed
```

The next theorem states that a nonempty subset of a group G that is closed
under the group operation and taking the inverse is a subgroup of the group.

```
theorem (in group0) group0_3_T3:
    assumes A1: \(\mathrm{H} \neq 0\)
    and \(A 2\) : \(H \subseteq G\)
    and A3: \(H\) \{is closed under\} \(P\)
    and A4: \(\forall \mathrm{x} \in \mathrm{H} . \mathrm{x}^{-1} \in \mathrm{H}\)
    shows IsAsubgroup (H, P)
proof -
    let \(\mathrm{g}=\) restrict \((\mathrm{P}, \mathrm{H} \times \mathrm{H})\)
    let \(\mathrm{n}=\) TheNeutralElement ( \(\mathrm{H}, \mathrm{g}\) )
    from A3 have I: \(\forall x \in H . \forall y \in H . x \cdot y \in H\)
        using IsOpClosed_def by simp
    from A1 obtain \(x\) where \(x \in H\) by auto
    with A4 I A2 have \(1 \in H\)
        using group0_2_L6 by blast
    with A3 A2 have T2: IsAmonoid (H,g)
        using group0_2_L1 monoid0.group0_1_T1
        by simp
    moreover have \(\forall \mathrm{h} \in \mathrm{H} . \exists \mathrm{b} \in \mathrm{H} . \mathrm{g}\langle\mathrm{h}, \mathrm{b}\rangle=\mathrm{n}\)
    proof
        fix \(h\) assume \(h \in H\)
        with A4 A2 have \(h \cdot h^{-1}=1\)
            using group0_2_L6 by auto
        moreover from groupAssum A2 A3 \(\langle 1 \in H\rangle\) have \(1=n\)
                using IsAgroup_def group0_1_L6 by auto
            moreover from A4 \(\langle h \in H\rangle\) have \(g\left\langle h, h^{-1}\right\rangle=h \cdot h^{-1}\)
                using restrict_if by simp
            ultimately have \(\mathrm{g}\left\langle\mathrm{h}, \mathrm{h}^{-1}\right\rangle=\mathrm{n}\) by simp
            with \(A 4\langle h \in H\rangle\) show \(\exists b \in H . g\langle h, b\rangle=n\) by auto
    qed
    ultimately show IsAsubgroup (H,P) using
        IsAsubgroup_def IsAgroup_def by simp
qed
Intersection of subgroups is a subgroup.
lemma group0_3_L7:
    assumes A1: IsAgroup (G,f)
    and A2: IsAsubgroup \(\left(\mathrm{H}_{1}, \mathrm{f}\right)\)
    and A3: IsAsubgroup \(\left(\mathrm{H}_{2}, \mathrm{f}\right)\)
    shows IsAsubgroup \(\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right.\), restrict \(\left(\mathrm{f}, \mathrm{H}_{1} \times \mathrm{H}_{1}\right)\) )
proof -
    let \(e=\) TheNeutralElement ( \(G, f\) )
    let \(g=\operatorname{restrict}\left(f, H_{1} \times H_{1}\right)\)
    from A1 have I: group0 (G,f)
        using group0_def by simp
    from A2 have group0 \(\left(\mathrm{H}_{1}, \mathrm{~g}\right)\)
        using IsAsubgroup_def group0_def by simp
    moreover have \(\mathrm{H}_{1} \cap \mathrm{H}_{2} \neq 0\)
    proof -
```

```
    from A1 A2 A3 have e }\in\mp@subsup{H}{1}{}\cap\mp@subsup{H}{2}{
        using group0_def group0.group0_3_L5 by simp
    thus thesis by auto
    qed
    moreover have }\mp@subsup{H}{1}{}\cap\mp@subsup{H}{2}{}\subseteq\mp@subsup{H}{1}{}\mathrm{ by auto
    moreover from A2 A3 I {H1\capH2}\subseteq= \mp@subsup{H}{1}{}\rangle\mathrm{ have
        H}\cap\mp@subsup{\textrm{H}}{2}{}\mathrm{ {is closed under} g
        using group0.group0_3_L6 IsOpClosed_def
            func_ZF_4_L7 func_ZF_4_L5 by simp
    moreover from A2 A3 I have
    \forallx\in H1\capH2. GroupInv(H1,g)(x) \in H1\capH2
    using group0.group0_3_T2 group0.group0_3_T3A
    by simp
    ultimately show thesis
    using group0.group0_3_T3 by simp
qed
```

The range of the subgroup operation is the whole subgroup.
lemma image_subgr_op: assumes A1: IsAsubgroup (H,P)
shows restrict $(\mathrm{P}, \mathrm{H} \times \mathrm{H})(\mathrm{H} \times \mathrm{H})=\mathrm{H}$
proof -
from A1 have monoid0 (H , restrict ($\mathrm{P}, \mathrm{H} \times \mathrm{H}$))
using IsAsubgroup_def IsAgroup_def monoidO_def by simp
then show thesis by (rule monoid0.range_carr)
qed
If we restrict the inverse to a subgroup, then the restricted inverse is onto the subgroup.

```
lemma (in group0) restr_inv_onto: assumes A1: IsAsubgroup(H,P)
    shows restrict(GroupInv(G,P),H)(H) = H
proof -
    from A1 have GroupInv(H,restrict(P,H\timesH))(H) = H
        using IsAsubgroup_def groupO_def groupO.group_inv_surj
        by simp
    with A1 show thesis using group0_3_T1 by simp
qed
end
```


26 Groups 1

theory Group_ZF_1 imports Group_ZF
begin
In this theory we consider right and left translations and odd functions.

26.1 Translations

In this section we consider translations. Translations are maps $T: G \rightarrow G$ of the form $T_{g}(a)=g \cdot a$ or $T_{g}(a)=a \cdot g$. We also consider two-dimensional translations $T_{g}: G \times G \rightarrow G \times G$, where $T_{g}(a, b)=(a \cdot g, b \cdot g)$ or $T_{g}(a, b)=$ $(g \cdot a, g \cdot b)$.

For an element $a \in G$ the right translation is defined a function (set of pairs) such that its value (the second element of a pair) is the value of the group operation on the first element of the pair and g. This looks a bit strange in the raw set notation, when we write a function explicitely as a set of pairs and value of the group operation on the pair $\langle a, b\rangle$ as $\mathrm{P}\langle\mathrm{a}, \mathrm{b}\rangle$ instead of the usual infix $a \cdot b$ or $a+b$.

```
definition
    RightTranslation(G,P,g) \equiv{\langle a,b\rangle\inG\timesG. P \a,g\rangle=b}
```

A similar definition of the left translation.

```
definition
    LeftTranslation(G,P,g) \equiv {\langlea,b\rangle\inG\timesG. P \g,a\rangle= b}
```

Translations map G into G. Two dimensional translations map $G \times G$ into itself.

```
lemma (in group0) group0_5_L1: assumes A1: g\inG
    shows RightTranslation(G,P,g) : G }->\textrm{G}\mathrm{ and LeftTranslation(G,P,g) :
G}->\textrm{G
proof -
    from A1 have }\forall\textrm{a}\in\textrm{G}.\textrm{a}\cdot\textrm{g}\in\textrm{G}\mathrm{ and }\forall\textrm{a}\in\textrm{G}.\textrm{g}\cdot\textrm{a}\in\textrm{G
        using group_oper_assocA apply_funtype by auto
    then show
        RightTranslation(G,P,g) : G }->\textrm{G
        LeftTranslation(G,P,g) : G }->\textrm{G
        using RightTranslation_def LeftTranslation_def func1_1_L11A
        by auto
qed
```

The values of the translations are what we expect.

```
lemma (in group0) group0_5_L2: assumes g\inG a\inG
    shows
    RightTranslation(G,P,g)(a) = a.g
    LeftTranslation(G,P,g)(a) = g.a
    using assms group0_5_L1 RightTranslation_def LeftTranslation_def
        func1_1_L11B by auto
```

Composition of left translations is a left translation by the product.
lemma (in group0) group0_5_L4: assumes A1: $g \in G \quad h \in G a \in G$ and A2: $\mathrm{T}_{g}=$ LeftTranslation(G,P,g) $\mathrm{T}_{h}=$ LeftTranslation($\mathrm{G}, \mathrm{P}, \mathrm{h}$) shows

```
    T
    T
proof -
    from A1 have I: h.a\inG g.h\inG
        using group_oper_assocA apply_funtype by auto
    with A1 A2 show }\mp@subsup{\textrm{T}}{g}{}(\mp@subsup{\textrm{T}}{h}{}(\textrm{a}))=\textrm{g}\cdot\textrm{h}\cdot\textrm{a
        using group0_5_L2 group_oper_assoc by simp
    with A1 A2 I show
        T
        using group0_5_L2 group_oper_assoc by simp
qed
```

Composition of right translations is a right translation by the product.
lemma (in group0) group0_5_L5: assumes A1: $g \in G \quad h \in G a \in G$ and
A2: $\mathrm{T}_{g}=\operatorname{RightTranslation(G,P,g)~} \mathrm{T}_{h}=\operatorname{RightTranslation(G,P,h)~}$
shows
$\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{a})\right)=\mathrm{a} \cdot \mathrm{h} \cdot \mathrm{g}$
$\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{a})\right)=$ RightTranslation(G, $\left.\mathrm{P}, \mathrm{h} \cdot \mathrm{g}\right)(\mathrm{a})$
proof -
from A1 have I: a•h $\in G \mathrm{~h} \cdot \mathrm{~g} \in \mathrm{G}$
using group_oper_assocA apply_funtype by auto
with A1 A2 show $\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{a})\right)=\mathrm{a} \cdot \mathrm{h} \cdot \mathrm{g}$
using group0_5_L2 group_oper_assoc by simp
with A1 A2 I show
$\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{a})\right)=$ RightTranslation(G, $\left.\mathrm{P}, \mathrm{h} \cdot \mathrm{g}\right)(\mathrm{a})$
using group0_5_L2 group_oper_assoc by simp
qed

Point free version of group0_5_L4 and group0_5_L5.

```
lemma (in group0) trans_comp: assumes g GG h\inG shows
    RightTranslation(G,P,g) O RightTranslation(G,P,h) = RightTranslation(G,P,h.g)
    LeftTranslation(G,P,g) O LeftTranslation(G,P,h) = LeftTranslation(G,P,g.h)
proof -
    let Tg = RightTranslation(G,P,g)
    let T}\mp@subsup{T}{h}{}=\mathrm{ RightTranslation(G,P,h)
    from assms have }\mp@subsup{\textrm{T}}{g}{}:\textrm{G}->\textrm{G}\mathrm{ and }\mp@subsup{\textrm{T}}{h}{}:\textrm{G}->\textrm{G
        using group0_5_L1 by auto
    then have }\mp@subsup{\textrm{T}}{g}{}0\mp@subsup{\textrm{T}}{h}{}:G->G\mathrm{ using comp_fun by simp
    moreover from assms have RightTranslation(G,P,h\cdotg):G->G
        using group_op_closed group0_5_L1 by simp
    moreover from assms {T Th:G GG` have
        \foralla\inG. (Tg O T
        using comp_fun_apply group0_5_L5 by simp
    ultimately show }\mp@subsup{\textrm{T}}{g}{}0\mp@subsup{\textrm{T}}{h}{}=\mathrm{ RightTranslation(G,P,h.g)
        by (rule func_eq)
next
    let Tg}=\mathrm{ LeftTranslation(G,P,g)
    let T}\mp@subsup{T}{h}{}=\mathrm{ LeftTranslation(G,P,h)
    from assms have }\mp@subsup{\textrm{T}}{g}{}:\textrm{G}->\textrm{G}\mathrm{ and }\mp@subsup{\textrm{T}}{h}{}:\textrm{G}->\textrm{G
```

using group0_5_L1 by auto
then have $\mathrm{T}_{g} 0 \mathrm{~T}_{h}: \mathrm{G} \rightarrow \mathrm{G}$ using comp_fun by simp
moreover from assms have LeftTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g} \cdot \mathrm{h}$): $\mathrm{G} \rightarrow \mathrm{G}$
using group_op_closed group0_5_L1 by simp
moreover from assms $\left\langle\mathrm{T}_{h}: \mathrm{G} \rightarrow \mathrm{G}\right\rangle$ have
$\forall \mathrm{a} \in \mathrm{G} .\left(\mathrm{T}_{g} \mathrm{O} \mathrm{T}_{h}\right)(\mathrm{a})=$ LeftTranslation(G,P,g•h)(a)
using comp_fun_apply group0_5_L4 by simp
ultimately show $\mathrm{T}_{g} 0 \mathrm{~T}_{h}=$ LeftTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g} \cdot \mathrm{h}$)
by (rule func_eq)
qed
The image of a set under a composition of translations is the same as the image under translation by a product.

```
lemma (in group0) trans_comp_image: assumes A1: \(\mathrm{g} \in \mathrm{G} \mathrm{h} \in \mathrm{G}\) and
    A2: \(\mathrm{T}_{g}=\) LeftTranslation( \(\mathrm{G}, \mathrm{P}, \mathrm{g}\) ) \(\mathrm{T}_{h}=\) LeftTranslation( \(\mathrm{G}, \mathrm{P}, \mathrm{h}\) )
shows \(\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{~A})\right)=\) LeftTranslation( \(\mathrm{G}, \mathrm{P}, \mathrm{g} \cdot \mathrm{h}\) ) (A)
proof -
    from A2 have \(\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{~A})\right)=\left(\mathrm{T}_{g} \quad \mathrm{O} \mathrm{T}_{h}\right)(\mathrm{A})\)
            using image_comp by simp
    with assms show thesis using trans_comp by simp
qed
```

Another form of the image of a set under a composition of translations

```
lemma (in group0) group0_5_L6:
    assumes A1: \(\mathrm{g} \in \mathrm{G} \mathrm{h} \in \mathrm{G}\) and \(\mathrm{A} 2: \mathrm{A} \subseteq \mathrm{G}\) and
    A3: \(\mathrm{T}_{g}=\) RightTranslation(G,P, g\() \quad \mathrm{T}_{h}=\) RightTranslation(G, \(\mathrm{P}, \mathrm{h}\) )
    shows \(\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{~A})\right)=\{\mathrm{a} \cdot \mathrm{h} \cdot \mathrm{g} \cdot \mathrm{a} \in \mathrm{A}\}\)
proof -
    from A2 have \(\forall \mathrm{a} \in \mathrm{A} . \mathrm{a} \in \mathrm{G}\) by auto
    from A1 A3 have \(\mathrm{T}_{g}: \mathrm{G} \rightarrow \mathrm{G} \quad \mathrm{T}_{h}: \mathrm{G} \rightarrow \mathrm{G}\)
            using group0_5_L1 by auto
    with assms \(\langle\forall \mathrm{a} \in \mathrm{A} . \mathrm{a} \in \mathrm{G}\rangle\) show
        \(\mathrm{T}_{g}\left(\mathrm{~T}_{h}(\mathrm{~A})\right)=\{\mathrm{a} \cdot \mathrm{h} \cdot \mathrm{g} \cdot \mathrm{a} \in \mathrm{A}\}\)
        using func1_1_L15C group0_5_L5 by auto
qed
```

The translation by neutral element is the identity on group.

```
lemma (in group0) trans_neutral: shows
    RightTranslation(G,P,1) = id(G) and LeftTranslation(G,P,1) = id(G)
proof -
    have RightTranslation(G,P,1):G->G and }\forall\textrm{a}\in\textrm{G}.\mathrm{ . RightTranslation(G,P,1)(a)
= a
            using group0_2_L2 group0_5_L1 group0_5_L2 by auto
    then show RightTranslation(G,P,1) = id(G) by (rule indentity_fun)
    have LeftTranslation(G,P,1):G->G and }\forall\textrm{a}\in\textrm{G}.\mp@code{LeftTranslation(G,P,1)(a)
= a
            using group0_2_L2 group0_5_L1 group0_5_L2 by auto
    then show LeftTranslation(G,P,1) = id(G) by (rule indentity_fun)
qed
```

Composition of translations by an element and its inverse is identity.

```
lemma (in group0) trans_comp_id: assumes \(g \in G\) shows
    RightTranslation(G,P,g) O RightTranslation(G,P, \(\mathrm{g}^{-1}\) ) = id(G) and
    RightTranslation(G,P, \(\mathrm{g}^{-1}\) ) O RightTranslation(G,P,g) \(=\) id(G) and
    LeftTranslation(G,P,g) O LeftTranslation(G,P, \(\mathrm{g}^{-1}\) ) = id(G) and
    LeftTranslation(G, \(P, \mathrm{~g}^{-1}\) ) O LeftTranslation(G,P,g) = id(G)
    using assms inverse_in_group trans_comp group0_2_L6 trans_neutral by
auto
```

Translations are bijective.

```
lemma (in group0) trans_bij: assumes g\inG shows
    RightTranslation(G,P,g) \in bij(G,G) and LeftTranslation(G,P,g) \in bij(G,G)
proof-
    from assms have
            RightTranslation(G,P,g):G->G and
            RightTranslation(G,P, (')
            RightTranslation(G,P,g) O RightTranslation(G,P,g}\mp@subsup{}{}{-1})=id(G
            RightTranslation(G,P,g-1) O RightTranslation(G,P,g) = id(G)
    using inverse_in_group group0_5_L1 trans_comp_id by auto
    then show RightTranslation(G,P,g) \in bij(G,G) using fg_imp_bijective
by simp
    from assms have
        LeftTranslation(G,P,g):G->G and
        LeftTranslation(G,P, G}\mp@subsup{}{}{-1}):G->G\mathrm{ and
        LeftTranslation(G,P,g) O LeftTranslation(G,P, g}\mp@subsup{}{}{-1})=id(G
        LeftTranslation(G,P,g-1) O LeftTranslation(G,P,g) = id(G)
        using inverse_in_group group0_5_L1 trans_comp_id by auto
    then show LeftTranslation(G,P,g) \in bij(G,G) using fg_imp_bijective
by simp
qed
```

Converse of a translation is translation by the inverse.
lemma (in group0) trans_conv_inv: assumes $g \in G$ shows
converse(RightTranslation(G,P,g)) = RightTranslation(G, $\mathrm{P}, \mathrm{g}^{-1}$) and
converse(LeftTranslation(G,P,g)) = LeftTranslation(G,P, g^{-1}) and
LeftTranslation ($\mathrm{G}, \mathrm{P}, \mathrm{g}$) $=$ converse (LeftTranslation $\left(G, P, \mathrm{~g}^{-1}\right)$) and
RightTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g}$) $=$ converse(RightTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g}^{-1}$))
proof -
from assms have
RightTranslation(G,P,g) $\in \operatorname{bij}(G, G)$ RightTranslation(G,P, $\left.{ }^{-1}\right) \in \operatorname{bij}(G, G)$
and
LeftTranslation(G,P,g) $\in \operatorname{bij}(G, G)$ LeftTranslation(G,P, $\left.\mathrm{g}^{-1}\right) \in \operatorname{bij}(G, G)$
using trans_bij inverse_in_group by auto
moreover from assms have
RightTranslation(G, $\mathrm{P}_{\mathrm{g}} \mathrm{g}^{-1}$) 0 RightTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g}$) = id(G) and
LeftTranslation(G,P, g^{-1}) O LeftTranslation(G,P,g) = id(G) and
LeftTranslation(G,P,g) O LeftTranslation(G,P, g^{-1}) = id(G) and
LeftTranslation(G,P, g^{-1}) 0 LeftTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g}$) $=\operatorname{id}(\mathrm{G})$
using trans_comp_id by auto
ultimately show
converse(RightTranslation(G, $\mathrm{P}, \mathrm{g})$) $=$ RightTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g}^{-1}$) and converse(LeftTranslation(G,P,g)) = LeftTranslation(G, P, g^{-1}) and LeftTranslation(G,P,g) = converse(LeftTranslation(G, $\left.P, \mathrm{~g}^{-1}\right)$) and RightTranslation(G, P, g) $=$ converse (RightTranslation($\mathrm{G}, \mathrm{P}, \mathrm{g}^{-1}$)) using comp_id_conv by auto
qed
The image of a set by translation is the same as the inverse image by by the inverse element translation.

```
lemma (in group0) trans_image_vimage: assumes g\inG shows
    LeftTranslation(G,P,g)(A) = LeftTranslation(G,P, g}\mp@subsup{}{}{-1})-(A) an
    RightTranslation(G,P,g)(A) = RightTranslation(G,P, g' )-(A)
    using assms trans_conv_inv vimage_converse by auto
```

Another way of looking at translations is that they are sections of the group operation.

```
lemma (in group0) trans_eq_section: assumes g\inG shows
    RightTranslation(G,P,g) = Fix2ndVar(P,g) and
    LeftTranslation(G,P,g) = Fix1stVar(P,g)
proof -
    let T = RightTranslation(G,P,g)
    let F = Fix2ndVar (P,g)
    from assms have T: G }->\textrm{G}\mathrm{ and F: G }->\textrm{G
        using group0_5_L1 group_oper_assocA fix_2nd_var_fun by auto
    moreover from assms have }\forall\textrm{a}\in\textrm{G}.\textrm{T}(\textrm{a})=\textrm{F}(\textrm{a}
            using group0_5_L2 group_oper_assocA fix_var_val by simp
    ultimately show T = F by (rule func_eq)
next
    let T = LeftTranslation(G,P,g)
    let F = Fix1stVar(P,g)
    from assms have T: G }->\textrm{G}\mathrm{ and F: G }->\textrm{G
        using group0_5_L1 group_oper_assocA fix_1st_var_fun by auto
    moreover from assms have }\forall\textrm{a}\in\textrm{G}.\textrm{T}(\textrm{a})=\textrm{F}(\textrm{a}
            using group0_5_L2 group_oper_assocA fix_var_val by simp
    ultimately show T = F by (rule func_eq)
qed
```

A lemma about translating sets.
lemma (in group0) ltrans_image: assumes A1: $\mathrm{V} \subseteq G$ and $A 2: x \in G$
shows LeftTranslation $(G, P, x)(V)=\{x \cdot v . v \in V\}$
proof -
from assms have LeftTranslation(G,P, x$)(\mathrm{V})=$ \{LeftTranslation(G, $\mathrm{P}, \mathrm{x})(\mathrm{v})$. $\mathrm{v} \in \mathrm{V}\}$
using group0_5_L1 func_imagedef by blast
moreover from assms have $\forall \mathrm{v} \in \mathrm{V}$. LeftTranslation ($\mathrm{G}, \mathrm{P}, \mathrm{x}$) (v) $=\mathrm{x} \cdot \mathrm{v}$
using group0_5_L2 by auto
ultimately show thesis by auto
qed
A technical lemma about solving equations with translations.

```
lemma (in group0) ltrans_inv_in: assumes A1: V\subseteqG and A2: y\inG and
    A3: x \in LeftTranslation(G,P,y)(GroupInv(G,P)(V))
    shows y \in LeftTranslation(G,P,x)(V)
proof -
    have }x\in
    proof -
            from A2 have LeftTranslation(G,P,y):G ->G using group0_5_L1 by simp
            then have LeftTranslation(G,P,y)(GroupInv(G,P)(V)) \subseteqG
                using func1_1_L6 by simp
            with A3 show }x\inG\mathrm{ by auto
    qed
    have }\exists\textrm{v}\in\textrm{V}.\quad\textrm{x}=\textrm{y}\cdot\mp@subsup{\textrm{v}}{}{-1
    proof -
        have GroupInv(G,P): G G G using groupAssum group0_2_T2
            by simp
            with assms obtain z where z \in GroupInv(G,P)(V) and x = y.z
                using func1_1_L6 ltrans_image by auto
            with A1 〈GroupInv(G,P): G }->\textrm{G}>\mathrm{ show thesis using func_imagedef by auto
    qed
    then obtain v where v\inV and }x=y\cdot\mp@subsup{v}{}{-1}\mathrm{ by auto
    with A1 A2 have y = x}v\textrm{v}\mathrm{ using inv_cancel_two by auto
    with assms {x\inG\rangle\langlev\inV\rangle show thesis using ltrans_image by auto
qed
```

We can look at the result of interval arithmetic operation as union of translated sets.
lemma (in group0) image_ltrans_union: assumes $A \subseteq G B \subseteq G$ shows
(P \{lifted to subsets of G) $\langle A, B\rangle=(\bigcup a \in A$. LeftTranslation $(G, P, a)(B))$
proof
from assms have I: (P \{lifted to subsets of $\}$) $\langle\mathrm{A}, \mathrm{B}\rangle=\{\mathrm{a} \cdot \mathrm{b} \cdot\langle\mathrm{a}, \mathrm{b}\rangle \in$
$A \times B\}$
using group_oper_assocA lift_subsets_explained by simp
\{ fix c assume $c \in(P$ \{lifted to subsets of \} G) $\langle A, B\rangle$
with I obtain $a b$ where $c=a \cdot b$ and $a \in A \quad b \in B$ by auto
hence $c \in\{a \cdot b . b \in B\}$ by auto
moreover from assms $\langle a \in A\rangle$ have
LeftTranslation $(G, P, a)(B)=\{a \cdot b . b \in B\}$ using ltrans_image by auto
ultimately have $c \in$ LeftTranslation(G, P, a) (B) by simp
with $\langle a \in A\rangle$ have $c \in(\bigcup a \in A$. LeftTranslation $(G, P, a)(B))$ by auto
\} thus (P \{lifted to subsets of\} $G)\langle A, B\rangle \subseteq(\bigcup a \in A$. LeftTranslation $(G, P, a)(B))$
by auto
\{ fix c assume $c \in(\bigcup a \in A$. LeftTranslation(G,P,a)(B))
then obtain a where $a \in A$ and $c \in \operatorname{LeftTranslation(G,P,a)(B)~}$
by auto
moreover from assms $\langle a \in A\rangle$ have LeftTranslation $(G, P, a)(B)=\{a \cdot b$.
$b \in B\}$

```
            using ltrans_image by auto
            ultimately obtain b where b\inB and c = a b by auto
            with I \langlea\inA\rangle have c G (P {lifted to subsets of} G) {A,B\rangle by auto
    } thus (Ua\inA. LeftTranslation(G,P,a)(B)) \subseteq (P {lifted to subsets of}
G) }\langle\textrm{A},\textrm{B}
            by auto
qed
```

If the neutral element belongs to a set, then an element of group belongs the translation of that set.

```
lemma (in group0) neut_trans_elem:
    assumes A1: A\subseteqG g\inG and A2: 1\inA
    shows g \in LeftTranslation(G,P,g)(A)
proof -
    from assms have g.1 \in LeftTranslation(G,P,g)(A)
            using ltrans_image by auto
    with A1 show thesis using group0_2_L2 by simp
qed
```

The neutral element belongs to the translation of a set by the inverse of an element that belongs to it.

```
lemma (in group0) elem_trans_neut: assumes A1: A\subseteqG and A2: g\inA
    shows 1 G LeftTranslation(G,P,g}\mp@subsup{}{}{-1}\mathrm{ )(A)
proof -
    from assms have g}\mp@subsup{\textrm{g}}{}{-1}\in\textrm{G}\mathrm{ using inverse_in_group by auto
    with assms have g}\mp@subsup{g}{}{-1}\cdot\textrm{g}\in\mathrm{ LeftTranslation(G,P, g}\mp@subsup{}{}{-1})(\textrm{A}
            using ltrans_image by auto
    moreover from assms have g}\mp@subsup{g}{}{-1}\cdot\textrm{g}=1\mathrm{ using group0_2_L6 by auto
    ultimately show thesis by simp
qed
```


26.2 Odd functions

This section is about odd functions.
Odd functions are those that commute with the group inverse: $f\left(a^{-1}\right)=$ $(f(a))^{-1}$.

```
definition
    \(\operatorname{IsOdd}(G, P, f) \equiv(\forall a \in G . f(\operatorname{GroupInv}(G, P)(a))=\operatorname{GroupInv}(G, P)(f(a)))\)
```

Let's see the definition of an odd function in a more readable notation.

```
lemma (in group0) group0_6_L1:
    shows IsOdd (G,P,p) \longleftrightarrow (\foralla\inG. p(a}\mp@subsup{\textrm{a}}{}{-1})=(\textrm{p}(\textrm{a})\mp@subsup{)}{}{-1}
    using IsOdd_def by simp
```

We can express the definition of an odd function in two ways.
lemma (in group0) group0_6_L2:

```
    assumes A1: p : G }->\textrm{G
    shows
    (\foralla\inG.p(a-1) = (p(a))}\mp@subsup{)}{}{-1})\longleftrightarrow(\foralla\inG.(p(\mp@subsup{a}{}{-1})\mp@subsup{)}{}{-1}=p(a)
proof
    assume }\forall\textrm{a}\in\textrm{G}.\textrm{p}(\mp@subsup{\textrm{a}}{}{-1})=(\textrm{p}(\textrm{a})\mp@subsup{)}{}{-1
    with A1 show }\forall\textrm{a}\in\textrm{G}.(\textrm{p}(\mp@subsup{\textrm{a}}{}{-1})\mp@subsup{)}{}{-1}=p(a
        using apply_funtype group_inv_of_inv by simp
next assume A2: }\forall\textrm{a}\in\textrm{G}.(\textrm{p}(\mp@subsup{\textrm{a}}{}{-1})\mp@subsup{)}{}{-1}=p(a
    { fix a assume a\inG
        with A1 A2 have
                p(a-1) \inG and ((p(a-1))-1}\mp@subsup{)}{}{-1}=(p(a)\mp@subsup{)}{}{-1
            using apply_funtype inverse_in_group by auto
    then have p(a-1)=(p(a)\mp@subsup{)}{}{-1}
            using group_inv_of_inv by simp
    } then show }\forall\textrm{a}\in\textrm{G}.\textrm{p}(\mp@subsup{\textrm{a}}{}{-1})=(\textrm{p}(\textrm{a})\mp@subsup{)}{}{-1}\mathrm{ by simp
qed
end
```


27 Groups - and alternative definition

theory Group_ZF_1b imports Group_ZF

begin

In a typical textbook a group is defined as a set G with an associative operation such that two conditions hold:
A: there is an element $e \in G$ such that for all $g \in G$ we have $e \cdot g=g$ and $g \cdot e=g$. We call this element a "unit" or a "neutral element" of the group.
B: for every $a \in G$ there exists a $b \in G$ such that $a \cdot b=e$, where e is the element of G whose existence is guaranteed by A.
The validity of this definition is rather dubious to me, as condition A does not define any specific element e that can be referred to in condition B it merely states that a set of such units e is not empty. Of course it does work in the end as we can prove that the set of such neutral elements has exactly one element, but still the definition by itself is not valid. You just can't reference a variable bound by a quantifier outside of the scope of that quantifier.
One way around this is to first use condition A to define the notion of a monoid, then prove the uniqueness of e and then use the condition B to define groups.
Another way is to write conditions A and B together as follows:
$\exists_{e \in G}\left(\forall_{g \in G} e \cdot g=g \wedge g \cdot e=g\right) \wedge\left(\forall_{a \in G} \exists_{b \in G} a \cdot b=e\right)$.
This is rather ugly.
What I want to talk about is an amusing way to define groups directly
without any reference to the neutral elements. Namely, we can define a group as a non-empty set G with an associative operation "." such that C: for every $a, b \in G$ the equations $a \cdot x=b$ and $y \cdot a=b$ can be solved in G. This theory file aims at proving the equivalence of this alternative definition with the usual definition of the group, as formulated in Group_ZF.thy. The informal proofs come from an Aug. 14, 2005 post by buli on the matematyka.org forum.

27.1 An alternative definition of group

First we will define notation for writing about groups.
We will use the multiplicative notation for the group operation. To do this, we define a context (locale) that tells Isabelle to interpret $a \cdot b$ as the value of function P on the pair $\langle a, b\rangle$.

```
locale group2 =
    fixes P
    fixes dot (infixl · 70)
    defines dot_def [simp]: a c b \equiv P a,b
```

The next theorem states that a set G with an associative operation that satisfies condition C is a group, as defined in IsarMathLib Group_ZF theory.

```
theorem (in group2) altgroup_is_group:
    assumes A1: \(G \neq 0\) and A2: \(P\) \{is associative on\} \(G\)
    and A3: \(\forall \mathrm{a} \in \mathrm{G} . \forall \mathrm{b} \in \mathrm{G} . \exists \mathrm{x} \in \mathrm{G} . \mathrm{a} \cdot \mathrm{x}=\mathrm{b}\)
    and A4: \(\forall \mathrm{a} \in \mathrm{G} . \forall \mathrm{b} \in \mathrm{G} . \exists \mathrm{y} \in \mathrm{G} . \mathrm{y} \cdot \mathrm{a}=\mathrm{b}\)
    shows IsAgroup (G,P)
proof -
    from A1 obtain a where \(a \in G\) by auto
    with \(A 3\) obtain \(x\) where \(x \in G\) and \(a \cdot x=a\)
        by auto
    from \(A 4\langle a \in G\rangle\) obtain \(y\) where \(y \in G\) and \(y \cdot a=a\)
        by auto
    have I: \(\forall \mathrm{b} \in \mathrm{G} . \mathrm{b}=\mathrm{b} \cdot \mathrm{x} \wedge \mathrm{b}=\mathrm{y} \cdot \mathrm{b}\)
    proof
        fix \(b\) assume \(b \in G\)
            with \(\mathrm{A} 4\langle\mathrm{a} \in \mathrm{G}\rangle\) obtain \(\mathrm{y}_{b}\) where \(\mathrm{y}_{b} \in \mathrm{G}\)
                and \(\mathrm{y}_{b} \cdot \mathrm{a}=\mathrm{b}\) by auto
            from A3 \(\langle\mathrm{a} \in \mathrm{G}\rangle\langle\mathrm{b} \in \mathrm{G}\rangle\) obtain \(\mathrm{x}_{b}\) where \(\mathrm{x}_{b} \in \mathrm{G}\)
                and \(\mathrm{a} \cdot \mathrm{x}_{b}=\mathrm{b}\) by auto
            from \(\langle\mathrm{a} \cdot \mathrm{x}=\mathrm{a}\rangle\langle\mathrm{y} \cdot \mathrm{a}=\mathrm{a}\rangle\left\langle\mathrm{y}_{b} \cdot \mathrm{a}=\mathrm{b}\right\rangle\left\langle\mathrm{a} \cdot \mathrm{x}_{b}=\mathrm{b}\right\rangle\)
            have \(\mathrm{b}=\mathrm{y}_{b} \cdot(\mathrm{a} \cdot \mathrm{x})\) and \(\mathrm{b}=(\mathrm{y} \cdot \mathrm{a}) \cdot \mathrm{x}_{b}\)
                by auto
            moreover from \(A 2\langle a \in G\rangle\langle x \in G\rangle\langle y \in G\rangle\left\langle x_{b} \in G\right\rangle\left\langle\mathrm{y}_{b} \in \mathrm{G}\right\rangle\) have
                \((\mathrm{y} \cdot \mathrm{a}) \cdot \mathrm{x}_{b}=\mathrm{y} \cdot\left(\mathrm{a} \cdot \mathrm{x}_{b}\right) \quad \mathrm{y}_{b} \cdot(\mathrm{a} \cdot \mathrm{x})=\left(\mathrm{y}_{b} \cdot \mathrm{a}\right) \cdot \mathrm{x}\)
                using IsAssociative_def by auto
            moreover from \(\left\langle\mathrm{y}_{b} \cdot \mathrm{a}=\mathrm{b}\right\rangle\left\langle\mathrm{a} \cdot \mathrm{x}_{b}=\mathrm{b}\right\rangle\) have
```

```
        (yb}\cdot\textrm{a})\cdot\textrm{x}=\textrm{b}\cdot\textrm{x}\quad\textrm{y}\cdot(\textrm{a}\cdot\mp@subsup{\textrm{x}}{b}{})=\textrm{y}\cdot\textrm{b
        by auto
    ultimately show b = b}\cdot\textrm{x}\wedge\textrm{b}=\textrm{y}\cdot\textrm{b}\mathrm{ by simp
    qed
    moreover have x = y
    proof -
        from \langlex\inG\rangle I have x = y.x by simp
        also from \langley\inG\rangle I have y\cdotx = y by simp
        finally show x = y by simp
    qed
    ultimately have }\forall\textrm{b}\in\textrm{G}.\textrm{b}\cdot\textrm{x}=\textrm{b}\wedge\textrm{x}\cdot\textrm{b}=\textrm{b}\mathrm{ by simp
    with A2 {x\inG` have IsAmonoid(G,P) using IsAmonoid_def by auto
    with A3 show IsAgroup(G,P)
        using monoidO_def monoidO.unit_is_neutral IsAgroup_def
        by simp
qed
```

The converse of altgroup_is_group: in every (classically defined) group condition C holds. In informal mathematics we can say "Obviously condition C holds in any group." In formalized mathematics the word "obviously" is not in the language. The next theorem is proven in the context called group0 defined in the theory Group_ZF.thy. Similarly to the group2 that context defines $a \cdot b$ as $P\langle a, b\rangle$ It also defines notation related to the group inverse and adds an assumption that the pair (G, P) is a group to all its theorems. This is why in the next theorem we don't explicitely assume that (G, P) is a group - this assumption is implicit in the context.

```
theorem (in group0) group_is_altgroup: shows
    \foralla\inG.\forall\textrm{b}\in\textrm{G}.}\exists\textrm{x}\in\textrm{G}.\textrm{a}\cdot\textrm{x}=\textrm{b}\mathrm{ and }\forall\textrm{a}\in\textrm{G}.\forall\textrm{b}\in\textrm{G}.\exists\textrm{y}\in\textrm{G}.\textrm{y}\cdot\textrm{a}=\textrm{b
proof -
    { fix a b assume a\inG b b\inG
        let x = a }\mp@subsup{}{}{-1}\mathrm{ . b
        let y = b}\cdot\mp@subsup{\textrm{a}}{}{-1
        from \langlea\inG\rangle \langleb\inG\rangle have
            x\inG y G G and a\cdotx = b y\cdota = b
            using inverse_in_group group_op_closed inv_cancel_two
            by auto
            hence }\exists\textrm{x}\in\textrm{G}.\textrm{a}\cdot\textrm{x}=\textrm{b}\mathrm{ and }\exists\textrm{y}\in\textrm{G}.\textrm{y}\cdot\textrm{a}=\textrm{b}\mathrm{ by auto
    } thus
                \foralla\inG.}\forall\textrm{b}\in\textrm{G}.\exists\textrm{x}\in\textrm{G}.\textrm{a}\cdot\textrm{x}=\textrm{b}\mathrm{ and
                |a\inG.}\forall\textrm{b}\in\textrm{G}.\exists\textrm{y}\in\textrm{G}.\textrm{y}\cdot\textrm{a}=\textrm{b
        by auto
qed
end
```


28 Abelian Group

theory AbelianGroup_ZF imports Group_ZF

begin

A group is called "abelian" if its operation is commutative, i.e. $P\langle a, b\rangle=$ $P\langle a, b\rangle$ for all group elements a, b, where P is the group operation. It is customary to use the additive notation for abelian groups, so this condition is typically written as $a+b=b+a$. We will be using multiplicative notation though (in which the commutativity condition of the operation is written as $a \cdot b=b \cdot a)$, just to avoid the hassle of changing the notation we used for general groups.

28.1 Rearrangement formulae

This section is not interesting and should not be read. Here we will prove formulas is which right hand side uses the same factors as the left hand side, just in different order. These facts are obvious in informal math sense, but Isabelle prover is not able to derive them automatically, so we have to prove them by hand.

Proving the facts about associative and commutative operations is quite tedious in formalized mathematics. To a human the thing is simple: we can arrange the elements in any order and put parantheses wherever we want, it is all the same. However, formalizing this statement would be rather difficult (I think). The next lemma attempts a quasi-algorithmic approach to this type of problem. To prove that two expressions are equal, we first strip one from parantheses, then rearrange the elements in proper order, then put the parantheses where we want them to be. The algorithm for rearrangement is easy to describe: we keep putting the first element (from the right) that is in the wrong place at the left-most position until we get the proper arrangement. As far removing parantheses is concerned Isabelle does its job automatically.

```
lemma (in group0) group0_4_L2:
    assumes A1:P {is commutative on} G
    and A2:a\inG b\inG c\inG d\inG E\inG F\inG
    shows (a\cdotb)\cdot(c\cdotd)\cdot(E\cdotF) = (a\cdot(d\cdotF))\cdot(b}(\textrm{c}\cdot\textrm{E})
proof -
    from A2 have (a\cdotb).(c.d).(E\cdotF) = a\cdotb\cdotc\cdotd\cdotE\cdotF
        using group_op_closed group_oper_assoc
        by simp
    also have a\cdotb\cdotc.d.E.F = a.d.F\cdotb\cdotc.E
    proof -
        from A1 A2 have a\cdotb\cdotc.d.E.F = F.(a.b.c.d.E)
            using IsCommutative_def group_op_closed
            by simp
        also from A2 have F.(a.b.c.d.E) = F\cdota.b.c.d.E
            using group_op_closed group_oper_assoc
```

by simp
also from A1 A2 have $F \cdot a \cdot b \cdot c \cdot d \cdot E=d \cdot(F \cdot a \cdot b \cdot c) \cdot E$ using IsCommutative_def group_op_closed by simp
also from A2 have $d \cdot(F \cdot a \cdot b \cdot c) \cdot E=d \cdot F \cdot a \cdot b \cdot c \cdot E$ using group_op_closed group_oper_assoc by simp
also from A1 A2 have $d \cdot F \cdot a \cdot b \cdot c \cdot E=a \cdot(d \cdot F) \cdot b \cdot c \cdot E$ using IsCommutative_def group_op_closed by simp
also from A2 have $a \cdot(d \cdot F) \cdot b \cdot c \cdot E=a \cdot d \cdot F \cdot b \cdot c \cdot E$ using group_op_closed group_oper_assoc by simp
finally show thesis by simp
qed
also from A2 have $a \cdot d \cdot F \cdot b \cdot c \cdot E=(a \cdot(d \cdot F)) \cdot(b \cdot(c \cdot E))$
using group_op_closed group_oper_assoc
by simp
finally show thesis by simp
qed
Another useful rearrangement.

```
lemma (in group0) group0_4_L3:
    assumes A1:P \{is commutative on\} G
    and A2: \(a \in G \quad b \in G\) and \(A 3: c \in G \quad d \in G \quad E \in G \quad F \in G\)
    shows \(a \cdot b \cdot\left((c \cdot d)^{-1} \cdot(E \cdot F)^{-1}\right)=\left(a \cdot(E \cdot c)^{-1}\right) \cdot\left(b \cdot(F \cdot d)^{-1}\right)\)
proof -
    from A3 have T1:
        \(c^{-1} \in G \quad d^{-1} \in G \quad E^{-1} \in G \quad F^{-1} \in G \quad(c \cdot d)^{-1} \in G \quad(E \cdot F)^{-1} \in G\)
        using inverse_in_group group_op_closed
        by auto
    from A2 T1 have
        \(a \cdot b \cdot\left((c \cdot d)^{-1} \cdot(E \cdot F)^{-1}\right)=a \cdot b \cdot(c \cdot d)^{-1} \cdot(E \cdot F)^{-1}\)
        using group_op_closed group_oper_assoc
        by simp
    also from A2 A3 have
            \(a \cdot b \cdot(c \cdot d)^{-1} \cdot(E \cdot F)^{-1}=(a \cdot b) \cdot\left(d^{-1} \cdot c^{-1}\right) \cdot\left(F^{-1} \cdot E^{-1}\right)\)
            using group_inv_of_two by simp
            also from A1 A2 T1 have
                \((\mathrm{a} \cdot \mathrm{b}) \cdot\left(\mathrm{d}^{-1} \cdot \mathrm{c}^{-1}\right) \cdot\left(\mathrm{F}^{-1} \cdot \mathrm{E}^{-1}\right)=\left(\mathrm{a} \cdot\left(\mathrm{c}^{-1} \cdot \mathrm{E}^{-1}\right)\right) \cdot\left(\mathrm{b} \cdot\left(\mathrm{d}^{-1} \cdot \mathrm{~F}^{-1}\right)\right)\)
            using group0_4_L2 by simp
    also from A2 A3 have
        \(\left(a \cdot\left(c^{-1} \cdot E^{-1}\right)\right) \cdot\left(b \cdot\left(d^{-1} \cdot F^{-1}\right)\right)=\left(a \cdot(E \cdot c)^{-1}\right) \cdot\left(b \cdot(F \cdot d)^{-1}\right)\)
        using group_inv_of_two by simp
    finally show thesis by simp
qed
```

Some useful rearrangements for two elements of a group.

```
lemma (in group0) group0_4_L4:
```

assumes A1:P \{is commutative on\} G
and $A 2$: $a \in G \quad b \in G$
shows
$b^{-1} \cdot a^{-1}=a^{-1} \cdot b^{-1}$
$(a \cdot b)^{-1}=a^{-1} \cdot b^{-1}$
$\left(a \cdot b^{-1}\right)^{-1}=a^{-1} \cdot b$
proof -
from A2 have T1: $\mathrm{b}^{-1} \in G \quad \mathrm{a}^{-1} \in G$ using inverse_in_group by auto
with A1 show $\mathrm{b}^{-1} \cdot \mathrm{a}^{-1}=\mathrm{a}^{-1} \cdot \mathrm{~b}^{-1}$ using IsCommutative_def by simp
with A2 show $(a \cdot b)^{-1}=a^{-1} \cdot b^{-1}$ using group_inv_of_two by simp
from A2 T1 have $\left(a \cdot b^{-1}\right)^{-1}=\left(b^{-1}\right)^{-1} \cdot a^{-1}$ using group_inv_of_two by simp
with A1 A2 T1 show $\left(a \cdot b^{-1}\right)^{-1}=a^{-1} \cdot b$
using group_inv_of_inv IsCommutative_def by simp
qed
Another bunch of useful rearrangements with three elements.
lemma (in group0) group0_4_L4A:
assumes A1: P \{is commutative on\} G
and A2: $a \in G \quad b \in G \quad c \in G$
shows
$\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}=\mathrm{c} \cdot \mathrm{a} \cdot \mathrm{b}$
$a^{-1} \cdot\left(b^{-1} \cdot c^{-1}\right)^{-1}=\left(a \cdot(b \cdot c)^{-1}\right)^{-1}$
$a \cdot(b \cdot c)^{-1}=a \cdot b^{-1} \cdot c^{-1}$
$a \cdot\left(b \cdot c^{-1}\right)^{-1}=a \cdot b^{-1} \cdot c$
$a \cdot b^{-1} \cdot c^{-1}=a \cdot c^{-1} \cdot b^{-1}$
proof -
from A1 A2 have $a \cdot b \cdot c=c \cdot(a \cdot b)$
using IsCommutative_def group_op_closed
by simp
with A2 show $a \cdot b \cdot c=c \cdot a \cdot b$ using group_op_closed group_oper_assoc by simp
from A2 have T :
$\mathrm{b}^{-1} \in \mathrm{G} \quad \mathrm{c}^{-1} \in \mathrm{G} \quad \mathrm{b}^{-1} \cdot \mathrm{c}^{-1} \in \mathrm{G} \quad \mathrm{a} \cdot \mathrm{b} \in \mathrm{G}$
using inverse_in_group group_op_closed
by auto
with A1 A2 show $\mathrm{a}^{-1} \cdot\left(\mathrm{~b}^{-1} \cdot \mathrm{c}^{-1}\right)^{-1}=\left(\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})^{-1}\right)^{-1}$
using group_inv_of_two IsCommutative_def
by simp
from A1 A2 T have $a \cdot(b \cdot c)^{-1}=a \cdot\left(b^{-1} \cdot c^{-1}\right)$
using group_inv_of_two IsCommutative_def by simp
with A2 T show $a \cdot(b \cdot c)^{-1}=a \cdot b^{-1} \cdot c^{-1}$
using group_oper_assoc by simp
from A1 A2 T have $a \cdot\left(b \cdot c^{-1}\right)^{-1}=a \cdot\left(b^{-1} \cdot\left(c^{-1}\right)^{-1}\right)$
using group_inv_of_two IsCommutative_def by simp
with A2 T show $a \cdot\left(b \cdot c^{-1}\right)^{-1}=a \cdot b^{-1} \cdot c$
using group_oper_assoc group_inv_of_inv by simp
from A1 A2 T have $a \cdot b^{-1} \cdot c^{-1}=a \cdot\left(c^{-1} \cdot b^{-1}\right)$
using group_oper_assoc IsCommutative_def by simp

```
    with A2 \(T\) show \(a \cdot b^{-1} \cdot c^{-1}=a \cdot c^{-1} \cdot b^{-1}\)
    using group_oper_assoc by simp
qed
```

Another useful rearrangement.

```
lemma (in group0) group0_4_L4B:
    assumes P {is commutative on} G
    and a\inG b\inG c\inG
    shows a\cdotb
    using assms inverse_in_group group_op_closed
        group0_4_L4 group_oper_assoc inv_cancel_two by simp
```

A couple of permutations of order for three alements.

```
lemma (in group0) group0_4_L4C:
    assumes A1: P \{is commutative on\} G
    and A2: \(\mathrm{a} \in \mathrm{G} \quad \mathrm{b} \in \mathrm{G} \mathrm{c} \in \mathrm{G}\)
    shows
    \(a \cdot b \cdot c=c \cdot a \cdot b\)
    \(a \cdot b \cdot c=a \cdot(c \cdot b)\)
    \(a \cdot b \cdot c=c \cdot(a \cdot b)\)
    \(\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}=\mathrm{c} \cdot \mathrm{b} \cdot \mathrm{a}\)
proof -
    from A1 A2 show I: \(a \cdot b \cdot c=c \cdot a \cdot b\)
        using group0_4_L4A by simp
    also from A1 A2 have \(c \cdot a \cdot b=a \cdot c \cdot b\)
        using IsCommutative_def by simp
    also from A2 have \(a \cdot c \cdot b=a \cdot(c \cdot b)\)
        using group_oper_assoc by simp
    finally show \(a \cdot b \cdot c=a \cdot(c \cdot b)\) by simp
    from A2 \(I\) show \(a \cdot b \cdot c=c \cdot(a \cdot b)\)
        using group_oper_assoc by simp
    also from A1 A2 have \(c \cdot(a \cdot b)=c \cdot(b \cdot a)\)
        using IsCommutative_def by simp
    also from A2 have \(c \cdot(b \cdot a)=c \cdot b \cdot a\)
        using group_oper_assoc by simp
    finally show \(a \cdot b \cdot c=c \cdot b \cdot a\) by simp
qed
```

Some rearangement with three elements and inverse.
lemma (in group0) group0_4_L4D:
assumes A1: P \{is commutative on\} G
and A2: $a \in G \quad b \in G \quad c \in G$
shows
$a^{-1} \cdot b^{-1} \cdot c=c \cdot a^{-1} \cdot b^{-1}$
$b^{-1} \cdot a^{-1} \cdot c=c \cdot a^{-1} \cdot b^{-1}$
$\left(\mathrm{a}^{-1} \cdot \mathrm{~b} \cdot \mathrm{c}\right)^{-1}=\mathrm{a} \cdot \mathrm{b}^{-1} \cdot \mathrm{c}^{-1}$
proof -
from A2 have T :

$$
\mathrm{a}^{-1} \in \mathrm{G} \quad \mathrm{~b}^{-1} \in \mathrm{G} \quad \mathrm{c}^{-1} \in \mathrm{G}
$$

using inverse_in_group by auto
with A1 A2 show

$$
a^{-1} \cdot b^{-1} \cdot c=c \cdot a^{-1} \cdot b^{-1}
$$

$$
b^{-1} \cdot a^{-1} \cdot c=c \cdot a^{-1} \cdot b^{-1}
$$

using group0_4_L4A by auto
from A1 A2 T show $\left(\mathrm{a}^{-1} \cdot \mathrm{~b} \cdot \mathrm{c}\right)^{-1}=\mathrm{a} \cdot \mathrm{b}^{-1} \cdot \mathrm{c}^{-1}$
using group_inv_of_three group_inv_of_inv group0_4_L4C
by simp
qed
Another rearrangement lemma with three elements and equation.

```
lemma (in group0) group0_4_L5: assumes A1:P \{is commutative on\} G
    and A2: \(a \in G \quad b \in G \quad c \in G\)
    and \(A 3\) : \(c=a \cdot b^{-1}\)
    shows \(\mathrm{a}=\mathrm{b} \cdot \mathrm{c}\)
proof -
    from A2 A3 have \(c \cdot\left(b^{-1}\right)^{-1}=a\)
        using inverse_in_group group0_2_L18
        by simp
    with A1 A2 show thesis using
        group_inv_of_inv IsCommutative_def by simp
qed
```

In abelian groups we can cancel an element with its inverse even if separated by another element.

```
lemma (in group0) group0_4_L6A: assumes A1: P {is commutative on} G
    and A2: a\inG b}b\in
    shows
    a}\cdot\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}=\textrm{b
    a
    a
    a}\cdot(\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1})=\textrm{b
proof -
    from A1 A2 have
        a}\cdot\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}=\mp@subsup{\textrm{a}}{}{-1}\cdot\textrm{a}\cdot\textrm{b
        using inverse_in_group group0_4_L4A by blast
    also from A2 have ... = b
        using group0_2_L6 group0_2_L2 by simp
    finally show a\cdotb}\mp@subsup{\textrm{a}}{}{-1}=\textrm{b}\mathrm{ by simp
    from A1 A2 have
        a
        using inverse_in_group group0_4_L4A by blast
    also from A2 have ... = b
        using group0_2_L6 group0_2_L2 by simp
    finally show a }\mp@subsup{\textrm{a}}{}{-1}\cdot\textrm{b}\cdot\textrm{a}=\textrm{b}\mathrm{ by simp
    moreover from A2 have a}\mp@subsup{}{}{-1}\cdot\textrm{b}\cdot\textrm{a}=\mp@subsup{a}{}{-1}\cdot(\textrm{b}\cdot\textrm{a}
        using inverse_in_group group_oper_assoc by simp
    ultimately show a }\mp@subsup{}{}{-1}\cdot(\textrm{b}\cdot\textrm{a})=\textrm{b}\mathrm{ by simp
    from A1 A2 show a\cdot(b}\mp@subsup{\textrm{a}}{}{-1})=\textrm{b
```

```
        using inverse_in_group IsCommutative_def inv_cancel_two
        by simp
qed
```

Another lemma about cancelling with two elements.
lemma (in group0) group0_4_L6AA:
assumes A1: P \{is commutative on\} G and $A 2: ~ a \in G \quad b \in G$
shows $a \cdot b^{-1} \cdot \mathrm{a}^{-1}=\mathrm{b}^{-1}$
using assms inverse_in_group group0_4_L6A
by auto
Another lemma about cancelling with two elements.

```
lemma (in group0) group0_4_L6AB:
    assumes A1: \(P\) \{is commutative on\} \(G\) and A2: \(a \in G \quad b \in G\)
    shows
    \(a \cdot(a \cdot b)^{-1}=b^{-1}\)
    \(a \cdot\left(b \cdot a^{-1}\right)=b\)
proof -
    from A2 have \(a \cdot(a \cdot b)^{-1}=a \cdot\left(b^{-1} \cdot a^{-1}\right)\)
        using group_inv_of_two by simp
    also from A2 have \(\ldots=a \cdot b^{-1} \cdot a^{-1}\)
        using inverse_in_group group_oper_assoc by simp
    also from A1 A2 have ... = \(\mathrm{b}^{-1}\)
        using group0_4_L6AA by simp
    finally show \(a \cdot(a \cdot b)^{-1}=b^{-1}\) by simp
    from A1 A2 have \(a \cdot\left(b \cdot a^{-1}\right)=a \cdot\left(a^{-1} \cdot b\right)\)
        using inverse_in_group IsCommutative_def by simp
    also from A2 have ... = b
        using inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2
        by simp
    finally show \(a \cdot\left(b \cdot a^{-1}\right)=b\) by simp
qed
```

Another lemma about cancelling with two elements.

```
lemma (in group0) group0_4_L6AC:
    assumes P {is commutative on} G and a\inG b\inG
    shows a\cdot(a\cdotb}\mp@subsup{}{}{-1}\mp@subsup{)}{}{-1}=
    using assms inverse_in_group group0_4_L6AB group_inv_of_inv
    by simp
```

In abelian groups we can cancel an element with its inverse even if separated by two other elements.

```
lemma (in group0) group0_4_L6B: assumes A1: P {is commutative on} G
    and A2: a\inG b\inG ceG
    shows
    a}\cdot\textrm{b}\cdot\textrm{c}\cdot\mp@subsup{\textrm{a}}{}{-1}=\textrm{b}\cdot\textrm{c
    a
proof -
```

```
    from A2 have
        a\cdotb\cdotc\cdota}\mp@subsup{a}{}{-1}=a\cdot(b\cdotc)\cdot\mp@subsup{a}{}{-1
        a
        using group_op_closed group_oper_assoc inverse_in_group
        by auto
    with A1 A2 show
    a}\cdot\textrm{b}\cdot\textrm{c}\cdot\mp@subsup{\textrm{a}}{}{-1}=\textrm{b}\cdot\textrm{c
    a
    using group_op_closed group0_4_L6A
    by auto
qed
```

In abelian groups we can cancel an element with its inverse even if separated by three other elements.

```
lemma (in group0) group0_4_L6C: assumes A1: P {is commutative on} G
    and A2: a\inG b\inG c\inG d\inG
    shows a.b.c.d.a-1 = b}\cdot\textrm{c}\cdot\textrm{d
proof -
    from A2 have a.b.c.d.a
        using group_op_closed group_oper_assoc
        by simp
    with A1 A2 show thesis
        using group_op_closed group0_4_L6A
        by simp
qed
```

Another couple of useful rearrangements of three elements and cancelling.

```
lemma (in group0) group0_4_L6D:
```

 assumes A1: P \{is commutative on\} G
 and \(A 2: a \in G \quad b \in G \quad c \in G\)
 shows
 \(a \cdot b^{-1} \cdot\left(a \cdot c^{-1}\right)^{-1}=c \cdot b^{-1}\)
 \((a \cdot c)^{-1} \cdot(b \cdot c)=a^{-1} \cdot b\)
 \(a \cdot\left(b \cdot\left(c \cdot a^{-1} \cdot b^{-1}\right)\right)=c\)
 \(a \cdot b \cdot c^{-1} \cdot\left(c \cdot a^{-1}\right)=b\)
 proof -
from A2 have T :
$\mathrm{a}^{-1} \in \mathrm{G} \quad \mathrm{b}^{-1} \in \mathrm{G} \quad \mathrm{c}^{-1} \in \mathrm{G}$
$a \cdot b \in G \quad a \cdot b^{-1} \in G \quad c^{-1} \cdot a^{-1} \in G \quad c \cdot a^{-1} \in G$
using inverse_in_group group_op_closed by auto
with A1 A2 show $a \cdot b^{-1} \cdot\left(a \cdot c^{-1}\right)^{-1}=c \cdot b^{-1}$
using group0_2_L12 group_oper_assoc group0_4_L6B
IsCommutative_def by simp
from A2 T have $(a \cdot c)^{-1} \cdot(b \cdot c)=c^{-1} \cdot a^{-1} \cdot b \cdot c$
using group_inv_of_two group_oper_assoc by simp
also from A1 A2 T have $\ldots=a^{-1} \cdot \mathrm{~b}$
using group0_4_L6B by simp
finally show $(a \cdot c)^{-1} \cdot(b \cdot c)=a^{-1} \cdot b$
by simp

```
    from A1 A2 T show \(a \cdot\left(b \cdot\left(c \cdot a^{-1} \cdot b^{-1}\right)\right)=c\)
        using group_oper_assoc group0_4_L6B group0_4_L6A
        by simp
    from \(T\) have \(a \cdot b \cdot c^{-1} \cdot\left(c \cdot a^{-1}\right)=a \cdot b \cdot\left(c^{-1} \cdot\left(c \cdot a^{-1}\right)\right)\)
        using group_oper_assoc by simp
    also from A1 A2 T have \(\ldots=\mathrm{b}\)
        using group_oper_assoc group0_2_L6 group0_2_L2 group0_4_L6A
        by simp
    finally show \(a \cdot b \cdot c^{-1} \cdot\left(c \cdot a^{-1}\right)=b\) by simp
qed
```

Another useful rearrangement of three elements and cancelling.
lemma (in group0) group0_4_L6E:
assumes A1: P \{is commutative on\} G
and A2: $a \in G \quad b \in G \quad c \in G$
shows
$\mathrm{a} \cdot \mathrm{b} \cdot(\mathrm{a} \cdot \mathrm{c})^{-1}=\mathrm{b} \cdot \mathrm{c}^{-1}$
proof -
from A2 have $T: b^{-1} \in G \quad c^{-1} \in G$ using inverse_in_group by auto
with A1 A2 have $a \cdot\left(b^{-1}\right)^{-1} \cdot\left(a \cdot\left(c^{-1}\right)^{-1}\right)^{-1}=c^{-1} \cdot\left(b^{-1}\right)^{-1}$ using group0_4_L6D by simp
with A1 A2 T show $a \cdot b \cdot(a \cdot c)^{-1}=b \cdot c^{-1}$ using group_inv_of_inv IsCommutative_def by simp
qed
A rearrangement with two elements and canceelling, special case of group0_4_L6D when $c=b^{-1}$.
lemma (in group0) group0_4_L6F:
assumes A1: P \{is commutative on\} G
and A2: $a \in G \quad b \in G$
shows $a \cdot b^{-1} \cdot(a \cdot b)^{-1}=b^{-1} \cdot b^{-1}$
proof -
from A2 have $b^{-1} \in G$ using inverse_in_group by simp
with A1 A2 have $a \cdot b^{-1} \cdot\left(a \cdot\left(b^{-1}\right)^{-1}\right)^{-1}=b^{-1} \cdot b^{-1}$ using group0_4_L6D by simp
with A2 show $a \cdot b^{-1} \cdot(a \cdot b)^{-1}=b^{-1} \cdot b^{-1}$ using group_inv_of_inv by simp
qed
Some other rearrangements with four elements. The algorithm for proof as in group0_4_L2 works very well here.

```
lemma (in group0) rearr_ab_gr_4_elemA:
    assumes A1: P {is commutative on} G
    and A2: a\inG b\inG c\inG d
```

```
    shows
    a}\cdot\textrm{b}\cdot\textrm{c}\cdot\textrm{d}=\textrm{a}\cdot\textrm{d}\cdot\textrm{b}\cdot\textrm{c
    a}\cdot\textrm{b}\cdot\textrm{c}\cdot\textrm{d}=\textrm{a}\cdot\textrm{c}\cdot(\textrm{b}\cdot\textrm{d}
proof -
    from A1 A2 have a\cdotb\cdotc\cdotd = d\cdot(a\cdotb\cdotc)
        using IsCommutative_def group_op_closed
        by simp
    also from A2 have ... = d\cdota\cdotb\cdotc
        using group_op_closed group_oper_assoc
        by simp
    also from A1 A2 have ... = a.d.b}
        using IsCommutative_def group_op_closed
        by simp
    finally show a\cdotb\cdotc\cdotd = a.d}\cdot\textrm{b}\cdot\textrm{c
        by simp
    from A1 A2 have a\cdotb\cdotc\cdotd = c.(a\cdotb).d
        using IsCommutative_def group_op_closed
        by simp
    also from A2 have ... = c.a.b.d
        using group_op_closed group_oper_assoc
        by simp
    also from A1 A2 have ... = a.c.b}
        using IsCommutative_def group_op_closed
        by simp
    also from A2 have ... = a.c.(b}d\mathrm{ d)
        using group_op_closed group_oper_assoc
        by simp
    finally show a\cdotb}\textrm{c}\cdot\textrm{d}=\textrm{d}=\textrm{a}\cdot\textrm{c}\cdot(\textrm{b}\cdot\textrm{d}
        by simp
qed
```

Some rearrangements with four elements and inverse that are applications
of rearr_ab_gr_4_elem
lemma (in group0) rearr_ab_gr_4_elemB:
assumes A1: P \{is commutative on\} G
and A2: $a \in G \quad b \in G \quad c \in G \quad d \in G$
shows
$a \cdot b^{-1} \cdot c^{-1} \cdot d^{-1}=a \cdot d^{-1} \cdot b^{-1} \cdot c^{-1}$
$\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c} \cdot \mathrm{d}^{-1}=\mathrm{a} \cdot \mathrm{d}^{-1} \cdot \mathrm{~b} \cdot \mathrm{c}$
$a \cdot b \cdot c^{-1} \cdot d^{-1}=a \cdot c^{-1} \cdot\left(b \cdot d^{-1}\right)$
proof -
from A2 have $T: b^{-1} \in G \quad c^{-1} \in G \quad d^{-1} \in G$
using inverse_in_group by auto
with A1 A2 show
$a \cdot b^{-1} \cdot c^{-1} \cdot d^{-1}=a \cdot d^{-1} \cdot b^{-1} \cdot c^{-1}$
$a \cdot b \cdot c \cdot d^{-1}=a \cdot d^{-1} \cdot b \cdot c$
$a \cdot b \cdot c^{-1} \cdot d^{-1}=a \cdot c^{-1} \cdot\left(b \cdot d^{-1}\right)$
using rearr_ab_gr_4_elemA by auto
qed

Some rearrangement lemmas with four elements.

```
lemma (in group0) group0_4_L7:
    assumes A1: P \{is commutative on\} G
    and \(A 2: a \in G \quad b \in G \quad c \in G \quad d \in G\)
    shows
    \(a \cdot b \cdot c \cdot d^{-1}=a \cdot d^{-1} \cdot b \cdot c\)
    \(a \cdot d \cdot(b \cdot d \cdot(c \cdot d))^{-1}=a \cdot(b \cdot c)^{-1} \cdot d^{-1}\)
    \(a \cdot(b \cdot c) \cdot d=a \cdot b \cdot d \cdot c\)
proof -
    from A2 have \(T\) :
        \(b \cdot c \in G d^{-1} \in G b^{-1} \in G c^{-1} \in G\)
        \(\mathrm{d}^{-1} \cdot \mathrm{~b} \in \mathrm{G} \mathrm{c}^{-1} \cdot \mathrm{~d} \in \mathrm{G}(\mathrm{b} \cdot \mathrm{c})^{-1} \in \mathrm{G}\)
        \(\mathrm{b} \cdot \mathrm{d} \in \mathrm{G} \quad \mathrm{b} \cdot \mathrm{d} \cdot \mathrm{c} \in \mathrm{G}(\mathrm{b} \cdot \mathrm{d} \cdot \mathrm{c})^{-1} \in \mathrm{G}\)
        \(a \cdot d \in G \quad b \cdot c \in G\)
        using group_op_closed inverse_in_group
        by auto
    with A1 A2 have \(a \cdot b \cdot c \cdot d^{-1}=a \cdot\left(d^{-1} \cdot b \cdot c\right)\)
        using group_oper_assoc group0_4_L4A by simp
    also from A2 \(T\) have \(a \cdot\left(d^{-1} \cdot b \cdot c\right)=a \cdot d^{-1} \cdot b \cdot c\)
        using group_oper_assoc by simp
    finally show \(a \cdot b \cdot c \cdot d^{-1}=a \cdot d^{-1} \cdot b \cdot c\) by simp
    from A2 T have \(a \cdot d \cdot(b \cdot d \cdot(c \cdot d))^{-1}=a \cdot d \cdot\left(d^{-1} \cdot(b \cdot d \cdot c)^{-1}\right)\)
        using group_oper_assoc group_inv_of_two by simp
    also from A2 T have \(\ldots=a \cdot(b \cdot d \cdot c)^{-1}\)
        using group_oper_assoc inv_cancel_two by simp
    also from A1 A2 have \(\ldots=\mathrm{a} \cdot(\mathrm{d} \cdot(\mathrm{b} \cdot \mathrm{c}))^{-1}\)
        using IsCommutative_def group_oper_assoc by simp
    also from A 2 T have \(\ldots=\mathrm{a} \cdot\left((\mathrm{b} \cdot \mathrm{c})^{-1} \cdot \mathrm{~d}^{-1}\right)\)
        using group_inv_of_two by simp
    also from A2 \(T\) have \(\ldots=a \cdot(b \cdot c)^{-1} \cdot d^{-1}\)
        using group_oper_assoc by simp
    finally show \(a \cdot d \cdot(b \cdot d \cdot(c \cdot d))^{-1}=a \cdot(b \cdot c)^{-1} \cdot d^{-1}\)
        by simp
    from A2 have \(a \cdot(b \cdot c) \cdot d=a \cdot(b \cdot(c \cdot d)\) )
        using group_op_closed group_oper_assoc by simp
    also from A1 A2 have \(\ldots=a \cdot(b \cdot(d \cdot c)\) )
        using IsCommutative_def group_op_closed by simp
    also from A2 have ... = a•b•d•c
        using group_op_closed group_oper_assoc by simp
    finally show \(a \cdot(b \cdot c) \cdot d=a \cdot b \cdot d \cdot c\) by simp
qed
```

Some other rearrangements with four elements.

```
lemma (in group0) group0_4_L8:
    assumes A1: P {is commutative on} G
    and A2: a\inG b\inG c\inG d\inG
    shows
    a}\cdot(b\cdotc\mp@subsup{)}{}{-1}=(a\cdot\mp@subsup{d}{}{-1}\cdot\mp@subsup{c}{}{-1})\cdot(d\cdot\mp@subsup{b}{}{-1}
    a\cdotb}(\textrm{c}\cdot\textrm{d})=c\cdota\cdot(b\cdotd
```

$$
\mathrm{a} \cdot \mathrm{~b} \cdot(\mathrm{c} \cdot \mathrm{~d})=\mathrm{a} \cdot \mathrm{c} \cdot(\mathrm{~b} \cdot \mathrm{~d})
$$

$a \cdot\left(b \cdot c^{-1}\right) \cdot d=a \cdot b \cdot d \cdot c^{-1}$
$(a \cdot b) \cdot(c \cdot d)^{-1} \cdot\left(b \cdot d^{-1}\right)^{-1}=a \cdot c^{-1}$
proof -
from A2 have T :
$\mathrm{b} \cdot \mathrm{c} \in \mathrm{G} a \cdot \mathrm{~b} \in \mathrm{G} \mathrm{d}^{-1} \in \mathrm{G} \quad \mathrm{b}^{-1} \in \mathrm{G} \quad \mathrm{c}^{-1} \in \mathrm{G}$
$d^{-1} \cdot b \in G c^{-1} \cdot d \in G(b \cdot c)^{-1} \in G$
$a \cdot b \in G \quad(c \cdot d)^{-1} \in G \quad\left(b \cdot d^{-1}\right)^{-1} \in G \quad d \cdot b^{-1} \in G$
using group_op_closed inverse_in_group
by auto
from A2 have $a \cdot(b \cdot c)^{-1}=a \cdot c^{-1} \cdot b^{-1}$ using group0_2_L14A by blast
moreover from A2 have $a \cdot c^{-1}=\left(a \cdot d^{-1}\right) \cdot\left(d \cdot c^{-1}\right)$ using group0_2_L14A by blast
ultimately have $a \cdot(b \cdot c)^{-1}=\left(a \cdot d^{-1}\right) \cdot\left(d \cdot c^{-1}\right) \cdot b^{-1}$ by simp
with A1 A2 T have $a \cdot(b \cdot c)^{-1}=a \cdot d^{-1} \cdot\left(c^{-1} \cdot d\right) \cdot b^{-1}$
using IsCommutative_def by simp
with A2 T show $a \cdot(b \cdot c)^{-1}=\left(a \cdot d^{-1} \cdot c^{-1}\right) \cdot\left(d \cdot b^{-1}\right)$
using group_op_closed group_oper_assoc by simp
from A2 T have $a \cdot b \cdot(c \cdot d)=a \cdot b \cdot c \cdot d$
using group_oper_assoc by simp
also have $a \cdot b \cdot c \cdot d=c \cdot a \cdot b \cdot d$
proof -
from A1 A2 have $a \cdot b \cdot c \cdot d=c \cdot(a \cdot b) \cdot d$
using IsCommutative_def group_op_closed by simp
also from A2 have ... = c•a•b•d using group_op_closed group_oper_assoc by simp
finally show thesis by simp
qed
also from $A 2$ have $c \cdot a \cdot b \cdot d=c \cdot a \cdot(b \cdot d)$
using group_op_closed group_oper_assoc
by simp
finally show $a \cdot b \cdot(c \cdot d)=c \cdot a \cdot(b \cdot d)$ by simp
with A1 A2 show $a \cdot b \cdot(c \cdot d)=a \cdot c \cdot(b \cdot d)$
using IsCommutative_def by simp
from A1 A2 T show $a \cdot\left(b \cdot c^{-1}\right) \cdot d=a \cdot b \cdot d \cdot c^{-1}$
using group0_4_L7 by simp
from T have $(a \cdot b) \cdot(c \cdot d)^{-1} \cdot\left(b \cdot d^{-1}\right)^{-1}=(a \cdot b) \cdot\left((c \cdot d)^{-1} \cdot\left(b \cdot d^{-1}\right)^{-1}\right)$
using group_oper_assoc by simp
also from A1 A2 T have $\ldots=(\mathrm{a} \cdot \mathrm{b}) \cdot\left(\mathrm{c}^{-1} \cdot \mathrm{~d}^{-1} \cdot\left(\mathrm{~d} \cdot \mathrm{~b}^{-1}\right)\right)$
using group_inv_of_two group0_2_L12 IsCommutative_def
by simp
also from T have $\ldots=(\mathrm{a} \cdot \mathrm{b}) \cdot\left(\mathrm{c}^{-1} \cdot\left(\mathrm{~d}^{-1} \cdot\left(\mathrm{~d} \cdot \mathrm{~b}^{-1}\right)\right)\right)$
using group_oper_assoc by simp
also from A1 A2 T have ... = $\mathrm{a} \cdot \mathrm{c}^{-1}$
using group_oper_assoc group0_2_L6 group0_2_L2 IsCommutative_def
inv_cancel_two by simp
finally show $(a \cdot b) \cdot(c \cdot d)^{-1} \cdot\left(b \cdot d^{-1}\right)^{-1}=a \cdot c^{-1}$

by simp
 qed

Some other rearrangements with four elements.

```
lemma (in group0) group0_4_L8A:
    assumes A1: P \{is commutative on\} G
    and A2: \(a \in G \quad b \in G \quad c \in G \quad d \in G\)
    shows
    \(a \cdot b^{-1} \cdot\left(c \cdot d^{-1}\right)=a \cdot c \cdot\left(b^{-1} \cdot d^{-1}\right)\)
    \(a \cdot b^{-1} \cdot\left(c \cdot d^{-1}\right)=a \cdot c \cdot b^{-1} \cdot d^{-1}\)
proof -
    from A2 have
        \(T: a \in G \quad b^{-1} \in G \quad c \in G \quad d^{-1} \in G\)
        using inverse_in_group by auto
    with A1 show \(a \cdot b^{-1} \cdot\left(c \cdot d^{-1}\right)=a \cdot c \cdot\left(b^{-1} \cdot d^{-1}\right)\)
        by (rule group0_4_L8)
    with A2 T show \(a \cdot b^{-1} \cdot\left(c \cdot d^{-1}\right)=a \cdot c \cdot b^{-1} \cdot d^{-1}\)
        using group_op_closed group_oper_assoc
        by simp
qed
```

Some rearrangements with an equation.

```
lemma (in group0) group0_4_L9:
    assumes A1: P \{is commutative on\} G
    and A2: \(a \in G \quad b \in G \quad c \in G \quad d \in G\)
    and \(A 3: ~ a=b \cdot c^{-1} \cdot \mathrm{~d}^{-1}\)
    shows
    \(\mathrm{d}=\mathrm{b} \cdot \mathrm{a}^{-1} \cdot \mathrm{c}^{-1}\)
    \(\mathrm{d}=\mathrm{a}^{-1} \cdot \mathrm{~b} \cdot \mathrm{c}^{-1}\)
    \(\mathrm{b}=\mathrm{a} \cdot \mathrm{d} \cdot \mathrm{c}\)
proof -
    from A2 have \(T\) :
        \(\mathrm{a}^{-1} \in \mathrm{G} \quad \mathrm{c}^{-1} \in \mathrm{G} \quad \mathrm{d}^{-1} \in \mathrm{G} \quad \mathrm{b} \cdot \mathrm{c}^{-1} \in \mathrm{G}\)
        using group_op_closed inverse_in_group
        by auto
    with A2 A3 have \(a \cdot\left(d^{-1}\right)^{-1}=b \cdot c^{-1}\)
        using group0_2_L18 by simp
    with A2 have \(b \cdot c^{-1}=a \cdot d\)
        using group_inv_of_inv by simp
    with A2 T have I: \(a^{-1} \cdot\left(b \cdot c^{-1}\right)=d\)
        using group0_2_L18 by simp
    with A1 A2 T show
        \(\mathrm{d}=\mathrm{b} \cdot \mathrm{a}^{-1} \cdot \mathrm{c}^{-1}\)
        \(\mathrm{d}=\mathrm{a}^{-1} \cdot \mathrm{~b} \cdot \mathrm{c}^{-1}\)
        using group_oper_assoc IsCommutative_def by auto
    from A3 have \(a \cdot d \cdot c=\left(b \cdot c^{-1} \cdot d^{-1}\right) \cdot d \cdot c\) by simp
    also from \(A 2\) T have \(\ldots=b \cdot c^{-1} \cdot\left(d^{-1} \cdot d\right) \cdot c\)
        using group_oper_assoc by simp
    also from A 2 T have \(\ldots=\mathrm{b} \cdot \mathrm{c}^{-1} \cdot \mathrm{c}\)
```

using group0_2_L6 group0_2_L2 by simp
also from $A 2 T$ have ... $=\mathrm{b} \cdot\left(\mathrm{c}^{-1} \cdot \mathrm{c}\right)$
using group_oper_assoc by simp
also from A 2 have ... = b
using group0_2_L6 group0_2_L2 by simp
finally have $a \cdot d \cdot c=b$ by simp
thus $\mathrm{b}=\mathrm{a} \cdot \mathrm{d} \cdot \mathrm{c}$ by simp
qed
end

29 Groups 2

theory Group_ZF_2 imports AbelianGroup_ZF func_ZF EquivClass1

begin

This theory continues Group_ZF.thy and considers lifting the group structure to function spaces and projecting the group structure to quotient spaces, in particular the quotient qroup.

29.1 Lifting groups to function spaces

If we have a monoid (group) G than we get a monoid (group) structure on a space of functions valued in in G by defining $(f \cdot g)(x):=f(x) \cdot g(x)$. We call this process "lifting the monoid (group) to function space". This section formalizes this lifting.

The lifted operation is an operation on the function space.

```
lemma (in monoidO) Group_ZF_2_1_LOA:
    assumes A1: F = f {lifted to function space over} X
    shows F : (X }->\textrm{G})\times(\textrm{X}->\textrm{G})->(\textrm{X}->\textrm{G}
proof -
    from monoidAsssum have f : G }\times\textrm{G}->\textrm{G
        using IsAmonoid_def IsAssociative_def by simp
    with A1 show thesis
        using func_ZF_1_L3 group0_1_L3B by auto
qed
```

The result of the lifted operation is in the function space.

```
lemma (in monoid0) Group_ZF_2_1_L0:
    assumes A1:F= f {lifted to function space over} X
    and A2:s:X->G r:X }->\textrm{G
    shows F}\langle\mp@code{s,r\rangle: X }->\textrm{G
proof -
    from A1 have F : (X }->\textrm{G})\times(\textrm{X}->\textrm{G})->(\textrm{X}->\textrm{G}
        using Group_ZF_2_1_LOA
```

```
    by simp
    with A2 show thesis using apply_funtype
    by simp
qed
```

The lifted monoid operation has a neutral element, namely the constant function with the neutral element as the value.

```
lemma (in monoid0) Group_ZF_2_1_L1:
    assumes A1: \(F=f\) \{lifted to function space over\} \(X\)
    and A2: E = ConstantFunction(X,TheNeutralElement(G,f))
    shows \(E: X \rightarrow G \wedge(\forall s \in X \rightarrow G . F\langle E, s\rangle=s \wedge F\langle s, E\rangle=s)\)
proof
    from A2 show T1:E : \(X \rightarrow G\)
            using unit_is_neutral func1_3_L1 by simp
    show \(\forall s \in X \rightarrow G . F\langle E, s\rangle=s \wedge F\langle s, E\rangle=s\)
    proof
        fix \(s\) assume \(A 3: s: X \rightarrow G\)
        from monoidAsssum have \(\mathrm{T} 2: \mathrm{f}: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}\)
            using IsAmonoid_def IsAssociative_def by simp
            from A3 A1 T1 have
                \(\mathrm{F}\langle\mathrm{E}, \mathrm{s}\rangle: \mathrm{X} \rightarrow \mathrm{G} \mathrm{F}\langle\mathrm{s}, \mathrm{E}\rangle: \mathrm{X} \rightarrow \mathrm{G} \mathrm{s}: \mathrm{X} \rightarrow \mathrm{G}\)
                using Group_ZF_2_1_LO by auto
            moreover from T2 A1 T1 A2 A3 have
                \(\forall x \in X . \quad(F\langle E, s\rangle)(x)=s(x)\)
                \(\forall x \in X\). \((F\langle s, E\rangle)(x)=s(x)\)
                using func_ZF_1_L4 group0_1_L3B func1_3_L2
    apply_type unit_is_neutral by auto
        ultimately show
                \(F\langle E, s\rangle=s \wedge F\langle s, E\rangle=s\)
                using fun_extension_iff by auto
    qed
qed
```

Monoids can be lifted to a function space.
lemma (in monoid0) Group_ZF_2_1_T1:
assumes A1: $F=f$ \{lifted to function space over\} X
shows IsAmonoid $(X \rightarrow G, F)$
proof -
from monoidAsssum A1 have
F \{is associative on\} ($\mathrm{X} \rightarrow \mathrm{G}$)
using IsAmonoid_def func_ZF_2_L4 group0_1_L3B
by auto
moreover from A1 have
$\exists \mathrm{E} \in \mathrm{X} \rightarrow \mathrm{G} . \forall \mathrm{s} \in \mathrm{X} \rightarrow \mathrm{G} . \mathrm{F}\langle\mathrm{E}, \mathrm{s}\rangle=\mathrm{s} \wedge \mathrm{F}\langle\mathrm{s}, \mathrm{E}\rangle=\mathrm{s}$
using Group_ZF_2_1_L1 by blast
ultimately show thesis using IsAmonoid_def
by simp
qed

The constant function with the neutral element as the value is the neutral element of the lifted monoid.

```
lemma Group_ZF_2_1_L2:
    assumes A1: IsAmonoid(G,f)
    and A2: F = f {lifted to function space over} X
    and A3: E = ConstantFunction(X,TheNeutralElement(G,f))
    shows E = TheNeutralElement(X }->\textrm{G},\textrm{F}\mathrm{ )
proof -
    from A1 A2 have
        T1:monoidO(G,f) and T2:monoidO(X }->\textrm{G},\textrm{F}\mathrm{ )
        using monoidO_def monoid0.Group_ZF_2_1_T1
        by auto
    from T1 A2 A3 have
        E : X }->\textrm{G}\wedge(\forall\textrm{s}\in\textrm{X}->\textrm{G}.\textrm{F}\langle\textrm{E},\textrm{s}\rangle=\textrm{s}\wedge\wedgeF\langles,E\rangle=s
        using monoid0.Group_ZF_2_1_L1 by simp
    with T2 show thesis
        using monoid0.group0_1_L4 by auto
qed
```

The lifted operation acts on the functions in a natural way defined by the monoid operation.

```
lemma (in monoid0) lifted_val:
    assumes F = f {lifted to function space over} X
    and s:X->G r:X }->\textrm{G
    and }x\in
    shows (F/s,r\rangle)(x) = s(x) \oplus r(x)
    using monoidAsssum assms IsAmonoid_def IsAssociative_def
        group0_1_L3B func_ZF_1_L4
    by auto
```

The lifted operation acts on the functions in a natural way defined by the group operation. This is the same as lifted_val, but in the group0 context.

```
lemma (in group0) Group_ZF_2_1_L3:
    assumes \(\mathrm{F}=\mathrm{P}\) \{lifted to function space over\} X
    and \(\mathrm{s}: \mathrm{X} \rightarrow \mathrm{G}\) r: \(\mathrm{X} \rightarrow \mathrm{G}\)
    and \(x \in X\)
    shows \((F\langle s, r\rangle)(x)=s(x) \cdot r(x)\)
    using assms group0_2_L1 monoid0.lifted_val by simp
```

In the group0 context we can apply theorems proven in monoid0 context to the lifted monoid.

```
lemma (in group0) Group_ZF_2_1_L4:
    assumes A1: \(F=P\) \{lifted to function space over\} \(X\)
    shows monoidO ( \(\mathrm{X} \rightarrow \mathrm{G}, \mathrm{F}\) )
proof -
    from A1 show thesis
        using group0_2_L1 monoid0.Group_ZF_2_1_T1 monoidO_def
        by simp
```

qed
The compostion of a function $f: X \rightarrow G$ with the group inverse is a right inverse for the lifted group.

```
lemma (in group0) Group_ZF_2_1_L5:
    assumes A1: F = P {lifted to function space over} X
    and A2: s : X }->\textrm{G
    and A3: i = GroupInv(G,P) O s
    shows i: X }->\textrm{G}\mathrm{ and F}\textrm{F}\langle\textrm{s},\textrm{i}\rangle=\mathrm{ TheNeutralElement (X }->\textrm{G},\textrm{F}
proof -
    let E = ConstantFunction(X,1)
    have E : X }->\textrm{G
        using group0_2_L2 func1_3_L1 by simp
    moreover from groupAssum A2 A3 A1 have
        F\ s,i\rangle: X TG using group0_2_T2 comp_fun
            Group_ZF_2_1_L4 monoid0.group0_1_L1
        by simp
    moreover from groupAssum A2 A3 A1 have
        \forallx\inX. (F\langle s,i\rangle)(x) = E(x)
        using group0_2_T2 comp_fun Group_ZF_2_1_L3
            comp_fun_apply apply_funtype group0_2_L6 func1_3_L2
        by simp
    moreover from groupAssum A1 have
        E = TheNeutralElement(X }->\textrm{G},\textrm{F}
        using IsAgroup_def Group_ZF_2_1_L2 by simp
    ultimately show F
        using fun_extension_iff IsAgroup_def Group_ZF_2_1_L2
        by simp
    from groupAssum A2 A3 show i: X }->\textrm{G
        using group0_2_T2 comp_fun by simp
qed
```

Groups can be lifted to the function space.
theorem (in group0) Group_ZF_2_1_T2:
assumes A1: F = P \{lifted to function space over\} X
shows IsAgroup $(X \rightarrow G, F)$
proof -
from A1 have IsAmonoid ($X \rightarrow G, F$)
using group0_2_L1 monoid0.Group_ZF_2_1_T1
by simp
moreover have
$\forall \mathrm{s} \in \mathrm{X} \rightarrow \mathrm{G} . \exists \mathrm{i} \in \mathrm{X} \rightarrow \mathrm{G} . \mathrm{F}\langle\mathrm{s}, \mathrm{i}\rangle=$ TheNeutralElement $(\mathrm{X} \rightarrow \mathrm{G}, \mathrm{F})$
proof
fix s assume A2: $s: X \rightarrow G$
let $i=\operatorname{GroupInv}(G, P) \mathrm{O}$
from groupAssum A2 have i:X \rightarrow G
using group0_2_T2 comp_fun by simp
moreover from A1 A2 have
$\mathrm{F}\langle\mathrm{s}, \mathrm{i}\rangle=$ TheNeutralElement $(\mathrm{X} \rightarrow \mathrm{G}, \mathrm{F})$
using Group_ZF_2_1_L5 by fast
ultimately show $\exists i \in X \rightarrow G . F\langle s, i\rangle=$ TheNeutralElement $(X \rightarrow G, F)$ by auto
qed
ultimately show thesis using IsAgroup_def
by simp
qed
What is the group inverse for the lifted group?

```
lemma (in group0) Group_ZF_2_1_L6:
    assumes A1: F = P {lifted to function space over} X
    shows }\forall\textrm{s}\in(\textrm{X}->\textrm{G}).GroupInv(X->G,F)(s)=GroupInv(G,P) O 
proof -
    from A1 have group0(X }->\textrm{G},\textrm{F}
        using group0_def Group_ZF_2_1_T2
        by simp
    moreover from A1 have }\foralls\inX->G.GroupInv(G,P) O s : X >G ^
        F}\langle\textrm{s},\textrm{GroupInv}(G,P) O s\rangle= TheNeutralElement (X GG,F
        using Group_ZF_2_1_L5 by simp
    ultimately have
        \foralls\in(X->G). GroupInv(G,P) O s = GroupInv(X }->\textrm{G},\textrm{F})(\textrm{s}
        by (rule group0.group0_2_L9A)
    thus thesis by simp
qed
```

What is the value of the group inverse for the lifted group?
corollary (in group0) lift_gr_inv_val:
assumes $F=P$ \{lifted to function space over\} X and
$s: X \rightarrow G$ and $x \in X$
shows $(\operatorname{GroupInv}(X \rightarrow G, F)(s))(x)=(s(x))^{-1}$
using groupAssum assms Group_ZF_2_1_L6 group0_2_T2 comp_fun_apply
by simp
What is the group inverse in a subgroup of the lifted group?

```
lemma (in group0) Group_ZF_2_1_L6A:
    assumes A1: F = P {lifted to function space over} X
    and A2: IsAsubgroup(H,F)
    and A3: g = restrict(F,H\timesH)
    and A4: s\inH
    shows GroupInv(H,g)(s) = GroupInv(G,P) O s
proof -
    from A1 have T1: group0 (X }->\textrm{G},\textrm{F}
        using group0_def Group_ZF_2_1_T2
        by simp
    with A2 A3 A4 have GroupInv(H,g)(s) = GroupInv(X }->\textrm{G},\textrm{F})(\textrm{s}
        using group0.group0_3_T1 restrict by simp
    moreover from T1 A1 A2 A4 have
        GroupInv(X }->\textrm{G},\textrm{F})(\textrm{s})=\operatorname{GroupInv(G,P) O s
        using group0.group0_3_L2 Group_ZF_2_1_L6 by blast
```

```
    ultimately show thesis by simp
qed
```

If a group is abelian, then its lift to a function space is also abelian.

```
lemma (in group0) Group_ZF_2_1_L7:
    assumes A1: F = P {lifted to function space over} X
    and A2: P {is commutative on} G
    shows F {is commutative on} ( }\textrm{X}->\textrm{G}\mathrm{ )
proof-
    from A1 A2 have
        F {is commutative on} (X }->\mathrm{ range(P))
        using group_oper_assocA func_ZF_2_L2
        by simp
    moreover from groupAssum have range(P) = G
        using group0_2_L1 monoid0.group0_1_L3B
        by simp
    ultimately show thesis by simp
qed
```


29.2 Equivalence relations on groups

The goal of this section is to establish that (under some conditions) given an equivalence relation on a group or (monoid)we can project the group (monoid) structure on the quotient and obtain another group.

The neutral element class is neutral in the projection.

```
lemma (in monoid0) Group_ZF_2_2_L1:
    assumes A1: equiv(G,r) and A2:Congruent2(r,f)
    and A3: F = ProjFun2(G,r,f)
    and A4: e = TheNeutralElement(G,f)
    shows r{e} \inG//r ^
    (\forallc\inG//r. F \ r{e},c\rangle=c \ F F c,r{e}\rangle=c)
proof
    from A4 show T1:r{e} G G//r
        using unit_is_neutral quotientI
        by simp
    show
        \forallc\inG//r. F}\langler{e},c\rangle=c^F\ c,r{e}\rangle=
    proof
        fix c assume A5:c G G//r
        then obtain g where D1:g\inG c = r{g}
            using quotient_def by auto
        with A1 A2 A3 A4 D1 show
            F}\langler{e},c\rangle=c^F\ c,r{e}\rangle=
                using unit_is_neutral EquivClass_1_L10
                by simp
    qed
qed
```

The projected structure is a monoid.

```
theorem (in monoid0) Group_ZF_2_2_T1:
    assumes A1: equiv(G,r) and A2: Congruent2(r,f)
    and A3: \(F=\operatorname{ProjFun2(G,r,f)}\)
    shows IsAmonoid(G//r, F)
proof -
    let \(E=r\{\) TheNeutralElement \((G, f)\}\)
    from A1 A2 A3 have
        \(\mathrm{E} \in \mathrm{G} / / \mathrm{r} \wedge(\forall \mathrm{c} \in \mathrm{G} / / \mathrm{r} . \mathrm{F}\langle\mathrm{E}, \mathrm{c}\rangle=\mathrm{c} \wedge \mathrm{F}\langle\mathrm{c}, \mathrm{E}\rangle=\mathrm{c})\)
        using Group_ZF_2_2_L1 by simp
    hence
        \(\exists \mathrm{E} \in \mathrm{G} / / \mathrm{r} . \forall \mathrm{c} \in \mathrm{G} / / \mathrm{r} . \mathrm{F}\langle\mathrm{E}, \mathrm{c}\rangle=\mathrm{c} \wedge \mathrm{F}\langle\mathrm{c}, \mathrm{E}\rangle=\mathrm{c}\)
        by auto
    with monoidAsssum A1 A2 A3 show thesis
        using IsAmonoid_def EquivClass_2_T2
        by simp
qed
```

The class of the neutral element is the neutral element of the projected monoid.
lemma Group_ZF_2_2_L1:
assumes A1: IsAmonoid (G,f)
and A2: equiv (G,r) and A3: Congruent2 (r,f)
and A4: $F=\operatorname{ProjFun} 2(G, r, f)$
and A5: e $=$ TheNeutralElement (G,f)
shows $r\{e\}=$ TheNeutralElement (G//r, F)
proof -
from A1 A2 A3 A4 have
T1:monoidO(G,f) and T2:monoidO(G//r,F)
using monoid0_def monoid0.Group_ZF_2_2_T1 by auto
from T1 A2 A3 A4 A5 have $r\{e\} \in G / / r \wedge$
$(\forall c \in G / / r . F\langle r\{e\}, c\rangle=c \wedge F\langle c, r\{e\}\rangle=c)$
using monoido.Group_ZF_2_2_L1 by simp
with T2 show thesis using monoid0.group0_1_L4
by auto
qed

The projected operation can be defined in terms of the group operation on representants in a natural way.

```
lemma (in group0) Group_ZF_2_2_L2:
    assumes A1: equiv(G,r) and A2: Congruent2(r,P)
    and A3: F = ProjFun2(G,r,P)
    and A4: a\inG b\inG
    shows F}\langle~r{a},r{b}\rangle=r{a\cdotb
proof -
    from A1 A2 A3 A4 show thesis
        using EquivClass_1_L10 by simp
qed
```

The class of the inverse is a right inverse of the class.

```
lemma (in group0) Group_ZF_2_2_L3:
    assumes A1: equiv(G,r) and A2: Congruent2(r,P)
    and A3: F = ProjFun2(G,r,P)
    and A4: a GG
    shows F}\langler{a},r{\mp@subsup{a}{}{-1}}\rangle= TheNeutralElement(G//r,F
proof -
    from A1 A2 A3 A4 have
        F}\langler{a},r{\mp@subsup{a}{}{-1}}\rangle=r{1
        using inverse_in_group Group_ZF_2_2_L2 group0_2_L6
        by simp
    with groupAssum A1 A2 A3 show thesis
        using IsAgroup_def Group_ZF_2_2_L1 by simp
qed
```

The group structure can be projected to the quotient space.
theorem (in group0) Group_ZF_3_T2:
assumes A1: equiv (G,r) and A2: Congruent2 (r, P)
shows IsAgroup (G//r, ProjFun2 (G, r, P))
proof -
let $F=\operatorname{ProjFun} 2(G, r, P)$
let $E=$ TheNeutralElement ($G / / r, F$)
from groupAssum A1 A2 have IsAmonoid(G//r,F)
using IsAgroup_def monoid0_def monoid0.Group_ZF_2_2_T1
by simp
moreover have
$\forall \mathrm{c} \in \mathrm{G} / / \mathrm{r} . \exists \mathrm{b} \in \mathrm{G} / / \mathrm{r} . \mathrm{F}\langle\mathrm{c}, \mathrm{b}\rangle=\mathrm{E}$
proof
fix c assume A3: $c \in G / / r$
then obtain g where $\mathrm{D} 1: \mathrm{g} \in \mathrm{G} \quad \mathrm{c}=\mathrm{r}\{\mathrm{g}\}$
using quotient_def by auto
let $\mathrm{b}=\mathrm{r}\left\{\mathrm{g}^{-1}\right\}$
from D1 have $b \in G / / r$
using inverse_in_group quotientI
by simp
moreover from A1 A2 D1 have
$F\langle c, b\rangle=E$
using Group_ZF_2_2_L3 by simp
ultimately show $\exists \mathrm{b} \in \mathrm{G} / / \mathrm{r} . \mathrm{F}\langle\mathrm{c}, \mathrm{b}\rangle=\mathrm{E}$
by auto
qed
ultimately show thesis
using IsAgroup_def by simp
qed

The group inverse (in the projected group) of a class is the class of the inverse.
lemma (in group0) Group_ZF_2_2_L4:

```
    assumes A1: equiv(G,r) and
    A2: Congruent2(r,P) and
    A3: F = ProjFun2(G,r,P) and
    A4: a GG
    shows r{a-1 } = GroupInv(G//r,F)(r{a})
proof -
    from A1 A2 A3 have group0(G//r,F)
        using Group_ZF_3_T2 group0_def by simp
    moreover from A4 have
        r{a} G G//r r{a-1} G G//r
        using inverse_in_group quotientI by auto
    moreover from A1 A2 A3 A4 have
        F}\langler{a},r{\mp@subsup{a}{}{-1}}\rangle= TheNeutralElement(G//r,F
        using Group_ZF_2_2_L3 by simp
    ultimately show thesis
        by (rule group0.group0_2_L9)
qed
```


29.3 Normal subgroups and quotient groups

If H is a subgroup of G, then for every $a \in G$ we can cosider the sets $\{a \cdot h . h \in H\}$ and $\{h \cdot a . h \in H\}$ (called a left and right "coset of H", resp.) These sets sometimes form a group, called the "quotient group". This section discusses the notion of quotient groups.
A normal subgorup N of a group G is such that $a b a^{-1}$ belongs to N if $a \in G, b \in N$.

```
definition
    IsAnormalSubgroup(G,P,N) \equiv IsAsubgroup(N,P) ^
    (\foralln\inN.\forallg\inG. P < P P g,n \,GroupInv(G,P)(g) > | N)
```

Having a group and a normal subgroup N we can create another group consisting of eqivalence classes of the relation $a \sim b \equiv a \cdot b^{-1} \in N$. We will refer to this relation as the quotient group relation. The classes of this relation are in fact cosets of subgroup H.

```
definition
    QuotientGroupRel(G,P,H) \equiv
    {\langle a,b\rangle\inG\timesG.P\ a,GroupInv(G,P)(b)\rangle\inH}
```

Next we define the operation in the quotient group as the projection of the group operation on the classses of the quotient group relation.

```
definition
    QuotientGroupOp(G,P,H) \equiv ProjFun2(G,QuotientGroupRel(G,P,H ),P)
```

Definition of a normal subgroup in a more readable notation.
lemma (in group0) Group_ZF_2_4_LO: assumes IsAnormalSubgroup (G, P, H)

```
and g}\textrm{g}\in\textrm{G}\textrm{n}\in\textrm{H
shows g.n.g}\mp@subsup{}{}{-1}\in
using assms IsAnormalSubgroup_def by simp
```

The quotient group relation is reflexive.

```
lemma (in group0) Group_ZF_2_4_L1:
    assumes IsAsubgroup (H,P)
    shows refl(G,QuotientGroupRel(G,P,H))
    using assms group0_2_L6 group0_3_L5
        QuotientGroupRel_def refl_def by simp
```

The quotient group relation is symmetric.

```
lemma (in group0) Group_ZF_2_4_L2:
    assumes A1:IsAsubgroup ( \(\mathrm{H}, \mathrm{P}\) )
    shows sym(QuotientGroupRel(G,P,H))
proof -
    \{
            fix a b assume A2: \(\langle\mathrm{a}, \mathrm{b}\rangle \in\) QuotientGroupRel (G,P,H)
            with A1 have \(\left(a \cdot b^{-1}\right)^{-1} \in H\)
                using QuotientGroupRel_def group0_3_T3A
                by simp
            moreover from A2 have \(\left(\mathrm{a} \cdot \mathrm{b}^{-1}\right)^{-1}=\mathrm{b} \cdot \mathrm{a}^{-1}\)
                using QuotientGroupRel_def group0_2_L12
                by simp
            ultimately have \(\mathrm{b} \cdot \mathrm{a}^{-1} \in \mathrm{H}\) by simp
            with A2 have \(\langle\mathrm{b}, \mathrm{a}\rangle \in\) QuotientGroupRel (G, P, H)
                using QuotientGroupRel_def by simp
    \}
    then show thesis using symI by simp
qed
```

The quotient group relation is transistive.
lemma (in group0) Group_ZF_2_4_L3A:
assumes A1: IsAsubgroup (H,P) and
A2: $\langle\mathrm{a}, \mathrm{b}\rangle \in$ QuotientGroupRel (G, P, H) and
A3: $\langle\mathrm{b}, \mathrm{c}\rangle \in$ QuotientGroupRel (G,P,H)
shows $\langle\mathrm{a}, \mathrm{c}\rangle \in$ QuotientGroupRel (G, P, H)
proof -
let $r=$ QuotientGroupRel (G,P,H)
from A2 A3 have $T 1: a \in G \quad b \in G \quad c \in G$
using QuotientGroupRel_def by auto
from A1 A2 A3 have $\left(a \cdot b^{-1}\right) \cdot\left(b \cdot c^{-1}\right) \in H$
using QuotientGroupRel_def group0_3_L6
by simp
moreover from T1 have
$\mathrm{a} \cdot \mathrm{c}^{-1}=\left(\mathrm{a} \cdot \mathrm{b}^{-1}\right) \cdot\left(\mathrm{b} \cdot \mathrm{c}^{-1}\right)$
using group0_2_L14A by blast
ultimately have $a \cdot c^{-1} \in H$
by simp

```
    with T1 show thesis using QuotientGroupRel_def
    by simp
qed
```

The quotient group relation is an equivalence relation. Note we do not need the subgroup to be normal for this to be true.

```
lemma (in group0) Group_ZF_2_4_L3: assumes A1:IsAsubgroup(H,P)
    shows equiv(G,QuotientGroupRel(G,P,H))
proof -
    let r = QuotientGroupRel(G,P,H)
    from A1 have
            \foralla b c. (\langlea, b\rangle\inr ^ < b, c\rangle\inr m\longrightarrow\langlea,c\rangle\inr)
            using Group_ZF_2_4_L3A by blast
    then have trans(r)
        using Fol1_L2 by blast
    with A1 show thesis
        using Group_ZF_2_4_L1 Group_ZF_2_4_L2
            QuotientGroupRel_def equiv_def
        by auto
qed
```

The next lemma states the essential condition for congruency of the group operation with respect to the quotient group relation.

```
lemma (in group0) Group_ZF_2_4_L4:
    assumes A1: IsAnormalSubgroup(G,P,H)
    and A2: \langlea1,a2\rangle\in QuotientGroupRel(G,P,H)
    and A3: \langleb1,b2\rangle\in QuotientGroupRel(G,P,H)
    shows \langlea1·b1, a2·b2\rangle \in QuotientGroupRel(G,P,H)
proof -
    from A2 A3 have T1:
        a1\inG a2\inG b1\inG b2\inG
        a1·b1 \inG a2·b2 \inG
        b1·b2 -1 \inH a1.a2-1}\in
        using QuotientGroupRel_def group0_2_L1 monoid0.group0_1_L1
        by auto
    with A1 show thesis using
        IsAnormalSubgroup_def group0_3_L6 group0_2_L15
        QuotientGroupRel_def by simp
qed
```

If the subgroup is normal, the group operation is congruent with respect to the quotient group relation.

```
lemma Group_ZF_2_4_L5A:
    assumes IsAgroup(G,P)
    and IsAnormalSubgroup(G,P,H)
    shows Congruent2(QuotientGroupRel(G,P,H),P)
    using assms group0_def group0.Group_ZF_2_4_L4 Congruent2_def
    by simp
```

The quotient group is indeed a group.

```
theorem Group_ZF_2_4_T1:
    assumes IsAgroup(G,P) and IsAnormalSubgroup(G,P,H)
    shows
    IsAgroup(G//QuotientGroupRel(G,P,H),QuotientGroupOp(G,P,H))
    using assms group0_def group0.Group_ZF_2_4_L3 IsAnormalSubgroup_def
        Group_ZF_2_4_L5A group0.Group_ZF_3_T2 QuotientGroupOp_def
    by simp
```

The class (coset) of the neutral element is the neutral element of the quotient group.

```
lemma Group_ZF_2_4_L5B:
    assumes IsAgroup(G,P) and IsAnormalSubgroup(G,P,H)
    and r = QuotientGroupRel(G,P,H)
    and e = TheNeutralElement(G,P)
    shows r{e} = TheNeutralElement(G//r,QuotientGroupOp(G,P,H))
    using assms IsAnormalSubgroup_def groupO_def
        IsAgroup_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
        QuotientGroupOp_def Group_ZF_2_2_L1
    by simp
```

A group element is equivalent to the neutral element iff it is in the subgroup we divide the group by.
lemma (in group0) Group_ZF_2_4_L5C: assumes $a \in G$
shows $\langle\mathrm{a}, 1\rangle \in$ QuotientGroupRel (G,P,H) $\longleftrightarrow \mathrm{a} \in \mathrm{H}$
using assms QuotientGroupRel_def group_inv_of_one group0_2_L2
by auto
A group element is in H iff its class is the neutral element of G / H.

```
lemma (in group0) Group_ZF_2_4_L5D:
    assumes A1: IsAnormalSubgroup (G,P,H) and
    A2: \(\mathrm{a} \in \mathrm{G}\) and
    A3: r = QuotientGroupRel(G,P,H) and
    A4: TheNeutralElement (G//r, QuotientGroupOp(G,P,H)) =e
    shows \(r\{a\}=e \longleftrightarrow\langle a, 1\rangle \in r\)
proof
    assume \(r\{a\}=e\)
    with groupAssum assms have
        \(r\{1\}=r\{a\}\) and \(I\) : equiv ( \(G, r\) )
        using Group_ZF_2_4_L5B IsAnormalSubgroup_def Group_ZF_2_4_L3
        by auto
    with A2 have \(\langle 1, a\rangle \in \mathrm{r}\) using eq_equiv_class
        by simp
    with \(I\) show \(\langle a, 1\rangle \in r\) by (rule equiv_is_sym)
next assume \(\langle a, 1\rangle \in r\)
    moreover from A1 A3 have equiv(G,r)
        using IsAnormalSubgroup_def Group_ZF_2_4_L3
        by simp
```

```
    ultimately have r{a} = r{1}
        using equiv_class_eq by simp
    with groupAssum A1 A3 A4 show r{a} = e
        using Group_ZF_2_4_L5B by simp
qed
```

The class of $a \in G$ is the neutral element of the quotient G / H iff $a \in H$.

```
lemma (in group0) Group_ZF_2_4_L5E:
    assumes IsAnormalSubgroup(G,P,H) and
    a\inG and r = QuotientGroupRel(G,P,H) and
    TheNeutralElement(G//r,QuotientGroupOp(G,P,H)) = e
    shows r{a} = e \longleftrightarrowa\inH
    using assms Group_ZF_2_4_L5C Group_ZF_2_4_L5D
    by simp
```

Essential condition to show that every subgroup of an abelian group is normal.
lemma (in group0) Group_ZF_2_4_L5:
assumes A1: P \{is commutative on\} G
and A2: IsAsubgroup (H,P)
and A3: $g \in G \quad h \in H$
shows $\mathrm{g} \cdot \mathrm{h} \cdot \mathrm{g}^{-1} \in \mathrm{H}$
proof -
from A2 A3 have $\mathrm{T} 1: \mathrm{h} \in \mathrm{G} \mathrm{g}^{-1} \in \mathrm{G}$
using group0_3_L2 inverse_in_group by auto
with A3 A1 have $g \cdot h \cdot g^{-1}=g^{-1} \cdot g \cdot h$ using group0_4_L4A by simp
with A3 T1 show thesis using group0_2_L6 group0_2_L2 by simp
qed
Every subgroup of an abelian group is normal. Moreover, the quotient group
is also abelian.
lemma Group_ZF_2_4_L6:
assumes A1: IsAgroup (G,P)
and A2: P \{is commutative on\} G
and A3: IsAsubgroup (H,P)
shows IsAnormalSubgroup (G, P, H)
QuotientGroupOp(G,P,H) \{is commutative on\} (G//QuotientGroupRel(G,P,H))
proof -
from A1 A2 A3 show T1: IsAnormalSubgroup(G,P,H) using group0_def IsAnormalSubgroup_def group0.Group_ZF_2_4_L5 by simp
let $r=$ QuotientGroupRel (G, P, H)
from A1 A3 T1 have equiv (G,r) Congruent2 (r, P)
using group0_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A
by auto

```
    with A2 show
    QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))
    using EquivClass_2_T1 QuotientGroupOp_def
    by simp
qed
```

The group inverse (in the quotient group) of a class (coset) is the class of the inverse.

```
lemma (in group0) Group_ZF_2_4_L7:
    assumes IsAnormalSubgroup(G,P,H)
    and a\inG and r = QuotientGroupRel(G,P,H)
    and F = QuotientGroupOp(G,P,H)
    shows r{a-1} = GroupInv(G//r,F)(r{a})
    using groupAssum assms IsAnormalSubgroup_def Group_ZF_2_4_L3
        Group_ZF_2_4_L5A QuotientGroupOp_def Group_ZF_2_2_L4
    by simp
```


29.4 Function spaces as monoids

On every space of functions $\{f: X \rightarrow X\}$ we can define a natural monoid structure with composition as the operation. This section explores this fact.

The next lemma states that composition has a neutral element, namely the identity function on X (the one that maps $x \in X$ into itself).

```
lemma Group_ZF_2_5_L1: assumes A1: F = Composition(X)
    shows }\exists\textrm{I}\in(X->X).\forallf\in(X->X).F\langleI,f\rangle=f \ F F f,I\rangle=
proof-
    let I = id(X)
    from A1 have
            I }\inX->X\wedge(\forallf\in(X->X).F\I,f\rangle=f \ \ F \ f,I\rangle=f
            using id_type func_ZF_6_L1A by simp
    thus thesis by auto
qed
```

The space of functions that map a set X into itsef is a monoid with composition as operation and the identity function as the neutral element.

```
lemma Group_ZF_2_5_L2: shows
    IsAmonoid( \(\mathrm{X} \rightarrow \mathrm{X}\), Composition( X ))
    id(X) = TheNeutralElement(X \(\rightarrow \mathrm{X}\), Composition(X))
proof -
    let \(I=i d(X)\)
    let \(\mathrm{F}=\) Composition( X )
    show IsAmonoid( \(\mathrm{X} \rightarrow \mathrm{X}\), Composition( X ))
        using func_ZF_5_L5 Group_ZF_2_5_L1 IsAmonoid_def
        by auto
    then have monoido ( \(X \rightarrow X, F\) )
            using monoidO_def by simp
    moreover have
```

```
    I \in X }->\textrm{X}\wedge(\forallf\in(X->X). F\ I,f\rangle=f f \ F \ f,I\rangle=f
    using id_type func_ZF_6_L1A by simp
    ultimately show I = TheNeutralElement (X }->\textrm{X},\textrm{F}
    using monoid0.group0_1_L4 by auto
qed
end
```


30 Groups 3

theory Group_ZF_3 imports Group_ZF_2 Finite1

begin

In this theory we consider notions in group theory that are useful for the construction of real numbers in the Real_ZF_x series of theories.

30.1 Group valued finite range functions

In this section show that the group valued functions $f: X \rightarrow G$, with the property that $f(X)$ is a finite subset of G, is a group. Such functions play an important role in the construction of real numbers in the Real_ZF series.

The following proves the essential condition to show that the set of finite range functions is closed with respect to the lifted group operation.

```
lemma (in group0) Group_ZF_3_1_L1:
    assumes A1: F = P {lifted to function space over} X
    and
    A2: s \in FinRangeFunctions(X,G) r G FinRangeFunctions(X,G)
    shows F}\langle\mp@code{s,r}>>\in\mathrm{ FinRangeFunctions(X,G)
proof -
    let q = F < s,r\rangle
    from A2 have T1:s:X }->\textrm{G}\mathrm{ r:X }->\textrm{G
        using FinRangeFunctions_def by auto
    with A1 have T2:q : X }->\textrm{G
        using group0_2_L1 monoid0.Group_ZF_2_1_L0
        by simp
    moreover have q(X) \in Fin(G)
    proof -
        from A2 have
            {s(x). x\inX} \in Fin(G)
            {r(x). x\inX} \in Fin(G)
            using Finite1_L18 by auto
            with A1 T1 T2 show thesis using
                    group_oper_assocA Finite1_L15 Group_ZF_2_1_L3 func_imagedef
                by simp
    qed
    ultimately show thesis using FinRangeFunctions_def
```

```
    by simp
qed
```

The set of group valued finite range functions is closed with respect to the lifted group operation.

```
lemma (in group0) Group_ZF_3_1_L2:
    assumes A1: F = P {lifted to function space over} X
    shows FinRangeFunctions(X,G) {is closed under} F
proof -
    let A = FinRangeFunctions(X,G)
    from A1 have }\forallx\inA. \forally\inA. F F x,y\rangle\in
        using Group_ZF_3_1_L1 by simp
    then show thesis using IsOpClosed_def by simp
qed
```

A composition of a finite range function with the group inverse is a finite range function.
lemma (in group0) Group_ZF_3_1_L3:
assumes A1: $s \in$ FinRangeFunctions (X,G)
shows GroupInv (G,P) O s \in FinRangeFunctions (X,G)
using groupAssum assms group0_2_T2 Finite1_L20 by simp
The set of finite range functions is s subgroup of the lifted group.

```
theorem Group_ZF_3_1_T1:
    assumes A1: IsAgroup(G,P)
    and A2: F = P {lifted to function space over} X
    and A3: X}\not=
    shows IsAsubgroup(FinRangeFunctions(X,G),F)
proof -
    let e = TheNeutralElement(G,P)
    let S = FinRangeFunctions(X,G)
    from A1 have T1: group0(G,P) using group0_def
        by simp
    with A1 A2 have T2:group0(X }->\textrm{G},\textrm{F}\mathrm{ )
        using group0.Group_ZF_2_1_T2 group0_def
        by simp
    moreover have S }\not=
    proof -
        from T1 A3 have
            ConstantFunction(X,e) \in S
            using group0.group0_2_L1 monoid0.unit_is_neutral
Finite1_L17 by simp
            thus thesis by auto
    qed
    moreover have S \subseteq X }->\textrm{G
        using FinRangeFunctions_def by auto
    moreover from A2 T1 have
        S {is closed under} F
```

```
    using group0.Group_ZF_3_1_L2
```

 by simp
 moreover from A1 A2 T1 have
 \(\forall s \in S . \operatorname{GroupInv}(X \rightarrow G, F)(s) \in S\)
 using FinRangeFunctions_def group0.Group_ZF_2_1_L6
 group0.Group_ZF_3_1_L3 by simp
 ultimately show thesis
 using group0.group0_3_T3 by simp
 qed

30.2 Almost homomorphisms

An almost homomorphism is a group valued function defined on a monoid M with the property that the set $\{f(m+n)-f(m)-f(n)\}_{m, n \in M}$ is finite. This term is used by R. D. Arthan in "The Eudoxus Real Numbers". We use this term in the general group context and use the A'Campo's term "slopes" (see his "A natural construction for the real numbers") to mean an almost homomorphism mapping interegers into themselves. We consider almost homomorphisms because we use slopes to define real numbers in the Real_ZF_x series.

HomDiff is an acronym for "homomorphism difference". This is the expression $s(m n)(s(m) s(n))^{-1}$, or $s(m+n)-s(m)-s(n)$ in the additive notation. It is equal to the neutral element of the group if s is a homomorphism.

definition

```
HomDiff(G,f,s,x) \(\equiv\)
\(\mathrm{f}\langle\mathrm{s}(\mathrm{f}\langle\mathrm{fst}(\mathrm{x}), \operatorname{snd}(\mathrm{x})\rangle)\),
    ( \(\operatorname{GroupInv}(G, f)(f\langle s(f s t(x)), s(\operatorname{snd}(x))\rangle))\rangle\)
```

Almost homomorphisms are defined as those maps $s: G \rightarrow G$ such that the homomorphism difference takes only finite number of values on $G \times G$.

```
definition
    AlmostHoms(G,f) \equiv
    {s \inG->G.{HomDiff(G,f,s,x). x G G \ G } \in Fin(G)}
```

AlHomOp1 (G, f) is the group operation on almost homomorphisms defined in a natural way by $(s \cdot r)(n)=s(n) \cdot r(n)$. In the terminology defined in func1.thy this is the group operation f (on G) lifted to the function space $G \rightarrow G$ and restricted to the set $\operatorname{AlmostHoms}(G, f)$.

```
definition
    AlHomOp1(G,f) \equiv
    restrict(f {lifted to function space over} G,
    AlmostHoms(G,f)\timesAlmostHoms(G,f))
```

We also define a composition (binary) operator on almost homomorphisms in a natural way. We call that operator A1HomOp2 - the second operation on
almost homomorphisms. Composition of almost homomorphisms is used to define multiplication of real numbers in Real_ZF series.

```
definition
    AlHomOp2(G,f) \equiv
    restrict(Composition(G),AlmostHoms(G,f)\timesAlmostHoms(G,f))
```

This lemma provides more readable notation for the HomDiff definition. Not really intended to be used in proofs, but just to see the definition in the notation defined in the group0 locale.
lemma (in group0) HomDiff_notation:
shows $\operatorname{HomDiff}(G, P, s,\langle m, n\rangle)=s(m \cdot n) \cdot(s(m) \cdot s(n))^{-1}$
using HomDiff_def by simp
The next lemma shows the set from the definition of almost homomorphism in a different form.

```
lemma (in group0) Group_ZF_3_2_L1A: shows
    {HomDiff(G,P,s,x). x G G\timesG } = {s(m\cdotn)\cdot(s(m)\cdots(n))}\mp@subsup{)}{}{-1}.\langlem,n\rangle\inG\timesG
proof -
    have }\forall\textrm{m}\in\textrm{G}.\forall\textrm{n}\in\textrm{G}.\operatorname{HomDiff}(G,P,s,\langlem,n\rangle)=s(m\cdotn)\cdot(\textrm{s}(\textrm{m})\cdot\textrm{s}(\textrm{n})\mp@subsup{)}{}{-1
        using HomDiff_notation by simp
    then show thesis by (rule ZF1_1_L4A)
qed
```

Let's define some notation. We inherit the notation and assumptions from the group0 context (locale) and add some. We will use AH to denote the set of almost homomorphisms. \sim is the inverse (negative if the group is the group of integers) of almost homomorphisms, $(\sim p)(n)=p(n)^{-1} . \delta$ will denote the homomorphism difference specific for the group $(\operatorname{HomDiff}(G, f))$. The notation $s \approx r$ will mean that s, r are almost equal, that is they are in the equivalence relation defined by the group of finite range functions (that is a normal subgroup of almost homomorphisms, if the group is abelian). We show that this is equivalent to the set $\left\{s(n) \cdot r(n)^{-1}: n \in G\right\}$ being finite. We also add an assumption that the G is abelian as many needed properties do not hold without that.

```
locale group1 = group0 +
    assumes isAbelian: P {is commutative on} G
    fixes AH
    defines AH_def [simp]: AH \equiv AlmostHoms(G,P)
    fixes 0p1
    defines Op1_def [simp]: Op1 \equiv AlHomOp1(G,P)
    fixes 0p2
    defines Op2_def [simp]: Op2 \equiv AlHomOp2(G,P)
```

```
fixes FR
defines FR_def [simp]: FR \(\equiv\) FinRangeFunctions(G,G)
fixes neg ( \(\sim_{\text {_ }}\) [90] 91)
defines neg_def [simp]: \(\sim s \equiv \operatorname{GroupInv}(G, P)\) O s
fixes \(\delta\)
defines \(\delta_{-}\)def \([\)simp]: \(\delta(\mathrm{s}, \mathrm{x}) \equiv \operatorname{HomDiff}(\mathrm{G}, \mathrm{P}, \mathrm{s}, \mathrm{x})\)
fixes AHprod (infix • 69)
defines AHprod_def [simp]: s \(\quad\) r \(\equiv\) AlHomOp1 (G,P) \(\langle\mathrm{s}, \mathrm{r}\rangle\)
fixes AHcomp (infix \(\circ 70\) )
defines AHcomp_def [simp]: s \(\circ\) r \(\equiv\) AlHomOp2 \((G, P)\langle s, r\rangle\)
fixes AlEq (infix \(\approx 68\) )
defines AlEq_def [simp]:
\(\mathrm{s} \approx \mathrm{r} \equiv\langle\mathrm{s}, \mathrm{r}\rangle \in\) QuotientGroupRel(AH,Op1,FR)
```

HomDiff is a homomorphism on the lifted group structure.

```
lemma (in group1) Group_ZF_3_2_L1:
    assumes A1: \(\mathrm{s}: \mathrm{G} \rightarrow \mathrm{G} \quad \mathrm{r}: \mathrm{G} \rightarrow \mathrm{G}\)
    and A2: \(x \in G \times G\)
    and A3: \(F=P\) \{lifted to function space over\} \(G\)
    shows \(\delta(\mathrm{F}\langle\mathrm{s}, \mathrm{r}\rangle, \mathrm{x})=\delta(\mathrm{s}, \mathrm{x}) \cdot \delta(\mathrm{r}, \mathrm{x})\)
proof -
    let \(p=F\langle s, r\rangle\)
    from A2 obtain \(m \mathrm{n}\) where
        D1: \(x=\langle m, n\rangle m \in G \in G\)
        by auto
    then have \(\mathrm{T} 1: \mathrm{m} \cdot \mathrm{n} \in \mathrm{G}\)
        using group0_2_L1 monoid0.group0_1_L1 by simp
    with A1 D1 have T2:
        \(\mathrm{s}(\mathrm{m}) \in \mathrm{G} \mathrm{s}(\mathrm{n}) \in \mathrm{G} \mathrm{r}(\mathrm{m}) \in \mathrm{G}\)
        \(r(n) \in G s(m \cdot n) \in G r(m \cdot n) \in G\)
        using apply_funtype by auto
    from A3 A1 have T3:p : G \(\rightarrow\) G
        using group0_2_L1 monoid0.Group_ZF_2_1_L0
        by simp
    from D1 T3 have
        \(\delta(\mathrm{p}, \mathrm{x})=\mathrm{p}(\mathrm{m} \cdot \mathrm{n}) \cdot\left((\mathrm{p}(\mathrm{n}))^{-1} \cdot(\mathrm{p}(\mathrm{m}))^{-1}\right)\)
        using HomDiff_notation apply_funtype group_inv_of_two
        by simp
    also from A3 A1 D1 T1 isAbelian T2 have
        \(\ldots=\delta(\mathrm{s}, \mathrm{x}) \cdot \delta(\mathrm{r}, \mathrm{x})\)
        using Group_ZF_2_1_L3 group0_4_L3 HomDiff_notation
        by simp
    finally show thesis by simp
qed
```

The group operation lifted to the function space over G preserves almost homomorphisms.

```
lemma (in group1) Group_ZF_3_2_L2: assumes A1: s \(\in\) AH \(\mathrm{r} \in \mathrm{AH}\)
    and \(A 2: ~ F=P\) \{lifted to function space over\} \(G\)
    shows \(F\langle s, r\rangle \in A H\)
proof -
    let \(p=F\langle s, r\rangle\)
    from A1 A2 have \(p: G \rightarrow G\)
        using AlmostHoms_def group0_2_L1 monoido.Group_ZF_2_1_L0
        by simp
    moreover have
        \(\{\delta(\mathrm{p}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\} \in \operatorname{Fin}(\mathrm{G})\)
    proof -
        from A1 have
            \(\{\delta(\mathrm{s}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\} \in \operatorname{Fin}(\mathrm{G})\)
            \(\{\delta(r, x) . x \in G \times G\} \in \operatorname{Fin}(G)\)
            using AlmostHoms_def by auto
        with groupAssum A1 A2 show thesis
            using IsAgroup_def IsAmonoid_def IsAssociative_def
            Finite1_L15 AlmostHoms_def Group_ZF_3_2_L1
            by auto
    qed
    ultimately show thesis using AlmostHoms_def
        by simp
qed
```

The set of almost homomorphisms is closed under the lifted group operation.

```
lemma (in group1) Group_ZF_3_2_L3:
    assumes F = P {lifted to function space over} G
    shows AH {is closed under} F
    using assms IsOpClosed_def Group_ZF_3_2_L2 by simp
```

The terms in the homomorphism difference for a function are in the group.

```
lemma (in group1) Group_ZF_3_2_L4:
    assumes s:G }->\textrm{G}\mathrm{ and m}\textrm{m}\in\textrm{G}\quad\textrm{n}\in\textrm{G
    shows
    m}\cdot\textrm{n}\in\textrm{G
    s(m}\cdot\textrm{n})\in
    s(m) \inG s(n) \inG
    \delta(s,\langlem,n\rangle) \inG
    s(m)}\cdot\textrm{s}(\textrm{n})\in
    using assms group_op_closed inverse_in_group
        apply_funtype HomDiff_def by auto
```

It is handy to have a version of Group_ZF_3_2_L4 specifically for almost homomorphisms.
corollary (in group1) Group_ZF_3_2_L4A:
assumes $s \in A H$ and $m \in G \quad n \in G$

```
shows m\cdotn \in G
s(m}\cdot\textrm{n})\in
s(m) \inG s(n) \inG
\delta(s,\langlem,n\rangle) \inG
s(m)
using assms AlmostHoms_def Group_ZF_3_2_L4
by auto
```

The terms in the homomorphism difference are in the group, a different form.

```
lemma (in group1) Group_ZF_3_2_L4B:
    assumes A1:s \in AH and A2:x\inG\timesG
    shows fst(x)
    s(fst(x)\cdotsnd(x)) \in G
    s(fst(x)) \in G s(snd(x)) \in G
    \delta(s,x) \in G
    s(fst(x))\cdots(snd(x)) \inG
proof -
    let m = fst(x)
    let n = snd(x)
    from A1 A2 show
        m}\cdotn\inG s(m\cdotn) \in
        s(m) &G s(n) \inG
        s(m)\cdots(n) \in G
        using Group_ZF_3_2_L4A
        by auto
    from A1 A2 have }\delta(\textrm{s},\langle\textrm{m},\textrm{n}\rangle) \in G using Group_ZF_3_2_L4A
        by simp
    moreover from A2 have }\langle\textrm{m},\textrm{n}\rangle=\textrm{x}\mathrm{ by auto
    ultimately show }\delta(\textrm{s},\textrm{x})\in\textrm{G}\mathrm{ by simp
qed
```

What are the values of the inverse of an almost homomorphism?

```
lemma (in group1) Group_ZF_3_2_L5:
```

 assumes \(s \in A H\) and \(n \in G\)
 shows (\(\sim s\)) \(n\)) \(=(s(n))^{-1}\)
 using assms AlmostHoms_def comp_fun_apply by auto
 Homomorphism difference commutes with the inverse for almost homomorphisms.

```
lemma (in group1) Group_ZF_3_2_L6:
    assumes A1:s \(\in A H\) and A2: \(x \in G \times G\)
    shows \(\delta(\sim \mathrm{s}, \mathrm{x})=(\delta(\mathrm{s}, \mathrm{x}))^{-1}\)
proof -
    let \(m=f s t(x)\)
    let \(n=\operatorname{snd}(x)\)
    have \(\delta(\sim s, x)=(\sim s)(m \cdot n) \cdot((\sim s)(m) \cdot(\sim s)(n))^{-1}\)
        using HomDiff_def by simp
```

```
    from A1 A2 isAbelian show thesis
        using Group_ZF_3_2_L4B HomDiff_def
            Group_ZF_3_2_L5 group0_4_L4A
    by simp
qed
```

The inverse of an almost homomorphism maps the group into itself.

```
lemma (in group1) Group_ZF_3_2_L7:
    assumes s \in AH
    shows ~s : G }->\textrm{G
    using groupAssum assms AlmostHoms_def group0_2_T2 comp_fun by auto
```

The inverse of an almost homomorphism is an almost homomorphism.

```
lemma (in group1) Group_ZF_3_2_L8:
    assumes A1: F = P \{lifted to function space over\} G
    and A2: \(s \in A H\)
    shows GroupInv( \(G \rightarrow G, F)(s) \in A H\)
proof -
    from A2 have \(\{\delta(\mathrm{s}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\} \in \operatorname{Fin}(\mathrm{G})\)
        using AlmostHoms_def by simp
    with groupAssum have
        \(\operatorname{Group} \operatorname{Inv}(\mathrm{G}, \mathrm{P})\{\delta(\mathrm{s}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\} \in \operatorname{Fin}(\mathrm{G})\)
        using group0_2_T2 Finite1_L6A by blast
    moreover have
        \(\operatorname{GroupInv}(G, P)\{\delta(\mathrm{s}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\}=\)
        \(\left\{(\delta(\mathrm{s}, \mathrm{x}))^{-1} . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\right\}\)
    proof -
        from groupAssum have
            GroupInv (G, P) : G \(\rightarrow\) G
            using group0_2_T2 by simp
        moreover from A2 have
            \(\forall \mathrm{x} \in \mathrm{G} \times \mathrm{G} . \delta(\mathrm{s}, \mathrm{x}) \in \mathrm{G}\)
            using Group_ZF_3_2_L4B by simp
        ultimately show thesis
            using func1_1_L17 by simp
    qed
    ultimately have \(\left\{(\delta(s, x))^{-1}, x \in G \times G\right\} \in \operatorname{Fin}(G)\)
        by simp
    moreover from A2 have
        \(\left\{(\delta(\mathrm{s}, \mathrm{x}))^{-1} \cdot \mathrm{x} \in \mathrm{G} \times \mathrm{G}\right\}=\{\delta(\sim \mathrm{s}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\}\)
        using Group_ZF_3_2_L6 by simp
    ultimately have \(\{\delta(\sim \mathrm{s}, \mathrm{x}) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\} \in \operatorname{Fin}(\mathrm{G})\)
        by simp
    with A2 groupAssum A1 show thesis
        using Group_ZF_3_2_L7 AlmostHoms_def Group_ZF_2_1_L6
        by simp
qed
```

The function that assigns the neutral element everywhere is an almost ho-
momorphism.

```
lemma (in group1) Group_ZF_3_2_L9: shows
    ConstantFunction( \(\mathrm{G}, 1\) ) \(\in \mathrm{AH}\) and \(\mathrm{AH} \neq 0\)
proof -
    let \(\mathrm{z}=\) ConstantFunction(G, 1 )
    have \(G \times G \neq 0\) using group0_2_L1 monoido.group0_1_L3A
        by blast
    moreover have \(\forall \mathrm{x} \in \mathrm{G} \times \mathrm{G} . \delta(\mathrm{z}, \mathrm{x})=1\)
    proof
        fix \(x\) assume \(A 1: x \in G \times G\)
        then obtain \(m \mathrm{n}\) where \(\mathrm{x}=\langle\mathrm{m}, \mathrm{n}\rangle \mathrm{m} \in \mathrm{G} \mathrm{n} \in \mathrm{G}\)
            by auto
        then show \(\delta(\mathrm{z}, \mathrm{x})=1\)
            using group0_2_L1 monoid0.group0_1_L1
    func1_3_L2 HomDiff_def group0_2_L2
    group_inv_of_one by simp
        qed
        ultimately have \(\{\delta(z, x) . \mathrm{x} \in \mathrm{G} \times \mathrm{G}\}=\{1\}\) by (rule \(\mathrm{ZF} 1 \_1 \_\)L5)
        then show \(\mathrm{z} \in\) AH using group0_2_L2 Finite1_L16
            func1_3_L1 group0_2_L2 AlmostHoms_def by simp
    then show \(\mathrm{AH} \neq 0\) by auto
qed
```

If the group is abelian, then almost homomorphisms form a subgroup of the lifted group.

```
lemma Group_ZF_3_2_L10:
    assumes A1: IsAgroup(G,P)
    and A2: P {is commutative on} G
    and A3: F = P {lifted to function space over} G
    shows IsAsubgroup(AlmostHoms(G,P),F)
proof -
    let AH = AlmostHoms(G,P)
    from A2 A1 have T1: group1(G,P)
        using group1_axioms.intro group0_def group1_def
        by simp
    from A1 A3 have group0(G }->\textrm{G},\textrm{F}
        using group0_def group0.Group_ZF_2_1_T2 by simp
    moreover from T1 have AH}\not=
        using group1.Group_ZF_3_2_L9 by simp
    moreover have T2:AH \subseteqG G G
        using AlmostHoms_def by auto
    moreover from T1 A3 have
        AH {is closed under} F
        using group1.Group_ZF_3_2_L3 by simp
    moreover from T1 A3 have
        \foralls\inAH. GroupInv(G }->\textrm{G},\textrm{F})(\textrm{s})\in\textrm{AH
        using group1.Group_ZF_3_2_L8 by simp
    ultimately show IsAsubgroup(AlmostHoms(G,P),F)
        using group0.group0_3_T3 by simp
```

qed
If the group is abelian, then almost homomorphisms form a group with the first operation, hence we can use theorems proven in group0 context aplied to this group.

```
lemma (in group1) Group_ZF_3_2_L10A:
    shows IsAgroup(AH,Op1) group0(AH,Op1)
        using groupAssum isAbelian Group_ZF_3_2_L10 IsAsubgroup_def
            AlHomOp1_def group0_def by auto
```

The group of almost homomorphisms is abelian
lemma Group_ZF_3_2_L11: assumes A1: IsAgroup (G,f)
and A2: f \{is commutative on\} G
shows
IsAgroup(AlmostHoms (G,f),AlHomOp1 (G,f))
AlHomOp1(G,f) \{is commutative on\} AlmostHoms(G,f)
proof-
let $\mathrm{AH}=\mathrm{AlmostHoms}(\mathrm{G}, \mathrm{f})$
let $F=f$ \{lifted to function space over\} G
from A1 A2 have IsAsubgroup (AH,F)
using Group_ZF_3_2_L10 by simp
then show IsAgroup (AH, AlHomOp1 (G,f))
using IsAsubgroup_def AlHomOp1_def by simp
from A1 have $\mathrm{F}:(\mathrm{G} \rightarrow \mathrm{G}) \times(\mathrm{G} \rightarrow \mathrm{G}) \rightarrow(\mathrm{G} \rightarrow \mathrm{G})$
using IsAgroup_def monoid0_def monoid0.Group_ZF_2_1_LOA
by simp
moreover have $A H \subseteq G \rightarrow G$
using AlmostHoms_def by auto
moreover from A1 A2 have
F \{is commutative on\} ($G \rightarrow G$)
using group0_def group0.Group_ZF_2_1_L7
by simp
ultimately show
AlHomOp1 (G,f) \{is commutative on\} AH
using func_ZF_4_L1 AlHomOp1_def by simp
qed

The first operation on homomorphisms acts in a natural way on its operands.

```
lemma (in group1) Group_ZF_3_2_L12:
    assumes s\inAH r\inAH and n\inG
    shows (s\cdotr)(n) = s(n)\cdotr(n)
    using assms AlHomOp1_def restrict AlmostHoms_def Group_ZF_2_1_L3
    by simp
```

What is the group inverse in the group of almost homomorphisms?
lemma (in group1) Group_ZF_3_2_L13:
assumes A1: $\mathrm{s} \in \mathrm{AH}$
shows

```
    GroupInv(AH,Op1)(s) = GroupInv(G,P) O s
    GroupInv(AH,Op1)(s) \in AH
    GroupInv(G,P) O s G AH
proof -
    let F = P {lifted to function space over} G
    from groupAssum isAbelian have IsAsubgroup(AH,F)
        using Group_ZF_3_2_L10 by simp
    with A1 show I: GroupInv(AH,Op1)(s) = GroupInv(G,P) O s
        using AlHomOp1_def Group_ZF_2_1_L6A by simp
    from A1 show GroupInv(AH,Op1)(s) \in AH
        using Group_ZF_3_2_L10A group0.inverse_in_group by simp
    with I show GroupInv(G,P) O s \in AH by simp
qed
```

The group inverse in the group of almost homomorphisms acts in a natural way on its operand.

```
lemma (in group1) Group_ZF_3_2_L14:
    assumes }\textrm{s}\in\textrm{AH}\mathrm{ and n}\textrm{n}\in\textrm{G
    shows (GroupInv(AH,Op1)(s))(n) = (s(n))}\mp@subsup{)}{}{-1
    using isAbelian assms Group_ZF_3_2_L13 AlmostHoms_def comp_fun_apply
    by auto
```

The next lemma states that if s, r are almost homomorphisms, then $s \cdot r^{-1}$ is also an almost homomorphism.

```
lemma Group_ZF_3_2_L15: assumes IsAgroup(G,f)
    and \(f\) \{is commutative on\} \(G\)
    and \(\mathrm{AH}=\mathrm{AlmostHoms}(\mathrm{G}, \mathrm{f}) \mathrm{Op} 1=\mathrm{AlHomOp} 1(\mathrm{G}, \mathrm{f})\)
    and \(s \in A H \quad r \in A H\)
    shows
    Op1 \(\langle\mathrm{s}, \mathrm{r}\rangle \in \mathrm{AH}\)
    GroupInv(AH,Op1)(r) \(\in A H\)
    Op1 \(\langle\mathrm{s}, \mathrm{GroupInv}(\mathrm{AH}, \mathrm{Op} 1)(\mathrm{r})\rangle \in \mathrm{AH}\)
    using assms group0_def group1_axioms.intro group1_def
        group1.Group_ZF_3_2_L10A group0.group0_2_L1
        monoid0.group0_1_L1 group0.inverse_in_group by auto
```

A version of Group_ZF_3_2_L15 formulated in notation used in group1 context. States that the product of almost homomorphisms is an almost homomorphism and the the product of an almost homomorphism with a (pointwise) inverse of an almost homomorphism is an almost homomorphism.

```
corollary (in group1) Group_ZF_3_2_L16: assumes \(s \in A H \quad r \in A H\)
    shows s.r \(\in\) AH \(s \cdot(\sim r) \in A H\)
    using assms isAbelian group0_def group1_axioms group1_def
    Group_ZF_3_2_L15 Group_ZF_3_2_L13 by auto
```


30.3 The classes of almost homomorphisms

In the Real_ZF series we define real numbers as a quotient of the group of integer almost homomorphisms by the integer finite range functions. In this section we setup the background for that in the general group context.

Finite range functions are almost homomorphisms.

```
lemma (in group1) Group_ZF_3_3_L1: shows FR \subseteq AH
proof
    fix s assume A1:s \in FR
    then have T1:{s(n). n \inG} \in Fin(G)
        {s(fst(x)). x\inG\timesG} \in Fin(G)
        {s(snd(x)). x\inG\timesG} \in Fin(G)
        using Finite1_L18 Finite1_L6B by auto
    have {s(fst(x)\cdotsnd(x)). x \in G (G} G Fin(G)
    proof -
```



```
            using group0_2_L1 monoid0.group0_1_L1 by simp
        moreover from T1 have {s(n). n \inG} \in Fin(G) by simp
        ultimately show thesis by (rule Finite1_L6B)
    qed
    moreover have
        {(s(fst(x)).s(snd(x))) -1. x\inG\timesG} \in Fin(G)
    proof -
        have }\forall\textrm{g}\in\textrm{G}. \textrm{g}-
                by simp
            moreover from T1 have
                {s(fst(x)).s(\operatorname{snd}(x)). x\inG\timesG} \in Fin(G)
                using group_oper_assocA Finite1_L15 by simp
            ultimately show thesis
                by (rule Finite1_L6C)
    qed
    ultimately have {\delta(s,x). x\inG\timesG} \in Fin(G)
        using HomDiff_def Finite1_L15 group_oper_assocA
        by simp
    with A1 show s \in AH
        using FinRangeFunctions_def AlmostHoms_def
        by simp
qed
```

Finite range functions valued in an abelian group form a normal subgroup of almost homomorphisms.

```
lemma Group_ZF_3_3_L2: assumes A1:IsAgroup(G,f)
    and A2:f {is commutative on} G
    shows
    IsAsubgroup(FinRangeFunctions(G,G),AlHomOp1(G,f))
    IsAnormalSubgroup(AlmostHoms(G,f),AlHomOp1(G,f),
    FinRangeFunctions(G,G))
proof -
```

```
    let H1 = AlmostHoms(G,f)
    let H2 = FinRangeFunctions(G,G)
    let F = f {lifted to function space over} G
    from A1 A2 have T1:group0(G,f)
        monoidO(G,f) group1(G,f)
        using group0_def group0.group0_2_L1
        group1_axioms.intro group1_def
    by auto
    with A1 A2 have IsAgroup(G->G,F)
    IsAsubgroup(H1,F) IsAsubgroup(H2,F)
    using group0.Group_ZF_2_1_T2 Group_ZF_3_2_L10
                monoid0.group0_1_L3A Group_ZF_3_1_T1
    by auto
    then have
    IsAsubgroup(H1\capH2,restrict(F,H1 }\times\textrm{H}1)\mathrm{ ) 
    using group0_3_L7 by simp
    moreover from T1 have H1\capH2 = H2
    using group1.Group_ZF_3_3_L1 by auto
    ultimately show IsAsubgroup(H2,AlHomOp1(G,f))
    using AlHomOp1_def by simp
    with A1 A2 show IsAnormalSubgroup(AlmostHoms(G,f),AlHomOp1(G,f),
    FinRangeFunctions(G,G))
    using Group_ZF_3_2_L11 Group_ZF_2_4_L6
    by simp
qed
```

The group of almost homomorphisms divided by the subgroup of finite range functions is an abelian group.

```
theorem (in group1) Group_ZF_3_3_T1:
    shows
    IsAgroup(AH//QuotientGroupRel(AH,Op1,FR),QuotientGroupOp(AH,Op1,FR))
    and
    QuotientGroupOp(AH,Op1,FR) {is commutative on}
    (AH//QuotientGroupRel(AH,Op1,FR))
    using groupAssum isAbelian Group_ZF_3_3_L2 Group_ZF_3_2_L10A
        Group_ZF_2_4_T1 Group_ZF_3_2_L10A Group_ZF_3_2_L11
        Group_ZF_3_3_L2 IsAnormalSubgroup_def Group_ZF_2_4_L6 by auto
```

It is useful to have a direct statement that the quotient group relation is an equivalence relation for the group of AH and subgroup FR .

```
lemma (in group1) Group_ZF_3_3_L3: shows
    QuotientGroupRel(AH,Op1,FR) \subseteqAH }\times\mathrm{ AH and
    equiv(AH,QuotientGroupRel(AH,Op1,FR))
    using groupAssum isAbelian QuotientGroupRel_def
        Group_ZF_3_3_L2 Group_ZF_3_2_L10A group0.Group_ZF_2_4_L3
    by auto
```

The "almost equal" relation is symmetric.
lemma (in group1) Group_ZF_3_3_L3A: assumes A1: s $\approx r$

```
    shows \(r \approx s\)
proof -
    let \(R=\) QuotientGroupRel(AH,Op1,FR)
    from A1 have equiv (AH,R) and \(\langle s, r\rangle \in R\)
            using Group_ZF_3_3_L3 by auto
    then have \(\langle r, s\rangle \in R\) by (rule equiv_is_sym)
    then show \(r \approx s\) by simp
qed
```

Although we have bypassed this fact when proving that group of almost homomorphisms divided by the subgroup of finite range functions is a group, it is still useful to know directly that the first group operation on AH is congruent with respect to the quotient group relation.

```
lemma (in group1) Group_ZF_3_3_L4:
    shows Congruent2(QuotientGroupRel(AH,Op1,FR),Op1)
    using groupAssum isAbelian Group_ZF_3_2_L10A Group_ZF_3_3_L2
        Group_ZF_2_4_L5A by simp
```

The class of an almost homomorphism s is the neutral element of the quotient group of almost homomorphisms iff s is a finite range function.

```
lemma (in group1) Group_ZF_3_3_L5: assumes s \in AH and
    r = QuotientGroupRel(AH,Op1,FR) and
    TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1, FR)) = e
    shows r{s} = e \longleftrightarrows f FR
    using groupAssum isAbelian assms Group_ZF_3_2_L11
        group0_def Group_ZF_3_3_L2 group0.Group_ZF_2_4_L5E
    by simp
```

The group inverse of a class of an almost homomorphism f is the class of the inverse of f.

```
lemma (in group1) Group_ZF_3_3_L6:
    assumes A1: s \in AH and
    r = QuotientGroupRel(AH,Op1,FR) and
    F = ProjFun2(AH,r,Op1)
    shows r{~s} = GroupInv(AH//r,F)(r{s})
proof -
    from groupAssum isAbelian assms have
        r{GroupInv(AH, Op1)(s)} = GroupInv(AH//r,F) (r {s})
        using Group_ZF_3_2_L10A Group_ZF_3_3_L2 QuotientGroupOp_def
            group0.Group_ZF_2_4_L7 by simp
    with A1 show thesis using Group_ZF_3_2_L13
        by simp
qed
```


30.4 Compositions of almost homomorphisms

The goal of this section is to establish some facts about composition of almost homomorphisms. needed for the real numbers construction in Real_ZF_x
series. In particular we show that the set of almost homomorphisms is closed under composition and that composition is congruent with respect to the equivalence relation defined by the group of finite range functions (a normal subgroup of almost homomorphisms).

The next formula restates the definition of the homomorphism difference to express the value an almost homomorphism on a product.

```
lemma (in group1) Group_ZF_3_4_L1:
    assumes s\inAH and m\inG n\inG
    shows }\textrm{s}(\textrm{m}\cdot\textrm{n})=\textrm{s}(\textrm{m})\cdot\textrm{s}(\textrm{n})\cdot\delta(\textrm{s},\langle\textrm{m},\textrm{n}\rangle
    using isAbelian assms Group_ZF_3_2_L4A HomDiff_def group0_4_L5
    by simp
```

What is the value of a composition of almost homomorhisms?

```
lemma (in group1) Group_ZF_3_4_L2:
    assumes }s\inAH\quadr\inAH\mathrm{ and m}m\in
    shows (sor)(m) = s(r(m)) s(r(m)) \inG
    using assms AlmostHoms_def func_ZF_5_L3 restrict AlHomOp2_def
        apply_funtype by auto
```

What is the homomorphism difference of a composition?

```
lemma (in group1) Group_ZF_3_4_L3:
    assumes A1: \(s \in A H \quad r \in A H\) and A2: \(m \in G \quad n \in G\)
    shows \(\delta(\) sor,\(\langle\mathrm{m}, \mathrm{n}\rangle)=\)
    \(\delta(\mathrm{s},\langle\mathrm{r}(\mathrm{m}), \mathrm{r}(\mathrm{n})\rangle) \cdot \mathrm{s}(\delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)) \cdot \delta(\mathrm{s},\langle\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n}), \delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)\rangle)\)
proof -
    from A1 A2 have T1:
        \(\mathrm{s}(\mathrm{r}(\mathrm{m})) \cdot \mathrm{s}(\mathrm{r}(\mathrm{n})) \in \mathrm{G}\)
        \(\delta(\mathrm{s},\langle\mathrm{r}(\mathrm{m}), \mathrm{r}(\mathrm{n})\rangle) \in \mathrm{G} \mathrm{s}(\delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)) \in \mathrm{G}\)
        \(\delta(\mathrm{s},\langle(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n})), \delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)\rangle) \in \mathrm{G}\)
        using Group_ZF_3_4_L2 AlmostHoms_def apply_funtype
            Group_ZF_3_2_L4A group0_2_L1 monoid0.group0_1_L1
        by auto
    from A1 A2 have \(\delta(\mathrm{sor},\langle\mathrm{m}, \mathrm{n}\rangle)=\)
        \(\mathrm{s}(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n}) \cdot \delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)) \cdot\left(\mathrm{s}((\mathrm{r}(\mathrm{m}))) \cdot \mathrm{s}(\mathrm{r}(\mathrm{n}))^{-1}\right.\)
        using HomDiff_def group0_2_L1 monoid0.group0_1_L1 Group_ZF_3_4_L2
            Group_ZF_3_4_L1 by simp
    moreover from A1 A2 have
        \(\mathrm{s}(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n}) \cdot \delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle))=\)
        \(\mathrm{s}(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n})) \cdot \mathrm{s}(\delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)) \cdot \delta(\mathrm{s},\langle(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n})), \delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)\rangle)\)
        \(\mathrm{s}(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n}))=\mathrm{s}(\mathrm{r}(\mathrm{m})) \cdot \mathrm{s}(\mathrm{r}(\mathrm{n})) \cdot \delta(\mathrm{s},\langle\mathrm{r}(\mathrm{m}), \mathrm{r}(\mathrm{n})\rangle)\)
        using Group_ZF_3_2_L4A Group_ZF_3_4_L1 by auto
    moreover from T1 isAbelian have
        \(\mathrm{s}(\mathrm{r}(\mathrm{m})) \cdot \mathrm{s}(\mathrm{r}(\mathrm{n})) \cdot \delta(\mathrm{s},\langle\mathrm{r}(\mathrm{m}), \mathrm{r}(\mathrm{n})\rangle)\).
        \(\mathrm{s}(\delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)) \cdot \delta(\mathrm{s},\langle(\mathrm{r}(\mathrm{m}) \cdot \mathrm{r}(\mathrm{n})), \delta(\mathrm{r},\langle\mathrm{m}, \mathrm{n}\rangle)\rangle)\).
        \((\mathrm{s}((\mathrm{r}(\mathrm{m}))) \cdot \mathrm{s}(\mathrm{r}(\mathrm{n})))^{-1}=\)
        \(\delta(s,\langle r(m), r(n)\rangle) \cdot s(\delta(r,\langle m, n\rangle)) \cdot \delta(s,\langle(r(m) \cdot r(n)), \delta(r,\langle m, n\rangle)\rangle)\)
        using group0_4_L6C by simp
```

```
    ultimately show thesis by simp
qed
```

What is the homomorphism difference of a composition (another form)? Here we split the homomorphism difference of a composition into a product of three factors. This will help us in proving that the range of homomorphism difference for the composition is finite, as each factor has finite range.

```
lemma (in group1) Group_ZF_3_4_L4:
    assumes A1: s\inAH r
    and A3:
    A = \delta(s,\langle r(fst(x)),r(snd(x))\rangle)
    B = s(\delta(r,x))
    C = \delta (s,\langle (r(fst(x))\cdotr(snd(x))),\delta(r,x)\rangle)
    shows }\delta\mathrm{ (sor,x) = A.B.C
proof -
    let m = fst(x)
    let n = snd(x)
    note A1
    moreover from A2 have m\inG n\inG
        by auto
    ultimately have
        \delta(sor, \ m,n\rangle) =
        \delta(s,\langler(m),r(n)\rangle)\cdots(\delta(r,\langle m,n\rangle)).
        \delta(s,\langle(r(m)\cdotr(n)),\delta(r,\langlem,n\rangle)\rangle)
        by (rule Group_ZF_3_4_L3)
    with A1 A2 A3 show thesis
        by auto
qed
```

The range of the homomorphism difference of a composition of two almost homomorphisms is finite. This is the essential condition to show that a composition of almost homomorphisms is an almost homomorphism.

```
lemma (in group1) Group_ZF_3_4_L5:
    assumes A1: s\inAH r\inAH
    shows {\delta(Composition(G)\langles,r\rangle,x). x \in G \ G} \in Fin(G)
proof -
    from A1 have
            \forallx\inG\timesG. < r(fst(x)),r(snd(x))\rangle\inG G G
            using Group_ZF_3_2_L4B by simp
    moreover from A1 have
```



```
        using AlmostHoms_def by simp
    ultimately have
            {\delta(s,\langler(fst(x)),r(snd(x))\). x\inG\timesG} \in Fin(G)
            by (rule Finite1_L6B)
    moreover have {s(\delta(r,x)). x\inG\timesG} \in Fin(G)
    proof -
            from A1 have }\forall\textrm{m}\in\textrm{G}.\textrm{s}(\textrm{m})\in\textrm{G
```

```
        using AlmostHoms_def apply_funtype by auto
    moreover from A1 have {\delta(r,x). x }\in\textrm{G}\times\textrm{G}}\in\operatorname{Fin}(\textrm{G}
        using AlmostHoms_def by simp
    ultimately show thesis
        by (rule Finite1_L6C)
    qed
    ultimately have
        {\delta(s,\langler(fst(x)),r(\operatorname{snd}(x))\rangle)\cdots(\delta(r,x)). x\inG\timesG} \in Fin(G)
    using group_oper_assocA Finite1_L15 by simp
    moreover have
        {\delta(s,\langle (r(fst(x))\cdotr(snd(x))),\delta(r,x)\rangle). x\inG\timesG} \in Fin(G)
    proof -
    from A1 have
    \forallx\inG\timesG. < (r(fst(x)).r(snd(x))), \delta(r,x)\rangle\inG G G
        using Group_ZF_3_2_L4B by simp
    moreover from A1 have
        {\delta(s,x). x\inG\timesG} \in Fin(G)
        using AlmostHoms_def by simp
    ultimately show thesis by (rule Finite1_L6B)
qed
ultimately have
    {\delta(s,\langle r(fst(x)),r(snd(x))\rangle)\cdots(\delta(r,x)).
    \delta(s,\langle (r(fst(x))\cdotr(\operatorname{snd}(x))),\delta(r,x)\rangle). x\inG\timesG} \in Fin(G)
    using group_oper_assocA Finite1_L15 by simp
    moreover from A1 have {\delta(sor,x). x\inG\timesG} =
    {\delta(s,\langle r(fst(x)),r(snd(x))\rangle).s(\delta(r,x)).
    \delta(s,\langle (r(fst(x))\cdotr(snd(x))),\delta(r,x)\rangle). x\inG\timesG}
    using Group_ZF_3_4_L4 by simp
    ultimately have {\delta(sor, x). x\inG\timesG} \in Fin(G) by simp
    with A1 show thesis using restrict AlHomOp2_def
    by simp
qed
```

Composition of almost homomorphisms is an almost homomorphism.

```
theorem (in group1) Group_ZF_3_4_T1:
    assumes A1: \(s \in A H \quad r \in A H\)
    shows Composition(G) \(\langle s, r\rangle \in A H\) sor \(\in A H\)
proof -
    from A1 have \(\langle s, r\rangle \in(G \rightarrow G) \times(G \rightarrow G)\)
        using AlmostHoms_def by simp
    then have Composition ( \(G\) ) \(\langle\mathrm{s}, \mathrm{r}\rangle: \mathrm{G} \rightarrow \mathrm{G}\)
        using func_ZF_5_L1 apply_funtype by blast
    with A1 show Composition(G) \(\langle s, r\rangle \in A H\)
        using Group_ZF_3_4_L5 AlmostHoms_def
        by simp
    with A1 show sor \(\in\) AH using AlHomOp2_def restrict
        by simp
qed
```

The set of almost homomorphisms is closed under composition. The second
operation on almost homomorphisms is associative.

```
lemma (in group1) Group_ZF_3_4_L6: shows
    AH {is closed under} Composition(G)
    AlHomOp2(G,P) {is associative on} AH
proof -
    show AH {is closed under} Composition(G)
        using Group_ZF_3_4_T1 IsOpClosed_def by simp
    moreover have AH \subseteqG->G using AlmostHoms_def
        by auto
    moreover have
        Composition(G) {is associative on} (G->G)
        using func_ZF_5_L5 by simp
    ultimately show AlHomOp2(G,P) {is associative on} AH
        using func_ZF_4_L3 AlHomOp2_def by simp
qed
```

Type information related to the situation of two almost homomorphisms.

```
lemma (in group1) Group_ZF_3_4_L7:
    assumes A1: s\inAH r\inAH and A2: n\inG
    shows
    s(n) \inG (r(n))}\mp@subsup{)}{}{-1}\in
    s(n)\cdot(r(n))}\mp@subsup{)}{}{-1}\inG\quads(r(n)) \inG
proof -
    from A1 A2 show
        s(n) \inG
        (r(n))}\mp@subsup{)}{}{-1}\in
        s(r(n)) \in G
        s(n)\cdot(r(n))}\mp@subsup{)}{}{-1}\in
        using AlmostHoms_def apply_type
            group0_2_L1 monoid0.group0_1_L1 inverse_in_group
        by auto
qed
```

Type information related to the situation of three almost homomorphisms.

```
lemma (in group1) Group_ZF_3_4_L8:
    assumes A1: s\inAH r\inAH q\inAH and A2: n\inG
    shows
    q(n)\inG
    s(r(n)) \inG
    r(n)\cdot(q(n))}\mp@subsup{)}{}{-1}\in
    s(r(n)\cdot(q(n))}\mp@subsup{)}{}{-1})\in
    \delta( s,\langleq(n),r(n)\cdot(q(n)\mp@subsup{)}{}{-1}\rangle) \inG
proof -
    from A1 A2 show
        q(n)\inG s(r(n)) \inGr(n)\cdot(q(n))}\mp@subsup{)}{}{-1}\in
        using AlmostHoms_def apply_type
            group0_2_L1 monoid0.group0_1_L1 inverse_in_group
        by auto
    with A1 A2 show s(r(n)\cdot(q(n))}\mp@subsup{)}{}{-1})\in
```

```
    \delta(s,\langleq(n),r(n)\cdot(q(n))-1}\rangle)\in
    using AlmostHoms_def apply_type Group_ZF_3_2_L4A
    by auto
qed
```

A formula useful in showing that the composition of almost homomorphisms is congruent with respect to the quotient group relation.

```
lemma (in group1) Group_ZF_3_4_L9:
    assumes A1: s1 \in AH r1 \in AH s2 }\in\textrm{AH}\textrm{r}2\in\textrm{AH
    and A2: n\inG
    shows (s1\circr1)(n)\cdot((s2\circr2)(n))}\mp@subsup{)}{}{-1}
    s1(r2(n)).(s2(r2(n)))-1.s1(r1(n)\cdot(r2(n))}\mp@subsup{)}{}{-1})
    \delta(s1,\langler2(n),r1(n)\cdot(r2(n))}\mp@subsup{)}{}{-1}\rangle
proof -
    from A1 A2 isAbelian have
        (s1\circr1)(n)\cdot((s2\circr2)(n))}\mp@subsup{)}{}{-1}
        s1(r2(n)\cdot(r1(n)\cdot(r2(n))-1}))\cdot(s2(r2(n))) -1
        using Group_ZF_3_4_L2 Group_ZF_3_4_L7 group0_4_L6A
            group_oper_assoc by simp
    with A1 A2 have (s1or1)(n)\cdot((s2or2)(n))}\mp@subsup{)}{}{-1}=s1(r2(n))
        s1(r1(n)\cdot(r2(n))}\mp@subsup{)}{}{-1})\cdot\delta(s1,\langle r2(n),r1(n)\cdot(r2(n))-1 \rangle)
        (s2(r2(n)))}\mp@subsup{)}{}{-1
        using Group_ZF_3_4_L8 Group_ZF_3_4_L1 by simp
    with A1 A2 isAbelian show thesis using
        Group_ZF_3_4_L8 group0_4_L7 by simp
qed
```

The next lemma shows a formula that translates an expression in terms of the first group operation on almost homomorphisms and the group inverse in the group of almost homomorphisms to an expression using only the underlying group operations.

```
lemma (in group1) Group_ZF_3_4_L10: assumes A1: s \in AH r f AH
    and A2: n \in G
    shows (s\cdot(GroupInv(AH,Op1)(r)))(n) = s(n)\cdot(r(n))}\mp@subsup{)}{}{-1
proof -
    from A1 A2 show thesis
        using isAbelian Group_ZF_3_2_L13 Group_ZF_3_2_L12 Group_ZF_3_2_L14
        by simp
qed
```

A neccessary condition for two a. h. to be almost equal.

```
lemma (in group1) Group_ZF_3_4_L11:
    assumes A1: s\approxr
    shows {s(n)\cdot(r(n))}\mp@subsup{)}{}{-1}.n\inG}\in\operatorname{Fin}(\textrm{G}
proof -
    from A1 have s\inAH r\inAH
        using QuotientGroupRel_def by auto
    moreover from A1 have
```

```
        {(s•(GroupInv(AH,Op1)(r)))(n). n\inG} \in Fin(G)
        using QuotientGroupRel_def Finite1_L18 by simp
    ultimately show thesis
    using Group_ZF_3_4_L10 by simp
qed
```

A sufficient condition for two $\mathrm{a} . \mathrm{h}$. to be almost equal.

```
lemma (in group1) Group_ZF_3_4_L12: assumes A1: s\inAH r\inAH
    and A2: {s(n)\cdot(r(n))}\mp@subsup{)}{}{-1}.n\inG}\inFin(G
    shows s\approxr
proof -
    from groupAssum isAbelian A1 A2 show thesis
        using Group_ZF_3_2_L15 AlmostHoms_def
        Group_ZF_3_4_L10 Finite1_L19 QuotientGroupRel_def
        by simp
qed
```

Another sufficient consdition for two a.h. to be almost equal. It is actually just an expansion of the definition of the quotient group relation.

```
lemma (in group1) Group_ZF_3_4_L12A: assumes \(s \in A H \quad r \in A H\)
    and \(s \cdot(\operatorname{GroupInv}(A H, O p 1)(r)) \in F R\)
    shows \(\mathrm{s} \approx \mathrm{r} \quad \mathrm{r} \approx \mathrm{s}\)
proof -
    from assms show \(s \approx r\) using assms QuotientGroupRel_def
        by simp
    then show \(r \approx s\) by (rule Group_ZF_3_3_L3A)
qed
```

Another necessary condition for two a.h. to be almost equal. It is actually just an expansion of the definition of the quotient group relation.

```
lemma (in group1) Group_ZF_3_4_L12B: assumes s\approxr
    shows s·(GroupInv(AH,Op1)(r)) \in FR
    using assms QuotientGroupRel_def by simp
```

The next lemma states the essential condition for the composition of a. h . to be congruent with respect to the quotient group relation for the subgroup of finite range functions.

```
lemma (in group1) Group_ZF_3_4_L13:
    assumes A1: s1 \(\approx s 2\) r1 \(\approx \mathrm{r} 2\)
    shows (s1or1) \(\approx\) (s2or2)
proof -
    have \(\left\{\mathrm{s} 1(\mathrm{r} 2(\mathrm{n})) \cdot\left(\mathrm{s} 2(\mathrm{r} 2(\mathrm{n}))^{-1} \cdot \mathrm{n} \in \mathrm{G}\right\} \in \operatorname{Fin}(\mathrm{G})\right.\)
    proof -
        from A1 have \(\forall \mathrm{n} \in \mathrm{G}\). \(\mathrm{r} 2(\mathrm{n}) \in \mathrm{G}\)
            using QuotientGroupRel_def AlmostHoms_def apply_funtype
            by auto
        moreover from A1 have \(\left\{s 1(\mathrm{n}) \cdot(\mathrm{s} 2(\mathrm{n}))^{-1} \cdot \mathrm{n} \in \mathrm{G}\right\} \in \operatorname{Fin}(\mathrm{G})\)
            using Group_ZF_3_4_L11 by simp
```

ultimately show thesis by (rule Finite1_L6B)
qed
moreover have $\left\{s 1\left(r 1(n) \cdot(r 2(n))^{-1}\right) . n \in G\right\} \in \operatorname{Fin}(G)$
proof -
from A1 have $\forall \mathrm{n} \in \mathrm{G}$. $\mathrm{s} 1(\mathrm{n}) \in \mathrm{G}$
using QuotientGroupRel_def AlmostHoms_def apply_funtype
by auto
moreover from A1 have $\left\{\mathrm{r} 1(\mathrm{n}) \cdot(\mathrm{r} 2(\mathrm{n}))^{-1} \cdot \mathrm{n} \in \mathrm{G}\right\} \in \operatorname{Fin}(\mathrm{G})$
using Group_ZF_3_4_L11 by simp
ultimately show thesis by (rule Finite1_L6C)
qed
ultimately have
\{s1 (r2(n)). (s2(r2(n))) ${ }^{-1} \cdot s 1\left(r 1(n) \cdot(r 2(n))^{-1}\right)$.
$\mathrm{n} \in \mathrm{G}\} \in \operatorname{Fin}(\mathrm{G})$
using group_oper_assocA Finite1_L15 by simp
moreover have
$\left\{\delta\left(\mathrm{s} 1,\left\langle\mathrm{r} 2(\mathrm{n}), \mathrm{r} 1(\mathrm{n}) \cdot(\mathrm{r} 2(\mathrm{n}))^{-1}\right\rangle\right) . \mathrm{n} \in \mathrm{G}\right\} \in \operatorname{Fin}(\mathrm{G})$
proof -
from A1 have $\forall \mathrm{n} \in \mathrm{G}$. $\left\langle\mathrm{r} 2(\mathrm{n}), \mathrm{r} 1(\mathrm{n}) \cdot(\mathrm{r} 2(\mathrm{n}))^{-1}\right\rangle \in \mathrm{G} \times \mathrm{G}$ using QuotientGroupRel_def Group_ZF_3_4_L7 by auto
moreover from $A 1$ have $\{\delta(s 1, x) . x \in G \times G\} \in \operatorname{Fin}(G)$ using QuotientGroupRel_def AlmostHoms_def by simp
ultimately show thesis by (rule Finite1_L6B)
qed
ultimately have
$\left\{s 1(r 2(n)) \cdot(s 2(r 2(n)))^{-1} \cdot s 1\left(r 1(n) \cdot(r 2(n))^{-1}\right)\right.$.
$\left.\delta\left(\mathrm{s} 1,\left\langle\mathrm{r} 2(\mathrm{n}), \mathrm{r} 1(\mathrm{n}) \cdot(\mathrm{r} 2(\mathrm{n}))^{-1}\right\rangle\right) . \mathrm{n} \in \mathrm{G}\right\} \in \operatorname{Fin}(\mathrm{G})$
using group_oper_assocA Finite1_L15 by simp
with A1 show thesis using
QuotientGroupRel_def Group_ZF_3_4_L9
Group_ZF_3_4_T1 Group_ZF_3_4_L12 by simp
qed
Composition of a. h. to is congruent with respect to the quotient group relation for the subgroup of finite range functions. Recall that if an operation say " \circ " on X is congruent with respect to an equivalence relation R then we can define the operation on the quotient space X / R by $[s]_{R} \circ[r]_{R}:=[s \circ r]_{R}$ and this definition will be correct i.e. it will not depend on the choice of representants for the classes $[x]$ and $[y]$. This is why we want it here.

```
lemma (in group1) Group_ZF_3_4_L13A: shows
    Congruent2(QuotientGroupRel(AH,Op1,FR),Op2)
proof -
    show thesis using Group_ZF_3_4_L13 Congruent2_def
        by simp
qed
```

The homomorphism difference for the identity function is equal to the neutral element of the group (denoted e in the group1 context).

```
lemma (in group1) Group_ZF_3_4_L14: assumes A1: x \in G×G
    shows }\delta(\textrm{id}(\textrm{G}),\textrm{x})=
proof -
    from A1 show thesis using
        group0_2_L1 monoid0.group0_1_L1 HomDiff_def id_conv group0_2_L6
        by simp
qed
```

The identity function $(I(x)=x)$ on G is an almost homomorphism.

```
lemma (in group1) Group_ZF_3_4_L15: shows id(G) \(\in\) AH
proof -
    have \(G \times G \neq 0\) using group0_2_L1 monoid0.group0_1_L3A
        by blast
    then show thesis using Group_ZF_3_4_L14 group0_2_L2
        id_type AlmostHoms_def by simp
qed
```

Almost homomorphisms form a monoid with composition. The identity function on the group is the neutral element there.

```
lemma (in group1) Group_ZF_3_4_L16:
    shows
    IsAmonoid (AH,Op2)
    monoid0(AH,Op2)
    id(G) = TheNeutralElement(AH,Op2)
proof-
    let \(i=\) TheNeutralElement \((G \rightarrow G\),Composition( \(G\) ))
    have
        IsAmonoid(G \(\rightarrow\) G, Composition(G))
        monoid0 (G \(\rightarrow\) G, Composition(G))
        using monoidO_def Group_ZF_2_5_L2 by auto
    moreover have AH \{is closed under\} Composition(G)
        using Group_ZF_3_4_L6 by simp
    moreover have \(A H \subseteq G \rightarrow G\)
        using AlmostHoms_def by auto
    moreover have \(i \in A H\)
        using Group_ZF_2_5_L2 Group_ZF_3_4_L15 by simp
    moreover have id(G) = i
        using Group_ZF_2_5_L2 by simp
    ultimately show
        IsAmonoid(AH,Op2)
        monoid0(AH,Op2)
        id (G) = TheNeutralElement(AH,Op2)
        using monoid0.group0_1_T1 group0_1_L6 AlHomOp2_def monoid0_def
        by auto
qed
```

We can project the monoid of almost homomorphisms with composition to the group of almost homomorphisms divided by the subgroup of finite range functions. The class of the identity function is the neutral element of the
quotient (monoid).

```
theorem (in group1) Group_ZF_3_4_T2:
    assumes A1: R = QuotientGroupRel(AH,Op1,FR)
    shows
    IsAmonoid(AH//R,ProjFun2(AH,R,Op2))
    R{id(G)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))
proof -
    have group0(AH,Op1) using Group_ZF_3_2_L10A group0_def
        by simp
    with A1 groupAssum isAbelian show
        IsAmonoid(AH//R,ProjFun2(AH,R,Op2))
        R{id(G)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))
        using Group_ZF_3_3_L2 group0.Group_ZF_2_4_L3 Group_ZF_3_4_L13A
            Group_ZF_3_4_L16 monoidO.Group_ZF_2_2_T1 Group_ZF_2_2_L1
        by auto
qed
```


30.5 Shifting almost homomorphisms

In this this section we consider what happens if we multiply an almost homomorphism by a group element. We show that the resulting function is also an a. h., and almost equal to the original one. This is used only for slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes by adding a constant, so that it is at least 2 on positive integers.

If s is an almost homomorphism and c is some constant from the group, then $s \cdot c$ is an almost homomorphism.

```
lemma (in group1) Group_ZF_3_5_L1:
    assumes A1: s \in AH and A2: c\inG and
    A3: r = {\langlex,s(x)\cdotc\rangle. x\inG}
    shows
    \forallx\inG. r(x) = s(x)}\cdot\textrm{c
    r \in AH
    s \approx r
proof -
    from A1 A2 A3 have I: r:G->G
        using AlmostHoms_def apply_funtype group_op_closed
        ZF_fun_from_total by auto
    with A3 show II: }\forall\textrm{x}\in\textrm{G}.\textrm{r}(\textrm{x})=\textrm{s}(\textrm{x})\cdot\textrm{c
        using ZF_fun_from_tot_val by simp
    with isAbelian A1 A2 have III:
        | f G G G. . 
        using group_op_closed AlmostHoms_def apply_funtype
        HomDiff_def group0_4_L7 by auto
    have {\delta(r,p). p \inG\timesG} \in Fin(G)
    proof -
        from A1 A2 have
            {\delta(s,p).p \inG}\\timesG}\in\operatorname{Fin}(\textrm{G})\quad\mp@subsup{\textrm{c}}{}{-1}\in
```

```
        using AlmostHoms_def inverse_in_group by auto
    then have {\delta(s,p)\cdot\mp@subsup{c}{}{-1}.p\inG\timesG}\inFin(G)
        using group_oper_assocA Finite1_L16AA
        by simp
    moreover from III have
```



```
        by (rule ZF1_1_L4B)
    ultimately show thesis by simp
qed
with I show IV: r \in AH using AlmostHoms_def
    by simp
from isAbelian A1 A2 I II have
    |n}\inG. s(n)\cdot(r(n)\mp@subsup{)}{}{-1}=\mp@subsup{c}{}{-1
    using AlmostHoms_def apply_funtype group0_4_L6AB
    by auto
then have {s(n)\cdot(r(n))}\mp@subsup{)}{}{-1}.\textrm{n}\in\textrm{G}}={\mp@subsup{c}{}{-1}.\textrm{n}\in\textrm{G}
    by (rule ZF1_1_L4B)
with A1 A2 IV show s }\approx 
    using group0_2_L1 monoid0.group0_1_L3A
        inverse_in_group Group_ZF_3_4_L12 by simp
qed
end
```


31 Direct product

theory DirectProduct_ZF imports func_ZF
begin
This theory considers the direct product of binary operations. Contributed by Seo Sanghyeon.

31.1 Definition

In group theory the notion of direct product provides a natural way of creating a new group from two given groups.

Given (G, \cdot) and (H, \circ) a new operation $(G \times H, \times)$ is defined as $(g, h) \times$ $\left(g^{\prime}, h^{\prime}\right)=\left(g \cdot g^{\prime}, h \circ h^{\prime}\right)$.

definition

DirectProduct (P, Q, G, H) \equiv
$\{\langle x,\langle P\langle f s t(f s t(x)), f s t(\operatorname{snd}(x))\rangle, Q\langle$ snd $(f s t(x))$, snd $(\operatorname{snd}(x))\rangle\rangle\rangle$.
$x \in(G \times H) \times(G \times H)\}$
We define a context called direct0 which holds an assumption that P, Q are binary operations on G, H, resp. and denotes R as the direct product of (G, P) and (H, Q).

```
locale direct0 =
    fixes P Q G H
    assumes Pfun: P : G }\timesG->
    assumes Qfun: Q : H}\timesH->
    fixes R
    defines Rdef [simp]: R \equiv DirectProduct(P,Q,G,H)
```

The direct product of binary operations is a binary operation.

```
lemma (in direct0) DirectProduct_ZF_1_L1:
    shows R : (G\timesH)\times(G\timesH)->G\timesH
proof -
    from Pfun Qfun have }\forall\textrm{x}\in(\textrm{G}\times\textrm{H})\times(\textrm{G}\times\textrm{H})
        \langleP\langlefst(fst(x)),fst(snd(x))\rangle,Q\langlesnd(fst(x)),snd(snd(x))}\rangle\rangle\inG\times
        by auto
    then show thesis using ZF_fun_from_total DirectProduct_def
        by simp
qed
```

And it has the intended value.

```
lemma (in direct0) DirectProduct_ZF_1_L2:
    shows }\forall\textrm{x}\in(\textrm{G}\times\textrm{H})..\forall\textrm{y}\in(\textrm{G}\times\textrm{H})
    R}\langle\textrm{x},\textrm{y}\rangle=\langle\textrm{P}\langle\textrm{fst}(\textrm{x}),\textrm{fst}(\textrm{y})\rangle,\textrm{Q}\langle\mathrm{ snd (x), snd(y)
    using DirectProduct_def DirectProduct_ZF_1_L1 ZF_fun_from_tot_val
    by simp
```

And the value belongs to the set the operation is defined on.

```
lemma (in direct0) DirectProduct_ZF_1_L3:
    shows }\forall\textrm{x}\in(\textrm{G}\times\textrm{H}).\forall\textrm{y}\in(\textrm{G}\times\textrm{H}).R\\x,y\rangle\inG\times
    using DirectProduct_ZF_1_L1 by simp
```


31.2 Associative and commutative operations

If P and Q are both associative or commutative operations, the direct product of P and Q has the same property.

Direct product of commutative operations is commutative.

```
lemma (in direct0) DirectProduct_ZF_2_L1:
    assumes P {is commutative on} G and Q {is commutative on} H
    shows R {is commutative on} G\timesH
proof -
    from assms have }\forallx\in(G\timesH).\forally\in(G\timesH). R\langlex,y\rangle=R\langley,x
        using DirectProduct_ZF_1_L2 IsCommutative_def by simp
    then show thesis using IsCommutative_def by simp
qed
Direct product of associative operations is associative.
lemma (in direct0) DirectProduct_ZF_2_L2:
assumes \(P\) \{is associative on\} \(G\) and \(Q\) \{is associative on\} H
```

```
    shows R {is associative on} G\timesH
proof -
    have }\forall\textrm{x}\in\textrm{G}\times\textrm{H}.\quad\forall\textrm{y}\in\textrm{G}\times\textrm{H}.\quad\forall\textrm{z}\in\textrm{G}\times\textrm{H}.\quad\textrm{R}\langle\textrm{R}\langle\textrm{x},\textrm{y}\rangle,\textrm{z}\rangle
        \langleP\langleP\langlefst(x),fst(y)\rangle,fst(z)\rangle,Q\langleQ\langlesnd(x), snd (y)\rangle,snd(z) \)
        using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3
        by auto
    moreover have }\forallx\inG\timesH.\forally\inG\timesH. \forallz\inG\timesH. R\langlex,R\langley,z\rangle\rangle
        \langleP\langlefst(x),P\langlefst(y),fst(z)\rangle\rangle,Q\langle\operatorname{snd}(x),Q\langle\operatorname{snd}(y),\operatorname{snd}(z)\rangle\rangle\rangle
        using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3 by auto
    ultimately have }\forall\textrm{x}\in\textrm{G}\times\textrm{H}.\forall\textrm{y}\in\textrm{G}\times\textrm{H}.\forall\textrm{z}\in\textrm{G}\timesH.R.R\langleR\langlex,y\rangle,z\rangle=R\langlex,R\langley,z\rangle
        using assms IsAssociative_def by simp
    then show thesis
        using DirectProduct_ZF_1_L1 IsAssociative_def by simp
qed
end
```


32 Ordered groups - introduction

theory OrderedGroup_ZF imports Group_ZF_1 AbelianGroup_ZF Order_ZF Finite_ZF_1
begin
This theory file defines and shows the basic properties of (partially or linearly) ordered groups. We define the set of nonnegative elements and the absolute value function. We show that in linearly ordered groups finite sets are bounded and provide a sufficient condition for bounded sets to be finite. This allows to show in Int_ZF_IML.thy that subsets of integers are bounded iff they are finite.

32.1 Ordered groups

This section defines ordered groups and various related notions.
An ordered group is a group equipped with a partial order that is "translation invariant", that is if $a \leq b$ then $a \cdot g \leq b \cdot g$ and $g \cdot a \leq g \cdot b$.

```
definition
    IsAnOrdGroup(G,P,r) \equiv
    (IsAgroup(G,P) ^ r\subseteqG\timesG ^ IsPartOrder(G,r) ^ ( }\forall\textrm{g}\in\textrm{G}.\forall\textrm{a b}
    \langlea,b\rangle\inr\longrightarrow\P\ a,g\rangle,P\langleb,g\rangle\rangle\inr^\ P P g,a\rangle,P\langleg,b\rangle\rangle\inr) )
```

We define the set of nonnegative elements in the obvious way as $G^{+}=\{x \in$ $G: 1 \leq x\}$.

```
definition
    Nonnegative(G,P,r) \equiv{x\inG. \ TheNeutralElement(G,P), x\rangle\in r}
```

The PositiveSet (G, P, r) is a set similar to Nonnegative (G, P, r), but without the unit.

```
definition
    PositiveSet(G,P,r) \equiv
    {x\inG. \langleTheNeutralElement(G,P),x\rangle\inr \ TheNeutralElement (G,P)\not= x}
```

We also define the absolute value as a ZF-function that is the identity on G^{+}and the group inverse on the rest of the group.

```
definition
AbsoluteValue(G,P,r) \equiv id(Nonnegative(G,P,r)) U
restrict(GroupInv(G,P),G - Nonnegative(G,P,r))
```

The odd functions are defined as those having property $f\left(a^{-1}\right)=(f(a))^{-1}$. This looks a bit strange in the multiplicative notation, I have to admit. For linearly oredered groups a function f defined on the set of positive elements iniquely defines an odd function of the whole group. This function is called an odd extension of f

```
definition
    OddExtension(G,P,r,f) \equiv
    (f \cup {\langlea,GroupInv(G,P)(f(GroupInv(G,P)(a)))\rangle.
    a \inGroupInv(G,P)(PositiveSet(G,P,r))} U
    {\langleTheNeutralElement(G,P),TheNeutralElement(G,P)\})
```

We will use a similar notation for ordered groups as for the generic groups. G^{+}denotes the set of nonnegative elements (that satisfy $1 \leq a$) and G_{+}is the set of (strictly) positive elements. -A is the set inverses of elements from A. I hope that using additive notation for this notion is not too shocking here. The symbol f° denotes the odd extension of f. For a function defined on G_{+}this is the unique odd function on G that is equal to f on G_{+}.

```
locale group3 =
fixes G and P and r
assumes ordGroupAssum: IsAnOrdGroup(G,P,r)
fixes unit (1)
defines unit_def [simp]: 1 \equiv TheNeutralElement(G,P)
fixes groper (infixl . 70)
defines groper_def [simp]: a · b \equiv P \ a,b\rangle
fixes inv (_-1 [90] 91)
defines inv_def [simp]: x }\mp@subsup{}{}{-1}\equiv\operatorname{GroupInv(G,P)(x)
fixes lesseq(infix \leq68)
defines lesseq_def [simp]: a }\leq\textrm{b}\equiv\langle\textrm{a},\textrm{b}\rangle\in\textrm{r
fixes sless (infix < 68)
defines sless_def [simp]: a < b \equiv a\leqb ^ a\not=b
```

```
fixes nonnegative ( \(\mathrm{G}^{+}\))
defines nonnegative_def [simp]: \(\mathrm{G}^{+} \equiv\) Nonnegative(G,P,r)
fixes positive ( \(\mathrm{G}_{+}\))
defines positive_def [simp]: \(\mathrm{G}_{+} \equiv\) PositiveSet(G,P,r)
fixes setinv (- _ 72)
defines setninv_def [simp]: -A \(\equiv\) GroupInv(G,P)(A)
fixes abs (| _ |)
defines abs_def [simp]: \(|a| \equiv\) AbsoluteValue(G,P,r)(a)
fixes oddext (_ \({ }^{\circ}\) )
defines oddext_def [simp]: \(\mathrm{f}^{\circ} \equiv\) OddExtension(G,P,r,f)
```

In group3 context we can use the theorems proven in the group0 context.
lemma (in group3) OrderedGroup_ZF_1_L1: shows group0(G,P)
using ordGroupAssum IsAnOrdGroup_def group0_def by simp

Ordered group (carrier) is not empty. This is a property of monoids, but it is good to have it handy in the group3 context.
lemma (in group3) OrderedGroup_ZF_1_L1A: shows G $=0$
using OrderedGroup_ZF_1_L1 group0.group0_2_L1 monoid0.group0_1_L3A
by blast
The next lemma is just to see the definition of the nonnegative set in our notation.

```
lemma (in group3) OrderedGroup_ZF_1_L2:
    shows g GGG+ \longleftrightarrow 1\leqg
    using ordGroupAssum IsAnOrdGroup_def Nonnegative_def
    by auto
```

The next lemma is just to see the definition of the positive set in our notation.

```
lemma (in group3) OrderedGroup_ZF_1_L2A:
    shows g\inG+
    using ordGroupAssum IsAnOrdGroup_def PositiveSet_def
    by auto
```

For total order if g is not in G^{+}, then it has to be less or equal the unit.

```
lemma (in group3) OrderedGroup_ZF_1_L2B:
    assumes A1: r \{is total on\} G and A2: \(\mathrm{a} \in \mathrm{G}-\mathrm{G}^{+}\)
    shows \(\mathrm{a} \leq 1\)
proof -
    from A2 have \(a \in G \quad 1 \in G \quad \neg(1 \leq a)\)
        using OrderedGroup_ZF_1_L1 group0.group0_2_L2 OrderedGroup_ZF_1_L2
        by auto
```

```
    with A1 show thesis using IsTotal_def by auto
qed
```

The group order is reflexive.

```
lemma (in group3) OrderedGroup_ZF_1_L3: assumes g\inG
    shows g\leqg
    using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def refl_def
    by simp
```

1 is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L3A: shows $1 \in \mathrm{G}^{+}$
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L1 group0.group0_2_L2 by simp

In this context $a \leq b$ implies that both a and b belong to G.

```
lemma (in group3) OrderedGroup_ZF_1_L4:
    assumes a\leqb shows a\inG b\inG
    using ordGroupAssum assms IsAnOrdGroup_def by auto
```

It is good to have transitivity handy.
lemma (in group3) Group_order_transitive:
assumes A1: $a \leq b \quad b \leq c$ shows $a \leq c$
proof -
from ordGroupAssum have trans (r)
using IsAnOrdGroup_def IsPartOrder_def
by simp
moreover from A1 have $\langle a, b\rangle \in r \wedge\langle b, c\rangle \in r$ by simp
ultimately have $\langle a, c\rangle \in r$ by (rule Fol1_L3)
thus thesis by simp
qed

The order in an ordered group is antisymmetric.

```
lemma (in group3) group_order_antisym:
    assumes A1: a }\leq\textrm{b
proof -
    from ordGroupAssum A1 have
            antisym(r) \langlea,b\rangle\inr \langleb,a\rangle\inr
            using IsAnOrdGroup_def IsPartOrder_def by auto
    then show a=b by (rule Fol1_L4)
qed
```

Transitivity for the strict order: if $a<b$ and $b \leq c$, then $a<c$.
lemma (in group3) OrderedGroup_ZF_1_L4A:
assumes A1: $\mathrm{a}<\mathrm{b}$ and A2: $\mathrm{b} \leq \mathrm{c}$
shows a<c
proof -
from A1 A2 have $a \leq b \quad b \leq c$ by auto
then have $\mathrm{a} \leq \mathrm{c}$ by (rule Group_order_transitive)

```
    moreover from A1 A2 have \(a \neq c\) using group_order_antisym by auto
    ultimately show \(a<c\) by simp
qed
```

Another version of transitivity for the strict order: if $a \leq b$ and $b<c$, then $a<c$.
lemma (in group3) group_strict_ord_transit:
assumes A1: $\mathrm{a} \leq \mathrm{b}$ and A2: $\mathrm{b}<\mathrm{c}$
shows a<c
proof -
from A1 A2 have $a \leq b \quad b \leq c$ by auto
then have $\mathrm{a} \leq \mathrm{c}$ by (rule Group_order_transitive)
moreover from A1 A2 have $a \neq c$ using group_order_antisym by auto ultimately show $\mathrm{a}<\mathrm{c}$ by simp
qed
Strict order is preserved by translations.

```
lemma (in group3) group_strict_ord_transl_inv:
    assumes a<b and c\inG
    shows
    a\cdotc<b
    c.a<c.b
    using ordGroupAssum assms IsAnOrdGroup_def
        OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 group0.group0_2_L19
    by auto
```

If the group order is total, then the group is ordered linearly.

```
lemma (in group3) group_ord_total_is_lin:
    assumes r {is total on} G
    shows IsLinOrder(G,r)
    using assms ordGroupAssum IsAnOrdGroup_def Order_ZF_1_L3
    by simp
```

For linearly ordered groups elements in the nonnegative set are greater than those in the complement.

```
lemma (in group3) OrderedGroup_ZF_1_L4B:
    assumes \(r\) \{is total on\} \(G\)
    and \(\mathrm{a} \in \mathrm{G}^{+}\)and \(\mathrm{b} \in \mathrm{G}-\mathrm{G}^{+}\)
    shows \(\mathrm{b} \leq \mathrm{a}\)
proof -
    from assms have \(b \leq 11 \leq a\)
            using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2B by auto
    then show thesis by (rule Group_order_transitive)
qed
If \(a \leq 1\) and \(a \neq 1\), then \(a \in G \backslash G^{+}\).
lemma (in group3) OrderedGroup_ZF_1_L4C:
    assumes A1: \(\mathrm{a} \leq 1\) and A2: \(\mathrm{a} \neq 1\)
```

```
    shows \(a \in G-G^{+}\)
proof -
    \{ assume a \(\notin \mathrm{G}-\mathrm{G}^{+}\)
        with ordGroupAssum A1 A2 have False
                using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2
    OrderedGroup_ZF_1_L4 IsAnOrdGroup_def IsPartOrder_def antisym_def
            by auto
    \} thus thesis by auto
qed
```

An element smaller than an element in $G \backslash G^{+}$is in $G \backslash G^{+}$.
lemma (in group3) OrderedGroup_ZF_1_L4D:
assumes A1: $\mathrm{a} \in \mathrm{G}-\mathrm{G}^{+}$and $\mathrm{A} 2: \mathrm{b} \leq \mathrm{a}$
shows $\mathrm{b} \in \mathrm{G}-\mathrm{G}^{+}$
proof -
\{ assume b $\notin \mathrm{G}-\mathrm{G}^{+}$
with $A 2$ have $1 \leq b \mathrm{~b} \leq \mathrm{a}$
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2 by auto
then have $1 \leq a$ by (rule Group_order_transitive)
with A1 have False using OrderedGroup_ZF_1_L2 by simp
\} thus thesis by auto
qed

The nonnegative set is contained in the group.

```
lemma (in group3) OrderedGroup_ZF_1_L4E: shows G'+}\subseteq
    using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L4 by auto
```

Taking the inverse on both sides reverses the inequality.

```
lemma (in group3) OrderedGroup_ZF_1_L5:
    assumes A1: \(\mathrm{a} \leq \mathrm{b}\) shows \(\mathrm{b}^{-1} \leq \mathrm{a}^{-1}\)
proof -
    from A1 have T1: \(a \in G \quad b \in G \quad a^{-1} \in G \quad b^{-1} \in G\)
        using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
            group0.inverse_in_group by auto
    with A1 ordGroupAssum have \(\mathrm{a} \cdot \mathrm{a}^{-1} \leq \mathrm{b} \cdot \mathrm{a}^{-1}\) using IsAnOrdGroup_def
        by simp
    with T 1 ordGroupAssum have \(\mathrm{b}^{-1} \cdot \mathbf{1} \leq \mathrm{b}^{-1} \cdot\left(\mathrm{~b} \cdot \mathrm{a}^{-1}\right)\)
        using OrderedGroup_ZF_1_L1 group0.group0_2_L6 IsAnOrdGroup_def
        by simp
    with T1 show thesis using
        OrderedGroup_ZF_1_L1 group0.group0_2_L2 group0.group_oper_assoc
        group0.group0_2_L6 by simp
qed
```

If an element is smaller that the unit, then its inverse is greater.
lemma (in group3) OrderedGroup_ZF_1_L5A:
assumes A1: $a \leq 1$ shows $1 \leq a^{-1}$
proof -

```
    from A1 have \(1^{-1} \leq \mathrm{a}^{-1}\) using OrderedGroup_ZF_1_L5
        by simp
    then show thesis using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
        by simp
qed
```

If an the inverse of an element is greater that the unit, then the element is smaller.

```
lemma (in group3) OrderedGroup_ZF_1_L5AA:
    assumes A1: \(\mathrm{a} \in \mathrm{G}\) and \(\mathrm{A} 2: 1 \leq \mathrm{a}^{-1}\)
    shows \(\mathrm{a} \leq 1\)
proof -
    from A2 have \(\left(\mathrm{a}^{-1}\right)^{-1} \leq \mathbf{1}^{-1}\) using OrderedGroup_ZF_1_L5
        by simp
    with A1 show \(a \leq 1\)
        using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv group0.group_inv_of_one
        by simp
qed
```

If an element is nonnegative, then the inverse is not greater that the unit. Also shows that nonnegative elements cannot be negative
lemma (in group3) OrderedGroup_ZF_1_L5AB:
assumes A1: $1 \leq \mathrm{a}$ shows $\mathrm{a}^{-1} \leq 1$ and $\neg(\mathrm{a} \leq 1 \wedge \mathrm{a} \neq 1)$
proof -
from A1 have $\mathrm{a}^{-1} \leq \mathbf{1}^{-1}$
using OrderedGroup_ZF_1_L5 by simp
then show $a^{-1} \leq 1$ using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp
\{ assume $\mathrm{a} \leq 1$ and $\mathrm{a} \neq 1$
with A1 have False using group_order_antisym
by blast
$\}$ then show $\neg(a \leq 1 \wedge a \neq 1)$ by auto
qed
If two elements are greater or equal than the unit, then the inverse of one is not greater than the other.
lemma (in group3) OrderedGroup_ZF_1_L5AC:
assumes A1: $1 \leq a \quad 1 \leq b$
shows $\mathrm{a}^{-1} \leq \mathrm{b}$
proof -
from A1 have $\mathrm{a}^{-1} \leq 1 \quad 1 \leq \mathrm{b}$
using OrderedGroup_ZF_1_L5AB by auto
then show $\mathrm{a}^{-1} \leq \mathrm{b}$ by (rule Group_order_transitive)
qed

32.2 Inequalities

This section developes some simple tools to deal with inequalities.

Taking negative on both sides reverses the inequality, case with an inverse on one side.

```
lemma (in group3) OrderedGroup_ZF_1_L5AD:
    assumes A1: b }\inG\mathrm{ and A2: a 
    shows b}\leq\mp@subsup{\textrm{a}}{}{-1
proof -
    from A2 have (b-1)-1}\leq\mp@subsup{a}{}{-1
        using OrderedGroup_ZF_1_L5 by simp
    with A1 show b}\leq\mp@subsup{a}{}{-1
        using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
        by simp
qed
```

We can cancel the same element on both sides of an inequality.

```
lemma (in group3) OrderedGroup_ZF_1_L5AE:
    assumes A1: a\inG b\inG c\inG and A2: a\cdotb \leqa.c
    shows b\leqc
proof -
    from ordGroupAssum A1 A2 have a}\mp@subsup{\textrm{a}}{}{-1}\cdot(\textrm{a}\cdot\textrm{b})\leq\mp@subsup{\textrm{a}}{}{-1}\cdot(\textrm{a}\cdot\textrm{c}
        using OrderedGroup_ZF_1_L1 group0.inverse_in_group
            IsAnOrdGroup_def by simp
    with A1 show b\leqc
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
        by simp
qed
```

We can cancel the same element on both sides of an inequality, a version with an inverse on both sides.

```
lemma (in group3) OrderedGroup_ZF_1_L5AF:
    assumes A1: \(a \in G \quad b \in G \quad c \in G\) and \(A 2: ~ a \cdot b^{-1} \leq a \cdot c^{-1}\)
    shows \(\mathrm{c} \leq \mathrm{b}\)
proof -
    from A1 A2 have \(\left(c^{-1}\right)^{-1} \leq\left(b^{-1}\right)^{-1}\)
        using OrderedGroup_ZF_1_L1 group0.inverse_in_group
            OrderedGroup_ZF_1_L5AE OrderedGroup_ZF_1_L5 by simp
    with A1 show \(c \leq b\)
        using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp
qed
```

Taking negative on both sides reverses the inequality, another case with an inverse on one side.
lemma (in group3) OrderedGroup_ZF_1_L5AG:
assumes A1: $a \in G$ and A2: $a^{-1} \leq \mathrm{b}$
shows $\mathrm{b}^{-1} \leq \mathrm{a}$
proof -
from A2 have $b^{-1} \leq\left(a^{-1}\right)^{-1}$
using OrderedGroup_ZF_1_L5 by simp
with A 1 show $\mathrm{b}^{-1} \leq \mathrm{a}$
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp
qed
We can multiply the sides of two inequalities.
lemma (in group3) OrderedGroup_ZF_1_L5B:
assumes A1: $a \leq b$ and A2: $c \leq d$
shows $\mathrm{a} \cdot \mathrm{c} \leq \mathrm{b} \cdot \mathrm{d}$
proof -
from A1 A2 have $c \in G \quad b \in G$ using OrderedGroup_ZF_1_L4 by auto
with A1 A2 ordGroupAssum have $a \cdot c \leq b \cdot c \quad b \cdot c \leq b \cdot d$ using IsAnOrdGroup_def by auto
then show $\mathrm{a} \cdot \mathrm{c} \leq \mathrm{b} \cdot \mathrm{d}$ by (rule Group_order_transitive)
qed
We can replace first of the factors on one side of an inequality with a greater one.

```
lemma (in group3) OrderedGroup_ZF_1_L5C:
    assumes A1: \(c \in G\) and A2: \(a \leq b \cdot c\) and \(A 3: ~ b \leq b_{1}\)
    shows \(a \leq b_{1} \cdot c\)
proof -
    from A1 A3 have \(\mathrm{b} \cdot \mathrm{c} \leq \mathrm{b}_{1} \cdot \mathrm{c}\)
        using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by simp
    with \(A 2\) show \(a \leq b_{1} \cdot c\) by (rule Group_order_transitive)
qed
```

We can replace second of the factors on one side of an inequality with a greater one.
lemma (in group3) OrderedGroup_ZF_1_L5D:
assumes A1: $b \in G$ and $A 2: a \leq b \cdot c$ and $A 3: c \leq b_{1}$
shows $\mathrm{a} \leq \mathrm{b} \cdot \mathrm{b}_{1}$
proof -
from A1 A3 have $\mathrm{b} \cdot \mathrm{c} \leq \mathrm{b} \cdot \mathrm{b}_{1}$
using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by auto
with $A 2$ show $\mathrm{a} \leq \mathrm{b} \cdot \mathrm{b}_{1}$ by (rule Group_order_transitive)
qed
We can replace factors on one side of an inequality with greater ones.

```
lemma (in group3) OrderedGroup_ZF_1_L5E:
    assumes A1: \(\mathrm{a} \leq \mathrm{b} \cdot \mathrm{c}\) and A2: \(\mathrm{b} \leq \mathrm{b}_{1} \mathrm{c} \leq \mathrm{c}_{1}\)
    shows \(\mathrm{a} \leq \mathrm{b}_{1} \cdot \mathrm{c}_{1}\)
proof -
    from A2 have \(\mathrm{b} \cdot \mathrm{c} \leq \mathrm{b}_{1} \cdot \mathrm{c}_{1}\) using OrderedGroup_ZF_1_L5B
        by simp
    with A1 show \(\mathrm{a} \leq \mathrm{b}_{1} \cdot \mathrm{c}_{1}\) by (rule Group_order_transitive)
qed
```

We don't decrease an element of the group by multiplying by one that is nonnegative.

```
lemma (in group3) OrderedGroup_ZF_1_L5F:
    assumes A1: \(1 \leq a\) and \(A 2: ~ b \in G\)
    shows \(\mathrm{b} \leq \mathrm{a} \cdot \mathrm{b} \quad \mathrm{b} \leq \mathrm{b} \cdot \mathrm{a}\)
proof -
    from ordGroupAssum A1 A2 have
        \(1 \cdot b \leq a \cdot b \quad b \cdot 1 \leq b \cdot a\)
        using IsAnOrdGroup_def by auto
    with \(A 2\) show \(b \leq a \cdot b \quad b \leq b \cdot a\)
        using OrderedGroup_ZF_1_L1 group0.group0_2_L2
        by auto
qed
```

We can multiply the right hand side of an inequality by a nonnegative element.
lemma (in group3) OrderedGroup_ZF_1_L5G: assumes A1: $a \leq b$
and A2: $1 \leq c$ shows $a \leq b \cdot c \quad a \leq c \cdot b$
proof -
from A1 A2 have $I: b \leq b \cdot c$ and II: $b \leq c \cdot b$
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L5F by auto
from A1 I show $\mathrm{a} \leq \mathrm{b} \cdot \mathrm{c}$ by (rule Group_order_transitive)
from A1 II show $a \leq c \cdot b$ by (rule Group_order_transitive)
qed
We can put two elements on the other side of inequality, changing their sign.

```
lemma (in group3) OrderedGroup_ZF_1_L5H:
    assumes A1: \(a \in G \quad b \in G\) and \(A 2: ~ a \cdot b-1 \leq c\)
    shows
    \(\mathrm{a} \leq \mathrm{c} \cdot \mathrm{b}\)
    \(c^{-1} \cdot a \leq b\)
proof -
    from A2 have \(T: c \in G \quad c^{-1} \in G\)
        using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
            group0.inverse_in_group by auto
    from ordGroupAssum A1 A2 have \(\mathrm{a} \cdot \mathrm{b}^{-1} \cdot \mathrm{~b} \leq \mathrm{c} \cdot \mathrm{b}\)
        using IsAnOrdGroup_def by simp
    with A1 show \(a \leq c \cdot b\)
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
        by simp
    with ordGroupAssum A2 \(T\) have \(\mathrm{c}^{-1} \cdot \mathrm{a} \leq \mathrm{c}^{-1} \cdot(\mathrm{c} \cdot \mathrm{b})\)
        using IsAnOrdGroup_def by simp
    with A1 T show \(\mathrm{c}^{-1} \cdot \mathrm{a} \leq \mathrm{b}\)
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
        by simp
qed
```

We can multiply the sides of one inequality by inverse of another.
lemma (in group3) OrderedGroup_ZF_1_L5I:
assumes $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{d}$
shows $\mathrm{a} \cdot \mathrm{d}^{-1} \leq \mathrm{b} \cdot \mathrm{c}^{-1}$

```
using assms OrderedGroup_ZF_1_L5 OrderedGroup_ZF_1_L5B
by simp
```

We can put an element on the other side of an inequality changing its sign, version with the inverse.

```
lemma (in group3) OrderedGroup_ZF_1_L5J:
    assumes A1: a\inG b\inG and A2: c \leq a b b
    shows c.b}\leq\textrm{a
proof -
    from ordGroupAssum A1 A2 have c\cdotb \leq a b }\mp@subsup{}{}{-1}\cdot\textrm{b
        using IsAnOrdGroup_def by simp
    with A1 show c·b \leq a
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
        by simp
qed
```

We can put an element on the other side of an inequality changing its sign, version with the inverse.
lemma (in group3) OrderedGroup_ZF_1_L5JA:
assumes A1: $a \in G \quad b \in G$ and A2: $c \leq a^{-1} \cdot b$
shows $a \cdot c \leq b$
proof -
from ordGroupAssum A1 A2 have $a \cdot c \leq a \cdot\left(a^{-1} \cdot b\right)$
using IsAnOrdGroup_def by simp
with A1 show $a \cdot c \leq b$
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
qed
A special case of OrderedGroup_ZF_1_L5J where $c=1$.
corollary (in group3) OrderedGroup_ZF_1_L5K:
assumes A1: $a \in G \quad b \in G$ and A2: $1 \leq a \cdot b^{-1}$
shows $\mathrm{b} \leq \mathrm{a}$
proof -
from A1 A2 have $1 \cdot \mathrm{~b} \leq \mathrm{a}$
using OrderedGroup_ZF_1_L5J by simp
with A1 show $\mathrm{b} \leq \mathrm{a}$
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
qed
A special case of OrderedGroup_ZF_1_L5JA where $c=1$.
corollary (in group3) OrderedGroup_ZF_1_L5KA:
assumes A1: $a \in G \quad b \in G$ and $A 2: 1 \leq a^{-1} \cdot b$
shows $\mathrm{a} \leq \mathrm{b}$
proof -
from A1 A2 have $\mathrm{a} \cdot 1 \leq \mathrm{b}$
using OrderedGroup_ZF_1_L5JA by simp

```
    with A1 show a \leq b
    using OrderedGroup_ZF_1_L1 group0.group0_2_L2
    by simp
qed
```

If the order is total, the elements that do not belong to the positive set are negative. We also show here that the group inverse of an element that does not belong to the nonnegative set does belong to the nonnegative set.

```
lemma (in group3) OrderedGroup_ZF_1_L6:
    assumes A1: r \{is total on\} G and \(\mathrm{A} 2: \mathrm{a} \in \mathrm{G}-\mathrm{G}^{+}\)
    shows \(a \leq 1 \quad a^{-1} \in G^{+} \quad\) restrict \(\left(\operatorname{GroupInv}(G, P), G-G^{+}\right)(a) \in G^{+}\)
proof -
    from A2 have T1: \(\mathrm{a} \in \mathrm{G} \mathrm{a} \notin \mathrm{G}^{+} \quad 1 \in \mathrm{G}\)
        using OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto
    with A1 show a \(\leq 1\) using OrderedGroup_ZF_1_L2 IsTotal_def
        by auto
    then show \(\mathrm{a}^{-1} \in \mathrm{G}^{+}\)using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2
        by simp
    with A2 show restrict (GroupInv(G,P), G-G \({ }^{+}\))(a) \(\in \mathrm{G}^{+}\)
        using restrict by simp
qed
```

If a property is invariant with respect to taking the inverse and it is true on the nonnegative set, than it is true on the whole group.

```
lemma (in group3) OrderedGroup_ZF_1_L7:
    assumes A1: \(r\) \{is total on\} \(G\)
    and A2: \(\forall \mathrm{a} \in \mathrm{G}^{+} . \forall \mathrm{b} \in \mathrm{G}^{+} . \mathrm{Q}(\mathrm{a}, \mathrm{b})\)
    and A3: \(\forall \mathrm{a} \in \mathrm{G} . \forall \mathrm{b} \in \mathrm{G} . \mathrm{Q}(\mathrm{a}, \mathrm{b}) \longrightarrow \mathrm{Q}\left(\mathrm{a}^{-1}, \mathrm{~b}\right)\)
    and A4: \(\forall \mathrm{a} \in \mathrm{G} . \forall \mathrm{b} \in \mathrm{G} . \mathrm{Q}(\mathrm{a}, \mathrm{b}) \longrightarrow \mathrm{Q}\left(\mathrm{a}, \mathrm{b}^{-1}\right)\)
    and \(A 5: a \in G \quad b \in G\)
    shows \(Q(a, b)\)
proof -
    \{ assume A6: \(a \in G^{+}\)have \(Q(a, b)\)
        proof -
            \{ assume \(b \in G^{+}\)
    with A6 A2 have \(Q(a, b)\) by simp \(\}\)
            moreover
            \{ assume \(\mathrm{b} \notin \mathrm{G}^{+}\)
    with A1 A2 A4 A5 A6 have \(\mathrm{Q}\left(\mathrm{a},\left(\mathrm{b}^{-1}\right)^{-1}\right)\)
        using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 group0.inverse_in_group
        by simp
    with A5 have \(Q(a, b)\) using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
        by simp \}
            ultimately show \(Q(a, b)\) by auto
        qed \(\}\)
    moreover
    \{ assume \(\mathrm{a} \notin \mathrm{G}^{+}\)
        with A1 A5 have T1: \(\mathrm{a}^{-1} \in \mathrm{G}^{+}\)using OrderedGroup_ZF_1_L6 by simp
        have \(Q(a, b)\)
```


proof -

\{ assume $b \in G^{+}$
with A2 A3 A5 T1 have $Q\left(\left(a^{-1}\right)^{-1}, b\right)$
using OrderedGroup_ZF_1_L1 group0.inverse_in_group by simp
with A5 have $Q(a, b)$ using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp \}
moreover
\{ assume $\mathrm{b} \notin \mathrm{G}^{+}$
with A1 A2 A3 A4 A5 T1 have $Q\left(\left(a^{-1}\right)^{-1},\left(b^{-1}\right)^{-1}\right)$ using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 group0.inverse_in_group by simp
with A5 have $Q(a, b)$ using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp \}
ultimately show $Q(a, b)$ by auto qed \}
ultimately show $Q(a, b)$ by auto
qed
A lemma about splitting the ordered group "plane" into 6 subsets. Useful for proofs by cases.

```
lemma (in group3) OrdGroup_6cases: assumes A1: r {is total on} G
    and A2: a\inG b}b\in
    shows
    1\leqa ^ 1\leqb \vee a\leq1 ^ b\leq1 \vee
    a\leq1 ^1\leqb ^ 1 \leqa\cdotb \vee a\leq1^1\leqb ^a
    1\leqa ^ b < 1 ^ 1 \leqa}\textrm{a
proof -
    from A1 A2 have
        1\leqa \vee a\leq1
        1\leqb \vee b}\leq
        1}\leq\textrm{a}\cdot\textrm{b}\vee\textrm{a}\cdot\textrm{b}\leq
        using OrderedGroup_ZF_1_L1 group0.group_op_closed group0.group0_2_L2
            IsTotal_def by auto
    then show thesis by auto
qed
```

The next lemma shows what happens when one element of a totally ordered group is not greater or equal than another.
lemma (in group3) OrderedGroup_ZF_1_L8:
assumes A1: r \{is total on\} G
and A2: $a \in G \quad b \in G$
and A 3 : $\neg(\mathrm{a} \leq \mathrm{b})$
shows $\mathrm{b} \leq \mathrm{a} \quad \mathrm{a}^{-1} \leq \mathrm{b}^{-1} \quad \mathrm{a} \neq \mathrm{b} \quad \mathrm{b}<\mathrm{a}$
proof -
from A1 A2 A3 show I: b $\leq \mathrm{a}$ using IsTotal_def by auto
then show $\mathrm{a}^{-1} \leq \mathrm{b}^{-1}$ using OrderedGroup_ZF_1_L5 by simp
from A2 have $\mathrm{a} \leq \mathrm{a}$ using OrderedGroup_ZF_1_L3 by simp

```
    with I A3 show a\not=b b < a by auto
qed
```

If one element is greater or equal and not equal to another, then it is not smaller or equal.

```
lemma (in group3) OrderedGroup_ZF_1_L8AA:
    assumes A1: a }\leq\textrm{b}\mathrm{ and A2: a}=\textrm{b
    shows }\neg(\textrm{b}\leq\textrm{a}
proof -
    { note A1
            moreover assume b\leqa
            ultimately have a=b by (rule group_order_antisym)
            with A2 have False by simp
    } thus }\neg(\textrm{b}\leqa)\mathrm{ by auto
qed
```

A special case of OrderedGroup_ZF_1_L8 when one of the elements is the unit.

```
corollary (in group3) OrderedGroup_ZF_1_L8A:
    assumes A1: r \{is total on\} G
    and \(\mathrm{A} 2: \mathrm{a} \in \mathrm{G}\) and \(\mathrm{A} 3: \neg(1 \leq \mathrm{a})\)
    shows \(1 \leq a^{-1} \quad 1 \neq a \quad a \leq 1\)
proof -
    from A1 A2 A3 have I:
            r \{is total on\} G
            \(1 \in G \quad a \in G\)
                \(\neg(1 \leq a)\)
            using OrderedGroup_ZF_1_L1 group0.group0_2_L2
            by auto
    then have \(1^{-1} \leq \mathrm{a}^{-1}\)
            by (rule OrderedGroup_ZF_1_L8)
    then show \(1 \leq \mathrm{a}^{-1}\)
            using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp
    from I show \(\mathbf{1} \neq \mathrm{a}\) by (rule OrderedGroup_ZF_1_L8)
    from A1 I show \(\mathrm{a} \leq \mathbf{1}\) using IsTotal_def
            by auto
qed
```

A negative element can not be nonnegative.

```
lemma (in group3) OrderedGroup_ZF_1_L8B:
    assumes A1: a }\leq1\mathrm{ and A2: a }=1\mathrm{ shows }\neg(1\leqa
proof -
    { assume 1\leqa
            with A1 have a=1 using group_order_antisym
                    by auto
            with A2 have False by simp
    } thus thesis by auto
qed
```

An element is greater or equal than another iff the difference is nonpositive.

```
lemma (in group3) OrderedGroup_ZF_1_L9:
    assumes A1: a\inG b}\in
    shows }\textrm{a}\leq\textrm{b}\longleftrightarrow\textrm{a}\cdot\mp@subsup{\textrm{b}}{}{-1}\leq
proof
    assume a }\leq\textrm{b
    with ordGroupAssum A1 have a\cdotb}\mp@subsup{}{}{-1}\leq\textrm{b}\cdot\mp@subsup{\textrm{b}}{}{-1
        using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
        IsAnOrdGroup_def by simp
    with A1 show a\cdotb
        using OrderedGroup_ZF_1_L1 group0.group0_2_L6
        by simp
next assume A2: a.b-1 
    with ordGroupAssum A1 have a\cdotb}\mp@subsup{}{}{-1}\cdot\textrm{b}\leq1\cdot\textrm{b
        using IsAnOrdGroup_def by simp
    with A1 show a \leq b
        using OrderedGroup_ZF_1_L1
            group0.inv_cancel_two group0.group0_2_L2
        by simp
qed
```

We can move an element to the other side of an inequality.

```
lemma (in group3) OrderedGroup_ZF_1_L9A:
    assumes A1: \(a \in G \quad b \in G \quad c \in G\)
    shows \(\mathrm{a} \cdot \mathrm{b} \leq \mathrm{c} \longleftrightarrow \mathrm{a} \leq \mathrm{c} \cdot \mathrm{b}^{-1}\)
proof
    assume \(\mathrm{a} \cdot \mathrm{b} \leq \mathrm{c}\)
    with ordGroupAssum A1 have \(a \cdot b \cdot b^{-1} \leq c \cdot b^{-1}\)
        using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def
        by simp
    with A1 show \(\mathrm{a} \leq \mathrm{c} \cdot \mathrm{b}^{-1}\)
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two by simp
next assume \(a \leq c \cdot b^{-1}\)
    with ordGroupAssum A1 have \(a \cdot b \leq c \cdot b^{-1} \cdot b\)
        using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def
        by simp
    with A1 show \(\mathrm{a} \cdot \mathrm{b} \leq \mathrm{c}\)
            using OrderedGroup_ZF_1_L1 group0.inv_cancel_two by simp
qed
A one side version of the previous lemma with weaker assuptions.
```

```
lemma (in group3) OrderedGroup_ZF_1_L9B:
```

lemma (in group3) OrderedGroup_ZF_1_L9B:
assumes A1: a\inG b\inG and A2: a\cdotb
assumes A1: a\inG b\inG and A2: a\cdotb
shows a }\leq\textrm{c}\cdot\textrm{b
shows a }\leq\textrm{c}\cdot\textrm{b
proof -
proof -
from A1 A2 have a\inG b}\mp@subsup{b}{}{-1}\inG\quadc\in
from A1 A2 have a\inG b}\mp@subsup{b}{}{-1}\inG\quadc\in
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
using OrderedGroup_ZF_1_L1 groupO.inverse_in_group
OrderedGroup_ZF_1_L4 by auto
OrderedGroup_ZF_1_L4 by auto
with A1 A2 show a
with A1 A2 show a
using OrderedGroup_ZF_1_L9A OrderedGroup_ZF_1_L1

```
        using OrderedGroup_ZF_1_L9A OrderedGroup_ZF_1_L1
```

```
    group0.group_inv_of_inv by simp
```

qed
We can put en element on the other side of inequality, changing its sign.

```
lemma (in group3) OrderedGroup_ZF_1_L9C:
    assumes A1: \(a \in G \quad b \in G\) and \(A 2: c \leq a \cdot b\)
    shows
    \(\mathrm{c} \cdot \mathrm{b}^{-1} \leq \mathrm{a}\)
    \(\mathrm{a}^{-1} \cdot \mathrm{c} \leq \mathrm{b}\)
proof -
    from ordGroupAssum A1 A2 have
        \(\mathrm{c} \cdot \mathrm{b}^{-1} \leq \mathrm{a} \cdot \mathrm{b} \cdot \mathrm{b}^{-1}\)
        \(\mathrm{a}^{-1} \cdot \mathrm{c} \leq \mathrm{a}^{-1} \cdot(\mathrm{a} \cdot \mathrm{b})\)
        using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def
        by auto
    with A1 show
        \(\mathrm{c} \cdot \mathrm{b}^{-1} \leq \mathrm{a}\)
        \(\mathrm{a}^{-1} \cdot \mathrm{c} \leq \mathrm{b}\)
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
        by auto
qed
```

If an element is greater or equal than another then the difference is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L9D: assumes A1: $a \leq b$
shows $1 \leq \mathrm{b} \cdot \mathrm{a}^{-1}$
proof -
from A1 have $T: a \in G \quad b \in G \quad a^{-1} \in G$
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto
with ordGroupAssum A1 have $\mathrm{a} \cdot \mathrm{a}^{-1} \leq \mathrm{b} \cdot \mathrm{a}^{-1}$
using IsAnOrdGroup_def by simp
with T show $1 \leq \mathrm{b} \cdot \mathrm{a}^{-1}$
using OrderedGroup_ZF_1_L1 group0.group0_2_L6
by simp
qed

If an element is greater than another then the difference is positive.
lemma (in group3) OrderedGroup_ZF_1_L9E:
assumes A1: $a \leq b \quad a \neq b$
shows $1 \leq \mathrm{b} \cdot \mathrm{a}^{-1} \quad 1 \neq \mathrm{b} \cdot \mathrm{a}^{-1} \quad \mathrm{~b} \cdot \mathrm{a}^{-1} \in \mathrm{G}_{+}$
proof -
from A1 have $T: a \in G \quad b \in G$ using OrderedGroup_ZF_1_L4 by auto
from A1 show I: $1 \leq \mathrm{b} \cdot \mathrm{a}^{-1}$ using OrderedGroup_ZF_1_L9D
by simp
\{ assume $\mathrm{b} \cdot \mathrm{a}^{-1}=1$
with T have $\mathrm{a}=\mathrm{b}$
using OrderedGroup_ZF_1_L1 group0.group0_2_L11A

```
            by auto
        with A1 have False by simp
    } then show 1}\not=\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}\mathrm{ by auto
    then have b}\cdot\mp@subsup{\textrm{a}}{}{-1}\not=1\mathrm{ by auto
    with I show b}\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}\in\mp@subsup{G}{+}{}\mathrm{ using OrderedGroup_ZF_1_L2A
        by simp
qed
If the difference is nonnegative, then \(a \leq b\).
```

```
lemma (in group3) OrderedGroup_ZF_1_L9F:
```

lemma (in group3) OrderedGroup_ZF_1_L9F:
assumes A1: a\inG b\inG and A2: 1 \leq b ba-1
shows a\leqb
proof -
from A1 A2 have 1.a }\leq\textrm{b
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L9A
by simp
with A1 show a\leqb
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
qed

```

If we increase the middle term in a product, the whole product increases.
```

lemma (in group3) OrderedGroup_ZF_1_L10:
assumes a\inG b\inG and c\leqd
shows a.c.b}\leq\textrm{a}\cdot\textrm{d}\cdot\textrm{b
using ordGroupAssum assms IsAnOrdGroup_def by simp

```

A product of (strictly) positive elements is not the unit.
lemma (in group3) OrderedGroup_ZF_1_L11:
assumes A1: \(1 \leq \mathrm{a} \quad 1 \leq \mathrm{b}\)
and A2: \(1 \neq \mathrm{a} \quad 1 \neq \mathrm{b}\)
shows \(1 \neq \mathrm{a} \cdot \mathrm{b}\)
proof -
from A1 have T1: \(a \in G \quad b \in G\)
using OrderedGroup_ZF_1_L4 by auto
\{ assume 1 = \(\mathrm{a} \cdot \mathrm{b}\)
with A1 T1 have \(\mathrm{a} \leq 1 \quad 1 \leq \mathrm{a}\)
using OrderedGroup_ZF_1_L1 group0.group0_2_L9 OrderedGroup_ZF_1_L5AA
by auto
then have a = 1 by (rule group_order_antisym)
with A2 have False by simp
\} then show \(1 \neq a \cdot b\) by auto
qed
A product of nonnegative elements is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L12:
assumes A1: \(1 \leq \mathrm{a} \quad 1 \leq \mathrm{b}\)
```

 shows 1 \leq a\cdotb
 proof -
from A1 have 1.1 }\leq\textrm{a}\cdot\textrm{b
using OrderedGroup_ZF_1_L5B by simp
then show 1 \leqa\cdotb
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
qed
If }a\mathrm{ is not greater than b, then 1 is not greater than b}\mp@subsup{a}{}{-1}\mathrm{ .
lemma (in group3) OrderedGroup_ZF_1_L12A:
assumes A1: a
proof -
from A1 have T: 1 \inG a\inG b\inG
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 group0.group0_2_L2
by auto
with A1 have 1·a \leq b
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
with T show 1 \leq b a a }\mp@subsup{}{}{-1}\mathrm{ using OrderedGroup_ZF_1_L9A
by simp
qed
We can move an element to the other side of a strict inequality.
lemma (in group3) OrderedGroup_ZF_1_L12B:
assumes A1: a\inG b\inG and A2: a\cdotb
shows a < c.b
proof -
from A1 A2 have a.b}\mp@subsup{}{}{-1}\cdot\textrm{b}<c\cdot\textrm{b
using group_strict_ord_transl_inv by auto
moreover from A1 have a\cdotb}\mp@subsup{}{}{-1}\cdot\textrm{b}=\textrm{a
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
by simp
ultimately show a < c.b
by auto
qed
We can multiply the sides of two inequalities, first of them strict and we get a strict inequality.

```
```

lemma (in group3) OrderedGroup_ZF_1_L12C:

```
lemma (in group3) OrderedGroup_ZF_1_L12C:
    assumes A1: a<b and A2: c\leqd
    assumes A1: a<b and A2: c\leqd
    shows a.c < b.d
    shows a.c < b.d
proof -
proof -
    from A1 A2 have T: a\inG b\inG c\inG d\inG
    from A1 A2 have T: a\inG b\inG c\inG d\inG
        using OrderedGroup_ZF_1_L4 by auto
        using OrderedGroup_ZF_1_L4 by auto
    with ordGroupAssum A2 have a.c \leq a.d
    with ordGroupAssum A2 have a.c \leq a.d
        using IsAnOrdGroup_def by simp
        using IsAnOrdGroup_def by simp
    moreover from A1 T have a.d < b}
    moreover from A1 T have a.d < b}
        using group_strict_ord_transl_inv by simp
```

 using group_strict_ord_transl_inv by simp
    ```
```

 ultimately show a.c < b}
 by (rule group_strict_ord_transit)
 qed

```

We can multiply the sides of two inequalities, second of them strict and we get a strict inequality.
```

lemma (in group3) OrderedGroup_ZF_1_L12D:
assumes A1: a\leqb and A2: c<d
shows a.c < b}\cdot\textrm{d
proof -
from A1 A2 have T: a\inG b\inG c\inG d}d\in
using OrderedGroup_ZF_1_L4 by auto
with A2 have a.c < a.d
using group_strict_ord_transl_inv by simp
moreover from ordGroupAssum A1 T have a\cdotd \leq b}\cdot\textrm{d
using IsAnOrdGroup_def by simp
ultimately show a.c < b}
by (rule OrderedGroup_ZF_1_L4A)
qed

```

\subsection*{32.3 The set of positive elements}

In this section we study \(\mathrm{G}_{+}\)- the set of elements that are (strictly) greater than the unit. The most important result is that every linearly ordered group can decomposed into \(\{1\}, \mathrm{G}_{+}\)and the set of those elements \(a \in G\) such that \(a^{-1} \in \mathrm{G}_{+}\). Another property of linearly ordered groups that we prove here is that if \(G_{+} \neq \emptyset\), then it is infinite. This allows to show that nontrivial linearly ordered groups are infinite.

The positive set is closed under the group operation.
```

lemma (in group3) OrderedGroup_ZF_1_L13: shows G+ {is closed under}
P
proof -
{ fix a b assume a\inGG+ b\inGG
then have T1: 1 \leqa\cdotb and 1 f a\cdotb
using PositiveSet_def OrderedGroup_ZF_1_L11 OrderedGroup_ZF_1_L12
by auto
moreover from T1 have a\cdotb \inG
using OrderedGroup_ZF_1_L4 by simp
ultimately have a\cdotb \in G+ using PositiveSet_def by simp
} then show G}\mp@subsup{G}{+}{}\mathrm{ {is closed under} P using IsOpClosed_def
by simp
qed

```

For totally ordered groups every nonunit element is positive or its inverse is positive.
lemma (in group3) OrderedGroup_ZF_1_L14:
assumes A1: \(r\) \{is total on\} \(G\) and \(A 2: ~ a \in G\)
```

 shows \(a=1 \vee a \in G_{+} \vee a^{-1} \in G_{+}\)
 proof -
\{ assume A3: $a \neq 1$
moreover from A1 A2 have $\mathrm{a} \leq 1 \vee 1 \leq \mathrm{a}$
using IsTotal_def OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
moreover from A3 A2 have T1: $a^{-1} \neq 1$
using OrderedGroup_ZF_1_L1 group0.group0_2_L8B
by simp
ultimately have $\mathrm{a}^{-1} \in \mathrm{G}_{+} \vee \mathrm{a} \in \mathrm{G}_{+}$
using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2A
by auto
\} thus $a=1 \vee a \in G_{+} \vee a^{-1} \in G_{+}$by auto
qed

```

If an element belongs to the positive set, then it is not the unit and its inverse does not belong to the positive set.
lemma (in group3) OrderedGroup_ZF_1_L15:
assumes A1: \(a \in G_{+}\)shows \(a \neq 1 \quad a^{-1} \notin G_{+}\)
proof -
from A1 show T1: \(\mathbf{a} \neq \mathbf{1}\) using PositiveSet_def by auto
\{ assume \(\mathrm{a}^{-1} \in \mathrm{G}_{+}\)
with A1 have \(\mathrm{a} \leq 1 \quad 1 \leq \mathrm{a}\)
using OrderedGroup_ZF_1_L5AA PositiveSet_def by auto
then have a=1 by (rule group_order_antisym)
with T1 have False by simp
\(\}\) then show \(a^{-1} \notin G_{+}\)by auto
qed
If \(a^{-1}\) is positive, then \(a\) can not be positive or the unit.
lemma (in group3) OrderedGroup_ZF_1_L16:
assumes A1: \(a \in G\) and A2: \(a^{-1} \in G_{+}\)shows \(a \neq 1 \quad a \notin G_{+}\)
proof -
from A2 have \(a^{-1} \neq 1 \quad\left(a^{-1}\right)^{-1} \notin G_{+}\)
using OrderedGroup_ZF_1_L15 by auto
with A1 show \(a \neq 1 \quad a \notin G_{+}\) using OrderedGroup_ZF_1_L1 group0.group0_2_L8C group0.group_inv_of_inv by auto
qed
For linearly ordered groups each element is either the unit, positive or its inverse is positive.
lemma (in group3) OrdGroup_decomp:
assumes A1: r \{is total on\} G and A2: \(\mathrm{a} \in \mathrm{G}\)
shows Exactly_1_of_3_holds ( \(\mathrm{a}=1, \mathrm{a} \in \mathrm{G}_{+}, \mathrm{a}^{-1} \in \mathrm{G}_{+}\))
proof -
from A1 A2 have \(a=1 \vee a \in G_{+} \vee a^{-1} \in G_{+}\)

> using OrderedGroup_ZF_1_L14 by simp
moreover from A2 have \(a=1 \longrightarrow\left(a \notin G_{+} \wedge a^{-1} \notin G_{+}\right)\)
using OrderedGroup_ZF_1_L1 group0.group_inv_of_one PositiveSet_def by simp
moreover from \(A 2\) have \(a \in G_{+} \longrightarrow\left(a \neq 1 \wedge a^{-1} \notin G_{+}\right)\) using OrderedGroup_ZF_1_L15 by simp
moreover from A2 have \(a^{-1} \in G_{+} \longrightarrow\left(a \neq 1 \wedge a \notin G_{+}\right)\) using OrderedGroup_ZF_1_L16 by simp
ultimately show Exactly_1_of_3_holds ( \(a=1, a \in G_{+}, a^{-1} \in G_{+}\)) by (rule Fol1_L5)
qed
A if \(a\) is a nonunit element that is not positive, then \(a^{-1}\) is is positive. This is useful for some proofs by cases.
```

lemma (in group3) OrdGroup_cases:
assumes A1: r {is total on} G and A2: a\inG
and A3: a\not=1 a\not\inG+
shows a}\mp@subsup{}{}{-1}\in\mp@subsup{G}{+}{
proof -
from A1 A2 have a=1 }\veea\inG+G V a < <GG
using OrderedGroup_ZF_1_L14 by simp
with A3 show a }\mp@subsup{}{}{-1}\in\mp@subsup{G}{+}{}\mathrm{ by auto
qed

```

Elements from \(G \backslash G_{+}\)are not greater that the unit.
```

lemma (in group3) OrderedGroup_ZF_1_L17:
assumes A1: r \{is total on\} G and A2: $a \in G-G_{+}$
shows $\mathrm{a} \leq 1$
proof -
\{ assume $\mathrm{a}=1$
with A2 have $\mathrm{a} \leq 1$ using OrderedGroup_ZF_1_L3 by simp $\}$
moreover
\{ assume $a \neq 1$
with A1 A2 have $\mathrm{a} \leq 1$
using PositiveSet_def OrderedGroup_ZF_1_L8A
by auto \}
ultimately show $\mathrm{a} \leq 1$ by auto
qed

```

The next lemma allows to split proofs that something holds for all \(a \in G\) into cases \(a=1, a \in G_{+},-a \in G_{+}\).
lemma (in group3) OrderedGroup_ZF_1_L18:
assumes A1: r \{is total on\} G and \(\mathrm{A} 2: \mathrm{b} \in \mathrm{G}\)
and \(A 3: Q(1)\) and \(A 4: \forall a \in G_{+} . Q(a)\) and \(A 5: ~ \forall a \in G_{+} . ~ Q\left(a^{-1}\right)\)
shows \(Q(b)\)
proof -
from A1 A2 A3 A4 A5 have \(Q(b) \vee Q\left(\left(b^{-1}\right)^{-1}\right)\)
using OrderedGroup_ZF_1_L14 by auto
with A2 show \(Q(b)\) using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp
qed
All elements greater or equal than an element of \(G_{+}\)belong to \(G_{+}\).
lemma (in group3) OrderedGroup_ZF_1_L19:
assumes A1: \(a \in G_{+}\)and A2: \(a \leq b\)
shows \(\mathrm{b} \in \mathrm{G}_{+}\)
proof -
from A1 have I: \(1 \leq a\) and II: \(a \neq 1\)
using OrderedGroup_ZF_1_L2A by auto
from I A2 have \(1 \leq b\) by (rule Group_order_transitive)
moreover have \(b \neq 1\)
proof -
\{ assume \(\mathrm{b}=1\)
with I A2 have \(1 \leq a \quad a \leq 1\)
by auto
then have 1=a by (rule group_order_antisym)
with II have False by simp
\} then show \(\mathrm{b} \neq 1\) by auto
qed
ultimately show \(\mathrm{b} \in \mathrm{G}_{+}\)
using OrderedGroup_ZF_1_L2A by simp
qed
The inverse of an element of \(\mathrm{G}_{+}\)cannot be in \(\mathrm{G}_{+}\).
lemma (in group3) OrderedGroup_ZF_1_L20:
assumes A1: \(r\) \{is total on\} \(G\) and A2: \(a \in G_{+}\)
shows \(\mathrm{a}^{-1} \notin \mathrm{G}_{+}\)
proof -
from A2 have \(\mathrm{a} \in \mathrm{G}\) using PositiveSet_def by simp
with A1 have Exactly_1_of_3_holds ( \(a=1, a \in G_{+}, a^{-1} \in G_{+}\))
using OrdGroup_decomp by simp
with A2 show \(a^{-1} \notin G_{+}\)by (rule Fol1_L7)
qed
The set of positive elements of a nontrivial linearly ordered group is not
empty.
lemma (in group3) OrderedGroup_ZF_1_L21:
assumes A1: \(r\) \{is total on \(\}\) and A2: \(G \neq\{1\}\)
shows \(G_{+} \neq 0\)
proof -
have \(1 \in G\) using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
with A2 obtain a where \(a \in G \quad a \neq 1\) by auto
with A1 have \(a \in G_{+} \vee a^{-1} \in G_{+}\)
using OrderedGroup_ZF_1_L14 by auto
then show \(G_{+} \neq 0\) by auto

\section*{qed}

If \(b \in \mathrm{G}_{+}\), then \(a<a \cdot b\). Multiplying \(a\) by a positive elemnt increases \(a\).
```

lemma (in group3) OrderedGroup_ZF_1_L22:
assumes A1: a\inG b\inG+
shows a\leqa\cdotb a f=a\cdotb a
proof -
from ordGroupAssum A1 have a.1
using OrderedGroup_ZF_1_L2A IsAnOrdGroup_def
by simp
with A1 show a\leqa\cdotb
using OrderedGroup_ZF_1_L1 group0.group0_2_L2
by simp
then show a\cdotb \inG
using OrderedGroup_ZF_1_L4 by simp
{ from A1 have a\inG b\inG
using PositiveSet_def by auto
moreover assume a = a\cdotb
ultimately have b = 1
using OrderedGroup_ZF_1_L1 group0.group0_2_L7
by simp
with A1 have False using PositiveSet_def
by simp
} then show a f a b by auto
qed

```

If \(G\) is a nontrivial linearly ordered hroup, then for every element of \(G\) we can find one in \(G_{+}\)that is greater or equal.
```

lemma (in group3) OrderedGroup_ZF_1_L23:
assumes A1: r {is total on} G and A2: G \not= {1}
and A3: a\inG
shows }\exists\textrm{b}\in\mp@subsup{G}{+}{}. a\leq
proof -
{ assume A4: a\inG+ then have a\leqa
using PositiveSet_def OrderedGroup_ZF_1_L3
by simp
with A4 have }\exists\textrm{b}\in\mp@subsup{\textrm{G}}{+}{}.\textrm{a}\leq\textrm{b}\mathrm{ by auto }
moreover
{ assume a\not\inG}\mp@subsup{G}{+}{
with A1 A3 have I: a\leq1 using OrderedGroup_ZF_1_L17
by simp
from A1 A2 obtain b where II: b\inG+
using OrderedGroup_ZF_1_L21 by auto
then have 1\leqb using PositiveSet_def by simp
with I have a\leqb by (rule Group_order_transitive)
with II have }\exists\textrm{b}\in\mp@subsup{G}{+}{}. a\leqb by auto
ultimately show thesis by auto
qed

```

The \(\mathrm{G}^{+}\)is \(\mathrm{G}_{+}\)plus the unit.
lemma (in group3) OrderedGroup_ZF_1_L24: shows \(\mathrm{G}^{+}=\mathrm{G}_{+} \cup\{1\}\)
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2A OrderedGroup_ZF_1_L3A
by auto
What is \(-G_{+}\), really?
lemma (in group3) OrderedGroup_ZF_1_L25: shows
\(\left(-\mathrm{G}_{+}\right)=\left\{\mathrm{a}^{-1} \cdot \mathrm{a} \in \mathrm{G}_{+}\right\}\)
\(\left(-\mathrm{G}_{+}\right) \subseteq \mathrm{G}\)
proof -
from ordGroupAssum have I: GroupInv(G,P) : G \(\rightarrow\) G using IsAnOrdGroup_def group0_2_T2 by simp
moreover have \(G_{+} \subseteq G\) using PositiveSet_def by auto
ultimately show
\(\left(-G_{+}\right)=\left\{a^{-1} . a \in G_{+}\right\}\)
\(\left(-\mathrm{G}_{+}\right) \subseteq \mathrm{G}\)
using func_imagedef func1_1_L6 by auto
qed
If the inverse of \(a\) is in \(\mathrm{G}_{+}\), then \(a\) is in the inverse of \(\mathrm{G}_{+}\).
lemma (in group3) OrderedGroup_ZF_1_L26:
assumes A1: \(a \in G\) and A2: \(a^{-1} \in \bar{G}_{+}\)
shows \(a \in\left(-G_{+}\right)\)
proof -
from A1 have \(\mathrm{a}^{-1} \in \mathrm{G} \quad \mathrm{a}=\left(\mathrm{a}^{-1}\right)^{-1}\) using OrderedGroup_ZF_1_L1 group0.inverse_in_group group0.group_inv_of_inv by auto
with A2 show a \(\in\left(-G_{+}\right)\)using OrderedGroup_ZF_1_L25 by auto
qed
If \(a\) is in the inverse of \(\mathrm{G}_{+}\), then its inverse is in \(G_{+}\).
```

lemma (in group3) OrderedGroup_ZF_1_L27:
assumes a }\in(-\mp@subsup{G}{+}{}
shows a-1 }\in\mp@subsup{G}{+}{
using assms OrderedGroup_ZF_1_L25 PositiveSet_def
OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by auto

```

A linearly ordered group can be decomposed into \(G_{+},\{1\}\) and \(-G_{+}\)
lemma (in group3) OrdGroup_decomp2:
assumes A1: \(r\) \{is total on\} G
shows
\(\mathrm{G}=\mathrm{G}_{+} \cup\left(-\mathrm{G}_{+}\right) \cup\{\mathbf{1}\}\)
\(\mathrm{G}_{+} \cap\left(-\mathrm{G}_{+}\right)=0\)
\(1 \notin G_{+} \cup\left(-G_{+}\right)\)
proof -
\{ fix a assume A2: \(a \in G\)
with A1 have \(a \in G_{+} \vee a^{-1} \in G_{+} V a=1\) using OrderedGroup_ZF_1_L14 by auto
with A2 have \(a \in G_{+} \vee a \in\left(-G_{+}\right) \quad V a=1\) using OrderedGroup_ZF_1_L26 by auto
then have \(a \in\left(G_{+} \cup\left(-G_{+}\right) \cup\{1\}\right)\) by auto
\(\}\) then have \(G \subseteq G_{+} \cup\left(-G_{+}\right) \cup\{1\}\)
by auto
moreover have \(G_{+} \cup\left(-G_{+}\right) \cup\{1\} \subseteq G\)
using OrderedGroup_ZF_1_L25 PositiveSet_def OrderedGroup_ZF_1_L1 group0.group0_2_L2
by auto
ultimately show \(G=G_{+} \cup\left(-G_{+}\right) \cup\{1\}\) by auto
\(\left\{\right.\) let \(A=G_{+} \cap\left(-G_{+}\right)\)
assume \(G_{+} \cap\left(-G_{+}\right) \neq 0\)
then have \(A \neq 0\) by simp
then obtain a where \(a \in A\) by blast
then have False using OrderedGroup_ZF_1_L15 OrderedGroup_ZF_1_L27 by auto
\} then show \(G_{+} \cap\left(-G_{+}\right)=0\) by auto
show \(1 \notin \mathrm{G}_{+} \cup\left(-\mathrm{G}_{+}\right)\)
using OrderedGroup_ZF_1_L27
OrderedGroup_ZF_1_L1 group0.group_inv_of_one
OrderedGroup_ZF_1_L2A by auto
qed
If \(a \cdot b^{-1}\) is nonnegative, then \(b \leq a\). This maybe used to recover the order from the set of nonnegative elements and serve as a way to define order by prescibing that set (see the "Alternative definitions" section).
lemma (in group3) OrderedGroup_ZF_1_L28:
assumes A1: \(a \in G \quad b \in G\) and \(A 2: ~ a \cdot b^{-1} \in G^{+}\)
shows \(\mathrm{b} \leq \mathrm{a}\)
proof -
from A2 have \(1 \leq a \cdot b^{-1}\) using OrderedGroup_ZF_1_L2
by simp
with A1 show \(\mathrm{b} \leq \mathrm{a}\) using OrderedGroup_ZF_1_L5K
by simp
qed
A special case of OrderedGroup_ZF_1_L28 when \(a \cdot b^{-1}\) is positive.
corollary (in group3) OrderedGroup_ZF_1_L29:
assumes A1: \(a \in G \quad b \in G\) and A2: \(a \cdot b^{-1} \in G_{+}\)
shows \(\mathrm{b} \leq \mathrm{a} \quad \mathrm{b} \neq \mathrm{a}\)
proof -
from A2 have \(1 \leq a \cdot b^{-1}\) and \(I: ~ a \cdot b^{-1} \neq 1\)
using OrderedGroup_ZF_1_L2A by auto
with A1 show \(\mathrm{b} \leq \mathrm{a}\) using OrderedGroup_ZF_1_L5K
by simp
from A1 I show \(b \neq a\)
using OrderedGroup_ZF_1_L1 group0.group0_2_L6
by auto
qed
A bit stronger that OrderedGroup_ZF_1_L29, adds case when two elements are equal.
```

lemma (in group3) OrderedGroup_ZF_1_L30:
assumes a\inG b\inG and a=b }\vee\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}\in\mp@subsup{G}{+}{
shows a\leqb
using assms OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L29
by auto

```

A different take on decomposition: we can have \(a=b\) or \(a<b\) or \(b<a\).
```

lemma (in group3) OrderedGroup_ZF_1_L31:
assumes A1: r {is total on} G and A2: a\inG b\inG
shows a=b \vee (a\leqb ^ a\not=b) \vee (b <a ^ b\not=a)
proof -
from A2 have a\cdotb}\mp@subsup{}{}{-1}\inG\mathrm{ using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group_op_closed
by simp
with A1 have a\cdotb}\mp@subsup{}{}{-1}=1\veea\cdot\mp@subsup{b}{}{-1}\in\mp@subsup{G}{+}{}\vee(a\cdot\mp@subsup{b}{}{-1}\mp@subsup{)}{}{-1}\in\mp@subsup{G}{+}{
using OrderedGroup_ZF_1_L14 by simp
moreover
{ assume a\cdotb}\mp@subsup{}{}{-1}=
then have a\cdotb}\mp@subsup{}{}{-1}\cdot\textrm{b}=1\cdot\textrm{b}\mathrm{ by simp
with A2 have a=b \vee (}a\leqb\wedge a\not=b)\vee(b\leqa\wedge b\not=a
using OrderedGroup_ZF_1_L1
group0.inv_cancel_two group0.group0_2_L2 by auto }
moreover
{ assume a\cdotb
with A2 have a=b \vee (a\leqb ^ a\not=b) \vee (b <a ^ b\not=a)
using OrderedGroup_ZF_1_L29 by auto }
moreover
{ assume (a\cdotb}\mp@subsup{}{}{-1}\mp@subsup{)}{}{-1}\in\mp@subsup{G}{+}{
with A2 have b\cdota}\mp@subsup{}{}{-1}\in\mp@subsup{G}{+}{}\mathrm{ using OrderedGroup_ZF_1_L1
group0.group0_2_L12 by simp
with A2 have a=b \vee (}a\leqb\wedge a\not=b) \vee (b\leqa ^ b\not=a
using OrderedGroup_ZF_1_L29 by auto }
ultimately show a=b \vee (a\leqb ^ a\not=b) \vee (b < a ^ b\not=a)
by auto
qed

```

\subsection*{32.4 Intervals and bounded sets}

Intervals here are the closed intervals of the form \(\{x \in G \cdot a \leq x \leq b\}\).
A bounded set can be translated to put it in \(G^{+}\)and then it is still bounded above.
lemma (in group3) OrderedGroup_ZF_2_L1:
assumes A1: \(\forall \mathrm{g} \in \mathrm{A} . \mathrm{L} \leq \mathrm{g} \wedge \mathrm{g} \leq \mathrm{M}\)
and A2: \(\mathrm{S}=\) RightTranslation( \(\mathrm{G}, \mathrm{P}, \mathrm{L}^{-1}\) )
and A3: \(a \in S(A)\)
shows \(\mathrm{a} \leq \mathrm{M} \cdot \mathrm{L}^{-1} \quad 1 \leq \mathrm{a}\)
proof -
from \(A 3\) have \(A \neq 0\) using func1_1_L13A by fast
then obtain \(g\) where \(g \in A\) by auto
with A1 have T1: \(L \in G M \in G L^{-1} \in G\)
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto
with A2 have \(\mathrm{S}: \mathrm{G} \rightarrow \mathrm{G}\) using OrderedGroup_ZF_1_L1 group0.group0_5_L1 by simp
moreover from A1 have T2: A \(\subseteq\) G using OrderedGroup_ZF_1_L4 by auto
ultimately have \(S(A)=\{S(b)\). \(b \in A\}\) using func_imagedef by simp
with A3 obtain \(b\) where \(T 3: ~ b \in A ~ a=S(b)\) by auto
with A1 ordGroupAssum T1 have \(\mathrm{b} \cdot \mathrm{L}^{-1} \leq \mathrm{M} \cdot \mathrm{L}^{-1} \mathrm{~L} \cdot \mathrm{~L}^{-1} \leq \mathrm{b} \cdot \mathrm{L}^{-1}\) using IsAnOrdGroup_def by auto
with T3 A2 T1 T2 show \(\mathrm{a} \leq \mathrm{M} \cdot \mathrm{L}^{-1} \quad 1 \leq \mathrm{a}\) using OrderedGroup_ZF_1_L1 group0.group0_5_L2 group0.group0_2_L6 by auto
qed
Every bounded set is an image of a subset of an interval that starts at 1.
```

lemma (in group3) OrderedGroup_ZF_2_L2:
assumes A1: IsBounded (A,r)
shows $\exists \mathrm{B} . \exists \mathrm{g} \in \mathrm{G}^{+} . \exists \mathrm{T} \in \mathrm{G} \rightarrow \mathrm{G} . \mathrm{A}=\mathrm{T}(\mathrm{B}) \wedge \mathrm{B} \subseteq \operatorname{Interval}(\mathrm{r}, \mathbf{1}, \mathrm{g})$
proof -
\{ assume A2: $\mathrm{A}=0$
let $B=0$
let $\mathrm{g}=1$
let $\mathrm{T}=$ ConstantFunction ($\mathrm{G}, 1$)
have $\mathrm{g} \in \mathrm{G}^{+}$using OrderedGroup_ZF_1_L3A by simp
moreover have $\mathrm{T}: \mathrm{G} \rightarrow \mathrm{G}$
using func1_3_L1 OrderedGroup_ZF_1_L1 group0.group0_2_L2 by simp
moreover from $A 2$ have $A=T(B)$ by simp
moreover have $B \subseteq$ Interval ($\mathrm{r}, 1, \mathrm{~g}$) by simp
ultimately have
$\exists \mathrm{B} . \exists \mathrm{g} \in \mathrm{G}^{+} . \exists \mathrm{T} \in \mathrm{G} \rightarrow \mathrm{G} . \mathrm{A}=\mathrm{T}(\mathrm{B}) \wedge \mathrm{B} \subseteq$ Interval $(\mathrm{r}, \mathbf{1}, \mathrm{g})$
by auto \}
moreover
\{ assume A3: $\mathrm{A} \neq 0$
with A1 have $\exists \mathrm{L} . \forall \mathrm{x} \in \mathrm{A} . \mathrm{L} \leq \mathrm{x}$ and $\exists \mathrm{U} . \forall \mathrm{x} \in \mathrm{A} . \mathrm{x} \leq \mathrm{U}$
using IsBounded_def IsBoundedBelow_def IsBoundedAbove_def
by auto
then obtain L U where D1: $\forall x \in A . L \leq x \wedge x \leq U$
by auto
with A3 have T1: A \subseteq G using OrderedGroup_ZF_1_L4 by auto

```
from A3 obtain a where \(a \in A\) by auto
with \(D 1\) have \(T 2: L \leq a \mathrm{a} \leq \mathrm{U}\) by auto
then have \(T 3: L \in G L^{-1} \in G U \in G\)
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.inverse_in_group by auto
let \(\mathrm{T}=\) RightTranslation(G, \(\mathrm{P}, \mathrm{L}\) )
let \(B=\) RightTranslation ( \(G, P, L^{-1}\) ) ( \(A\) )
let \(\mathrm{g}=\mathrm{U} \cdot \mathrm{L}^{-1}\)
have \(g \in G^{+}\)
proof -
from T2 have \(\mathrm{L} \leq \mathrm{U}\) using Group_order_transitive by fast
with ordGroupAssum T3 have \(\mathrm{L} \cdot \mathrm{L}^{-1} \leq \mathrm{g}\)
using IsAnOrdGroup_def by simp
with T3 show thesis using OrderedGroup_ZF_1_L1 group0.group0_2_L6
OrderedGroup_ZF_1_L2 by simp
qed
moreover from \(T 3\) have \(T: G \rightarrow G\)
using OrderedGroup_ZF_1_L1 group0.group0_5_L1
by simp
moreover have \(A=T(B)\)
proof -
from \(T 3\) T1 have \(T(B)=\left\{a \cdot L^{-1} \cdot L, a \in A\right\}\)
using OrderedGroup_ZF_1_L1 group0.group0_5_L6
by simp
moreover from T3 T1 have \(\forall \mathrm{a} \in \mathrm{A} . \mathrm{a} \cdot \mathrm{L}^{-1} \cdot \mathrm{~L}=\mathrm{a} \cdot\left(\mathrm{L}^{-1} \cdot \mathrm{~L}\right)\)
using OrderedGroup_ZF_1_L1 group0.group_oper_assoc by auto ultimately have \(T(B)=\left\{a \cdot\left(L^{-1} \cdot L\right) \cdot a \in A\right\}\) by simp with \(T 3\) have \(T(B)=\{a \cdot 1 . a \in A\}\)
using OrderedGroup_ZF_1_L1 group0.group0_2_L6 by simp moreover from T1 have \(\forall \mathrm{a} \in \mathrm{A} . \mathrm{a} \cdot 1=\mathrm{a}\)
using OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto ultimately show thesis by simp
qed
moreover have \(B \subseteq\) Interval ( \(\mathrm{r}, 1, \mathrm{~g}\) )
proof
fix y assume A4: y \(\in B\)
let \(S=\) RightTranslation(G, \(P, L^{-1}\) )
from D1 have T4: \(\forall x \in A . L \leq x \wedge x \leq U\) by simp
moreover have T5: \(\mathrm{S}=\) RightTranslation( \(\mathrm{G}, \mathrm{P}, \mathrm{L}^{-1}\) )
by simp
moreover from A4 have T6: y \(\in S(A)\) by simp
ultimately have \(\mathrm{y} \leq \mathrm{U} \cdot \mathrm{L}^{-1}\) using OrderedGroup_ZF_2_L1
by blast
moreover from T4 T5 T6 have \(\mathbf{1} \leq \mathrm{y}\) by (rule OrderedGroup_ZF_2_L1)
ultimately show \(y \in \operatorname{Interval}(r, 1, g)\) using Interval_def by auto
qed
ultimately have
\(\exists \mathrm{B} . \exists \mathrm{g} \in \mathrm{G}^{+} . \exists \mathrm{T} \in \mathrm{G} \rightarrow \mathrm{G} . \mathrm{A}=\mathrm{T}(\mathrm{B}) \wedge \mathrm{B} \subseteq\) Interval \((\mathrm{r}, \mathbf{1}, \mathrm{g})\)
by auto \}

\section*{ultimately show thesis by auto} qed

If every interval starting at 1 is finite, then every bounded set is finite. I find it interesting that this does not require the group to be linearly ordered (the order to be total).
theorem (in group3) OrderedGroup_ZF_2_T1:
assumes A1: \(\forall \mathrm{g} \in \mathrm{G}^{+}\). Interval \((\mathrm{r}, \mathbf{1}, \mathrm{g}) \in \operatorname{Fin}(\mathrm{G})\)
and A2: IsBounded (A,r)
shows \(A \in \operatorname{Fin}(G)\)
proof -
from A2 have
```

 \existsB.\existsg\inG+}.\exists\textrm{T}\in\textrm{G}->\textrm{G}.\textrm{A}=\textrm{T}(\textrm{B})\wedge\textrm{B}\subseteq\mathrm{ Interval(r,1,g)
    ```
            using OrderedGroup_ZF_2_L2 by simp
    then obtain \(B \mathrm{~g} T\) where \(\mathrm{D} 1: \mathrm{g} \in \mathrm{G}^{+} \mathrm{B} \subseteq\) Interval \((\mathrm{r}, 1, \mathrm{~g})\)
                and \(D 2: T: G \rightarrow G A=T(B)\) by auto
    from D1 A1 have B \(\in\) Fin(G) using Fin_subset_lemma by blast
    with D2 show thesis using Finite1_L6A by simp
qed

In linearly ordered groups finite sets are bounded.
```

theorem (in group3) ord_group_fin_bounded:
assumes r {is total on} G and B\inFin(G)
shows IsBounded(B,r)
using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def Finite_ZF_1_T1
by simp

```

For nontrivial linearly ordered groups if for every element \(G\) we can find one in \(A\) that is greater or equal (not necessarily strictly greater), then \(A\) can neither be finite nor bounded above.
```

lemma (in group3) OrderedGroup_ZF_2_L2A:
assumes A1: r {is total on} G and A2: G }\not={1
and A3: }\forall\textrm{a}\in\textrm{G}.\exists\textrm{b}\in\textrm{A}.\textrm{a}\leq\textrm{b
shows
\foralla\inG. \existsb\inA. a\not=b ^ a
\negIsBoundedAbove(A,r)
A \& Fin(G)
proof -
{ fix a
from A1 A2 obtain c where c }\in\mp@subsup{G}{+}{
using OrderedGroup_ZF_1_L21 by auto
moreover assume a\inG
ultimately have
a\cdotc \inG and I: a < a.c
using OrderedGroup_ZF_1_L22 by auto
with A3 obtain b where II: b\inA and III: a.c \leq b
by auto
moreover from I III have a<b by (rule OrderedGroup_ZF_1_L4A)

```
ultimately have \(\exists b \in A . a \neq b \wedge a \leq b\) by auto
\} thus \(\forall a \in G . \exists \mathrm{b} \in \mathrm{A} . \mathrm{a} \neq \mathrm{b} \wedge \mathrm{a} \leq \mathrm{b}\) by simp
with ordGroupAssum A1 show
\(\neg\) IsBoundedAbove (A,r)
A \(\notin \operatorname{Fin}(G)\)
using IsAnOrdGroup_def IsPartOrder_def
OrderedGroup_ZF_1_L1A Order_ZF_3_L14 Finite_ZF_1_1_L3
by auto
qed
Nontrivial linearly ordered groups are infinite. Recall that Fin(A) is the collection of finite subsets of \(A\). In this lemma we show that \(G \notin \operatorname{Fin}(G)\), that is that \(G\) is not a finite subset of itself. This is a way of saying that \(G\) is infinite. We also show that for nontrivial linearly ordered groups \(\mathrm{G}_{+}\)is infinite.
```

theorem (in group3) Linord_group_infinite:
assumes A1: r {is total on} G and A2: G }\not={1
shows
G+}\not=\operatorname{Fin(G)
G \& Fin(G)
proof -
from A1 A2 show I: G }\mp@subsup{G}{+}{}\not\in\operatorname{Fin(G)
using OrderedGroup_ZF_1_L23 OrderedGroup_ZF_2_L2A
by simp
{ assume G \in Fin(G)
moreover have G}\mp@subsup{G}{+}{}\subseteqG\mathrm{ using PositiveSet_def by auto
ultimately have G+ \in Fin(G) using Fin_subset_lemma
by blast
with I have False by simp
} then show G }\not\in\textrm{Fin}(\textrm{G})\mathrm{ by auto
qed

```

A property of nonempty subsets of linearly ordered groups that don't have a maximum: for any element in such subset we can find one that is strictly greater.
```

lemma (in group3) OrderedGroup_ZF_2_L2B:
assumes A1: r {is total on} G and A2: A\subseteqG and
A3: \negHasAmaximum(r,A) and A4: x\inA
shows }\exists\textrm{y}\in\textrm{A}.\textrm{x}<\textrm{y
proof -
from ordGroupAssum assms have
antisym(r)
r {is total on} G
A\subseteqG \negHasAmaximum(r,A) x\inA
using IsAnOrdGroup_def IsPartOrder_def
by auto
then have \existsy\inA. \langlex,y\rangle\in r ^ y f=x
using Order_ZF_4_L16 by simp

```
then show \(\exists y \in A . x<y\) by auto
qed
In linearly ordered groups \(G \backslash G_{+}\)is bounded above.
```

lemma (in group3) OrderedGroup_ZF_2_L3:
assumes A1: r {is total on} G shows IsBoundedAbove(G-G}\mp@subsup{G}{+}{},r
proof -
from A1 have }\forall\textrm{a}\in\textrm{G}-\mp@subsup{G}{+}{}.\textrm{a}\leq
using OrderedGroup_ZF_1_L17 by simp
then show IsBoundedAbove(G-G+,r)
using IsBoundedAbove_def by auto
qed

```

In linearly ordered groups if \(A \cap G_{+}\)is finite, then \(A\) is bounded above.
```

lemma (in group3) OrderedGroup_ZF_2_L4:
assumes A1: r {is total on} G and A2: A\subseteqG
and A3: A }\cap\mp@subsup{G}{+}{}\in\operatorname{Fin}(\textrm{G}
shows IsBoundedAbove(A,r)
proof -
have A \cap (G-G+) \subseteqG-G
with A1 have IsBoundedAbove(A \cap (G-G+),r)
using OrderedGroup_ZF_2_L3 Order_ZF_3_L13
by blast
moreover from A1 A3 have IsBoundedAbove(A \cap GG,r)
using ord_group_fin_bounded IsBounded_def
by simp
moreover from A1 ordGroupAssum have
r {is total on} G trans(r) r\subseteqG\timesG
using IsAnOrdGroup_def IsPartOrder_def by auto
ultimately have IsBoundedAbove(A \cap (G-G+) \cupA \cap G G,r)
using Order_ZF_3_L3 by simp
moreover from A2 have A = A \cap (G-G+) \cupA\cap G G+
by auto
ultimately show IsBoundedAbove(A,r) by simp
qed

```
If a set \(-A \subseteq G\) is bounded above, then \(A\) is bounded below.
lemma (in group3) OrderedGroup_ZF_2_L5:
    assumes A1: \(\mathrm{A} \subseteq \mathrm{G}\) and A2: IsBoundedAbove (-A,r)
    shows IsBoundedBelow (A,r)
proof -
    \{ assume \(A=0\) then have IsBoundedBelow ( \(\mathrm{A}, \mathrm{r}\) )
            using IsBoundedBelow_def by auto \}
    moreover
    \{ assume A3: A \(\neq 0\)
        from ordGroupAssum have I: \(\operatorname{GroupInv}(G, P): G \rightarrow G\)
            using IsAnOrdGroup_def group0_2_T2 by simp
            with A1 A2 A3 obtain \(u\) where \(D: \forall a \in(-A)\). \(a \leq u\)
            using func1_1_L15A IsBoundedAbove_def by auto
```

 { fix b assume b\inA
 with A1 I D have }\mp@subsup{\textrm{b}}{}{-1}\lequ\mathrm{ and T: b}\in
 using func_imagedef by auto
 then have }\mp@subsup{\textrm{u}}{}{-1}\leq(\mp@subsup{\textrm{b}}{}{-1}\mp@subsup{)}{}{-1}\mathrm{ using OrderedGroup_ZF_1_L5
 by simp
 with T have }\mp@subsup{\textrm{u}}{}{-1}\leq\textrm{b
 using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp
} then have }\forall\textrm{b}\in\textrm{A}.\langle\mp@subsup{\textrm{u}}{}{-1},\textrm{b}\rangle\in\textrm{r}\mathrm{ by simp
then have IsBoundedBelow(A,r)
using Order_ZF_3_L9 by blast }
ultimately show thesis by auto
qed

```
If \(a \leq b\), then the image of the interval \(a . . b\) by any function is nonempty.
lemma (in group3) OrderedGroup_ZF_2_L6:
    assumes \(a \leq b\) and \(f: G \rightarrow G\)
    shows \(f(\) Interval \((r, a, b)) \neq 0\)
    using ordGroupAssum assms OrderedGroup_ZF_1_L4
        Order_ZF_2_L6 Order_ZF_2_L2A
        IsAnOrdGroup_def IsPartOrder_def func1_1_L15A
    by auto
end

\section*{33 More on ordered groups}
theory OrderedGroup_ZF_1 imports OrderedGroup_ZF
begin
In this theory we continue the OrderedGroup_ZF theory development.

\subsection*{33.1 Absolute value and the triangle inequality}

The goal of this section is to prove the triangle inequality for ordered groups.
Absolute value maps \(G\) into \(G\).
lemma (in group3) OrderedGroup_ZF_3_L1:
shows AbsoluteValue (G,P,r) : G \(\rightarrow\) G
proof -
let \(\mathrm{f}=\mathrm{id}\left(\mathrm{G}^{+}\right)\)
let \(\mathrm{g}=\operatorname{restrict(GroupInv(G,P),G-G+)}\)
have \(f: G^{+} \rightarrow \mathrm{G}^{+}\)using id_type by simp
then have \(f: G^{+} \rightarrow G\) using OrderedGroup_ZF_1_L4E fun_weaken_type by blast
moreover have g : G-G \({ }^{+} \rightarrow \mathrm{G}\)
proof -
```

 from ordGroupAssum have GroupInv(G,P) : G }->\textrm{G
 using IsAnOrdGroup_def groupO_2_T2 by simp
 moreover have G-G+}\subseteqG\mathrm{ by auto
 ultimately show thesis using restrict_type2 by simp
 qed
 moreover have G }\mp@subsup{\textrm{G}}{}{+}\cap(\textrm{G}-\mp@subsup{\textrm{G}}{}{+})=0\mathrm{ by blast
 ultimately have f Ug: G
 by (rule fun_disjoint_Un)
 moreover have G+U(G-G+})=G using OrderedGroup_ZF_1_L4E
 by auto
 ultimately show AbsoluteValue(G,P,r) : G }->\textrm{G
 using AbsoluteValue_def by simp
 qed
If }a\in\mp@subsup{G}{}{+}\mathrm{ , then }|a|=a\mathrm{ .
lemma (in group3) OrderedGroup_ZF_3_L2:
assumes A1: a }\in\mp@subsup{G}{}{+}\mathrm{ shows |a| = a
proof -
from ordGroupAssum have GroupInv(G,P) : G }->\textrm{G
using IsAnOrdGroup_def group0_2_T2 by simp
with A1 show thesis using
func1_1_L1 OrderedGroup_ZF_1_L4E fun_disjoint_apply1
AbsoluteValue_def id_conv by simp
qed

```

The absolute value of the unit is the unit. In the additive totation that would be \(|0|=0\).
lemma (in group3) OrderedGroup_ZF_3_L2A:
shows \(|1|=1\) using OrderedGroup_ZF_1_L3A OrderedGroup_ZF_3_L2
by simp
If \(a\) is positive, then \(|a|=a\).
lemma (in group3) OrderedGroup_ZF_3_L2B:
assumes \(a \in G_{+}\)shows \(|a|=a\)
using assms PositiveSet_def Nonnegative_def OrderedGroup_ZF_3_L2
by auto
If \(a \in G \backslash G^{+}\), then \(|a|=a^{-1}\).
lemma (in group3) OrderedGroup_ZF_3_L3:
assumes A1: \(a \in G-G^{+}\)shows \(|a|=a^{-1}\)
proof -
have \(\operatorname{domain}\left(i d\left(G^{+}\right)\right)=G^{+}\)
using id_type func1_1_L1 by auto
with A1 show thesis using fun_disjoint_apply2 AbsoluteValue_def restrict by simp
qed
For elements that not greater than the unit, the absolute value is the inverse.
```

lemma (in group3) OrderedGroup_ZF_3_L3A:
assumes A1: a\leq1
shows |a| = a }\mp@subsup{}{}{-1
proof -
{ assume a=1 then have |a| = a }\mp@subsup{a}{}{-1
using OrderedGroup_ZF_3_L2A OrderedGroup_ZF_1_L1 group0.group_inv_of_one
by simp }
moreover
{ assume a }=
with A1 have |a| = a-1 using OrderedGroup_ZF_1_L4C OrderedGroup_ZF_3_L3
by simp }
ultimately show |a| = a }\mp@subsup{}{}{-1}\mathrm{ by blast
qed

```

In linearly ordered groups the absolute value of any element is in \(G^{+}\).
```

lemma (in group3) OrderedGroup_ZF_3_L3B:
assumes A1: r {is total on} G and A2: a\inG
shows |a| \in G+
proof -
{ assume a }\in\mp@subsup{G}{}{+}\mathrm{ then have |a| }\in\mp@subsup{G}{}{+
using OrderedGroup_ZF_3_L2 by simp }
moreover
{ assume a }\not\in\mp@subsup{G}{}{+
with A1 A2 have |a| \in G+ using OrderedGroup_ZF_3_L3
OrderedGroup_ZF_1_L6 by simp }
ultimately show }|a|\in\mp@subsup{G}{}{+}\mathrm{ by blast
qed

```

For linearly ordered groups (where the order is total), the absolute value maps the group into the positive set.
lemma (in group3) OrderedGroup_ZF_3_L3C:
assumes A1: r \{is total on\} G
shows AbsoluteValue ( \(G, P, r\) ) : \(G \rightarrow G^{+}\)
proof-
have AbsoluteValue (G,P,r) : G \(\rightarrow\) G using OrderedGroup_ZF_3_L1
by simp
moreover from A1 have T2:
\(\forall \mathrm{g} \in \mathrm{G}\). AbsoluteValue (G,P,r)(g) \(\in \mathrm{G}^{+}\)
using OrderedGroup_ZF_3_L3B by simp
ultimately show thesis by (rule func1_1_L1A)
qed
If the absolute value is the unit, then the elemnent is the unit.
lemma (in group3) OrderedGroup_ZF_3_L3D:
assumes A1: \(\mathrm{a} \in \mathrm{G}\) and A2: \(|\mathrm{a}|=1\)
shows \(\mathrm{a}=1\)
proof -
\{ assume \(a \in G^{+}\)
with A2 have \(\mathrm{a}=1\) using OrderedGroup_ZF_3_L2 by simp \}
```

 moreover
 { assume a }\not\in\mp@subsup{\textrm{G}}{}{+
 with A1 A2 have a = 1 using
 OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L1 group0.group0_2_L8A
 by auto }
 ultimately show a = 1 by blast
 qed

```

In linearly ordered groups the unit is not greater than the absolute value of any element.
lemma (in group3) OrderedGroup_ZF_3_L3E:
assumes \(r\) \{is total on\} \(G\) and \(a \in G\)
shows \(1 \leq|a|\)
using assms OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by simp
If \(b\) is greater than both \(a\) and \(a^{-1}\), then \(b\) is greater than \(|a|\).
lemma (in group3) OrderedGroup_ZF_3_L4:
assumes A1: \(\mathrm{a} \leq \mathrm{b}\) and A2: \(\mathrm{a}^{-1} \leq \mathrm{b}\)
shows \(|\mathrm{a}| \leq \mathrm{b}\)
proof -
\{ assume \(\mathrm{a} \in \mathrm{G}^{+}\)
with A1 have \(|\mathrm{a}| \leq \mathrm{b}\) using OrderedGroup_ZF_3_L2 by simp \}
moreover
\{ assume \(\mathrm{a} \notin \mathrm{G}^{+}\)
with A1 A2 have \(|a| \leq b\)
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L3 by simp \}
ultimately show \(|a| \leq b\) by blast
qed
In linearly ordered groups \(a \leq|a|\).
lemma (in group3) OrderedGroup_ZF_3_L5:
assumes A1: \(r\) \{is total on\} \(G\) and A2: \(a \in G\)
shows a \(\leq|a|\)
proof -
\{ assume \(a \in G^{+}\)
with A2 have \(a \leq|a|\) using OrderedGroup_ZF_3_L2 OrderedGroup_ZF_1_L3 by simp \}
moreover
\{ assume a \(\notin \mathrm{G}^{+}\)
with A1 A2 have \(a \leq|a|\) using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L4B by simp \}
ultimately show \(a \leq|a|\) by blast
qed
\(a^{-1} \leq|a|\) (in additive notation it would be \(-a \leq|a|\).
lemma (in group3) OrderedGroup_ZF_3_L6:
assumes A1: \(a \in G\) shows \(a^{-1} \leq|a|\)
proof -
```

 { assume a }\in\mp@subsup{G}{}{+
 then have T1: 1\leqa and T2: |a| = a using OrderedGroup_ZF_1_L2
 OrderedGroup_ZF_3_L2 by auto
 then have a }\mp@subsup{}{}{-1}\leq\mp@subsup{\mathbf{1}}{}{-1}\mathrm{ using OrderedGroup_ZF_1_L5 by simp
 then have T3: a }\mp@subsup{}{}{-1}\leq
 using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp
 from T3 T1 have a }\mp@subsup{}{}{-1}\leqa by (rule Group_order_transitive)
 with T2 have }\mp@subsup{\textrm{a}}{}{-1}\leq|a| by simp
 moreover
 { assume A2: a }\not\in\mp@subsup{\textrm{G}}{}{+
 from A1 have |a| \inG
 using OrderedGroup_ZF_3_L1 apply_funtype by auto
 with ordGroupAssum have |a| \leq |a|
 using IsAnOrdGroup_def IsPartOrder_def refl_def by simp
 with A1 A2 have a }\mp@subsup{a}{}{-1}\leq||a| using OrderedGroup_ZF_3_L3 by simp
 ultimately show a }\mp@subsup{\textrm{a}}{}{-1}\leq|a| by blas
 qed

```

Some inequalities about the product of two elements of a linearly ordered group and its absolute value.
```

lemma (in group3) OrderedGroup_ZF_3_L6A:
assumes r \{is total on\} G and $a \in G \quad b \in G$
shows
$\mathrm{a} \cdot \mathrm{b} \leq|\mathrm{a}| \cdot|\mathrm{b}|$
$a \cdot b^{-1} \leq|a| \cdot|b|$
$\mathrm{a}^{-1} \cdot \mathrm{~b} \leq|\mathrm{a}| \cdot|\mathrm{b}|$
$a^{-1} \cdot b^{-1} \leq|a| \cdot|b|$
using assms OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6
OrderedGroup_ZF_1_L5B by auto
$\left|a^{-1}\right| \leq|a|$.
lemma (in group3) OrderedGroup_ZF_3_L7:
assumes r \{is total on\} G and $\mathrm{a} \in \mathrm{G}$
shows $\left|a^{-1}\right| \leq|a|$
using assms OrderedGroup_ZF_3_L5 OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
OrderedGroup_ZF_3_L6 OrderedGroup_ZF_3_L4 by simp
$\left|a^{-1}\right|=|a|$.
lemma (in group3) OrderedGroup_ZF_3_L7A:
assumes A1: r \{is total on\} G and $\mathrm{A} 2: \mathrm{a} \in \mathrm{G}$
shows $\left|a^{-1}\right|=|a|$
proof -
from A2 have $\mathrm{a}^{-1} \in \mathrm{G}$ using OrderedGroup_ZF_1_L1 group0.inverse_in_group
by simp
with A1 have $\left|\left(\mathrm{a}^{-1}\right)^{-1}\right| \leq\left|\mathrm{a}^{-1}\right|$ using OrderedGroup_ZF_3_L7 by simp
with A1 A2 have $\left|a^{-1}\right| \leq|a| \quad|a| \leq\left|a^{-1}\right|$
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv OrderedGroup_ZF_3_L7
by auto
then show thesis by (rule group_order_antisym)

```
qed
```

|a\cdotb}\mp@subsup{}{-1}{|}=|b\cdot\mp@subsup{a}{}{-1}|. It doesn't look so strange in the additive notation
|a-b| = |b-a|.
lemma (in group3) OrderedGroup_ZF_3_L7B:
assumes A1: r {is total on} G and A2: a\inG b\inG
shows }|\textrm{a}\cdot\mp@subsup{\textrm{b}}{}{-1}|=|\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}
proof -
from A1 A2 have |(a\cdotb-1) -1 | = |a\cdotb b
OrderedGroup_ZF_1_L1 group0.inverse_in_group group0.group0_2_L1
monoid0.group0_1_L1 OrderedGroup_ZF_3_L7A by simp
moreover from A2 have (a\cdotb}\mp@subsup{}{}{-1}\mp@subsup{)}{}{-1}=\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1
using OrderedGroup_ZF_1_L1 group0.group0_2_L12 by simp
ultimately show thesis by simp
qed

```

Triangle inequality for linearly ordered abelian groups. It would be nice to drop commutativity or give an example that shows we can't do that.
```

theorem (in group3) OrdGroup_triangle_ineq:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a\inG b\inG
shows |a\cdotb| \leq |a|\cdot|b|
proof -
from A1 A2 A3 have
a}\leq|\textrm{a}|\textrm{b}\leq|\textrm{b}|\mp@subsup{\textrm{a}}{}{-1}\leq|\textrm{a}|\mp@subsup{\textrm{b}}{}{-1}\leq|\textrm{b}
using OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6 by auto
then have a\cdotb\leq |a|\cdot|b| a a
using OrderedGroup_ZF_1_L5B by auto
with A1 A3 show |a\cdotb| \leq |a|\cdot|b|
using OrderedGroup_ZF_1_L1 group0.group_inv_of_two IsCommutative_def
OrderedGroup_ZF_3_L4 by simp
qed

```

We can multiply the sides of an inequality with absolute value.
```

lemma (in group3) OrderedGroup_ZF_3_L7C:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a }\in\textrm{G
and A4: |a| \leq c |b| \leq d
shows |a\cdotb| \leqc.d
proof -
from A1 A2 A3 A4 have |a\cdotb| \leq |a|\cdot|b|
using OrderedGroup_ZF_1_L4 OrdGroup_triangle_ineq
by simp
moreover from A4 have |a|\cdot|b| \leqc·d
using OrderedGroup_ZF_1_L5B by simp
ultimately show thesis by (rule Group_order_transitive)
qed

```

A version of the OrderedGroup_ZF_3_L7C but with multiplying by the inverse.
```

lemma (in group3) OrderedGroup_ZF_3_L7CA:
assumes P {is commutative on} G
and r {is total on} G and a\inG b\inG
and |a| \leqc |b| \leqd
shows |a\cdotb}\mp@subsup{}{}{-1}|\leqc\cdot
using assms OrderedGroup_ZF_1_L1 group0.inverse_in_group
OrderedGroup_ZF_3_L7A OrderedGroup_ZF_3_L7C by simp

```

Triangle inequality with three integers.
```

lemma (in group3) OrdGroup_triangle_ineq3:
assumes A1: P {is commutative on} G
and A2: r {is total on} G and A3: a\inG b
shows |a\cdotb\cdotc| \leq |a|\cdot|b|\cdot|c|
proof -
from A3 have T: a\cdotb \inG |c| G G
using OrderedGroup_ZF_1_L1 group0.group_op_closed
OrderedGroup_ZF_3_L1 apply_funtype by auto
with A1 A2 A3 have |a\cdotb\cdotc|}\leq||a\cdotb|\cdot|c
using OrdGroup_triangle_ineq by simp
moreover from ordGroupAssum A1 A2 A3 T have
|a\cdotb|\cdot|c| \leq |a|\cdot|b|\cdot|c|
using OrdGroup_triangle_ineq IsAnOrdGroup_def by simp
ultimately show |a\cdotb\cdotc| \leq |a|\cdot|b|\cdot|c|
by (rule Group_order_transitive)
qed

```

Some variants of the triangle inequality.
lemma (in group3) OrderedGroup_ZF_3_L7D:
    assumes A1: P \{is commutative on\} G
    and A2: \(r\) \{is total on\} \(G\) and \(A 3: a \in G \quad b \in G\)
    and \(\mathrm{A} 4:\left|\mathrm{a} \cdot \mathrm{b}^{-1}\right| \leq \mathrm{c}\)
    shows
    \(|a| \leq c \cdot|b|\)
    \(|\mathrm{a}| \leq|\mathrm{b}| \cdot \mathrm{c}\)
    \(\mathrm{c}^{-1} \cdot \mathrm{a} \leq \mathrm{b}\)
    \(\mathrm{a} \cdot \mathrm{c}^{-1} \leq \mathrm{b}\)
    \(\mathrm{a} \leq \mathrm{b} \cdot \mathrm{c}\)
proof -
    from A3 A4 have
        \(T: a \cdot b^{-1} \in G \quad|b| \in G \quad c \in G \quad c^{-1} \in G\)
        using OrderedGroup_ZF_1_L1
                group0.inverse_in_group group0.group0_2_L1 monoid0.group0_1_L1
                OrderedGroup_ZF_3_L1 apply_funtype OrderedGroup_ZF_1_L4
        by auto
    from A3 have \(|a|=\left|a \cdot b^{-1} \cdot b\right|\)
        using OrderedGroup_ZF_1_L1 group0.inv_cancel_two
        by simp
    with A1 A2 A3 T have \(|\mathrm{a}| \leq\left|\mathrm{a} \cdot \mathrm{b}^{-1}\right| \cdot|\mathrm{b}|\)
using OrdGroup_triangle_ineq by simp
with T A4 show \(|\mathrm{a}| \leq \mathrm{c} \cdot|\mathrm{b}|\) using OrderedGroup_ZF_1_L5C by blast
with \(T\) A1 show \(|a| \leq|b| \cdot c\) using IsCommutative_def by simp
from A2 T have \(a \cdot b^{-1} \leq\left|a \cdot b^{-1}\right|\) using OrderedGroup_ZF_3_L5 by simp
moreover note A4
ultimately have \(\mathrm{I}: \mathrm{a} \cdot \mathrm{b}^{-1} \leq \mathrm{c}\)
by (rule Group_order_transitive)
with A3 show \(\mathrm{c}^{-1} \cdot \mathrm{a} \leq \mathrm{b}\)
using OrderedGroup_ZF_1_L5H by simp
with A1 A3 T show \(a \cdot c^{-1} \leq b\)
using IsCommutative_def by simp
from A1 A3 T I show \(\mathrm{a} \leq \mathrm{b} \cdot \mathrm{c}\)
using OrderedGroup_ZF_1_L5H IsCommutative_def by auto
qed
Some more variants of the triangle inequality.
```

lemma (in group3) OrderedGroup_ZF_3_L7E:
assumes A1: P \{is commutative on\} G
and A2: r \{is total on\} G and A3: $a \in G \quad b \in G$
and A4: $\left|\mathrm{a} \cdot \mathrm{b}^{-1}\right| \leq \mathrm{c}$
shows $\mathrm{b} \cdot \mathrm{c}^{-1} \leq \mathrm{a}$
proof -
from A3 have $a \cdot b^{-1} \in G$
using OrderedGroup_ZF_1_L1
group0.inverse_in_group group0.group_op_closed
by auto
with A2 have $\left|\left(a \cdot b^{-1}\right)^{-1}\right|=\left|a \cdot b^{-1}\right|$
using OrderedGroup_ZF_3_L7A by simp
moreover from A3 have $\left(a \cdot b^{-1}\right)^{-1}=b \cdot a^{-1}$
using OrderedGroup_ZF_1_L1 group0.group0_2_L12
by simp
ultimately have $\left|\mathrm{b} \cdot \mathrm{a}^{-1}\right|=\left|\mathrm{a} \cdot \mathrm{b}^{-1}\right|$
by simp
with A1 A2 A3 A4 show $\mathrm{b} \cdot \mathrm{c}^{-1} \leq \mathrm{a}$
using OrderedGroup_ZF_3_L7D by simp
qed

```

An application of the triangle inequality with four group elements.
lemma (in group3) OrderedGroup_ZF_3_L7F:
assumes A1: P \{is commutative on\} G
and A2: \(r\) \{is total on\} \(G\) and
A3: \(a \in G \quad b \in G \quad c \in G \quad d \in G\)
shows \(\left|a \cdot c^{-1}\right| \leq|a \cdot b| \cdot|c \cdot d| \cdot\left|b \cdot d^{-1}\right|\)
proof -
from A3 have \(T\) :
```

 a}\cdot\mp@subsup{\textrm{c}}{}{-1}\in\textrm{G}\quad\textrm{a}\cdot\textrm{b}\in\textrm{G}\quad\textrm{c}\cdot\textrm{d}\in\textrm{G}\quad\textrm{b}\cdot\mp@subsup{\textrm{d}}{}{-1}\in
 (c.d)}\mp@subsup{)}{}{-1}\inG\quad(b\cdot\mp@subsup{d}{}{-1}\mp@subsup{)}{}{-1}\in
 using OrderedGroup_ZF_1_L1
 group0.inverse_in_group group0.group_op_closed
 by auto
    ```

```

 using OrdGroup_triangle_ineq3 by simp
 moreover from A2 T have }|(c\cdotd\mp@subsup{)}{}{-1}|=|c\cdotd| and |(b\cdotd\mp@subsup{0}{}{-1}\mp@subsup{)}{}{-1}|=|b\cdot\mp@subsup{d}{}{-1}
 using OrderedGroup_ZF_3_L7A by auto
 moreover from A1 A3 have (a\cdotb)\cdot(c\cdotd)-1.(b\cdotd-1)}\mp@subsup{)}{}{-1}=a\cdot\mp@subsup{c}{}{-1
 using OrderedGroup_ZF_1_L1 group0.group0_4_L8
 by simp
 ultimately show |a\cdotc
 by simp
 qed
|a| \leqL implies L}\mp@subsup{L}{}{-1}\leqa(\mathrm{ (it would be -L Sa in the additive notation).
lemma (in group3) OrderedGroup_ZF_3_L8:
assumes A1: a\inG and A2: |a|}\leq
shows
L
proof -
from A1 have I: a-1 \leq |a| using OrderedGroup_ZF_3_L6 by simp
from I A2 have a}\mp@subsup{\textrm{a}}{}{-1}\leq\textrm{L}\mathrm{ by (rule Group_order_transitive)
then have L L-1}\leq(\mp@subsup{\textrm{a}}{}{-1}\mp@subsup{)}{}{-1}\mathrm{ using OrderedGroup_ZF_1_L5 by simp
with A1 show L
by simp
qed

```

In linearly ordered groups \(|a| \leq L\) implies \(a \leq L\) (it would be \(a \leq L\) in the additive notation).
lemma (in group3) OrderedGroup_ZF_3_L8A:
assumes A1: r \{is total on\} G
and A2: \(a \in G\) and \(A 3:|a| \leq L\)
shows
\(\mathrm{a} \leq \mathrm{L}\)
\(1 \leq \mathrm{L}\)
proof -
from A1 A2 have I: a \(\leq\) |a| using OrderedGroup_ZF_3_L5 by simp
from I A3 show \(a \leq L\) by (rule Group_order_transitive)
from A1 A2 A3 have \(1 \leq|a||a| \leq L\)
using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by auto
then show \(1 \leq L\) by (rule Group_order_transitive)
qed
A somewhat generalized version of the above lemma.
lemma (in group3) OrderedGroup_ZF_3_L8B:
assumes A1: \(a \in G\) and \(A 2:|a| \leq L\) and \(A 3: 1 \leq c\)
shows \((\mathrm{L} \cdot \mathrm{C})^{-1} \leq \mathrm{a}\)
```

proof -
from A1 A2 A3 have c}\mp@subsup{\textrm{c}}{}{-1}\cdot\mp@subsup{\textrm{L}}{}{-1}\leq1.
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_1_L5AB
OrderedGroup_ZF_1_L5B by simp
with A1 A2 A3 show (L\cdotc)-1}\leq
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1
group0.group_inv_of_two group0.group0_2_L2
by simp
qed
If b is between a and a}c,\mathrm{ , then }b\cdot\mp@subsup{a}{}{-1}\leqc
lemma (in group3) OrderedGroup_ZF_3_L8C:
assumes A1: a }\leq\textrm{b}\mathrm{ and A2: c,G and A3: b}\leqc\cdot
shows }|\textrm{b}\cdot\mp@subsup{\textrm{a}}{}{-1}|\leq\textrm{c
proof -
from A1 A2 A3 have b}\cdot\mp@subsup{\textrm{a}}{}{-1}\leq
using OrderedGroup_ZF_1_L9C OrderedGroup_ZF_1_L4
by simp
moreover have (b\cdota }\mp@subsup{\textrm{a}}{}{-1}\mp@subsup{)}{}{-1}\leq
proof -
from A1 have T: a\inG b\inG
using OrderedGroup_ZF_1_L4 by auto
with A1 have a\cdotb
using OrderedGroup_ZF_1_L9 by blast
moreover
from A1 A3 have a\leqc·a
by (rule Group_order_transitive)
with ordGroupAssum T have a\cdota
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
IsAnOrdGroup_def by simp
with T A2 have 1\leqc
using OrderedGroup_ZF_1_L1
group0.group0_2_L6 group0.inv_cancel_two
by simp
ultimately have a\cdotb}\mp@subsup{}{}{-1}\leq
by (rule Group_order_transitive)
with T show (b}\cdot\mp@subsup{\textrm{a}}{}{-1}\mp@subsup{)}{}{-1}\leq\textrm{c
using OrderedGroup_ZF_1_L1 group0.group0_2_L12
by simp
qed
ultimately show |b\cdota}\mp@subsup{}{}{-1}|\leq
using OrderedGroup_ZF_3_L4 by simp
qed

```

For linearly ordered groups if the absolute values of elements in a set are bounded, then the set is bounded.
lemma (in group3) OrderedGroup_ZF_3_L9:
assumes A1: \(r\) \{is total on\} \(G\)
and \(\mathrm{A} 2: \mathrm{A} \subseteq \mathrm{G}\) and \(\mathrm{A} 3: ~ \forall \mathrm{a} \in \mathrm{A} .|\mathrm{a}| \leq \mathrm{L}\)
```

 shows IsBounded(A,r)
 proof -
from A1 A2 A3 have
|afA. a\leqL }\forall\textrm{a}\in\textrm{A}.\mp@subsup{\textrm{L}}{}{-1}\leq\textrm{a
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_3_L8A by auto
then show IsBounded(A,r) using
IsBoundedAbove_def IsBoundedBelow_def IsBounded_def
by auto
qed

```

A slightly more general version of the previous lemma, stating the same fact for a set defined by separation.
```

lemma (in group3) OrderedGroup_ZF_3_L9A:
assumes A1: r {is total on} G
and A2: }\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})\in\textrm{G}\wedge|\textrm{b}(\textrm{x})|\leq
shows IsBounded({b(x). x\inX},r)
proof -
from A2 have {b(x). x\inX} \subseteqG \foralla\in{b(x). x\inX}. |a| \leqL
by auto
with A1 show thesis using OrderedGroup_ZF_3_L9 by blast
qed

```

A special form of the previous lemma stating a similar fact for an image of a set by a function with values in a linearly ordered group.
```

lemma (in group3) OrderedGroup_ZF_3_L9B:
assumes A1: r {is total on} G
and A2: f:X }->\textrm{G}\mathrm{ and A3: A
and A4: }\forall\textrm{x}\in\textrm{A}.|\textrm{f}(\textrm{x})|\leq\textrm{L
shows IsBounded(f(A),r)
proof -
from A2 A3 A4 have }\forallx\inA.f(x)\inG ^ |f(x)| \leq
using apply_funtype by auto
with A1 have IsBounded({f(x). x\inA},r)
by (rule OrderedGroup_ZF_3_L9A)
with A2 A3 show IsBounded(f(A),r)
using func_imagedef by simp
qed

```

For linearly ordered groups if \(l \leq a \leq u\) then \(|a|\) is smaller than the greater of \(|l|,|u|\).
lemma (in group3) OrderedGroup_ZF_3_L10:
assumes A1: \(r\) \{is total on\} \(G\)
and A2: \(1 \leq a \quad a \leq u\)
shows
\(|a| \leq \operatorname{GreaterOf}(r,|l|,|u|)\)
proof -
from A2 have \(T 1:|l| \in G|a| \in G|u| \in G\) using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype
```

 by auto
 { assume A3: a\inG+
 with A2 have 1\leqa a\lequ
 using OrderedGroup_ZF_1_L2 by auto
 then have 1\lequ by (rule Group_order_transitive)
 with A2 A3 have |a|}\leq|u
 using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_3_L2 by simp
 moreover from A1 T1 have |u| \leq GreaterOf(r,|l|,|u|)
 using Order_ZF_3_L2 by simp
 ultimately have |a| \leq GreaterOf(r,|l|,|u|)
 by (rule Group_order_transitive) }
 moreover
 { assume A4: a\not\inG+
 with A2 have T2:
 l\inG |l| G | |a| \inG |u| \inG a }\inG-G+
 using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype
 by auto
 with A2 have l }\inG-\mp@subsup{G}{}{+}\mathrm{ using OrderedGroup_ZF_1_L4D by fast
 with T2 A2 have |a| \leq |l|
 using OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L5
 by simp
 moreover from A1 T2 have |l| \leq GreaterOf(r,|l|,|u|)
 using Order_ZF_3_L2 by simp
 ultimately have |a| \leq GreaterOf(r,|l|,|u|)
 by (rule Group_order_transitive) }
 ultimately show thesis by blast
 qed

```

For linearly ordered groups if a set is bounded then the absolute values are bounded.
```

lemma (in group3) OrderedGroup_ZF_3_L10A:
assumes A1: r {is total on} G
and A2: IsBounded(A,r)
shows }\exists\textrm{L}.\forall\textrm{a}\in\textrm{A}.|\textrm{a}|\leq\textrm{L
proof -
{ assume A = 0 then have thesis by auto }
moreover
{ assume A3: A}=
with A2 have }\exists\textrm{u}.\forall\textrm{g}\in\textrm{A}.\textrm{g}\leq\textrm{u}\mathrm{ and }\exists\textrm{l}.\forall\textrm{g}\in\textrm{A}.l\leq
using IsBounded_def IsBoundedAbove_def IsBoundedBelow_def
by auto
then obtain u l where }\forall\textrm{g}\in\textrm{A}.l\leq\textrm{g}\wedge\textrm{g}\leq\textrm{u
by auto
with A1 have }\forall\textrm{a}\in\textrm{A}.|\textrm{a}|\leq\operatorname{GreaterOf(r,|l|,|u|)
using OrderedGroup_ZF_3_L10 by simp
then have thesis by auto }
ultimately show thesis by blast
qed

```

A slightly more general version of the previous lemma, stating the same fact for a set defined by separation.
```

lemma (in group3) OrderedGroup_ZF_3_L11:
assumes r {is total on} G
and IsBounded({b(x).x\inX},r)
shows \existsL. }\forall\textrm{x}\in\textrm{X}.|\textrm{b}(\textrm{x})|\leq\textrm{L
using assms OrderedGroup_ZF_3_L10A by blast

```

Absolute values of elements of a finite image of a nonempty set are bounded by an element of the group.
```

lemma (in group3) OrderedGroup_ZF_3_L11A:
assumes A1: r {is total on} G
and A2: X\not=0 and A3: {b(x). x\inX} \in Fin(G)
shows }\exists\textrm{L}\in\textrm{G}.\forall\textrm{x}\in\textrm{X}.|\textrm{b}(\textrm{x})|\leq\textrm{L
proof -
from A1 A3 have \existsL. }\forall\textrm{x}\in\textrm{X}.|\textrm{lb}(\textrm{x})|\leq\textrm{L
using ord_group_fin_bounded OrderedGroup_ZF_3_L11
by simp
then obtain L where I: }\forall\textrm{x}\in\textrm{X}.|\textrm{b}(\textrm{x})|\leq\textrm{L
using OrderedGroup_ZF_3_L11 by auto
from A2 obtain }x\mathrm{ where }x\inX by aut
with I show thesis using OrderedGroup_ZF_1_L4
by blast
qed

```

In totally oredered groups the absolute value of a nonunit element is in \(\mathrm{G}_{+}\).
```

lemma (in group3) OrderedGroup_ZF_3_L12:
assumes A1: r {is total on} G
and A2: a\inG and A3: a\not=1
shows |a| \in G+
proof -
from A1 A2 have |a| \inG 1 \leq |a|
using OrderedGroup_ZF_3_L1 apply_funtype
OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2
by auto
moreover from A2 A3 have |a| | 1
using OrderedGroup_ZF_3_L3D by auto
ultimately show |a| }\in\mp@subsup{G}{+}{
using PositiveSet_def by auto
qed

```

\subsection*{33.2 Maximum absolute value of a set}

Quite often when considering inequalities we prefer to talk about the absolute values instead of raw elements of a set. This section formalizes some material that is useful for that.

If a set has a maximum and minimum, then the greater of the absolute
value of the maximum and minimum belongs to the image of the set by the absolute value function.
```

lemma (in group3) OrderedGroup_ZF_4_L1:
assumes A\subseteqG
and HasAmaximum(r,A) HasAminimum(r,A)
and M = GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)
shows M \in AbsoluteValue(G,P,r)(A)
using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def
Order_ZF_4_L3 Order_ZF_4_L4 OrderedGroup_ZF_3_L1
func_imagedef GreaterOf_def by auto

```

If a set has a maximum and minimum, then the greater of the absolute value of the maximum and minimum bounds absolute values of all elements of the set.
```

lemma (in group3) OrderedGroup_ZF_4_L2:
assumes A1: r {is total on} G
and A2: HasAmaximum(r,A) HasAminimum(r,A)
and A3: a\inA
shows |a|\leq GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)
proof -
from ordGroupAssum A2 A3 have
Minimum(r,A)\leq a a\leqMaximum(r,A)
using IsAnOrdGroup_def IsPartOrder_def Order_ZF_4_L3 Order_ZF_4_L4
by auto
with A1 show thesis by (rule OrderedGroup_ZF_3_L10)
qed

```

If a set has a maximum and minimum, then the greater of the absolute value of the maximum and minimum bounds absolute values of all elements of the set. In this lemma the absolute values of ekements of a set are represented as the elements of the image of the set by the absolute value function.
```

lemma (in group3) OrderedGroup_ZF_4_L3:
assumes r {is total on} G and A\subseteqG
and HasAmaximum(r,A) HasAminimum(r,A)
and b \in AbsoluteValue(G,P,r)(A)
shows b\leq GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)
using assms OrderedGroup_ZF_3_L1 func_imagedef OrderedGroup_ZF_4_L2
by auto

```

If a set has a maximum and minimum, then the set of absolute values also has a maximum.
```

lemma (in group3) OrderedGroup_ZF_4_L4:
assumes A1: r \{is total on\} G and A2: $\mathrm{A} \subseteq G$
and A3: HasAmaximum (r, A) HasAminimum (r, A)
shows HasAmaximum (r, AbsoluteValue (G, P, r) (A))
proof -
let $M=\operatorname{GreaterOf}(r,|\operatorname{Minimum}(r, A)|,|\operatorname{Maximum}(r, A)|)$

```
```

 from A2 A3 have M A AbsoluteValue(G,P,r)(A)
 using OrderedGroup_ZF_4_L1 by simp
 moreover from A1 A2 A3 have
 \forallb\in AbsoluteValue(G,P,r)(A). b \leq M
 using OrderedGroup_ZF_4_L3 by simp
 ultimately show thesis using HasAmaximum_def by auto
 qed

```

If a set has a maximum and a minimum, then all absolute values are bounded by the maximum of the set of absolute values.
```

lemma (in group3) OrderedGroup_ZF_4_L5:
assumes A1: r {is total on} G and A2: A \subseteqG
and A3: HasAmaximum(r,A) HasAminimum(r,A)
and A4: a\inA
shows |a| \leq Maximum(r,AbsoluteValue(G,P,r)(A))
proof -
from A2 A4 have |a| \in AbsoluteValue(G,P,r)(A)
using OrderedGroup_ZF_3_L1 func_imagedef by auto
with ordGroupAssum A1 A2 A3 show thesis using
IsAnOrdGroup_def IsPartOrder_def OrderedGroup_ZF_4_L4
Order_ZF_4_L3 by simp
qed

```

\subsection*{33.3 Alternative definitions}

Sometimes it is usful to define the order by prescibing the set of positive or nonnegative elements. This section deals with two such definitions. One takes a subset \(H\) of \(G\) that is closed under the group operation, \(1 \notin H\) and for every \(a \in H\) we have either \(a \in H\) or \(a^{-1} \in H\). Then the order is defined as \(a \leq b\) iff \(a=b\) or \(a^{-1} b \in H\). For abelian groups this makes a linearly ordered group. We will refer to order defined this way in the comments as the order defined by a positive set. The context used in this section is the group0 context defined in Group_ZF theory. Recall that \(f\) in that context denotes the group operation (unlike in the previous sections where the group operation was denoted P.

The order defined by a positive set is the same as the order defined by a nonnegative set.
```

lemma (in group0) OrderedGroup_ZF_5_L1:
assumes A1: $r=\left\{p \in G \times G . \operatorname{fst}(p)=\operatorname{snd}(p) \vee f s t(p)^{-1} \cdot \operatorname{snd}(p) \in H\right\}$
shows $\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r} \longleftrightarrow \mathrm{a} \in \mathrm{G} \wedge \mathrm{b} \in \mathrm{G} \wedge \mathrm{a}^{-1} \cdot \mathrm{~b} \in \mathrm{H} \cup\{1\}$
proof
assume $\langle a, b\rangle \in r$
with A1 show $a \in G \wedge b \in G \wedge a^{-1} \cdot b \in H \cup\{1\}$
using group0_2_L6 by auto
next assume $a \in G \wedge b \in G \wedge a^{-1} \cdot b \in H \cup\{1\}$
then have $a \in G \wedge b \in G \wedge b=\left(a^{-1}\right)^{-1} \vee a \in G \wedge b \in G \wedge a^{-1} \cdot b \in H$

```
using inverse_in_group group0_2_L9 by auto
with A1 show \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r}\) using group_inv_of_inv by auto
qed
The relation defined by a positive set is antisymmetric.
lemma (in group0) OrderedGroup_ZF_5_L2:
assumes A1: \(r=\left\{p \in G \times G . f s t(p)=\operatorname{snd}(p) \vee f s t(p)^{-1} \cdot \operatorname{snd}(p) \in H\right\}\)
and A2: \(\forall \mathrm{a} \in \mathrm{G} . \mathrm{a} \neq \mathbf{1} \longrightarrow(\mathrm{a} \in \mathrm{H})\) Xor \(\left(\mathrm{a}^{-1} \in \mathrm{H}\right)\)
shows antisym(r)
proof -
\{ fix a b assume A3: \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r}\langle\mathrm{b}, \mathrm{a}\rangle \in \mathrm{r}\) with \(A 1\) have \(T: a \in G \quad b \in G\) by auto \{ assume A4: \(\mathrm{a} \neq \mathrm{b}\)
with A1 A3 have \(\mathrm{a}^{-1} \cdot \mathrm{~b} \in \mathrm{G} \quad \mathrm{a}^{-1} \cdot \mathrm{~b} \in \mathrm{H} \quad\left(\mathrm{a}^{-1} \cdot \mathrm{~b}\right)^{-1} \in \mathrm{H}\)
using inverse_in_group group0_2_L1 monoid0.group0_1_L1 group0_2_L12
by auto
with A2 have \(\mathrm{a}^{-1} \cdot \mathrm{~b}=1\) using Xor_def by auto
with T A4 have False using group0_2_L11 by auto
\} then have \(a=b\) by auto
\} then show antisym(r) by (rule antisymI)
qed
The relation defined by a positive set is transitive.
```

lemma (in group0) OrderedGroup_ZF_5_L3:
assumes A1: $r=\left\{p \in G \times G . f s t(p)=\operatorname{snd}(p) \vee f s t(p)^{-1} \cdot \operatorname{snd}(p) \in H\right\}$
and $A 2: H \subseteq G$ H \{is closed under\} P
shows trans(r)
proof -
$\{$ fix a b c assume $\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r}\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{r}$
with A 1 have
$\mathrm{a} \in \mathrm{G} \wedge \mathrm{b} \in \mathrm{G} \wedge \mathrm{a}^{-1} \cdot \mathrm{~b} \in \mathrm{H} \cup\{\mathbf{1}\}$
$\mathrm{b} \in \mathrm{G} \wedge \mathrm{c} \in \mathrm{G} \wedge \mathrm{b}^{-1} \cdot \mathrm{c} \in \mathrm{H} \cup\{\mathbf{1}\}$
using OrderedGroup_ZF_5_L1 by auto
with A2 have
I: $a \in G \quad b \in G \quad c \in G$
and $\left(a^{-1} \cdot b\right) \cdot\left(b^{-1} \cdot c\right) \in H \cup\{1\}$
using inverse_in_group group0_2_L17 IsOpClosed_def
by auto
moreover from I have $a^{-1} \cdot c=\left(a^{-1} \cdot b\right) \cdot\left(b^{-1} \cdot c\right)$
by (rule group0_2_L14A)
ultimately have $\langle a, c\rangle \in G \times G \quad a^{-1} \cdot c \in H \cup\{1\}$
by auto
with A1 have $\langle\mathrm{a}, \mathrm{c}\rangle \in \mathrm{r}$ using OrderedGroup_ZF_5_L1
by auto
$\}$ then have $\forall \mathrm{abc} .\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r} \wedge\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{a}, \mathrm{c}\rangle \in \mathrm{r}$
by blast
then show trans(r) by (rule Fol1_L2)
qed

```

The relation defined by a positive set is translation invariant. With our definition this step requires the group to be abelian.
```

lemma (in group0) OrderedGroup_ZF_5_L4:
assumes A1: $r=\left\{p \in G \times G . f s t(p)=\operatorname{snd}(p) \vee f s t(p)^{-1} \cdot \operatorname{snd}(p) \in H\right\}$
and A2: P \{is commutative on\} G
and $A 3:\langle a, b\rangle \in r$ and $A 4: c \in G$
shows $\langle a \cdot c, b \cdot c\rangle \in r \wedge\langle c \cdot a, c \cdot b\rangle \in r$
proof
from A1 A3 A4 have
I: $a \in G \quad b \in G \quad a \cdot c \in G \quad b \cdot c \in G$
and II: $a^{-1} \cdot b \in H \cup\{1\}$
using OrderedGroup_ZF_5_L1 group_op_closed
by auto
with A2 A4 have $(a \cdot c)^{-1} \cdot(b \cdot c) \in H \cup\{1\}$
using group0_4_L6D by simp
with A1 I show $\langle\mathrm{a} \cdot \mathrm{c}, \mathrm{b} \cdot \mathrm{c}\rangle \in \mathrm{r}$ using OrderedGroup_ZF_5_L1
by auto
with A2 A4 I show $\langle c \cdot a, c \cdot b\rangle \in r$
using IsCommutative_def by simp
qed

```

If \(H \subseteq G\) is closed under the group operation \(1 \notin H\) and for every \(a \in H\) we have either \(a \in H\) or \(a^{-1} \in H\), then the relation " \(\leq\) " defined by \(a \leq b \Leftrightarrow\) \(a^{-1} b \in H\) orders the group \(G\). In such order \(H\) may be the set of positive or nonnegative elements.
```

lemma (in group0) OrderedGroup_ZF_5_L5:
assumes A1: P \{is commutative on\} G
and A2: $H \subseteq G$ H \{is closed under\} P
and A3: $\forall \mathrm{a} \in \mathrm{G} . \mathrm{a} \neq \mathbf{1} \longrightarrow(\mathrm{a} \in \mathrm{H})$ Xor $\left(\mathrm{a}^{-1} \in \mathrm{H}\right)$
and A4: $r=\left\{p \in G \times G . f s t(p)=\operatorname{snd}(p) \vee f s t(p)^{-1} \cdot \operatorname{snd}(p) \in H\right\}$
shows
IsAnOrdGroup (G, P, r)
r \{is total on\} G
Nonnegative (G, P,r) = PositiveSet (G, P,r) $\cup\{1\}$
proof -
from groupAssum A2 A3 A4 have
IsAgroup (G, P) $r \subseteq G \times G \quad$ IsPartOrder (G, r)
using refl_def OrderedGroup_ZF_5_L2 OrderedGroup_ZF_5_L3
IsPartOrder_def by auto
moreover from A1 A4 have
$\forall \mathrm{g} \in \mathrm{G} . \forall \mathrm{a} \mathrm{b} .\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{a} \cdot \mathrm{g}, \mathrm{b} \cdot \mathrm{g}\rangle \in \mathrm{r} \wedge\langle\mathrm{g} \cdot \mathrm{a}, \mathrm{g} \cdot \mathrm{b}\rangle \in \mathrm{r}$
using OrderedGroup_ZF_5_L4 by blast
ultimately show IsAnOrdGroup (G, P, r)
using IsAnOrdGroup_def by simp
then show Nonnegative (G,P,r) $=$ PositiveSet (G,P,r) $\cup\{1\}$
using group3_def group3.OrderedGroup_ZF_1_L24
by simp
$\{$ fix $a b$

```
```

assume T: a\inG b\inG
then have T1: a }\mp@subsup{}{}{-1}\cdot\textrm{b}\in
using inverse_in_group group_op_closed by simp
{ assume < a,b\rangle\not\in r
with A4 T have I: a\not=b and II: a }\mp@subsup{}{}{-1}\cdot\textrm{b}\not\in\textrm{H
by auto
from A3 T T1 I have ((a }\mp@subsup{}{}{-1}\cdot\textrm{b}\inH)\mathrm{ Xor ((}\mp@subsup{a}{}{-1}\cdot\textrm{b}\mp@subsup{)}{}{-1}\inH
using group0_2_L11 by auto
with A4 T II have \langle b,a\rangle}\in\textrm{r
using Xor_def group0_2_L12 by simp
} then have }\langle\textrm{a},\textrm{b}\rangle\in\textrm{r}\vee\langle\,a\rangle\inr by aut
} then show r {is total on} G using IsTotal_def
by simp

```
qed

If the set defined as in OrderedGroup_ZF_5_L4 does not contain the neutral element, then it is the positive set for the resulting order.
```

lemma (in group0) OrderedGroup_ZF_5_L6:
assumes P \{is commutative on\} G
and $H \subseteq G$ and $1 \notin H$
and $r=\left\{p \in G \times G . \operatorname{fst}(p)=\operatorname{snd}(p) \vee f s t(p)^{-1} \cdot \operatorname{snd}(p) \in H\right\}$
shows PositiveSet (G, P,r) = H
using assms group_inv_of_one group0_2_L2 PositiveSet_def
by auto

```

The next definition describes how we construct an order relation from the prescribed set of positive elements.
```

definition
OrderFromPosSet (G, P, H) \equiv
$\{p \in G \times G . \operatorname{fst}(p)=\operatorname{snd}(p) \vee P\langle\operatorname{GroupInv}(G, P)(f s t(p)), \operatorname{snd}(p)\rangle \in H\}$

```

The next theorem rephrases lemmas OrderedGroup_ZF_5_L5 and OrderedGroup_ZF_5_L6 using the definition of the order from the positive set OrderFromPosSet. To summarize, this is what it says: Suppose that \(H \subseteq G\) is a set closed under that group operation such that \(1 \notin H\) and for every nonunit group element \(a\) either \(a \in H\) or \(a^{-1} \in H\). Define the order as \(a \leq b\) iff \(a=b\) or \(a^{-1} \cdot b \in H\). Then this order makes \(G\) into a linearly ordered group such \(H\) is the set of positive elements (and then of course \(H \cup\{1\}\) is the set of nonnegative elements).
```

theorem (in group0) Group_ord_by_positive_set:
assumes P {is commutative on} G
and H\subseteqG H {is closed under} P 1
and }\forall\textrm{a}\in\textrm{G}.\textrm{a}\not=1\longrightarrow(\textrm{l
shows
IsAnOrdGroup(G,P,OrderFromPosSet(G,P,H))
OrderFromPosSet(G,P,H) {is total on} G
PositiveSet(G,P,OrderFromPosSet(G,P,H)) = H
Nonnegative(G,P,OrderFromPosSet(G,P,H)) = H \cup {1}

```
using assms OrderFromPosSet_def OrderedGroup_ZF_5_L5 OrderedGroup_ZF_5_L6 by auto

\subsection*{33.4 Odd Extensions}

In this section we verify properties of odd extensions of functions defined on \(G_{+}\). An odd extension of a function \(f: G_{+} \rightarrow G\) is a function \(f^{\circ}: G \rightarrow G\) defined by \(f^{\circ}(x)=f(x)\) if \(x \in G_{+}, f(1)=1\) and \(f^{\circ}(x)=\left(f\left(x^{-1}\right)\right)^{-1}\) for \(x<1\). Such function is the unique odd function that is equal to \(f\) when restricted to \(G_{+}\).

The next lemma is just to see the definition of the odd extension in the notation used in the group1 context.
```

lemma (in group3) OrderedGroup_ZF_6_L1:
shows fo = f \cup{{a, (f(a-1))-1}\rangle.a\in-\mp@subsup{G}{+}{\prime}}\cup{\langle\mathbf{1,1}}
using OddExtension_def by simp

```

A technical lemma that states that from a function defined on \(G_{+}\)with values in \(G\) we have \(\left(f\left(a^{-1}\right)\right)^{-1} \in G\).
```

lemma (in group3) OrderedGroup_ZF_6_L2:
assumes f: G+}->\textrm{G}\mathrm{ and a }\in-\mp@subsup{G}{+}{
shows
f(a-1) \inG
(f(a\mp@subsup{a}{}{-1})\mp@subsup{)}{}{-1}\inG
using assms OrderedGroup_ZF_1_L27 apply_funtype
OrderedGroup_ZF_1_L1 group0.inverse_in_group
by auto

```

The main theorem about odd extensions. It basically says that the odd extension of a function is what we want to to be.
```

lemma (in group3) odd_ext_props:
assumes A1: r \{is total on\} G and A2: $f: G_{+} \rightarrow G$
shows
$\mathrm{f}^{\circ}: \mathrm{G} \rightarrow \mathrm{G}$
$\forall a \in G_{+} .\left(f^{\circ}\right)(a)=f(a)$
$\forall a \in\left(-G_{+}\right) .\left(f^{\circ}\right)(a)=\left(f\left(a^{-1}\right)\right)^{-1}$
$\left(f^{\circ}\right)(1)=1$
proof -
from A1 A2 have I:
$f: G_{+} \rightarrow G$
$\forall \mathrm{a} \in \mathrm{G}_{+} . \quad\left(\mathrm{f}\left(\mathrm{a}^{-1}\right)\right)^{-1} \in \mathrm{G}$
$G_{+} \cap\left(-G_{+}\right)=0$
$1 \notin G_{+} \cup\left(-G_{+}\right)$
$f^{\circ}=f \cup\left\{\left\langle a,\left(f\left(a^{-1}\right)\right)^{-1}\right\rangle . a \in-_{+}\right\} \cup\{\langle\mathbf{1}, \mathbf{1}\rangle\}$
using OrderedGroup_ZF_6_L2 OrdGroup_decomp2 OrderedGroup_ZF_6_L1
by auto
then have $f^{\circ}: G_{+} \cup\left(-G_{+}\right) \cup\{1\} \rightarrow G \cup G \cup\{1\}$
by (rule func1_1_L11E)

```
```

 moreover from A1 have
 \(G_{+} \cup\left(-G_{+}\right) \cup\{1\}=G\)
 GUGU\{1\} = G
 using OrdGroup_decomp2 OrderedGroup_ZF_1_L1 group0.group0_2_L2
 by auto
 ultimately show \(f^{\circ}: G \rightarrow G\) by simp
 from I show \(\forall a \in G_{+} .\left(f^{\circ}\right)(a)=f(a)\)
 by (rule func1_1_L11E)
 from I show \(\forall a \in\left(-G_{+}\right)\). \(\left(f^{\circ}\right)(a)=\left(f\left(a^{-1}\right)\right)^{-1}\)
 by (rule func1_1_L11E)
 from \(I\) show (\(\mathrm{f}^{\circ}\))(1) \(=1\)
 by (rule func1_1_L11E)
 qed
Odd extensions are odd, of course.

```
```

lemma (in group3) oddext_is_odd:

```
lemma (in group3) oddext_is_odd:
    assumes A1: r {is total on} G and A2: f: G
    assumes A1: r {is total on} G and A2: f: G
    and A3: a }\in
    and A3: a }\in
    shows (fo)(a-1) = ((fo)(a))}\mp@subsup{)}{}{-1
    shows (fo)(a-1) = ((fo)(a))}\mp@subsup{)}{}{-1
proof -
proof -
    from A1 A3 have a\inG+ }Va\in(-\mp@subsup{G}{+}{}) V a=
    from A1 A3 have a\inG+ }Va\in(-\mp@subsup{G}{+}{}) V a=
        using OrdGroup_decomp2 by blast
        using OrdGroup_decomp2 by blast
    moreover
    moreover
    { assume a }\in\mp@subsup{G}{+}{
    { assume a }\in\mp@subsup{G}{+}{
        with A1 A2 have a-1 \in -G+ and (f f ) (a) = f(a)
        with A1 A2 have a-1 \in -G+ and (f f ) (a) = f(a)
            using OrderedGroup_ZF_1_L25 odd_ext_props by auto
            using OrderedGroup_ZF_1_L25 odd_ext_props by auto
        with A1 A2 have
        with A1 A2 have
            (fo) (a-1) = (f((a-1)-1)) -1 and (f(a))-1 = ((fo) (a))}\mp@subsup{)}{}{-1
            (fo) (a-1) = (f((a-1)-1)) -1 and (f(a))-1 = ((fo) (a))}\mp@subsup{)}{}{-1
            using odd_ext_props by auto
            using odd_ext_props by auto
        with A3 have (ffo) (a-1) = ((fo)(a))}\mp@subsup{)}{}{-1
        with A3 have (ffo) (a-1) = ((fo)(a))}\mp@subsup{)}{}{-1
            using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
            using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
            by simp }
            by simp }
    moreover
    moreover
    { assume A4: a }\in-\mp@subsup{G}{+}{
    { assume A4: a }\in-\mp@subsup{G}{+}{
        with A1 A2 have a }\mp@subsup{}{}{-1}\in\mp@subsup{G}{+}{}\mathrm{ and ( }\mp@subsup{f}{}{\circ}\mathrm{ ) (a) = (f(a (a ) )
        with A1 A2 have a }\mp@subsup{}{}{-1}\in\mp@subsup{G}{+}{}\mathrm{ and ( }\mp@subsup{f}{}{\circ}\mathrm{ ) (a) = (f(a (a ) )
                using OrderedGroup_ZF_1_L27 odd_ext_props
                using OrderedGroup_ZF_1_L27 odd_ext_props
                by auto
                by auto
        with A1 A2 A4 have (fo) (a-1) = ((for)(a))}\mp@subsup{)}{}{-1
        with A1 A2 A4 have (fo) (a-1) = ((for)(a))}\mp@subsup{)}{}{-1
            using odd_ext_props OrderedGroup_ZF_6_L2
            using odd_ext_props OrderedGroup_ZF_6_L2
    OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
    OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
                by simp }
                by simp }
    moreover
    moreover
    { assume a = 1
    { assume a = 1
        with A1 A2 have (fo)(a
        with A1 A2 have (fo)(a
            using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
            using OrderedGroup_ZF_1_L1 group0.group_inv_of_one
    odd_ext_props by simp
    odd_ext_props by simp
    }
    }
    ultimately show (fo)(a-1) = ((fo)(a))}\mp@subsup{)}{}{-1
    ultimately show (fo)(a-1) = ((fo)(a))}\mp@subsup{)}{}{-1
        by auto
```

 by auto
    ```

\section*{qed}

Another way of saying that odd extensions are odd.
```

lemma (in group3) oddext_is_odd_alt:
assumes A1: r {is total on} G and A2: f: G
and A3: a\inG
shows ((fo)(a (a)) -1 = (f) (a)
proof -
from A1 A2 have
fo : G }->\textrm{G
\foralla\inG. (for) (a-1) = ((fo) (a)) -1
using odd_ext_props oddext_is_odd by auto
then have }\forall\textrm{a}\in\textrm{G}.((\mp@subsup{f}{}{0})(\mp@subsup{a}{}{-1})\mp@subsup{)}{}{-1}=(\mp@subsup{f}{}{\circ})(a
using OrderedGroup_ZF_1_L1 group0.group0_6_L2 by simp
with A3 show ((f+)(a-1))}\mp@subsup{)}{}{-1}=(\mp@subsup{f}{}{\circ})(a)\mathrm{ by simp
qed

```

\subsection*{33.5 Functions with infinite limits}

In this section we consider functions \(f: G \rightarrow G\) with the property that for \(f(x)\) is arbitrarily large for large enough \(x\). More precisely, for every \(a \in G\) there exist \(b \in G_{+}\)such that for every \(x \geq b\) we have \(f(x) \geq a\). In a sense this means that \(\lim _{x \rightarrow \infty} f(x)=\infty\), hence the title of this section. We also prove dual statements for functions such that \(\lim _{x \rightarrow-\infty} f(x)=-\infty\).

If an image of a set by a function with infinite positive limit is bounded above, then the set itself is bounded above.
```

lemma (in group3) OrderedGroup_ZF_7_L1:
assumes A1: r {is total on} G and A2: G }\not={1}\mathrm{ and
A3: f:G->G and
A4: }\forall\textrm{a}\in\textrm{G}.\exists\textrm{b}\in\mp@subsup{\textrm{G}}{+}{}.\forall\textrm{x}.\textrm{b}\leq\textrm{x}\longrightarrow\textrm{a}\leq\textrm{f}(\textrm{x})\mathrm{ and
A5: A\subseteqG and
A6: IsBoundedAbove(f(A),r)
shows IsBoundedAbove(A,r)
proof -
{ assume }\neg\mathrm{ IsBoundedAbove(A,r)
then have I: }\forall\textrm{u}.\exists\textrm{x}\in\textrm{A}.\neg(\textrm{x}\leq\textrm{u}
using IsBoundedAbove_def by auto
have }\forall\textrm{a}\inG.,\exists\textrm{y}\in\textrm{f}(\textrm{A}). \textrm{a}\leq\textrm{y
proof -
{ fix a assume a\inG
with A4 obtain b where
II: b\inGG+ and III: }\forall\textrm{x}.\textrm{b}\leq\textrm{x}\longrightarrow\textrm{a}\leq\textrm{f}(\textrm{x}
by auto
from I obtain x where IV: x\inA and }\neg(\textrm{x}\leq\textrm{b}
by auto
with A1 A5 II have
r {is total on} G

```
```

 x\inG b\inG }\neg(\textrm{x}\leq\textrm{b}
 using PositiveSet_def by auto
 with III have a
 using OrderedGroup_ZF_1_L8 by blast
 with A3 A5 IV have }\exists\textrm{y}\in\textrm{f}(\textrm{A}).a\leq
 using func_imagedef by auto
 } thus thesis by simp
 qed
 with A1 A2 A6 have False using OrderedGroup_ZF_2_L2A
 by simp
 } thus thesis by auto
 qed

```

If an image of a set defined by separation by a function with infinite positive limit is bounded above, then the set itself is bounded above.
```

lemma (in group3) OrderedGroup_ZF_7_L2:
assumes A1: r {is total on} G and A2: G }\not={1
A3: X\not=O and A4: f:G->G and
A5: }\forall\textrm{a}\in\textrm{G}.\exists\textrm{b}\in\mp@subsup{\textrm{G}}{+}{}.\forall\textrm{y}.\textrm{b}\leq\textrm{y}\longrightarrow\textrm{a}\leq\textrm{f}(\textrm{y})\mathrm{ and
A6: }\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})\in\textrm{G}\wedge\textrm{f}(\textrm{b}(\textrm{x}))\leq\textrm{U
shows \existsu.\forallx\inX. b (x) \lequ
proof -
let A = {b(x). x\inX}
from A6 have I: A\subseteqG by auto
moreover note assms
moreover have IsBoundedAbove(f(A),r)
proof -
from A4 A6 I have }\forallz\inf(A). \langlez,U\rangle\in r
using func_imagedef by simp
then show IsBoundedAbove(f(A),r)
by (rule Order_ZF_3_L10)
qed
ultimately have IsBoundedAbove(A,r) using OrderedGroup_ZF_7_L1
by simp
with A3 have \existsu.}\forall\textrm{y}\in\textrm{A}.\textrm{y}\leq\textrm{u
using IsBoundedAbove_def by simp
then show \existsu.}\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})\leq\textrm{u}\mathrm{ by auto
qed
If the image of a set defined by separation by a function with infinite negative limit is bounded below, then the set itself is bounded above. This is dual to OrderedGroup_ZF_7_L2.
lemma (in group3) OrderedGroup_ZF_7_L3:
assumes A1: r {is total on} G and A2: G \# {1} and
A3: X\not=0 and A4: f:G->G and
A5: }\forall\textrm{a}\in\textrm{G}.\exists\textrm{b}\in\mp@subsup{\textrm{G}}{+}{}.\forall\textrm{y}.\textrm{b}\leq\textrm{y}\longrightarrow\textrm{f}(\mp@subsup{\textrm{y}}{}{-1})\leq\textrm{a}\mathrm{ and
A6: }\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})\in\textrm{G}\wedge\textrm{L}\leq\textrm{f}(\textrm{b}(\textrm{x})
shows \existsl.}\forall\textrm{x}\in\textrm{X}.l\leq\textrm{b}(\textrm{x}
proof -

```
let \(\mathrm{g}=\operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{O} \mathrm{f} 0 \operatorname{GroupInv}(\mathrm{G}, \mathrm{P})\)
from ordGroupAssum have I: GroupInv(G,P) : G \(\rightarrow\) G
using IsAnOrdGroup_def group0_2_T2 by simp
with A4 have II: \(\forall x \in G . g(x)=\left(f\left(x^{-1}\right)\right)^{-1}\)
using func1_1_L18 by simp
note A1 A2 A3
moreover from \(A 4\) I have \(g: G \rightarrow G\)
using comp_fun by blast
moreover have \(\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \mathrm{G}_{+} . \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{a} \leq \mathrm{g}(\mathrm{y})\)
proof -
\{ fix a assume A7: \(a \in G\) then have \(\mathrm{a}^{-1} \in \mathrm{G}\)
using OrderedGroup_ZF_1_L1 group0.inverse_in_group by simp
with A5 obtain b where
III: \(\mathrm{b} \in \mathrm{G}_{+}\)and \(\forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{f}\left(\mathrm{y}^{-1}\right) \leq \mathrm{a}^{-1}\)
by auto
with II A7 have \(\forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{a} \leq \mathrm{g}(\mathrm{y})\)
using OrderedGroup_ZF_1_L5AD OrderedGroup_ZF_1_L4
by simp
with III have \(\exists \mathrm{b} \in \mathrm{G}_{+} . \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{a} \leq \mathrm{g}(\mathrm{y})\)
by auto
\(\}\) then show \(\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \mathrm{G}_{+} . \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{a} \leq \mathrm{g}(\mathrm{y})\)
by simp
qed
moreover have \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x})^{-1} \in \mathrm{G} \wedge \mathrm{g}\left(\mathrm{b}(\mathrm{x})^{-1}\right) \leq \mathrm{L}^{-1}\)
proof-
\{ fix \(x\) assume \(x \in X\) with A6 have
\(\mathrm{T}: \mathrm{b}(\mathrm{x}) \in \mathrm{G} \mathrm{b}(\mathrm{x})^{-1} \in \mathrm{G}\) and \(\mathrm{L} \leq \mathrm{f}(\mathrm{b}(\mathrm{x}))\)
using OrderedGroup_ZF_1_L1 group0.inverse_in_group
by auto
then have \((f(b(x)))^{-1} \leq L^{-1}\)
using OrderedGroup_ZF_1_L5 by simp
moreover from II T have \((f(b(x)))^{-1}=g\left(b(x)^{-1}\right)\)
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
by simp
ultimately have \(\mathrm{g}\left(\mathrm{b}(\mathrm{x})^{-1}\right) \leq \mathrm{L}^{-1}\) by simp
with \(T\) have \(b(x)^{-1} \in G \wedge g\left(b(x)^{-1}\right) \leq L^{-1}\)
by simp
\(\}\) then show \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x})^{-1} \in \mathrm{G} \wedge \mathrm{g}\left(\mathrm{b}(\mathrm{x})^{-1}\right) \leq \mathrm{L}^{-1}\) by simp
qed
ultimately have \(\exists \mathrm{u} . \forall \mathrm{x} \in \mathrm{X}\). \((\mathrm{b}(\mathrm{x}))^{-1} \leq \mathrm{u}\)
by (rule OrderedGroup_ZF_7_L2)
then have \(\exists \mathrm{u} . \forall \mathrm{x} \in \mathrm{X} . \mathrm{u}^{-1} \leq\left(\mathrm{b}(\mathrm{x})^{-1}\right)^{-1}\)
using OrderedGroup_ZF_1_L5 by auto
with A6 show \(\exists l . \forall x \in X . l \leq b(x)\)
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv
```

 by auto
 qed

```

The next lemma combines OrderedGroup_ZF_7_L2 and OrderedGroup_ZF_7_L3 to show that if an image of a set defined by separation by a function with infinite limits is bounded, then the set itself i bounded.
```

lemma (in group3) OrderedGroup_ZF_7_L4:
assumes A1: r \{is total on\} G and $A 2: G \neq\{1\}$ and
A3: $X \neq 0$ and $A 4: f: G \rightarrow G$ and
A5: $\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \mathrm{G}_{+} . \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{a} \leq \mathrm{f}(\mathrm{y})$ and
A6: $\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \mathrm{G}_{+} \cdot \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{f}\left(\mathrm{y}^{-1}\right) \leq \mathrm{a}$ and
A7: $\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathrm{G} \wedge \mathrm{L} \leq \mathrm{f}(\mathrm{b}(\mathrm{x})) \wedge \mathrm{f}(\mathrm{b}(\mathrm{x})) \leq \mathrm{U}$
shows $\exists \mathrm{M} . \forall \mathrm{x} \in \mathrm{X}$. $|\mathrm{b}(\mathrm{x})| \leq \mathrm{M}$
proof -
from A7 have
I: $\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathrm{G} \wedge \mathrm{f}(\mathrm{b}(\mathrm{x})) \leq \mathrm{U}$ and
II: $\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathrm{G} \wedge \mathrm{L} \leq \mathrm{f}(\mathrm{b}(\mathrm{x}))$
by auto
from A1 A2 A3 A4 A5 I have $\exists \mathrm{u} . \forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \leq \mathrm{u}$
by (rule OrderedGroup_ZF_7_L2)
moreover from A1 A2 A3 A4 A6 II have $\exists l . \forall x \in X$. $1 \leq b(x)$
by (rule OrderedGroup_ZF_7_L3)
ultimately have $\exists \mathrm{u}$ l. $\forall \mathrm{x} \in \mathrm{X} . \mathrm{l} \leq \mathrm{b}(\mathrm{x}) \wedge \mathrm{b}(\mathrm{x}) \leq \mathrm{u}$
by auto
with A1 have $\exists \mathrm{ul} . \forall \mathrm{x} \in \mathrm{X} .|\mathrm{b}(\mathrm{x})| \leq \operatorname{GreaterOf(r,|l|,|u|)}$
using OrderedGroup_ZF_3_L10 by blast
then show $\exists M . \forall x \in X$. $|b(x)| \leq M$
by auto
qed
end

```

\section*{34 Rings - introduction}
theory Ring_ZF imports AbelianGroup_ZF
begin
This theory file covers basic facts about rings.

\subsection*{34.1 Definition and basic properties}

In this section we define what is a ring and list the basic properties of rings.
We say that three sets \((R, A, M)\) form a ring if \((R, A)\) is an abelian group, \((R, M)\) is a monoid and \(A\) is distributive with respect to \(M\) on \(R\). \(A\) represents the additive operation on \(R\). As such it is a subset of \((R \times R) \times R\) (recall that in ZF set theory functions are sets). Similarly \(M\) represents the
multiplicative operation on \(R\) and is also a subset of \((R \times R) \times R\). We don't require the multiplicative operation to be commutative in the definition of a ring.
```

definition
IsAring(R,A,M) \equiv IsAgroup(R,A) ^ (A {is commutative on} R) ^
IsAmonoid(R,M) ^ IsDistributive(R,A,M)

```

We also define the notion of having no zero divisors. In standard notation the ring has no zero divisors if for all \(a, b \in R\) we have \(a \cdot b=0\) implies \(a=0\) or \(b=0\).
```

definition
HasNoZeroDivs(R,A,M) \equiv(}\forall\textrm{a}\in\textrm{R}.\quad\forall\textrm{b}\in\textrm{R}
M
a = TheNeutralElement (R,A) \vee b = TheNeutralElement (R,A))

```

Next we define a locale that will be used when considering rings.
locale ring0 =
fixes \(R\) and \(A\) and \(M\)
assumes ringAssum: IsAring( \(\mathrm{R}, \mathrm{A}, \mathrm{M}\) )
fixes ringa (infixl +90 )
defines ringa_def [simp]: a+b \(\equiv \mathrm{A}\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes ringminus (- _ 89)
defines ringminus_def [simp]: (-a) \(\equiv \operatorname{GroupInv}(\mathrm{R}, \mathrm{A})(\mathrm{a})\)
fixes ringsub (infixl - 90)
defines ringsub_def [simp]: a-b \(\equiv \mathrm{a}+(-\mathrm{b})\)
fixes ringm (infixl • 95)
defines ringm_def [simp]: \(a \cdot b \equiv M\langle a, b\rangle\)
fixes ringzero (0)
defines ringzero_def [simp]: \(\mathbf{0} \equiv\) TheNeutralElement (R,A)
fixes ringone (1)
defines ringone_def [simp]: \(\mathbf{1} \equiv\) TheNeutralElement(R,M)
fixes ringtwo (2)
defines ringtwo_def [simp]: \(2 \equiv 1+1\)
fixes ringsq (_ \({ }^{2}\) [96] 97)
defines ringsq_def [simp]: \(\mathrm{a}^{2} \equiv \mathrm{a} \cdot \mathrm{a}\)
In the ring0 context we can use theorems proven in some other contexts.
lemma (in ring0) Ring_ZF_1_L1: shows
```

monoidO(R,M)
group0(R,A)
A {is commutative on} R
using ringAssum IsAring_def groupO_def monoidO_def by auto

```

The additive operation in a ring is distributive with respect to the multiplicative operation.
```

lemma (in ring0) ring_oper_distr: assumes A1: a\inR b\inR c\inR
shows
a\cdot(b+c) = a b b + a c
(b+c)\cdota = b}\cdot\textrm{a}+\textrm{c}\cdot\textrm{a
using ringAssum assms IsAring_def IsDistributive_def by auto

```

Zero and one of the ring are elements of the ring. The negative of zero is zero.
```

lemma (in ring0) Ring_ZF_1_L2:
shows 0\inR 1\inR (-0) = 0
using Ring_ZF_1_L1 group0.group0_2_L2 monoid0.unit_is_neutral
group0.group_inv_of_one by auto

```

The next lemma lists some properties of a ring that require one element of a ring.
```

lemma (in ring0) Ring_ZF_1_L3: assumes a\inR
shows
(-a) \in R
(-(-a)) = a
a+0 = a
0+a = a
a}\cdot1=
1\cdota = a
a-a = 0
a-0 = a
2\cdota = a+a
(-a)+a = 0
using assms Ring_ZF_1_L1 group0.inverse_in_group group0.group_inv_of_inv
group0.group0_2_L6 group0.group0_2_L2 monoidO.unit_is_neutral
Ring_ZF_1_L2 ring_oper_distr
by auto

```

Properties that require two elements of a ring.
```

lemma (in ring0) Ring_ZF_1_L4: assumes A1: a\inR b\inR
shows
a+b}\in
a-b}\in
a}\cdot\textrm{b}\in
a+b = b+a
using ringAssum assms Ring_ZF_1_L1 Ring_ZF_1_L3

```
```

 group0.group0_2_L1 monoid0.group0_1_L1
 IsAring_def IsCommutative_def
 by auto

```

Cancellation of an element on both sides of equality. This is a property of groups, written in the (additive) notation we use for the additive operation in rings.
```

lemma (in ring0) ring_cancel_add:
assumes A1: a\inR b\inR and A2: a + b = a
shows b = 0
using assms Ring_ZF_1_L1 group0.group0_2_L7 by simp

```

Any element of a ring multiplied by zero is zero.
```

lemma (in ring0) Ring_ZF_1_L6:
assumes A1: x\inR shows 0}\textrm{x}=0\quad\textrm{x}\cdot0=
proof -
let a = x.1
let b = x.0
let c = 1·x
let d = 0.x
from A1 have
a + b = x.(1 + 0) c + d = (1 + 0) .x
using Ring_ZF_1_L2 ring_oper_distr by auto
moreover have x}(1+0)=a(1+0)\cdotx =
using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto
ultimately have a + b = a and T1: c + d = c
by auto
moreover from A1 have
a \inR b \inR and T2: c \in R d \in R
using Ring_ZF_1_L2 Ring_ZF_1_L4 by auto
ultimately have b = 0 using ring_cancel_add
by blast
moreover from T2 T1 have d = 0 using ring_cancel_add
by blast
ultimately show x\cdot0 = 0 0 x = 0 by auto
qed

```

Negative can be pulled out of a product.
```

lemma (in ring0) Ring_ZF_1_L7:
assumes A1: a\inR b\inR
shows
(-a)\cdotb = - (a\cdotb)
a}(-b)=-(a\cdotb
(-a)\cdotb = a.(-b)
proof -
from A1 have I:
a}\cdotb\inR(-a)\inR((-a)\cdotb) \in
(-b) \inR a}\cdot(-b)\in

```
```

 using Ring_ZF_1_L3 Ring_ZF_1_L4 by auto
 moreover have (-a)\cdotb + a b = 0
 and II: a}(-b)+a\cdotb=
 proof -
 from A1 I have
 (-a)\cdotb + a\cdotb = ((-a)+ a)\cdotb
 a\cdot(-b) + a\cdotb= a\cdot((-b)+b)
 using ring_oper_distr by auto
 moreover from A1 have
 ((-a)+ a)\cdotb = 0
 a}\cdot((-b)+b)=
 using Ring_ZF_1_L1 group0.group0_2_L6 Ring_ZF_1_L6
 by auto
 ultimately show
 (-a)\cdotb + a b = 0
 a}(-b)+a\cdotb=
 by auto
 qed
 ultimately show (-a)\cdotb = - (a\cdotb)
 using Ring_ZF_1_L1 group0.group0_2_L9 by simp
 moreover from I II show a}(-b)=-(a\cdotb
 using Ring_ZF_1_L1 group0.group0_2_L9 by simp
 ultimately show (-a)\cdotb = a\cdot(-b) by simp
 qed
Minus times minus is plus.
lemma (in ring0) Ring_ZF_1_L7A: assumes $a \in R \quad b \in R$
shows (-a).(-b) = a.b
using assms Ring_ZF_1_L3 Ring_ZF_1_L7 Ring_ZF_1_L4
by simp

```

Subtraction is distributive with respect to multiplication.
```

lemma (in ring0) Ring_ZF_1_L8: assumes a\inR b\inR c\inR
shows
a\cdot(b-c) = a\cdotb - a.c
(b-c)\cdota = b}\cdot\textrm{a}-\textrm{c}\cdot\textrm{a
using assms Ring_ZF_1_L3 ring_oper_distr Ring_ZF_1_L7 Ring_ZF_1_L4
by auto

```

Other basic properties involving two elements of a ring.
```

lemma (in ring0) Ring_ZF_1_L9: assumes a\inR b\inR

```
    shows
    \((-\mathrm{b})-\mathrm{a}=(-\mathrm{a})-\mathrm{b}\)
    \((-(a+b))=(-a)-b\)
    \((-(a-b))=((-a)+b)\)
    \(a-(-b)=a+b\)
    using assms ringAssum IsAring_def
        Ring_ZF_1_L1 group0.group0_4_L4 group0.group_inv_of_inv
    by auto

If the difference of two element is zero, then those elements are equal.
```

lemma (in ring0) Ring_ZF_1_L9A:
assumes A1: a\inR b\inR and A2: a-b = 0
shows a=b
proof -
from A1 A2 have
group0(R,A)
a\inR b\inR
A\langlea,GroupInv(R,A)(b)\rangle= TheNeutralElement(R,A)
using Ring_ZF_1_L1 by auto
then show a=b by (rule group0.group0_2_L11A)
qed

```

Other basic properties involving three elements of a ring.
```

lemma (in ring0) Ring_ZF_1_L10:
assumes a\inR b\inR c\inR
shows
a+(b+c) = a+b+c
a-(b+c) = a-b-c
a-(b-c) = a-b+c
using assms ringAssum Ring_ZF_1_L1 group0.group_oper_assoc
IsAring_def group0.group0_4_L4A by auto

```

Another property with three elements.
```

lemma (in ring0) Ring_ZF_1_L10A:
assumes A1: a\inR b\inR c\inR
shows a+(b-c) = a+b-c
using assms Ring_ZF_1_L3 Ring_ZF_1_L10 by simp

```

Associativity of addition and multiplication.
```

lemma (in ring0) Ring_ZF_1_L11:
assumes a\inR b\inR c\inR
shows
a+b+c=a+(b+c)
a\cdotb\cdotc = a}(\textrm{b}\cdot\textrm{c}
using assms ringAssum Ring_ZF_1_L1 group0.group_oper_assoc
IsAring_def IsAmonoid_def IsAssociative_def
by auto

```

An interpretation of what it means that a ring has no zero divisors.
```

lemma (in ring0) Ring_ZF_1_L12:
assumes HasNoZeroDivs(R,A,M)
and a\inR a\not=0 b\inR b}=
shows a\cdotb}=
using assms HasNoZeroDivs_def by auto

```

In rings with no zero divisors we can cancel nonzero factors.
```

lemma (in ring0) Ring_ZF_1_L12A:
assumes A1: HasNoZeroDivs(R,A,M) and A2: a\inR b\inR c\inR
and A3: a.c = b}c\mathrm{ c and A4: c=0
shows a=b
proof -
from A2 have T: a\cdotc\inR a-b \inR
using Ring_ZF_1_L4 by auto
with A1 A2 A3 have a-b = 0 \vee c=0
using Ring_ZF_1_L3 Ring_ZF_1_L8 HasNoZeroDivs_def
by simp
with A2 A4 have a\inR b\inR a-b = 0
by auto
then show a=b by (rule Ring_ZF_1_L9A)
qed

```

In rings with no zero divisors if two elements are different, then after multiplying by a nonzero element they are still different.
```

lemma (in ring0) Ring_ZF_1_L12B:
assumes A1: HasNoZeroDivs(R,A,M)
a\inR b\inR c\inR a\not=b c\not=\mathbf{0}
shows a\cdotc f= b
using A1 Ring_ZF_1_L12A by auto

```

In rings with no zero divisors multiplying a nonzero element by a nonone element changes the value.
```

lemma (in ring0) Ring_ZF_1_L12C:
assumes A1: HasNoZeroDivs(R,A,M) and
A2: a\inR b\inR and A3: 0}\not=a\quad1\not=
shows a }\not=\textrm{a}\cdot\textrm{b
proof -
{ assume a = a b
with A1 A2 have a = 0 \vee b-1 = 0
using Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L8
Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L4 HasNoZeroDivs_def
by simp
with A2 A3 have False
using Ring_ZF_1_L2 Ring_ZF_1_L9A by auto
} then show a }\not=\textrm{a}\cdot\textrm{b}\mathrm{ by auto
qed
If a square is nonzero, then the element is nonzero.

```
```

lemma (in ring0) Ring_ZF_1_L13:

```
lemma (in ring0) Ring_ZF_1_L13:
    assumes }a\inR\mathrm{ and }\mp@subsup{a}{}{2}\not=
    assumes }a\inR\mathrm{ and }\mp@subsup{a}{}{2}\not=
    shows a\not=0
    shows a\not=0
    using assms Ring_ZF_1_L2 Ring_ZF_1_L6 by auto
```

 using assms Ring_ZF_1_L2 Ring_ZF_1_L6 by auto
    ```

Square of an element and its opposite are the same.
```

lemma (in ring0) Ring_ZF_1_L14:

```
```

assumes $a \in R$ shows $(-a)^{2}=\left((a)^{2}\right)$
using assms Ring_ZF_1_L7A by simp

```

Adding zero to a set that is closed under addition results in a set that is also closed under addition. This is a property of groups.
```

lemma (in ring0) Ring_ZF_1_L15:
assumes H}\subseteqR\mathrm{ and H {is closed under} A
shows (H U {0}) {is closed under} A
using assms Ring_ZF_1_L1 group0.group0_2_L17 by simp

```

Adding zero to a set that is closed under multiplication results in a set that is also closed under multiplication.
```

lemma (in ring0) Ring_ZF_1_L16:
assumes A1: H \subseteq R and A2: H {is closed under} M
shows (H U {0}) {is closed under} M
using assms Ring_ZF_1_L2 Ring_ZF_1_L6 IsOpClosed_def
by auto

```

The ring is trivial iff \(0=1\).
```

lemma (in ring0) Ring_ZF_1_L17: shows $R=\{0\} \longleftrightarrow 0=1$
proof
assume $R=\{0\}$
then show 0=1 using Ring_ZF_1_L2
by blast
next assume A1: $0=1$
then have $R \subseteq\{0\}$
using Ring_ZF_1_L3 Ring_ZF_1_L6 by auto
moreover have $\{0\} \subseteq R$ using Ring_ZF_1_L2 by auto
ultimately show $R=\{0\}$ by auto
qed

```
The sets \(\{m \cdot x . x \in R\}\) and \(\{-m \cdot x . x \in R\}\) are the same.
lemma (in ring0) Ring_ZF_1_L18: assumes A1: \(m \in R\)
    shows \(\{m \cdot x . x \in R\}=\{(-m) \cdot x . x \in R\}\)
proof
    \{ fix a assume \(a \in\{m \cdot x . x \in R\}\)
        then obtain \(x\) where \(x \in R\) and \(a=m \cdot x\)
                by auto
            with \(A 1\) have \((-x) \in R\) and \(a=(-m) \cdot(-x)\)
                using Ring_ZF_1_L3 Ring_ZF_1_L7A by auto
            then have \(a \in\{(-m) \cdot x, x \in R\}\)
                by auto
    \(\}\) then show \(\{m \cdot x . x \in R\} \subseteq\{(-m) \cdot x . x \in R\}\)
            by auto
next
    \{ fix a assume a \(\in\{(-m) \cdot x . x \in R\}\)
        then obtain \(x\) where \(x \in R\) and \(a=(-m) \cdot x\)
                by auto
```

 with A1 have (-x) \in R and a = m. (-x)
 using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto
 then have a }\in{m\cdotx. x\inR} by aut
 } then show {(-m)\cdotx. x\inR}\subseteq{m\cdotx. x\inR}
 by auto
 qed

```

\subsection*{34.2 Rearrangement lemmas}

In happens quite often that we want to show a fact like \((a+b) c+d=\) \((a c+d-e)+(b c+e)\) in rings. This is trivial in romantic math and probably there is a way to make it trivial in formalized math. However, I don't know any other way than to tediously prove each such rearrangement when it is needed. This section collects facts of this type.

Rearrangements with two elements of a ring.
```

lemma (in ring0) Ring_ZF_2_L1: assumes a\inR b\inR
shows a+b\cdota = (b+1)\cdota
using assms Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 Ring_ZF_1_L4
by simp

```

Rearrangements with two elements and cancelling.
```

lemma (in ring0) Ring_ZF_2_L1A: assumes a\inR b\inR
shows
a-b+b = a
a+b-a = b
(-a)+b+a = b
(-a)+(b+a) = b
a+(b-a) = b
using assms Ring_ZF_1_L1 group0.inv_cancel_two group0.group0_4_L6A
by auto

```

In commutative rings \(a-(b+1) c=(a-d-c)+(d-b c)\). For unknown reasons we have to use the raw set notation in the proof, otherwise all methods fail.
```

lemma (in ring0) Ring_ZF_2_L2:
assumes A1: a\inR b\inR c\inR d\inR
shows a-(b+1)\cdotc = (a-d-c)+(d-b\cdotc)
proof -
let B = b
from ringAssum have A {is commutative on} R
using IsAring_def by simp
moreover from A1 have a\inR B \in R c\inR d\inR
using Ring_ZF_1_L4 by auto
ultimately have A\langlea, GroupInv(R,A) (A A, C C) \rangle =
A}\langle\textrm{A}\langle\textrm{A}\langle\textrm{a},\operatorname{GroupInv(R, A)(d)}\rangle,\operatorname{GroupInv(R,A) (c)\rangle,
A\langled,GroupInv (R, A) (B) \>
using Ring_ZF_1_L1 group0.group0_4_L8 by blast
with A1 show thesis

```
using Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 by simp qed

Rerrangement about adding linear functions.
```

lemma (in ring0) Ring_ZF_2_L3:
assumes A1: a\inR b\inR c\inR d\inR }x\in
shows (a\cdotx + b) + (c\cdotx + d) = (a+c)\cdotx + (b+d)
proof -
from A1 have
group0(R,A)
A {is commutative on} R
a}x\inR\quadb\inR\quadc\cdotx\inR\quadd\in
using Ring_ZF_1_L1 Ring_ZF_1_L4 by auto

```

```

 by (rule group0.group0_4_L8)
 with A1 show
 (a\cdotx + b) + (c\cdotx + d) = (a+c)\cdotx + (b+d)
 using ring_oper_distr by simp
 qed

```

Rearrangement with three elements
```

lemma (in ring0) Ring_ZF_2_L4:
assumes M {is commutative on} R
and }a\inR\quadb\inR\quadc\in
shows a.(b}c)=a\cdotc\cdot
using assms IsCommutative_def Ring_ZF_1_L11
by simp

```

Some other rearrangements with three elements.
```

lemma (in ring0) ring_rearr_3_elemA:
assumes A1: M {is commutative on} R and
A2: a\inR b}b\inR\quadc\in
shows
a\cdot(a\cdotc)-b}(-b\cdotc)=(a\cdota+b\cdotb)\cdot
a\cdot(-b\cdotc) + b}(\textrm{a}\cdot\textrm{c})=
proof -
from A2 have T:
b}\cdotc\inR\quada\cdota\inR b\cdotb\in
b}(\textrm{b}\cdot\textrm{c})\inR a.(b.c) \in
using Ring_ZF_1_L4 by auto
with A2 show
a.(a.c) - b
using Ring_ZF_1_L7 Ring_ZF_1_L3 Ring_ZF_1_L11
ring_oper_distr by simp
from A2 T have
a}(-\textrm{b}\cdot\textrm{c})+\textrm{b}\cdot(\textrm{a}\cdot\textrm{c})=(-\textrm{a}\cdot(\textrm{b}\cdot\textrm{c}))+\textrm{b}\cdot\textrm{a}\cdot\textrm{c
using Ring_ZF_1_L7 Ring_ZF_1_L11 by simp
also from A1 A2 T have ... = 0
using IsCommutative_def Ring_ZF_1_L11 Ring_ZF_1_L3

```
```

 by simp
 finally show a\cdot(-b\cdotc) + b}\cdot(a\cdotc)=
 by simp
 qed

```

Some rearrangements with four elements. Properties of abelian groups.
```

lemma (in ring0) Ring_ZF_2_L5:
assumes a\inR b\inR c\inR d\inR
shows
a - b - c - d = a - d - b - c
a + b + c - d = a - d + b + c
a + b - c - d = a - c + (b - d)
a + b + c + d = a + c + (b + d)
using assms Ring_ZF_1_L1 group0.rearr_ab_gr_4_elemB
group0.rearr_ab_gr_4_elemA by auto

```

Two big rearranegements with six elements, useful for proving properties of complex addition and multiplication.
```

lemma (in ring0) Ring_ZF_2_L6:
assumes A1: a\inR b\inR c\inR d\inR e\inR f\inR
shows
a.(c.e - d.f) - b}(\textrm{c}\cdot\textrm{f}+\textrm{d}\cdot\textrm{e})
(a\cdotc - b}d)\cdote - (a\cdotd + b\cdotc)\cdot
a\cdot(c.f + d\cdote) + b
(a\cdotc - b}\cdotd)\cdotf+(a\cdotd + b\cdotc)\cdot
a}(\textrm{c}+e)-b\cdot(d+f)=a\cdotc-b\cdotd+(a\cdote - b\cdotf
a\cdot(d+f) + b}\cdot(c+e) = a\cdotd + b\cdotc + (a\cdotf + b\cdote
proof -
from A1 have T:
c\cdote \inR d·f \inR c.f \inR d
a}c\in\inR\quadb\cdotd\inR a\cdotd \inR b b c \in R
b}\cdotf\inR\quada\cdote\inR\quadb\cdote\inR\quada\cdotf\in
a.c.e \inR a.d.f \inR
b}\cdotc\cdotf\inR b.d\cdote\in
b
a.c.f \in R a.d.e \in R
a\cdotc\cdote - a.d.f f R
a.c.e - b.d.e \inR
a\cdotc\cdotf + a\cdotd\cdote \in R
a}c\cdotf=\mp@code{b}\cdot\textrm{d}\cdot\textrm{f}\in
a}\cdotc+a\cdote\in
a}\cdotd+a\cdotf\in
using Ring_ZF_1_L4 by auto
with A1 show a.(c\cdote - d·f) - b}(c\cdotf + d\cdote) =
(a\cdotc - b
using Ring_ZF_1_L8 ring_oper_distr Ring_ZF_1_L11
Ring_ZF_1_L10 Ring_ZF_2_L5 by simp
from A1 T show
a\cdot(c.f + d\cdote) + b

```
```

 (a\cdotc - b
 using Ring_ZF_1_L8 ring_oper_distr Ring_ZF_1_L11
 Ring_ZF_1_L10A Ring_ZF_2_L5 Ring_ZF_1_L10
 by simp
 from A1 T show
 a\cdot(c+e) - b}\cdot(d+f) = a\cdotc - b\cdotd + (a\cdote - b\cdotf)
 a}\cdot(d+f)+b\cdot(c+e)=a\cdotd+b\cdotc+(a\cdotf + b\cdote
 using ring_oper_distr Ring_ZF_1_L10 Ring_ZF_2_L5
 by auto
 qed
end

```

\section*{35 More on rings}
theory Ring_ZF_1 imports Ring_ZF Group_ZF_3
begin
This theory is devoted to the part of ring theory specific the construction of real numbers in the Real_ZF_x series of theories. The goal is to show that classes of almost homomorphisms form a ring.

\subsection*{35.1 The ring of classes of almost homomorphisms}

Almost homomorphisms do not form a ring as the regular homomorphisms do because the lifted group operation is not distributive with respect to composition - we have \(s \circ(r \cdot q) \neq s \circ r \cdot s \circ q\) in general. However, we do have \(s \circ(r \cdot q) \approx s \circ r \cdot s \circ q\) in the sense of the equivalence relation defined by the group of finite range functions (that is a normal subgroup of almost homomorphisms, if the group is abelian). This allows to define a natural ring structure on the classes of almost homomorphisms.

The next lemma provides a formula useful for proving that two sides of the distributive law equation for almost homomorphisms are almost equal.
```

lemma (in group1) Ring_ZF_1_1_L1:
assumes A1: s\inAH reAH q\inAH and A2: n\inG
shows
((so(r\cdotq))(n))\cdot(((sor)\cdot(s\circq))(n))}\mp@subsup{)}{}{-1}=\delta(s,\langler(n),q(n)\rangle
((r.q)os)(n) = ((ros)\cdot(q\circs))(n)
proof -
from groupAssum isAbelian A1 have T1:
r.q \in AH sor }\inAH soq \in AH (sor)\cdot(soq) \in A
ros }\in\textrm{AH}\mathrm{ qos }\in\textrm{AH}\mathrm{ (ros).(qos) }\in\textrm{AH
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto
from A1 A2 have T2: r(n) \inG q(n) \inG s(n) \inG
s(r(n)) \inG s(q(n)) \inG \delta(s,\langler(n),q(n)\rangle) \inG

```
```

 s(r(n))\cdots(q(n)) \inGr(s(n)) \inG q(s(n)) \inG
 r(s(n))\cdotq(s(n)) \inG
 using AlmostHoms_def apply_funtype Group_ZF_3_2_L4B
 group0_2_L1 monoid0.group0_1_L1 by auto
 with T1 A1 A2 isAbelian show
 ((s\circ(r\cdotq))(n))\cdot(((sor)\cdot(soq))(n))}\mp@subsup{)}{}{-1}=\delta(s,\langler(n),q(n)\rangle
 ((r}\cdotq)\circs)(n)=((ros)\cdot(q\circs))(n
 using Group_ZF_3_2_L12 Group_ZF_3_4_L2 Group_ZF_3_4_L1 group0_4_L6A
 by auto
 qed

```

The sides of the distributive law equations for almost homomorphisms are almost equal.
```

lemma (in group1) Ring_ZF_1_1_L2:
assumes A1: s\inAH r\inAH q\inAH
shows
so(r.q) \approx (sor).(soq)
(r\cdotq)os = (ros)\cdot(q\circs)
proof -
from A1 have }\forall\textrm{n}\in\textrm{G}.\langle\textrm{r}(\textrm{n}),\textrm{q}(\textrm{n})\rangle\in\textrm{G}\times\textrm{G
using AlmostHoms_def apply_funtype by auto
moreover from A1 have {\delta(s,x). x }\in\textrm{G}\times\textrm{G}}\in\operatorname{Fin}(\textrm{G}
using AlmostHoms_def by simp
ultimately have {\delta(s,\langler(n),q(n)\rangle). n\inG} \in Fin(G)
by (rule Finite1_L6B)
with A1 have
{((s\circ(r\cdotq))(n))\cdot(((sor)\cdot(soq))(n))}\mp@subsup{)}{}{-1}\cdotn\inG}\inFin(G
using Ring_ZF_1_1_L1 by simp
moreover from groupAssum isAbelian A1 A1 have
so(r.q) \in AH (sor).(soq) \in AH
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto
ultimately show so(r\cdotq) \approx (sor)\cdot(soq)
using Group_ZF_3_4_L12 by simp
from groupAssum isAbelian A1 have
(r.q)os : G }->\textrm{G}\mathrm{ (ros).(qos) : G }->\textrm{G
using Group_ZF_3_2_L15 Group_ZF_3_4_T1 AlmostHoms_def
by auto
moreover from A1 have
|n\inG. ((r.q)os)(n) = ((ros).(q\circs))(n)
using Ring_ZF_1_1_L1 by simp
ultimately show (r.q)os = (ros)\cdot(q\circs)
using fun_extension_iff by simp
qed

```

The essential condition to show the distributivity for the operations defined on classes of almost homomorphisms.
```

lemma (in group1) Ring_ZF_1_1_L3:
assumes A1: R = QuotientGroupRel(AH,Op1,FR)
and A2: a }\inAH//R b \in AH//R c \in AH//

```
```

 and A3: A = ProjFun2(AH,R,Op1) M = ProjFun2(AH,R,Op2)
 shows M\langlea,A\langleb,c\rangle\rangle=A\langleM\langlea,b\rangle,M\langlea,c\rangle\rangle^
 M\langleA\langle b, c\rangle,a\rangle=A\langleM\langle b,a\rangle,M\langle c,a\rangle\rangle
 proof
from A2 obtain s q r where D1: s\inAH r\inAH q\inAH
a = R{s} b = R{q} c = R{r}
using quotient_def by auto
from A1 have T1:equiv(AH,R)
using Group_ZF_3_3_L3 by simp
with A1 A3 D1 groupAssum isAbelian have
M\langle a,A \ b,c\rangle\rangle = R{so(q.r)}
using Group_ZF_3_3_L4 EquivClass_1_L10
Group_ZF_3_2_L15 Group_ZF_3_4_L13A by simp
also have R{so(q\cdotr)}=R{(soq)\cdot(sor)}
proof -
from T1 D1 have equiv(AH,R) so(q\cdotr)\approx(soq)\cdot(sor)
using Ring_ZF_1_1_L2 by auto
with A1 show thesis using equiv_class_eq by simp
qed
also from A1 T1 D1 A3 have
R{(soq)\cdot(sor)} = A \M < a,b\rangle,M M a,c\rangle\rangle
using Group_ZF_3_3_L4 Group_ZF_3_4_T1 EquivClass_1_L10
Group_ZF_3_3_L3 Group_ZF_3_4_L13A EquivClass_1_L10 Group_ZF_3_4_T1
by simp
finally show M M a, A \ b, c > \ = A \M M a,b\rangle,M M a,c\rangle\rangle by simp
from A1 A3 T1 D1 groupAssum isAbelian show
M\langleA\ b, c\rangle,a\rangle = A MM < b,a\rangle,M C c,a\rangle\rangle
using Group_ZF_3_3_L4 EquivClass_1_L10 Group_ZF_3_4_L13A
Group_ZF_3_2_L15 Ring_ZF_1_1_L2 Group_ZF_3_4_T1 by simp
qed
The projection of the first group operation on almost homomorphisms is distributive with respect to the second group operation.

```
```

lemma (in group1) Ring_ZF_1_1_L4:

```
lemma (in group1) Ring_ZF_1_1_L4:
    assumes A1: \(R=\) QuotientGroupRel (AH,Op1,FR)
    assumes A1: \(R=\) QuotientGroupRel (AH,Op1,FR)
    and A2: A = ProjFun2(AH,R,Op1) M = ProjFun2(AH,R,Op2)
    and A2: A = ProjFun2(AH,R,Op1) M = ProjFun2(AH,R,Op2)
    shows IsDistributive(AH//R,A,M)
    shows IsDistributive(AH//R,A,M)
proof -
proof -
    from A1 A2 have \(\forall \mathrm{a} \in(\mathrm{AH} / / \mathrm{R}) . \forall \mathrm{b} \in(\mathrm{AH} / / \mathrm{R}) . \forall \mathrm{c} \in(\mathrm{AH} / / \mathrm{R})\).
    from A1 A2 have \(\forall \mathrm{a} \in(\mathrm{AH} / / \mathrm{R}) . \forall \mathrm{b} \in(\mathrm{AH} / / \mathrm{R}) . \forall \mathrm{c} \in(\mathrm{AH} / / \mathrm{R})\).
    \(M\langle a, A\langle b, c\rangle\rangle=A\langle M\langle a, b\rangle, M\langle a, c\rangle\rangle \wedge\)
    \(M\langle a, A\langle b, c\rangle\rangle=A\langle M\langle a, b\rangle, M\langle a, c\rangle\rangle \wedge\)
    \(M\langle A\langle b, c\rangle, a\rangle=A\langle M\langle b, a\rangle, M\langle c, a\rangle\rangle\)
    \(M\langle A\langle b, c\rangle, a\rangle=A\langle M\langle b, a\rangle, M\langle c, a\rangle\rangle\)
        using Ring_ZF_1_1_L3 by simp
        using Ring_ZF_1_1_L3 by simp
    then show thesis using IsDistributive_def by simp
    then show thesis using IsDistributive_def by simp
qed
qed
The classes of almost homomorphisms form a ring.
theorem (in group1) Ring_ZF_1_1_T1:
assumes \(R=\) QuotientGroupRel(AH,Op1,FR)
and \(A=\operatorname{ProjFun} 2(A H, R, O p 1) M=\operatorname{ProjFun} 2(A H, R, O p 2)\)
```

```
shows IsAring(AH//R,A,M)
using assms QuotientGroupOp_def Group_ZF_3_3_T1 Group_ZF_3_4_T2
    Ring_ZF_1_1_L4 IsAring_def by simp
end
```


36 Ordered rings

```
theory OrderedRing_ZF imports Ring_ZF OrderedGroup_ZF_1
```


begin

In this theory file we consider ordered rings.

36.1 Definition and notation

This section defines ordered rings and sets up appriopriate notation.
We define ordered ring as a commutative ring with linear order that is preserved by translations and such that the set of nonnegative elements is closed under multiplication. Note that this definition does not guarantee that there are no zero divisors in the ring.

```
definition
    IsAnOrdRing(R,A,M,r) \equiv
    ( IsAring(R,A,M) ^ (M {is commutative on} R) ^
    r\subseteqR\timesR ^ IsLinOrder(R,r) ^
    (\foralla b. }\forall\textrm{c}\inR.\, \langlea,b\rangle\inr\longrightarrow\langleA\langlea,c\rangle,A\langle b,c\rangle\rangle\inr)^
    (Nonnegative(R,A,r) {is closed under} M))
```

The next context (locale) defines notation used for ordered rings. We do that by extending the notation defined in the ring0 locale and adding some assumptions to make sure we are talking about ordered rings in this context.

```
locale ring1 = ring0 +
    assumes mult_commut: M {is commutative on} R
    fixes r
    assumes ordincl: r \subseteqR\timesR
    assumes linord: IsLinOrder(R,r)
    fixes lesseq(infix \leq68)
    defines lesseq_def [simp]: a }\leq\textrm{b}\equiv\langle\textrm{a},\textrm{b}\rangle\in\textrm{r
    fixes sless (infix < 68)
defines sless_def [simp]: a < b \equiv a\leqb ^ a\not=b
```

```
assumes ordgroup: \(\forall \mathrm{a}\) b. \(\forall \mathrm{c} \in \mathrm{R} . \mathrm{a} \leq \mathrm{b} \longrightarrow \mathrm{a}+\mathrm{c} \leq \mathrm{b}+\mathrm{c}\)
assumes pos_mult_closed: Nonnegative(R,A,r) \{is closed under\} M
fixes abs (| _ |)
defines abs_def [simp]: \(|a| \equiv\) AbsoluteValue(R,A,r)(a)
fixes positiveset ( \(\mathrm{R}_{+}\))
defines positiveset_def [simp]: \(\mathrm{R}_{+} \equiv \operatorname{PositiveSet(R,A,r)~}\)
```

The next lemma assures us that we are talking about ordered rings in the ring1 context.
lemma (in ring1) OrdRing_ZF_1_L1: shows IsAnOrdRing(R,A,M,r)
using ringO_def ringAssum mult_commut ordincl linord ordgroup
pos_mult_closed IsAnOrdRing_def by simp

We can use theorems proven in the ring1 context whenever we talk about an ordered ring.

```
lemma OrdRing_ZF_1_L2: assumes IsAnOrdRing(R,A,M,r)
    shows ring1(R,A,M,r)
    using assms IsAnOrdRing_def ring1_axioms.intro ring0_def ring1_def
    by simp
```

In the ring1 context $a \leq b$ implies that a, b are elements of the ring.

```
lemma (in ring1) OrdRing_ZF_1_L3: assumes a\leqb
    shows a\inR b\inR
    using assms ordincl by auto
```

Ordered ring is an ordered group, hence we can use theorems proven in the group3 context.

```
lemma (in ring1) OrdRing_ZF_1_L4: shows
    IsAnOrdGroup(R,A,r)
    r {is total on} R
    A {is commutative on} R
    group3(R,A,r)
proof -
    { fix a b g assume A1: g\inR and A2: a b b
            with ordgroup have a+g}\leq\textrm{b}+\textrm{g
                by simp
            moreover from ringAssum A1 A2 have
                a+g = g+a b+g = g+b
                using OrdRing_ZF_1_L3 IsAring_def IsCommutative_def by auto
            ultimately have
                a+g}\leq\textrm{b}+\textrm{g}\quad\textrm{g}+\textrm{a}\leq\textrm{g}+\textrm{b
                by auto
    } hence
            \forallg\inR. }\forall\textrm{a}|.\textrm{a}\leq\textrm{b}\longrightarrow\textrm{a}+\textrm{g}\leq\textrm{b}+\textrm{g}\wedge\textrm{g}+\textrm{a}\leq\textrm{g}+\textrm{b
```

```
        by simp
    with ringAssum ordincl linord show
    IsAnOrdGroup(R,A,r)
    group3(R,A,r)
    r {is total on} R
    A {is commutative on} R
    using IsAring_def Order_ZF_1_L2 IsAnOrdGroup_def group3_def IsLinOrder_def
    by auto
qed
```

The order relation in rings is transitive.

```
lemma (in ring1) ring_ord_transitive: assumes A1: a\leqb b\leqc
    shows a\leqc
proof -
    from A1 have
        group3(R,A,r) \langlea,b\rangle\inr < b, c\rangle\inr
        using OrdRing_ZF_1_L4 by auto
    then have \langlea,c\rangle\in r by (rule group3.Group_order_transitive)
    then show a\leqc by simp
qed
```

Transitivity for the strict order: if $a<b$ and $b \leq c$, then $a<c$. Property of ordered groups.
lemma (in ring1) ring_strict_ord_trans:
assumes A1: $\mathrm{a}<\mathrm{b}$ and $\mathrm{A} 2: \mathrm{b} \leq \mathrm{c}$
shows a<c
proof -
from A1 A2 have
group3(R,A,r)
$\langle a, b\rangle \in r \wedge a \neq b \quad\langle b, c\rangle \in r$ using OrdRing_ZF_1_L4 by auto
then have $\langle a, c\rangle \in r \wedge a \neq c$ by (rule group3.OrderedGroup_ZF_1_L4A) then show $a<c$ by simp
qed
Another version of transitivity for the strict order: if $a \leq b$ and $b<c$, then $a<c$. Property of ordered groups.

```
lemma (in ring1) ring_strict_ord_transit:
    assumes A1: \(\mathrm{a} \leq \mathrm{b}\) and A2: \(\mathrm{b}<\mathrm{c}\)
    shows a<c
proof -
    from A1 A2 have
        group3(R,A,r)
        \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathrm{r}\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{r} \wedge \mathrm{b} \neq \mathrm{c}\)
        using OrdRing_ZF_1_L4 by auto
    then have \(\langle\mathrm{a}, \mathrm{c}\rangle \in \mathrm{r} \wedge \mathrm{a} \neq \mathrm{c}\) by (rule group3.group_strict_ord_transit)
    then show \(a<c\) by simp
qed
```

The next lemma shows what happens when one element of an ordered ring is not greater or equal than another.

```
lemma (in ring1) OrdRing_ZF_1_L4A: assumes A1: \(a \in R \quad b \in R\)
    and A2: \(\neg(\mathrm{a} \leq \mathrm{b})\)
    shows \(\mathrm{b} \leq \mathrm{a}(-\mathrm{a}) \leq(-\mathrm{b}) \quad \mathrm{a} \neq \mathrm{b}\)
proof -
    from A1 A2 have I:
        group3( \(\mathrm{R}, \mathrm{A}, \mathrm{r}\) )
        \(r\) \{is total on\} \(R\)
        \(a \in R \quad b \in R \quad\langle a, b\rangle \notin r\)
        using OrdRing_ZF_1_L4 by auto
    then have \(\langle\mathrm{b}, \mathrm{a}\rangle \in \mathrm{r}\) by (rule group3.OrderedGroup_ZF_1_L8)
    then show \(\mathrm{b} \leq \mathrm{a}\) by simp
    from I have \(\langle\operatorname{GroupInv}(R, A)(a), \operatorname{GroupInv}(R, A)(b)\rangle \in r\)
        by (rule group3.OrderedGroup_ZF_1_L8)
    then show \((-a) \leq(-b)\) by simp
    from I show \(\mathrm{a} \neq \mathrm{b}\) by (rule group3.OrderedGroup_ZF_1_L8)
qed
```

A special case of OrdRing_ZF_1_L4A when one of the constants is 0 . This is useful for many proofs by cases.

```
corollary (in ring1) ord_ring_split2: assumes A1: a\inR
    shows a\leq0 \vee (0\leqa ^ a\not=0)
proof -
    { from A1 have I: a\inR 0\inR
            using Ring_ZF_1_L2 by auto
            moreover assume A2: \neg(a\leq0)
            ultimately have 0\leqa by (rule OrdRing_ZF_1_L4A)
            moreover from I A2 have a\not=0 by (rule OrdRing_ZF_1_L4A)
            ultimately have 0\leqa ^a\not=0 by simp}
    then show thesis by auto
qed
```

Taking minus on both sides reverses an inequality.

```
lemma (in ring1) OrdRing_ZF_1_L4B: assumes a\leqb
    shows (-b) \leq (-a)
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5
    by simp
```

The next lemma just expands the condition that requires the set of nonnegative elements to be closed with respect to multiplication. These are properties of totally ordered groups.

```
lemma (in ring1) OrdRing_ZF_1_L5:
    assumes \(0 \leq a \quad 0 \leq b\)
    shows \(0 \leq \mathrm{a} \cdot \mathrm{b}\)
    using pos_mult_closed assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L2
    IsOpClosed_def by simp
```

Double nonnegative is nonnegative.

```
lemma (in ring1) OrdRing_ZF_1_L5A: assumes A1: 0\leqa
    shows 0\leq2•a
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5G
    OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp
```

A sufficient (somewhat redundant) condition for a structure to be an ordered ring. It says that a commutative ring that is a totally ordered group with respect to the additive operation such that set of nonnegative elements is closed under multiplication, is an ordered ring.

```
lemma OrdRing_ZF_1_L6:
    assumes
    IsAring(R,A,M)
    M {is commutative on} R
    Nonnegative(R,A,r) {is closed under} M
    IsAnOrdGroup(R,A,r)
    r {is total on} R
    shows IsAnOrdRing(R,A,M,r)
    using assms IsAnOrdGroup_def Order_ZF_1_L3 IsAnOrdRing_def
    by simp
```

$a \leq b$ iff $a-b \leq 0$. This is a fact from OrderedGroup.thy, where it is stated in multiplicative notation.

```
lemma (in ring1) OrdRing_ZF_1_L7:
    assumes a\inR b\inR
    shows a\leqb \longleftrightarrow a-b \leq 0
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9
    by simp
```

Negative times positive is negative.

```
lemma (in ring1) OrdRing_ZF_1_L8:
    assumes A1: a\leq0 and A2: 0 }\leq\textrm{b
    shows a.b \leq 0
proof -
    from A1 A2 have T1: a\inR b\inR a\cdotb \in R
        using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto
    from A1 A2 have 0\leq(-a)\cdotb
        using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5A OrdRing_ZF_1_L5
        by simp
    with T1 show a\cdotb \leq 0
        using Ring_ZF_1_L7 OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5AA
        by simp
qed
```

We can multiply both sides of an inequality by a nonnegative ring element. This property is sometimes (not here) used to define ordered rings.
lemma (in ring1) OrdRing_ZF_1_L9:

```
    assumes A1: a\leqb and A2: 0\leqc
    shows
    a}\cdot\textrm{c}\leq\textrm{b}\cdot\textrm{c
    c\cdota}\leqc\cdot
proof -
    from A1 A2 have T1:
        a\inR b\inR c\inR a}c,c\inR\quadb\cdotc\in
        using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto
    with A1 A2 have (a-b).c \leq 0
        using OrdRing_ZF_1_L7 OrdRing_ZF_1_L8 by simp
    with T1 show a\cdotc \leq b
        using Ring_ZF_1_L8 OrdRing_ZF_1_L7 by simp
    with mult_commut T1 show c.a \leq c·b
        using IsCommutative_def by simp
qed
```

A special case of OrdRing_ZF_1_L9: we can multiply an inequality by a positive ring element.

```
lemma (in ring1) OrdRing_ZF_1_L9A:
    assumes A1: a b b and A2: c\inR+
    shows
    a}\cdot\textrm{c}\leq\textrm{b}\cdot\textrm{c
    c\cdota}\leqc\cdot
proof -
    from A2 have 0 \leq c using PositiveSet_def
        by simp
    with A1 show a\cdotc}\leq\mp@code{b}\cdot\textrm{c
        using OrdRing_ZF_1_L9 by auto
qed
```

A square is nonnegative.
lemma (in ring1) OrdRing_ZF_1_L10:
assumes A1: $a \in R$ shows $0 \leq\left(a^{2}\right)$
proof -
\{ assume $0 \leq a$
then have $0 \leq\left(\mathrm{a}^{2}\right)$ using OrdRing_ZF_1_L5 by simp\}
moreover
\{ assume $\neg(0 \leq a)$
with A1 have $0 \leq\left((-a)^{2}\right)$
using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L8A
OrdRing_ZF_1_L5 by simp
with A1 have $0 \leq\left(\mathrm{a}^{2}\right)$ using Ring_ZF_1_L14 by simp $\}$
ultimately show thesis by blast
qed

1 is nonnegative.
corollary (in ring1) ordring_one_is_nonneg: shows $\mathbf{0} \leq \mathbf{1}$
proof -
have $\left.0 \leq(1)^{2}\right)$ using Ring_ZF_1_L2 OrdRing_ZF_1_L10

```
        by simp
    then show 0 \leq 1 using Ring_ZF_1_L2 Ring_ZF_1_L3
        by simp
qed
```

In nontrivial rings one is positive.

```
lemma (in ring1) ordring_one_is_pos: assumes 0}
    shows 1 \in R R+
    using assms Ring_ZF_1_L2 ordring_one_is_nonneg PositiveSet_def
    by auto
```

Nonnegative is not negative. Property of ordered groups.

```
lemma (in ring1) OrdRing_ZF_1_L11: assumes 0\leqa
    shows }\neg(a\leq0^a\not=0
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5AB
    by simp
```

A negative element cannot be a square.
lemma (in ring1) OrdRing_ZF_1_L12:
assumes A1: $a \leq 0 \quad a \neq 0$
shows $\neg\left(\exists b \in\right.$ R. $\left.a=\left(b^{2}\right)\right)$
proof -
\{ assume $\exists \mathrm{b} \in \mathrm{R}$. $\mathrm{a}=\left(\mathrm{b}^{2}\right)$
with A1 have False using OrdRing_ZF_1_L10 OrdRing_ZF_1_L11 by auto
\} then show thesis by auto
qed
If $a \leq b$, then $0 \leq b-a$.
lemma (in ring1) OrdRing_ZF_1_L13: assumes $a \leq b$
shows $0 \leq \mathrm{b}-\mathrm{a}$
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9D
by simp
If $a<b$, then $0<b-a$.
lemma (in ring1) OrdRing_ZF_1_L14: assumes $a \leq b a \neq b$
shows
$0 \leq \mathrm{b}-\mathrm{a} \quad \mathbf{0} \neq \mathrm{b}-\mathrm{a}$
$b-a \in R_{+}$
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9E
by auto
If the difference is nonnegative, then $a \leq b$.
lemma (in ring1) OrdRing_ZF_1_L15:
assumes $a \in R \quad b \in R$ and $0 \leq b-a$
shows $a \leq b$
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9F
by simp

A nonnegative number is does not decrease when multiplied by a number greater or equal 1.

```
lemma (in ring1) OrdRing_ZF_1_L16:
    assumes A1: 0\leqa and A2: 1\leqb
    shows a\leqa\cdotb
proof -
    from A1 A2 have T: a\inR b\inR a\cdotb \in R
        using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto
    from A1 A2 have 0 \leqa.(b-1)
        using OrdRing_ZF_1_L13 OrdRing_ZF_1_L5 by simp
    with T show a\leqa\cdotb
        using Ring_ZF_1_L8 Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_1_L15
        by simp
qed
```

We can multiply the right hand side of an inequality between nonnegative ring elements by an element greater or equal 1.

```
lemma (in ring1) OrdRing_ZF_1_L17:
    assumes A1: 0\leqa and A2: a }\leq\textrm{b}\mathrm{ and A3: 1 }\leq
    shows a\leqb}
proof -
    from A1 A2 have 0\leqb by (rule ring_ord_transitive)
    with A3 have b\leqb·c using OrdRing_ZF_1_L16
        by simp
    with A2 show a\leqb.c by (rule ring_ord_transitive)
qed
```

Strict order is preserved by translations.

```
lemma (in ring1) ring_strict_ord_trans_inv:
    assumes a<b and c\inR
    shows
    a+c < b+c
    c+a}< c+
    using assms OrdRing_ZF_1_L4 group3.group_strict_ord_transl_inv
    by auto
```

We can put an element on the other side of a strict inequality, changing its sign.

```
lemma (in ring1) OrdRing_ZF_1_L18:
    assumes a\inR b\inR and a-b < c
    shows a < c+b
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12B
    by simp
```

We can add the sides of two inequalities, the first of them strict, and we get a strict inequality. Property of ordered groups.
lemma (in ring1) OrdRing_ZF_1_L19:

```
assumes \(\mathrm{a}<\mathrm{b}\) and \(\mathrm{c} \leq \mathrm{d}\)
shows \(a+c<b+d\)
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12C
by simp
```

We can add the sides of two inequalities, the second of them strict and we get a strict inequality. Property of ordered groups.

```
lemma (in ring1) OrdRing_ZF_1_L20:
    assumes a}\leq\textrm{b}\mathrm{ and c<d
    shows a+c < b+d
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12D
    by simp
```


36.2 Absolute value for ordered rings

Absolute value is defined for ordered groups as a function that is the identity on the nonnegative set and the negative of the element (the inverse in the multiplicative notation) on the rest. In this section we consider properties of absolute value related to multiplication in ordered rings.

Absolute value of a product is the product of absolute values: the case when both elements of the ring are nonnegative.

```
lemma (in ring1) OrdRing_ZF_2_L1:
    assumes 0\leqa 0 <b
    shows |a\cdotb| = |a|\cdot|b|
    using assms OrdRing_ZF_1_L5 OrdRing_ZF_1_L4
        group3.OrderedGroup_ZF_1_L2 group3.OrderedGroup_ZF_3_L2
    by simp
```

The absolue value of an element and its negative are the same.

```
lemma (in ring1) OrdRing_ZF_2_L2: assumes a\inR
    shows |-a| = |a|
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L7A by simp
```

The next lemma states that $|a \cdot(-b)|=|(-a) \cdot b|=|(-a) \cdot(-b)|=|a \cdot b|$.
lemma (in ring1) OrdRing_ZF_2_L3:
assumes $a \in R \quad b \in R$
shows
$|(-a) \cdot b|=|a \cdot b|$
$|a \cdot(-b)|=|a \cdot b|$
$|(-a) \cdot(-b)|=|a \cdot b|$
using assms Ring_ZF_1_L4 Ring_ZF_1_L7 Ring_ZF_1_L7A
OrdRing_ZF_2_L2 by auto

This lemma allows to prove theorems for the case of positive and negative elements of the ring separately.
lemma (in ring1) OrdRing_ZF_2_L4: assumes $a \in R$ and $\neg(0 \leq a)$

```
shows \(0 \leq(-a) \quad 0 \neq a\)
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L8A
by auto
```

Absolute value of a product is the product of absolute values.

```
lemma (in ring1) OrdRing_ZF_2_L5:
    assumes A1: \(a \in R \quad b \in R\)
    shows \(|a \cdot b|=|a| \cdot|b|\)
proof -
    \{ assume A2: \(0 \leq a\) have \(|a \cdot b|=|a| \cdot|b|\)
        proof -
            \{ assume \(0 \leq b\)
    with A2 have \(|a \cdot b|=|a| \cdot|b|\)
        using OrdRing_ZF_2_L1 by simp \}
            moreover
            \{ assume \(\neg(0 \leq \mathrm{b})\)
    with A1 A2 have \(|a \cdot(-b)|=|a| \cdot|-b|\)
        using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp
    with A1 have \(|a \cdot b|=|a| \cdot|b|\)
        using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp \}
            ultimately show thesis by blast
        qed \(\}\)
    moreover
    \{ assume \(\neg(0 \leq a)\)
        with A1 have A3: \(0 \leq\) (-a)
            using OrdRing_ZF_2_L4 by simp
        have \(|a \cdot b|=|a| \cdot|b|\)
        proof -
            \{ assume \(0 \leq b\)
    with A3 have \(|(-a) \cdot b|=|-a| \cdot|b|\)
        using OrdRing_ZF_2_L1 by simp
    with A1 have \(|a \cdot b|=|a| \cdot|b|\)
        using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp \}
            moreover
            \{ assume \(\neg(0 \leq b)\)
    with A1 A3 have \(|(-a) \cdot(-b)|=|-a| \cdot|-b|\)
        using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp
    with A1 have \(|a \cdot b|=|a| \cdot|b|\)
        using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp \}
            ultimately show thesis by blast
        qed \(\}\)
    ultimately show thesis by blast
qed
```

Triangle inequality. Property of linearly ordered abelian groups.

```
lemma (in ring1) ord_ring_triangle_ineq: assumes a\inR b\inR
    shows |a+b| \leq |a|+|b|
    using assms OrdRing_ZF_1_L4 group3.OrdGroup_triangle_ineq
    by simp
```

```
If }a\leqc\mathrm{ and bsce, then }a+b\leq2\cdotc
lemma (in ring1) OrdRing_ZF_2_L6:
    assumes a\leqc b
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5B
        OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp
```


36.3 Positivity in ordered rings

This section is about properties of the set of positive elements R_{+}.
The set of positive elements is closed under ring addition. This is a property of ordered groups, we just reference a theorem from OrderedGroup_ZF theory in the proof.

```
lemma (in ring1) OrdRing_ZF_3_L1: shows R+ {is closed under} A
    using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L13
    by simp
```

Every element of a ring can be either in the postitive set, equal to zero or its opposite (the additive inverse) is in the positive set. This is a property of ordered groups, we just reference a theorem from OrderedGroup_ZF theory.

```
lemma (in ring1) OrdRing_ZF_3_L2: assumes a\inR
    shows Exactly_1_of_3_holds ( }a=0,a\in\mp@subsup{R}{+}{\prime},(-a)\in\mp@subsup{R}{+}{\prime}
    using assms OrdRing_ZF_1_L4 group3.OrdGroup_decomp
    by simp
```

If a ring element $a \neq 0$, and it is not positive, then $-a$ is positive.

```
lemma (in ring1) OrdRing_ZF_3_L2A: assumes a\inR a\not=0 a & R R
    shows (-a) \in R R+
    using assms OrdRing_ZF_1_L4 group3.OrdGroup_cases
    by simp
```

R_{+}is closed under multiplication iff the ring has no zero divisors.

```
lemma (in ring1) OrdRing_ZF_3_L3:
    shows \(\left(R_{+}\right.\)\{is closed under\} \(\left.M\right) \longleftrightarrow\) HasNoZeroDivs \((R, A, M)\)
proof
    assume A1: HasNoZeroDivs(R,A,M)
    \{ fix a b assume \(a \in R_{+} \quad b \in R_{+}\)
        then have \(0 \leq a \quad a \neq 0 \quad 0 \leq b \quad b \neq 0\)
            using PositiveSet_def by auto
        with A1 have \(a \cdot b \in R_{+}\)
                using OrdRing_ZF_1_L5 Ring_ZF_1_L2 OrdRing_ZF_1_L3 Ring_ZF_1_L12
    OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L2A
                by simp
    \} then show \(R_{+}\)\{is closed under\} M using IsOpClosed_def
        by simp
next assume A2: \(R_{+}\)\{is closed under\} \(M\)
    \{ fix \(a b\) assume A3: \(a \in R \quad b \in R\) and \(a \neq 0 \quad b \neq 0\)
```

```
        with A2 have |a\cdotb| \in R R
            using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L12 IsOpClosed_def
                OrdRing_ZF_2_L5 by simp
            with A3 have a\cdotb f=0
            using PositiveSet_def Ring_ZF_1_L4
    OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L2A
            by auto
    } then show HasNoZeroDivs(R,A,M) using HasNoZeroDivs_def
        by auto
qed
```

Another (in addition to OrdRing_ZF_1_L6 sufficient condition that defines order in an ordered ring starting from the positive set.

```
theorem (in ring0) ring_ord_by_positive_set:
    assumes
    A1: M {is commutative on} R and
    A2: P\subseteqR P {is closed under} A 0 # P and
    A3: }\forall\textrm{a}\inR. a\not=\mathbf{0}\longrightarrow(a\inP) Xor ((-a) \in P) and
    A4: P {is closed under} M and
    A5: r = OrderFromPosSet(R,A,P)
    shows
    IsAnOrdGroup(R,A,r)
    IsAnOrdRing(R,A,M,r)
    r {is total on} R
    PositiveSet(R,A,r) = P
    Nonnegative(R,A,r) = P \cup{0}
    HasNoZeroDivs(R,A,M)
proof -
    from A2 A3 A5 show
        I: IsAnOrdGroup(R,A,r) r {is total on} R and
        II: PositiveSet(R,A,r) = P and
        III: Nonnegative(R,A,r) = P \cup {0}
        using Ring_ZF_1_L1 group0.Group_ord_by_positive_set
        by auto
    from A2 A4 III have Nonnegative(R,A,r) {is closed under} M
        using Ring_ZF_1_L16 by simp
    with ringAssum A1 I show IsAnOrdRing(R,A,M,r)
        using OrdRing_ZF_1_L6 by simp
    with A4 II show HasNoZeroDivs(R,A,M)
        using OrdRing_ZF_1_L2 ring1.OrdRing_ZF_3_L3
        by auto
qed
```

Nontrivial ordered rings are infinite. More precisely we assume that the neutral element of the additive operation is not equal to the multiplicative neutral element and show that the the set of positive elements of the ring is not a finite subset of the ring and the ring is not a finite subset of itself.
theorem (in ring1) ord_ring_infinite: assumes $\mathbf{0} \neq \mathbf{1}$
shows

```
R+
R}\not\in\textrm{Fin}(\textrm{R}
using assms Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.Linord_group_infinite
by auto
```

If every element of a nontrivial ordered ring can be dominated by an element from B, then we B is not bounded and not finite.

```
lemma (in ring1) OrdRing_ZF_3_L4:
    assumes 0\not=1 and }\forall\textrm{a}\in\textrm{R}.\exists\textrm{b}\in\textrm{B},\textrm{a}\leq\textrm{b
    shows
    IsBoundedAbove(B,r)
    B}\not\in\textrm{Fin}(\textrm{R}
    using assms Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_2_L2A
    by auto
```

If m is greater or equal the multiplicative unit, then the set $\{m \cdot n: n \in R\}$ is infinite (unless the ring is trivial).

```
lemma (in ring1) OrdRing_ZF_3_L5: assumes A1: 0}=\mathbf{1}\mathrm{ and A2: 1 }\leq
    shows
    {m\cdotx. x\inR R } & Fin(R)
    {m\cdotx. x\inR} # Fin(R)
    {(-m)\cdotx. x\inR} \not\in Fin(R)
proof -
    from A2 have T: m\inR using OrdRing_ZF_1_L3 by simp
    from A2 have 0\leq1 1\leqm
        using ordring_one_is_nonneg by auto
    then have I: 0\leqm by (rule ring_ord_transitive)
    let B = {m·x. x\inR+}
    { fix a assume A3: a\inR
        then have a\leq0 \vee (0\leqa ^a\not=0)
            using ord_ring_split2 by simp
        moreover
        { assume A4: a }\leq
            from A1 have m·1 \in B using ordring_one_is_pos
    by auto
                with T have m\inB using Ring_ZF_1_L3 by simp
                moreover from A4 I have a\leqm by (rule ring_ord_transitive)
                ultimately have }\exists\textrm{b}\in\textrm{B}.\textrm{a}\leq\textrm{b}\mathrm{ by blast }
            moreover
            { assume A4: 0\leqa ^ a\not=0
                with A3 have m\cdota \in B using PositiveSet_def
    by auto
        moreover
        from A2 A4 have 1·a \leq m·a using OrdRing_ZF_1_L9
    by simp
        with A3 have a \leqm·a using Ring_ZF_1_L3
        by simp
        ultimately have }\exists\textrm{b}\in\textrm{B}.\textrm{a}\leq\textrm{b}\mathrm{ by auto }
        ultimately have }\exists\textrm{b}\in\textrm{B},\textrm{a}\leq\textrm{b}\mathrm{ by auto
```

```
    } then have }\forall\textrm{a}\in\textrm{R}.\exists\textrm{b}\in\textrm{B},\textrm{a}\leq\textrm{b
        by simp
    with A1 show B }\not\in\mathrm{ Fin(R) using OrdRing_ZF_3_L4
        by simp
    moreover have B}\subseteq{m\cdotx. x\inR
        using PositiveSet_def by auto
    ultimately show {m\cdotx. x\inR} }\not\inFin(R) using Fin_subset
        by auto
    with T show {(-m)\cdotx. x\inR} & Fin(R) using Ring_ZF_1_L18
        by simp
qed
```

If m is less or equal than the negative of multiplicative unit, then the set $\{m \cdot n: n \in R\}$ is infinite (unless the ring is trivial).
lemma (in ring1) OrdRing_ZF_3_L6: assumes A1: $\mathbf{0} \neq \mathbf{1}$ and A2: m $\leq \mathbf{- 1}$
shows $\{m \cdot x . x \in R\} \notin \operatorname{Fin}(R)$
proof -
from A2 have $(-(-1)) \leq-m$
using OrdRing_ZF_1_L4B by simp
with A1 have $\{(-m) \cdot x . x \in R\} \notin \operatorname{Fin}(R)$
using Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_3_L5
by simp
with A2 show $\{m \cdot x . x \in R\} \notin \operatorname{Fin}(R)$
using OrdRing_ZF_1_L3 Ring_ZF_1_L18 by simp
qed

All elements greater or equal than an element of R_{+}belong to R_{+}. Property of ordered groups.
lemma (in ring1) OrdRing_ZF_3_L7: assumes A1: $a \in R_{+}$and A2: $a \leq b$ shows $b \in R_{+}$
proof -
from A1 A2 have
group3(R,A,r)
$a \in \operatorname{PositiveSet}(R, A, r)$
$\langle a, b\rangle \in r$
using OrdRing_ZF_1_L4 by auto
then have $b \in$ PositiveSet ($\mathrm{R}, \mathrm{A}, \mathrm{r}$) by (rule group3.OrderedGroup_ZF_1_L19)
then show $b \in R_{+}$by simp
qed
A special case of OrdRing_ZF_3_L7: a ring element greater or equal than 1 is positive.
corollary (in ring1) OrdRing_ZF_3_L8: assumes A1: $\mathbf{0} \neq \mathbf{1}$ and A2: $\mathbf{1} \leq \mathrm{a}$ shows a $\in R_{+}$
proof -
from A1 A2 have $1 \in R_{+} \quad 1 \leq a$
using ordring_one_is_pos by auto

```
    then show a }\in\mp@subsup{R}{+}{}\mathrm{ by (rule OrdRing_ZF_3_L7)
```

qed

Adding a positive element to a strictly increases a. Property of ordered groups.

```
lemma (in ring1) OrdRing_ZF_3_L9: assumes A1: \(a \in R \quad b \in R_{+}\)
    shows \(\mathrm{a} \leq \mathrm{a}+\mathrm{b} \quad \mathrm{a} \neq \mathrm{a}+\mathrm{b}\)
    using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L22
    by auto
```

A special case of OrdRing_ZF_3_L9: in nontrivial rings adding one to a increases a.
corollary (in ring1) OrdRing_ZF_3_L10: assumes A1: 0 $\neq \boldsymbol{1}$ and A2: $a \in R$
shows $a \leq a+1 \quad a \neq a+1$
using assms ordring_one_is_pos OrdRing_ZF_3_L9
by auto

If a is not greater than b, then it is strictly less than $b+1$.

```
lemma (in ring1) OrdRing_ZF_3_L11: assumes A1: 0}\not=1\mathrm{ and A2: a b b
    shows a< b+1
proof -
    from A1 A2 have I: b < b+1
            using OrdRing_ZF_1_L3 OrdRing_ZF_3_L10 by auto
    with A2 show a< b+1 by (rule ring_strict_ord_transit)
qed
```

For any ring element a the greater of a and 1 is a positive element that is greater or equal than m. If we add 1 to it we get a positive element that is strictly greater than m. This holds in nontrivial rings.

```
lemma (in ring1) OrdRing_ZF_3_L12: assumes A1: 0キ1 and A2: a \(\in\) R
    shows
    \(\mathrm{a} \leq \operatorname{GreaterOf}(\mathrm{r}, \mathbf{1}, \mathrm{a})\)
    GreaterOf \((r, 1, a) \in R_{+}\)
    GreaterOf \((r, 1, a)+1 \in R_{+}\)
    \(\mathrm{a} \leq \operatorname{GreaterOf}(\mathrm{r}, \mathbf{1}, \mathrm{a})+\mathbf{1} \mathrm{a} \neq \operatorname{GreaterOf}(\mathrm{r}, \mathbf{1}, \mathrm{a})+\mathbf{1}\)
proof -
    from linord have \(r\) \{is total on\} \(R\) using IsLinOrder_def
        by simp
    moreover from \(A 2\) have \(1 \in R \quad a \in R\)
            using Ring_ZF_1_L2 by auto
    ultimately have
        \(1 \leq\) GreaterOf (r, 1,a) and
        I: a \(\leq \operatorname{GreaterOf}(r, 1, a)\)
        using Order_ZF_3_L2 by auto
    with A1 show
        \(a \leq \operatorname{GreaterOf}(r, 1, a)\) and
        Greater \(\operatorname{Of}(r, 1, a) \in R_{+}\)
        using OrdRing_ZF_3_L8 by auto
```

```
    with A1 show GreaterOf \((\mathrm{r}, 1, \mathrm{a})+1 \in \mathrm{R}_{+}\)
        using ordring_one_is_pos OrdRing_ZF_3_L1 IsOpClosed_def
        by simp
    from A1 I show
    \(a \leq \operatorname{GreaterOf}(r, \mathbf{1}, \mathrm{a})+\mathbf{1} \quad \mathrm{a} \neq \operatorname{GreaterOf}(\mathrm{r}, \mathbf{1}, \mathrm{a})+\mathbf{1}\)
    using OrdRing_ZF_3_L11 by auto
qed
```

We can multiply strict inequality by a positive element.

```
lemma (in ring1) OrdRing_ZF_3_L13:
    assumes A1: HasNoZeroDivs(R,A,M) and
    A2: a<b and A3: c\inR+
    shows
    a.c}< b\cdot
    c.a<c.b
proof -
    from A2 A3 have T: a }\inR\quadb\inR\quadc\inR\quadc\not=\mathbf{0
        using OrdRing_ZF_1_L3 PositiveSet_def by auto
    from A2 A3 have a.c \leq b
        by simp
    moreover from A1 A2 T have a\cdotc # b
        using Ring_ZF_1_L12A by auto
    ultimately show a.c < b}c\mathrm{ by simp
    moreover from mult_commut T have a\cdotc = c.a and b}\textrm{b}\cdot\textrm{c}=\textrm{c}\cdot\textrm{b
        using IsCommutative_def by auto
    ultimately show c.a < c.b by simp
qed
```

A sufficient condition for an element to be in the set of positive ring elements.

```
lemma (in ring1) OrdRing_ZF_3_L14: assumes 0\leqa and a\not=0
    shows a }\in\mp@subsup{R}{+}{
    using assms OrdRing_ZF_1_L3 PositiveSet_def
    by auto
```

If a ring has no zero divisors, the square of a nonzero element is positive.

```
lemma (in ring1) OrdRing_ZF_3_L15:
    assumes HasNoZeroDivs(R,A,M) and a\inR a\not=0
    shows 0}\leq\mp@subsup{a}{}{2}\quad\mp@subsup{a}{}{2}\not=0\quad\mp@subsup{a}{}{2}\in\mp@subsup{R}{+}{
    using assms OrdRing_ZF_1_L10 Ring_ZF_1_L12 OrdRing_ZF_3_L14
    by auto
```

In rings with no zero divisors we can (strictly) increase a positive element by multiplying it by an element that is greater than 1.

```
lemma (in ring1) OrdRing_ZF_3_L16:
    assumes HasNoZeroDivs(R,A,M) and a }\in\mp@subsup{R}{+}{}\mathrm{ and 1 b b 1}\not=
    shows a\leqa\cdotb a \not= a\cdotb
    using assms PositiveSet_def OrdRing_ZF_1_L16 OrdRing_ZF_1_L3
        Ring_ZF_1_L12C by auto
```

If the right hand side of an inequality is positive we can multiply it by a number that is greater than one.

```
lemma (in ring1) OrdRing_ZF_3_L17:
    assumes A1: HasNoZeroDivs(R,A,M) and A2: b\inR R+ and
    A3: a <b and A4: 1<c
    shows a<b}
proof -
    from A1 A2 A4 have b < b.c
        using OrdRing_ZF_3_L16 by auto
    with A3 show a<b·c by (rule ring_strict_ord_transit)
qed
```

We can multiply a right hand side of an inequality between positive numbers by a number that is greater than one.

```
lemma (in ring1) OrdRing_ZF_3_L18:
    assumes A1: HasNoZeroDivs(R,A,M) and A2: a }\in\mp@subsup{R}{+}{}\mathrm{ and
    A3: a <b and A4: 1<c
    shows a<b.c
proof -
    from A2 A3 have b }\in\mp@subsup{R}{+}{}\mathrm{ using OrdRing_ZF_3_L7
        by blast
    with A1 A3 A4 show a<b·c
        using OrdRing_ZF_3_L17 by simp
qed
```

In ordered rings with no zero divisors if at least one of a, b is not zero, then $0<a^{2}+b^{2}$, in particular $a^{2}+b^{2} \neq 0$.

```
lemma (in ring1) OrdRing_ZF_3_L19:
    assumes A1: HasNoZeroDivs ( \(R, A, M\) ) and A2: \(a \in R \quad b \in R\) and
    A3: \(a \neq 0 \vee b \neq 0\)
    shows \(0<a^{2}+b^{2}\)
proof -
    \(\{\) assume \(a \neq 0\)
        with A1 A2 have \(0 \leq a^{2} \quad a^{2} \neq 0\)
            using OrdRing_ZF_3_L15 by auto
        then have \(0<a^{2}\) by auto
        moreover from A2 have \(0 \leq b^{2}\)
            using OrdRing_ZF_1_L10 by simp
            ultimately have \(0+0<a^{2}+b^{2}\)
                using OrdRing_ZF_1_L19 by simp
            then have \(0<a^{2}+b^{2}\)
                using Ring_ZF_1_L2 Ring_ZF_1_L3 by simp \}
    moreover
    \{ assume A4: a = 0
        then have \(a^{2}+b^{2}=0+b^{2}\)
            using Ring_ZF_1_L2 Ring_ZF_1_L6 by simp
        also from A2 have \(\ldots=b^{2}\)
            using Ring_ZF_1_L4 Ring_ZF_1_L3 by simp
```

```
    finally have a}\mp@subsup{a}{}{2}+\mp@subsup{b}{}{2}=\mp@subsup{b}{}{2}\mathrm{ by simp
    moreover
    from A3 A4 have b}\not=0\mathrm{ by simp
    with A1 A2 have 0 
        using OrdRing_ZF_3_L15 by auto
    hence 0< b}\mp@subsup{}{}{2}\mathrm{ by auto
    ultimately have 0< a + + b}\mp@subsup{}{2}{2}\mathrm{ by simp }
    ultimately show 0< a
    by auto
qed
```

end

37 Cardinal numbers

theory Cardinal_ZF imports ZF.CardinalArith func1

begin

This theory file deals with results on cardinal numbers (cardinals). Cardinals are a genaralization of the natural numbers, used to measure the cardinality (size) of sets. Contributed by Daniel de la Concepcion.

37.1 Some new ideas on cardinals

All the results of this section are done without assuming the Axiom of Choice. With the Axiom of Choice in play, the proofs become easier and some of the assumptions may be dropped.
Since General Topology Theory is closely related to Set Theory, it is very interesting to make use of all the possibilities of Set Theory to try to classify homeomorphic topological spaces. These ideas are generally used to prove that two topological spaces are not homeomorphic.

There exist cardinals which are the successor of another cardinal, but; as happens with ordinals, there are cardinals which are limit cardinal.

```
definition
        LimitC(i) \equivCard(i) ^ 0<i ^ ( }\forall\textrm{y}.(\textrm{l}<\textrm{i}\wedge\operatorname{Card}(y))\longrightarrow\operatorname{csucc}(y)<i
```

Simple fact used a couple of times in proofs.
lemma nat_less_infty: assumes nenat and InfCard(X) shows n<X proof -
from assms have $n<n a t$ and nat $\leq X$ using lt_def InfCard_def by auto then show $\mathrm{n}<\mathrm{X}$ using lt_trans2 by blast

qed

There are three types of cardinals, the zero one, the succesors of other cardinals and the limit cardinals.

```
lemma Card_cases_disj:
    assumes Card(i)
    shows i=0 | (\existsj. Card(j) ^ i=csucc(j)) | LimitC(i)
proof-
    from assms have D: Ord(i) using Card_is_Ord by auto
    {
        assume F: i\not=0
        assume Contr: ~LimitC(i)
        from F D have 0<i using Ord_O_lt by auto
        with Contr assms have \existsy. y < i ^ Card(y) ^ ᄀ csucc(y) < i
            using LimitC_def by blast
        then obtain y where y < i ^ Card(y) ^ ᄀ csucc(y) < i by blast
        with D have y < i i\leqcsucc(y) and 0: Card(y)
            using not_lt_imp_le lt_Ord Card_csucc Card_is_Ord
            by auto
        with assms have csucc(y) \leqii\leqcsucc(y) using csucc_le by auto
        then have i=csucc(y) using le_anti_sym by auto
        with O have \existsj. Card(j) ^ i=csucc(j) by auto
    } thus thesis by auto
qed
```

Given an ordinal bounded by a cardinal in ordinal order, we can change to the order of sets.

```
lemma le_imp_lesspoll:
    assumes Card(Q)
    shows A}\leq\textrm{Q}\Longrightarrow\textrm{A}\lesssim\textrm{Q
proof -
    assume A \leq Q
    then have A<Q\veeA=Q using le_iff by auto
    then have }A\approxQ\veeA<Q using eqpoll_refl by aut
    with assms have A\approxQ\veeA\prec Q using lt_Card_imp_lesspoll by auto
    then show A\lesssimQ using lesspoll_def eqpoll_imp_lepoll by auto
qed
```

There are two types of infinite cardinals, the natural numbers and those that have at least one infinite strictly smaller cardinal.

```
lemma InfCard_cases_disj:
    assumes InfCard(Q)
    shows Q=nat }\vee(\existsj.\operatorname{csucc}(j)\lesssimQ ^ InfCard(j)
proof-
    {
        assume }\forall\textrm{j}.\neg\operatorname{csucc}(\textrm{j})\lesssimQ Q \vee ᄀ InfCard(j
        then have D: ᄀ csucc(nat) \lesssim Q using InfCard_nat by auto
        with D assms have }\neg(\operatorname{csucc}(nat) \leq Q) using le_imp_lesspoll InfCard_is_Card
```

```
            by auto
        with assms have Q<(csucc(nat))
            using not_le_iff_lt Card_is_Ord Card_csucc Card_is_Ord
                Card_is_Ord InfCard_is_Card Card_nat by auto
        with assms have Q\leqnat using Card_lt_csucc_iff InfCard_is_Card Card_nat
            by auto
        with assms have Q=nat using InfCard_def le_anti_sym by auto
    }
    thus thesis by auto
qed
```

A more readable version of standard Isabelle/ZF Ord_linear_lt
lemma Ord_linear_lt_IML: assumes Ord(i) Ord(j)
shows $i<j \vee i=j \vee j<i$
using assms lt_def Ord_linear disjE by simp

A set is injective and not bijective to the successor of a cardinal if and only if it is injective and possibly bijective to the cardinal.

```
lemma Card_less_csucc_eq_le:
    assumes Card(m)
    shows A }\prec\mathrm{ csucc(m) }\longleftrightarrowA\lesssim 
proof
    have S: Ord(csucc(m)) using Card_csucc Card_is_Ord assms by auto
    {
            assume A: A }\prec csucc(m
            with S have |A|\approxA using lesspoll_imp_eqpoll by auto
            also from A have ...\prec csucc(m) by auto
            finally have |A|}\prec\operatorname{csucc}(m) by aut
            then have |A|\lesssimcsucc(m)~(|A|\approxcsucc(m)) using lesspoll_def by auto
            with S have ||A||\leqcsucc(m)|A||csucc(m) using lepoll_cardinal_le
by auto
    then have |A|\leqcsucc(m) |A||csucc(m) using Card_def Card_cardinal
by auto
    then have I: ~ (csucc(m)<|A|) |A|\not=csucc(m) using le_imp_not_lt by
auto
    from S have csucc(m)<|A| \vee |A|=csucc(m) V |A|<csucc(m)
            using Card_cardinal Card_is_Ord Ord_linear_lt_IML by auto
    with I have |A|<csucc(m) by simp
    with assms have |A|\leqm using Card_lt_csucc_iff Card_cardinal
        by auto
    then have |A|=m\vee |A|< m using le_iff by auto
    then have |A|\approxmV|A|< m using eqpoll_refl by auto
    then have |A|\approxmV|A|\prec m using lt_Card_imp_lesspoll assms by auto
    then have T:|A|\lesssimm using lesspoll_def eqpoll_imp_lepoll by auto
    from A S have A\approx|A| using lesspoll_imp_eqpoll eqpoll_sym by auto
    also from T have .. \m by auto
    finally show A}\m\mathrm{ by simp
}
```

```
    {
        assume A: A}\lesssim
        from assms have m\preccsucc(m) using lt_Card_imp_lesspoll Card_csucc
Card_is_Ord
            lt_csucc by auto
        with A show A\preccsucc(m) using lesspoll_trans1 by auto
    }
qed
```

If the successor of a cardinal is infinite, so is the original cardinal.

```
lemma csucc_inf_imp_inf:
    assumes Card(j) and InfCard(csucc(j))
    shows InfCard(j)
proof-
    {
        assume f:Finite (j)
        then obtain n where n\innat j\approxn using Finite_def by auto
        with assms(1) have TT: j=n n\innat
            using cardinal_cong nat_into_Card Card_def by auto
        then have Q:succ(j)\innat using nat_succI by auto
        with f TT have T: Finite(succ(j)) Card(succ(j))
            using nat_into_Card nat_succI by auto
        from T(2) have Card(succ(j))^ j<succ(j) using Card_is_Ord by auto
        moreover from this have Ord(succ(j)) using Card_is_Ord by auto
        moreover
        { fix x
            assume A: x<succ(j)
            {
            assume Card(x)^ j<x
            with A have False using lt_trans1 by auto
            }
            hence ~}(\operatorname{Card}(x)\wedge j<x) by aut
        }
        ultimately have ( }\mu\textrm{L}.\operatorname{Card(L) ^ j < L)=succ(j)
            by (rule Least_equality)
        then have csucc(j)=succ(j) using csucc_def by auto
        with Q have csucc(j)\innat by auto
        then have csucc(j)<nat using lt_def Card_nat Card_is_Ord by auto
        with assms(2) have False using InfCard_def lt_trans2 by auto
    }
    then have ~(Finite (j)) by auto
    with assms(1) show thesis using Inf_Card_is_InfCard by auto
qed
```

Since all the cardinals previous to nat are finite, it cannot be a successor cardinal; hence it is a LimitC cardinal.

```
corollary LimitC_nat:
    shows LimitC(nat)
proof-
```

```
    note Card_nat
    moreover have 0<nat using lt_def by auto
    moreover
    {
    fix y
    assume AS: y<natCard(y)
    then have ord: Ord(y) unfolding lt_def by auto
    then have Cacsucc: Card(csucc(y)) using Card_csucc by auto
    {
        assume nat\leqcsucc(y)
        with Cacsucc have InfCard(csucc(y)) using InfCard_def by auto
        with AS(2) have InfCard(y) using csucc_inf_imp_inf by auto
        then have nat\leqy using InfCard_def by auto
        with AS(1) have False using lt_trans2 by auto
    }
    hence ~ (nat\leqcsucc(y)) by auto
    then have csucc(y)<nat using not_le_iff_lt Ord_nat Cacsucc Card_is_Ord
by auto
    }
    ultimately show thesis using LimitC_def by auto
qed
```


37.2 Main result on cardinals (without the Axiom of Choice)

If two sets are strictly injective to an infinite cardinal, then so is its union. For the case of successor cardinal, this theorem is done in the isabelle library in a more general setting; but that theorem is of not use in the case where LimitC(Q) and it also makes use of the Axiom of Choice. The mentioned theorem is in the theory file Cardinal_AC.thy

Note that if Q is finite and different from 1, let's assume $Q=n$, then the union of A and B is not bounded by Q. Counterexample: two disjoint sets of $n-1$ elements each have a union of $2 n-2$ elements which are more than n.
Note also that if $Q=1$ then A and B must be empty and the union is then empty too; and Q cannot be o because no set is injective and not bijective to 0 .
The proof is divided in two parts, first the case when both sets A and B are finite; and second, the part when at least one of them is infinite. In the first part, it is used the fact that a finite union of finite sets is finite. In the second part it is used the linear order on cardinals (ordinals). This proof can not be generalized to a setting with an infinite union easily.

```
lemma less_less_imp_un_less:
    assumes }\textrm{A}\prec\textrm{Q}\mathrm{ and }\textrm{B}\precQ\mathrm{ and InfCard(Q)
    shows A \cup B\precQ
proof-
{
```

```
    assume Finite (A) ^ Finite(B)
    then have Finite(A \cup B) using Finite_Un by auto
    then obtain n where R: A \cup B \approxn n\innat using Finite_def
        by auto
    then have |A \cup B|<nat using lt_def cardinal_cong
        nat_into_Card Card_def Card_nat Card_is_Ord by auto
    with assms(3) have T: |A \cup B|<Q using InfCard_def lt_trans2 by auto
    from R have Ord(n)A U B \ n using nat_into_Card Card_is_Ord eqpoll_imp_lepoll
by auto
    then have A \cup B\approx|A \cup B| using lepoll_Ord_imp_eqpoll eqpoll_sym by
auto
    also from T assms(3) have ...\precQ using lt_Card_imp_lesspoll InfCard_is_Card
        by auto
    finally have A \cup B<Q by simp
}
moreover
{
    assume ~(Finite (A) ^ Finite(B))
    hence A: ~Finite (A) V ~
    from assms have B: |A| A |B|\approxB using lesspoll_imp_eqpoll lesspoll_imp_eqpoll
        InfCard_is_Card Card_is_Ord by auto
    from B(1) have Aeq: }\forallx.(|A|\approxx)\longrightarrow(A\approxx
        using eqpoll_sym eqpoll_trans by blast
    from B(2) have Beq: }\forallx.(|B|\approxx)\longrightarrow(B\approxx
        using eqpoll_sym eqpoll_trans by blast
    with A Aeq have ~Finite(|A|)\vee ~Finite(|B|) using Finite_def
        by auto
    then have D: InfCard(|A|)VInfCard(|B|)
        using Inf_Card_is_InfCard Inf_Card_is_InfCard Card_cardinal by blast
    {
        assume AS: |A| < |B|
        {
            assume ~}\operatorname{InfCard(|A|)
            with D have InfCard(|B|) by auto
        }
        moreover
        {
        assume InfCard(|A|)
        then have nat\leq|A| using InfCard_def by auto
        with AS have nat<|B| using lt_trans1 by auto
        then have nat\leq|B| using leI by auto
        then have InfCard(|B|) using InfCard_def Card_cardinal by auto
        }
        ultimately have INFB: InfCard(|B|) by auto
        then have 2<|B| using nat_less_infty by simp
        then have AG: 2\lesssim|B| using lt_Card_imp_lesspoll Card_cardinal lesspoll_def
        by auto
    from }B(2)\mathrm{ have }|B|\approxB\mathrm{ by simp
    also from assms(2) have ...\precQ by auto
```

finally have $T T T:|B| \prec Q$ by simp
from $B(1)$ have $\operatorname{Card}(|B|) A \lesssim|A|$ using eqpoll_sym Card_cardinal eqpoll_imp_lepoll
by auto
with AS have $\mathrm{A} \prec|\mathrm{B}|$ using lt_Card_imp_lesspoll lesspoll_trans1 by auto
then have I1: $A \lesssim|B|$ using lesspoll_def by auto
from $B(2)$ have $I 2: B \lesssim|B|$ using eqpoll_sym eqpoll_imp_lepoll by auto
have $A \cup B \lesssim A+B$ using Un_lepoll_sum by auto
also from I1 I2 have $\ldots \lesssim|B|+|B|$ using sum_lepoll_mono by auto
also from AG have $\ldots \lesssim|B| *|B|$ using sum_lepoll_prod by auto
also from assms(3) INFB have ... $\approx|B|$ using InfCard_square_eqpoll by auto
finally have $A \cup B \lesssim|B|$ by simp
also from TTT have $\ldots \prec Q$ by auto
finally have $A \cup B \prec Q$ by simp
\}
moreover
\{
assume AS: $|\mathrm{B}|<|\mathrm{A}|$
\{
assume ${ }^{\sim} \operatorname{InfCard}(|B|)$
with D have $\operatorname{Inf} \operatorname{Card}(|A|)$ by auto
\}
moreover
\{
assume $\operatorname{InfCard}(|\mathrm{B}|)$
then have nat $\leq|B|$ using InfCard_def by auto
with AS have nat<|A| using lt_trans1 by auto
then have nat $\leq|A|$ using leI by auto
then have InfCard(|A|) using InfCard_def Card_cardinal by auto
\}
ultimately have INFB: InfCard(|A|) by auto
then have $2<|A|$ using nat_less_infty by simp
then have AG: $2 \lesssim|A|$ using lt_Card_imp_lesspoll Card_cardinal lesspoll_def by auto
from $B(1)$ have $|A| \approx A$ by simp
also from assms(1) have ...々Q by auto
finally have TTT: $|A| \prec Q$ by simp
from $B(2)$ have $\operatorname{Card}(|A|) B \lesssim|B|$ using eqpoll_sym Card_cardinal eqpoll_imp_lepoll
by auto
with AS have $\mathrm{B} \prec|A|$ using lt_Card_imp_lesspoll lesspoll_trans1 by auto
then have I1: $\mathrm{B} \lesssim|\mathrm{A}|$ using lesspoll_def by auto
from $B(1)$ have $I 2: A \lesssim|A|$ using eqpoll_sym eqpoll_imp_lepoll by auto
have $A \cup B \lesssim A+B$ using Un_lepoll_sum by auto
also from I1 I2 have $\ldots \lesssim|A|+|A|$ using sum_lepoll_mono by auto

```
    also from AG have .. \|A| * |A| using sum_lepoll_prod by auto
    also from INFB assms(3) have ...\approx|A| using InfCard_square_eqpoll
        by auto
    finally have A \cup B\lesssim|A| by simp
    also from TTT have ...\precQ by auto
    finally have A \cup B\precQ by simp
    }
    moreover
    {
    assume AS: |A|=|B|
    with D have INFB: InfCard(|A|) by auto
    then have 2<|A| using nat_less_infty by simp
    then have AG: 2\lesssim|A| using lt_Card_imp_lesspoll Card_cardinal us-
ing lesspoll_def
            by auto
            from }B(1)\mathrm{ have }|A|\approxA by sim
            also from assms(1) have ...\precQ by auto
            finally have TTT: |A|<Q by simp
            from AS B have I1: A \ |A|and I2:B\lesssim|A| using eqpoll_refl eqpoll_imp_lepoll
                eqpoll_sym by auto
            have A \cup B }\A+B using Un_lepoll_sum by aut
            also from I1 I2 have ...\lesssim |A| + |A| using sum_lepoll_mono by auto
            also from AG have \ldots\lesssim\A| * |A| using sum_lepoll_prod by auto
            also from assms(3) INFB have ...\approx|A| using InfCard_square_eqpoll
                by auto
            finally have A \cup B\lesssim|A| by simp
            also from TTT have ...\precQ by auto
            finally have A \cup B\precQ by simp
        }
                            ultimately have A \cup B\precQ using Ord_linear_lt_IML Card_cardinal Card_is_Ord
by auto
    }
    ultimately show A \cup B<Q by auto
qed
```


37.3 Choice axioms

We want to prove some theorems assuming that some version of the Axiom of Choice holds. To avoid introducing it as an axiom we will defin an appropriate predicate and put that in the assumptions of the theorems. That way technically we stay inside ZF.

The first predicate we define states that the axiom of Q-choice holds for subsets of K if we can find a choice function for every family of subsets of K whose (that family's) cardinality does not exceed Q.

```
definition
    AxiomCardinalChoice ({the axiom of}_{choice holds for subsets}_) where
    {the axiom of} Q {choice holds for subsets}K \equivCard(Q) ^ ( }\forall\textrm{M N}.(
```

```
\lesssimQ ^ ( }\forall\textrm{t}\in\textrm{M}.N\textrm{Nt}\not=0\wedgeNt\subseteqK))\longrightarrow(\existsf.f:Pi(M,\lambdat.Nt) ^ (\forallt\inM. ft\inNt))
```

Next we define a general form of Q choice where we don't require a collection of files to be included in a file.

```
definition
    AxiomCardinalChoiceGen ({the axiom of}_{choice holds}) where
    {the axiom of} Q {choice holds} \equiv Card(Q) ^ ( }\forall\textrm{M}N.(M\Q \ (\forallt\inM
Nt}=0))\longrightarrow(\existsf.f:Pi(M,\lambdat.Nt) ^ ( \forallt\inM. ft\inNt))
```

The axiom of finite choice always holds.

```
theorem finite_choice:
    assumes \(n \in\) nat
    shows \{the axiom of n \{choice holds\}
proof -
    note assms(1)
    moreover
    \{
            fix \(M N\) assume \(M \lesssim 0 \forall t \in M\). \(N t \neq 0\)
            then have \(\mathrm{M}=0\) using lepoll_0_is_0 by auto
            then have \(\{\langle\mathrm{t}, 0\rangle\). \(\mathrm{t} \in \mathrm{M}\}: \mathrm{Pi}(\mathrm{M}, \lambda \mathrm{t}\). Nt) unfolding Pi_def domain_def function_def
Sigma_def by auto
            moreover from \(\langle M=0\rangle\) have \(\forall t \in M\). \(\{\langle t, 0\rangle . t \in M\} t \in N t\) by auto
            ultimately have ( \(\exists \mathrm{f} . \mathrm{f}: \operatorname{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{Nt}) \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{ft} \in \mathrm{Nt}))\) by auto
    \}
    then have \((\forall \mathrm{M} N .(\mathrm{M} \lesssim 0 \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{Nt} \neq 0)) \longrightarrow(\exists \mathrm{f} . \mathrm{f}: \mathrm{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{Nt})\)
\(\wedge(\forall t \in M . f t \in N t)))\)
            by auto
    then have \{the axiom of\} 0 \{choice holds\} using AxiomCardinalChoiceGen_def
nat_into_Card
            by auto
    moreover \{
            fix \(x\)
            assume as: \(x \in\) nat \{the axiom of\} \(x\) \{choice holds\}
            \{
                fix M N assume ass: \(\mathrm{M} \lesssim \operatorname{succ}(\mathrm{x}) \forall \mathrm{t} \in \mathrm{M} . \mathrm{Nt} \neq 0\)
                \{
                    assume \(M \lesssim x\)
                            from as (2) ass (2) have
                    \((\mathrm{M} \lesssim \mathrm{x} \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{N} \mathrm{t} \neq 0)) \longrightarrow(\exists \mathrm{f} . \mathrm{f} \in \operatorname{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{N} \mathrm{t}) \wedge\)
\((\forall \mathrm{t} \in \mathrm{M} . \mathrm{f} \quad \mathrm{t} \in \mathrm{N} \quad \mathrm{t})\) )
                    unfolding AxiomCardinalChoiceGen_def by auto
                    with \(\langle M \lesssim x\rangle\) ass (2) have \((\exists f . f \in \operatorname{Pi}(M, \lambda t . N \quad t) \wedge(\forall t \in M . f t\)
\(\in \mathrm{N} \quad \mathrm{t})\) )
                    by auto
            \}
            moreover
            \{
                    assume \(M \approx \operatorname{succ}(x)\)
```

then obtain f where $f: f \in \operatorname{bij}(\operatorname{succ}(x), M)$ using eqpoll_sym eqpoll_def by blast
moreover
have $x \in \operatorname{succ}(x)$ unfolding succ_def by auto
ultimately have restrict $(f, \operatorname{succ}(x)-\{x\}) \in \operatorname{bij}(\operatorname{succ}(x)-\{x\}, M-\{f x\})$
using bij_restrict_rem
by auto
moreover
have $\mathrm{x} \notin \mathrm{x}$ using mem_not_refl by auto
then have $\operatorname{succ}(x)-\{x\}=x$ unfolding succ_def by auto
ultimately have restrict (f, x) \in bij $(x, M-\{f x\}$) by auto
then have $x \approx M-\{f x\}$ unfolding eqpoll_def by auto
then have $M-\{f x\} \approx x$ using eqpoll_sym by auto
then have $M-\{f x\} \lesssim x$ using eqpoll_imp_lepoll by auto
with as(2) ass(2) have ($\exists \mathrm{g} . \mathrm{g} \in \operatorname{Pi}(\mathrm{M}-\{\mathrm{fx}\}, \lambda \mathrm{t} . \mathrm{N} \mathrm{t}) \wedge(\forall \mathrm{t} \in \mathrm{M}-\{\mathrm{fx}\}$.
$\mathrm{g} \quad \mathrm{t} \in \mathrm{N} \quad \mathrm{t})$)
unfolding AxiomCardinalChoiceGen_def by auto
then obtain g where $g: g \in \operatorname{Pi}(M-\{f x\}, \lambda t . N \quad t) \forall t \in M-\{f x\} . g \quad t$ $\in \mathrm{N} \quad \mathrm{t}$
by auto
from f have ff: fx $\in \mathrm{M}$ using bij_def inj_def apply_funtype by auto
with ass(2) have $N(f x) \neq 0$ by auto
then obtain y where $y: y \in N(f x)$ by auto
from $g(1)$ have $g g: g \subseteq \operatorname{Sigma}(M-\{f x\},()(N))$ unfolding Pi_def by
auto
with y ff have $g \cup\{\langle f x, y\rangle\} \subseteq \operatorname{Sigma}(M,()(N))$ unfolding Sigma_def by auto
moreover
from $g(1)$ have dom: $M-\{f x\} \subseteq$ domain (g) unfolding Pi_def by auto
then have $M \subseteq$ domain $(g \cup\{\langle f x, y\rangle\})$ unfolding domain_def by auto
moreover
from $g \mathrm{~g} ~ \mathrm{~g}(1)$ have noe: $\sim(\exists \mathrm{t} .\langle\mathrm{fx}, \mathrm{t}\rangle \in \mathrm{g})$ and function(g$)$
unfolding domain_def Pi_def Sigma_def by auto
with dom have fg : function ($\mathrm{g} \cup\{\langle\mathrm{fx}, \mathrm{y}\rangle\}$) unfolding function_def
by blast
ultimately have PP: $\mathrm{g} \cup\{\langle\mathrm{fx}, \mathrm{y}\rangle\} \in \operatorname{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{N} \mathrm{t})$ unfolding Pi_def
by auto
have $\langle\mathrm{fx}, \mathrm{y}\rangle \in \mathrm{g} \cup\{\langle\mathrm{fx}, \mathrm{y}\rangle\}$ by auto
from this $f g$ have ($g \cup\{\langle f x, y\rangle\}$) ($f x$) =y by (rule function_apply_equality)
with y have $(\mathrm{g} \cup\{\langle\mathrm{fx}, \mathrm{y}\rangle\})(\mathrm{fx}) \in \mathrm{N}(\mathrm{fx})$ by auto
moreover
\{
fix t assume $A: t \in M-\{f x\}$
with $g(1)$ have $\langle t, g t\rangle \in g$ using apply_Pair by auto
then have $\langle\mathrm{t}, \mathrm{gt}\rangle \in(\mathrm{g} \cup\{\langle\mathrm{fx}, \mathrm{y}\rangle\})$ by auto
then have $(g \cup\{\langle f x, y\rangle\}) t=g t$ using apply_equality PP by auto
with A have ($\mathrm{g} \cup\{\langle\mathrm{fx}, \mathrm{y}\rangle\}$) t $\in \mathrm{Nt}$ using $\mathrm{g}(2)$ by auto
\}

```
            ultimately have }\forallt\inM\mathrm{ . (g }\cup{\langlefx,y\rangle})t\inNt by aut
            with PP have }\exists\textrm{g}.\textrm{g}\in\textrm{Pi}(\textrm{M},\lambda\textrm{t}.\textrm{N}\mathrm{ (t) ^ ( }\forall\textrm{t}\in\textrm{M}.g\textrm{gt}\in\textrm{Nt})\mathrm{ by auto
        }
    ultimately have }\exists\textrm{g}.\textrm{g}\in\textrm{Pi}(\textrm{M},\lambda\textrm{t}.\textrm{Nt})\wedge(\forall\textrm{t}\in\textrm{M}.\textrm{g} \textrm{t}\in\textrm{N
ing as(1) ass(1)
    lepoll_succ_disj by auto
    }
    then have }\forall\textrm{M N. M \lesssim succ}(\textrm{x})\wedge(\forall\textrm{t}\in\textrm{M}.N\textrm{Nt}\not=0)\longrightarrow\longrightarrow(\exists\textrm{g}.\textrm{g}\in\textrm{Pi}(M,\lambdat.
t) }\wedge(\forallt\inM.g t | N t)
            by auto
    then have {the axiom of}succ(x){choice holds}
            using AxiomCardinalChoiceGen_def nat_into_Card as(1) nat_succI by
auto
    }
    ultimately show thesis by (rule nat_induct)
qed
```

The axiom of choice holds if and only if the AxiomCardinalChoice holds for every couple of a cardinal Q and a set K.

```
lemma choice_subset_imp_choice:
    shows {the axiom of} Q {choice holds} \longleftrightarrow (\forall K. {the axiom of} Q {choice
holds for subsets}K)
    unfolding AxiomCardinalChoice_def AxiomCardinalChoiceGen_def by blast
```

A choice axiom for greater cardinality implies one for smaller cardinality

```
lemma greater_choice_imp_smaller_choice:
    assumes Q\lesssimQ1 Card(Q)
    shows {the axiom of} Q1 {choice holds} \longrightarrow ({the axiom of} Q {choice
holds}) using assms
    AxiomCardinalChoiceGen_def lepoll_trans by auto
```

If we have a surjective function from a set which is injective to a set of ordinals, then we can find an injection which goes the other way.

```
lemma surj_fun_inv:
    assumes \(f \in \operatorname{surj}(A, B) A \subseteq Q \operatorname{Ord}(Q)\)
    shows \(B \lesssim A\)
proof-
    let \(g=\{\langle m, \mu j \cdot j \in A \wedge f(j)=m\rangle . m \in B\}\)
    have \(g: B \rightarrow r a n g e(g)\) using lam_is_fun_range by simp
    then have fun: \(g: B \rightarrow g(B)\) using range_image_domain by simp
    from assms \((2,3)\) have \(\mathrm{OA}: \forall j \in A\). Ord(j) using lt_def Ord_in_Ord by auto
    \{
        fix \(x\)
        assume \(x \in g(B)\)
        then have \(x \in\) range (g) and \(\exists y \in B .\langle y, x\rangle \in g\) by auto
        then obtain \(y\) where \(T: x=(\mu j . j \in A \wedge f(j)=y)\) and \(y \in B\) by auto
        with assms (1) \(O A\) obtain \(z\) where \(P: z \in A \wedge f(z)=y \operatorname{Ord}(z)\) unfolding
surj_def
```

```
        by auto
    with T have }x\inA\wedgef(x)=y using LeastI by sim
    hence }x\inA\mathrm{ by simp
    }
    then have g(B)\subseteqA by auto
    with fun have fun2: g:B->A using fun_weaken_type by auto
    then have g\ininj(B,A)
    proof -
        {
        fix w x
        assume AS: gw=gx w\inB x\inB
        from assms(1) OA AS(2,3) obtain wz xz where
                P1: wz\inA ^f(wz)=w Ord(wz) and P2: xz\inA ^ f(xz)=x Ord(xz)
            unfolding surj_def by blast
        from P1 have ( }\mu\textrm{j}.j\inA\wedge fj=w) \inA ^ f( ( j j. j\inA^ fj=w)=w
                by (rule LeastI)
        moreover from P2 have ( }\mu\textrm{j}.j\inA\wedge fj=x) \inA ^f( | j. j\inA^ fj=x)=x
            by (rule LeastI)
        ultimately have R: f( }\mu\textrm{j}.\textrm{j}\in\textrm{A}\wedge fj=w)=w f( ( j j. j\inA^ fj=x)=
            by auto
        from AS have ( }\mu\textrm{j}.j\inA\wedge f(j)=w)=( ( j j. j\inA ^ f(j)=x
            using apply_equality fun2 by auto
        hence f( }\mu\textrm{j}\cdot\textrm{j}\in\textrm{A}\wedge \f(j)=w)=f(\mu j. j\inA ^f(j)=x) by aut
        with R(1) have w = f( }\mu\textrm{j}.j\inA\wedge fj=x) by aut
        with R(2) have w=x by auto
    }
    hence }\forall\textrm{w}\in\textrm{B}.\forall\textrm{x}\in\textrm{B}.\textrm{g}(\textrm{w})=\textrm{g}(\textrm{x})\longrightarrow\textrm{w}=\textrm{x
            by auto
        with fun2 show g\ininj(B,A) unfolding inj_def by auto
    qed
    then show thesis unfolding lepoll_def by auto
qed
```

The difference with the previous result is that in this one A is not a subset of an ordinal, it is only injective with one.

```
theorem surj_fun_inv_2:
    assumes f:surj(A,B) A \Q Ord(Q)
    shows B}\lesssim
proof-
    from assms(2) obtain h where h_def: h\ininj(A,Q) using lepoll_def by
auto
    then have bij: h\inbij(A,range(h)) using inj_bij_range by auto
    then obtain h1 where h1\inbij(range(h),A) using bij_converse_bij by
auto
    then have h1 \in surj(range(h),A) using bij_def by auto
    with assms(1) have (f O h1)\insurj(range(h),B) using comp_surj by auto
    moreover
    {
```

```
        fix x
        assume p: x\inrange(h)
        from bij have h\insurj(A,range(h)) using bij_def by auto
        with p obtain q where q\inA and h(q)=x using surj_def by auto
        then have x\inQ using h_def inj_def by auto
    }
    then have range(h)\subseteqQ by auto
    ultimately have B}\lesssim\mathrm{ range(h) using surj_fun_inv assms(3) by auto
    moreover have range(h)\approxA using bij eqpoll_def eqpoll_sym by blast
    ultimately show B\lesssimA using lepoll_eq_trans by auto
qed
```

end

38 Groups 4

```
theory Group_ZF_4 imports Group_ZF_1 Group_ZF_2 Finite_ZF Ring_ZF
```

 Cardinal_ZF Semigroup_ZF

begin

This theory file deals with normal subgroup test and some finite group theory. Then we define group homomorphisms and prove that the set of endomorphisms forms a ring with unity and we also prove the first isomorphism theorem.

38.1 Conjugation of subgroups

The conjugate of a subgroup is a subgroup.

```
theorem(in group0) semigr0:
    shows semigr0(G,P)
    unfolding semigrO_def using groupAssum IsAgroup_def IsAmonoid_def by
auto
```

theorem (in group0) conj_group_is_group:
assumes IsAsubgroup (H,P) g $\in G$
shows IsAsubgroup ($\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right.\right.$). $\left.\mathrm{h} \in \mathrm{H}\right\}, \mathrm{P}$)
proof-
have sub: $\mathrm{H} \subseteq \mathrm{G}$ using assms(1) group0_3_L2 by auto
from assms(2) have $g^{-1} \in G$ using inverse_in_group by auto
\{
fix r assume $r \in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\}$
then obtain h where $h: h \in H r=g \cdot\left(h \cdot\left(g^{-1}\right)\right.$) by auto
from $h(1)$ have $h^{-1} \in H$ using group0_3_T3A assms(1) by auto
from $h(1)$ sub have $h \in G$ by auto
then have $h^{-1} \in G$ using inverse_in_group by auto
with $\left\langle\mathrm{g}^{-1} \in \mathrm{G}\right\rangle$ have $\left(\left(\mathrm{h}^{-1}\right) \cdot(\mathrm{g})^{-1}\right) \in \mathrm{G}$ using group_op_closed by auto
from $h(2)$ have $r^{-1}=\left(g \cdot\left(h \cdot\left(g^{-1}\right)\right)\right)^{-1}$ by auto moreover
from $\langle\mathrm{h} \in \mathrm{G}\rangle\left\langle\mathrm{g}^{-1} \in \mathrm{G}\right\rangle$ have $\mathrm{s}: \mathrm{h} \cdot\left(\mathrm{g}^{-1}\right) \in \mathrm{G}$ using group_op_closed by blast
ultimately have $\mathrm{r}^{-1}=\left(\mathrm{h} \cdot\left(\mathrm{g}^{-1}\right)\right)^{-1} \cdot(\mathrm{~g})^{-1}$ using group_inv_of_two[0F assms (2)]
by auto
moreover
from s assms (2) $h(2)$ have $r: r \in G$ using group_op_closed by auto
have $\left(\mathrm{h} \cdot\left(\mathrm{g}^{-1}\right)\right)^{-1}=\left(\mathrm{g}^{-1}\right)^{-1} \cdot \mathrm{~h}^{-1}$ using group_inv_of_two [OF $\langle\mathrm{h} \in \mathrm{G}\rangle\left\langle\mathrm{g}^{-1} \in \mathrm{G}\right\rangle$]
by auto
moreover have $\left(\mathrm{g}^{-1}\right)^{-1}=\mathrm{g}$ using group_inv_of_inv[0F assms(2)] by auto
ultimately have $\mathrm{r}^{-1}=\left(\mathrm{g} \cdot\left(\mathrm{h}^{-1}\right)\right) \cdot(\mathrm{g})^{-1}$ by auto
then have $r^{-1}=g \cdot\left(\left(h^{-1}\right) \cdot(g)^{-1}\right)$ using group_oper_assoc [OF assms (2) $\left\langle\mathrm{h}^{-1} \in \mathrm{G}\right\rangle\left(\mathrm{g}^{-1} \in \mathrm{G}\right)$]
by auto
with $\left\langle\mathrm{h}^{-1} \in \mathrm{H}\right\rangle \mathrm{r}$ have $\mathrm{r}^{-1} \in\left\{\mathrm{~g} \cdot\left(\mathrm{~h} \cdot \mathrm{~g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\} \mathrm{r} \in \mathrm{G}$ by auto
\}
then have $\forall r \in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\} . r^{-1} \in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\}$ and $\left\{g \cdot\left(h \cdot g^{-1}\right)\right.$.
$h \in H\} \subseteq G$ by auto moreover
\{
fix $s t$ assume $s: s \in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\}$ and $t: t \in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\}$
then obtain hs ht where hs:hs $\in \mathrm{H} s=\mathrm{g} \cdot\left(\mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right.$) and $\mathrm{ht}: \mathrm{ht} \in \mathrm{H} \mathrm{t}=\mathrm{g} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right.$)
by auto
from hs(1) have hs $\in G$ using sub by auto
then have $g \cdot h s \in G$ using group_op_closed assms(2) by auto
then have ($\mathrm{g} \cdot \mathrm{hs})^{-1} \in \mathrm{G}$ using inverse_in_group by auto
from $h t$ (1) have $h t \in G$ using sub by auto
with $\left\langle\mathrm{g}^{-1}\right.$:G〉 have $\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right) \in \mathrm{G}$ using group_op_closed by auto
from hs (2) ht (2) have $\mathrm{s} \cdot \mathrm{t}=\left(\mathrm{g} \cdot\left(\mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right)\right) \cdot\left(\mathrm{g} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)\right.$) by auto moreover
have $\mathrm{g} \cdot\left(\mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right)=\mathrm{g} \cdot \mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)$ using group_oper_assoc[0F assms(2) 〈hs $\in \mathrm{G}$) ($\mathrm{g}^{-1} \in \mathrm{G}$)] by auto
then have $\left(\mathrm{g} \cdot\left(\mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right)\right) \cdot\left(\mathrm{g} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)\right)=\left(\mathrm{g} \cdot \mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right) \cdot\left(\mathrm{g} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)\right)$ by auto
then have $\left(\mathrm{g} \cdot\left(\mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right)\right) \cdot\left(\mathrm{g} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)\right)=\left(\mathrm{g} \cdot \mathrm{hs} \cdot\left(\mathrm{g}^{-1}\right)\right) \cdot\left(\mathrm{g}^{-1-1} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)\right)$
using group_inv_of_inv[0F assms(2)] by auto
also have ...=g•hs•(ht•($\left.\mathrm{g}^{-1}\right)$) using group0_2_L14A(2) [OF $\left\langle(\mathrm{g} \cdot \mathrm{hs})^{-1} \in \mathrm{G}\right\rangle$
$\left\langle\mathrm{g}^{-1} \in \mathrm{G}\right\rangle$ ht $\left.\cdot\left(\mathrm{g}^{-1}\right) \in \mathrm{G}\right\rangle$] group_inv_of_inv [0F $\left.\langle(\mathrm{g} \cdot \mathrm{hs}) \in \mathrm{G}\rangle\right]$
by auto
ultimately have $\mathrm{s} \cdot \mathrm{t}=\mathrm{g} \cdot \mathrm{hs} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right.$) by auto moreover
have hs•(ht•(g^{-1})) $=(\mathrm{hs} \cdot \mathrm{ht}) \cdot\left(\mathrm{g}^{-1}\right)$ using group_oper_assoc $\left[\mathrm{OF}\langle\mathrm{hs} \in \mathrm{G}\rangle\langle\mathrm{ht} \in \mathrm{G}\rangle\left\langle\mathrm{g}^{-1} \in \mathrm{G}\right\rangle\right]$
by auto moreover
have $\mathrm{g} \cdot \mathrm{hs} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)=\mathrm{g} \cdot\left(\mathrm{hs} \cdot\left(\mathrm{ht} \cdot\left(\mathrm{g}^{-1}\right)\right)\right.$) using group_oper_assoc $\left.[0 \mathrm{~F}\langle\mathrm{~g} \in \mathrm{G}\rangle \mathrm{hs} \in \mathrm{G}\rangle\left\langle\left(\mathrm{ht} \cdot \mathrm{g}^{-1}\right) \in \mathrm{G}\right)\right]$ by auto
ultimately have $\mathrm{s} \cdot \mathrm{t}=\mathrm{g} \cdot\left((\mathrm{hs} \cdot \mathrm{ht}) \cdot\left(\mathrm{g}^{-1}\right)\right.$) by auto moreover
from hs(1) ht(1) have hs•ht \in H using assms(1) group0_3_L6 by auto
ultimately have $\mathrm{s} \cdot \mathrm{t} \in\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\}$ by auto
\}
then have $\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\}$ \{is closed under\}P unfolding IsOpClosed_def by auto moreover
from assms(1) have $1 \in H$ using group0_3_L5 by auto
then have $g \cdot\left(1 \cdot g^{-1}\right) \in\left\{g \cdot\left(h \cdot g^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\}$ by auto
then have $\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\} \neq 0$ by auto ultimately show thesis using group0_3_T3 by auto qed

Every set is equipollent with its conjugates.
theorem (in group0) conj_set_is_eqpoll:
assumes $\mathrm{H} \subseteq \mathrm{G} g \in \mathrm{G}$
shows $\mathrm{H} \approx\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\}$
proof-
have fun: $\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle \cdot \mathrm{h} \in \mathrm{H}\right\}: \mathrm{H} \rightarrow\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) \cdot \mathrm{h} \in \mathrm{H}\right\}$ unfolding Pi_def function_def
domain_def by auto
\{
fix h1 h2 assume $\mathrm{h} 1 \in \mathrm{Hh} 2 \in \mathrm{H}\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \mathrm{h} 1=\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \mathrm{h} 2$
with fun have $\mathrm{g} \cdot\left(\mathrm{h} 1 \cdot \mathrm{~g}^{-1}\right)=\mathrm{g} \cdot\left(\mathrm{h} 2 \cdot \mathrm{~g}^{-1}\right) \mathrm{h} 1 \cdot \mathrm{~g}^{-1} \in \mathrm{Gh} 2 \cdot \mathrm{~g}^{-1} \in \mathrm{Gh} 1 \in \mathrm{Gh} 2 \in \mathrm{G}$ using apply_equality

assms(1)

group_op_closed[0F _ inverse_in_group [OF assms(2)]] by auto
then have $\mathrm{h} 1 \cdot \mathrm{~g}^{-1}=\mathrm{h} 2 \cdot \mathrm{~g}^{-1}$ using group0_2_L19(2) [OF $\left\langle\mathrm{h} 1 \cdot \mathrm{~g}^{-1} \in \mathrm{G}\right\rangle\left\langle\mathrm{h} 2 \cdot \mathrm{~g}^{-1} \in \mathrm{G}\right\rangle$
assms(2)] by auto
then have h1=h2 using group0_2_L19(1) [OF $\langle\mathrm{h} 1 \in \mathrm{G}\rangle\langle\mathrm{h} 2 \in \mathrm{G}\rangle$ inverse_in_group [OF
assms(2)]] by auto
\}
then have $\forall \mathrm{h} 1 \in \mathrm{H} . \forall \mathrm{h} 2 \in \mathrm{H} .\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \mathrm{h} 1=\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \mathrm{h} 2$
$\longrightarrow \mathrm{h} 1=\mathrm{h} 2$ by auto
with fun have $\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \in \operatorname{inj}\left(\mathrm{H},\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\}\right)$ unfolding inj_def by auto moreover
\{
fix ghg assume ghg $\in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\}$
then obtain h where $h \in H$ ghg $=g \cdot\left(h \cdot g^{-1}\right)$ by auto
then have $\langle\mathrm{h}, \mathrm{ghg}\rangle \in\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\}$ by auto
then have $\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \mathrm{h}=\mathrm{ghg}$ using apply_equality fun by auto
with $\langle h \in H\rangle$ have $\exists \mathrm{h} \in \mathrm{H} .\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle . \mathrm{h} \in \mathrm{H}\right\} \mathrm{h}=\mathrm{gh} g$ by auto
\}
with fun have $\left\{\left\langle h, g \cdot\left(h \cdot g^{-1}\right)\right\rangle \cdot h \in H\right\} \in \operatorname{surj}\left(H,\left\{g \cdot\left(h \cdot g^{-1}\right) \cdot h \in H\right\}\right)$ unfolding surj_def by auto
ultimately have $\left\{\left\langle\mathrm{h}, \mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right)\right\rangle \cdot \mathrm{h} \in \mathrm{H}\right\} \in \mathrm{bij}\left(\mathrm{H},\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) \cdot \mathrm{h} \in \mathrm{H}\right\}\right)$ unfolding
bij_def by auto
then show thesis unfolding eqpoll_def by auto
qed
Every normal subgroup contains its conjugate subgroups.

```
theorem (in group0) norm_group_cont_conj:
    assumes IsAnormalSubgroup (G,P,H) g \(\in G\)
    shows \(\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\} \subseteq H\)
proof-
    \{
        fix \(r\) assume \(r \in\left\{g \cdot\left(h \cdot g^{-1}\right) . h \in H\right\}\)
        then obtain \(h\) where \(r=g \cdot\left(h \cdot g^{-1}\right) h \in H\) by auto moreover
        then have \(h \in G\) using group0_3_L2 assms(1) unfolding IsAnormalSubgroup_def
by auto moreover
```

```
        from assms(2) have g}\mp@subsup{g}{}{-1}\inG using inverse_in_group by aut
        ultimately have r=g.h.g}\mp@subsup{}{-1}{m}\textrm{h}\in\textrm{H}\mathrm{ using group_oper_assoc assms(2) by auto
        then have r\inH using assms unfolding IsAnormalSubgroup_def by auto
    }
    then show {g.(h.g}\mp@subsup{g}{}{-1}).h\inH}\subseteqH by aut
qed
```

If a subgroup contains all its conjugate subgroups, then it is normal.
theorem (in group0) cont_conj_is_normal:
assumes IsAsubgroup (H,P) $\forall \mathrm{g} \in \mathrm{G}$. $\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\} \subseteq \mathrm{H}$
shows IsAnormalSubgroup (G, P, H)
proof-
\{
fix h g assume $h \in H g \in G$
with assms (2) have $g \cdot\left(h \cdot g^{-1}\right) \in H$ by auto
moreover have $\mathrm{h} \in \mathrm{Gg}^{-1} \in \mathrm{G}$ using group0_3_L2 assms(1) $\langle\mathrm{g} \in \mathrm{G}\rangle\langle\mathrm{h} \in \mathrm{H}\rangle$ inverse_in_group
by auto
ultimately have $g \cdot h \cdot g^{-1} \in H$ using group_oper_assoc $\langle g \in G\rangle$ by auto
\}
then show thesis using assms(1) unfolding IsAnormalSubgroup_def by auto
qed
If a group has only one subgroup of a given order, then this subgroup is normal.
corollary (in group0) only_one_equipoll_sub:
assumes IsAsubgroup (H, P) $\forall M$. IsAsubgroup (M, P) $\wedge H \approx M \longrightarrow M=H$
shows IsAnormalSubgroup (G, P, H)
proof-
\{
fix g assume $g: g \in G$
with assms(1) have IsAsubgroup(\{g•(h•g $\left.\left.\left.{ }^{-1}\right) . h \in H\right\}, P\right)$ using conj_group_is_group
by auto
moreover
from assms(1) g have $H \approx\left\{\mathrm{~g} \cdot\left(\mathrm{~h} \cdot \mathrm{~g}^{-1}\right)\right.$. $\left.\mathrm{h} \in \mathrm{H}\right\}$ using conj_set_is_eqpoll
group0_3_L2 by auto
ultimately have $\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\}=\mathrm{H}$ using assms(2) by auto
then have $\left\{\mathrm{g} \cdot\left(\mathrm{h} \cdot \mathrm{g}^{-1}\right) . \mathrm{h} \in \mathrm{H}\right\} \subseteq \mathrm{H}$ by auto
\}
then show thesis using cont_conj_is_normal assms(1) by auto qed

The trivial subgroup is then a normal subgroup.

```
corollary(in group0) trivial_normal_subgroup:
```

 shows IsAnormalSubgroup (G,P,\{1\})
 proof-
have $\{1\} \subseteq G$ using group0_2_L2 by auto
moreover have $\{1\} \neq 0$ by auto moreover
\{

```
        fix a b assume a\in{1}b\in{1}
        then have a=1b=1 by auto
        then have P\langlea,b\rangle=1.1 by auto
        then have P\langlea,b\rangle=1 using group0_2_L2 by auto
        then have P }\a,b\rangle\in{1} by aut
    }
    then have {1}{is closed under}P unfolding IsOpClosed_def by auto
    moreover
    {
    fix a assume a\in{1}
    then have a=1 by auto
    then have }\mp@subsup{\textrm{a}}{}{-1}=\mp@subsup{1}{}{-1}\mathrm{ by auto
    then have a }\mp@subsup{\textrm{a}}{}{-1}=1\mathrm{ using group_inv_of_one by auto
    then have }\mp@subsup{a}{}{-1}\in{1} by aut
    }
    then have }\forall\textrm{a}\in{1}.\mp@subsup{\textrm{a}}{}{-1}\in{1} by auto ultimately
    have IsAsubgroup({1},P) using group0_3_T3 by auto moreover
    {
        fix M assume M:IsAsubgroup(M,P) {1}\approxM
        then have 1\inM M\approx{1} using eqpoll_sym group0_3_L5 by auto
        then obtain f where f\inbij(M,{1}) unfolding eqpoll_def by auto
        then have inj:f\ininj(M,{1}) unfolding bij_def by auto
        then have fun:f:M->{1} unfolding inj_def by auto
        {
            fix b assume b\inMb\not=1
            then have fb}\not=f1\mathrm{ using inj <1 }\inM\rangle\mathrm{ unfolding inj_def by auto
            then have False using \langleb\inM\rangle\langle1\inM\rangle apply_type[OF fun] by auto
        }
        then have M={1} using \langle1\inM〉 by auto
    }
    ultimately show thesis using only_one_equipoll_sub by auto
qed
lemma(in group0) whole_normal_subgroup:
    shows IsAnormalSubgroup(G,P,G)
    unfolding IsAnormalSubgroup_def
    using group_op_closed inverse_in_group
    using group0_2_L2 group0_3_T3[of G] unfolding IsOpClosed_def
        by auto
```

Since the whole group and the trivial subgroup are normal, it is natural to define simplicity of groups in the following way:

```
definition
    IsSimple ([_,_]{is a simple group} 89)
    where [G,f]{is a simple group} \equiv IsAgroup(G,f)^(\forallM. IsAnormalSubgroup(G,f,M)
M=G\M={TheNeutralElement(G,f)})
```

From the definition follows that if a group has no subgroups, then it is simple.

```
corollary (in group0) noSubgroup_imp_simple:
    assumes }\forall\textrm{H}\mathrm{ . IsAsubgroup(H,P)}\longrightarrowH=G\veeH={1
    shows [G,P]{is a simple group}
proof-
    have IsAgroup(G,P) using groupAssum. moreover
    {
            fix M assume IsAnormalSubgroup(G,P,M)
            then have IsAsubgroup(M,P) unfolding IsAnormalSubgroup_def by auto
            with assms have M=G\M={1} by auto
    }
    ultimately show thesis unfolding IsSimple_def by auto
qed
Since every subgroup is normal in abelian groups, it follows that commutative simple groups do not have subgroups.
corollary (in group0) abelian_simple_noSubgroups:
assumes [G,P]\{is a simple group\} \(P\{\) is commutative on\} \(G\)
shows \(\forall H\). IsAsubgroup \((H, P) \longrightarrow H=G \vee H=\{1\}\)
proof(safe)
fix \(H\) assume \(A: I s A s u b g r o u p(H, P) H \neq\{1\}\)
then have IsAnormalSubgroup (G,P,H) using Group_ZF_2_4_L6(1) groupAssum assms(2)
by auto
with assms(1) A show \(H=G\) unfolding IsSimple_def by auto qed
```


38.2 Finite groups

The subgroup of a finite group is finite.
lemma(in group0) finite_subgroup:
assumes Finite(G) IsAsubgroup (H, P)
shows Finite(H)
using group0_3_L2 subset_Finite assms by force
The space of cosets is also finite. In particular, quotient groups.
lemma(in group0) finite_cosets:
assumes Finite(G) IsAsubgroup (H,P) r=QuotientGroupRel(G, P, H)
shows Finite (G//r)
proof-
have fun: $\{\langle\mathrm{g}, \mathrm{r}\{\mathrm{g}\}\rangle . \mathrm{g} \in \mathrm{G}\}: \mathrm{G} \rightarrow(\mathrm{G} / / \mathrm{r})$ unfolding Pi_def function_def domain_def
by auto
\{
fix C assume $C: C \in G / / r$
then obtain c where $\mathrm{c}: \mathrm{c} \in \mathrm{C}$ using EquivClass_1_L5[OF Group_ZF_2_4_L1[OF
assms(2)]] assms(3) by auto
with C have r\{c\}=C using EquivClass_1_L2[0F Group_ZF_2_4_L3] assms (2,3)
by auto
with c C have $\langle\mathrm{c}, \mathrm{C}\rangle \in\{\langle\mathrm{g}, \mathrm{r}\{\mathrm{g}\}\rangle$. $\mathrm{g} \in \mathrm{G}\}$ using EquivClass_1_L1[0F Group_ZF_2_4_L3]
assms $(2,3)$
by auto
then have $\{\langle\mathrm{g}, \mathrm{r}\{\mathrm{g}\}\rangle . \mathrm{g} \in \mathrm{G}\} \mathrm{c}=\mathrm{C} \mathrm{c} \in \mathrm{G}$ using apply_equality fun by auto
then have $\exists \mathrm{c} \in \mathrm{G} .\{\langle\mathrm{g}, \mathrm{r}\{\mathrm{g}\}\rangle . \mathrm{g} \in \mathrm{G}\} \mathrm{c}=\mathrm{C}$ by auto
\}
with fun have surj: $\{\langle\mathrm{g}, \mathrm{r}\{\mathrm{g}\}\rangle . \mathrm{g} \in \mathrm{G}\} \in \operatorname{surj}(\mathrm{G}, \mathrm{G} / / \mathrm{r})$ unfolding surj_def
by auto moreover
from assms (1) obtain n where $n \in$ nat $G \approx n$ unfolding Finite_def by auto
then have $G: G \lesssim n \operatorname{Ord}(\mathrm{n})$ using eqpoll_imp_lepoll by auto
then have $G / / r \lesssim G$ using surj_fun_inv_2 surj by auto
with $G(1)$ have $G / / r \lesssim n$ using lepoll_trans by blast
then show Finite(G//r) using lepoll_nat_imp_Finite 〈n \in nat〉 by auto qed

All the cosets are equipollent.
lemma(in group0) cosets_equipoll:
assumes IsAsubgroup (H,P) r=QuotientGroupRel (G,P,H) g1 Gg2 $2 \in \mathrm{G}$
shows $r\{g 1\} \approx r\{g 2\}$
proof-
from assms $(3,4)$ have $G G:\left(g 1^{-1}\right) \cdot g 2 \in G$ using inverse_in_group group_op_closed
by auto
then have RightTranslation(G,P, (g1-1) g 2) $\in \mathrm{bij}(\mathrm{G}, \mathrm{G})$ using trans_bij(1)
by auto moreover
have sub2:r\{g2\} \subseteq G using EquivClass_1_L1[OF Group_ZF_2_4_L3[OF assms(1)]]
assms $(2,4)$ unfolding quotient_def by auto
have sub:r\{g1\}¢G using EquivClass_1_L1[OF Group_ZF_2_4_L3[OF assms(1)]]
assms $(2,3)$ unfolding quotient_def by auto
ultimately have restrict (RightTranslation (G, P, (g1-1) $\cdot \mathrm{g} 2), \mathrm{r}\{\mathrm{g} 1\}) \in \mathrm{bij}(\mathrm{r}\{\mathrm{g} 1\}$, RightTranslatio using restrict_bij unfolding bij_def by auto
then have $\mathrm{r}\{\mathrm{g} 1\} \approx$ RightTranslation($G, \mathrm{P},\left(\mathrm{g} 1^{-1}\right) \cdot \mathrm{g} 2$) ($\mathrm{r}\{\mathrm{g} 1\}$) unfolding eqpoll_def by auto
then have $A 0: r\{g 1\} \approx\left\{\right.$ RightTranslation $\left.\left(G, P,\left(g 1^{-1}\right) \cdot g 2\right) t . t \in r\{g 1\}\right\}$
using func_imagedef [OF group0_5_L1(1) [OF GG] sub] by auto
\{
fix t assume $t \in\left\{R i g h t T r a n s l a t i o n\left(G, P,\left(g 1^{-1}\right) \cdot g 2\right) t . t \in r\{g 1\}\right\}$
then obtain q where $q: t=R i g h t T r a n s l a t i o n\left(G, P,\left(g 1^{-1}\right) \cdot g 2\right) q q \in r\{g 1\}$
by auto
then have $\langle\mathrm{g} 1, \mathrm{q}\rangle \in \mathrm{r} \mathrm{q} \in \mathrm{G}$ using image_iff sub by auto
then have $\mathrm{g} 1 \cdot\left(\mathrm{q}^{-1}\right) \in \mathrm{H} \mathrm{q}^{-1} \in \mathrm{G}$ using assms (2) inverse_in_group unfold-
ing QuotientGroupRel_def by auto
from $\mathrm{q}(1)$ have $\mathrm{t}: \mathrm{t}=\mathrm{q} \cdot\left(\left(\mathrm{g} 1^{-1}\right) \cdot \mathrm{g} 2\right)$ using group0_5_L2(1) [OF GG] $\mathrm{q}(2)$
sub by auto
then have $\mathrm{g} 2 \cdot \mathrm{t}^{-1}=\mathrm{g} 2 \cdot\left(\mathrm{q} \cdot\left(\left(\mathrm{g} 1^{-1}\right) \cdot \mathrm{g} 2\right)\right)^{-1}$ by auto
then have $\mathrm{g} 2 \cdot \mathrm{t}^{-1}=\mathrm{g} 2 \cdot\left(\left(\left(\mathrm{~g} 1^{-1}\right) \cdot \mathrm{g} 2\right)^{-1} \cdot \mathrm{q}^{-1}\right)$ using group_inv_of_two[0F $\langle\mathrm{q} \in \mathrm{G}\rangle$
GG] by auto
then have $\mathrm{g} 2 \cdot \mathrm{t}^{-1}=\mathrm{g} 2 \cdot\left(\left(\left(\mathrm{~g} 2^{-1}\right) \cdot \mathrm{g} 1^{-1-1}\right) \cdot \mathrm{q}^{-1}\right)$ using group_inv_of_two [0F inverse_in_group [OF assms(3)]
assms(4)] by auto
then have $\mathrm{g} 2 \cdot \mathrm{t}^{-1}=\mathrm{g} 2 \cdot\left(\left(\left(\mathrm{~g} 2^{-1}\right) \cdot \mathrm{g} 1\right) \cdot \mathrm{q}^{-1}\right)$ using group_inv_of_inv assms(3) by auto moreover
have $t \in G$ using $t\langle q \in G\rangle\langle g 2 \in G\rangle$ inverse＿in＿group［OF assms（3）］group＿op＿closed by auto
have（ $\mathrm{g} 2^{-1}$ ）．g1 G using assms（3）inverse＿in＿group［OF assms（4）］group＿op＿closed by auto
with assms（4）$\left\langle\mathrm{q}^{-1} \in \mathrm{G}\right\rangle$ have $\mathrm{g} 2 \cdot\left(\left(\left(\mathrm{~g} 2^{-1}\right) \cdot \mathrm{g} 1\right) \cdot \mathrm{q}^{-1}\right)=\mathrm{g} 2 \cdot\left(\left(\mathrm{~g} 2^{-1}\right) \cdot \mathrm{g} 1\right) \cdot \mathrm{q}^{-1}$ us－
ing group＿oper＿assoc by auto
moreover have $\mathrm{g} 2 \cdot\left(\left(\mathrm{~g} 2^{-1}\right) \cdot \mathrm{g} 1\right)=\mathrm{g} 2 \cdot\left(\mathrm{~g} 2^{-1}\right) \cdot \mathrm{g} 1$ using assms（3）inverse＿in＿group［OF assms（4）］assms（4）
group＿oper＿assoc by auto
then have g2•（（g2 $\left.\left.2^{-1}\right) \cdot \mathrm{g} 1\right)=\mathrm{g} 1$ using group0＿2＿L6［0F assms（4）］group0＿2＿L2
assms（3）by auto ultimately
have $\mathrm{g} 2 \cdot \mathrm{t}^{-1}=\mathrm{g} 1 \cdot \mathrm{q}^{-1}$ by auto
with $\left\langle\mathrm{g} 1 \cdot\left(\mathrm{q}^{-1}\right) \in \mathrm{H}\right\rangle$ have $\mathrm{g} 2 \cdot \mathrm{t}^{-1} \in \mathrm{H}$ by auto
then have $\langle\mathrm{g} 2, \mathrm{t}\rangle \in \mathrm{r}$ using assms（2）unfolding QuotientGroupRel＿def us－ ing assms（4）〈 $\mathrm{t} \in \mathrm{G}\rangle$ by auto
then have $t \in r\{g 2\}$ using image＿iff assms（4）by auto
\}
then have A1：\｛RightTranslation（G，P，（g1－1） g 2$) \mathrm{t} . \mathrm{t} \in \mathrm{r}\{\mathrm{g} 1\}\} \subseteq \mathrm{r}\{\mathrm{g} 2\}$ by auto \｛
fix t assume $t \in r\{g 2\}$
then have $\langle\mathrm{g} 2, \mathrm{t}\rangle \in \mathrm{r} \mathrm{t} \in \mathrm{G}$ using sub2 image＿iff by auto
then have $\mathrm{H}: \mathrm{g} 2 \cdot \mathrm{t}^{-1} \in \mathrm{H}$ using assms（2）unfolding QuotientGroupRel＿def

by auto

then have $\mathrm{G}: \mathrm{g} 2 \cdot \mathrm{t}^{-1} \in \mathrm{G}$ using group0＿3＿L2 assms（1）by auto
then have $\mathrm{g} 1 \cdot\left(\mathrm{~g} 1^{-1} \cdot\left(\mathrm{~g} 2 \cdot \mathrm{t}^{-1}\right)\right)=\mathrm{g} 1 \cdot \mathrm{~g} 1^{-1} \cdot\left(\mathrm{~g} 2 \cdot \mathrm{t}^{-1}\right)$ using group＿oper＿assoc［0F assms（3）inverse＿in＿group［0F assms（3）］］
by auto
then have $\mathrm{g} 1 \cdot\left(\mathrm{~g} 1^{-1} \cdot\left(\mathrm{~g} 2 \cdot \mathrm{t}^{-1}\right)\right)=\mathrm{g} 2 \cdot \mathrm{t}^{-1}$ using group0＿2＿L6［0F assms（3）］ group0＿2＿L2 G by auto
with H have $\mathrm{HH}: \mathrm{g} 1 \cdot\left(\mathrm{~g} 1^{-1} \cdot\left(\mathrm{~g} 2 \cdot \mathrm{t}^{-1}\right)\right) \in \mathrm{H}$ by auto
have GGG：t•g2 ${ }^{-1} \in G$ using $\langle t \in G$ 〉 inverse＿in＿group［OF assms（4）］group＿op＿closed
by auto
have $\left(\mathrm{t} \cdot \mathrm{g} 2^{-1}\right)^{-1}=\mathrm{g} 2^{-1-1} \cdot \mathrm{t}^{-1}$ using group＿inv＿of＿two［0F $\langle\mathrm{t} \in \mathrm{G}\rangle$ inverse＿in＿group［OF assms（4）］］by auto
also have ．．．＝g2•t ${ }^{-1}$ using group＿inv＿of＿inv［0F assms（4）］by auto
ultimately have（ $\left.\mathrm{t} \cdot \mathrm{g} 2^{-1}\right)^{-1}=\mathrm{g} 2 \cdot \mathrm{t}^{-1}$ by auto
then have $\mathrm{g} 1^{-1} \cdot\left(\mathrm{t} \cdot \mathrm{g} 2^{-1}\right)^{-1}=\mathrm{g} 1^{-1} \cdot\left(\mathrm{~g} 2 \cdot \mathrm{t}^{-1}\right)$ by auto
then have $\left(\left(\mathrm{t} \cdot \mathrm{g} 2^{-1}\right) \cdot \mathrm{g} 1\right)^{-1}=\mathrm{g} 1^{-1} \cdot\left(\mathrm{~g} 2 \cdot \mathrm{t}^{-1}\right)$ using group＿inv＿of＿two［OF GGG
assms（3）］by auto
then have HHH： $\mathrm{g} 1 \cdot\left(\left(\mathrm{t} \cdot \mathrm{g} 2^{-1}\right) \cdot \mathrm{g} 1\right)^{-1} \in \mathrm{H}$ using HH by auto
have（ $\mathrm{t} \cdot \mathrm{g} 2^{-1}$ ）$\cdot \mathrm{g} 1 \in \mathrm{G}$ using assms（3）$(\mathrm{t} \in \mathrm{G}\rangle$ inverse＿in＿group［0F assms（4）］ group＿op＿closed by auto
with HHH have $\left\langle\mathrm{g} 1,\left(\mathrm{t} \cdot \mathrm{g} 2^{-1}\right) \cdot \mathrm{g} 1\right\rangle \in \mathrm{r}$ using assms $(2,3)$ unfolding QuotientGroupRel＿def by auto
then have rg1：t．g2 ${ }^{-1} \cdot \mathrm{~g} 1 \in \mathrm{r}\{\mathrm{g} 1\}$ using image＿iff by auto
have $\mathrm{t} \cdot \mathrm{g} 2^{-1} \cdot \mathrm{~g} 1 \cdot\left(\left(\mathrm{~g} 1^{-1}\right) \cdot \mathrm{g} 2\right)=\mathrm{t} \cdot\left(\mathrm{g} 2^{-1} \cdot \mathrm{~g} 1\right) \cdot\left(\left(\mathrm{g} 1^{-1}\right) \cdot \mathrm{g} 2\right)$ using group＿oper＿assoc［0F〈 $\mathrm{t} \in \mathrm{G}$ 〉 inverse＿in＿group［OF assms（4）］assms（3）］
by auto
also have $\ldots=\mathrm{t} \cdot\left(\left(\mathrm{g} 2^{-1} \cdot \mathrm{~g} 1\right) \cdot\left(\left(\mathrm{g} 1^{-1}\right) \cdot \mathrm{g} 2\right)\right)$ using group＿oper＿assoc［OF $\langle\mathrm{t} \in \mathrm{G}$ ）

```
group_op_closed[OF inverse_in_group[OF assms(4)] assms(3)] GG]
            by auto
    also have ...=t\cdot(g2 - . (g1 ((g\mp@subsup{1}{}{-1})\cdotg2))) using group_oper_assoc[OF inverse_in_group[OF
assms(4)] assms(3) GG] by auto
    also have ...=t\cdot(g2 -1.(g1.(g1-1).g2)) using group_oper_assoc[OF assms(3)
inverse_in_group[OF assms(3)] assms(4)] by auto
    also have ...=t using group0_2_L6[OF assms(3)] group0_2_L6[OF assms(4)]
group0_2_L2 \langlet\inG\rangle assms(4) by auto
    ultimately have t.g2 -1.g1\cdot((g\mp@subsup{1}{}{-1})\cdot\textrm{g}2)=t by auto
    then have RightTranslation(G,P,(g1-1)\cdotg2)(t\cdotg2 - .g1)=t using group0_5_L2(1)[0F
GG] 〈(t.g2-1})\cdotg1\inG〉 by aut
    then have t\in{RightTranslation(G,P,(g\mp@subsup{1}{}{-1})\cdotg2)t. t\inr{g1}} using rg1
by force
    }
    then have r{g2}\subseteq{RightTranslation(G,P,(g1-1)\cdotg2)t. t\inr{g1}} by blast
    with A1 have r{g2}={RightTranslation(G,P,(g1-1)\cdotg2)t. t\inr{g1}} by auto
    with AO show thesis by auto
qed
The order of a subgroup multiplied by the order of the space of cosets is the order of the group. We only prove the theorem for finite groups.
```

```
theorem(in group0) Lagrange:
```

theorem(in group0) Lagrange:
assumes Finite(G) IsAsubgroup(H,P) r=QuotientGroupRel(G,P,H)
assumes Finite(G) IsAsubgroup(H,P) r=QuotientGroupRel(G,P,H)
shows |G|=|H| \#* |G//r|
shows |G|=|H| \#* |G//r|
proof-
proof-
have Finite(G//r) using assms finite_cosets by auto moreover
have Finite(G//r) using assms finite_cosets by auto moreover
have un:\(G//r)=G using Union_quotient Group_ZF_2_4_L3 assms(2,3) by
have un:\(G//r)=G using Union_quotient Group_ZF_2_4_L3 assms(2,3) by
auto
auto
then have Finite(U(G//r)) using assms(1) by auto moreover
then have Finite(U(G//r)) using assms(1) by auto moreover
have }\forallc1\in(G//r).\forallc2\in(G//r). c1\not=c2\longrightarrow c1\capc2=0 using quotient_disj[0F
have }\forallc1\in(G//r).\forallc2\in(G//r). c1\not=c2\longrightarrow c1\capc2=0 using quotient_disj[0F
Group_ZF_2_4_L3[OF assms(2)]]
Group_ZF_2_4_L3[OF assms(2)]]
assms(3) by auto moreover
assms(3) by auto moreover
have }\forall\textrm{aa}\in\textrm{G}. aa\inH \longleftrightarrow <aa,1\rangle\inr using Group_ZF_2_4_L5C assms(3) by aut
have }\forall\textrm{aa}\in\textrm{G}. aa\inH \longleftrightarrow <aa,1\rangle\inr using Group_ZF_2_4_L5C assms(3) by aut
then have }\forall\textrm{aa}\inG.,aa\inH\longleftrightarrow\langle1,aa\rangle\inr using Group_ZF_2_4_L2 assms (2,3
then have }\forall\textrm{aa}\inG.,aa\inH\longleftrightarrow\langle1,aa\rangle\inr using Group_ZF_2_4_L2 assms (2,3
unfolding sym_def
unfolding sym_def
by auto
by auto
then have }\forall\textrm{aa}\inG. aa\inH\longleftrightarrow aa\inr{1} using image_iff by aut
then have }\forall\textrm{aa}\inG. aa\inH\longleftrightarrow aa\inr{1} using image_iff by aut
then have H:H=r{1} using group0_3_L2[0F assms(2)] assms(3) unfolding
then have H:H=r{1} using group0_3_L2[0F assms(2)] assms(3) unfolding
QuotientGroupRel_def by auto
QuotientGroupRel_def by auto
{
{
fix c assume c\in(G//r)
fix c assume c\in(G//r)
then obtain g where g\inG c=r{g} unfolding quotient_def by auto
then obtain g where g\inG c=r{g} unfolding quotient_def by auto
then have c\approxr{1} using cosets_equipoll[OF assms(2,3)] group0_2_L2
then have c\approxr{1} using cosets_equipoll[OF assms(2,3)] group0_2_L2
by auto
by auto
then have }|\textrm{c}|=|\textrm{H}| using H cardinal_cong by aut
then have }|\textrm{c}|=|\textrm{H}| using H cardinal_cong by aut
}
}
then have }\forallc\in(G//r). |c|=|H| by auto ultimatel
then have }\forallc\in(G//r). |c|=|H| by auto ultimatel
show thesis using card_partition un by auto
show thesis using card_partition un by auto
qed

```
qed
```


38．3 Subgroups generated by sets

Given a subset of a group，we can ask ourselves which is the smallest group that contains that set；if it even exists．

```
lemma(in group0) inter_subgroups:
    assumes }\forallH\in\mathfrak{H}\mathrm{ . IsAsubgroup(H,P) }\mathfrak{H}\not=
    shows IsAsubgroup( }\cap\mathfrak{H},\textrm{P}
proof-
    from assms have 1\in\bigcap\mathfrak{H}\mathrm{ using group0_3_L5 by auto}
    then have }\cap\mathfrak{H}\not=0\mathrm{ by auto moreover
    {
            fix A B assume A\in\bigcap邡林点
            then have }\forallH\in\mathfrak{H}.A\inH\wedgeB\inH\mathrm{ by auto
            then have }\forallH\in\mathfrak{H}\mathrm{ . A.BGH using assms(1) group0_3_L6 by auto
            then have A\cdotB\in\bigcap{H using assms(2) by auto
    }
    then have ( }\cap\mathfrak{H}\mathrm{ ) {is closed under}P using IsOpClosed_def by auto more-
over
    {
            fix A assume A\in\bigcap\mathfrak{H}
            then have }\forallH\in\mathfrak{H}.A\inH\mathrm{ by auto
            then have }\forallH\in\mathfrak{H}.\mp@subsup{A}{}{-1}\inH\mathrm{ using assms(1) group0_3_T3A by auto
            then have }\mp@subsup{A}{}{-1}\in\bigcap\mathfrak{H}\mathrm{ using assms(2) by auto
    }
    then have }\forallA\in\cap\mathfrak{H}.\mp@subsup{A}{}{-1}\in\cap\mathfrak{H}\mathrm{ by auto moreover
    have }\\mathfrak{H}\subseteqG\mathrm{ using assms(1,2) group0_3_L2 by force
    ultimately show thesis using group0_3_T3 by auto
qed
```

As the previous lemma states，the subgroup that contains a subset can be defined as an intersection of subgroups．

```
definition(in group0)
    SubgroupGenerated (<_ \}\mp@subsup{\}{G}{}80
    where }\langle\textrm{X}\mp@subsup{\rangle}{G}{}\equiv\bigcap{\textrm{H}\in\operatorname{Pow}(\textrm{G}). X\subseteqH ^ IsAsubgroup(H,P)
```

theorem(in group0) subgroupGen_is_subgroup:
assumes $\mathrm{X} \subseteq \mathrm{G}$
shows IsAsubgroup $\left(\langle\mathrm{X}\rangle_{G}, \mathrm{P}\right)$
proof-
have restrict $(P, G \times G)=P$ using group_oper_assocA restrict_idem unfold-
ing Pi_def by auto
then have IsAsubgroup (G,P) unfolding IsAsubgroup_def using groupAssum
by auto
with assms have $\mathrm{G} \in\{\mathrm{H} \in \operatorname{Pow}(\mathrm{G})$. $\mathrm{X} \subseteq \mathrm{H} \wedge$ IsAsubgroup(H, P) \} by auto
then have $\{H \in \operatorname{Pow}(G) . X \subseteq H \wedge \operatorname{IsAsubgroup}(H, P)\} \neq 0$ by auto
then show thesis using inter_subgroups unfolding SubgroupGenerated_def
by auto
qed

38.4 Homomorphisms

A homomorphism is a function between groups that preserves group operations.

```
definition
    Homomor (_{is a homomorphism}{_,_} }->{_,_} 85
    where IsAgroup(G,P) \Longrightarrow IsAgroup(H,F) \Longrightarrow Homomor(f,G,P,H,F) \equiv \forallg1\inG.
\forallg2\inG. f(P\langleg1,g2\rangle)=F\langlefg1,fg2\rangle
```

Now a lemma about the definition:

```
lemma homomor_eq:
    assumes IsAgroup(G,P) IsAgroup(H,F) Homomor(f,G,P,H,F) g1\inG g2\inG
    shows f(P\langleg1,g2\rangle)=F\langlefg1,fg2\rangle
    using assms Homomor_def by auto
```

An endomorphism is a homomorphism from a group to the same group. In case the group is abelian, it has a nice structure.

```
definition
    End
    where End(G,P) \equiv {f:G->G. Homomor(f,G,P,G,P)}
```

The set of endomorphisms forms a submonoid of the monoid of function from a set to that set under composition.

```
lemma(in group0) end_composition:
    assumes \(f 1 \in \operatorname{End}(G, P) f 2 \in \operatorname{End}(G, P)\)
    shows Composition(G) \(\langle\mathrm{f} 1, \mathrm{f} 2\rangle \in \operatorname{End}(\mathrm{G}, \mathrm{P})\)
proof-
    from assms have fun:f1:G \(\rightarrow\) Gf2:G \(\rightarrow\) G unfolding End_def by auto
    then have fun2:f1 0 f2:G \(\rightarrow\) G using comp_fun by auto
    have comp:Composition(G) \(\langle f 1, f 2\rangle=f 10\) f2 using func_ZF_5_L2 fun by auto
    \{
            fix g1 g2 assume AS2:g1 \(\operatorname{Gg} 2 \in \mathrm{G}\)
            then have g1g2:g1•g2 G using group_op_closed by auto
            from fun2 have (f1 0 f2) (g1•g2)=f1(f2(g1•g2)) using comp_fun_apply
fun(2) g1g2 by auto
            also have ...=f1((f2g1)•(f2g2)) using assms(2) unfolding End_def Homomor_def [OF
groupAssum groupAssum]
            using AS2 by auto moreover
            have \(f 2 g 1 \in G f 2 g 2 \in G\) using fun(2) AS2 apply_type by auto ultimately
            have (f1 0 f 2\()(\mathrm{g} 1 \cdot \mathrm{~g} 2)=(\mathrm{f} 1(\mathrm{f} 2 \mathrm{~g} 1)) \cdot(\mathrm{f} 1(\mathrm{f} 2 \mathrm{~g} 2)\) ) using assms(1) unfold-
ing End_def Homomor_def [OF groupAssum groupAssum]
            using AS2 by auto
            then have (f1 0 f2) \((\mathrm{g} 1 \cdot \mathrm{~g} 2)=((\mathrm{f} 1 \mathrm{O} \mathrm{f} 2) \mathrm{g} 1) \cdot((\mathrm{f} 1 \mathrm{O} \mathrm{f} 2) \mathrm{g} 2)\) using comp_fun_apply
fun(2) AS2 by auto
    \}
    then have \(\forall \mathrm{g} 1 \in \mathrm{G} . \forall \mathrm{g} 2 \in \mathrm{G} .(\mathrm{f} 1 \mathrm{O}\) f2) (g1•g2)=((f1 0 f2)g1)•((f1 0 f2)g2)
by auto
```

then have (f1 0 f2) $\in \operatorname{End}(G, P)$ unfolding End_def Homomor_def [OF groupAssum groupAssum] using fun2 by auto
with comp show Composition(G) $\langle\mathrm{f} 1, \mathrm{f} 2\rangle \in \operatorname{End}(\mathrm{G}, \mathrm{P})$ by auto
qed
theorem(in group0) end_comp_monoid:
shows IsAmonoid(End (G, P), restrict (Composition(G), End (G, P) $\times \operatorname{End}(G, P))$)
and TheNeutralElement (End (G, P), restrict (Composition (G), End (G, P) \times End (G, P))) $=$ id (G)
proof-
have fun:id(G):G \rightarrow G unfolding id_def by auto
\{
fix g h assume $\mathrm{g} \in \mathrm{Gh} \in \mathrm{G}$
then have id:g•h $\in \operatorname{Gid}(G) g=\operatorname{gid}(G) h=h$ using group_op_closed by auto
then have id $(G)(g \cdot h)=g \cdot h$ unfolding id_def by auto
with $\operatorname{id}(2,3)$ have $\operatorname{id}(G)(g \cdot h)=(i d(G) g) \cdot(i d(G) h)$ by auto
\}
with fun have id $(G) \in \operatorname{End}(G, P)$ unfolding End_def Homomor_def [OF groupAssum groupAssum] by auto moreover
from Group_ZF_2_5_L2(2) have A0:id(G)=TheNeutralElement (G \rightarrow G, Composition(G))
by auto ultimately
have A1:TheNeutralElement (G \rightarrow G, Composition(G)) $\in \operatorname{End}(G, P)$ by auto
moreover
have $A 2: \operatorname{End}(G, P) \subseteq G \rightarrow G$ unfolding End_def by auto moreover
from end_composition have $\mathrm{A} 3:$ End (G, P) \{is closed under\}Composition(G)
unfolding IsOpClosed_def by auto
ultimately show IsAmonoid(End(G,P), restrict (Composition(G), End (G, P) $\times \operatorname{End}(G, P)$))
using monoid0.group0_1_T1 unfolding monoid0_def using Group_ZF_2_5_L2(1)
by force
have IsAmonoid(G \rightarrow G, Composition(G)) using Group_ZF_2_5_L2(1) by auto
with A0 A1 A2 A3 show TheNeutralElement(End (G,P), restrict (Composition(G), End (G, P) \times End (G, using group0_1_L6 by auto
qed
The set of endomorphisms is closed under pointwise addition. This is so because the group is abelian.
theorem(in group0) end_pointwise_addition:
assumes $f \in \operatorname{End}(G, P) g \in \operatorname{End}(G, P) P\{i s$ commutative on\}GF $=P$ \{lifted to function
space over\} G
shows $F\langle f, g\rangle \in \operatorname{End}(G, P)$
proof-
from assms $(1,2)$ have fun: $f \in G \rightarrow G g \in G \rightarrow G$ unfolding End_def by auto
then have fun2:F〈f,g〉:G $\rightarrow \mathrm{G}$ using monoid0.Group_ZF_2_1_LO group0_2_L1
assms(4) by auto
\{
fix g1 g2 assume AS: $1 \in \operatorname{Gg} 2 \in G$
then have $\mathrm{g} 1 \cdot \mathrm{~g} 2 \in \mathrm{G}$ using group_op_closed by auto
then have $(\mathrm{F}\langle\mathrm{f}, \mathrm{g}\rangle)(\mathrm{g} 1 \cdot \mathrm{~g} 2)=(\mathrm{f}(\mathrm{g} 1 \cdot \mathrm{~g} 2)) \cdot(\mathrm{g}(\mathrm{g} 1 \cdot \mathrm{~g} 2))$ using Group_ZF_2_1_L3
fun assms(4) by auto

```
    also have ...=(f(g1)\cdotf(g2))\cdot(g(g1)\cdotg(g2)) using assms unfolding End_def
Homomor_def [OF groupAssum groupAssum]
            using AS by auto ultimately
    have (F/f,g\rangle) (g1\cdotg2)=(f(g1)\cdotf(g2))\cdot(g(g1)\cdotg(g2)) by auto moreover
    have fg1\inGfg2\inGgg1\inGgg2\inG using fun apply_type AS by auto ultimately
    have (F\langlef,g\rangle)(g1\cdotg2)=(f(g1)\cdotg(g1))\cdot(f(g2)\cdotg(g2)) using group0_4_L8(3)
assms(3)
            by auto
    with AS have (F\langlef,g\rangle)(g1.g2)=((F\langlef,g\rangle)g1)\cdot((F\langlef,g\rangle)g2)
        using Group_ZF_2_1_L3 fun assms(4) by auto
    }
    with fun2 show thesis unfolding End_def Homomor_def [OF groupAssum groupAssum]
by auto
qed
```

The inverse of an abelian group is an endomorphism.

```
lemma(in group0) end_inverse_group:
    assumes P{is commutative on}G
    shows GroupInv(G,P)\inEnd(G,P)
proof-
    {
            fix s t assume AS:s\inGt\inG
            then have elinv:s}\mp@subsup{}{}{-1}\in\mp@subsup{\textrm{Gt}}{}{-1}\inG\mathrm{ using inverse_in_group by auto
            have (s.t)}\mp@subsup{}{}{-1}=\mp@subsup{t}{}{-1}\cdot\mp@subsup{s}{}{-1}\mathrm{ using group_inv_of_two AS by auto
            then have (s\cdott)
by auto
    }
    then have }\forall\textrm{s}\in\textrm{G}.\forall\textrm{t}\in\textrm{G}.\operatorname{GroupInv(G,P)(s}\cdot\textrm{t})=\operatorname{GroupInv}(G,P)(s)\cdotGroupInv(G,P) (t
by auto
    with group0_2_T2 groupAssum show thesis unfolding End_def using Homomor_def
by auto
qed
```

The set of homomorphisms of an abelian group is an abelian subgroup of the group of functions from a set to a group, under pointwise multiplication.
theorem(in group0) end_addition_group:
assumes P\{is commutative on\}G F = P \{lifted to function space over\}
G
shows IsAgroup(End(G,P), restrict(F,End(G,P)×End(G,P))) restrict(F,End(G,P)×End(G,P))\{is
commutative on\}End(G,P)
proof-
from end_comp_monoid(1) monoid0.group0_1_L3A have End(G,P) $\neq 0$ unfold-
ing monoidO_def by auto
moreover have End $(G, P) \subseteq G \rightarrow G$ unfolding End_def by auto moreover
have End (G,P)\{is closed under\}F unfolding IsOpClosed_def using end_pointwise_addition
assms $(1,2)$ by auto moreover
\{
fix ff assume AS:ff $\in \operatorname{End}(G, P)$
then have restrict(Composition(G), End (G, P) $\times \operatorname{End}(G, P))\langle\operatorname{GroupInv}(G, P)$, $f f\rangle \in \operatorname{End}(G, P)$ using monoid0.group0_1_L1
unfolding monoidO_def using end_composition(1) end_inverse_group [0F assms(1)]
by force
then have Composition(G) $\langle\operatorname{GroupInv}(G, P), f f\rangle \in \operatorname{End}(G, P)$ using AS end_inverse_group [OF assms(1)]
by auto
then have GroupInv(G,P) 0 ff \in End (G,P) using func_ZF_5_L2 AS group0_2_T2
groupAssum unfolding
End_def by auto
then have GroupInv(G $\rightarrow G, F) f f \in \operatorname{End}(G, P)$ using Group_ZF_2_1_L6 assms(2) AS unfolding End_def
by auto
\}
then have $\forall f f \in \operatorname{End}(G, P)$. $\operatorname{GroupInv}(G \rightarrow G, F) f f \in \operatorname{End}(G, P)$ by auto ultimately
show IsAgroup(End (G,P), restrict(F,End (G,P)×End(G,P))) using group0.group0_3_T3
Group_ZF_2_1_T2[OF assms(2)] unfolding IsAsubgroup_def group0_def
by auto
show restrict($\mathrm{F}, \operatorname{End}(\mathrm{G}, \mathrm{P}) \times \operatorname{End}(\mathrm{G}, \mathrm{P}))$ \{is commutative on\}End(G,P) using Group_ZF_2_1_L7[OF assms (2,1)] unfolding End_def IsCommutative_def by auto
qed
lemma(in group0) distributive_comp_pointwise:
assumes P\{is commutative on\}G F = P \{lifted to function space over\}
G
shows IsDistributive(End (G,P),restrict(F,End(G,P)×End(G,P)),restrict(Composition(G),End (proof-
\{
fix b c d assume AS: $b \in \operatorname{End}(G, P) c \in \operatorname{End}(G, P) d \in \operatorname{End}(G, P)$
have ig1:Composition(G) $\langle\mathrm{b}, \mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle\rangle=\mathrm{b} 0(\mathrm{~F}\langle\mathrm{c}, \mathrm{d}\rangle$) using monoid0.Group_ZF_2_1_LO[0F group0_2_L1 assms(2)]

AS unfolding End_def using func_ZF_5_L2 by auto
have ig2: $\mathrm{F}\langle\operatorname{Composition(G)}\langle\mathrm{b}, \mathrm{c}\rangle$, Composition(G) $\langle\mathrm{b}, \mathrm{d}\rangle\rangle=\mathrm{F}\langle\mathrm{b} 0 \mathrm{c}, \mathrm{b}$
$0 \mathrm{~d}\rangle$ using AS unfolding End_def using func_ZF_5_L2 by auto
have comp1fun: (b $0(F\langle c, d\rangle)$): $G \rightarrow G$ using monoid0.Group_ZF_2_1_LO[OF group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force
have comp2fun: (F $\langle\mathrm{b} 0 \mathrm{c}, \mathrm{b} 0 \mathrm{~d}\rangle$): $\mathrm{G} \rightarrow \mathrm{G}$ using monoid0.Group_ZF_2_1_LO[0F
group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force
\{
fix g assume $g G: g \in G$
then have (b $0(F\langle c, d\rangle)) g=b((F\langle c, d\rangle) g)$ using comp_fun_apply monoid0.Group_ZF_2_1_LO [OF group0_2_L1 assms(2)]

AS $(2,3)$ unfolding End_def by force
also have ...=b(c(g)•d(g)) using Group_ZF_2_1_L3[0F assms(2)] AS (2,3)
gG unfolding End_def by auto
ultimately have (b $0(F\langle c, d\rangle)) g=b(c(g) \cdot d(g))$ by auto moreover
have $c g \in G d g \in G$ using $\operatorname{AS}(2,3)$ unfolding End_def using apply_type
gG by auto
ultimately have (b $0(F\langle c, d\rangle)) g=(b(c g)) \cdot(b(d g))$ using AS (1) unfolding End_def

Homomor_def [OF groupAssum groupAssum] by auto
then have (b $0(F\langle c, d\rangle)) g=((b \quad 0 \quad c) g) \cdot((b \quad 0 \quad d) g)$ using comp_fun_apply $\operatorname{gG} \operatorname{AS}(2,3)$
unfolding End_def by auto
 assms(2) comp_fun comp_fun gG]

AS unfolding End_def by auto
\}
then have $\forall \mathrm{g} \in \mathrm{G}$. (b $0(\mathrm{~F}\langle\mathrm{c}, \mathrm{d}\rangle)) \mathrm{g}=(\mathrm{F}\langle\mathrm{b} 0 \mathrm{c}, \mathrm{b} \mathrm{O} \mathrm{d}\rangle) \mathrm{g}$ by auto
then have $b 0(F\langle c, d\rangle)=F\langle b 0 c, b 0 d\rangle$ using fun_extension[OF comp1fun comp2fun] by auto
with ig1 ig2 have Composition(G) $\langle\mathrm{b}, \mathrm{F} \quad\langle\mathrm{c}, \mathrm{d}\rangle\rangle=\mathrm{F}\langle$ Composition(G)
$\langle\mathrm{b}, \mathrm{c}\rangle$, Composition(G) $\langle\mathrm{b}, \mathrm{d}\rangle\rangle$ by auto moreover
have $F\langle c, d\rangle=r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P)) \quad\langle c, d\rangle$ using AS $(2,3)$ restrict by auto moreover
have Composition(G) $\langle\mathrm{b}, \mathrm{C}\rangle=$ restrict (Composition(G), End (G, P) $\times \operatorname{End}(G, P)$)
$\langle\mathrm{b}, \mathrm{c}\rangle$ Composition(G) $\langle\mathrm{b}, \mathrm{d}\rangle=$ restrict(Composition(G),End(G,P)×End(G,P))〈b , d〉
using restrict AS by auto moreover
have Composition(G) $\langle\mathrm{b}, \mathrm{F} \quad\langle\mathrm{c}, \mathrm{d}\rangle\rangle=$ restrict (Composition(G), End (G, P) $\times \operatorname{End}(\mathrm{G}, \mathrm{P})$) $\langle\mathrm{b}, \mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle\rangle$ using AS(1)
end_pointwise_addition[0F AS $(2,3)$ assms] by auto
moreover have $F\langle\operatorname{Composition(G)}\langle\mathrm{~b}, \mathrm{c}\rangle$, Composition(G) $\langle\mathrm{b}, \mathrm{d}\rangle\rangle=$ restrict (F,End (G, P) \times End \langle Composition(G) $\langle\mathrm{b}, \mathrm{c}\rangle$, Composition(G) $\langle\mathrm{b}, \mathrm{d}\rangle\rangle$
using end_composition[OF AS (1,2)] end_composition[OF AS(1,3)] by
auto ultimately
have eq1:restrict (Composition(G), End (G,P) $\times \operatorname{End}(G, P))\langle b, r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P))$ $\langle c, d\rangle\rangle=r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P))\langle r e s t r i c t(C o m p o s i t i o n(G), E n d(G, P) \times \operatorname{End}(G, P))$ $\langle\mathrm{b}, \mathrm{c}\rangle$, restrict (Composition(G), End (G, P) $\times \operatorname{End}(\mathrm{G}, \mathrm{P}))\langle\mathrm{b}, \mathrm{d}\rangle\rangle$ by auto
have ig1:Composition(G) $\langle\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle, \mathrm{b}\rangle=(\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle) \mathrm{O} \mathrm{b}$ using monoid0.Group_ZF_2_1_LO[OF group0_2_L1 assms(2)]

AS unfolding End_def using func_ZF_5_L2 by auto
have ig2:F \langle Composition(G) $\langle\mathrm{c}, \mathrm{b}\rangle$, Composition(G) $\langle\mathrm{d}, \mathrm{b}\rangle\rangle=\mathrm{F}\langle\mathrm{c} 0 \mathrm{~b}, \mathrm{~d}$ 0 b) using AS unfolding End_def using func_ZF_5_L2 by auto
have comp1fun: $((\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle) \mathrm{O} \mathrm{b}): \mathrm{G} \rightarrow \mathrm{G}$ using monoid0. Group_ZF_2_1_LO[OF group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force
have comp2fun: ($\mathrm{F}\langle\mathrm{c} 0 \mathrm{~b}, \mathrm{~d} 0 \mathrm{~b}\rangle$): $\mathrm{G} \rightarrow \mathrm{G}$ using monoidO.Group_ZF_2_1_LO[OF group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force
\{
fix g assume $g G: g \in G$
then have $b g: b g \in G$ using $A S(1)$ unfolding End_def using apply_type by auto
from gG have ($(\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle) \mathrm{O} \mathrm{b}) \mathrm{g}=(\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle)(\mathrm{bg})$ using comp_fun_apply AS(1) unfolding End_def by force
also have ...=(c(bg))•(d(bg)) using Group_ZF_2_1_L3[OF assms(2)]

AS $(2,3)$ bg unfolding End＿def by auto
 folding End＿def by auto
also have ．．．$=(\mathrm{F}\langle\mathrm{c} 0 \mathrm{~b}, \mathrm{~d} 0 \mathrm{~b}\rangle) \mathrm{g}$ using gG Group＿ZF＿2＿1＿L3［0F assms（2） comp＿fun comp＿fun gG］

AS unfolding End＿def by auto
ultimately have $((F\langle c, d\rangle) 0$ b）$g=(F\langle c \quad 0 \quad b, d \quad 0 \quad b\rangle) g$ by auto
\}
then have $\forall \mathrm{g} \in \mathrm{G}$ ．（ $(\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle) \mathrm{O} \mathrm{b}) \mathrm{g}=(\mathrm{F}\langle\mathrm{c} 0 \mathrm{~b}, \mathrm{~d} 0 \mathrm{~b}\rangle) \mathrm{g}$ by auto
then have（ $F\langle c, d\rangle$ ） $0 b=F\langle c \quad 0 b, d 0 b\rangle$ using fun＿extension［OF comp1fun comp2fun］by auto
with ig1 ig2 have Composition（G）$\langle\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle, \mathrm{b}\rangle=\mathrm{F}\langle$ Composition（G）$\langle\mathrm{c}$
，b〉，Composition（G）〈d ，b〉〉 by auto moreover
have $F\langle c, d\rangle=r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P)) \quad\langle c, d\rangle$ using $\operatorname{AS}(2,3)$ restrict by auto moreover
have Composition（G）$\langle\mathrm{c}, \mathrm{b}\rangle=$ restrict（Composition（G），End（G，P）\times End（G，P））
$\langle\mathrm{c}, \mathrm{b}\rangle \operatorname{Composition(G)}\langle\mathrm{d}, \mathrm{b}\rangle=r e s t r i c t(C o m p o s i t i o n(G), E n d(G, P) \times \operatorname{End}(G, P))$
〈d , b〉
using restrict AS by auto moreover
have Composition（G）$\langle\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle, \mathrm{b}\rangle=$ restrict（Composition（G），End（G，P）\times End（G，P））
$\langle\mathrm{F}\langle\mathrm{c}, \mathrm{d}\rangle, \mathrm{b}\rangle$ using AS（1）
end＿pointwise＿addition［0F AS $(2,3)$ assms］by auto
moreover have $\mathrm{F}\langle$ Composition（G）$\langle\mathrm{c}, \mathrm{b}\rangle$ ，Composition（G）$\langle\mathrm{d}$ ，b $\rangle\rangle=$ restrict（F，End（G，P）\times End \langle Composition（G）$\langle\mathrm{c}, \mathrm{b}\rangle$ ，Composition（G）$\langle\mathrm{d}, \mathrm{b}\rangle\rangle$
using end＿composition［OF AS（2，1）］end＿composition［OF AS $(3,1)]$ by auto ultimately
have eq2：restrict（Composition（G），End（G，P）×End（G，P））（restrict（F，End（G，P）×End（G，P））
$\langle c, d\rangle, b\rangle=r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P))\langle r e s t r i c t(C o m p o s i t i o n(G), E n d(G, P) \times \operatorname{End}(G, P))$
$\langle c, b\rangle$ ，restrict（Composition（G），End（G，P）$\times \operatorname{End}(G, P))\langle d, b\rangle\rangle$
by auto
with eq1 have（restrict（Composition（G），End（G，P）$\times \operatorname{End}(G, P)$ ）$\langle\mathrm{b}$ ，restrict（F，End（G，P）\times End $\langle c, d\rangle\rangle=r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P))\langle r e s t r i c t(C o m p o s i t i o n(G), E n d(G, P) \times \operatorname{End}(G, P))$
$\langle\mathrm{b}, \mathrm{c}\rangle$ ，restrict（Composition（G），End（G，P）$\times \operatorname{End}(G, P))\langle\mathrm{b}, \mathrm{d}\rangle\rangle) \wedge$
（restrict（Composition（G），End（G，P）×End（G，P））〈 restrict（F，End（G，P）×End（G，P））
$\langle c, d\rangle, b\rangle=r e s t r i c t(F, \operatorname{End}(G, P) \times \operatorname{End}(G, P)) \quad\langle r e s t r i c t(C o m p o s i t i o n(G), \operatorname{End}(G, P) \times \operatorname{End}(G, P))$
$\langle c, b\rangle, r e s t r i c t(C o m p o s i t i o n(G), E n d(G, P) \times \operatorname{End}(G, P))\langle d, b\rangle\rangle)$
by auto
\}
then show thesis unfolding IsDistributive＿def by auto qed

The endomorphisms of an abelian group is in fact a ring with the previous operations．
theorem（in group0）end＿is＿ring：
assumes P\｛is commutative on\}G $F=P$ \｛lifted to function space over\}
G
shows IsAring（End（G，P），restrict（F，End（G，P）$\times \operatorname{End}(G, P))$ ，restrict（Composition（G），End（G，P）\times En unfolding IsAring＿def using end＿addition＿group［OF assms］end＿comp＿monoid（1）
distributive＿comp＿pointwise［0F assms］
by auto

38.5 First isomorphism theorem

Now we will prove that any homomorphism $f: G \rightarrow H$ defines a bijective homomorphism between G / H and $f(G)$.

A group homomorphism sends the neutral element to the neutral element and commutes with the inverse.

lemma image_neutral:

assumes IsAgroup(G,P) IsAgroup(H,F) Homomor (f, G, P, H,F) f:G \rightarrow H
shows f TheNeutralElement (G,P)=TheNeutralElement (H,F)
proof-
have $g:$ TheNeutralElement (G,P)=P〈TheNeutralElement (G,P), TheNeutralElement (G, P) \rangle
TheNeutralElement (G, P) $\in G$
using assms(1) group0.group0_2_L2 unfolding group0_def by auto
from $g(1)$ have f TheNeutralElement $(G, P)=f(P\langle$ TheNeutralElement (G, P), TheNeutralElement $(G, P)\rangle$
by auto
also have $\ldots=F\langle f$ TheNeutralElement (G, P) ,fTheNeutralElement (G, P) \rangle
using assms(3) unfolding Homomor_def [0F assms (1,2)] using g(2) by
auto
ultimately have f TheNeutralElement $(G, P)=F\langle f$ TheNeutralElement (G, P) , f TheNeutralElement (G, P)
by auto moreover
have $h: f$ TheNeutralElement (G,P) $\in \mathrm{H}$ using $\mathrm{g}(2)$ apply_type[OF assms(4)]
by auto
then have f TheNeutralElement $(G, P)=F\langle f$ TheNeutralElement (G, P), TheNeutralElement ($H, F)\rangle$
using assms(2) group0.group0_2_L2 unfolding group0_def by auto ul-
timately
have $F\langle f$ TheNeutralElement (G, P) , TheNeutralElement $(H, F)\rangle=F\langle f$ TheNeutralElement $(G, P), f T h e N e u t r$ by auto
with h have LeftTranslation(H,F,fTheNeutralElement(G,P))TheNeutralElement(H,F)=LeftTransl using group0.group0_5_L2(2) [OF _ h] assms(2) group0.group0_2_L2 un-
folding group0_def by auto
moreover have LeftTranslation(H,F,fTheNeutralElement(G,P)) \in bij(H, H)
using group0.trans_bij(2)
assms(2) h unfolding group0_def by auto
then have LeftTranslation(H,F,fTheNeutralElement(G,P)) $\operatorname{inj}(H, H)$ unfolding bij_def by auto ultimately
show fTheNeutralElement (G,P)=TheNeutralElement(H,F) using h assms(2) group0.group0_2_L2 unfolding inj_def group0_def by force
qed
lemma image_inv:
assumes IsAgroup(G,P) IsAgroup(H,F) Homomor(f,G,P,H,F) f:G $\rightarrow \mathrm{H} g \in G$
shows $f(\operatorname{GroupInv}(G, P) g)=\operatorname{GroupInv}(H, F)(f g)$
proof-
have im:fgeH using apply_type[0F assms $(4,5)]$.
have inv:GroupInv(G,P)g $\in G$ using group0.inverse_in_group [OF _ assms(5)] assms(1) unfolding group0_def by auto
then have inv2:f(GroupInv(G,P)g) \in Husing apply_type[OF assms(4)] by auto
have f TheNeutralElement $(G, P)=f(P\langle g, \operatorname{GroupInv}(G, P) g\rangle)$ using assms $(1,5)$
group0.group0_2_L6
unfolding group0_def by auto
also have $\ldots=F\langle f g, f(\operatorname{GroupInv}(G, P) g)\rangle$ using assms (3) unfolding Homomor_def [OF assms $(1,2)]$ using
assms(5) inv by auto
ultimately have TheNeutralElement $(\mathrm{H}, \mathrm{F})=\mathrm{F}\langle\mathrm{fg}, \mathrm{f}(\operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{g})\rangle$ using image_neutral[0F assms(1-4)]
by auto
then show thesis using group0.group0_2_L9(2) [OF _ im inv2] assms(2) unfolding group0_def by auto
qed
The kernel of an homomorphism is a normal subgroup.
theorem kerner_normal_sub:
assumes $\operatorname{IsAgroup}(G, P)$ IsAgroup (H,F) Homomor ($f, G, P, H, F) f: G \rightarrow H$
shows IsAnormalSubgroup (G,P,f-\{TheNeutralElement (H,F) \})
proof-
have $\mathrm{xy}: \forall \mathrm{x} y .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{f} \longrightarrow\left(\forall \mathrm{y}^{\prime} .\left\langle\mathrm{x}, \mathrm{y}^{\prime}\right\rangle \in \mathrm{f} \longrightarrow \mathrm{y}=\mathrm{y}{ }^{\prime}\right)$ using assms(4)
unfolding Pi_def function_def by force
\{
fix g1 g2 assume $\mathrm{g} 1 \in \mathrm{f}-\{$ TheNeutralElement (H,F) $\mathrm{F} 2 \in \mathrm{f}-\{$ TheNeutralElement (H,F) $\}$
then have $\langle\mathrm{g} 1$, TheNeutralElement $(\mathrm{H}, \mathrm{F})\rangle \in \mathrm{f}\langle\mathrm{g} 2$, TheNeutralElement $(\mathrm{H}, \mathrm{F})\rangle \in \mathrm{f}$ using vimage_iff by auto moreover
then have $\mathrm{G}: \mathrm{g} 1 \in \mathrm{Gg} 2 \in \mathrm{G}$ using assms(4) unfolding Pi_def by auto
then have $\langle\mathrm{g} 1, \mathrm{fg} 1\rangle \in \mathrm{f}\langle\mathrm{g} 2, \mathrm{fg} 2\rangle \in \mathrm{f}$ using apply_Pair[OF assms(4)] by auto

moreover

note xy ultimately
have $\mathrm{fg} 1=$ TheNeutralElement (H,F)fg2=TheNeutralElement(H,F) by auto

moreover

have $f(P\langle g 1, g 2\rangle)=F\langle f g 1, f g 2\rangle$ using assms (3) G unfolding Homomor_def [OF
assms $(1,2)]$ by auto
ultimately have $f(P\langle g 1, g 2\rangle)=F\langle$ TheNeutralElement (H, F), TheNeutralElement $(H, F)\rangle$
by auto
also have ...=TheNeutralElement(H,F) using group0.group0_2_L2 assms(2)
unfolding group0_def
by auto
ultimately have $f(P\langle g 1, g 2\rangle)=$ TheNeutralElement (H, F) by auto moreover
from G have $P\langle g 1, g 2\rangle \in G$ using group0.group_op_closed assms(1) un-
folding group0_def by auto
ultimately have $\langle\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle$, TheNeutralElement $(\mathrm{H}, \mathrm{F})\rangle \in \mathrm{f}$ using apply_Pair[0F assms(4)] by force
then have $P\langle g 1, g 2\rangle \in f-\{$ TheNeutralElement $(H, F)\}$ using vimage_iff by auto

\}

then have f-\{TheNeutralElement (H,F)\} \{is closed under\}P unfolding IsOpClosed_def by auto
moreover have A:f-\{TheNeutralElement (H,F)\} $\subseteq G$ using func1_1_L3 assms(4) by auto
moreover have fTheNeutralElement (G,P)=TheNeutralElement(H,F) using image_neutral
assms by auto
then have \langle TheNeutralElement (G, P), TheNeutralElement (H,F) $\rangle \in f$ using apply_Pair [OF assms (4)]
group0.group0_2_L2 assms(1) unfolding group0_def by force
then have TheNeutralElement $(G, P) \in f-\{$ TheNeutralElement (H,F) \} using vimage_iff by auto
then have f-\{TheNeutralElement $(H, F)\} \neq 0$ by auto moreover
\{
fix x assume $x \in f-\{$ TheNeutralElement ($H, F)\}$
then have $\langle x$, TheNeutralElement $(H, F)\rangle \in f$ and $x: x \in G$ using vimage_iff A by auto moreover
from x have $\langle x, f x\rangle \in f$ using apply_Pair [OF assms(4)] by auto ultimately
have $f x=T h e N e u t r a l E l e m e n t(H, F)$ using $x y$ by auto moreover
have $f(\operatorname{GroupInv}(G, P) x)=\operatorname{GroupInv}(H, F)(f x)$ using x image_inv assms by auto
ultimately have $f(\operatorname{GroupInv}(G, P) x)=\operatorname{GroupInv}(H, F)$ TheNeutralElement (H, F)
by auto
then have $f(\operatorname{Group} \operatorname{Inv}(G, P) x)=T h e N e u t r a l E l e m e n t(H, F)$ using group0.group_inv_of_one
assms(2) unfolding group0_def by auto moreover
have $\langle\operatorname{GroupInv}(G, P) x, f(\operatorname{Group} \operatorname{Inv}(G, P) x)\rangle \in f$ using apply_Pair[0F assms(4)]
x group0.inverse_in_group assms(1) unfolding group0_def by auto
ultimately have $\langle\operatorname{GroupInv}(G, P) x$, TheNeutralElement (H,F) $\rangle \in f$ by auto
then have $\operatorname{GroupInv}(G, P) x \in f-\{T h e N e u t r a l E l e m e n t(H, F)\}$ using vimage_iff
by auto
\}
then have $\forall x \in f-\{T h e N e u t r a l E l e m e n t(H, F)\} . \operatorname{GroupInv}(G, P) x \in f-\{T h e N e u t r a l E l e m e n t(H, F)\}$ by auto
ultimately have SS:IsAsubgroup(f-\{TheNeutralElement(H,F)\},P) using group0.group0_3_T3
assms(1) unfolding group0_def by auto
\{
fix $g h$ assume AS: $g \in G h \in f-\{$ TheNeutralElement $(H, F)\}$
from AS(1) have im:fg $\in \mathrm{H}$ using assms(4) apply_type by auto
then have iminv: $\operatorname{GroupInv}(H, F)(f g) \in H$ using assms(2) group0.inverse_in_group
unfolding group0_def by auto
from AS have $h \in G$ and inv:GroupInv(G,P)g $\in G$ using A group0.inverse_in_group assms(1) unfolding group0_def by auto
then have $\mathrm{P}: \mathrm{P}\langle\mathrm{h}, \mathrm{Group} \operatorname{Inv}(\mathrm{G}, \mathrm{P}) \mathrm{g}\rangle \in \mathrm{G}$ using assms(1) group0.group_op_closed
unfolding group0_def by auto
with $\langle\mathrm{g} \in \mathrm{G}\rangle$ have $\mathrm{P}\langle\mathrm{g}, \mathrm{P}\langle\mathrm{h}, \mathrm{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{g}\rangle\rangle \in \mathrm{G}$ using assms(1) group0.group_op_closed
unfolding group0_def by auto
then have $f(P\langle g, P\langle h, \operatorname{GroupInv}(G, P) g\rangle\rangle)=F\langle f g, f(P\langle h, \operatorname{GroupInv}(G, P) g\rangle)\rangle$ using assms(3) unfolding Homomor_def [OF assms (1,2)] using $\langle\mathrm{g} \in \mathrm{G}\rangle \mathrm{P}$
by auto
also have $\ldots=\mathrm{F}\langle\mathrm{fg}, \mathrm{F}(\langle\mathrm{fh}, \mathrm{f}(\operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{g})\rangle)\rangle$ using assms (3) unfolding Homomor_def [OF assms $(1,2)]$
using $\langle\mathrm{h} \in \mathrm{G}\rangle$ inv by auto
also have $\ldots=F\langle f g, F(\langle f h, \operatorname{GroupInv}(H, F)(f g)\rangle)\rangle$ using image_inv[OF assms
$\langle\mathrm{g} \in \mathrm{G}$)] by auto
ultimately have $\mathrm{f}(\mathrm{P}\langle\mathrm{g}, \mathrm{P}\langle\mathrm{h}, \operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{g}\rangle\rangle)=\mathrm{F}\langle\mathrm{fg}, \mathrm{F}(\langle\mathrm{fh}, \operatorname{GroupInv}(\mathrm{H}, \mathrm{F})(\mathrm{fg})\rangle)\rangle$
by auto
moreover from AS(2) have fh=TheNeutralElement(H,F) using func1_1_L15[0F assms (4)]
by auto ultimately
have $f(P\langle g, P\langle h, \operatorname{GroupInv}(G, P) g\rangle\rangle)=F\langle f g, F(\langle$ TheNeutralElement $(H, F), \operatorname{GroupInv}(H, F)(f g)\rangle)\rangle$
by auto
also have $\ldots=F\langle f g, \operatorname{GroupInv}(H, F)(f g)\rangle$ using assms (2) im group0.group0_2_L2
unfolding group0_def using iminv by auto
also have ...=TheNeutralElement(H,F) using assms(2) group0.group0_2_L6
im
unfolding group0_def by auto
ultimately have $f(P\langle g, P\langle h, \operatorname{GroupInv}(G, P) g\rangle\rangle)=$ TheNeutralElement (H, F)
by auto moreover
from $P\langle g \in G\rangle$ have $P\langle g, P\langle h, G r o u p \operatorname{Inv}(G, P) g\rangle\rangle \in G$ using group0.group_op_closed
assms(1) unfolding group0_def by auto
ultimately have $P\langle\mathrm{~g}, \mathrm{P}\langle\mathrm{h}, \operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{g}\rangle\rangle \in \mathrm{f}-\{$ TheNeutralElement $(\mathrm{H}, \mathrm{F})\}$
using func1_1_L15[0F assms(4)]
by auto
\}
then have $\forall \mathrm{g} \in \mathrm{G} .\{\mathrm{P}\langle\mathrm{g}, \mathrm{P}\langle\mathrm{h}, \operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{g}\rangle\rangle . \mathrm{h} \in \mathrm{f}-\{$ TheNeutralElement $(\mathrm{H}, \mathrm{F})\}\} \subseteq \mathrm{f}-\{$ TheNeutralE. by auto
then show thesis using group0.cont_conj_is_normal assms(1) SS unfold-
ing group0_def by auto
qed
The image of a homomorphism is a subgroup.

```
theorem image_sub:
    assumes IsAgroup(G,P) IsAgroup(H,F) Homomor(f,G,P,H,F) f:G->H
    shows IsAsubgroup(fG,F)
proof-
    have TheNeutralElement(G,P)\inG using group0.group0_2_L2 assms(1) un-
folding group0_def by auto
    then have TheNeutralElement(H,F) \infG using func_imagedef[OF assms(4),of
G] image_neutral [OF assms]
                by force
    then have fG\not=0 by auto moreover
    {
        fix h1 h2 assume h1 ffGh2 }|f
        then obtain g1 g2 where h1=fg1 h2=fg2 and p:g1\inGg2\inG using func_imagedef [OF
assms(4)] by auto
        then have F}\langle\textrm{h}1,\textrm{h}2\rangle=\textrm{F}\langle\textrm{fg}1,\textrm{fg}2\rangle\mathrm{ by auto
```

also have $\ldots=f(\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle)$ using assms (3) unfolding Homomor_def [OF assms (1,2)] using p by auto
ultimately have $\mathrm{F}\langle\mathrm{h} 1, \mathrm{~h} 2\rangle=\mathrm{f}(\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle)$ by auto
moreover have $\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle \in \mathrm{G}$ using p group0.group_op_closed assms(1)
unfolding group0_def
by auto ultimately
have $\mathrm{F}\langle\mathrm{h} 1, \mathrm{~h} 2\rangle \in \mathrm{fG}$ using func_imagedef $[\mathrm{OF}$ assms (4)] by auto \}
then have fG \{is closed under\} F unfolding IsOpClosed_def by auto moreover have $f G \subseteq H$ using func1_1_L6(2) assms(4) by auto moreover \{
fix h assume $h \in f G$
then obtain g where $h=f g$ and $p: g \in G$ using func_imagedef [OF assms(4)]
by auto
then have $\operatorname{GroupInv}(H, F) h=\operatorname{GroupInv}(H, F)(f g)$ by auto
then have GroupInv(H,F)h=f(GroupInv(G,P)g) using p image_inv[OF assms]
by auto
then have $\operatorname{Group} \operatorname{Inv}(H, F) h \in f G$ using p group0.inverse_in_group assms(1)
unfolding group0_def
using func_imagedef [OF assms(4)] by auto
\}
then have $\forall \mathrm{h} \in \mathrm{fG}$. GroupInv (H, F) $\mathrm{h} \in \mathrm{fG}$ by auto ultimately
show thesis using group0.group0_3_T3 assms(2) unfolding group0_def by auto
qed
Now we are able to prove the first isomorphism theorem. This theorem states that any group homomorphism $f: G \rightarrow H$ gives an isomorphism between a quotient group of G and a subgroup of H.

```
theorem isomorphism_first_theorem:
    assumes IsAgroup(G,P) IsAgroup(H,F) Homomor(f,G,P,H,F) f:G->H
    defines r \equiv QuotientGroupRel(G,P,f-{TheNeutralElement(H,F)}) and
    PP \equivQuotientGroupOp(G,P,f-{TheNeutralElement(H,F)})
    shows \existsff. Homomor(ff,G//r,PP,fG,restrict(F,(fG)\times(fG))) ^ fffbij(G//r,fG)
proof-
    let ff={\langler{g},fg\rangle.g\inG}
    {
        fix t assume t\in{\langler{g},fg\rangle. g\inG}
        then obtain g where t=\langler{g},fg\rangleg\inG by auto
        moreover then have r{g}\inG//r unfolding r_def quotient_def by auto
        moreover from 〈g\inG` have fg\infG using func_imagedef [OF assms(4)] by
auto
            ultimately have t\in(G//r) }\timesfG\mathrm{ by auto
    }
    then have ff\inPow((G//r) \fG) by auto
    moreover have (G//r)\subseteqdomain(ff) unfolding domain_def quotient_def
by auto moreover
    {
        fix x y t assume A: }\langlex,y\rangle\inff \langlex,t\rangle\inf
```

then obtain gy gr where $\langle\mathrm{x}, \mathrm{y}\rangle=\langle\mathrm{r}\{\mathrm{gy}\}, \mathrm{fgy}\rangle\langle\mathrm{x}, \mathrm{t}\rangle=\langle\mathrm{r}\{\mathrm{gr}\}, \mathrm{fgr}\rangle$ and $\mathrm{p}: \mathrm{gr} \in \mathrm{Ggy} \in \mathrm{G}$ by auto
then have $B: r\{g y\}=r\{g r\} y=f g y t=f g r$ by auto
from $B(2,3)$ have $q: y \in H t \in H$ using apply＿type p assms（4）by auto
have 〈gy，gr〉єr using eq＿equiv＿class［OF B（1）＿p（1）］group0．Group＿ZF＿2＿4＿L3
kerner＿normal＿sub［0F assms（1－4）］
assms（1）unfolding group0＿def IsAnormalSubgroup＿def r＿def by auto
then have $P\langle\operatorname{gy}, \operatorname{GroupInv}(G, P) \operatorname{gr}\rangle \in f-\{$ TheNeutralElement $(H, F)\}$ unfold－ ing r＿def QuotientGroupRel＿def by auto
then have eq：f（P／gy，GroupInv（G，P）gr〉）＝TheNeutralElement（H，F）using func1＿1＿L15［0F assms（4）］by auto
from $B(2,3)$ have $F\langle y, \operatorname{GroupInv}(H, F) t\rangle=F\langle f g y, \operatorname{GroupInv}(H, F)(f g r)\rangle$ by auto
also have $\ldots=\mathrm{F}\langle\mathrm{fgy}, \mathrm{f}(\operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{gr})\rangle$ using image＿inv［0F assms（1－4）］ p （1）by auto
also have $\ldots=\mathrm{f}(\mathrm{P}\langle\mathrm{gy}, \operatorname{GroupInv}(\mathrm{G}, \mathrm{P}) \mathrm{gr}\rangle)$ using assms（3）unfolding Homomor＿def［OF assms（1，2）］using $p(2)$
group0．inverse＿in＿group assms（1）p（1）unfolding group0＿def by auto
ultimately have $F\langle y, \operatorname{GroupInv}(H, F) t\rangle=$ TheNeutralElement（ H, F ）using eq
by auto
then have y＝t using assms（2）group0．group0＿2＿L11A q unfolding group0＿def by auto
\}
then have $\forall \mathrm{x}$ y．$\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{ff} \longrightarrow\left(\forall \mathrm{y}^{\prime} .\left\langle\mathrm{x}, \mathrm{y}^{\prime}\right\rangle \in \mathrm{ff} \longrightarrow \mathrm{y}=\mathrm{y}{ }^{\prime}\right)$ by auto
ultimately have ff＿fun：ff：G／／r $\rightarrow f G$ unfolding Pi＿def function＿def by auto
\｛
fix a1 a2 assume AS： $\mathrm{a} 1 \in \mathrm{G} / / \mathrm{ra} 2 \in \mathrm{G} / / \mathrm{r}$
then obtain g 1 g 2 where $\mathrm{p}: \mathrm{g} 1 \in \mathrm{Gg} 2 \in \mathrm{G}$ and $\mathrm{a}: \mathrm{a} 1=\mathrm{r}\{\mathrm{g} 1\} \mathrm{a} 2=\mathrm{r}\{\mathrm{g} 2\}$ unfold－ ing quotient＿def by auto
have equiv（G，r）using group0．Group＿ZF＿2＿4＿L3 kerner＿normal＿sub［OF assms（1－4）］
assms（1）unfolding group0＿def IsAnormalSubgroup＿def $r_{\text {＿}}$ def by auto

moreover

have Congruent2（r，P）using Group＿ZF＿2＿4＿L5A［OF assms（1）kerner＿normal＿sub［OF assms（1－4）］］
unfolding r＿def by auto moreover
have PP＝ProjFun2（G，r，P）unfolding PP＿def QuotientGroupOp＿def r＿def by auto moreover
note a p ultimately have $\operatorname{PP}\langle\mathrm{a} 1, \mathrm{a} 2\rangle=\mathrm{r}\{\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle\}$ using group0．Group＿ZF＿2＿2＿L2 assms（1）
unfolding group0＿def by auto
then have $\langle\mathrm{PP}\langle\mathrm{a} 1, \mathrm{a} 2\rangle, \mathrm{f}(\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle)\rangle \in \mathrm{ff}$ using group0．group＿op＿closed［0F
＿p］assms（1）unfolding group0＿def
by auto
then have eq： $\operatorname{ff}(\operatorname{PP}\langle a 1, a 2\rangle)=f(P\langle g 1, g 2\rangle)$ using apply＿equality ff＿fun
by auto
from p a have $\langle a 1, f g 1\rangle \in f f\langle a 2, f g 2\rangle \in f f$ by auto
then have ffa1＝fg1ffa2＝fg2 using apply＿equality ff＿fun by auto
then have $F\langle f f a 1, f f a 2\rangle=F\langle f g 1, f g 2\rangle$ by auto
also have $\ldots=f(\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle)$ using assms (3) unfolding Homomor_def [0F assms (1,2)]
using p by auto
ultimately have $F\langle f f a 1, f f a 2\rangle=f f(P P\langle a 1, a 2\rangle)$ using eq by auto moreover
have ffa1 $\in f G f f a 2 \in f G$ using ff_fun apply_type $A S$ by auto ultimately have restrict $(F, f G \times f G)\langle f f a 1, f f a 2\rangle=f f(P P\langle a 1, a 2\rangle)$ by auto
\}
 by auto
have G:IsAgroup(G//r, PP) using Group_ZF_2_4_T1[OF assms(1) kerner_normal_sub [OF assms(1-4)]] unfolding r_{-}def PP_def by auto
have $H: \operatorname{IsAgroup}(f G$, restrict $(F, f G \times f G)$) using image_sub[OF assms(1-4)] unfolding IsAsubgroup_def .
have HOM:Homomor (ff,G//r,PP,fG,restrict(F,(fG)×(fG))) using r unfolding Homomor_def [OF G H] by auto \{
fix b1 b2 assume AS:ffb1=ffb2b1 G G//rb2 $\in G / / r$
have invb2: GroupInv(G//r, PP) b2 $\in G / / r$ using group0.inverse_in_group [OF _ AS(3)] G unfolding group0_def
by auto
with $\mathrm{AS}(2)$ have $\mathrm{PP}\langle\mathrm{b} 1, \operatorname{Group} \operatorname{Inv}(\mathrm{G} / / \mathrm{r}, \mathrm{PP}) \mathrm{b} 2\rangle \in \mathrm{G} / / \mathrm{r}$ using group0.group_op_closed G unfolding group0_def by auto moreover
then obtain $g g$ where $g g: g g \in \operatorname{GPP}\langle b 1, \operatorname{Group} \operatorname{Inv}(G / / r, P P) b 2\rangle=r\{g g\}$ un-
folding quotient_def by auto
ultimately have E:ff(PP/b1,GroupInv(G//r, PP)b2〉)=fgg using apply_equality[OF _ ff_fun] by auto
from invb2 have pp:ff(GroupInv(G//r,PP)b2) $\in f G$ using apply_type ff_fun by auto
from $\operatorname{AS}(2,3)$ have $f f f: f f b 1 \in f G f f b 2 \in f G$ using apply_type[OF ff_fun] by auto
from $f f f(1) p p$ have $E E: F\langle f f b 1, f f(\operatorname{GroupInv}(G / / r, P P) b 2)\rangle=r e s t r i c t(F, f G \times f G)\langle f f b 1, f f(G r o u p I$ by auto
from fff have fff2:ffb1 $\in \mathrm{Hffb} 2 \in \mathrm{H}$ using func1_1_L6(2) [OF assms(4)] by auto
with AS(1) have TheNeutralElement (H,F)=F〈ffb1, GroupInv(H,F)(ffb2)) using group0.group0_2_L6(1)
assms(2) unfolding group0_def by auto
also have $\ldots=F\langle f f b 1$, restrict (GroupInv (H,F) ,fG) (ffb2) $)$ using restrict fff(2) by auto
also have $\ldots=\mathrm{F}\langle\mathrm{ffb} 1, \mathrm{ff}(\mathrm{GroupInv}(\mathrm{G} / / \mathrm{r}, \mathrm{PP}) \mathrm{b} 2)\rangle$ using image_inv[0F G
H HOM ff_fun AS(3)]
group0.group0_3_T1[0F _ image_sub[0F assms(1-4)]] assms(2) unfold-
ing group0_def by auto
also have ...=restrict $(F, f G \times f G)\langle f f b 1, f f(\operatorname{GroupInv}(G / / r, P P) b 2)\rangle$ using EE by auto
also have $\ldots=f f(\mathrm{PP}\langle\mathrm{b} 1, \operatorname{GroupInv}(\mathrm{G} / / \mathrm{r}, \mathrm{PP}) \mathrm{b} 2\rangle)$ using HOM unfolding Homomor_def [OF G H] using AS(2) group0.inverse_in_group[OF _ AS(3)] G unfolding group0_def by auto
also have ．．．＝fgg using E by auto
ultimately have fgg＝TheNeutralElement（H，F）by auto
then have $g g \in f-\{T h e N e u t r a l E l e m e n t(H, F)\}$ using func1＿1＿L15［0F assms（4）］〈 $\mathrm{gg} \in \mathrm{G}$ 〉 by auto
then have r\｛gg\}=TheNeutralElement(G//r, PP) using group0.Group_ZF_2_4_L5E[0F ＿kerner＿normal＿sub［0F assms（1－4）］

〈 $\mathrm{gg} \in \mathrm{G}\rangle$ ］using assms（1）unfolding group0＿def $r_{\text {＿}}$ def PP＿def by auto
with $\mathrm{gg}(2)$ have $\mathrm{PP}\langle\mathrm{b} 1$ ， $\operatorname{GroupInv}(\mathrm{G} / / \mathrm{r}, \mathrm{PP}) \mathrm{b} 2\rangle=$ TheNeutralElement（G／／r，PP）
by auto
then have b1＝b2 using group0．group0＿2＿L11A［OF＿AS $(2,3)]$ G unfold－
ing group0＿def by auto
\}
then have $f f \in \operatorname{inj}(G / / r, f G)$ unfolding inj＿def using ff＿fun by auto more－ over
\｛
fix m assume $m \in f G$
then obtain g where $g \in G m=f g$ using func＿imagedef［OF assms（4）］by auto
then have $\langle r\{g\}, m\rangle \in f f$ by auto
then have $f f(r\{g\})=m$ using apply＿equality ff＿fun by auto
then have $\exists \mathrm{A} \in \mathrm{G} / / \mathrm{r}$ ．ffA＝m unfolding quotient＿def using $\langle\mathrm{g} \in \mathrm{G}\rangle$ by auto
\}
ultimately have ff \in bij（ $G / / r, f G$ ）unfolding bij＿def surj＿def using ff＿fun by auto
with HOM show thesis by auto
qed
As a last result，the inverse of a bijective homomorphism is an homomor－ phism．Meaning that in the previous result，the homomorphism we found is an isomorphism．
theorem bij＿homomor：
assumes $f \in \operatorname{bij}(G, H)$ IsAgroup（G，P）IsAgroup（H，F）Homomor（f，G，P，H，F）
shows Homomor（converse（f），H，F，G，P）
proof－
\｛
fix h1 h2 assume A：h1 $\in H$ h2 $\in H$
from $A(1)$ obtain $g 1$ where $g 1: g 1 \in G$ fg1＝h1 using assms（1）unfolding
bij＿def surj＿def by auto moreover
from $A(2)$ obtain $g 2$ where $g 2: g 2 \in G f g 2=h 2$ using assms（1）unfolding
bij＿def surj＿def by auto ultimately
have $F\langle f g 1, f g 2\rangle=F\langle h 1, h 2\rangle$ by auto
then have $\mathrm{f}(\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle)=\mathrm{F}\langle\mathrm{h} 1, \mathrm{~h} 2\rangle$ using assms $(2,3,4)$ homomor＿eq g1（1）
g2（1）by auto
then have converse（f）（f $\mathrm{P}\langle\mathrm{g} 1, \mathrm{~g} 2\rangle)$ ）＝converse（f）$(\mathrm{F}\langle\mathrm{h} 1, \mathrm{~h} 2\rangle)$ by auto
then have $P\langle g 1, g 2\rangle=$ converse（ f ）（ $F\langle h 1, h 2\rangle$ ）using left＿inverse assms（1）
group0．group＿op＿closed
assms（2）g1（1）g2（1）unfolding group0＿def bij＿def by auto more－
over

```
    from g1(2) have converse(f)(fg1)=converse(f)h1 by auto
    then have g1=converse(f)h1 using left_inverse assms(1) unfolding
bij_def using g1(1) by auto moreover
    from g2(2) have converse(f)(fg2)=converse(f)h2 by auto
    then have g2=converse(f)h2 using left_inverse assms(1) unfolding
bij_def using g2(1) by auto ultimately
    have P\langleconverse(f)h1,converse(f)h2\rangle=converse(f) (F\langleh1,h2\rangle) by auto
    }
    then show thesis using assms(2,3) Homomor_def by auto
qed
end
```


39 Fields - introduction

theory Field_ZF imports Ring_ZF
begin
This theory covers basic facts about fields.

39.1 Definition and basic properties

In this section we define what is a field and list the basic properties of fields.
Field is a notrivial commutative ring such that all non-zero elements have an inverse. We define the notion of being a field as a statement about three sets. The first set, denoted K is the carrier of the field. The second set, denoted A represents the additive operation on K (recall that in ZF set theory functions are sets). The third set M represents the multiplicative operation on K .

```
definition
    IsAfield(K,A,M) \equiv
    (IsAring(K,A,M) ^(M {is commutative on} K) ^
    TheNeutralElement(K,A) \not= TheNeutralElement(K,M) ^
    ( }\forall\textrm{a}\in\textrm{K}. a\not=TheNeutralElement(K,A)
    (\existsb\inK. M\langlea,b\rangle= TheNeutralElement(K,M))))
```

The fieldo context extends the ring0 context adding field-related assumptions and notation related to the multiplicative inverse.

```
locale fieldO = ring0 K A M for K A M +
    assumes mult_commute: M {is commutative on} K
    assumes not_triv: 0 \not= 1
    assumes inv_exists: }\forall\textrm{a}\in\textrm{K}.\textrm{a}\not=\mathbf{0}\longrightarrow(\exists\textrm{b}\in\textrm{K}.\textrm{a}\cdot\textrm{b}=1
    fixes non_zero ( }\mp@subsup{K}{0}{}\mathrm{ )
```

defines non_zero_def[simp]: $\mathrm{K}_{0} \equiv \mathrm{~K}-\{0\}$
fixes inv (_- ${ }^{-1}$ [96] 97)
defines inv_def[simp]: $\mathrm{a}^{-1} \equiv \operatorname{GroupInv}\left(\mathrm{~K}_{0}\right.$, restrict $\left(\mathrm{M}, \mathrm{K}_{0} \times \mathrm{K}_{0}\right)$) (a)
The next lemma assures us that we are talking fields in the fieldo context.
lemma (in field0) Field_ZF_1_L1: shows IsAfield(K,A,M)
using ringAssum mult_commute not_triv inv_exists IsAfield_def by simp

We can use theorems proven in the fieldo context whenever we talk about a field.

```
lemma field_fieldO: assumes IsAfield(K,A,M)
    shows fieldO(K,A,M)
    using assms IsAfield_def fieldO_axioms.intro ringO_def fieldO_def
    by simp
```

Let's have an explicit statement that the multiplication in fields is commutative.

```
lemma (in field0) field_mult_comm: assumes a\inK b\inK
    shows a\cdotb = b}\cdot\textrm{a
    using mult_commute assms IsCommutative_def by simp
```

Fields do not have zero divisors.

```
lemma (in fieldO) field_has_no_zero_divs: shows HasNoZeroDivs(K,A,M)
proof -
    { fix a b assume A1: a\inK b b K and A2: a b = 0 and A3: b}=
        from inv_exists A1 A3 obtain c where I: c\inK and II: b}c=
            by auto
        from A2 have a\cdotb\cdotc = 0.c by simp
        with A1 I have a.(b.c) = 0
            using Ring_ZF_1_L11 Ring_ZF_1_L6 by simp
        with A1 II have a=0 using Ring_ZF_1_L3 by simp }
    then have }\forall\textrm{a}\in\textrm{K}.\forall\textrm{b}\in\textrm{K}.\textrm{a}\cdot\textrm{b}=0\longrightarrow\longrightarrow\textrm{a}=0\quad\vee\textrm{b}=0\mathrm{ by auto
        then show thesis using HasNoZeroDivs_def by auto
qed
\(K_{0}\) (the set of nonzero field elements is closed with respect to multiplication.
lemma (in fieldO) Field_ZF_1_L2:
    shows K}\mp@subsup{K}{0}{}\mathrm{ {is closed under} M
    using Ring_ZF_1_L4 field_has_no_zero_divs Ring_ZF_1_L12
        IsOpClosed_def by auto
```

Any nonzero element has a right inverse that is nonzero.

```
lemma (in field0) Field_ZF_1_L3: assumes A1: a\inK
```

 shows \(\exists b \in K_{0} \cdot a \cdot b=1\)
 proof -

```
    from inv_exists A1 obtain b where b\inK and a b = 1
        by auto
    with not_triv A1 show }\exists\textrm{b}\in\mp@subsup{K}{0}{}.a\textrm{a}\cdot\textrm{b}=
    using Ring_ZF_1_L6 by auto
qed
```

If we remove zero, the field with multiplication becomes a group and we can use all theorems proven in group0 context.

```
theorem (in field0) Field_ZF_1_L4: shows
    IsAgroup(K}\mp@subsup{K}{0}{\prime}\mathrm{ ,restrict (M, }\mp@subsup{K}{0}{}\times\mp@subsup{K}{0}{\prime})\mathrm{ )
```



```
    1 = TheNeutralElement(K
proof-
    let f = restrict(M, K 
    have
        M {is associative on} K
        K
        using Field_ZF_1_L1 IsAfield_def IsAring_def IsAgroup_def
            IsAmonoid_def Field_ZF_1_L2 by auto
    then have f {is associative on} K}\mp@subsup{K}{0}{
        using func_ZF_4_L3 by simp
    moreover
    from not_triv have
        I: \mathbf{1}\in\mp@subsup{K}{0}{}}\wedge(\foralla\in\mp@subsup{K}{0}{}.f{\mathbf{1},\textrm{a}\rangle=\textrm{a}\wedge f f \a,\mathbf{1}\rangle=a
        using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto
```



```
        by blast
    ultimately have II: IsAmonoid( }\mp@subsup{\textrm{K}}{0}{},\textrm{f})\mathrm{ ) using IsAmonoid_def
        by simp
    then have monoidO( }\mp@subsup{K}{0}{}\mathrm{ ,f) using monoidO_def by simp
    moreover note I
    ultimately show 1 = TheNeutralElement( }\mp@subsup{K}{0}{},\textrm{f}
        by (rule monoid0.group0_1_L4)
    then have }\forall\textrm{a}\in\mp@subsup{\textrm{K}}{0}{}.\exists\textrm{b}\in\mp@subsup{\textrm{K}}{0}{}.\textrm{f}\langle\textrm{a},\textrm{b}\rangle=\mathrm{ TheNeutralElement (K}\mp@subsup{\textrm{K}}{0}{},\textrm{f}
        using Field_ZF_1_L3 by auto
    with II show IsAgroup( }\mp@subsup{K}{0}{},f)\mathrm{ by (rule definition_of_group)
    then show group0( }\mp@subsup{K}{0}{},f) using group0_def by sim
qed
```

The inverse of a nonzero field element is nonzero.

```
lemma (in field0) Field_ZF_1_L5: assumes A1: a\inK a\not=0
    shows a }\mp@subsup{a}{}{-1}\in\mp@subsup{K}{0}{}(\mp@subsup{a}{}{-1}\mp@subsup{)}{}{2}\in\mp@subsup{K}{0}{}\quad\mp@subsup{a}{}{-1}\inK\quad\mp@subsup{a}{}{-1}\not=\mathbf{0
proof -
    from A1 have a }\in\mp@subsup{K}{0}{}\mathrm{ by simp
    then show a }\mp@subsup{}{}{-1}\in\mp@subsup{K}{0}{}\mathrm{ using Field_ZF_1_L4 group0.inverse_in_group
        by auto
    then show ( }\mp@subsup{a}{}{-1}\mp@subsup{)}{}{2}\in\mp@subsup{K}{0}{}\quad\mp@subsup{a}{}{-1}\inK \mp@subsup{a}{}{-1}\not=
        using Field_ZF_1_L2 IsOpClosed_def by auto
qed
```

The inverse is really the inverse.

```
lemma (in field0) Field_ZF_1_L6: assumes A1: a\inK a\not=0
    shows a\cdota
proof -
    let f = restrict(M, K }\mp@subsup{\textrm{K}}{0}{}\times\mp@subsup{\textrm{K}}{0}{}
    from A1 have
        group0(K}\mp@subsup{K}{0}{},f
        a}\in\mp@subsup{K}{0}{
        using Field_ZF_1_L4 by auto
    then have
        f {a,GroupInv(K
        f \GroupInv(K ,f)(a),a\rangle= TheNeutralElement(K
        by (rule group0.group0_2_L6)
    with A1 show a\cdota }\mp@subsup{}{}{-1}=1\quad\mp@subsup{a}{}{-1}\cdot\textrm{a}=
        using Field_ZF_1_L5 Field_ZF_1_L4 by auto
qed
```

A lemma with two field elements and cancelling.

```
lemma (in field0) Field_ZF_1_L7: assumes a\inK b\inK b\not=0
    shows
    a}\cdot\textrm{b}\cdot\mp@subsup{\textrm{b}}{}{-1}=\textrm{a
    a}\cdot\mp@subsup{b}{}{-1}\cdotb=
    using assms Field_ZF_1_L5 Ring_ZF_1_L11 Field_ZF_1_L6 Ring_ZF_1_L3
    by auto
```


39.2 Equations and identities

This section deals with more specialized identities that are true in fields.
$a /\left(a^{2}\right)=1 / a$.
lemma (in fieldo) Field_ZF_2_L1: assumes A1: $a \in K \quad a \neq \mathbf{0}$
shows $a \cdot\left(a^{-1}\right)^{2}=a^{-1}$
proof -
have $a \cdot\left(a^{-1}\right)^{2}=a \cdot\left(a^{-1} \cdot a^{-1}\right)$ by simp
also from A1 have $\ldots=\left(a \cdot a^{-1}\right) \cdot a^{-1}$
using Field_ZF_1_L5 Ring_ZF_1_L11
by simp
also from A1 have $\ldots=a^{-1}$
using Field_ZF_1_L6 Field_ZF_1_L5 Ring_ZF_1_L3
by simp
finally show $a \cdot\left(a^{-1}\right)^{2}=a^{-1}$ by simp
qed
If we multiply two different numbers by a nonzero number, the results will be different.

```
lemma (in fieldO) Field_ZF_2_L2:
    assumes a\inK b\inK c\inK a\not=b c\not=0
    shows a
```

```
using assms field_has_no_zero_divs Field_ZF_1_L5 Ring_ZF_1_L12B
by simp
```

We can put a nonzero factor on the other side of non-identity (is this the best way to call it?) changing it to the inverse.

```
lemma (in fieldO) Field_ZF_2_L3:
    assumes A1: a\inK b\inK b\not=0 c\inK and A2: a}
    shows a }\not=c\cdot\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1
proof -
    from A1 A2 have a\cdotb\cdotb}\mp@subsup{}{}{-1}\not=c\cdot\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1
        using Ring_ZF_1_L4 Field_ZF_2_L2 by simp
    with A1 show a }\not=\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1}\mathrm{ using Field_ZF_1_L7
        by simp
qed
```

If if the inverse of b is different than a, then the inverse of a is different than b.

```
lemma (in field0) Field_ZF_2_L4:
    assumes a\inK a\not=0 and b b 
    shows a }\mp@subsup{}{}{-1}\not=\textrm{b
    using assms Field_ZF_1_L4 group0.group0_2_L11B
    by simp
```

An identity with two field elements, one and an inverse.

```
lemma (in fieldO) Field_ZF_2_L5:
    assumes a\inK b\inK b\not=0
    shows (1 + a b)\cdotb
    using assms Ring_ZF_1_L4 Field_ZF_1_L5 Ring_ZF_1_L2 ring_oper_distr
        Field_ZF_1_L7 Ring_ZF_1_L3 by simp
```

An identity with three field elements, inverse and cancelling.

```
lemma (in field0) Field_ZF_2_L6: assumes A1: a\inK b\inK b}=\mathbf{0
    shows a\cdotb}(\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1})=a\cdot
proof -
    from A1 have T: a\cdotb }\inK \mp@subsup{b}{}{-1}\in
        using Ring_ZF_1_L4 Field_ZF_1_L5 by auto
    with mult_commute A1 have a\cdotb}(\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1})=\textrm{a}\cdot\textrm{b}\cdot(\textrm{b}\mp@subsup{\textrm{b}}{}{-1}\cdot\textrm{c}
        using IsCommutative_def by simp
    moreover
    from A1 T have a\cdotb \in K b b 
        by auto
    then have a\cdotb\cdotb
        by (rule Ring_ZF_1_L11)
    ultimately have a\cdotb}(\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1})=a\cdotb\cdot\mp@subsup{b}{}{-1}\cdotc by sim
    with A1 show a\cdotb}(\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1})=a\cdot
        using Field_ZF_1_L7 by simp
qed
```


$39.31 / 0=0$

In ZF if $f: X \rightarrow Y$ and $x \notin X$ we have $f(x)=\emptyset$. Since \emptyset (the empty set) in ZF is the same as zero of natural numbers we can claim that $1 / 0=0$ in certain sense. In this section we prove a theorem that makes makes it explicit.

The next locale extends the fieldo locale to introduce notation for division operation.

```
locale fieldd = fieldO +
    fixes division
    defines division_def[simp]: division }\equiv{{\langlep,fst(p)\cdotsnd(p)-1\rangle. p\inK\times\mp@subsup{K}{0}{}
    fixes fdiv (infixl / 95)
    defines fdiv_def[simp]: x/y \equiv division\langlex,y\rangle
```

Division is a function on $K \times K_{0}$ with values in K.

```
lemma (in fieldd) div_fun: shows division: \(K \times \mathrm{K}_{0} \rightarrow \mathrm{~K}\)
proof -
    have \(\forall \mathrm{p} \in \mathrm{K} \times \mathrm{K}_{0}\). fst \((\mathrm{p}) \cdot \operatorname{snd}(\mathrm{p})^{-1} \in \mathrm{~K}\)
    proof
        fix \(p\) assume \(p \in K \times K_{0}\)
        hence fst \((p) \in K\) and snd \((p) \in K_{0}\) by auto
        then show fst \((\mathrm{p}) \cdot\) snd \((\mathrm{p})^{-1} \in \mathrm{~K}\) using Ring_ZF_1_L4 Field_ZF_1_L5 by
auto
    qed
    then have \(\left\{\left\langle p, f s t(p) \cdot \operatorname{snd}(p)^{-1}\right\rangle . p \in K \times K_{0}\right\}: K \times K_{0} \rightarrow K\)
        by (rule ZF_fun_from_total)
    thus thesis by simp
qed
```

So, really $1 / 0=0$. The essential lemma is apply_0 from standard Isabelle's func.thy.
theorem (in fieldd) one_over_zero: shows $1 / 0=0$
proof-
have domain(division) $=\mathrm{K} \times \mathrm{K}_{0}$ using div_fun func1_1_L1
by simp
hence $\langle\mathbf{1}, \mathbf{0}\rangle \notin$ domain(division) by auto
then show thesis using apply_0 by simp
qed
end

40 Ordered fields

theory OrderedField_ZF imports OrderedRing_ZF Field_ZF
begin

This theory covers basic facts about ordered fiels.

40.1 Definition and basic properties

Here we define ordered fields and proove their basic properties.
Ordered field is a notrivial ordered ring such that all non-zero elements have an inverse. We define the notion of being a ordered field as a statement about four sets. The first set, denoted K is the carrier of the field. The second set, denoted A represents the additive operation on K (recall that in ZF set theory functions are sets). The third set M represents the multiplicative operation on K . The fourth set r is the order relation on K .

```
definition
    IsAnOrdField(K,A,M,r) \equiv (IsAnOrdRing(K,A,M,r) ^
    (M {is commutative on} K) ^
    TheNeutralElement(K,A) \not= TheNeutralElement(K,M) ^
    ( }\forall\textrm{a}\in\textrm{K}. a\not=TheNeutralElement(K,A)
    (\existsb\inK. M\langlea,b\rangle = TheNeutralElement(K,M))))
```

The next context (locale) defines notation used for ordered fields. We do that by extending the notation defined in the ring1 context that is used for oredered rings and adding some assumptions to make sure we are talking about ordered fields in this context. We should rename the carrier from R used in the ring1 context to K, more appriopriate for fields. Theoretically the Isar locale facility supports such renaming, but we experienced diffculties using some lemmas from ring1 locale after renaming.

```
locale field1 = ring1 +
assumes mult_commute: M {is commutative on} R
assumes not_triv: 0}\not=
assumes inv_exists: }\forall\textrm{a}\in\textrm{R}.\textrm{a}\not=\mathbf{0}\longrightarrow(\exists\textrm{b}\in\textrm{R}.\textrm{a}\cdot\textrm{b}=1
fixes non_zero ( }\mp@subsup{\textrm{R}}{0}{}\mathrm{ )
defines non_zero_def[simp]: R R }\equiv\textrm{R}-{0
fixes inv (_-1 [96] 97)
defines inv_def[simp]: a }\mp@subsup{}{}{-1}\equiv\operatorname{GroupInv(R
```

The next lemma assures us that we are talking fields in the field1 context.

```
lemma (in field1) OrdField_ZF_1_L1: shows IsAnOrdField(R,A,M,r)
    using OrdRing_ZF_1_L1 mult_commute not_triv inv_exists IsAnOrdField_def
    by simp
```

Ordered field is a field, of course.

```
lemma OrdField_ZF_1_L1A: assumes IsAnOrdField(K,A,M,r)
    shows IsAfield(K,A,M)
    using assms IsAnOrdField_def IsAnOrdRing_def IsAfield_def
    by simp
```

Theorems proven in fieldo (about fields) context are valid in the field1 context (about ordered fields).
lemma (in field1) OrdField_ZF_1_L1B: shows field0(R,A,M)
using OrdField_ZF_1_L1 OrdField_ZF_1_L1A field_fieldO
by simp
We can use theorems proven in the field1 context whenever we talk about an ordered field.

```
lemma OrdField_ZF_1_L2: assumes IsAnOrdField(K,A,M,r)
    shows field1(K,A,M,r)
    using assms IsAnOrdField_def OrdRing_ZF_1_L2 ring1_def
        IsAnOrdField_def field1_axioms_def field1_def
    by auto
```

In ordered rings the existence of a right inverse for all positive elements implies the existence of an inverse for all non zero elements.

```
lemma (in ring1) OrdField_ZF_1_L3:
    assumes A1: }\forall\textrm{a}\in\mp@subsup{\textrm{R}}{+}{}.\exists\textrm{b}\in\textrm{R}.\textrm{a}\cdot\textrm{b}=1\mathrm{ and A2: c}\in\textrm{R
    shows }\exists\textrm{b}\in\textrm{R}.\textrm{c}\cdot\textrm{b}=
proof -
    { assume c\inR+
        with A1 have \existsb\inR. c·b = 1 by simp }
    moreover
    { assume c }\not\in\mp@subsup{R}{+}{
        with A2 have (-c) \in R R
            using OrdRing_ZF_3_L2A by simp
        with A1 obtain b where b\inR and (-c)\cdotb = 1
            by auto
        with A2 have (-b) \in R c.(-b) = 1
            using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto
        then have }\exists\textrm{b}\in\textrm{R}.\textrm{c}\cdot\textrm{b}=1\mathrm{ by auto }
    ultimately show thesis by blast
qed
```

Ordered fields are easier to deal with, because it is sufficient to show the existence of an inverse for the set of positive elements.

```
lemma (in ring1) OrdField_ZF_1_L4:
    assumes 0}\not=1\mathrm{ and M {is commutative on} R
    and }\forall\textrm{a}\in\mp@subsup{R}{+}{\prime}.\exists\textrm{b}\in\textrm{R}.\textrm{a}\cdot\textrm{b}=
    shows IsAnOrdField(R,A,M,r)
    using assms OrdRing_ZF_1_L1 OrdField_ZF_1_L3 IsAnOrdField_def
    by simp
```

The set of positive field elements is closed under multiplication.

```
lemma (in field1) OrdField_ZF_1_L5: shows R+ {is closed under} M
    using OrdField_ZF_1_L1B fieldO.field_has_no_zero_divs OrdRing_ZF_3_L3
    by simp
```

The set of positive field elements is closed under multiplication: the explicit version.

```
lemma (in field1) pos_mul_closed:
    assumes A1: \(0<a \quad 0<b\)
    shows \(0<a \cdot b\)
proof -
    from A1 have \(a \in R_{+}\)and \(b \in R_{+}\)
        using OrdRing_ZF_3_L14 by auto
    then show \(0<a \cdot b\)
        using OrdField_ZF_1_L5 IsOpClosed_def PositiveSet_def
        by simp
qed
```

In fields square of a nonzero element is positive.

```
lemma (in field1) OrdField_ZF_1_L6: assumes a\inR a\not=0
    shows a}\mp@subsup{a}{}{2}\in\mp@subsup{R}{+}{
    using assms OrdField_ZF_1_L1B field0.field_has_no_zero_divs
        OrdRing_ZF_3_L15 by simp
```

The next lemma restates the fact Field_ZF that out notation for the field inverse means what it is supposed to mean.

```
lemma (in field1) OrdField_ZF_1_L7: assumes a\inR a\not=0
    shows a}\cdot(\mp@subsup{a}{}{-1})=1 (\mp@subsup{a}{}{-1})\cdota=
    using assms OrdField_ZF_1_L1B field0.Field_ZF_1_L6
    by auto
```

A simple lemma about multiplication and cancelling of a positive field element.

```
lemma (in field1) OrdField_ZF_1_L7A:
    assumes A1: \(a \in R \quad b \in R_{+}\)
    shows
    \(a \cdot b \cdot b^{-1}=a\)
    \(a \cdot b^{-1} \cdot b=a\)
proof -
    from A1 have \(b \in R \quad b \neq \mathbf{0}\) using PositiveSet_def
        by auto
    with A 1 show \(\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{b}^{-1}=\mathrm{a}\) and \(\mathrm{a} \cdot \mathrm{b}^{-1} \cdot \mathrm{~b}=\mathrm{a}\)
        using OrdField_ZF_1_L1B fieldO.Field_ZF_1_L7
        by auto
qed
```

Some properties of the inverse of a positive element.
lemma (in field1) OrdField_ZF_1_L8: assumes A1: a $\in \mathrm{R}_{+}$ shows $a^{-1} \in R_{+} a \cdot\left(a^{-1}\right)=1 \quad\left(a^{-1}\right) \cdot a=1$

```
proof -
    from A1 have I: a\inR a\not=0 using PositiveSet_def
        by auto
    with A1 have a\cdot(a-1)2 }\in\mp@subsup{R}{+}{
        using OrdField_ZF_1_L1B fieldO.Field_ZF_1_L5 OrdField_ZF_1_L6
            OrdField_ZF_1_L5 IsOpClosed_def by simp
    with I show a }\mp@subsup{}{}{-1}\in\mp@subsup{R}{+}{
        using OrdField_ZF_1_L1B field0.Field_ZF_2_L1
        by simp
    from I show a}(\mp@subsup{\textrm{a}}{}{-1})=1\quad(\mp@subsup{\textrm{a}}{}{-1})\cdot\textrm{a}=
        using OrdField_ZF_1_L7 by auto
qed
If }a<b\mathrm{ , then (b-a)-1 is positive.
lemma (in field1) OrdField_ZF_1_L9: assumes a<b
    shows (b-a)}\mp@subsup{}{}{-1}\in\mp@subsup{R}{+}{
    using assms OrdRing_ZF_1_L14 OrdField_ZF_1_L8
    by simp
```

In ordered fields if at least one of a, b is not zero, then $a^{2}+b^{2}>0$, in particular $a^{2}+b^{2} \neq 0$ and exists the (multiplicative) inverse of $a^{2}+b^{2}$.
lemma (in field1) OrdField_ZF_1_L10:
assumes A1: $a \in R \quad b \in R$ and $A 2: ~ a \neq 0 \vee b \neq 0$
shows $0<a^{2}+b^{2}$ and $\exists c \in R .\left(a^{2}+b^{2}\right) \cdot c=1$
proof -
from A1 A2 show $0<a^{2}+b^{2}$
using OrdField_ZF_1_L1B field0.field_has_no_zero_divs OrdRing_ZF_3_L19 by simp
then have
$\left(a^{2}+b^{2}\right)^{-1} \in R$ and $\left(a^{2}+b^{2}\right) \cdot\left(a^{2}+b^{2}\right)^{-1}=1$
using OrdRing_ZF_1_L3 PositiveSet_def OrdField_ZF_1_L8
by auto
then show $\exists c \in R .\left(a^{2}+b^{2}\right) \cdot c=1$ by auto
qed

40.2 Inequalities

In this section we develop tools to deal inequalities in fields.
We can multiply strict inequality by a positive element.

```
lemma (in field1) OrdField_ZF_2_L1:
    assumes a<b and c\inR
    shows a.c < b
    using assms OrdField_ZF_1_L1B field0.field_has_no_zero_divs
        OrdRing_ZF_3_L13
    by simp
```

A special case of OrdField_ZF_2_L1 when we multiply an inverse by an element.

```
lemma (in field1) OrdField_ZF_2_L2:
    assumes A1: a\inR+}\mathrm{ and A2: a }\mp@subsup{a}{}{-1}< 
    shows 1 < b
proof -
    from A1 A2 have (a-1)\cdota< b}\cdot\textrm{a
        using OrdField_ZF_2_L1 by simp
    with A1 show 1 < b}\cdot\textrm{a
        using OrdField_ZF_1_L8 by simp
qed
```

We can multiply an inequality by the inverse of a positive element.
lemma (in field1) OrdField_ZF_2_L3:
assumes $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \in \mathrm{R}_{+}$shows $\mathrm{a} \cdot\left(\mathrm{c}^{-1}\right) \leq \mathrm{b} \cdot\left(\mathrm{c}^{-1}\right)$
using assms OrdField_ZF_1_L8 OrdRing_ZF_1_L9A
by simp
We can multiply a strict inequality by a positive element or its inverse.

```
lemma (in field1) OrdField_ZF_2_L4:
    assumes }a<b\mathrm{ and }c\in\mp@subsup{R}{+}{
    shows
    a\cdotc<b
    c\cdota<c}<\textrm{c}\cdot\textrm{b
    a}\cdot\mp@subsup{c}{}{-1}<b\cdot\mp@subsup{c}{}{-1
        using assms OrdField_ZF_1_L1B fieldO.field_has_no_zero_divs
        OrdField_ZF_1_L8 OrdRing_ZF_3_L13 by auto
```

We can put a positive factor on the other side of an inequality, changing it to its inverse.

```
lemma (in field1) OrdField_ZF_2_L5:
    assumes A1: a\inR b\inR+ and A2: a b \leqc
    shows a }\leq\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1
proof -
    from A1 A2 have a\cdotb\cdotb}\mp@subsup{}{}{-1}\leqc\cdot\mp@subsup{b}{}{-1
        using OrdField_ZF_2_L3 by simp
    with A1 show a \leq c.b}\mp@subsup{}{}{-1}\mathrm{ using OrdField_ZF_1_L7A
        by simp
qed
```

We can put a positive factor on the other side of an inequality, changing it to its inverse, version with a product initially on the right hand side.
lemma (in field1) OrdField_ZF_2_L5A:
assumes A1: $b \in R \quad c \in R_{+}$and A2: $a \leq b \cdot c$
shows $\mathrm{a} \cdot \mathrm{c}^{-1} \leq \mathrm{b}$
proof -
from A1 A2 have $\mathrm{a} \cdot \mathrm{c}^{-1} \leq \mathrm{b} \cdot \mathrm{c} \cdot \mathrm{c}^{-1}$
using OrdField_ZF_2_L3 by simp
with A1 show $\mathrm{a} \cdot \mathrm{c}^{-1} \leq \mathrm{b}$ using OrdField_ZF_1_L7A
by simp
qed
We can put a positive factor on the other side of a strict inequality, changing it to its inverse, version with a product initially on the left hand side.

```
lemma (in field1) OrdField_ZF_2_L6:
    assumes A1: a\inR b\inR+}\mathrm{ and A2: a b < c
    shows a < c.b-1
proof -
    from A1 A2 have a\cdotb\cdotb}\mp@subsup{}{}{-1}<c\cdot\mp@subsup{b}{}{-1
        using OrdField_ZF_2_L4 by simp
    with A1 show a < c·b-1 using OrdField_ZF_1_L7A
        by simp
qed
```

We can put a positive factor on the other side of a strict inequality, changing it to its inverse, version with a product initially on the right hand side.

```
lemma (in field1) OrdField_ZF_2_L6A:
    assumes A1: b\inR c\inR+}\mathrm{ and A2: a < b}
    shows a.c}\mp@subsup{c}{}{-1}<\textrm{b
proof -
    from A1 A2 have a.c.- < b}c\cdotc\cdot\mp@subsup{c}{}{-1
        using OrdField_ZF_2_L4 by simp
    with A1 show a}\cdot\mp@subsup{c}{}{-1}< b using OrdField_ZF_1_L7A
        by simp
qed
```

Sometimes we can reverse an inequality by taking inverse on both sides.

```
lemma (in field1) OrdField_ZF_2_L7:
    assumes A1: a\inR+}\mathrm{ and A2: a }\mp@subsup{}{}{-1}\leq\textrm{b
    shows \mp@subsup{b}{}{-1}}\leq\textrm{a
proof -
    from A1 have a }\mp@subsup{}{}{-1}\in\mp@subsup{R}{+}{}\mathrm{ using OrdField_ZF_1_L8
        by simp
    with A2 have b \in R R using OrdRing_ZF_3_L7
        by blast
    then have T: b }\in\mp@subsup{R}{+}{}\mp@subsup{|}{}{-1}\in\mp@subsup{R}{+}{}\mathrm{ using OrdField_ZF_1_L8
        by auto
    with A1 A2 have b}\mp@subsup{\textrm{b}}{}{-1}\cdot\mp@subsup{\textrm{a}}{}{-1}\cdot\textrm{a}\leq\mp@subsup{\textrm{b}}{}{-1}\cdot\textrm{b}\cdot\textrm{a
        using OrdRing_ZF_1_L9A by simp
    moreover
    from A1 A2 T have
        b}\mp@subsup{}{}{-1}\inR\quada\inR\quada\not=\mathbf{0}\quadb\inR\quadb\not=\mathbf{0
        using PositiveSet_def OrdRing_ZF_1_L3 by auto
    then have }\mp@subsup{\textrm{b}}{}{-1}\cdot\mp@subsup{\textrm{a}}{}{-1}\cdot\textrm{a}=\mp@subsup{\textrm{b}}{}{-1}\mathrm{ and }\mp@subsup{\textrm{b}}{}{-1}\cdot\textrm{b}\cdot\textrm{a}=\textrm{a
        using OrdField_ZF_1_L1B field0.Field_ZF_1_L7
            field0.Field_ZF_1_L6 Ring_ZF_1_L3
        by auto
    ultimately show }\mp@subsup{\textrm{b}}{}{-1}\leq\textrm{a}\mathrm{ by simp
```


qed

Sometimes we can reverse a strict inequality by taking inverse on both sides.

```
lemma (in field1) OrdField_ZF_2_L8:
    assumes A1: a\inR+}\mathrm{ and A2: a }\mp@subsup{a}{}{-1}<
    shows b-1 < a
proof -
    from A1 A2 have a-1}\in\mp@subsup{R}{+}{}\mp@subsup{a}{}{-1}\leq
        using OrdField_ZF_1_L8 by auto
    then have b \in R R using OrdRing_ZF_3_L7
        by blast
    then have b\inR b}=\mathbf{0}\mathrm{ using PositiveSet_def by auto
    with A2 have b-1}\not=
        using OrdField_ZF_1_L1B fieldO.Field_ZF_2_L4
        by simp
    with A1 A2 show b }\mp@subsup{\textrm{b}}{}{-1}<\textrm{a
        using OrdField_ZF_2_L7 by simp
qed
```

A technical lemma about solving a strict inequality with three field elements and inverse of a difference.

```
lemma (in field1) OrdField_ZF_2_L9:
    assumes A1: a<b and A2: (b-a) -1 < c
    shows 1 + a.c < b}\cdot\textrm{c
proof -
    from A1 A2 have (b-a)-1}\in\mp@subsup{R}{+}{}(b-a\mp@subsup{)}{}{-1}\leq
        using OrdField_ZF_1_L9 by auto
    then have T1: c \in R+ using OrdRing_ZF_3_L7 by blast
    with A1 A2 have T2:
        a\inR b\inR c\inR c\not=0 cor c
        using OrdRing_ZF_1_L3 OrdField_ZF_1_L8 PositiveSet_def
        by auto
    with A1 A2 have c }\mp@subsup{\textrm{c}}{}{-1}+\textrm{a}<\textrm{b}-\textrm{a}+\textrm{a
        using OrdRing_ZF_1_L14 OrdField_ZF_2_L8 ring_strict_ord_trans_inv
        by simp
    with T1 T2 have (c col}+\textrm{a})\cdot\textrm{c}< b\cdot
        using Ring_ZF_2_L1A OrdField_ZF_2_L1 by simp
    with T1 T2 show 1 + a c < b
        using ring_oper_distr OrdField_ZF_1_L8
        by simp
qed
```


40.3 Definition of real numbers

The only purpose of this section is to define what does it mean to be a model of real numbers.

We define model of real numbers as any quadruple of sets (K, A, M, r) such that (K, A, M, r) is an ordered field and the order relation r is complete,
that is every set that is nonempty and bounded above in this relation has a supremum.

```
definition
    IsAmodelOfReals(K,A,M,r) \equiv IsAnOrdField(K,A,M,r) ^ (r {is complete})
end
```


41 Integers - introduction

theory Int_ZF_IML imports OrderedGroup_ZF_1 Finite_ZF_1 ZF.Int Nat_ZF_IML

begin

This theory file is an interface between the old-style Isabelle (ZF logic) material on integers and the IsarMathLib project. Here we redefine the meta-level operations on integers (addition and multiplication) to convert them to ZF-functions and show that integers form a commutative group with respect to addition and commutative monoid with respect to multiplication. Similarly, we redefine the order on integers as a relation, that is a subset of $Z \times Z$. We show that a subset of intergers is bounded iff it is finite. As we are forced to use standard Isabelle notation with all these dollar signs, sharps etc. to denote "type coercions" (?) the notation is often ugly and difficult to read.

41.1 Addition and multiplication as ZF-functions.

In this section we provide definitions of addition and multiplication as subsets of $(Z \times Z) \times Z$. We use the (higher order) relation defined in the standard Int theory to define a subset of $Z \times Z$ that constitutes the ZF order relation corresponding to it. We define the set of positive integers using the notion of positive set from the OrderedGroup_ZF theory.

Definition of addition of integers as a binary operation on int. Recall that in standard Isabelle/ZF int is the set of integers and the sum of integers is denoted by prependig + with a dollar sign.

```
definition
    IntegerAddition }\equiv{\langlex,c\rangle\in(int\timesint)\timesint. fst(x) $+ snd(x) = c
```

Definition of multiplication of integers as a binary operation on int. In standard Isabelle/ZF product of integers is denoted by prepending the dollar sign to *.

```
definition
    IntegerMultiplication \equiv
        {\langlex,c\rangle\in(int\timesint)\timesint. fst(x) $* snd(x) = c}
```

Definition of natural order on integers as a relation on int. In the standard Isabelle/ZF the inequality relation on integers is denoted \leq prepended with the dollar sign.

```
definition
    IntegerOrder }\equiv{\mp@code{p}\in\mathrm{ int }\times\mathrm{ int. fst(p) $ 
```

This defines the set of positive integers.

```
definition
    PositiveIntegers \equiv PositiveSet(int,IntegerAddition,IntegerOrder)
```

IntegerAddition and IntegerMultiplication are functions on int \times int.

```
lemma Int_ZF_1_L1: shows
    IntegerAddition : int\timesint }->\mathrm{ int
    IntegerMultiplication : int\timesint }->\mathrm{ int
proof -
    have
        {\langle x, c\rangle\in (int\timesint) ×int. fst(x) $+ snd(x) = c} \in int }\times\mathrm{ int }->\mathrm{ int
        {\langle x,c\rangle\in (int\timesint) }\times\mathrm{ int. fst(x) $* snd(x) = c} }\in\mathrm{ int }\times\mathrm{ int }->\mathrm{ int
        using func1_1_L11A by auto
    then show IntegerAddition : int\timesint }->\mathrm{ int
        IntegerMultiplication : int\timesint }->\mathrm{ int
        using IntegerAddition_def IntegerMultiplication_def by auto
qed
```

The next context (locale) defines notation used for integers. We define $\mathbf{0}$ to denote the neutral element of addition, $\mathbf{1}$ as the unit of the multiplicative monoid. We introduce notation $m \leq n$ for integers and write $m . . n$ to denote the integer interval with endpoints in m and n. abs (m) means the absolute value of m. This is a function defined in OrderedGroup that assigns x to itself if x is positive and assigns the opposite of x if $x \leq 0$. Unforunately we cannot use the $|\cdot|$ notation as in the OrderedGroup theory as this notation has been hogged by the standard Isabelle's Int theory. The notation -A where A is a subset of integers means the set $\{-m: m \in A\}$. The symbol maxf (f, M) denotes tha maximum of function f over the set A. We also introduce a similar notation for the minimum.

```
locale int0 =
    fixes ints (\mathbb{Z}
    defines ints_def [simp]: \mathbb{Z }\equiv int
    fixes ia (infixl + 69)
    defines ia_def [simp]: a+b \equiv IntegerAddition〈 a,b\rangle
    fixes iminus (- _ 72)
    defines rminus_def [simp]: -a \equiv GroupInv(\mathbb{Z},IntegerAddition)(a)
    fixes isub (infixl - 69)
```

```
defines isub_def [simp]: a-b \(\equiv \mathrm{a}+(-\mathrm{b})\)
fixes imult (infixl • 70)
defines imult_def [simp]: a•b \(\equiv\) IntegerMultiplication〈 \(a, b\rangle\)
fixes setneg (- _ 72)
defines setneg_def [simp]: \(-\mathrm{A} \equiv \operatorname{GroupInv}(\mathbb{Z}\), IntegerAddition) (A)
fixes izero (0)
defines izero_def [simp]: \(\mathbf{0} \equiv\) TheNeutralElement( \(\mathbb{Z}\),IntegerAddition)
fixes ione (1)
defines ione_def [simp]: \(\mathbf{1} \equiv\) TheNeutralElement( \(\mathbb{Z}\),IntegerMultiplication)
fixes itwo (2)
defines itwo_def [simp]: \(2 \equiv 1+1\)
fixes ithree (3)
defines ithree_def [simp]: \(\mathbf{3} \equiv \mathbf{2 + 1}\)
fixes nonnegative ( \(\mathbb{Z}^{+}\))
defines nonnegative_def [simp]:
\(\mathbb{Z}^{+} \equiv\) Nonnegative( \(\mathbb{Z}\),IntegerAddition,IntegerOrder)
fixes positive \(\left(\mathbb{Z}_{+}\right)\)
defines positive_def [simp]:
\(\mathbb{Z}_{+} \equiv\) PositiveSet( \(\mathbb{Z}\),IntegerAddition,IntegerOrder)
fixes abs
defines abs_def [simp]:
abs(m) \(\equiv\) AbsoluteValue( \(\mathbb{Z}\),IntegerAddition,IntegerOrder)( \(m\) )
fixes lesseq (infix \(\leq 60\) )
defines lesseq_def [simp]: m \(\leq \mathrm{n} \equiv\langle\mathrm{m}, \mathrm{n}\rangle \in\) IntegerOrder
fixes interval (infix .. 70)
defines interval_def [simp]: m..n \(\equiv\) Interval(IntegerOrder,m,n)
fixes maxf
defines maxf_def [simp]: maxf(f,A) \(\equiv\) Maximum(IntegerOrder,f(A))
fixes \(\operatorname{minf}\)
defines minf_def [simp]: minf(f,A) \(\equiv\) Minimum(IntegerOrder,f(A))
```

IntegerAddition adds integers and IntegerMultiplication multiplies integers. This states that the ZF functions IntegerAddition and IntegerMultiplication give the same results as the higher-order equivalents defined in the standard Int theory.
lemma (in int0) Int_ZF_1_L2: assumes A1: $a \in \mathbb{Z} \quad b \in \mathbb{Z}$

```
    shows
    a+b = a $+ b
    a}b=a$* 
proof -
    let x = < a,b\rangle
    let c = a $+ b
    let d = a $* b
    from A1 have
        \langlex,c\rangle}\in{\langlex,c\rangle\in(\mathbb{Z}\times\mathbb{Z})\times\mathbb{Z}.f\mathrm{ fst(x) $+ snd(x) = c}
        \langlex,d\rangle\in{\langlex,d\rangle\in(\mathbb{Z}\times\mathbb{Z})\times\mathbb{Z}.fst(x) $* snd(x) = d}
        by auto
    then show a+b = a $+ b a b b a $* b
        using IntegerAddition_def IntegerMultiplication_def
            Int_ZF_1_L1 apply_iff by auto
qed
```

Integer addition and multiplication are associative.

```
lemma (in int0) Int_ZF_1_L3:
    assumes }x\in\mathbb{Z}\quady\in\mathbb{Z}\quadz\in\mathbb{Z
    shows }\textrm{x}+\textrm{y}+\textrm{z}=\textrm{x}+(\textrm{y}+\textrm{z})\quad\textrm{x}\cdot\textrm{y}\cdot\textrm{z}=\textrm{x}\cdot\textrm{x}\cdot(\textrm{y}\cdot\textrm{z}
    using assms Int_ZF_1_L2 zadd_assoc zmult_assoc by auto
```

Integer addition and multiplication are commutative.

```
lemma (in int0) Int_ZF_1_L4:
    assumes }x\in\mathbb{Z}\quady\in\mathbb{Z
    shows x+y = y+x x
    using assms Int_ZF_1_L2 zadd_commute zmult_commute
    by auto
```

Zero is neutral for addition and one for multiplication.

```
lemma (in int0) Int_ZF_1_L5: assumes A1:x\in\mathbb{Z}
    shows ($# 0) + x = x ^ x + ($# 0) = x
    ($# 1)\cdotx = x ^ x}\cdot($# 1) = x
proof -
    from A1 show ($# 0) + x = x ^ x + ($# 0) = x
        using Int_ZF_1_L2 zadd_int0 Int_ZF_1_L4 by simp
    from A1 have ($# 1)\cdotx = x
        using Int_ZF_1_L2 zmult_int1 by simp
    with A1 show ($# 1)}\cdot\textrm{x}=\textrm{x}\wedge\textrm{x}\cdot($# 1)= 
        using Int_ZF_1_L4 by simp
qed
```

Zero is neutral for addition and one for multiplication.
lemma (in int0) Int_ZF_1_L6: shows $(\$ \# 0) \in \mathbb{Z} \wedge$
$(\forall \mathrm{x} \in \mathbb{Z}$. (\$\# 0) $+\mathrm{x}=\mathrm{x} \wedge \mathrm{x}+(\$ \# 0)=\mathrm{x})$
$(\$ \# 1) \in \mathbb{Z} \wedge$
$(\forall \mathrm{x} \in \mathbb{Z}$. (\$\# 1) $\mathrm{x}=\mathrm{x} \wedge \mathrm{x} \cdot(\$ \# 1)=\mathrm{x})$
using Int_ZF_1_L5 by auto

Integers with addition and integers with multiplication form monoids.

```
theorem (in int0) Int_ZF_1_T1: shows
    IsAmonoid(\mathbb{Z},IntegerAddition)
    IsAmonoid(\mathbb{Z},IntegerMultiplication)
proof -
        have
            \existse\in\mathbb{Z}.\forallx\in\mathbb{Z}. e+x = x ^ x+e = x
                \existse\in\mathbb{Z}.}\forallx\in\mathbb{Z}.e\cdotx=x^x\cdote=
                using int0.Int_ZF_1_L6 by auto
    then show IsAmonoid(\mathbb{Z},IntegerAddition)
        IsAmonoid(\mathbb{Z},IntegerMultiplication) using
        IsAmonoid_def IsAssociative_def Int_ZF_1_L1 Int_ZF_1_L3
        by auto
qed
```

Zero is the neutral element of the integers with addition and one is the neutral element of the integers with multiplication.

```
lemma (in int0) Int_ZF_1_L8: shows ($# 0) = 0 ($# 1) = 1
proof -
    have monoidO(\mathbb{Z},IntegerAddition)
        using Int_ZF_1_T1 monoid0_def by simp
    moreover have
        ($# 0)\in\mathbb{Z}}
        (\forallx\in\mathbb{Z}}\mathrm{ . IntegerAddition<$# 0, x}\rangle=x
        IntegerAddition }\langle\textrm{x},$# 0\rangle= x
        using Int_ZF_1_L6 by auto
    ultimately have ($# 0) = TheNeutralElement(\mathbb{Z},\mathrm{ IntegerAddition)}
        by (rule monoid0.group0_1_L4)
    then show ($# 0) = 0 by simp
    have monoid0(int,IntegerMultiplication)
        using Int_ZF_1_T1 monoid0_def by simp
    moreover have ($# 1) \in int ^
        (\forallx\inint. IntegerMultiplication\langle$# 1, x\rangle = x ^
        IntegerMultiplication\langlex ,$# 1\rangle = x)
        using Int_ZF_1_L6 by auto
    ultimately have
        ($# 1) = TheNeutralElement(int,IntegerMultiplication)
        by (rule monoid0.group0_1_L4)
    then show ($# 1) = 1 by simp
qed
```

0 and 1 , as defined in into context, are integers.

```
lemma (in int0) Int_ZF_1_L8A: shows 0 \in\mathbb{Z}}\mathbf{1}\in\mathbb{Z
proof -
    have ($# 0) \in\mathbb{Z}}($# 1) \in\mathbb{Z}\mathrm{ by auto
    then show 0}\in\mathbb{Z}\mathbb{1}\in\mathbb{Z}\mathrm{ using Int_ZF_1_L8 by auto
qed
```

Zero is not one.

```
lemma (in int0) int_zero_not_one: shows \(0 \neq 1\)
proof -
    have (\$\# 0) \(\neq\) (\$\# 1) by simp
    then show \(0 \neq 1\) using Int_ZF_1_L8 by simp
qed
```

The set of integers is not empty, of course.
lemma (in int0) int_not_empty: shows $\mathbb{Z} \neq 0$ using Int_ZF_1_L8A by auto

The set of integers has more than just zero in it.
lemma (in int0) int_not_trivial: shows $\mathbb{Z} \neq\{0\}$
using Int_ZF_1_L8A int_zero_not_one by blast
Each integer has an inverse (in the addition sense).

```
lemma (in int0) Int_ZF_1_L9: assumes A1: g \in\mathbb{Z}
    shows }\exists\textrm{b}\in\mathbb{Z}.g+b=
proof -
    from A1 have g+ $-g = 0
            using Int_ZF_1_L2 Int_ZF_1_L8 by simp
    thus thesis by auto
qed
```

Integers with addition form an abelian group. This also shows that we can apply all theorems proven in the proof contexts (locales) that require the assumpion that some pair of sets form a group like locale group0.

```
theorem Int_ZF_1_T2: shows
    IsAgroup(int,IntegerAddition)
    IntegerAddition {is commutative on} int
    group0(int,IntegerAddition)
    using int0.Int_ZF_1_T1 int0.Int_ZF_1_L9 IsAgroup_def
    group0_def int0.Int_ZF_1_L4 IsCommutative_def by auto
```

What is the additive group inverse in the group of integers?

```
lemma (in int0) Int_ZF_1_L9A: assumes A1: m\in\mathbb{Z}
    shows $-m = -m
proof -
        from A1 have m\inint $-m int IntegerAddition }\langle\textrm{m},$-m\rangle
            TheNeutralElement(int,IntegerAddition)
            using zminus_type Int_ZF_1_L2 Int_ZF_1_L8 by auto
    then have $-m = GroupInv(int,IntegerAddition)(m)
        using Int_ZF_1_T2 group0.group0_2_L9 by blast
    then show thesis by simp
qed
```

Subtracting integers corresponds to adding the negative.

```
lemma (in int0) Int_ZF_1_L10: assumes A1: m\in\mathbb{Z }n\in\mathbb{Z}
```

```
shows m-n = m $+ $-n
using assms Int_ZF_1_T2 group0.inverse_in_group Int_ZF_1_L9A Int_ZF_1_L2
by simp
```

Negative of zero is zero.
lemma (in int0) Int_ZF_1_L11: shows (-0) $=\mathbf{0}$
using Int_ZF_1_T2 group0.group_inv_of_one by simp
A trivial calculation lemma that allows to subtract and add one.

```
lemma Int_ZF_1_L12:
    assumes m\inint shows m $- $#1 $+ $#1 = m
    using assms eq_zdiff_iff by auto
```

A trivial calculation lemma that allows to subtract and add one, version with ZF-operation.
lemma (in int0) Int_ZF_1_L13: assumes $m \in \mathbb{Z}$
shows (m \$- \$\#1) $+1=\mathrm{m}$
using assms Int_ZF_1_L8A Int_ZF_1_L2 Int_ZF_1_L8 Int_ZF_1_L12
by simp
Adding or subtracing one changes integers.

```
lemma (in int0) Int_ZF_1_L14: assumes A1: m\in\mathbb{Z}
    shows
    m+1 \not= m
    m-1 }=\textrm{m
proof -
    { assume m+1 = m
            with A1 have
                group0(\mathbb{Z},\mathrm{ IntegerAddition)}
                m\in\mathbb{Z}\quad\mathbf{1}\in\mathbb{Z}
                IntegerAddition }\langle\textrm{m},\mathbf{1}\rangle=\textrm{m
                using Int_ZF_1_T2 Int_ZF_1_L8A by auto
            then have 1 = TheNeutralElement(\mathbb{Z},\mathrm{ IntegerAddition)}
                by (rule group0.group0_2_L7)
            then have False using int_zero_not_one by simp
    } then show I: m+1 \not= m by auto
    { from A1 have m - 1 + 1 = m
                using Int_ZF_1_L8A Int_ZF_1_T2 group0.inv_cancel_two
                by simp
            moreover assume m-1 = m
            ultimately have m + 1 = m by simp
            with I have False by simp
    } then show m-1 }\not=\textrm{m}\mathrm{ by auto
qed
```

If the difference is zero, the integers are equal.
lemma (in int0) Int_ZF_1_L15:
assumes $A 1: m \in \mathbb{Z} \quad n \in \mathbb{Z}$ and $A 2: m-n=0$

```
    shows m=n
proof -
    let \(G=\mathbb{Z}\)
    let \(f=\) IntegerAddition
    from A1 A2 have
        group0(G, f)
        \(m \in G \quad n \in G\)
        \(\mathrm{f}\langle\mathrm{m}, \operatorname{GroupInv}(\mathrm{G}, \mathrm{f})(\mathrm{n})\rangle=\) TheNeutralElement (G, f)
        using Int_ZF_1_T2 by auto
    then show m=n by (rule group0.group0_2_L11A)
qed
```


41.2 Integers as an ordered group

In this section we define order on integers as a relation, that is a subset of $Z \times Z$ and show that integers form an ordered group.

The next lemma interprets the order definition one way.

```
lemma (in int0) Int_ZF_2_L1:
    assumes \(\mathrm{A} 1: \mathrm{m} \in \mathbb{Z} \mathrm{n} \in \mathbb{Z}\) and \(\mathrm{A} 2: \mathrm{m} \$ \leq \mathrm{n}\)
    shows \(m \leq n\)
proof -
    from A1 A2 have \(\langle m, n\rangle \in\{x \in \mathbb{Z} \times \mathbb{Z}\). fst ( \(x\) ) \(\$ \leq \operatorname{snd}(x)\}\)
        by simp
    then show thesis using IntegerOrder_def by simp
qed
```

The next lemma interprets the definition the other way.

```
lemma (in int0) Int_ZF_2_L1A: assumes A1: m \leq n
    shows m $\leq n m\in\mathbb{Z n}\in\mathbb{Z}
proof -
    from A1 have }\langlem,n\rangle\in{p\in\mathbb{Z}\times\mathbb{Z}.f\mathrm{ fst(p) $ 
        using IntegerOrder_def by simp
    thus m $\leq n m\in\mathbb{Z}}n\in\mathbb{Z}\mathrm{ by auto
qed
```

Integer order is a relation on integers.

```
lemma Int_ZF_2_L1B: shows IntegerOrder \(\subseteq\) int \(\times\) int
proof
    fix \(x\) assume \(x \in\) IntegerOrder
    then have \(x \in\{p \in\) int \(\times\) int. fst \((p) \$ \leq \operatorname{snd}(p)\}\)
        using IntegerOrder_def by simp
    then show \(x \in i n t \times i n t\) by simp
qed
```

The way we define the notion of being bounded below, its sufficient for the relation to be on integers for all bounded below sets to be subsets of integers.
lemma (in int0) Int_ZF_2_L1C:

```
    assumes A1: IsBoundedBelow(A,IntegerOrder)
    shows A\subseteq\mathbb{Z}
proof -
    from A1 have
        IntegerOrder \subseteq\mathbb{Z}\times\mathbb{Z}
        IsBoundedBelow(A,IntegerOrder)
        using Int_ZF_2_L1B by auto
    then show A\subseteq\mathbb{Z by (rule Order_ZF_3_L1B)}
qed
```

The order on integers is reflexive.

```
lemma (in int0) int_ord_is_refl: shows refl(\mathbb{Z},\mathrm{ IntegerOrder)}
    using Int_ZF_2_L1 zle_refl refl_def by auto
```

The essential condition to show antisymmetry of the order on integers.

```
lemma (in int0) Int_ZF_2_L3:
    assumes A1: m}\leqn n \leq
    shows m=n
proof -
    from A1 have m $\leq n n $\leqm m\in\mathbb{Z}}n=\mathbb{Z
        using Int_ZF_2_L1A by auto
    then show m=n using zle_anti_sym by auto
qed
```

The order on integers is antisymmetric.

```
lemma (in int0) Int_ZF_2_L4: shows antisym(IntegerOrder)
proof -
    have }\forall\textrm{m n.m}\leq\textrm{n}\wedge\textrm{n}\leq\textrm{m}\longrightarrow\textrm{m}=\textrm{n
            using Int_ZF_2_L3 by auto
    then show thesis using imp_conj antisym_def by simp
qed
```

The essential condition to show that the order on integers is transitive.

```
lemma Int_ZF_2_L5:
    assumes A1: \langlem,n\rangle\in IntegerOrder }\langle\textrm{n},\textrm{k}\rangle\in\mathrm{ IntegerOrder
    shows }\langle\textrm{m},\textrm{k}\rangle\in\mathrm{ IntegerOrder
proof -
    from A1 have T1: m $\leq n n $\leq k and T2: m\inint k\inint
        using int0.Int_ZF_2_L1A by auto
    from T1 have m $\leq k by (rule zle_trans)
    with T2 show thesis using int0.Int_ZF_2_L1 by simp
qed
```

The order on integers is transitive. This version is stated in the int0 context using notation for integers.

```
lemma (in int0) Int_order_transitive:
    assumes A1: m\leqn n
    shows m\leqk
```

```
proof -
    from A1 have \(\langle\mathrm{m}, \mathrm{n}\rangle \in\) IntegerOrder \(\langle\mathrm{n}, \mathrm{k}\rangle \in\) IntegerOrder
        by auto
    then have \(\langle\mathrm{m}, \mathrm{k}\rangle \in\) IntegerOrder by (rule Int_ZF_2_L5)
    then show \(m \leq k\) by simp
qed
```

The order on integers is transitive.

```
lemma Int_ZF_2_L6: shows trans(IntegerOrder)
proof -
    have }\forall\textrm{m n k
        \langlem, n\rangle \in IntegerOrder ^ \n, k\rangle \in IntegerOrder \longrightarrow
        <m, k\rangle \in IntegerOrder
        using Int_ZF_2_L5 by blast
    then show thesis by (rule Fol1_L2)
qed
```

The order on integers is a partial order.

```
lemma Int_ZF_2_L7: shows IsPartOrder(int,IntegerOrder)
    using int0.int_ord_is_refl int0.Int_ZF_2_L4
        Int_ZF_2_L6 IsPartOrder_def by simp
```

The essential condition to show that the order on integers is preserved by translations.

```
lemma (in int0) int_ord_transl_inv:
    assumes A1: k \in\mathbb{Z}}\mathrm{ and A2: m }\leq\textrm{n
    shows m+k}\leqn+k k+m\leqk+
proof -
    from A2 have m $\leq n and m\in\mathbb{Z }n\in\mathbb{Z}
        using Int_ZF_2_L1A by auto
    with A1 show m+k \leq n+k k+m\leq k+n
        using zadd_right_cancel_zle zadd_left_cancel_zle
        Int_ZF_1_L2 Int_ZF_1_L1 apply_funtype
        Int_ZF_1_L2 Int_ZF_2_L1 Int_ZF_1_L2 by auto
qed
```

Integers form a linearly ordered group. We can apply all theorems proven in group3 context to integers.

```
theorem (in int0) Int_ZF_2_T1: shows
    IsAnOrdGroup(\mathbb{Z},\mathrm{ IntegerAddition,IntegerOrder)}
    IntegerOrder {is total on} \mathbb{Z}
    group3(\mathbb{Z},IntegerAddition,IntegerOrder)
    IsLinOrder(\mathbb{Z},IntegerOrder)
proof -
    have }\forall\textrm{k}\in\mathbb{Z}.\forall\textrm{m n. m}\leq\textrm{n}
        m+k}\leqn+k^k+m\leqk+
        using int_ord_transl_inv by simp
    then show T1: IsAnOrdGroup(\mathbb{Z},IntegerAddition,IntegerOrder) using
```

```
        Int_ZF_1_T2 Int_ZF_2_L1B Int_ZF_2_L7 IsAnOrdGroup_def
        by simp
    then show group3(\mathbb{Z},IntegerAddition,IntegerOrder)
        using group3_def by simp
    have }\forall\textrm{n}\in\mathbb{Z}.\forall\textrm{m}\in\mathbb{Z}.\textrm{n}\leq\textrm{m}\vee\textrm{m}\leq\textrm{n
        using zle_linear Int_ZF_2_L1 by auto
    then show IntegerOrder {is total on} }\mathbb{Z
        using IsTotal_def by simp
    with T1 show IsLinOrder(\mathbb{Z},IntegerOrder)
        using IsAnOrdGroup_def IsPartOrder_def IsLinOrder_def by simp
qed
```

If a pair (i, m) belongs to the order relation on integers and $i \neq m$, then $i<m$ in the sense of defined in the standard Isabelle's Int.thy.

```
lemma (in int0) Int_ZF_2_L9: assumes A1: i \leq m and A2: i\not=m
    shows i $< m
proof -
    from A1 have i $\leq m i\in\mathbb{Z}}m\in\mathbb{Z
        using Int_ZF_2_L1A by auto
    with A2 show i $< m using zle_def by simp
qed
```

This shows how Isabelle's $\$<$ operator translates to IsarMathLib notation.

```
lemma (in int0) Int_ZF_2_L9AA: assumes A1: m\in\mathbb{Z }n\in\mathbb{Z}
    and A2: m $< n
    shows m\leqn m}\not=
    using assms zle_def Int_ZF_2_L1 by auto
```

A small technical lemma about putting one on the other side of an inequality.

```
lemma (in int0) Int_ZF_2_L9A:
    assumes A1: k\in\mathbb{Z}}\mathrm{ and A2: m }\leqk\mp@code{k- ($# 1)
    shows m+1 \leqk
proof -
    from A2 have m+1 \leq(k $- ($# 1)) + 1
        using Int_ZF_1_L8A int_ord_transl_inv by simp
    with A1 show m+1 \leq k
        using Int_ZF_1_L13 by simp
qed
```

We can put any integer on the other side of an inequality reversing its sign.

```
lemma (in int0) Int_ZF_2_L9B: assumes i\in\mathbb{Z }m\in\mathbb{Z}\quadk\in\mathbb{Z}
    shows i+m}\leqk< i \leq k-
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9A
    by simp
```

A special case of Int_ZF_2_L9B with weaker assumptions.

```
lemma (in int0) Int_ZF_2_L9C:
    assumes i\in\mathbb{Z}\quadm\in\mathbb{Z}}\mathrm{ and i-m}\leq
```

```
shows i < k+m
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9B
by simp
```

Taking (higher order) minus on both sides of inequality reverses it.

```
lemma (in int0) Int_ZF_2_L10: assumes \(k \leq i\)
    shows
    \((-\mathrm{i}) \leq(-\mathrm{k})\)
    \$-i \(\leq \$-\mathrm{k}\)
    using assms Int_ZF_2_L1A Int_ZF_1_L9A Int_ZF_2_T1
        group3.OrderedGroup_ZF_1_L5 by auto
```

Taking minus on both sides of inequality reverses it, version with a negative on one side.

```
lemma (in int0) Int_ZF_2_L10AA: assumes n\in\mathbb{Z }m\leq(-n)
    shows }\textrm{n}\leq(-m
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AD
    by simp
```

We can cancel the same element on on both sides of an inequality, a version with minus on both sides.

```
lemma (in int0) Int_ZF_2_L10AB:
    assumes m\in\mathbb{Z}\quadn\in\mathbb{Z}}\quad\textrm{k}\in\mathbb{Z}\mathrm{ and m-n }\leqm-
    shows k\leqn
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AF
    by simp
```

If an integer is nonpositive, then its opposite is nonnegative.

```
lemma (in int0) Int_ZF_2_L10A: assumes k \leq 0
    shows 0\leq(-k)
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5A by simp
```

If the opposite of an integers is nonnegative, then the integer is nonpositive.

```
lemma (in int0) Int_ZF_2_L10B:
    assumes }k\in\mathbb{Z}\mathrm{ and 0}0\leq(-k
    shows k\leq0
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AA by simp
```

Adding one to an integer corresponds to taking a successor for a natural number.

```
lemma (in int0) Int_ZF_2_L11:
    shows i $+ $# n $+ ($# 1) = i $+ $# succ(n)
proof -
    have $# succ(n) = $#1 $+ $# n using int_succ_int_1 by blast
    then have i $+ $# succ(n) = i $+ ($# n $+ $#1)
        using zadd_commute by simp
    then show thesis using zadd_assoc by simp
```

qed
Adding a natural number increases integers.

```
lemma (in int0) Int_ZF_2_L12: assumes A1: i\in\mathbb{Z and A2: n\innat}
    shows i < i $+ $#n
proof -
    { assume n = 0
            with A1 have i \leq i $+ $#n using zadd_int0 int_ord_is_refl refl_def
                by simp }
    moreover
    { assume n}=
            with A2 obtain k where k\innat n = succ(k)
                using Nat_ZF_1_L3 by auto
            with A1 have i \leq i $+ $#n
                using zless_succ_zadd zless_imp_zle Int_ZF_2_L1 by simp }
    ultimately show thesis by blast
qed
```

Adding one increases integers.

```
lemma (in int0) Int_ZF_2_L12A: assumes A1: j\leqk
    shows j \leq k $+ $#1 j \leq k+1
proof -
    from A1 have T1:j\in\mathbb{Z }k\in\mathbb{Z}}\textrm{j}$\leq
        using Int_ZF_2_L1A by auto
    moreover from T1 have k $\leq k $+ $#1 using Int_ZF_2_L12 Int_ZF_2_L1A
            by simp
    ultimately have j $ \leq k $+ $#1 using zle_trans by fast
    with T1 show j \leq k $+ $#1 using Int_ZF_2_L1 by simp
    with T1 have j\leq k+$#1
            using Int_ZF_1_L2 by simp
    then show j \leqk+1 using Int_ZF_1_L8 by simp
qed
```

Adding one increases integers, yet one more version.
lemma (in int0) Int_ZF_2_L12B: assumes A1: $m \in \mathbb{Z}$ shows $m \leq m+1$ using assms int_ord_is_refl refl_def Int_ZF_2_L12A by simp

If $k+1=m+n$, where n is a non-zero natural number, then $m \leq k$.
lemma (in int0) Int_ZF_2_L13:
assumes $\mathrm{A} 1: \mathrm{k} \in \mathbb{Z} \mathrm{m} \in \mathbb{Z}$ and $\mathrm{A} 2: \mathrm{n} \in$ nat
and A3: k \$+ (\$\# 1) $=\mathrm{m}$ \$+ \$\# $\operatorname{succ}(\mathrm{n})$
shows $\mathrm{m} \leq \mathrm{k}$
proof -
from A1 have $k \in \mathbb{Z} \mathrm{~m}$ \$+ $\$ \# \mathrm{n} \in \mathbb{Z}$ by auto
moreover from assms have k \$+ \$\# $1=\mathrm{m}$ \$+ \$\# n \$+ \$\#1
using Int_ZF_2_L11 by simp
ultimately have $\mathrm{k}=\mathrm{m}$ \$+ \$\# n using zadd_right_cancel by simp
with A1 A2 show thesis using Int_ZF_2_L12 by simp

qed

The absolute value of an integer is an integer.

```
lemma (in int0) Int_ZF_2_L14: assumes A1: m\in\mathbb{Z}
    shows abs(m) \in\mathbb{Z}
proof -
    have AbsoluteValue(\mathbb{Z},IntegerAddition,IntegerOrder) : \mathbb{Z}}->\mathbb{Z
        using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L1 by simp
    with A1 show thesis using apply_funtype by simp
qed
```

If two integers are nonnegative, then the opposite of one is less or equal than the other and the sum is also nonnegative.

```
lemma (in int0) Int_ZF_2_L14A:
    assumes \(0 \leq m \quad 0 \leq n\)
    shows
    \((-m) \leq n\)
    \(0 \leq m+n\)
    using assms Int_ZF_2_T1
        group3.OrderedGroup_ZF_1_L5AC group3.OrderedGroup_ZF_1_L12
    by auto
```

We can increase components in an estimate.

```
lemma (in int0) Int_ZF_2_L15:
    assumes b\leqb
    shows a\leqb
proof -
    from assms have group3(\mathbb{Z},IntegerAddition,IntegerOrder)
        <a,IntegerAddition\langle b, c\rangle\rangle \in IntegerOrder
        \langleb, b
        using Int_ZF_2_T1 by auto
    then have \langlea,IntegerAddition\langle b
        by (rule group3.OrderedGroup_ZF_1_L5E)
    thus thesis by simp
qed
```

We can add or subtract the sides of two inequalities.

```
lemma (in int0) int_ineq_add_sides:
    assumes a<b and c\leqd
    shows
    a+c}\leqb+
    a-d \leq b-c
    using assms Int_ZF_2_T1
        group3.OrderedGroup_ZF_1_L5B group3.OrderedGroup_ZF_1_L5I
    by auto
```

We can increase the second component in an estimate.
lemma (in int0) Int_ZF_2_L15A:

```
    assumes b\in\mathbb{Z and a }\leq\textrm{b}+\textrm{c}\mathrm{ and A3: c}\leq\mp@subsup{c}{1}{}
    shows a\leqb+c
proof -
    from assms have
        group3(\mathbb{Z},IntegerAddition,IntegerOrder)
        b}\in\mathbb{Z
        \langlea,IntegerAddition}\langle\textrm{b},\textrm{c}\rangle\rangle\in\mathrm{ IntegerOrder
        cc,\mp@subsup{c}{1}{}\rangle\in IntegerOrder
        using Int_ZF_2_T1 by auto
    then have \langlea,IntegerAddition\langle b, c
        by (rule group3.OrderedGroup_ZF_1_L5D)
    thus thesis by simp
qed
```

If we increase the second component in a sum of three integers, the whole sum inceases.

```
lemma (in int0) Int_ZF_2_L15C:
    assumes A1: m\in\mathbb{Z}}n\in\mathbb{Z}\mathrm{ and A2: k}\leq
    shows m+k+n}\leqm+L+
proof -
    let P = IntegerAddition
    from assms have
        group3(int, P, IntegerOrder)
        m}\in\mathrm{ int }n\in\mathrm{ int
        <k,L\rangle\in IntegerOrder
        using Int_ZF_2_T1 by auto
    then have }\langle\textrm{P}\langle\textrm{P}\langle\textrm{m},\textrm{k}\rangle,\textrm{n}\rangle,\textrm{P}\langle\textrm{P}\langle\textrm{m},\textrm{L}\rangle,\textrm{n}\rangle\rangle\in\mathrm{ IntegerOrder
        by (rule group3.OrderedGroup_ZF_1_L10)
    then show m+k+n}\leqm+L+n by sim
qed
```

We don't decrease an integer by adding a nonnegative one.

```
lemma (in int0) Int_ZF_2_L15D:
    assumes 0\leqn m\in\mathbb{Z}
    shows m}\leqn+
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5F
    by simp
```

Some inequalities about the sum of two integers and its absolute value.

```
lemma (in int0) Int_ZF_2_L15E:
    assumes m\in\mathbb{Z}}\quadn\in\mathbb{Z
    shows
    m+n \leq abs(m)+abs(n)
    m-n}\leq abs(m)+abs(n
    (-m)+n< abs(m)+abs(n)
    (-m)-n\leqabs(m)+abs(n)
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L6A
    by auto
```

We can add a nonnegative integer to the right hand side of an inequality.

```
lemma (in int0) Int_ZF_2_L15F: assumes m\leqk and 0\leqn
    shows m}\leqk+n m\leqn+
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5G
    by auto
```

Triangle inequality for integers.

```
lemma (in int0) Int_triangle_ineq:
    assumes m\in\mathbb{Z}}n\in\mathbb{Z
    shows abs (m+n)\leqabs(m)+abs(n)
    using assms Int_ZF_1_T2 Int_ZF_2_T1 group3.OrdGroup_triangle_ineq
    by simp
```

Taking absolute value does not change nonnegative integers.

```
lemma (in int0) Int_ZF_2_L16:
    assumes 0\leqm shows m\in\mp@subsup{\mathbb{Z}}{}{+}}\mathrm{ and abs(m) = m
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2
        group3.OrderedGroup_ZF_3_L2 by auto
0}\leq1,\mathrm{ so }|1|=1
lemma (in int0) Int_ZF_2_L16A: shows 0\leq1 and abs(1) = 1
proof -
    have ($# 0) \in\mathbb{Z}($# 1)\in\mathbb{Z}}\mathrm{ by auto
    then have 0\leq0 and T1: 1\in\mathbb{Z}
        using Int_ZF_1_L8 int_ord_is_refl refl_def by auto
    then have 0\leq0+1 using Int_ZF_2_L12A by simp
    with T1 show 0\leq1 using Int_ZF_1_T2 group0.group0_2_L2
        by simp
    then show abs(1) = 1 using Int_ZF_2_L16 by simp
qed
1\leq2.
lemma (in int0) Int_ZF_2_L16B: shows 1\leq2
proof -
    have ($# 1)\in\mathbb{Z by simp}
    then show 1\leq2
        using Int_ZF_1_L8 int_ord_is_refl refl_def Int_ZF_2_L12A
        by simp
qed
```

Integers greater or equal one are greater or equal zero.

```
lemma (in int0) Int_ZF_2_L16C:
```

 assumes A1: \(1 \leq\) a shows
 \(\mathbf{0} \leq \mathrm{a} \quad \mathrm{a} \neq \mathbf{0}\)
 \(2 \leq a+1\)
 \(1 \leq a+1\)
 \(0 \leq a+1\)
 proof -

```
    from A1 have 0\leq1 and 1\leqa
        using Int_ZF_2_L16A by auto
    then show 0\leqa by (rule Int_order_transitive)
    have I: 0}\leq1 using Int_ZF_2_L16A by simp
    have 1\leq2 using Int_ZF_2_L16B by simp
    moreover from A1 show 2\leqa+1
        using Int_ZF_1_L8A int_ord_transl_inv by simp
    ultimately show 1 \leqa+1 by (rule Int_order_transitive)
    with I show 0}\leqa+1 by (rule Int_order_transitive)
    from A1 show a\not=0 using
        Int_ZF_2_L16A Int_ZF_2_L3 int_zero_not_one by auto
qed
```

Absolute value is the same for an integer and its opposite.

```
lemma (in int0) Int_ZF_2_L17:
    assumes m\in\mathbb{Z shows abs(-m) = abs(m)}
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7A by simp
```

The absolute value of zero is zero.

```
lemma (in int0) Int_ZF_2_L18: shows abs(0) = 0
    using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L2A by simp
```

A different version of the triangle inequality.

```
lemma (in int0) Int_triangle_ineq1:
    assumes A1: \(m \in \mathbb{Z} \quad n \in \mathbb{Z}\)
    shows
    \(\operatorname{abs}(m-n) \leq \operatorname{abs}(n)+a b s(m)\)
    \(\operatorname{abs}(m-n) \leq \operatorname{abs}(m)+a b s(n)\)
proof -
    have \(\$-\mathrm{n} \in \mathbb{Z}\) by simp
    with A1 have abs (m-n) \(\leq\) abs (m) +abs ( -n )
        using Int_ZF_1_L9A Int_triangle_ineq by simp
    with A1 show
        \(\operatorname{abs}(m-n) \leq \operatorname{abs}(n)+a b s(m)\)
        abs \((m-n) \leq a b s(m)+a b s(n)\)
        using Int_ZF_2_L17 Int_ZF_2_L14 Int_ZF_1_T2 IsCommutative_def
        by auto
qed
```

Another version of the triangle inequality.

```
lemma (in int0) Int_triangle_ineq2:
    assumes m\in\mathbb{Z}}n\in\mathbb{Z
    and abs(m-n) \leqk
    shows
    abs(m) \leq abs(n)+k
    m-k}\leq
    m}\leqn+
    n-k}\leq
```

```
using assms Int_ZF_1_T2 Int_ZF_2_T1
    group3.OrderedGroup_ZF_3_L7D group3.OrderedGroup_ZF_3_L7E
by auto
```

Triangle inequality with three integers. We could use OrdGroup_triangle_ineq3, but since simp cannot translate the notation directly, it is simpler to reprove it for integers.

```
lemma (in int0) Int_triangle_ineq3:
    assumes A1: m\in\mathbb{Z}}n\in\mathbb{Z}\quadk\in\mathbb{Z
    shows abs(m+n+k) \leq abs(m)+abs(n)+abs(k)
proof -
    from A1 have T: m+n \in\mathbb{Z}}\mathrm{ abs(k) }\in\mathbb{Z
        using Int_ZF_1_T2 group0.group_op_closed Int_ZF_2_L14
        by auto
    with A1 have abs(m+n+k) \leq abs(m+n) + abs(k)
            using Int_triangle_ineq by simp
    moreover from A1 T have
        abs(m+n) + abs(k) \leq abs(m) + abs(n) + abs(k)
        using Int_triangle_ineq int_ord_transl_inv by simp
    ultimately show thesis by (rule Int_order_transitive)
qed
```

The next lemma shows what happens when one integers is not greater or equal than another.

```
lemma (in int0) Int_ZF_2_L19:
    assumes A1: \(m \in \mathbb{Z} \quad n \in \mathbb{Z}\) and \(A 2: ~ \neg(n \leq m)\)
    shows \(m \leq n \quad(-n) \leq(-m) \quad m \neq n\)
proof -
    from A1 A2 show \(m \leq n\) using Int_ZF_2_T1 IsTotal_def
        by auto
    then show \((-n) \leq(-m)\) using Int_ZF_2_L10
            by simp
        from A1 have \(\mathrm{n} \leq \mathrm{n}\) using int_ord_is_refl refl_def
            by simp
    with A2 show \(\mathrm{m} \neq \mathrm{n}\) by auto
qed
```

If one integer is greater or equal and not equal to another, then it is not smaller or equal.

```
lemma (in int0) Int_ZF_2_L19AA: assumes A1: m\leqn and A2: m\not=n
    shows }\neg(\textrm{n}\leqm
proof -
    from A1 A2 have
        group3(\mathbb{Z}, IntegerAddition, IntegerOrder)
        \langlem,n\rangle\in IntegerOrder
        m}=\textrm{n
        using Int_ZF_2_T1 by auto
    then have \langlen,m\rangle& IntegerOrder
```

```
        by (rule group3.OrderedGroup_ZF_1_L8AA)
    thus }\neg(\textrm{n}\leqm)\mathrm{ by simp
qed
```

The next lemma allows to prove theorems for the case of positive and negative integers separately.

```
lemma (in int0) Int_ZF_2_L19A: assumes A1: m\in\mathbb{Z }}\mathrm{ and A2: }\neg(0\leqm
    shows m\leq0 0 \leq (-m) m\not=0
proof -
    from A1 have T: 0 \in\mathbb{Z}
        using Int_ZF_1_T2 group0.group0_2_L2 by auto
    with A1 A2 show m\leq0 using Int_ZF_2_L19 by blast
    from A1 T A2 show m\not=0 by (rule Int_ZF_2_L19)
    from A1 T A2 have ( }-0\mathrm{ ) }\leq(-m) by (rule Int_ZF_2_L19
    then show 0 \leq (-m)
        using Int_ZF_1_T2 group0.group_inv_of_one by simp
qed
```

We can prove a theorem about integers by proving that it holds for $m=0$, $m \in \mathbb{Z}_{+}$and $-m \in \mathbb{Z}_{+}$.
lemma (in int0) Int_ZF_2_L19B:

```
    assumes \(\mathrm{m} \in \mathbb{Z}\) and \(\mathrm{Q}(0)\) and \(\forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{Q}(\mathrm{n})\) and \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{Q}(-\mathrm{n})\)
```

 shows \(Q(m)\)
 proof -
let $G=\mathbb{Z}$
let $P=$ IntegerAddition
let $r=$ IntegerOrder
let $\mathrm{b}=\mathrm{m}$
from assms have
group3(G, P, r)
r \{is total on\} G
$b \in G$
Q(TheNeutralElement (G, P))
$\forall \mathrm{a} \in \operatorname{PositiveSet}(\mathrm{G}, \mathrm{P}, \mathrm{r}) . \mathrm{Q}(\mathrm{a})$
$\forall \mathrm{a} \in \operatorname{PositiveSet(G,~P,~r).~Q(GroupInv~(G,~P)~(a))~}$
using Int_ZF_2_T1 by auto
then show $Q(b)$ by (rule group3.OrderedGroup_ZF_1_L18)
qed

An integer is not greater than its absolute value.
lemma (in int0) Int_ZF_2_L19C: assumes A1: m $\in \mathbb{Z}$
shows
$\mathrm{m} \leq \mathrm{abs}$ (m)
$(-\mathrm{m}) \leq \operatorname{abs}(\mathrm{m})$
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L5 group3.OrderedGroup_ZF_3_L6
by auto
$|m-n|=|n-m|$.

```
lemma (in int0) Int_ZF_2_L20: assumes m\in\mathbb{Z }n\in\mathbb{Z}
    shows abs(m-n) = abs(n-m)
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7B by simp
```

We can add the sides of inequalities with absolute values.

```
lemma (in int0) Int_ZF_2_L21:
    assumes A1: m\in\mathbb{Z }n\in\mathbb{Z}
    and A2: abs(m) \leq k abs(n) \leq l
    shows
    abs(m+n) \leq k + l
    abs(m-n)}\leqk+
    using assms Int_ZF_1_T2 Int_ZF_2_T1
        group3.OrderedGroup_ZF_3_L7C group3.OrderedGroup_ZF_3_L7CA
    by auto
```

Absolute value is nonnegative.

```
lemma (in int0) int_abs_nonneg: assumes A1: m \(\in \mathbb{Z}\)
    shows abs \((\mathrm{m}) \in \mathbb{Z}^{+} \quad 0 \leq \operatorname{abs}(\mathrm{m})\)
proof -
    have AbsoluteValue( \(\mathbb{Z}\),IntegerAddition, IntegerOrder) : \(\mathbb{Z} \rightarrow \mathbb{Z}^{+}\)
        using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L3C by simp
    with A1 show abs(m) \(\in \mathbb{Z}^{+}\)using apply_funtype
        by simp
    then show \(0 \leq a b s(m)\)
        using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2 by simp
qed
```

If an nonnegative integer is less or equal than another, then so is its absolute value.
lemma (in int0) Int_ZF_2_L23:
assumes $0 \leq m \quad m \leq k$
shows abs(m) $\leq k$
using assms Int_ZF_2_L16 by simp

41.3 Induction on integers.

In this section we show some induction lemmas for integers. The basic tools are the induction on natural numbers and the fact that integers can be written as a sum of a smaller integer and a natural number.

An integer can be written a a sum of a smaller integer and a natural number.

```
lemma (in int0) Int_ZF_3_L2: assumes A1: i \leq m
    shows \existsn\innat. m = i $+ $# n
proof -
    let n = 0
    { assume A2: i=m
        from A1 A2 have n f nat m = i $+ $# n
            using Int_ZF_2_L1A zadd_int0_right by auto
```

```
        hence \existsn\innat. m = i $+ $# n by blast }
    moreover
    { assume A3: i\not=m
        with A1 have i $< m i\in\mathbb{Z m}\in\mathbb{Z}
            using Int_ZF_2_L9 Int_ZF_2_L1A by auto
    then obtain k where D1: k\innat m = i $+ $# succ(k)
            using zless_imp_succ_zadd_lemma by auto
    let n = succ(k)
    from D1 have n\innat m = i $+ $# n by auto
    hence \existsn\innat. m = i $+ $# n by simp }
    ultimately show thesis by blast
qed
Induction for integers, the induction step.
```

```
lemma (in int0) Int_ZF_3_L6: assumes A1: i\in\mathbb{Z}
```

lemma (in int0) Int_ZF_3_L6: assumes A1: i\in\mathbb{Z}
and A2: }\forall\textrm{m}.\textrm{i}\leq\textrm{m}\wedge\textrm{Q}(\textrm{m})\longrightarrow\textrm{Q}(\textrm{m}$+($\# 1)
and A2: }\forall\textrm{m}.\textrm{i}\leq\textrm{m}\wedge\textrm{Q}(\textrm{m})\longrightarrow\textrm{Q}(\textrm{m}$+($\# 1)
shows \forallk\innat. Q(i $+ ($\# k)) \longrightarrow Q(i $+ ($\# succ(k)))
shows \forallk\innat. Q(i $+ ($\# k)) \longrightarrow Q(i $+ ($\# succ(k)))
proof
proof
fix k assume A3: k\innat show Q(i \$+ \$\# k) \longrightarrow Q(i \$+ \$\# succ(k))
fix k assume A3: k\innat show Q(i \$+ \$\# k) \longrightarrow Q(i \$+ \$\# succ(k))
proof
proof
assume A4: Q(i \$+ \$\# k)
assume A4: Q(i \$+ \$\# k)
from A1 A3 have i\leq i $+ ($\# k) using Int_ZF_2_L12
from A1 A3 have i\leq i $+ ($\# k) using Int_ZF_2_L12
by simp
by simp
with A4 A2 have Q(i $+ ($\# k) $+ ($\# 1)) by simp
with A4 A2 have Q(i $+ ($\# k) $+ ($\# 1)) by simp
then show Q(i $+ ($\# succ(k))) using Int_ZF_2_L11 by simp
then show Q(i $+ ($\# succ(k))) using Int_ZF_2_L11 by simp
qed
qed
qed

```
qed
```

Induction on integers, version with higher-order increment function.

```
lemma (in int0) Int_ZF_3_L7:
    assumes A1: i\leqk and A2: Q(i)
    and A3: }\forall\textrm{m}.\textrm{i}\leq\textrm{m}\wedgeQ(\textrm{m})\longrightarrowQ(\textrm{m}$+($# 1)
    shows Q(k)
proof -
    from A1 obtain n where D1: n\innat and D2: k = i $+ $# n
            using Int_ZF_3_L2 by auto
    from A1 have T1: i\in\mathbb{Z using Int_ZF_2_L1A by simp}
    note <n\innat>
    moreover from A1 A2 have Q(i $+ $#0)
        using Int_ZF_2_L1A zadd_int0 by simp
    moreover from T1 A3 have
        \forallk\innat. Q(i $+ ($# k)) \longrightarrow Q(i $+ ($# succ(k)))
        by (rule Int_ZF_3_L6)
    ultimately have Q(i $+ ($# n)) by (rule ind_on_nat)
    with D2 show Q(k) by simp
qed
```

Induction on integer, implication between two forms of the induction step.
lemma (in int0) Int_ZF_3_L7A: assumes

```
    A1: \(\forall \mathrm{m} . \mathrm{i} \leq \mathrm{m} \wedge \mathrm{Q}(\mathrm{m}) \longrightarrow \mathrm{Q}(\mathrm{m}+1)\)
    shows \(\forall \mathrm{m} . \mathrm{i} \leq \mathrm{m} \wedge \mathrm{Q}(\mathrm{m}) \longrightarrow \mathrm{Q}(\mathrm{m} \$+(\$ \# 1))\)
proof -
    \{ fix m assume \(i \leq m \wedge Q(m)\)
        with A1 have \(\mathrm{T} 1: \mathrm{m} \in \mathbb{Z} \mathrm{Q}(\mathrm{m}+1)\) using Int_ZF_2_L1A by auto
        then have \(\mathrm{m}+1=\mathrm{m}+(\$ \# 1)\) using Int_ZF_1_L8 by simp
        with \(T 1\) have \(Q(m\) \$+ (\$\# 1)) using Int_ZF_1_L2
            by simp
    \} then show thesis by simp
qed
```

Induction on integers, version with ZF increment function.

```
theorem (in int0) Induction_on_int:
    assumes A1: i\leqk and A2: Q(i)
    and A3: }\forall\textrm{m}.\quad\textrm{i}\leq\textrm{m}\wedgeQ(\textrm{m})\longrightarrowQ(m+1
    shows Q(k)
proof -
    from A3 have }\forall\textrm{m}.\textrm{i}\leq\textrm{m}\wedgeQ(\textrm{m})\longrightarrowQ(m $+ ($# 1))
        by (rule Int_ZF_3_L7A)
    with A1 A2 show thesis by (rule Int_ZF_3_L7)
qed
```

Another form of induction on integers. This rewrites the basic theorem Int_ZF_3_L7 substituting $P(-k)$ for $Q(k)$.
lemma (in int0) Int_ZF_3_L7B: assumes A1: $i \leq k$ and A2: $P(\$-i)$
and $\mathrm{A} 3: \forall \mathrm{m} . \mathrm{i} \leq \mathrm{m} \wedge \mathrm{P}(\$-\mathrm{m}) \longrightarrow \mathrm{P}(\$-(\mathrm{m} \$+(\$ \# 1)))$
shows $P(\$-k)$
proof -
from A1 A2 A3 show $P(\$-k)$ by (rule Int_ZF_3_L7)
qed
Another induction on integers. This rewrites Int_ZF_3_L7 substituting $-k$ for k and $-i$ for i.
lemma (in int0) Int_ZF_3_L8: assumes A1: $k \leq i$ and A2: $P(i)$
and $\mathrm{A} 3: \forall \mathrm{m} . \$-\mathrm{i} \leq \mathrm{m} \wedge \mathrm{P}(\$-\mathrm{m}) \longrightarrow \mathrm{P}(\$-(\mathrm{m} \$+(\$ \# 1)))$
shows $P(k)$
proof -
from A1 have T1: $\$-\mathrm{i} \leq \$-\mathrm{k}$ using Int_ZF_2_L10 by simp
from A1 A2 have T2: P(\$- \$- i) using Int_ZF_2_L1A zminus_zminus by simp
from T1 T2 A3 have $P(\$-(\$-k)$) by (rule Int_ZF_3_L7)
with A1 show $P(k)$ using Int_ZF_2_L1A zminus_zminus by simp
qed
An implication between two forms of induction steps.
lemma (in int0) Int_ZF_3_L9: assumes A1: $i \in \mathbb{Z}$
and $\mathrm{A} 2: \forall \mathrm{n} . \mathrm{n} \leq \mathrm{i} \wedge \mathrm{P}(\mathrm{n}) \longrightarrow \mathrm{P}(\mathrm{n} \$+\$-(\$ \# 1))$
shows $\forall \mathrm{m} . \$-\mathrm{i} \leq \mathrm{m} \wedge \mathrm{P}(\$-\mathrm{m}) \longrightarrow \mathrm{P}(\$-(\mathrm{m} \$+(\$ \# 1)))$

```
proof
    fix m show $-i\leqm ^ P($-m) \longrightarrowP($-(m $+($# 1)))
    proof
        assume A3: $- i \leqm ^ P($- m)
        then have $- i \leqm by simp
        then have $-m \leq $- ($- i) by (rule Int_ZF_2_L10)
        with A1 A2 A3 show P($-(m $+ ($# 1)))
            using zminus_zminus zminus_zadd_distrib by simp
    qed
qed
```

Backwards induction on integers, version with higher-order decrement function.

```
lemma (in int0) Int_ZF_3_L9A: assumes A1: k\leqi and A2: P(i)
    and A3: }\forall\textrm{n}.\textrm{n}\leq\textrm{i}\\\textrm{P}(\textrm{n})\longrightarrow\textrm{P}(\textrm{n}$+$-($#1)
    shows P(k)
proof -
    from A1 have T1: i\in\mathbb{Z using Int_ZF_2_L1A by simp}
    from T1 A3 have T2: }\forall\textrm{m}.$-\textrm{i}\leq\textrm{m}\wedge ^ P($-m) \longrightarrow P($-(m $+ ($# 1)))
            by (rule Int_ZF_3_L9)
    from A1 A2 T2 show P(k) by (rule Int_ZF_3_L8)
qed
```

Induction on integers, implication between two forms of the induction step.

```
lemma (in int0) Int_ZF_3_L10: assumes
    A1: \foralln. n\leqi ^ P(n) \longrightarrow P(n-1)
    shows }\forall\textrm{n}.\textrm{n}\leq\textrm{i}\wedge\textrm{P}(\textrm{n})\longrightarrow\textrm{P}(\textrm{n}$+$-($#1)
proof -
    { fix n assume n\leqi ^ P(n)
            with A1 have T1: n\in\mathbb{Z P(n-1) using Int_ZF_2_L1A by auto}
            then have n-1 = n-($# 1) using Int_ZF_1_L8 by simp
            with T1 have P(n $+ $-($#1)) using Int_ZF_1_L10 by simp
    } then show thesis by simp
qed
```

Backwards induction on integers.

```
theorem (in int0) Back_induct_on_int:
    assumes A1: \(k \leq i\) and A2: \(P(i)\)
    and \(\mathrm{A} 3: \forall \mathrm{n} . \mathrm{n} \leq \mathrm{i} \wedge \mathrm{P}(\mathrm{n}) \longrightarrow \mathrm{P}(\mathrm{n}-\mathbf{1})\)
    shows \(P(k)\)
proof -
    from A3 have \(\forall \mathrm{n} . \mathrm{n} \leq \mathrm{i} \wedge \mathrm{P}(\mathrm{n}) \longrightarrow \mathrm{P}(\mathrm{n} \$+\$-(\$ \# 1))\)
            by (rule Int_ZF_3_L10)
    with A1 A2 show \(P(k)\) by (rule Int_ZF_3_L9A)
qed
```


41.4 Bounded vs. finite subsets of integers

The goal of this section is to establish that a subset of integers is bounded is and only is it is finite. The fact that all finite sets are bounded is already shown for all linearly ordered groups in OrderedGroups_ZF.thy. To show the other implication we show that all intervals starting at 0 are finite and then use a result from OrderedGroups_ZF.thy.

There are no integers between k and $k+1$.

```
lemma (in int0) Int_ZF_4_L1:
    assumes A1: k\in\mathbb{Z m}\\mathbb{Z} n\innat and A2: k $+ $#1 = m $+ $#n
    shows m = k $+ $#1 V m \leqk
proof -
    { assume n=0
        with A1 A2 have m = k $+ $#1 \vee m \leq k
                using zadd_int0 by simp }
    moreover
    { assume n\not=0
        with A1 obtain j where D1: j\innat n = succ(j)
                using Nat_ZF_1_L3 by auto
            with A1 A2 D1 have m = k $+ $#1 V m \leq k
                using Int_ZF_2_L13 by simp }
    ultimately show thesis by blast
qed
```

A trivial calculation lemma that allows to subtract and add one.

```
lemma Int_ZF_4_L1A:
    assumes m\inint shows m $- $#1 $+ $#1 = m
    using assms eq_zdiff_iff by auto
```

There are no integers between k and $k+1$, another formulation.

```
lemma (in int0) Int_ZF_4_L1B: assumes A1: m \(\leq \mathrm{L}\)
    shows
    \(\mathrm{m}=\mathrm{L} \vee \mathrm{m}+\mathbf{1} \leq \mathrm{L}\)
    \(\mathrm{m}=\mathrm{L} \vee \mathrm{m} \leq \mathrm{L}-\mathbf{1}\)
proof -
    let \(k=L \$-\$ \# 1\)
    from A1 have \(\mathrm{T} 1: \mathrm{m} \in \mathbb{Z} \quad \mathrm{L} \in \mathbb{Z} \quad \mathrm{L}=\mathrm{k}\) \$+ \$\#1
        using Int_ZF_2_L1A Int_ZF_4_L1A by auto
    moreover from A1 obtain \(n\) where D1: n nat \(L=m\) + \(\$\) \# \(n\)
        using Int_ZF_3_L2 by auto
    ultimately have \(\mathrm{m}=\mathrm{L} \vee \mathrm{m} \leq \mathrm{k}\)
        using Int_ZF_4_L1 by simp
    with T 1 show \(\mathrm{m}=\mathrm{L} \quad \vee \mathrm{m}+1 \leq \mathrm{L}\)
        using Int_ZF_2_L9A by auto
    with T 1 show \(\mathrm{m}=\mathrm{L} \vee \mathrm{m} \leq \mathrm{L}-1\)
        using Int_ZF_1_L8A Int_ZF_2_L9B by simp
qed
```

```
If j\inm..k+1, then }j\inm..n or j=k+1
lemma (in int0) Int_ZF_4_L2: assumes A1: k\in\mathbb{Z}
    and A2: j G m..(k $+ $#1)
    shows j \in m..k \vee j \in {k $+ $#1}
proof -
    from A2 have T1: m\leqj j\leq(k $+ $#1) using Order_ZF_2_L1A
                by auto
    then have T2: m\in\mathbb{Z }j\in\mathbb{Z}\mathrm{ using Int_ZF_2_L1A by auto}
    from T1 obtain n where n\innat k $+ $#1 = j $+ $# n
                using Int_ZF_3_L2 by auto
    with A1 T1 T2 have (m\leqj ^ j \leq k) \vee j f {k $+ $#1}
        using Int_ZF_4_L1 by auto
    then show thesis using Order_ZF_2_L1B by auto
qed
```

Extending an integer interval by one is the same as adding the new endpoint.

```
lemma (in int0) Int_ZF_4_L3: assumes A1: m\leq k
    shows m..(k $+ $#1) = m..k \cup {k $+ $#1}
proof
    from A1 have T1: m\in\mathbb{Z }k\in\mathbb{Z}\mathrm{ using Int_ZF_2_L1A by auto}
    then show m .. (k $+ $# 1)\subseteqm .. k \cup {k $+ $# 1}
        using Int_ZF_4_L2 by auto
    from T1 have m\leq m using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L3
        by simp
    with T1 A1 have m .. k \subseteq m .. (k $+ $# 1)
        using Int_ZF_2_L12 Int_ZF_2_L6 Order_ZF_2_L3 by simp
    with T1 A1 show m..k \cup{k $+ $#1} \subseteqm..(k $+ $#1)
        using Int_ZF_2_L12A int_ord_is_refl Order_ZF_2_L2 by auto
qed
```

Integer intervals are finite - induction step.
lemma (in int0) Int_ZF_4_L4:
assumes A1: $\mathrm{i} \leq \mathrm{m}$ and $\mathrm{A} 2: \mathrm{i} . \mathrm{m} \in \operatorname{Fin}(\mathbb{Z})$
shows i..(m \$+ \$\#1) $\in \operatorname{Fin}(\mathbb{Z})$
using assms Int_ZF_4_L3 by simp

Integer intervals are finite.

```
lemma (in int0) Int_ZF_4_L5: assumes A1: \(i \in \mathbb{Z} k \in \mathbb{Z}\)
    shows i..k \(\in \operatorname{Fin}(\mathbb{Z})\)
proof -
    \{ assume A2: \(\mathrm{i} \leq \mathrm{k}\)
        moreover from A1 have i..i \(\in \operatorname{Fin}(\mathbb{Z})\)
            using int_ord_is_refl Int_ZF_2_L4 Order_ZF_2_L4 by simp
        moreover from A2 have
            \(\forall \mathrm{m} . \mathrm{i} \leq \mathrm{m} \wedge \mathrm{i} . . \mathrm{m} \in \operatorname{Fin}(\mathbb{Z}) \longrightarrow i . .(\mathrm{m} \$+\$ \# 1) \in \operatorname{Fin}(\mathbb{Z})\)
            using Int_ZF_4_L4 by simp
        ultimately have i..k \(\in \operatorname{Fin}(\mathbb{Z})\) by (rule Int_ZF_3_L7) \}
    moreover
```

```
    { assume }\neg i \leq k
        then have i..k G Fin(\mathbb{Z}) using Int_ZF_2_L6 Order_ZF_2_L5
        by simp }
    ultimately show thesis by blast
qed
```

Bounded integer sets are finite.
lemma (in int0) Int_ZF_4_L6: assumes A1: IsBounded(A,IntegerOrder)
shows $A \in \operatorname{Fin}(\mathbb{Z})$
proof -
have $\mathrm{T} 1: \forall \mathrm{m} \in$ Nonnegative(\mathbb{Z}, IntegerAddition, IntegerOrder).
$\$ \# 0 . m \in \operatorname{Fin}(\mathbb{Z})$
proof
fix m assume $m \in$ Nonnegative(\mathbb{Z},IntegerAddition, IntegerOrder)
then have $m \in \mathbb{Z}$ using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L4E
by auto
then show $\$ \# 0 . . m \in \operatorname{Fin}(\mathbb{Z})$ using Int_ZF_4_L5 by simp
qed
have group3(\mathbb{Z},IntegerAddition, IntegerOrder)
using Int_ZF_2_T1 by simp
moreover from T 1 have $\forall \mathrm{m} \in$ Nonnegative(\mathbb{Z}, IntegerAddition, IntegerOrder).
Interval (IntegerOrder, TheNeutralElement (\mathbb{Z}, IntegerAddition) , m)
$\in \operatorname{Fin}(\mathbb{Z})$ using Int_ZF_1_L8 by simp
moreover note A1
ultimately show $A \in \operatorname{Fin}(\mathbb{Z})$ by (rule group3.OrderedGroup_ZF_2_T1)
qed

A subset of integers is bounded iff it is finite.
theorem (in int0) Int_bounded_iff_fin:
shows IsBounded (A, IntegerOrder) $\longleftrightarrow A \in F i n(\mathbb{Z})$
using Int_ZF_4_L6 Int_ZF_2_T1 group3.ord_group_fin_bounded by blast

The image of an interval by any integer function is finite, hence bounded.

```
lemma (in int0) Int_ZF_4_L8:
    assumes A1: i\in\mathbb{Z}}k\in\mathbb{Z}\mathrm{ and A2: f:Z्Z}->\mathbb{Z
    shows
    f(i..k) \in Fin(\mathbb{Z})
    IsBounded(f(i..k),IntegerOrder)
    using assms Int_ZF_4_L5 Finite1_L6A Int_bounded_iff_fin
    by auto
```

If for every integer we can find one in A that is greater or equal, then A is is not bounded above, hence infinite.
lemma (in int0) Int_ZF_4_L9: assumes A1: $\forall \mathrm{m} \in \mathbb{Z} . \exists \mathrm{k} \in \mathrm{A} . \mathrm{m} \leq \mathrm{k}$
shows
\neg IsBoundedAbove (A, IntegerOrder)
$\mathrm{A} \notin \operatorname{Fin}(\mathbb{Z})$

```
proof -
    have }\mathbb{Z}\not={0
        using Int_ZF_1_L8A int_zero_not_one by blast
    with A1 show
        \negIsBoundedAbove(A,IntegerOrder)
        A }\not\in\operatorname{Fin}(\mathbb{Z}
        using Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L2A
        by auto
qed
```

end

42 Integers 1

theory Int_ZF_1 imports Int_ZF_IML OrderedRing_ZF
begin
This theory file considers the set of integers as an ordered ring.

42.1 Integers as a ring

In this section we show that integers form a commutative ring.
The next lemma provides the condition to show that addition is distributive with respect to multiplication.

```
lemma (in int0) Int_ZF_1_1_L1: assumes A1: a\in\mathbb{Z}}\textrm{b}\in\mathbb{Z
    shows
    a\cdot(b+c) = a b b + a c
    (b+c)\cdota = b}\cdot\textrm{a}+\textrm{c}\cdot\textrm{a
    using assms Int_ZF_1_L2 zadd_zmult_distrib zadd_zmult_distrib2
    by auto
```

Integers form a commutative ring, hence we can use theorems proven in ring0 context (locale).

```
lemma (in int0) Int_ZF_1_1_L2: shows
    IsAring ( \(\mathbb{Z}\), IntegerAddition, IntegerMultiplication)
    IntegerMultiplication \{is commutative on\} \(\mathbb{Z}\)
    ring0( \(\mathbb{Z}\), IntegerAddition, IntegerMultiplication)
proof -
    have \(\forall \mathrm{a} \in \mathbb{Z} . \forall \mathrm{b} \in \mathbb{Z} . \forall \mathrm{c} \in \mathbb{Z}\).
        \(\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \cdot \mathrm{c} \wedge(\mathrm{b}+\mathrm{c}) \cdot \mathrm{a}=\mathrm{b} \cdot \mathrm{a}+\mathrm{c} \cdot \mathrm{a}\)
        using Int_ZF_1_1_L1 by simp
    then have IsDistributive( \(\mathbb{Z}\),IntegerAddition, IntegerMultiplication)
        using IsDistributive_def by simp
    then show IsAring( \(\mathbb{Z}\),IntegerAddition, IntegerMultiplication)
        ring0( \(\mathbb{Z}\), IntegerAddition, IntegerMultiplication)
```

using Int_ZF_1_T1 Int_ZF_1_T2 IsAring_def ring0_def by auto
have $\forall \mathrm{a} \in \mathbb{Z} . \forall \mathrm{b} \in \mathbb{Z} . \mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$ using Int_ZF_1_L4 by simp then show IntegerMultiplication \{is commutative on\} \mathbb{Z} using IsCommutative_def by simp
qed
Zero and one are integers.
lemma (in int0) int_zero_one_are_int: shows $\mathbf{0} \in \mathbb{Z} \quad 1 \in \mathbb{Z}$ using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L2 by auto

Negative of zero is zero.

```
lemma (in int0) int_zero_one_are_intA: shows (-0) = 0
    using Int_ZF_1_T2 group0.group_inv_of_one by simp
```

Properties with one integer.

```
lemma (in int0) Int_ZF_1_1_L4: assumes A1: \(a \in \mathbb{Z}\)
    shows
    \(a+0=a\)
    \(0+a=a\)
    \(a \cdot 1=a \quad 1 \cdot a=a\)
    \(0 \cdot \mathrm{a}=0 \quad \mathrm{a} \cdot 0=0\)
    \((-a) \in \mathbb{Z}(-(-a))=a\)
    \(\mathrm{a}-\mathrm{a}=\mathbf{0} \quad \mathrm{a}-\mathbf{0}=\mathrm{a} \quad 2 \cdot \mathrm{a}=\mathrm{a}+\mathrm{a}\)
proof -
    from A1 show
        \(a+0=a \quad 0+a=a \quad a \cdot 1=a\)
        \(1 \cdot a=a \quad a-a=0 \quad a-0=a\)
        \((-a) \in \mathbb{Z} \quad 2 \cdot a=a+a \quad(-(-a))=a\)
        using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L3 by auto
    from A1 show \(0 \cdot \mathrm{a}=0 \quad \mathrm{a} \cdot 0=0\)
        using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L6 by auto
qed
```

Properties that require two integers.

```
lemma (in int0) Int_ZF_1_1_L5: assumes \(a \in \mathbb{Z} \quad b \in \mathbb{Z}\)
    shows
    \(\mathrm{a}+\mathrm{b} \in \mathbb{Z}\)
    \(\mathrm{a}-\mathrm{b} \in \mathbb{Z}\)
    \(\mathrm{a} \cdot \mathrm{b} \in \mathbb{Z}\)
    \(\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}\)
    \(\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}\)
    \((-\mathrm{b})-\mathrm{a}=(-\mathrm{a})-\mathrm{b}\)
    \((-(a+b))=(-a)-b\)
    \((-(a-b))=((-a)+b)\)
    \((-a) \cdot b=-(a \cdot b)\)
    \(\mathrm{a} \cdot(-\mathrm{b})=-(\mathrm{a} \cdot \mathrm{b})\)
    \((-a) \cdot(-b)=a \cdot b\)
```

```
using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L9
    ring0.Ring_ZF_1_L7 ring0.Ring_ZF_1_L7A Int_ZF_1_L4 by auto
```

2 and 3 are integers.

```
lemma (in int0) int_two_three_are_int: shows 2 }\in\mathbb{Z
    using int_zero_one_are_int Int_ZF_1_1_L5 by auto
```

Another property with two integers.

```
lemma (in int0) Int_ZF_1_1_L5B:
    assumes }a\in\mathbb{Z}\quadb\in\mathbb{Z
    shows a-(-b) = a+b
    using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L9
    by simp
```

Properties that require three integers.

```
lemma (in int0) Int_ZF_1_1_L6: assumes a\in\mathbb{Z}}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z
    shows
    a-(b+c) = a-b-c
    a-(b-c) = a-b+c
    a\cdot(b-c) = a\cdotb - a\cdotc
    (b-c)\cdota = b}\cdot\textrm{a}-\textrm{c}\cdot\textrm{a
    using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L10 ring0.Ring_ZF_1_L8
    by auto
```

One more property with three integers.

```
lemma (in int0) Int_ZF_1_1_L6A: assumes a\in\mathbb{Z }}\textrm{b}\in\mathbb{Z
    shows a+(b-c) = a+b-c
    using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L10A by simp
```

Associativity of addition and multiplication.

```
lemma (in int0) Int_ZF_1_1_L7: assumes \(a \in \mathbb{Z} b \in \mathbb{Z} \quad c \in \mathbb{Z}\)
    shows
    \(a+b+c=a+(b+c)\)
    \(\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})\)
    using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L11 by auto
```


42.2 Rearrangement lemmas

In this section we collect lemmas about identities related to rearranging the terms in expresssions

A formula with a positive integer.
lemma (in int0) Int_ZF_1_2_L1: assumes $0 \leq a$
shows abs(a) $+1=a b s(a+1)$
using assms Int_ZF_2_L16 Int_ZF_2_L12A by simp
A formula with two integers, one positive.

```
lemma (in int0) Int_ZF_1_2_L2: assumes A1: a\in\mathbb{Z and A2: 0\leqb}
    shows a+(abs(b)+1)\cdota=(abs(b+1)+1)\cdota
proof -
    from A2 have abs(b+1) \in\mathbb{Z}
        using Int_ZF_2_L12A Int_ZF_2_L1A Int_ZF_2_L14 by blast
    with A1 A2 show thesis
        using Int_ZF_1_2_L1 Int_ZF_1_1_L2 ring0.Ring_ZF_2_L1
        by simp
qed
```

A couple of formulae about canceling opposite integers.
lemma (in int0) Int_ZF_1_2_L3: assumes A1: $a \in \mathbb{Z} \quad b \in \mathbb{Z}$ shows
$\mathrm{a}+\mathrm{b}-\mathrm{a}=\mathrm{b}$
$a+(b-a)=b$
$a+b-b=a$
$a-b+b=a$
$(-a)+(a+b)=b$
$\mathrm{a}+(\mathrm{b}-\mathrm{a})=\mathrm{b}$
$(-b)+(a+b)=a$
$a-(b+a)=-b$
$a-(a+b)=-b$
$a-(a-b)=b$
$a-b-a=-b$
$\mathrm{a}-\mathrm{b}-(\mathrm{a}+\mathrm{b})=(-\mathrm{b})-\mathrm{b}$
using assms Int_ZF_1_T2 group0.group0_4_L6A group0.inv_cancel_two
group0.group0_2_L16A group0.group0_4_L6AA group0.group0_4_L6AB
group0.group0_4_L6F group0.group0_4_L6AC by auto

Subtracting one does not increase integers. This may be moved to a theory about ordered rings one day.

```
lemma (in int0) Int_ZF_1_2_L3A: assumes A1: a\leqb
    shows a-1 \leq b
proof -
    from A1 have b+1-1 = b
        using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_2_L3 by simp
    moreover from A1 have a-1 \leq b+1-1
        using Int_ZF_2_L12A int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
        by simp
    ultimately show a-1 \leq b by simp
qed
```

Subtracting one does not increase integers, special case.

```
    a-1 \leqa
    a-1 # a
    \neg ( a \leq a - 1 )
    \neg ( a + 1 \leq a )
```

lemma (in int0) Int_ZF_1_2_L3AA:
assumes A1: $a \in \mathbb{Z}$ shows

```
    \neg ( 1 + a ~ < a ) ~
proof -
    from A1 have a\leqa using int_ord_is_refl refl_def
        by simp
    then show a-1 \leqa using Int_ZF_1_2_L3A
        by simp
    moreover from A1 show a-1 f= a using Int_ZF_1_L14 by simp
    ultimately show I: }\neg(\textrm{a}<\textrm{a}-1)\mathrm{ using Int_ZF_2_L19AA
        by blast
    with A1 show }\neg(a+1\leqa
        using int_zero_one_are_int Int_ZF_2_L9B by simp
    with A1 show }\neg(1+a\leqa
        using int_zero_one_are_int Int_ZF_1_1_L5 by simp
qed
```

A formula with a nonpositive integer.

```
lemma (in int0) Int_ZF_1_2_L4: assumes a\leq0
    shows abs(a)+1 = abs(a-1)
    using assms int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_T1
        group3.OrderedGroup_ZF_3_L3A Int_ZF_2_L1A
        int_zero_one_are_int Int_ZF_1_1_L5 by simp
```

A formula with two integers, one negative.
lemma (in int0) Int_ZF_1_2_L5: assumes A1: $a \in \mathbb{Z}$ and A2: $b \leq 0$
shows $a+(a b s(b)+1) \cdot a=(a b s(b-1)+1) \cdot a$
proof -
from A2 have abs $(b-1) \in \mathbb{Z}$
using int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_L1A Int_ZF_2_L14
by blast
with A1 A2 show thesis
using Int_ZF_1_2_L4 Int_ZF_1_1_L2 ring0.Ring_ZF_2_L1
by simp
qed
A rearrangement with four integers.

```
lemma (in int0) Int_ZF_1_2_L6:
    assumes A1: \(a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z} \quad d \in \mathbb{Z}\)
    shows
    \(a-(b-1) \cdot c=(d-b \cdot c)-(d-a-c)\)
proof -
    from A1 have T1:
        \((\mathrm{d}-\mathrm{b} \cdot \mathrm{c}) \in \mathbb{Z} \mathrm{d}-\mathrm{a} \in \mathbb{Z}(-(\mathrm{b} \cdot \mathrm{c})) \in \mathbb{Z}\)
        using Int_ZF_1_1_L5 Int_ZF_1_1_L4 by auto
    with A1 have
        \((d-b \cdot c)-(d-a-c)=(-(b \cdot c))+a+c\)
        using Int_ZF_1_1_L6 Int_ZF_1_2_L3 by simp
    also from A1 T1 have \((-(b \cdot c))+a+c=a-(b-1) \cdot c\)
        using int_zero_one_are_int Int_ZF_1_1_L6 Int_ZF_1_1_L4 Int_ZF_1_1_L5
```

```
        by simp
    finally show thesis by simp
qed
```

Some other rearrangements with two integers.

```
lemma (in int0) Int_ZF_1_2_L7: assumes a\in\mathbb{Z}}\textrm{b}\in\mathbb{Z
```

 shows
 \(a \cdot b=(a-1) \cdot b+b\)
 \(a \cdot(b+1)=a \cdot b+a\)
 \((b+1) \cdot a=b \cdot a+a\)
 \((b+1) \cdot a=a+b \cdot a\)
 using assms Int_ZF_1_1_L1 Int_ZF_1_1_L5 int_zero_one_are_int
 Int_ZF_1_1_L6 Int_ZF_1_1_L4 Int_ZF_1_T2 group0.inv_cancel_two
 by auto
 Another rearrangement with two integers.

```
lemma (in int0) Int_ZF_1_2_L8:
    assumes A1: a\in\mathbb{Z b}b\in\mathbb{Z}
    shows a+1+(b+1) = b+a+2
    using assms int_zero_one_are_int Int_ZF_1_T2 group0.group0_4_L8
    by simp
```

A couple of rearrangement with three integers.

```
lemma (in int0) Int_ZF_1_2_L9:
    assumes \(a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z}\)
    shows
    \((a-b)+(b-c)=a-c\)
    \((a-b)-(a-c)=c-b\)
    \(a+(b+(c-a-b))=c\)
    \((-a)-b+c=c-a-b\)
    (-b) \(-\mathrm{a}+\mathrm{c}=\mathrm{c}-\mathrm{a}-\mathrm{b}\)
    \((-((-a)+b+c))=a-b-c\)
    \(a+b+c-a=b+c\)
    \(a+b-(a+c)=b-c\)
    using assms Int_ZF_1_T2
        group0.group0_4_L4B group0.group0_4_L6D group0.group0_4_L4D
        group0.group0_4_L6B group0.group0_4_L6E
    by auto
```

Another couple of rearrangements with three integers.

```
lemma (in int0) Int_ZF_1_2_L9A:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z
    shows (- (a-b-c)) = c+b-a
proof -
    from A1 have T:
        a-b }\in\mathbb{Z}\quad(-(a-b))\in\mathbb{Z}\quad(-b)\in\mathbb{Z}\mathrm{ using
        Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto
    with A1 have (- (a-b-c)) = c - ((-b)+a)
```

```
        using Int_ZF_1_1_L5 by simp
    also from A1 T have ... = c+b-a
        using Int_ZF_1_1_L6 Int_ZF_1_1_L5B
        by simp
    finally show (-(a-b-c)) = c+b-a
        by simp
qed
```

Another rearrangement with three integers.

```
lemma (in int0) Int_ZF_1_2_L10:
    assumes A1: a\in\mathbb{Z}}b\in\mathbb{Z}\quadc\in\mathbb{Z
    shows (a+1)\cdotb + (c+1)\cdotb = (c+a+2)\cdotb
proof -
    from A1 have a+1 \in\mathbb{Z c+1 }\in\mathbb{Z}
        using int_zero_one_are_int Int_ZF_1_1_L5 by auto
    with A1 have
        (a+1)\cdotb + (c+1)\cdotb = (a+1+(c+1))\cdotb
        using Int_ZF_1_1_L1 by simp
    also from A1 have ... = (c+a+2)\cdotb
        using Int_ZF_1_2_L8 by simp
    finally show thesis by simp
qed
```

A technical rearrangement involing inequalities with absolute value.

```
lemma (in int0) Int_ZF_1_2_L10A:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z}\quade\in\mathbb{Z
    and A2: abs(a\cdotb-c) \leq d abs(b}\cdot\textrm{a}-\textrm{e})\leq\textrm{f
    shows abs(c-e) \leq f+d
proof -
    from A1 A2 have T1:
        d\in\mathbb{Z}\quadf\in\mathbb{Z}}\quad\textrm{a}\cdot\textrm{b}\in\mathbb{Z}\quad\textrm{a}\cdot\textrm{b}-c\in\mathbb{Z}\quad\textrm{b}\cdot\textrm{a}-\textrm{e}\in\mathbb{Z
        using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
    with A2 have
        abs((b\cdota-e)-(a\cdotb-c)) \leq f +d
        using Int_ZF_2_L21 by simp
    with A1 T1 show abs(c-e) \leq f+d
        using Int_ZF_1_1_L5 Int_ZF_1_2_L9 by simp
qed
Some arithmetics.
lemma (in int0) Int_ZF_1_2_L11: assumes A1: a\in\mathbb{Z}
    shows
    a+1+2 = a+3
    a = 2.a - a
proof -
    from A1 show a+1+2 = a+3
        using int_zero_one_are_int int_two_three_are_int Int_ZF_1_T2 group0.group0_4_L4C
        by simp
    from A1 show a = 2.a - a
```

using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 Int_ZF_1_T2
group0.inv_cancel_two
by simp
qed
A simple rearrangement with three integers.

```
lemma (in int0) Int_ZF_1_2_L12:
    assumes \(a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z}\)
    shows
    ( \(\mathrm{b}-\mathrm{c}\) ) \(\cdot \mathrm{a}=\mathrm{a} \cdot \mathrm{b}-\mathrm{a} \cdot \mathrm{c}\)
    using assms Int_ZF_1_1_L6 Int_ZF_1_1_L5 by simp
```

A big rearrangement with five integers.

```
lemma (in int0) Int_ZF_1_2_L13:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z}\quadd\in\mathbb{Z}\quadx\in\mathbb{Z
    shows (x+(a\cdotx+b)+c)\cdotd=d\cdot(a+1)\cdotx + (b\cdotd+c\cdotd)
proof -
    from A1 have T1:
        a\cdotx}\in\mathbb{Z}\quad(a+1)\cdotx\in\mathbb{Z
        (a+1)\cdotx+b}\in\mathbb{Z
        using Int_ZF_1_1_L5 int_zero_one_are_int by auto
    with A1 have ( }\textrm{x}+(\textrm{a}\cdot\textrm{x}+\textrm{b})+\textrm{c})\cdot\textrm{d}=((a+1)\cdotx+b)\cdotd+c\cdot
        using Int_ZF_1_1_L7 Int_ZF_1_2_L7 Int_ZF_1_1_L1
        by simp
    also from A1 T1 have ... = (a+1)\cdotx\cdotd + b . d + c.d
        using Int_ZF_1_1_L1 by simp
    finally have ( }x+(a\cdotx+b)+c)\cdotd=(a+1)\cdotx\cdotd+b\cdotd+c\cdot
        by simp
    moreover from A1 T1 have (a+1)\cdotx\cdotd = d\cdot(a+1)\cdotx
        using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_1_L7 by simp
    ultimately have (x+(a\cdotx+b)+c)\cdotd = d}\cdot(a+1)\cdotx+b\cdotd+c\cdot
        by simp
    moreover from A1 T1 have
        d\cdot(a+1)\cdotx }\in\mathbb{Z}\quadb\cdotd\in\mathbb{Z}\quadc\cdotd\in\mathbb{Z
        using int_zero_one_are_int Int_ZF_1_1_L5 by auto
    ultimately show thesis using Int_ZF_1_1_L7 by simp
qed
```

Rerrangement about adding linear functions.
lemma (in int0) Int_ZF_1_2_L14:
assumes $a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z} \quad d \in \mathbb{Z} \quad x \in \mathbb{Z}$
shows $(a \cdot x+b)+(c \cdot x+d)=(a+c) \cdot x+(b+d)$
using assms Int_ZF_1_1_L2 ring0.Ring_ZF_2_L3 by simp
A rearrangement with four integers. Again we have to use the generic set notation to use a theorem proven in different context.
lemma (in int0) Int_ZF_1_2_L15: assumes A1: $a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z} \quad d \in \mathbb{Z}$ and A2: $\mathrm{a}=\mathrm{b}-\mathrm{c}-\mathrm{d}$

shows

```
    \(d=b-a-c\)
    \(d=(-a)+b-c\)
    \(b=a+d+c\)
proof -
    let \(G=\) int
    let \(f=\) IntegerAddition
    from A1 A2 have I:
        group0 (G, f) \(f\) \{is commutative on\} \(G\)
        \(a \in G \quad b \in G c \in G \quad d \in G\)
        \(a=f\langle f\langle b, \operatorname{GroupInv}(G, f)(c)\rangle, \operatorname{GroupInv}(G, f)(d)\rangle\)
        using Int_ZF_1_T2 by auto
    then have
        \(d=f\langle f\langle b, \operatorname{Group} \operatorname{Inv}(G, f)(a)\rangle, \operatorname{GroupInv}(G, f)(c)\rangle\)
        by (rule group0.group0_4_L9)
    then show \(d=b-a-c\) by simp
    from I have \(d=f\langle f\langle\operatorname{GroupInv}(G, f)(a), b\rangle\), \(\operatorname{GroupInv}(G, f)(c)\rangle\)
        by (rule group0.group0_4_L9)
    thus \(d=(-a)+b-c\)
        by simp
    from I have \(b=f\langle f\langle a, d\rangle, c\rangle\)
        by (rule group0.group0_4_L9)
    thus \(b=a+d+c\) by simp
qed
A rearrangement with four integers. Property of groups.
```

```
lemma (in int0) Int_ZF_1_2_L16:
```

lemma (in int0) Int_ZF_1_2_L16:
assumes }a\in\mathbb{Z}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z}\quadd\in\mathbb{Z
assumes }a\in\mathbb{Z}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z}\quadd\in\mathbb{Z
shows a+(b-c)+d = a+b+d-c
shows a+(b-c)+d = a+b+d-c
using assms Int_ZF_1_T2 group0.group0_4_L8 by simp

```
    using assms Int_ZF_1_T2 group0.group0_4_L8 by simp
```

Some rearrangements with three integers. Properties of groups.

```
lemma (in int0) Int_ZF_1_2_L17:
    assumes A1: a\in\mathbb{Z }}\textrm{b}\in\mathbb{Z}\quadc\in\mathbb{Z
    shows
    a+b-c+(c-b) = a
    a+(b+c)-c = a+b
proof -
    let G = int
    let f = IntegerAddition
    from A1 have I:
        group0(G, f)
        a}\inG\quadb\inG\quadc\in
        using Int_ZF_1_T2 by auto
    then have
            f {f ff a,b\rangle,GroupInv(G, f)(c)\rangle,f\langlec,GroupInv(G, f)(b) )\rangle = a
            by (rule group0.group0_2_L14A)
    thus a+b-c+(c-b) = a by simp
    from I have
```

```
        f {f {a,f fb,c\rangle\rangle,GroupInv(G, f)(c)\rangle=f fa,b\rangle
        by (rule group0.group0_2_L14A)
    thus a+(b+c)-c = a+b by simp
qed
```

Another rearrangement with three integers. Property of abelian groups.

```
lemma (in int0) Int_ZF_1_2_L18:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z
    shows a+b-c+(c-a) = b
proof -
    let G = int
    let f = IntegerAddition
    from A1 have
        group0(G, f) f {is commutative on} G
        a \inG b G G c \inG
        using Int_ZF_1_T2 by auto
    then have
        f}\langlef\langlef\langlea,b\rangle,GroupInv(G, f)(c)\rangle,f f c,GroupInv(G, f)(a) \\rangle = b
        by (rule group0.group0_4_L6D)
    thus a+b-c+(c-a) = b by simp
qed
```


42.3 Integers as an ordered ring

We already know from Int_ZF that integers with addition form a linearly ordered group. To show that integers form an ordered ring we need the fact that the set of nonnegative integers is closed under multiplication.

We start with the property that a product of nonnegative integers is nonnegative. The proof is by induction and the next lemma is the induction step.

```
lemma (in int0) Int_ZF_1_3_L1: assumes A1: 0\leqa 0\leqb
    and A3: 0 \leq a b
    shows 0 \leq a (b+1)
proof -
    from A1 A3 have 0+0 \leq a\cdotb+a
        using int_ineq_add_sides by simp
    with A1 show 0}\leqa\cdot(b+1
        using int_zero_one_are_int Int_ZF_1_1_L4 Int_ZF_2_L1A Int_ZF_1_2_L7
        by simp
qed
```

Product of nonnegative integers is nonnegative.

```
lemma (in int0) Int_ZF_1_3_L2: assumes A1: 0\leqa 0\leqb
    shows 0\leqa\cdotb
proof -
    from A1 have 0\leqb by simp
```

```
    moreover from A1 have 0 \leq a.0 using
        Int_ZF_2_L1A Int_ZF_1_1_L4 int_zero_one_are_int int_ord_is_refl refl_def
        by simp
    moreover from A1 have
        \forallm. 0}\leq\textrm{m}\wedge \ 0 a a m \longrightarrow 0 \leq a (m+1)
        using Int_ZF_1_3_L1 by simp
    ultimately show 0\leqa\cdotb by (rule Induction_on_int)
qed
```

The set of nonnegative integers is closed under multiplication.

```
lemma (in int0) Int_ZF_1_3_L2A: shows
    Z}\mp@subsup{\mathbb{Z}}{}{+}\mathrm{ {is closed under} IntegerMultiplication
proof -
```



```
        then have a\cdotb }\in\mp@subsup{\mathbb{Z}}{}{+
            using Int_ZF_1_3_L2 Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2
            by simp
    } then have }\forall\textrm{a}\in\mp@subsup{\mathbb{Z}}{}{+}.\forall\textrm{b}\in\mp@subsup{\mathbb{Z}}{}{+}.\textrm{a}\cdot\textrm{b}\in\mp@subsup{\mathbb{Z}}{}{+}\mathrm{ by simp
    then show thesis using IsOpClosed_def by simp
qed
```

Integers form an ordered ring. All theorems proven in the ring1 context are valid in int0 context.

```
theorem (in int0) Int_ZF_1_3_T1: shows
    IsAnOrdRing(\mathbb{Z},IntegerAddition,IntegerMultiplication,IntegerOrder)
    ring1(\mathbb{Z},IntegerAddition,IntegerMultiplication,IntegerOrder)
    using Int_ZF_1_1_L2 Int_ZF_2_L1B Int_ZF_1_3_L2A Int_ZF_2_T1
        OrdRing_ZF_1_L6 OrdRing_ZF_1_L2 by auto
```

Product of integers that are greater that one is greater than one. The proof is by induction and the next step is the induction step.

```
lemma (in int0) Int_ZF_1_3_L3_indstep:
    assumes A1: 1\leqa 1\leqb
    and A2: 1 \leq a.b
    shows 1 \leqa.(b+1)
proof -
    from A1 A2 have 1\leq2 and 2 \leq a (b+1)
            using Int_ZF_2_L1A int_ineq_add_sides Int_ZF_2_L16B Int_ZF_1_2_L7
        by auto
    then show 1 \leqa\cdot(b+1) by (rule Int_order_transitive)
qed
Product of integers that are greater that one is greater than one.
```

```
lemma (in int0) Int_ZF_1_3_L3:
```

lemma (in int0) Int_ZF_1_3_L3:
assumes A1: 1\leqa 1\leqb
assumes A1: 1\leqa 1\leqb
shows 1 \leqa\cdotb
shows 1 \leqa\cdotb
proof -

```
proof -
```

```
    from A1 have 1\leqb 1\leqa.1
        using Int_ZF_2_L1A Int_ZF_1_1_L4 by auto
    moreover from A1 have
        \forallm. 1\leqm ^ 1 \leq a m \longrightarrow 1 \leqa.(m+1)
        using Int_ZF_1_3_L3_indstep by simp
    ultimately show 1 \leq a b by (rule Induction_on_int)
qed
|a\cdot(-b)| = |(-a)\cdotb| = |(-a)\cdot(-b)| = |a\cdotb| This is a property of ordered
rings..
lemma (in int0) Int_ZF_1_3_L4: assumes a\in\mathbb{Z}}\textrm{b}\in\mathbb{Z
    shows
    abs((-a)\cdotb) = abs(a\cdotb)
    abs(a.(-b)) = abs(a\cdotb)
    abs((-a)\cdot(-b)) = abs(a\cdotb)
    using assms Int_ZF_1_1_L5 Int_ZF_2_L17 by auto
```

Absolute value of a product is the product of absolute values. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L5:
assumes $A 1: a \in \mathbb{Z} \quad b \in \mathbb{Z}$
shows abs (a•b) = abs(a) \cdot abs (b)
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_2_L5 by simp
Double nonnegative is nonnegative. Property of ordered rings.

```
lemma (in int0) Int_ZF_1_3_L5A: assumes 0\leqa
    shows 0\leq2•a
    using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L5A by simp
```

The next lemma shows what happens when one integer is not greater or equal than another.

```
lemma (in int0) Int_ZF_1_3_L6:
    assumes \(A 1: a \in \mathbb{Z} \quad b \in \mathbb{Z}\)
    shows \(\neg(\mathrm{b} \leq \mathrm{a}) \longleftrightarrow \mathrm{a}+1 \leq \mathrm{b}\)
proof
    assume A3: \(\neg(b \leq a)\)
    with A1 have \(a \leq b\) by (rule Int_ZF_2_L19)
    then have \(\mathrm{a}=\mathrm{b} \quad \vee \quad \mathrm{a}+1 \leq \mathrm{b}\)
            using Int_ZF_4_L1B by simp
    moreover from A1 A3 have \(\mathrm{a} \neq \mathrm{b}\) by (rule Int_ZF_2_L19)
    ultimately show \(\mathrm{a}+1 \leq \mathrm{b}\) by simp
next assume A4: \(\mathrm{a}+1 \leq \mathrm{b}\)
    \{ assume \(\mathrm{b} \leq \mathrm{a}\)
            with A4 have a+1 \(\leq\) a by (rule Int_order_transitive)
            moreover from \(A 1\) have \(a \leq a+1\)
                using Int_ZF_2_L12B by simp
            ultimately have \(a+1=a\)
                by (rule Int_ZF_2_L3)
```

with A1 have False using Int_ZF_1_L14 by simp
\} then show $\neg(\mathrm{b} \leq \mathrm{a})$ by auto
qed
Another form of stating that there are no integers between integers m and $m+1$.
corollary (in int0) no_int_between: assumes A1: $a \in \mathbb{Z} \quad b \in \mathbb{Z}$
shows $\mathrm{b} \leq \mathrm{a} \vee \mathrm{a}+1 \leq \mathrm{b}$
using A1 Int_ZF_1_3_L6 by auto
Another way of saying what it means that one integer is not greater or equal than another.

```
corollary (in int0) Int_ZF_1_3_L6A:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z}\mathrm{ and A2: }\neg(b\leqa
    shows a }\leq\textrm{b}-
proof -
    from A1 A2 have a+1 - 1 \leqb - 1
        using Int_ZF_1_3_L6 int_zero_one_are_int Int_ZF_1_1_L4
            int_ord_transl_inv by simp
    with A1 show a \leq b-1
        using int_zero_one_are_int Int_ZF_1_2_L3
        by simp
qed
```

Yet another form of stating that there are nointegers between m and $m+1$.
lemma (in int0) no_int_between1:
assumes A1: $\mathrm{a} \leq \mathrm{b}$ and A2: $\mathrm{a} \neq \mathrm{b}$
shows
$\mathrm{a}+1 \leq \mathrm{b}$
$\mathrm{a} \leq \mathrm{b}-1$
proof -
from $A 1$ have $T: a \in \mathbb{Z} \quad b \in \mathbb{Z}$ using Int_ZF_2_L1A
by auto
\{ assume $\mathrm{b} \leq \mathrm{a}$
with A1 have $\mathrm{a}=\mathrm{b}$ by (rule Int_ZF_2_L3)
with A2 have False by simp \}
then have $\neg(b \leq a)$ by auto
with T show
$\mathrm{a}+1 \leq \mathrm{b}$
$\mathrm{a} \leq \mathrm{b}-1$
using no_int_between Int_ZF_1_3_L6A by auto
qed

We can decompose proofs into three cases: $a=b, a \leq b-1 b$ or $a \geq b+1 b$.

```
lemma (in int0) Int_ZF_1_3_L6B: assumes A1: a\in\mathbb{Z}
    shows a=b \vee (a\leqb-1) \vee ( }\textrm{b}+1\leq\textrm{a}
proof -
    from A1 have a=b \vee (a\leqb ^ a\not=b) \vee (b\leqa ^ b\not=a)
```

```
        using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L31
        by simp
    then show thesis using no_int_between1
    by auto
qed
```

A special case of Int_ZF_1_3_L6B when $b=0$. This allows to split the proofs in cases $a \leq-1, a=0$ and $a \geq 1$.
corollary (in int0) Int_ZF_1_3_L6C: assumes A1: $a \in \mathbb{Z}$
shows $a=0 \vee(a \leq-1) \vee(1 \leq a)$
proof -
from A1 have $a=0 \vee(a \leq 0-1) \vee(0+1 \leq a)$
using int_zero_one_are_int Int_ZF_1_3_L6B by simp
then show thesis using Int_ZF_1_1_L4 int_zero_one_are_int by simp
qed
An integer is not less or equal zero iff it is greater or equal one.

```
lemma (in int0) Int_ZF_1_3_L7: assumes a\in\mathbb{Z}
    shows }\neg(\textrm{a}\0)\longleftrightarrow\mathbf{0}\leq
    using assms int_zero_one_are_int Int_ZF_1_3_L6 Int_ZF_1_1_L4
    by simp
```

Product of positive integers is positive.

```
lemma (in int0) Int_ZF_1_3_L8:
    assumes a\in\mathbb{Z}}\quadb\in\mathbb{Z
    and}\neg(\textrm{a}\leq0) \neg(\textrm{b}\leq0
    shows }\neg((a\cdotb)\leq0
    using assms Int_ZF_1_3_L7 Int_ZF_1_3_L3 Int_ZF_1_1_L5 Int_ZF_1_3_L7
    by simp
```

If $a \cdot b$ is nonnegative and b is positive, then a is nonnegative. Proof by contradiction.
lemma (in int0) Int_ZF_1_3_L9:
assumes $A 1: a \in \mathbb{Z} \quad b \in \mathbb{Z}$
and $\mathrm{A} 2: ~ \neg(\mathrm{~b} \leq \mathbf{0})$ and $\mathrm{A} 3: \mathrm{a} \cdot \mathrm{b} \leq \mathbf{0}$
shows $\mathrm{a} \leq 0$
proof -
\{ assume $\neg(\mathrm{a} \leq 0)$
with A1 A2 have $\neg((a \cdot b) \leq 0)$ using Int_ZF_1_3_L8
by simp
$\}$ with A3 show $\mathrm{a} \leq 0$ by auto
qed
One integer is less or equal another iff the difference is nonpositive.

```
lemma (in int0) Int_ZF_1_3_L10:
    assumes a\in\mathbb{Z}}\quadb\in\mathbb{Z
    shows }\textrm{a}\leq\textrm{b}\longleftrightarrow\textrm{a}-\textrm{b}\leq
```

```
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9
```

by simp

Some conclusions from the fact that one integer is less or equal than another.

```
lemma (in int0) Int_ZF_1_3_L10A: assumes a\leqb
    shows 0}\leq\textrm{b}-\textrm{a
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L12A
    by simp
```

We can simplify out a positive element on both sides of an inequality.

```
lemma (in int0) Int_ineq_simpl_positive:
    assumes \(A 1: a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z}\)
    and \(\mathrm{A} 2: \mathrm{a} \cdot \mathrm{c} \leq \mathrm{b} \cdot \mathrm{c}\) and \(\mathrm{A} 4: ~ \neg(\mathrm{c} \leq \mathbf{0})\)
    shows \(\mathrm{a} \leq \mathrm{b}\)
proof -
    from A1 A4 have \(a-b \in \mathbb{Z} \quad c \in \mathbb{Z} \quad \neg(c \leq 0)\)
            using Int_ZF_1_1_L5 by auto
    moreover from A1 A2 have (a-b).c \(\leq 0\)
            using Int_ZF_1_1_L5 Int_ZF_1_3_L10 Int_ZF_1_1_L6
            by simp
    ultimately have \(\mathrm{a}-\mathrm{b} \leq 0\) by (rule Int_ZF_1_3_L9)
    with A1 show \(\mathrm{a} \leq \mathrm{b}\) using Int_ZF_1_3_L10 by simp
qed
```

A technical lemma about conclusion from an inequality between absolute values. This is a property of ordered rings.

```
lemma (in int0) Int_ZF_1_3_L11:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z
    and A2: }\neg\mathrm{ (abs(a) < abs(b))
    shows }\neg(abs(a)\leq0
proof -
    { assume abs(a) \leq 0
            moreover from A1 have 0 \leq abs(a) using int_abs_nonneg
                by simp
            ultimately have abs(a) = 0 by (rule Int_ZF_2_L3)
            with A1 A2 have False using int_abs_nonneg by simp
    } then show }\neg(abs(a)\leq0) by aut
qed
```

Negative times positive is negative. This a property of ordered rings.

```
lemma (in int0) Int_ZF_1_3_L12:
    assumes a\leq0 and 0\leqb
    shows a\cdotb \leq 0
    using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L8
    by simp
```

We can multiply an inequality by a nonnegative number. This is a property of ordered rings.

```
lemma (in int0) Int_ZF_1_3_L13:
    assumes A1: a\leqb and A2: 0\leqc
    shows
    a}\cdot\textrm{c}\leq\textrm{b}\cdot\textrm{c
    c\cdota}\leqc\cdot
    using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L9 by auto
```

A technical lemma about decreasing a factor in an inequality.

```
lemma (in int0) Int_ZF_1_3_L13A:
    assumes 1\leqa and b\leqc and (a+1)\cdotc }\leq\textrm{d
    shows (a+1)\cdotb\leqd
proof -
    from assms have
        (a+1)\cdotb\leq (a+1)\cdotc
        (a+1)\cdotc}\leq\textrm{d
        using Int_ZF_2_L16C Int_ZF_1_3_L13 by auto
    then show (a+1)\cdotb \leq d by (rule Int_order_transitive)
qed
```

We can multiply an inequality by a positive number. This is a property of ordered rings.
lemma (in int0) Int_ZF_1_3_L13B:
assumes A1: $\mathrm{a} \leq \mathrm{b}$ and A2: $\mathrm{c} \in \mathbb{Z}_{+}$
shows
$\mathrm{a} \cdot \mathrm{c} \leq \mathrm{b} \cdot \mathrm{c}$
$\mathrm{c} \cdot \mathrm{a} \leq \mathrm{c} \cdot \mathrm{b}$
proof -
let $R=\mathbb{Z}$
let $A=$ IntegerAddition
let $M=$ IntegerMultiplication
let $r=$ IntegerOrder
from A1 A2 have
ring1(R, A, M, r)
$\langle a, b\rangle \in r$
$c \in \operatorname{PositiveSet}(R, A, r)$
using Int_ZF_1_3_T1 by auto
then show
$\mathrm{a} \cdot \mathrm{c} \leq \mathrm{b} \cdot \mathrm{c}$
$\mathrm{c} \cdot \mathrm{a} \leq \mathrm{c} \cdot \mathrm{b}$
using ring1.OrdRing_ZF_1_L9A by auto
qed

A rearrangement with four integers and absolute value.
lemma (in int0) Int_ZF_1_3_L14:
assumes $A 1: a \in \mathbb{Z} \quad b \in \mathbb{Z} \quad c \in \mathbb{Z} \quad d \in \mathbb{Z}$
shows abs $(a \cdot b)+(a b s(a)+c) \cdot d=(d+a b s(b)) \cdot a b s(a)+c \cdot d$
proof -
from A1 have T1:
abs(a) $\in \mathbb{Z}$ abs(b) $\in \mathbb{Z}$

```
        abs(a)\cdotabs(b) \in\mathbb{Z}
        abs(a)\cdotd}\in\mathbb{Z
        c.d }\in\mathbb{Z
        abs(b)+d}\in\mathbb{Z
        using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto
    with A1 have abs(a\cdotb)+(abs(a)+c)\cdotd = abs(a).(abs(b)+d)+c\cdotd
        using Int_ZF_1_3_L5 Int_ZF_1_1_L1 Int_ZF_1_1_L7 by simp
    with A1 T1 show thesis using Int_ZF_1_1_L5 by simp
```

qed

A technical lemma about what happens when one absolute value is not greater or equal than another.

```
lemma (in int0) Int_ZF_1_3_L15: assumes A1: m\in\mathbb{Z n}\\mathbb{Z}
    and A2: ᄀ(abs(m) \leq abs(n))
    shows n}\leq\mathrm{ abs(m) m}=\mathbf{0
proof -
    from A1 have T1: n \leq abs(n)
        using Int_ZF_2_L19C by simp
    from A1 have abs(n) \in\mathbb{Z}}\mathrm{ abs(m) }\in\mathbb{Z
        using Int_ZF_2_L14 by auto
    moreover note A2
    ultimately have abs(n) \leq abs(m)
        by (rule Int_ZF_2_L19)
    with T1 show n \leq abs(m) by (rule Int_order_transitive)
    from A1 A2 show m\not=0 using Int_ZF_2_L18 int_abs_nonneg by auto
qed
```

Negative of a nonnegative is nonpositive.

```
lemma (in int0) Int_ZF_1_3_L16: assumes A1: 0 \leq m
    shows (-m) \leq0
proof -
    from A1 have (-m) \leq (-0)
        using Int_ZF_2_L10 by simp
    then show (-m) \leq 0 using Int_ZF_1_L11
        by simp
qed
```

Some statements about intervals centered at 0 .
lemma (in int0) Int_ZF_1_3_L17: assumes A1: m $\in \mathbb{Z}$
shows
(-abs(m)) $\leq \operatorname{abs}(m)$
$(-\operatorname{abs}(m)) . . \operatorname{abs}(m) \neq 0$
proof -
from A1 have (-abs(m)) $\leq \mathbf{0} \mathbf{0} \leq \mathrm{abs}(\mathrm{m})$
using int_abs_nonneg Int_ZF_1_3_L16 by auto
then show (-abs(m)) \leq abs(m) by (rule Int_order_transitive)
then have abs $(m) \in(-a b s(m)) . . a b s(m)$
using int_ord_is_refl Int_ZF_2_L1A Order_ZF_2_L2 by simp
thus $(-\operatorname{abs}(m)) . \operatorname{abs}(m) \neq 0$ by auto
qed
The greater of two integers is indeed greater than both, and the smaller one is smaller that both.

```
lemma (in int0) Int_ZF_1_3_L18: assumes A1: \(m \in \mathbb{Z} \quad n \in \mathbb{Z}\)
    shows
    \(\mathrm{m} \leq\) GreaterOf (IntegerOrder, m,n)
    \(\mathrm{n} \leq\) GreaterOf (IntegerOrder, m,n)
    SmallerOf(IntegerOrder,m,n) \(\leq m\)
    SmallerOf(IntegerOrder,m,n) \(\leq n\)
    using assms Int_ZF_2_T1 Order_ZF_3_L2 by auto
If \(|m| \leq n\), then \(m \in-n . . n\).
lemma (in int0) Int_ZF_1_3_L19:
    assumes \(\mathrm{A} 1: \mathrm{m} \in \mathbb{Z}\) and \(\mathrm{A} 2: \operatorname{abs}(\mathrm{m}) \leq \mathrm{n}\)
    shows
    \((-\mathrm{n}) \leq \mathrm{m} \quad \mathrm{m} \leq \mathrm{n}\)
    \(m \in(-n) \ldots n\)
    \(\mathbf{0} \leq \mathrm{n}\)
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8
        group3.OrderedGroup_ZF_3_L8A Order_ZF_2_L1
    by auto
```

A slight generalization of the above lemma.

```
lemma (in int0) Int_ZF_1_3_L19A:
    assumes A1: m\in\mathbb{Z}}\mathrm{ and A2: abs (m) }\leqn\mathrm{ and A3: 0}\leq
    shows (-(n+k)) \leqm
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8B
    by simp
```

Sets of integers that have absolute value bounded are bounded.

```
lemma (in int0) Int_ZF_1_3_L20:
    assumes A1: }\forall\textrm{x}\in\textrm{X}.\textrm{b}(\textrm{x})\in\mathbb{Z}\wedge\textrm{abs}(\textrm{b}(\textrm{x}))\leq\textrm{L
    shows IsBounded({b(x). x\inX},IntegerOrder)
proof -
    let G = \mathbb{Z}
    let P = IntegerAddition
    let r = IntegerOrder
    from A1 have
        group3(G, P, r)
        r {is total on} G
        |x\inX. b(x) \inG ^ \langleAbsoluteValue(G, P, r) b(x), L\rangle\in r
        using Int_ZF_2_T1 by auto
    then show IsBounded({b(x). x\inX},IntegerOrder)
        by (rule group3.OrderedGroup_ZF_3_L9A)
qed
```

If a set is bounded, then the absolute values of the elements of that set are bounded.

```
lemma (in int0) Int_ZF_1_3_L20A: assumes IsBounded(A,IntegerOrder)
    shows }\exists\textrm{L}.\forall\textrm{a}\in\textrm{A}.\operatorname{abs}(\textrm{a})\leq\textrm{L
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L10A
    by simp
```

Absolute vaues of integers from a finite image of integers are bounded by an integer.

```
lemma (in int0) Int_ZF_1_3_L20AA:
    assumes A1: {b(x). x\in\mathbb{Z}}\inFin(\mathbb{Z})
    shows }\exists\textrm{L}\in\mathbb{Z}.\forall\textrm{x}\in\mathbb{Z}. abs(b(x)) \leq L
    using assms int_not_empty Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L11A
    by simp
```

If absolute values of values of some integer function are bounded, then the image a set from the domain is a bounded set.

```
lemma (in int0) Int_ZF_1_3_L20B:
    assumes \(f: X \rightarrow \mathbb{Z}\) and \(A \subseteq X\) and \(\forall x \in A\). abs \((f(x)) \leq L\)
    shows IsBounded( \(f(A)\),IntegerOrder)
proof -
    let \(G=\mathbb{Z}\)
    let \(\mathrm{P}=\) IntegerAddition
    let \(r=\) IntegerOrder
    from assms have
        group3(G, P, r)
        r \{is total on\} G
        \(\mathrm{f}: \mathrm{X} \rightarrow \mathrm{G}\)
        \(A \subseteq X\)
        \(\forall x \in A\). \(\langle\) AbsoluteValue (G, P, r) \((f(x)), L\rangle \in r\)
        using Int_ZF_2_T1 by auto
    then show IsBounded ( \(\mathrm{f}(\mathrm{A}\) ), r)
        by (rule group3.OrderedGroup_ZF_3_L9B)
qed
```

A special case of the previous lemma for a function from integers to integers.

```
corollary (in int0) Int_ZF_1_3_L20C:
    assumes f:\mathbb{Z}->\mathbb{Z}\mathrm{ and }\forall\textrm{m}\in\mathbb{Z}.abs(f(m)) \leqL
    shows f(\mathbb{Z})\in\operatorname{Fin}(\mathbb{Z})
proof -
    from assms have f:\mathbb{Z}->\mathbb{Z}\mathbb{Z}\subseteq\mathbb{Z}\quad\forallm\in\mathbb{Z}.abs(f(m)) \leqL
        by auto
    then have IsBounded(f(\mathbb{Z}),IntegerOrder)
        by (rule Int_ZF_1_3_L2OB)
    then show f(\mathbb{Z})\inFin(\mathbb{Z}) using Int_bounded_iff_fin
        by simp
qed
```

A triangle inequality with three integers. Property of linearly ordered abelian groups.

```
lemma (in int0) int_triangle_ineq3:
    assumes A1: a\in\mathbb{Z}}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z
    shows abs(a-b-c) \leq abs(a) + abs(b) + abs(c)
proof -
    from A1 have T: a-b }\in\mathbb{Z}\mathrm{ abs(c) }\in\mathbb{Z
        using Int_ZF_1_1_L5 Int_ZF_2_L14 by auto
    with A1 have abs(a-b-c) \leq abs(a-b) + abs(c)
        using Int_triangle_ineq1 by simp
    moreover from A1 T have
        abs(a-b) + abs(c) \leq abs(a) + abs(b) + abs(c)
        using Int_triangle_ineq1 int_ord_transl_inv by simp
    ultimately show thesis by (rule Int_order_transitive)
qed
```

If $a \leq c$ and $b \leq c$, then $a+b \leq 2 \cdot c$. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L21:
assumes A1: $a \leq c \quad b \leq c$ shows $a+b \leq 2 \cdot c$
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_2_L6 by simp

If an integer a is between b and $b+c$, then $|b-a| \leq c$. Property of ordered groups.

```
lemma (in int0) Int_ZF_1_3_L22:
    assumes }\textrm{a}\leq\textrm{b}\mathrm{ and }\textrm{c}\in\mathbb{Z}\mathrm{ and }\textrm{b}\leq\textrm{c}+\textrm{a
    shows abs(b-a) \leqc
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8C
    by simp
```

An application of the triangle inequality with four integers. Property of linearly ordered abelian groups.

```
lemma (in int0) Int_ZF_1_3_L22A:
    assumes }a\in\mathbb{Z}\quadb\in\mathbb{Z}\quadc\in\mathbb{Z}\quadd\in\mathbb{Z
    shows abs(a-c) \leq abs(a+b) + abs(c+d) + abs(b-d)
    using assms Int_ZF_1_T2 Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7F
    by simp
```

If an integer a is between b and $b+c$, then $|b-a| \leq c$. Property of ordered groups. A version of Int_ZF_1_3_L22 with sligtly different assumptions.

```
lemma (in int0) Int_ZF_1_3_L23:
    assumes A1: a\leqb and A2: c\in\mathbb{Z and A3: b}\leq a+c
    shows abs(b-a) \leqc
proof -
    from A1 have a }\in\mathbb{Z
        using Int_ZF_2_L1A by simp
    with A2 A3 have b\leq c+a
        using Int_ZF_1_1_L5 by simp
    with A1 A2 show abs(b-a) \leq c
        using Int_ZF_1_3_L22 by simp
qed
```


42.4 Maximum and minimum of a set of integers

In this section we provide some sufficient conditions for integer subsets to have extrema (maxima and minima).

Finite nonempty subsets of integers attain maxima and minima.

```
theorem (in int0) Int_fin_have_max_min:
    assumes A1: A }\in\operatorname{Fin}(\mathbb{Z})\mathrm{ and A2: A}\not=
    shows
    HasAmaximum(IntegerOrder,A)
    HasAminimum(IntegerOrder,A)
    Maximum(IntegerOrder,A) \in A
    Minimum(IntegerOrder,A) \in A
    |x\inA. x \leq Maximum(IntegerOrder,A)
    \forallx\inA. Minimum(IntegerOrder,A) \leq x
    Maximum(IntegerOrder,A) \in\mathbb{Z}
    Minimum(IntegerOrder,A) \in\mathbb{Z}
proof -
    from A1 have
        A=0 \vee HasAmaximum(IntegerOrder,A) and
        A=0 \vee HasAminimum(IntegerOrder,A)
        using Int_ZF_2_T1 Int_ZF_2_L6 Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B
        by auto
    with A2 show
        HasAmaximum(IntegerOrder,A)
        HasAminimum(IntegerOrder,A)
        by auto
    from A1 A2 show
            Maximum(IntegerOrder,A) \in A
            Minimum(IntegerOrder,A) \in A
            |x\inA. x \leq Maximum(IntegerOrder,A)
            x\inA. Minimum(IntegerOrder,A) \leq x
            using Int_ZF_2_T1 Finite_ZF_1_T2 by auto
    moreover from A1 have A\subseteq\mathbb{Z using FinD by simp}
    ultimately show
            Maximum(IntegerOrder,A) \in\mathbb{Z}
            Minimum(IntegerOrder,A) \in\mathbb{Z}
            by auto
qed
```

Bounded nonempty integer subsets attain maximum and minimum.

```
theorem (in int0) Int_bounded_have_max_min:
    assumes IsBounded(A,IntegerOrder) and A}\not=
    shows
    HasAmaximum(IntegerOrder,A)
    HasAminimum(IntegerOrder,A)
    Maximum(IntegerOrder,A) \in A
    Minimum(IntegerOrder,A) \in A
    x}\in\textrm{A}.\textrm{x}\leq\mathrm{ Maximum(IntegerOrder,A)
```

```
\forallx\inA. Minimum(IntegerOrder,A) }\leq\textrm{x
Maximum(IntegerOrder,A) \in\mathbb{Z}
Minimum(IntegerOrder,A) \in\mathbb{Z}
using assms Int_fin_have_max_min Int_bounded_iff_fin
by auto
```

Nonempty set of integers that is bounded below attains its minimum.

```
theorem (in int0) int_bounded_below_has_min:
    assumes A1: IsBoundedBelow(A,IntegerOrder) and A2: A}\not=
    shows
    HasAminimum(IntegerOrder,A)
    Minimum(IntegerOrder,A) \in A
    \forallx\inA. Minimum(IntegerOrder,A) \leq x
proof -
    from A1 A2 have
        IntegerOrder {is total on} \mathbb{Z}
        trans(IntegerOrder)
        IntegerOrder \subseteq\mathbb{Z}\times\mathbb{Z}
        A. IsBounded(A,IntegerOrder) ^ A =0 \longrightarrow HasAminimum(IntegerOrder,A)
        A}\not=0\mathrm{ IsBoundedBelow(A,IntegerOrder)
        using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min
        by auto
    then show HasAminimum(IntegerOrder,A)
        by (rule Order_ZF_4_L11)
    then show
        Minimum(IntegerOrder,A) \in A
        x\inA. Minimum(IntegerOrder,A) \leq x
        using Int_ZF_2_L4 Order_ZF_4_L4 by auto
qed
```

Nonempty set of integers that is bounded above attains its maximum.

```
theorem (in int0) int_bounded_above_has_max:
    assumes A1: IsBoundedAbove(A,IntegerOrder) and A2: A}\not=
    shows
    HasAmaximum(IntegerOrder,A)
    Maximum(IntegerOrder,A) \in A
    Maximum(IntegerOrder,A) \in\mathbb{Z}
    |x\inA. x \leq Maximum(IntegerOrder,A)
proof -
    from A1 A2 have
        IntegerOrder {is total on} \mathbb{Z}
        trans(IntegerOrder) and
        I: IntegerOrder }\subseteq\mathbb{Z}\times\mathbb{Z}\mathrm{ and
        A. IsBounded(A,IntegerOrder) ^ A =0 \longrightarrow HasAmaximum(IntegerOrder,A)
        A}=0\mathrm{ IsBoundedAbove(A,IntegerOrder)
        using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min
        by auto
    then show HasAmaximum(IntegerOrder,A)
```

```
        by (rule Order_ZF_4_L11A)
```

 then show
 II: Maximum(IntegerOrder,A) \(\in A\) and
 \(\forall \mathrm{x} \in \mathrm{A} . \mathrm{x} \leq\) Maximum(IntegerOrder, A)
 using Int_ZF_2_L4 Order_ZF_4_L3 by auto
 from I A1 have \(A \subseteq \mathbb{Z}\) by (rule Order_ZF_3_L1A)
 with II show Maximum(IntegerOrder, \(A) \in \mathbb{Z}\) by auto
 qed

A set defined by separation over a bounded set attains its maximum and minimum.

```
lemma (in int0) Int_ZF_1_4_L1:
    assumes A1: IsBounded(A,IntegerOrder) and A2: A \(\neq 0\)
    and \(\mathrm{A} 3: \forall \mathrm{q} \in \mathbb{Z} . \mathrm{F}(\mathrm{q}) \in \mathbb{Z}\)
    and \(A 4: K=\{F(q) . q \in A\}\)
    shows
    HasAmaximum (IntegerOrder, K)
    HasAminimum (IntegerOrder, K)
    Maximum(IntegerOrder, \(K\) ) \(\in K\)
    Minimum(IntegerOrder, K) \(\in K\)
    Maximum(IntegerOrder, \(K\) ) \(\in \mathbb{Z}\)
    Minimum(IntegerOrder, \(K\) ) \(\in \mathbb{Z}\)
    \(\forall \mathrm{q} \in \mathrm{A} . \mathrm{F}(\mathrm{q}) \leq\) Maximum (IntegerOrder, K )
    \(\forall \mathrm{q} \in \mathrm{A}\). Minimum (IntegerOrder, K ) \(\leq \mathrm{F}(\mathrm{q})\)
    IsBounded (K,IntegerOrder)
proof -
    from A1 have \(A \in \operatorname{Fin}(\mathbb{Z})\) using Int_bounded_iff_fin
        by simp
    with A3 have \(\{F(q) . q \in A\} \in \operatorname{Fin}(\mathbb{Z})\)
        by (rule fin_image_fin)
    with A2 A4 have \(\mathrm{T} 1: \mathrm{K} \in \operatorname{Fin}(\mathbb{Z}) \mathrm{K} \neq 0\) by auto
    then show T2:
        HasAmaximum (IntegerOrder, K)
        HasAminimum (IntegerOrder, K)
        and Maximum (IntegerOrder, K ) \(\in \mathrm{K}\)
        Minimum(IntegerOrder, K) \(\in K\)
        Maximum(IntegerOrder, \(K\) ) \(\in \mathbb{Z}\)
        Minimum(IntegerOrder, \(K\) ) \(\in \mathbb{Z}\)
        using Int_fin_have_max_min by auto
    \{ fix \(q\) assume \(q \in A\)
        with \(A 4\) have \(F(q) \in K\) by auto
        with T1 have
            \(\mathrm{F}(\mathrm{q}) \leq\) Maximum (IntegerOrder, K )
            Minimum(IntegerOrder, \(K\) ) \(\leq \mathrm{F}\) (q)
            using Int_fin_have_max_min by auto
    \(\}\) then show
            \(\forall \mathrm{q} \in \mathrm{A} . \mathrm{F}(\mathrm{q}) \leq\) Maximum (IntegerOrder, K )
            \(\forall \mathrm{q} \in \mathrm{A}\). Minimum(IntegerOrder, K ) \(\leq \mathrm{F}(\mathrm{q})\)
        by auto
```

```
    from T2 show IsBounded(K,IntegerOrder)
    using Order_ZF_4_L7 Order_ZF_4_L8A IsBounded_def
    by simp
qed
```

A three element set has a maximume and minimum.

```
lemma (in int0) Int_ZF_1_4_L1A: assumes A1: a\in\mathbb{Z}}\textrm{b}\in\mathbb{Z
    shows
    Maximum(IntegerOrder,{a,b,c}) }\in\mathbb{Z
    a \leq Maximum(IntegerOrder,{a,b,c})
    b}\leqM\mathrm{ Maximum(IntegerOrder,{a,b,c})
    c \leq Maximum(IntegerOrder,{a,b,c})
    using assms Int_ZF_2_T1 Finite_ZF_1_L2A by auto
```

Integer functions attain maxima and minima over intervals.

```
lemma (in int0) Int_ZF_1_4_L2:
    assumes A1: f:\mathbb{Z}->\mathbb{Z}\mathrm{ and A2: a}\leqb
    shows
    maxf(f,a..b) \in\mathbb{Z}
    \forallc\in a..b. f(c) \leq maxf(f,a..b)
    \existsc\ina..b. f(c) = maxf(f,a..b)
    minf(f,a..b) \in\mathbb{Z}
    \forallc\in a..b. minf(f,a..b) \leq f(c)
    \existsc\in a..b. f(c) = minf(f,a..b)
proof -
    from A2 have T: a\in\mathbb{Z}
        using Int_ZF_2_L1A Int_ZF_2_L1B Order_ZF_2_L6
        by auto
    with A1 A2 have
        Maximum(IntegerOrder,f(a..b)) \in f(a..b)
        \forallx\inf(a..b). x \leq Maximum(IntegerOrder,f(a..b))
        Maximum(IntegerOrder,f(a..b)) \in\mathbb{Z}
        Minimum(IntegerOrder,f(a..b)) \in f(a..b)
        \forallx\inf(a..b). Minimum(IntegerOrder,f(a..b)) \leq x
        Minimum(IntegerOrder,f(a..b)) \in\mathbb{Z}
        using Int_ZF_4_L8 Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L6
            Int_fin_have_max_min by auto
    with A1 T show
        maxf(f,a..b) \in\mathbb{Z}
        \forallc\in a..b. f(c) \leq maxf(f,a..b)
        \existsc\ina..b. f(c) = maxf(f,a..b)
        minf(f,a..b) \in\mathbb{Z}
        \forallc\in a..b. minf(f,a..b) \leq f(c)
        \existsc\in a..b. f(c) = minf(f,a..b)
        using func_imagedef by auto
qed
```


42.5 The set of nonnegative integers

The set of nonnegative integers looks like the set of natural numbers. We explore that in this section. We also rephrase some lemmas about the set of positive integers known from the theory of oredered grups.

The set of positive integers is closed under addition.

```
lemma (in int0) pos_int_closed_add:
    shows }\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ {is closed under} IntegerAddition
    using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L13 by simp
```

Text expended version of the fact that the set of positive integers is closed under addition

```
lemma (in int0) pos_int_closed_add_unfolded:
    assumes a\in\mp@subsup{\mathbb{Z}}{+}{}}\textrm{b}\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ shows a+b}\in\mp@subsup{\mathbb{Z}}{+}{
    using assms pos_int_closed_add IsOpClosed_def
    by simp
\mp@subsup{\mathbb{Z}}{}{+}}\mathrm{ is bounded below.
```

```
lemma (in int0) Int_ZF_1_5_L1: shows
```

lemma (in int0) Int_ZF_1_5_L1: shows
IsBoundedBelow(\mathbb{Z}}\mp@subsup{}{+}{,}\mathrm{ ,IntegerOrder)
IsBoundedBelow(\mathbb{Z}}\mp@subsup{}{+}{,}\mathrm{ ,IntegerOrder)
IsBoundedBelow(\mathbb{Z}}
IsBoundedBelow(\mathbb{Z}}
using Nonnegative_def PositiveSet_def IsBoundedBelow_def by auto

```
    using Nonnegative_def PositiveSet_def IsBoundedBelow_def by auto
```

Subsets of \mathbb{Z}^{+}are bounded below.

```
lemma (in int0) Int_ZF_1_5_L1A: assumes A \subseteq \mathbb{Z}
    shows IsBoundedBelow(A,IntegerOrder)
    using assms Int_ZF_1_5_L1 Order_ZF_3_L12 by blast
```

Subsets of \mathbb{Z}_{+}are bounded below.

```
lemma (in int0) Int_ZF_1_5_L1B: assumes A1: A \subseteq \mathbb{Z}
    shows IsBoundedBelow(A,IntegerOrder)
    using A1 Int_ZF_1_5_L1 Order_ZF_3_L12 by blast
```

Every nonempty subset of positive integers has a mimimum.

```
lemma (in int0) Int_ZF_1_5_L1C: assumes \(A \subseteq \mathbb{Z}_{+}\)and \(A \neq 0\)
    shows
    HasAminimum(IntegerOrder, A)
    Minimum(IntegerOrder,A) \(\in A\)
    \(\forall \mathrm{x} \in \mathrm{A}\). Minimum (IntegerOrder, A ) \(\leq \mathrm{x}\)
    using assms Int_ZF_1_5_L1B int_bounded_below_has_min by auto
```

Infinite subsets of Z^{+}do not have a maximum - If $A \subseteq Z^{+}$then for every integer we can find one in the set that is not smaller.

```
lemma (in int0) Int_ZF_1_5_L2:
    assumes \(A 1: A \subseteq \mathbb{Z}^{+}\)and A2: \(A \notin \operatorname{Fin}(\mathbb{Z})\) and \(A 3: D \in \mathbb{Z}\)
    shows \(\exists \mathrm{n} \in \mathrm{A} . \mathrm{D} \leq \mathrm{n}\)
```

```
proof -
    { assume }\forall\textrm{n}\in\textrm{A}.\neg(\textrm{D}\leq\textrm{n}
        moreover from A1 A3 have D\in\mathbb{Z}}\forall\textrm{n}\in\textrm{A}.\textrm{n}\in\mathbb{Z
            using Nonnegative_def by auto
        ultimately have }\forall\textrm{n}\in\textrm{A}.\textrm{n}\leq\textrm{D
            using Int_ZF_2_L19 by blast
        hence }\foralln\inA.\langlen,D\rangle\in IntegerOrder by sim
        then have IsBoundedAbove(A,IntegerOrder)
            by (rule Order_ZF_3_L10)
        with A1 have IsBounded(A,IntegerOrder)
            using Int_ZF_1_5_L1A IsBounded_def by simp
        with A2 have False using Int_bounded_iff_fin by auto
    } thus thesis by auto
qed
```

Infinite subsets of Z_{+}do not have a maximum - If $A \subseteq Z_{+}$then for every integer we can find one in the set that is not smaller. This is very similar to Int_ZF_1_5_L2, except we have \mathbb{Z}_{+}instead of \mathbb{Z}^{+}here.
lemma (in int0) Int_ZF_1_5_L2A:
assumes $\mathrm{A} 1: \mathrm{A} \subseteq \mathbb{Z}_{+}$and A2: $\mathrm{A} \notin \mathrm{Fin}(\mathbb{Z})$ and $\mathrm{A} 3: \mathrm{D} \in \mathbb{Z}$
shows $\exists \mathrm{n} \in \mathrm{A} . \mathrm{D} \leq \mathrm{n}$
proof -
\{ assume $\forall \mathrm{n} \in \mathrm{A} . \neg(\mathrm{D} \leq \mathrm{n})$
moreover from $A 1$ A3 have $D \in \mathbb{Z} \quad \forall \mathrm{n} \in \mathrm{A} . \mathrm{n} \in \mathbb{Z}$
using PositiveSet_def by auto
ultimately have $\forall \mathrm{n} \in \mathrm{A} . \mathrm{n} \leq \mathrm{D}$
using Int_ZF_2_L19 by blast
hence $\forall \mathrm{n} \in \mathrm{A} .\langle\mathrm{n}, \mathrm{D}\rangle \in$ IntegerOrder by simp
then have IsBoundedAbove(A, IntegerOrder)
by (rule Order_ZF_3_L10)
with A1 have IsBounded (A, IntegerOrder)
using Int_ZF_1_5_L1B IsBounded_def by simp
with A2 have False using Int_bounded_iff_fin by auto
\} thus thesis by auto
qed
An integer is either positive, zero, or its opposite is postitive.
lemma (in int0) Int_decomp: assumes $m \in \mathbb{Z}$
shows Exactly_1_of_3_holds ($\mathrm{m}=\mathbf{0}, \mathrm{m} \in \mathbb{Z}_{+},(-\mathrm{m}) \in \mathbb{Z}_{+}$)
using assms Int_ZF_2_T1 group3.OrdGroup_decomp
by simp
An integer is zero, positive, or it's inverse is positive.

```
lemma (in int0) int_decomp_cases: assumes m\in\mathbb{Z}
    shows m=0 V m\in\mathbb{Z}
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L14
    by simp
```

An integer is in the positive set iff it is greater or equal one.

```
lemma (in int0) Int_ZF_1_5_L3: shows \(m \in \mathbb{Z}_{+} \longleftrightarrow \mathbf{1} \leq \mathrm{m}\)
proof
    assume \(\mathrm{m} \in \mathbb{Z}_{+}\)then have \(0 \leq \mathrm{m} \quad \mathrm{m} \neq 0\)
        using PositiveSet_def by auto
    then have \(0+1 \leq m\)
        using Int_ZF_4_L1B by auto
    then show \(1 \leq m\)
        using int_zero_one_are_int Int_ZF_1_T2 group0.group0_2_L2
        by simp
next assume \(1 \leq m\)
    then have \(m \in \mathbb{Z} \quad 0 \leq m \quad m \neq 0\)
        using Int_ZF_2_L1A Int_ZF_2_L16C by auto
    then show \(m \in \mathbb{Z}_{+}\)using PositiveSet_def by auto
qed
```

The set of positive integers is closed under multiplication. The unfolded form.

```
lemma (in int0) pos_int_closed_mul_unfold:
    assumes a\in䩗 b}b\in\mp@subsup{\mathbb{Z}}{+}{
    shows a\cdotb }\in\mp@subsup{\mathbb{Z}}{+}{
    using assms Int_ZF_1_5_L3 Int_ZF_1_3_L3 by simp
```

The set of positive integers is closed under multiplication.

```
lemma (in int0) pos_int_closed_mul: shows
    Z}\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ {is closed under} IntegerMultiplication
    using pos_int_closed_mul_unfold IsOpClosed_def
    by simp
```

It is an overkill to prove that the ring of integers has no zero divisors this way, but why not?
lemma (in int0) int_has_no_zero_divs:
shows HasNoZeroDivs(\mathbb{Z},IntegerAddition, IntegerMultiplication)
using pos_int_closed_mul Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L3
by simp
Nonnegative integers are positive ones plus zero.

```
lemma (in int0) Int_ZF_1_5_L3A: shows }\mp@subsup{\mathbb{Z}}{}{+}=\mp@subsup{\mathbb{Z}}{+}{}\cup{0
    using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L24 by simp
```

We can make a function smaller than any constant on a given interval of positive integers by adding another constant.

```
lemma (in int0) Int_ZF_1_5_L4:
    assumes \(A 1: f: \mathbb{Z} \rightarrow \mathbb{Z}\) and \(A 2: K \in \mathbb{Z} N \in \mathbb{Z}\)
    shows \(\exists \mathrm{C} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{K} \leq \mathrm{f}(\mathrm{n})+\mathrm{C} \longrightarrow \mathrm{N} \leq \mathrm{n}\)
proof -
    from A2 have \(N \leq 1 \vee 2 \leq N\)
        using int_zero_one_are_int no_int_between
        by simp
```

```
    moreover
    \{ assume A3: \(\mathrm{N} \leq 1\)
    let \(C=0\)
    have \(C \in \mathbb{Z}\) using int_zero_one_are_int
        by simp
    moreover
    \{ fix \(n\) assume \(n \in \mathbb{Z}_{+}\)
        then have \(1 \leq \mathrm{n}\) using Int_ZF_1_5_L3
by simp
        with A3 have \(\mathrm{N} \leq \mathrm{n}\) by (rule Int_order_transitive)
    \(\}\) then have \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{K} \leq \mathrm{f}(\mathrm{n})+\mathrm{C} \longrightarrow \mathrm{N} \leq \mathrm{n}\)
        by auto
    ultimately have \(\exists \mathrm{C} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{K} \leq \mathrm{f}(\mathrm{n})+\mathrm{C} \longrightarrow \mathrm{N} \leq \mathrm{n}\)
        by auto \}
    moreover
    \(\{\) let \(C=K-1-\operatorname{maxf}(f, 1 \ldots(N-1))\)
    assume \(2 \leq \mathrm{N}\)
    then have \(2-1 \leq N-1\)
        using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
        by simp
    then have I: \(1 \leq \mathrm{N}-1\)
        using int_zero_one_are_int Int_ZF_1_2_L3 by simp
    with A1 A2 have T:
        \(\operatorname{maxf}(\mathrm{f}, 1 \ldots(\mathrm{~N}-1)) \in \mathbb{Z} \quad \mathrm{K}-\mathbf{1} \in \mathbb{Z} \quad \mathrm{C} \in \mathbb{Z}\)
        using Int_ZF_1_4_L2 Int_ZF_1_1_L5 int_zero_one_are_int
        by auto
    moreover
    \{ fix n assume \(\mathrm{A} 4: \mathrm{n} \in \mathbb{Z}_{+}\)
        \{ assume A5: \(K \leq f(n)+C\) and \(\neg(N \leq n)\)
with A2 A4 have \(\mathrm{n} \leq \mathrm{N}-1\)
    using PositiveSet_def Int_ZF_1_3_L6A by simp
with A4 have \(\mathrm{n} \in 1 . .(\mathrm{N}-1)\)
    using Int_ZF_1_5_L3 Interval_def by auto
with A1 I T have \(f(n)+C \leq \operatorname{maxf}(f, 1 \ldots(N-1))+C\)
    using Int_ZF_1_4_L2 int_ord_transl_inv by simp
with \(T\) have \(\mathrm{f}(\mathrm{n})+\mathrm{C} \leq \mathrm{K}-1\)
    using Int_ZF_1_2_L3 by simp
with A5 have \(K \leq K-1\)
    by (rule Int_order_transitive)
with A2 have False using Int_ZF_1_2_L3AA by simp
            \(\}\) then have \(K \leq f(n)+C \longrightarrow N \leq n\)
by auto
    \(\}\) then have \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{K} \leq \mathrm{f}(\mathrm{n})+\mathrm{C} \longrightarrow \mathrm{N} \leq \mathrm{n}\)
                by simp
    ultimately have \(\exists \mathrm{C} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{K} \leq \mathrm{f}(\mathrm{n})+\mathrm{C} \longrightarrow \mathrm{N} \leq \mathrm{n}\)
                by auto \}
    ultimately show thesis by auto
qed
```

Absolute value is identity on positive integers.

```
lemma (in int0) Int_ZF_1_5_L4A:
    assumes a\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ shows abs(a) = a}
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L2B
    by simp
```

One and two are in \mathbb{Z}_{+}.
lemma (in int0) int_one_two_are_pos: shows $1 \in \mathbb{Z}_{+} \quad 2 \in \mathbb{Z}_{+}$
using int_zero_one_are_int int_ord_is_refl refl_def Int_ZF_1_5_L3
Int_ZF_2_L16B by auto

The image of \mathbb{Z}_{+}by a function defined on integers is not empty.
lemma (in int0) Int_ZF_1_5_L5: assumes A1: $f: \mathbb{Z} \rightarrow X$
shows $f\left(\mathbb{Z}_{+}\right) \neq 0$
proof -
have $\mathbb{Z}_{+} \subseteq \mathbb{Z}$ using PositiveSet_def by auto
with $A 1$ show $f\left(\mathbb{Z}_{+}\right) \neq 0$ using int_one_two_are_pos func_imagedef by auto
qed
If n is positive, then $n-1$ is nonnegative.
lemma (in int0) Int_ZF_1_5_L6: assumes A1: $n \in \mathbb{Z}_{+}$
shows
$0 \leq \mathrm{n}-1$
$0 \in 0 \ldots(n-1)$
$0 . .(\mathrm{n}-1) \subseteq \mathbb{Z}$
proof -
from A1 have $1 \leq n(-1) \in \mathbb{Z}$ using Int_ZF_1_5_L3 int_zero_one_are_int Int_ZF_1_1_L4 by auto
then have $1-1 \leq \mathrm{n}-1$ using int_ord_transl_inv by simp
then show $0 \leq \mathrm{n}-1$ using int_zero_one_are_int Int_ZF_1_1_L4 by simp
then show $0 \in 0 . .(n-1)$
using int_zero_one_are_int int_ord_is_refl refl_def Order_ZF_2_L1B by simp
show $0 . .(n-1) \subseteq \mathbb{Z}$
using Int_ZF_2_L1B Order_ZF_2_L6 by simp
qed
Intgers greater than one in \mathbb{Z}_{+}belong to \mathbb{Z}_{+}. This is a property of ordered groups and follows from OrderedGroup_ZF_1_L19, but Isabelle's simplifier has problems using that result directly, so we reprove it specifically for integers.

```
lemma (in int0) Int_ZF_1_5_L7: assumes \(a \in \mathbb{Z}_{+}\)and \(a \leq b\)
    shows \(\mathrm{b} \in \mathbb{Z}_{+}\)
proof-
    from assms have \(1 \leq a \quad a \leq b\)
        using Int_ZF_1_5_L3 by auto
```

```
    then have 1\leqb by (rule Int_order_transitive)
    then show b}\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ using Int_ZF_1_5_L3 by simp
qed
```

Adding a positive integer increases integers.

```
lemma (in int0) Int_ZF_1_5_L7A: assumes a\in\mathbb{Z}}\textrm{b}\in\mp@subsup{\mathbb{Z}}{+}{
    shows a }\leq\textrm{a}+\textrm{b}\quad\textrm{a}\not=\textrm{a}+\textrm{b}\quad\textrm{a}+\textrm{b}\in\mathbb{Z
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L22
    by auto
```

For any integer m the greater of m and 1 is a positive integer that is greater or equal than m. If we add 1 to it we get a positive integer that is strictly greater than m.

```
lemma (in int0) Int_ZF_1_5_L7B: assumes a\in\mathbb{Z}
    shows
    a \leq GreaterOf(IntegerOrder,1,a)
    GreaterOf(IntegerOrder, 1,a) \in }\mp@subsup{\mathbb{Z}}{+}{
    GreaterOf(IntegerOrder,1,a) + \mathbb{1}\in\mp@subsup{\mathbb{Z}}{+}{}
    a \leq GreaterOf(IntegerOrder,1,a) + 1
    a }\not=\mathrm{ GreaterOf(IntegerOrder,1,a) + 1
    using assms int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L12
    by auto
```

The opposite of an element of \mathbb{Z}_{+}cannot belong to \mathbb{Z}_{+}.

```
lemma (in int0) Int_ZF_1_5_L8: assumes a }\in\mp@subsup{\mathbb{Z}}{+}{
    shows (-a) }\not\in\mp@subsup{\mathbb{Z}}{+}{
    using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L20
    by simp
```

For every integer there is one in \mathbb{Z}_{+}that is greater or equal.

```
lemma (in int0) Int_ZF_1_5_L9: assumes a\in\mathbb{Z}
    shows }\exists\textrm{b}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{a}\leq\textrm{b
    using assms int_not_trivial Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L23
    by simp
```

A theorem about odd extensions. Recall from OrdereGroup_ZF.thy that the odd extension of an integer function f defined on \mathbb{Z}_{+}is the odd function on \mathbb{Z} equal to f on \mathbb{Z}_{+}. First we show that the odd extension is defined on \mathbb{Z}.

```
lemma (in int0) Int_ZF_1_5_L10: assumes f : \mathbb{Z}}
    shows OddExtension(\mathbb{Z},IntegerAddition,IntegerOrder,f) : \mathbb{Z}}->\mathbb{Z
    using assms Int_ZF_2_T1 group3.odd_ext_props by simp
```

On \mathbb{Z}_{+}, the odd extension of f is the same as f.


```
    g = OddExtension(\mathbb{Z},IntegerAddition,IntegerOrder,f)
    shows g(a) = f(a)
    using assms Int_ZF_2_T1 group3.odd_ext_props by simp
```

On $-\mathbb{Z}_{+}$, the value of the odd extension of f is the negative of $f(-a)$.

```
lemma (in int0) Int_ZF_1_5_L12:
    assumes f : }\mp@subsup{\mathbb{Z}}{+}{}->\mathbb{Z}\mathrm{ and a }\in(-\mp@subsup{\mathbb{Z}}{+}{})\mathrm{ and
    g = OddExtension(\mathbb{Z},IntegerAddition,IntegerOrder,f)
    shows g(a) = -(f(-a))
    using assms Int_ZF_2_T1 group3.odd_ext_props by simp
```

Odd extensions are odd on \mathbb{Z}.

```
lemma (in int0) int_oddext_is_odd:
```



```
    g = OddExtension(\mathbb{Z},IntegerAddition,IntegerOrder,f)
    shows g(-a) = - (g(a))
    using assms Int_ZF_2_T1 group3.oddext_is_odd by simp
```

Alternative definition of an odd function.
lemma (in int0) Int_ZF_1_5_L13: assumes A1: f: $\mathbb{Z} \rightarrow \mathbb{Z}$ shows
$(\forall a \in \mathbb{Z} . f(-a)=(-f(a))) \longleftrightarrow(\forall a \in \mathbb{Z} .(-(f(-a)))=f(a))$
using assms Int_ZF_1_T2 group0.group0_6_L2 by simp
Another way of expressing the fact that odd extensions are odd.

```
lemma (in int0) int_oddext_is_odd_alt:
```



```
    g = OddExtension(\mathbb{Z},IntegerAddition,IntegerOrder,f)
    shows (-g(-a)) = g(a)
    using assms Int_ZF_2_T1 group3.oddext_is_odd_alt by simp
```


42.6 Functions with infinite limits

In this section we consider functions (integer sequences) that have infinite limits. An integer function has infinite positive limit if it is arbitrarily large for large enough arguments. Similarly, a function has infinite negative limit if it is arbitrarily small for small enough arguments. The material in this come mostly from the section in OrderedGroup_ZF.thy with he same title. Here we rewrite the theorems from that section in the notation we use for integers and add some results specific for the ordered group of integers.

If an image of a set by a function with infinite positive limit is bounded above, then the set itself is bounded above.

```
lemma (in int0) Int_ZF_1_6_L1: assumes f: \mathbb{Z}->\mathbb{Z}\mathrm{ and}
    \foralla\in\mathbb{Z.}.\exists\textrm{b}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{x}.\textrm{b}\leq\textrm{x}\longrightarrow\textrm{a}\leq\textrm{f}(\textrm{x})\mathrm{ and }\textrm{A}\subseteq\mathbb{Z}\mathrm{ and}
    IsBoundedAbove(f(A),IntegerOrder)
    shows IsBoundedAbove(A,IntegerOrder)
    using assms int_not_trivial Int_ZF_2_T1 group3.OrderedGroup_ZF_7_L1
    by simp
```

If an image of a set defined by separation by a function with infinite positive limit is bounded above, then the set itself is bounded above.
lemma (in int0) Int_ZF_1_6_L2: assumes A1: $X \neq 0$ and $A 2: f: \mathbb{Z} \rightarrow \mathbb{Z}$ and

```
    A3: \(\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} . \forall \mathrm{x} . \mathrm{b} \leq \mathrm{x} \longrightarrow \mathrm{a} \leq \mathrm{f}(\mathrm{x})\) and
    A4: \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathbb{Z} \wedge \mathrm{f}(\mathrm{b}(\mathrm{x})) \leq \mathrm{U}\)
    shows \(\exists \mathrm{u} . \forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \leq \mathrm{u}\)
proof -
    let \(G=\mathbb{Z}\)
    let \(P=\) IntegerAddition
    let \(r=\) IntegerOrder
    from A1 A2 A3 A4 have
        group3(G, P, r)
        r \{is total on\} \(G\)
        \(\mathrm{G} \neq\{\) TheNeutralElement (G, P) \}
        \(X \neq 0 \quad f: G \rightarrow G\)
        \(\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \operatorname{PositiveSet}(\mathrm{G}, \mathrm{P}, \mathrm{r}) . \forall \mathrm{y} .\langle\mathrm{b}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{a}, \mathrm{f}(\mathrm{y})\rangle \in \mathrm{r}\)
        \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathrm{G} \wedge\langle\mathrm{f}(\mathrm{b}(\mathrm{x})), \mathrm{U}\rangle \in \mathrm{r}\)
        using int_not_trivial Int_ZF_2_T1 by auto
    then have \(\exists \mathrm{u} . \forall \mathrm{x} \in \mathrm{X} .\langle\mathrm{b}(\mathrm{x}), \mathrm{u}\rangle \in \mathrm{r}\) by (rule group3.OrderedGroup_ZF_7_L2)
    thus thesis by simp
qed
```

If an image of a set defined by separation by a integer function with infinite negative limit is bounded below, then the set itself is bounded above. This is dual to Int_ZF_1_6_L2.
lemma (in int0) Int_ZF_1_6_L3: assumes A1: $X \neq 0$ and $A 2: f: \mathbb{Z} \rightarrow \mathbb{Z}$ and

```
    A3: \(\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} \cdot \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{f}(-\mathrm{y}) \leq \mathrm{a}\) and
    A4: \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathbb{Z} \wedge \mathrm{L} \leq \mathrm{f}(\mathrm{b}(\mathrm{x}))\)
    shows \(\exists l . \forall \mathrm{x} \in \mathrm{X} . \mathrm{l} \leq \mathrm{b}(\mathrm{x})\)
proof -
    let \(G=\mathbb{Z}\)
    let \(P=\) IntegerAddition
    let \(r=\) IntegerOrder
    from A1 A2 A3 A4 have
        group3(G, P, r)
        r \{is total on\} G
        \(\mathrm{G} \neq\{\) TheNeutralElement \((\mathrm{G}, \mathrm{P})\}\)
        \(X \neq 0 \quad f: G \rightarrow G\)
        \(\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \operatorname{PositiveSet(G,~P,~r).~} \forall \mathrm{y}\).
        \(\langle\mathrm{b}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{f}(\operatorname{Group} \operatorname{Inv}(\mathrm{G}, \mathrm{P})(\mathrm{y})), \mathrm{a}\rangle \in \mathrm{r}\)
        \(\forall x \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathrm{G} \wedge\langle\mathrm{L}, \mathrm{f}(\mathrm{b}(\mathrm{x}))\rangle \in \mathrm{r}\)
        using int_not_trivial Int_ZF_2_T1 by auto
    then have \(\exists l . \forall \mathrm{x} \in \mathrm{X} .\langle\mathrm{l}, \mathrm{b}(\mathrm{x})\rangle \in \mathrm{r}\) by (rule group3.OrderedGroup_ZF_7_L3)
    thus thesis by simp
qed
```

The next lemma combines Int_ZF_1_6_L2 and Int_ZF_1_6_L3 to show that if the image of a set defined by separation by a function with infinite limits is bounded, then the set itself is bounded. The proof again uses directly a
fact from OrderedGroup_ZF.

```
lemma (in int0) Int_ZF_1_6_L4:
    assumes \(A 1: X \neq 0\) and \(A 2: f: \mathbb{Z} \rightarrow \mathbb{Z}\) and
    A3: \(\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} . \forall \mathrm{x} . \mathrm{b} \leq \mathrm{x} \longrightarrow \mathrm{a} \leq \mathrm{f}(\mathrm{x})\) and
    A4: \(\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} \cdot \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{f}(-\mathrm{y}) \leq \mathrm{a}\) and
    A5: \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathbb{Z} \wedge \mathrm{f}(\mathrm{b}(\mathrm{x})) \leq \mathrm{U} \wedge \mathrm{L} \leq \mathrm{f}(\mathrm{b}(\mathrm{x}))\)
    shows \(\exists \mathrm{M} . \forall \mathrm{x} \in \mathrm{X} . \operatorname{abs}(\mathrm{b}(\mathrm{x})) \leq \mathrm{M}\)
proof -
    let \(G=\mathbb{Z}\)
    let \(P=\) IntegerAddition
    let \(r=\) IntegerOrder
    from A1 A2 A3 A4 A5 have
        group3(G, P, r)
        r \{is total on\} G
        \(\mathrm{G} \neq\{\) TheNeutralElement ( \(\mathrm{G}, \mathrm{P}\) ) \}
        \(X \neq 0 \quad f: G \rightarrow G\)
        \(\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \operatorname{PositiveSet}(\mathrm{G}, \mathrm{P}, \mathrm{r}) . \forall \mathrm{y} .\langle\mathrm{b}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{a}, \mathrm{f}(\mathrm{y})\rangle \in \mathrm{r}\)
        \(\forall \mathrm{a} \in \mathrm{G} . \exists \mathrm{b} \in \operatorname{PositiveSet}(\mathrm{G}, \mathrm{P}, \mathrm{r}) . \forall \mathrm{y}\).
        \(\langle\mathrm{b}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{f}(\operatorname{Group} \operatorname{Inv}(\mathrm{G}, \mathrm{P})(\mathrm{y}) \mathrm{)}, \mathrm{a}\rangle \in \mathrm{r}\)
        \(\forall \mathrm{x} \in \mathrm{X} . \mathrm{b}(\mathrm{x}) \in \mathrm{G} \wedge\langle\mathrm{L}, \mathrm{f}(\mathrm{b}(\mathrm{x}))\rangle \in \mathrm{r} \wedge\langle\mathrm{f}(\mathrm{b}(\mathrm{x})), \mathrm{U}\rangle \in \mathrm{r}\)
        using int_not_trivial Int_ZF_2_T1 by auto
    then have \(\exists \mathrm{M} . \forall \mathrm{x} \in \mathrm{X}\). \(\langle\) AbsoluteValue (G, \(\mathrm{P}, \mathrm{r}) \mathrm{b}(\mathrm{x}), \mathrm{M}\rangle \in \mathrm{r}\)
            by (rule group3.OrderedGroup_ZF_7_L4)
    thus thesis by simp
qed
```

If a function is larger than some constant for arguments large enough, then the image of a set that is bounded below is bounded below. This is not true for ordered groups in general, but only for those for which bounded sets are finite. This does not require the function to have infinite limit, but such functions do have this property.

```
lemma (in int0) Int_ZF_1_6_L5:
    assumes A1: f: \mathbb{Z}->\mathbb{Z}\mathrm{ and A2: N}\in\mathbb{Z}\mathrm{ and}\\mp@code{|}
    A3: }\forall\textrm{m}.\textrm{N}\leq\textrm{m}\longrightarrow\textrm{L}\leqf(m) an
    A4: IsBoundedBelow(A,IntegerOrder)
    shows IsBoundedBelow(f(A),IntegerOrder)
proof -
    from A2 A4 have A = {x\inA. }\textrm{x}\leq\textrm{N}}\cup{x\in\textrm{A}.\textrm{N}\leq\textrm{x}
        using Int_ZF_2_T1 Int_ZF_2_L1C Order_ZF_1_L5
        by simp
    moreover have
        f({x\inA. x\leqN} \cup {x\inA. N
        f{x\inA. x\leqN} \cupf{x\inA. N\leqx}
        by (rule image_Un)
    ultimately have f(A) =f{x\inA. x\leqN} \cupf{x\inA.N\leqx}
        by simp
    moreover have IsBoundedBelow(f{x\inA. x 
    proof -
```

```
    let B = {x\inA. x 
    from A4 have B \in Fin(\mathbb{Z})
        using Order_ZF_3_L16 Int_bounded_iff_fin by auto
    with A1 have IsBounded(f(B),IntegerOrder)
        using Finite1_L6A Int_bounded_iff_fin by simp
    then show IsBoundedBelow(f(B),IntegerOrder)
        using IsBounded_def by simp
    qed
    moreover have IsBoundedBelow(f{x\inA. N\leqx},IntegerOrder)
    proof -
    let C = {x\inA. N\leqx}
    from A4 have C}\subseteq\mathbb{Z}\mathrm{ using Int_ZF_2_L1C by auto
    with A1 A3 have }\forall\textrm{y}\in\textrm{f}(\textrm{C}).\langle\textrm{L},\textrm{y}\rangle\in\mathrm{ IntegerOrder
        using func_imagedef by simp
    then show IsBoundedBelow(f(C),IntegerOrder)
        by (rule Order_ZF_3_L9)
    qed
    ultimately show IsBoundedBelow(f(A),IntegerOrder)
    using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Order_ZF_3_L6
    by simp
qed
```

A function that has an infinite limit can be made arbitrarily large on positive integers by adding a constant. This does not actually require the function to have infinite limit, just to be larger than a constant for arguments large enough.

```
lemma (in int0) Int_ZF_1_6_L6: assumes A1: \(N \in \mathbb{Z}\) and
    A2: \(\forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{L} \leq \mathrm{f}(\mathrm{m})\) and
    A3: \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) and \(A 4: K \in \mathbb{Z}\)
    shows \(\exists \mathrm{c} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{K} \leq \mathrm{f}(\mathrm{n})+\mathrm{c}\)
proof -
    have IsBoundedBelow ( \(\mathbb{Z}_{+}\), IntegerOrder)
        using Int_ZF_1_5_L1 by simp
    with A3 A1 A2 have IsBoundedBelow ( \(f\left(\mathbb{Z}_{+}\right)\), IntegerOrder)
        by (rule Int_ZF_1_6_L5)
    with A1 obtain 1 where \(I: \forall y \in f\left(\mathbb{Z}_{+}\right) . l \leq y\)
        using Int_ZF_1_5_L5 IsBoundedBelow_def by auto
    let \(c=K-1\)
    from A3 have \(f\left(\mathbb{Z}_{+}\right) \neq 0\) using Int_ZF_1_5_L5
        by simp
    then have \(\exists \mathrm{y} . \mathrm{y} \in \mathrm{f}\left(\mathbb{Z}_{+}\right)\)by (rule nonempty_has_element)
    then obtain \(y\) where \(y \in f\left(\mathbb{Z}_{+}\right)\)by auto
    with \(A 4 I\) have \(T: l \in \mathbb{Z} \quad c \in \mathbb{Z}\)
        using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
    \{ fix \(n\) assume A5: \(n \in \mathbb{Z}_{+}\)
        have \(\mathbb{Z}_{+} \subseteq \mathbb{Z}\) using PositiveSet_def by auto
        with A3 I T A5 have \(1+c \leq f(n)+c\)
            using func_imagedef int_ord_transl_inv by auto
        with I T have \(1+c \leq f(n)+c\)
```

```
        using int_ord_transl_inv by simp
    with A4 T have K \leq f(n) + c
            using Int_ZF_1_2_L3 by simp
    } then have }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{K}\leq\textrm{f}(\textrm{n})+\textrm{c}\mathrm{ by simp
    with T show thesis by auto
qed
```

If a function has infinite limit, then we can add such constant such that minimum of those arguments for which the function (plus the constant) is larger than another given constant is greater than a third constant. It is not as complicated as it sounds.

```
lemma (in int0) Int_ZF_1_6_L7:
    assumes A1: f: \mathbb{Z}->\mathbb{Z}\mathrm{ and A2: K}E\mathbb{Z}\quadN\in\mathbb{Z}\mathrm{ and}
    A3: }\forall\textrm{a}\in\mathbb{Z}.\exists\textrm{b}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{x}.\textrm{b}\leq\textrm{x}\longrightarrow\textrm{a}\leq\textrm{f}(\textrm{x}
    shows }\exists\textrm{C}\in\mathbb{Z}.N\leqMinimum(IntegerOrder,{n\in\mathbb{Z}+. K \leq f(n)+C}
proof -
    from A1 A2 have \existsC\in\mathbb{Z}.\foralln\in\mp@subsup{\mathbb{Z}}{+}{}. K \leq f(n) + C }\longrightarrow\textrm{N}\leq\textrm{n
            using Int_ZF_1_5_L4 by simp
    then obtain C where I: C\in\mathbb{Z}}\mathrm{ and
            II: }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{K}\leq\textrm{f}(\textrm{n})+\textrm{C}\longrightarrow\textrm{N}\leq\textrm{n
            by auto
    have antisym(IntegerOrder) using Int_ZF_2_L4 by simp
    moreover have HasAminimum(IntegerOrder, {n\in\mp@subsup{\mathbb{Z}}{+}{\prime}.K\leqf(n)+C})
    proof -
            from A2 A3 I have }\exists\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{x}.\textrm{n}\leq\textrm{x}\longrightarrow\textrm{K}-\textrm{C}\leq\textrm{f}(\textrm{x}
                using Int_ZF_1_1_L5 by simp
            then obtain n where
                n\in\mp@subsup{\mathbb{Z}}{+}{}}\mathrm{ and }\forall\textrm{x}.\textrm{n}\leq\textrm{x}\longrightarrow\textrm{K}-\textrm{C}\leq\textrm{f}(\textrm{x}
                by auto
            with A2 I have
                {n\in\mp@subsup{\mathbb{Z}}{+}{}.}\textrm{K}\leq\textrm{f}(\textrm{n})+\textrm{C}}\not=
                {n\in\mp@subsup{\mathbb{Z}}{+}{}.K
                using int_ord_is_refl refl_def PositiveSet_def Int_ZF_2_L9C
                by auto
            then show HasAminimum(IntegerOrder, {n\in\mathbb{Z}
                using Int_ZF_1_5_L1C by simp
    qed
    moreover from II have
        \foralln\in{n\in\mp@subsup{\mathbb{Z}}{+}{}.}\textrm{K}\leq\textrm{f}(\textrm{n})+\textrm{C}}.\langleN,n\rangle\in IntegerOrder
            by auto
    ultimately have
            <N,Minimum(IntegerOrder,{n\in\mathbb{Z}}+. K\leq f(n)+C})\rangle\in IntegerOrder
            by (rule Order_ZF_4_L12)
    with I show thesis by auto
qed
```

For any integer m the function $k \mapsto m \cdot k$ has an infinite limit (or negative of that). This is why we put some properties of these functions here, even though they properly belong to a (yet nonexistent) section on homomor-
phisms. The next lemma shows that the set $\{a \cdot x: x \in Z\}$ can finite only if $a=0$.

```
lemma (in int0) Int_ZF_1_6_L8:
    assumes A1: a\in\mathbb{Z}}\mathrm{ and A2: {a.x. x}\mathbb{X}\mathbb{Z}}\in\operatorname{Fin}(\mathbb{Z}
    shows a = 0
proof -
    from A1 have a=0 \vee (a \leq -1) \vee (1\leqa)
        using Int_ZF_1_3_L6C by simp
    moreover
    { assume a }\leq-
        then have {a\cdotx. x\in\mathbb{Z}}\not\in\operatorname{Fin}(\mathbb{Z})
                            using int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L6
            by simp
        with A2 have False by simp }
    moreover
    { assume 1\leqa
            then have {a\cdotx. x\in\mathbb{Z}}\not\in\operatorname{Fin}(\mathbb{Z})
                using int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L5
            by simp
    with A2 have False by simp }
    ultimately show a = 0 by auto
qed
```


42.7 Miscelaneous

In this section we put some technical lemmas needed in various other places that are hard to classify.

Suppose we have an integer expression (a meta-function) F such that $F(p)|p|$ is bounded by a linear function of $|p|$, that is for some integers A, B we have $F(p)|p| \leq A|p|+B$. We show that F is then bounded. The proof is easy, we just divide both sides by $|p|$ and take the limit (just kidding).

```
lemma (in int0) Int_ZF_1_7_L1:
    assumes A1: }\forall\textrm{q}\in\mathbb{Z}.\textrm{F}(\textrm{q})\in\mathbb{Z}\mathrm{ and
    A2: }\forall\textrm{q}\in\mathbb{Z}\cdot\textrm{F}(\textrm{q})\cdot\textrm{abs}(\textrm{q})\leq\textrm{A}\cdot\textrm{abs}(\textrm{q})+\textrm{B}\mathrm{ and
    A3: A\in\mathbb{Z}}\textrm{B}\in\mathbb{Z
    shows }\exists\textrm{L}.\forall\textrm{p}\in\mathbb{Z}.\textrm{F}(\textrm{p})\leq\textrm{L
proof -
    let I = (-abs(B))..abs(B)
    let K}={F(q). q G I
    let M = Maximum(IntegerOrder,K)
    let L = GreaterOf(IntegerOrder,M,A+1)
    from A3 A1 have C1:
        IsBounded(I,IntegerOrder)
        I}\not=
        q\in\mathbb{Z . F(q) }\in\mathbb{Z}
        K={F(q). q \in I}
        using Order_ZF_3_L11 Int_ZF_1_3_L17 by auto
```

```
    then have M }\in\mathbb{Z}\mathrm{ by (rule Int_ZF_1_4_L1)
    with A3 have T1: M \leq L A+1 \leqL
        using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_3_L18
        by auto
    from C1 have T2: }\forall\textrm{q}\in\textrm{I}.\textrm{F}(\textrm{q})\leq
        by (rule Int_ZF_1_4_L1)
    { fix p assume A4: p\in\mathbb{Z have F(p) \leqL}
        proof -
            { assume abs(p) \leq abs(B)
with A4 T1 T2 have F(p) \leqM M \leq L
    using Int_ZF_1_3_L19 by auto
then have F(p) \leq L by (rule Int_order_transitive) }
        moreover
        { assume A5: \neg(abs(p) \leq abs(B))
from A3 A2 A4 have
    A\cdotabs(p) \in\mathbb{Z F}
    using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto
moreover from A3 A4 A5 have B \leq abs(p)
    using Int_ZF_1_3_L15 by simp
ultimately have
    F(p)\cdotabs(p) < A.abs(p) + abs(p)
    using Int_ZF_2_L15A by blast
    with A3 A4 have F(p)\cdotabs(p) \leq (A+1)\cdotabs(p)
    using Int_ZF_2_L14 Int_ZF_1_2_L7 by simp
moreover from A3 A1 A4 A5 have
    F(p) \in\mathbb{Z}}\textrm{A}+\boldsymbol{1}\in\mathbb{Z}\quad\mathrm{ abs(p) }\in\mathbb{Z
    \neg(abs(p) \leq 0)
    using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_L14 Int_ZF_1_3_L11
    by auto
    ultimately have F(p) \leq A+1
    using Int_ineq_simpl_positive by simp
    moreover from T1 have A+1 \leq L by simp
    ultimately have F(p) \leq L by (rule Int_order_transitive) }
        ultimately show thesis by blast
        qed
    } then have }\forall\textrm{p}\in\mathbb{Z}.\textrm{F}(\textrm{p})\leq\textrm{L}\mathrm{ by simp
    thus thesis by auto
qed
```

A lemma about splitting (not really, there is some overlap) the $\mathbb{Z} \times \mathbb{Z}$ into six subsets (cases). The subsets are as follows: first and third qaudrant, and second and fourth quadrant farther split by the $b=-a$ line.

```
lemma (in int0) int_plane_split_in6: assumes a\in\mathbb{Z}}\textrm{b}\in\mathbb{Z
    shows
0\leqa ^ 0\leqb \vee a\leq0 ^ b\leq0 \vee
a\leq0^0
0}\leq\textrm{a}\wedge\textrm{b}\leq\mathbf{0}\wedge\mathbf{0}\leq\textrm{a}+\textrm{b}\vee \vee 0\leqa ^ b\leq0^a+b\leq0
using assms Int_ZF_2_T1 group3.OrdGroup_6cases by simp
```

end

43 Division on integers

theory IntDiv_ZF_IML imports Int_ZF_1 ZF.IntDiv
begin
This theory translates some results form the Isabelle's IntDiv.thy theory to the notation used by IsarMathLib.

43.1 Quotient and reminder

For any integers $m, n, n>0$ there are unique integers q, p such that $0 \leq$ $p<n$ and $m=n \cdot q+p$. Number p in this decompsition is usually called m $\bmod n$. Standard Isabelle denotes numbers q, p as m zdiv n and $\mathrm{m} \operatorname{zmod} \mathrm{n}$, resp., and we will use the same notation.

The next lemma is sometimes called the "quotient-reminder theorem".

```
lemma (in int0) IntDiv_ZF_1_L1: assumes m\in\mathbb{Z}}n\in\mathbb{Z
    shows m = n.(m zdiv n) + (m zmod n)
    using assms Int_ZF_1_L2 raw_zmod_zdiv_equality
    by simp
```

If n is greater than 0 then $m \operatorname{zmod} n$ is between 0 and $n-1$.

```
lemma (in int0) IntDiv_ZF_1_L2:
    assumes A1: m\in\mathbb{Z}}\mathrm{ and A2: 0}\leqn n\not=
    shows
    0 \leqm zmod n
    m zmod n \leq n m zmod n f n
    m zmod n \leq n-1
proof -
    from A2 have T: n }\in\mathbb{Z
        using Int_ZF_2_L1A by simp
    from A2 have #0 $< n using Int_ZF_2_L9 Int_ZF_1_L8
        by auto
    with T show
        0 \leqm zmod n
        m zmod n \leqn
        m zmod n }=\textrm{n
        using pos_mod Int_ZF_1_L8 Int_ZF_1_L8A zmod_type
            Int_ZF_2_L1 Int_ZF_2_L9AA
        by auto
    then show m zmod n \leq n-1
        using Int_ZF_4_L1B by auto
qed
(m\cdotk) div k=m.
```

```
lemma (in int0) IntDiv_ZF_1_L3:
    assumes m\in\mathbb{Z}}\quadk\in\mathbb{Z}\mathrm{ and }k\not=
    shows
    (m}k\textrm{k}) zdiv k = m
    (k\cdotm) zdiv k = m
    using assms zdiv_zmult_self1 zdiv_zmult_self2
        Int_ZF_1_L8 Int_ZF_1_L2 by auto
```

The next lemma essentially translates zdiv_mono1 from standard Isabelle to our notation.

```
lemma (in int0) IntDiv_ZF_1_L4:
    assumes A1: \(m \leq k\) and A2: \(0 \leq n \quad n \neq 0\)
    shows \(m\) zdiv \(n \leq k\) zdiv \(n\)
proof -
    from A2 have \#0 \(\leq n \quad \# 0 \neq n\)
        using Int_ZF_1_L8 by auto
    with A1 have
        m zdiv n \$ \(\leq \mathrm{k}\) zdiv n
        \(m\) zdiv \(n \in \mathbb{Z} \quad m\) zdiv \(k \in \mathbb{Z}\)
        using Int_ZF_2_L1A Int_ZF_2_L9 zdiv_mono1
        by auto
    then show (m zdiv n) \(\leq\) (k zdiv n)
        using Int_ZF_2_L1 by simp
qed
```

A quotient-reminder theorem about integers greater than a given product.

```
lemma (in int0) IntDiv_ZF_1_L5:
    assumes A1: n }\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ and A2: n }\leq\textrm{k}\mathrm{ and A3: k.n }\leq\textrm{m
    shows
    m = n.(m zdiv n) + (m zmod n)
    m = (m zdiv n)\cdotn + (m zmod n)
    (m zmod n) \in 0..(n-1)
    k \leq (m zdiv n)
    m zdiv n }\in\mp@subsup{\mathbb{Z}}{+}{
proof -
    from A2 A3 have T:
        m\in\mathbb{Z}\quadn\in\mathbb{Z}\quadk\in\mathbb{Z}\quadm zdiv n }\in\mathbb{Z
        using Int_ZF_2_L1A by auto
        then show m = n}(\textrm{m}\mathrm{ zdiv n) + (m zmod n)
            using IntDiv_ZF_1_L1 by simp
        with T show m = (m zdiv n)\cdotn + (m zmod n)
            using Int_ZF_1_L4 by simp
            from A1 have I: 0 }\leqn n\not=
                using PositiveSet_def by auto
    with T show (m zmod n) \in 0..(n-1)
            using IntDiv_ZF_1_L2 Order_ZF_2_L1
            by simp
    from A3 I have (k.n zdiv n) \leq (m zdiv n)
            using IntDiv_ZF_1_L4 by simp
```

```
    with I T show k \leq (m zdiv n)
        using IntDiv_ZF_1_L3 by simp
    with A1 A2 show m zdiv n }\in\mp@subsup{\mathbb{Z}}{+}{
        using Int_ZF_1_5_L7 by blast
qed
```

end

44 Integers 2

theory Int_ZF_2 imports func_ZF_1 Int_ZF_1 IntDiv_ZF_IML Group_ZF_3

begin

In this theory file we consider the properties of integers that are needed for the real numbers construction in Real_ZF series.

44.1 Slopes

In this section we study basic properties of slopes - the integer almost homomorphisms. The general definition of an almost homomorphism f on a group G written in additive notation requires the set $\{f(m+n)-f(m)-f(n)$: $m, n \in G\}$ to be finite. In this section we establish a definition that is equivalent for integers: that for all integer m, n we have $|f(m+n)-f(m)-f(n)| \leq L$ for some L.

First we extend the standard notation for integers with notation related to slopes. We define slopes as almost homomorphisms on the additive group of integers. The set of slopes is denoted \mathcal{S}. We also define "positive" slopes as those that take infinite number of positive values on positive integers. We write $\delta(\mathrm{s}, \mathrm{m}, \mathrm{n})$ to denote the homomorphism difference of s at m, n (i.e the expression $s(m+n)-s(m)-s(n))$. We denote $\max \delta(s)$ the maximum absolute value of homomorphism difference of s as m, n range over integers. If s is a slope, then the set of homomorphism differences is finite and this maximum exists. In Group_ZF_3 we define the equivalence relation on almost homomorphisms using the notion of a quotient group relation and use " \approx " to denote it. As here this symbol seems to be hogged by the standard Isabelle, we will use $" \sim$ instead $" \approx "$. We show in this section that $s \sim r$ iff for some L we have $|s(m)-r(m)| \leq L$ for all integer m. The " + " denotes the first operation on almost homomorphisms. For slopes this is addition of functions defined in the natural way. The "○" symbol denotes the second operation on almost homomorphisms (see Group_ZF_3 for definition), defined for the group of integers. In short " \circ " is the composition of slopes. The " $-1 "$ symbol acts as an infix operator that assigns the value $\min \left\{n \in Z_{+}: p \leq f(n)\right\}$ to
a pair (of sets) f and p. In application f represents a function defined on Z_{+}and p is a positive integer. We choose this notation because we use it to construct the right inverse in the ring of classes of slopes and show that this ring is in fact a field. To study the homomorphism difference of the function defined by $p \mapsto f^{-1}(p)$ we introduce the symbol ε defined as $\varepsilon(f,\langle m, n\rangle)=f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)$. Of course the intention is to use the fact that $\varepsilon(f,\langle m, n\rangle)$ is the homomorphism difference of the function g defined as $g(m)=f^{-1}(m)$. We also define $\gamma(s, m, n)$ as the expression $\delta(f, m,-n)+s(0)-\delta(f, n,-n)$. This is useful because of the identity $f(m-n)=\gamma(m, n)+f(m)-f(n)$ that allows to obtain bounds on the value of a slope at the difference of of two integers. For every integer m we introduce notation m^{S} defined by $m^{E}(n)=m \cdot n$. The mapping $q \mapsto q^{S}$ embeds integers into \mathcal{S} preserving the order, (that is, maps positive integers into \mathcal{S}_{+}).

```
locale int1 = int0 +
    fixes slopes (S )
    defines slopes_def[simp]:S = AlmostHoms(\mathbb{Z},IntegerAddition)
    fixes posslopes ( }\mp@subsup{\mathcal{S}}{+}{}\mathrm{ )
    defines posslopes_def[simp]: }\mp@subsup{\mathcal{S}}{+}{}\equiv{s\in\mathcal{S}.s(\mp@subsup{\mathbb{Z}}{+}{})\cap\mp@subsup{\mathbb{Z}}{+}{}\not\in\operatorname{Fin}(\mathbb{Z})
    fixes }
    defines }\mp@subsup{\delta}{-}{\prime}\mathrm{ def[simp]: }\delta(\textrm{s},\textrm{m},\textrm{n})\equiv\textrm{s}(\textrm{m}+\textrm{n})-\textrm{s}(\textrm{m})-\textrm{s}(\textrm{n}
    fixes maxhomdiff (max \delta )
    defines maxhomdiff_def[simp]:
    max}\delta(\textrm{s})\equiv\operatorname{Maximum(IntegerOrder,{abs(\delta(s,m,n)). \langlem,n\rangle}\in\mathbb{Z}\times\mathbb{Z}}
    fixes AlEqRel
    defines AlEqRel_def[simp]:
    AlEqRel \equiv QuotientGroupRel(S,AlHomOp1(\mathbb{Z},IntegerAddition),FinRangeFunctions(\mathbb{Z},\mathbb{Z}))
    fixes AlEq(infix ~ 68)
    defines AlEq_def[simp]: s ~ r \equiv\langle s,r\rangle\in AlEqRel
    fixes slope_add (infix + 70)
    defines slope_add_def[simp]: s + r \equiv AlHomOp1(\mathbb{Z,IntegerAddition)\langle s,r\rangle}\\mp@code{|}|
    fixes slope_comp (infix ○ 70)
    defines slope_comp_def[simp]: s ○ r \equiv AlHomOp2(\mathbb{Z},IntegerAddition)<
s,r>
    fixes neg (-_ [90] 91)
    defines neg_def[simp]: -s \equivGroupInv(\mathbb{Z},IntegerAddition) O s
    fixes slope_inv (infix -1 71)
```

```
defines slope_inv_def[simp]:
f
fixes }
defines \varepsilon_def[simp]:
```



```
fixes }
defines }\mp@subsup{\gamma}{-}{}\mathrm{ def[simp]:
\gamma(s,m,n) \equiv\delta(s,m,-n) - \delta(s,n,-n) + s(0)
fixes intembed (_ \({ }^{S}\) )
defines intembed_def \([\) simp \(]: m^{S} \equiv\{\langle\mathrm{n}, \mathrm{m} \cdot \mathrm{n}\rangle . \mathrm{n} \in \mathbb{Z}\}\)
```

We can use theorems proven in the group1 context.
lemma (in int1) Int_ZF_2_1_L1: shows group1(\mathbb{Z}, IntegerAddition) using Int_ZF_1_T2 group1_axioms.intro group1_def by simp

Type information related to the homomorphism difference expression.

```
lemma (in int1) Int_ZF_2_1_L2: assumes \(f \in \mathcal{S}\) and \(n \in \mathbb{Z} m \in \mathbb{Z}\)
    shows
    \(\mathrm{m}+\mathrm{n} \in \mathbb{Z}\)
    \(f(m+n) \in \mathbb{Z}\)
    \(\mathrm{f}(\mathrm{m}) \in \mathbb{Z} \quad \mathrm{f}(\mathrm{n}) \in \mathbb{Z}\)
    \(f(m)+f(n) \in \mathbb{Z}\)
    HomDiff( \(\mathbb{Z}\), IntegerAddition, \(\mathrm{f},\langle\mathrm{m}, \mathrm{n}\rangle) \in \mathbb{Z}\)
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L4A
    by auto
```

Type information related to the homomorphism difference expression.

```
lemma (in int1) Int_ZF_2_1_L2A:
    assumes }f:\mathbb{Z}->\mathbb{Z}\mathrm{ and n}n\in\mathbb{Z}\quadm\in\mathbb{Z
    shows
    m+n}\in\mathbb{Z
    f(m+n) \in\mathbb{Z}\quadf(m)\in\mathbb{Z}\quadf(n)\in\mathbb{Z}
    f(m) + f(n) \in\mathbb{Z}
    HomDiff(\mathbb{Z},\mathrm{ IntegerAddition,f,\ m,n>) }\in\mathbb{Z}
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L4
    by auto
```

Slopes map integers into integers.

```
lemma (in int1) Int_ZF_2_1_L2B:
```

 assumes \(\mathrm{A} 1: \mathrm{f} \in \mathcal{S}\) and \(\mathrm{A} 2: \mathrm{m} \in \mathbb{Z}\)
 shows \(f(m) \in \mathbb{Z}\)
 proof -
from A1 have $f: \mathbb{Z} \rightarrow \mathbb{Z}$ using AlmostHoms_def by simp
with $A 2$ show $f(m) \in \mathbb{Z}$ using apply_funtype by simp
qed

The homomorphism difference in multiplicative notation is defined as the expression $s(m \cdot n) \cdot(s(m) \cdot s(n))^{-1}$. The next lemma shows that in the additive notation used for integers the homomorphism difference is $f(m+$ $n)-f(m)-f(n)$ which we denote as $\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})$.

```
lemma (in int1) Int_ZF_2_1_L3:
    assumes }f:\mathbb{Z}->\mathbb{Z}\mathrm{ and m}m\in\mathbb{Z}\quadn\in\mathbb{Z
    shows HomDiff(\mathbb{Z},IntegerAddition,f,\langle m,n\rangle) = \delta(f,m,n)
    using assms Int_ZF_2_1_L2A Int_ZF_1_T2 group0.group0_4_L4A
        HomDiff_def by auto
```

The next formula restates the definition of the homomorphism difference to express the value an almost homomorphism on a sum.

```
lemma (in int1) Int_ZF_2_1_L3A:
    assumes A1: f\in\mathcal{S}\mathrm{ and A2: m,Z्Z n}\textrm{n}\in\mathbb{Z}
    shows
    f(m+n)=f(m)+(f(n)+\delta(f,m,n))
proof -
    from A1 A2 have
        T: f(m)\in\mathbb{Z }f(n)\in\mathbb{Z}\quad\delta(f,m,n)\in\mathbb{Z}\mathrm{ and}
        HomDiff(\mathbb{Z,IntegerAddition,f,\langle m,n\rangle) = \delta(f,m,n)}
        using Int_ZF_2_1_L2 AlmostHoms_def Int_ZF_2_1_L3 by auto
    with A1 A2 show f(m+n) = f(m)+(f(n)+\delta(f,m,n))
        using Int_ZF_2_1_L3 Int_ZF_1_L3
            Int_ZF_2_1_L1 group1.Group_ZF_3_4_L1
        by simp
qed
```

The homomorphism difference of any integer function is integer.

```
lemma (in int1) Int_ZF_2_1_L3B:
    assumes }f:\mathbb{Z}->\mathbb{Z}\mathrm{ and m}\in\mathbb{Z}\quadn\in\mathbb{Z
    shows }\delta(\textrm{f},\textrm{m},\textrm{n})\in\mathbb{Z
    using assms Int_ZF_2_1_L2A Int_ZF_2_1_L3 by simp
```

The value of an integer function at a sum expressed in terms of δ.

```
lemma (in int1) Int_ZF_2_1_L3C: assumes A1: \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) and A2: \(m \in \mathbb{Z} \quad n \in \mathbb{Z}\)
    shows \(f(m+n)=\delta(f, m, n)+f(n)+f(m)\)
proof -
    from A1 A2 have \(T\) :
        \(\delta(f, m, n) \in \mathbb{Z} \quad f(m+n) \in \mathbb{Z} \quad f(m) \in \mathbb{Z} \quad f(n) \in \mathbb{Z}\)
        using Int_ZF_1_1_L5 apply_funtype by auto
    then show \(f(m+n)=\delta(f, m, n)+f(n)+f(m)\)
        using Int_ZF_1_2_L15 by simp
qed
```

The next lemma presents two ways the set of homomorphism differences can be written.
lemma (in int1) Int_ZF_2_1_L4: assumes A1: $f: \mathbb{Z} \rightarrow \mathbb{Z}$

```
    shows {abs(HomDiff(\mathbb{Z},IntegerAddition,f,x)). x }\in\mathbb{Z}\times\mathbb{Z}}
    {abs(\delta(f,m,n)).\langlem,n\rangle\in\mathbb{Z}\times\mathbb{Z}}
proof -
    from A1 have }\forall\textrm{m}\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}
        abs(HomDiff(\mathbb{Z},IntegerAddition,f,\langle m,n\rangle)) = abs(\delta(f,m,n))
        using Int_ZF_2_1_L3 by simp
    then show thesis by (rule ZF1_1_L4A)
qed
If \(f\) maps integers into integers and for all \(m, n \in Z\) we have \(\mid f(m+n)-\) \(f(m)-f(n) \mid \leq L\) for some \(L\), then \(f\) is a slope.
lemma (in int1) Int_ZF_2_1_L5: assumes A1: \(f: \mathbb{Z} \rightarrow \mathbb{Z}\)
and \(\mathrm{A} 2: ~ \forall \mathrm{~m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}\)
shows \(f \in \mathcal{S}\)
proof -
let \(\mathrm{Abs}=\mathrm{AbsoluteValue}(\mathbb{Z}\),IntegerAddition,IntegerOrder)
have group3( \(\mathbb{Z}\), IntegerAddition, IntegerOrder)
IntegerOrder \{is total on\} \(\mathbb{Z}\)
using Int_ZF_2_T1 by auto
moreover from A1 A2 have
\(\forall \mathrm{x} \in \mathbb{Z} \times \mathbb{Z} . \operatorname{HomDiff}(\mathbb{Z}\), IntegerAddition, \(\mathrm{f}, \mathrm{x}) \in \mathbb{Z} \wedge\)
\(\langle\) Abs (HomDiff \((\mathbb{Z}\), IntegerAddition, \(\mathrm{f}, \mathrm{x})\) ), L\(\rangle \in\) IntegerOrder
using Int_ZF_2_1_L2A Int_ZF_2_1_L3 by auto
ultimately have
IsBounded ( \(\{\) HomDiff ( \(\mathbb{Z}\), IntegerAddition, \(f, x\) ) . \(x \in \mathbb{Z} \times \mathbb{Z}\}\), IntegerOrder)
by (rule group3.OrderedGroup_ZF_3_L9A)
with A1 show \(f \in \mathcal{S}\) using Int_bounded_iff_fin AlmostHoms_def
by simp
qed
The absolute value of homomorphism difference of a slope \(s\) does not exceed \(\max \delta(\mathrm{s})\).
lemma (in int1) Int_ZF_2_1_L7:
assumes \(\mathrm{A} 1: \mathrm{s} \in \mathcal{S}\) and \(\mathrm{A} 2: \mathrm{n} \in \mathbb{Z} \quad \mathrm{m} \in \mathbb{Z}\)
shows
\(\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m}, \mathrm{n})) \leq \max \delta(\mathrm{s})\)
\(\delta(\mathrm{s}, \mathrm{m}, \mathrm{n}) \in \mathbb{Z} \quad \max \delta(\mathrm{s}) \in \mathbb{Z}\)
\((-\max \delta(\mathrm{s})) \leq \delta(\mathrm{s}, \mathrm{m}, \mathrm{n})\)
proof -
from A1 A2 show \(T: \delta(\mathrm{s}, \mathrm{m}, \mathrm{n}) \in \mathbb{Z}\)
using Int_ZF_2_1_L2 Int_ZF_1_1_L5 by simp
let \(A=\{\operatorname{abs}(\operatorname{HomDiff}(\mathbb{Z}\), IntegerAddition, \(s, x)) . x \in \mathbb{Z} \times \mathbb{Z}\}\)
let \(B=\{\operatorname{abs}(\delta(s, m, n)) .\langle m, n\rangle \in \mathbb{Z} \times \mathbb{Z}\}\)
let \(\mathrm{d}=\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m}, \mathrm{n}))\)
have IsLinOrder( \(\mathbb{Z}\),IntegerOrder) using Int_ZF_2_T1
by simp
moreover have \(A \in \operatorname{Fin}(\mathbb{Z})\)
proof -
have \(\forall k \in \mathbb{Z}\). abs(k) \(\in \mathbb{Z}\) using Int_ZF_2_L14 by simp
```

```
        moreover from A1 have
            {HomDiff(\mathbb{Z},\mathrm{ IntegerAddition,s,x). x }\in\mathbb{Z}\times\mathbb{Z}}\in\operatorname{Fin}(\mathbb{Z})
            using AlmostHoms_def by simp
        ultimately show A }\in\operatorname{Fin}(\mathbb{Z})\mathrm{ by (rule Finite1_L6C)
    qed
    moreover have A}=0\mathrm{ by auto
    ultimately have }\forallk\inA.\langlek,Maximum(IntegerOrder,A)\rangle\in IntegerOrder
        by (rule Finite_ZF_1_T2)
    moreover from A1 A2 have d\inA using AlmostHoms_def Int_ZF_2_1_L4
        by auto
    ultimately have d \leq Maximum(IntegerOrder,A) by auto
    with A1 show d \leq max }\delta\mathrm{ (s) max 
        using AlmostHoms_def Int_ZF_2_1_L4 Int_ZF_2_L1A
        by auto
    with T show (-max }\delta(\textrm{s}))\leq\delta(\textrm{s},\textrm{m},\textrm{n}
        using Int_ZF_1_3_L19 by simp
qed
```

A useful estimate for the value of a slope at 0 , plus some type information for slopes.

```
lemma (in int1) Int_ZF_2_1_L8: assumes A1: s\in\mathcal{S}
    shows
    abs(s(0)) \leq max \delta(s)
    0 \leq max \delta(s)
    abs(s(0)) \in\mathbb{Z}}\operatorname{max}\delta(\textrm{s})\in\mathbb{Z
    abs(s(0)) + max}\delta(s)\in\mathbb{Z
proof -
    from A1 have s(0) \in\mathbb{Z}
        using int_zero_one_are_int Int_ZF_2_1_L2B by simp
    then have I: 0 \leq abs(s(0))
        and abs(\delta(s,0,0)) = abs(s(0))
        using int_abs_nonneg int_zero_one_are_int Int_ZF_1_1_L4
            Int_ZF_2_L17 by auto
    moreover from A1 have abs(\delta(s,0,0)) \leq max (s)
        using int_zero_one_are_int Int_ZF_2_1_L7 by simp
    ultimately show II: abs(s(0)) \leq max (s)
        by simp
    with I show 0\leqmax \delta(s) by (rule Int_order_transitive)
    with II show
        max}\delta(s)\in\mathbb{Z}\quad\operatorname{abs}(s(0))\in\mathbb{Z
        abs(s(0)) + max}\delta(s)\in\mathbb{Z
        using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
qed
```

Int Group_ZF_3.thy we show that finite range functions valued in an abelian group form a normal subgroup of almost homomorphisms. This allows to define the equivalence relation between almost homomorphisms as the relation resulting from dividing by that normal subgroup. Then we show in Group_ZF_3_4_L12 that if the difference of f and g has finite range (actually
$f(n) \cdot g(n)^{-1}$ as we use multiplicative notation in Group_ZF_3.thy), then f and g are equivalent. The next lemma translates that fact into the notation used in int1 context.

```
lemma (in int1) Int_ZF_2_1_L9: assumes \(\mathrm{A} 1: \mathrm{s} \in \mathcal{S} \quad \mathrm{r} \in \mathcal{S}\)
    and \(\mathrm{A} 2: ~ \forall \mathrm{~m} \in \mathbb{Z}\). \(\operatorname{abs}(\mathrm{s}(\mathrm{m})-\mathrm{r}(\mathrm{m})) \leq \mathrm{L}\)
    shows \(\mathrm{s} \sim \mathrm{r}\)
proof -
    from A1 A2 have
        \(\forall \mathrm{m} \in \mathbb{Z} . \mathrm{s}(\mathrm{m})-\mathrm{r}(\mathrm{m}) \in \mathbb{Z} \wedge \operatorname{abs}(\mathrm{s}(\mathrm{m})-\mathrm{r}(\mathrm{m})) \leq \mathrm{L}\)
        using Int_ZF_2_1_L2B Int_ZF_1_1_L5 by simp
    then have
        IsBounded (\{s(n)-r(n). \(n \in \mathbb{Z}\}\), IntegerOrder)
        by (rule Int_ZF_1_3_L20)
    with A1 show s ~ r using Int_bounded_iff_fin
        Int_ZF_2_1_L1 group1.Group_ZF_3_4_L12 by simp
qed
```

A neccessary condition for two slopes to be almost equal. For slopes the definition postulates the set $\{f(m)-g(m): m \in Z\}$ to be finite. This lemma shows that this implies that $|f(m)-g(m)|$ is bounded (by some integer) as m varies over integers. We also mention here that in this context $\mathrm{s} \sim \mathrm{r}$ implies that both s and r are slopes.

```
lemma (in int1) Int_ZF_2_1_L9A: assumes s ~ r
    shows
    |}\in\mathbb{Z}.\forall\textrm{m}\in\mathbb{Z}. abs(s(m)-r(m)) \leq L
    s\in\mathcal{S}\quadr\in\mathcal{S}
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_4_L11
        Int_ZF_1_3_L20AA QuotientGroupRel_def by auto
```

Let's recall that the relation of almost equality is an equivalence relation on the set of slopes.

```
lemma (in int1) Int_ZF_2_1_L9B: shows
    AlEqRel }\subseteq\mathcal{S}\times\mathcal{S
    equiv(S,AlEqRel)
    using Int_ZF_2_1_L1 group1.Group_ZF_3_3_L3 by auto
```

Another version of sufficient condition for two slopes to be almost equal: if the difference of two slopes is a finite range function, then they are almost equal.

```
lemma (in int1) Int_ZF_2_1_L9C: assumes s\in\mathcal{S }r\in\mathcal{S}\mathrm{ and}
    s + (-r) \in FinRangeFunctions(\mathbb{Z},\mathbb{Z})
    shows
    s ~ r
    r ~ s
    using assms Int_ZF_2_1_L1
            group1.Group_ZF_3_2_L13 group1.Group_ZF_3_4_L12A
    by auto
```

If two slopes are almost equal, then the difference has finite range. This is the inverse of Int_ZF_2_1_L9C.

```
lemma (in int1) Int_ZF_2_1_L9D: assumes A1: s ~ r
    shows s + (-r) \in FinRangeFunctions(\mathbb{Z},\mathbb{Z})
proof -
    let G = \mathbb{Z}
    let f = IntegerAddition
    from A1 have AlHomOp1(G, f)\langles,GroupInv(AlmostHoms(G, f),AlHomOp1(G,
f)) (r)
        \in FinRangeFunctions(G, G)
        using Int_ZF_2_1_L1 group1.Group_ZF_3_4_L12B by auto
    with A1 show s + (-r) \in FinRangeFunctions(\mathbb{Z},\mathbb{Z})
        using Int_ZF_2_1_L9A Int_ZF_2_1_L1 group1.Group_ZF_3_2_L13
        by simp
qed
```

What is the value of a composition of slopes?

```
lemma (in int1) Int_ZF_2_1_L10:
    assumes \(s \in \mathcal{S} \quad r \in \mathcal{S}\) and \(m \in \mathbb{Z}\)
    shows (sor) (m) \(=s(r(m)) s(r(m)) \in \mathbb{Z}\)
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_4_L2 by auto
```

Composition of slopes is a slope.

```
lemma (in int1) Int_ZF_2_1_L11:
    assumes }s\in\mathcal{S}\quadr\in\mathcal{S
    shows sor }\in\mathcal{S
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_4_T1 by simp
```

Negative of a slope is a slope.
lemma (in int1) Int_ZF_2_1_L12: assumes $s \in \mathcal{S}$ shows $-\mathrm{s} \in \mathcal{S}$
using assms Int_ZF_1_T2 Int_ZF_2_1_L1 group1.Group_ZF_3_2_L13
by simp
What is the value of a negative of a slope?

```
lemma (in int1) Int_ZF_2_1_L12A:
    assumes }s\in\mathcal{S}\mathrm{ and m&ZZ
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L5
    by simp
```

What are the values of a sum of slopes?

```
lemma (in int1) Int_ZF_2_1_L12B: assumes }s\in\mathcal{S}\quadr\in\mathcal{S}\mathrm{ and m}m\in\mathbb{Z
    shows (s+r)(m) = s(m) + r(m)
    using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L12
    by simp
```

Sum of slopes is a slope.
lemma (in int1) Int_ZF_2_1_L12C: assumes $s \in \mathcal{S} \quad \mathrm{r} \in \mathcal{S}$

```
shows s+r }\in\mathcal{S
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L16
by simp
```

A simple but useful identity.

```
lemma (in int1) Int_ZF_2_1_L13:
    assumes }s\in\mathcal{S}\mathrm{ and }n\in\mathbb{Z}\quadm\in\mathbb{Z
    shows s(n\cdotm) + (s(m) + \delta(s,n\cdotm,m)) = s((n+1)\cdotm)
    using assms Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_1_2_L9 Int_ZF_1_2_L7
    by simp
```

Some estimates for the absolute value of a slope at the opposite integer.

```
lemma (in int1) Int_ZF_2_1_L14: assumes A1: \(s \in \mathcal{S}\) and A2: m \(\in \mathbb{Z}\)
    shows
    \(\mathrm{s}(-\mathrm{m})=\mathrm{s}(0)-\delta(\mathrm{s}, \mathrm{m},-\mathrm{m})-\mathrm{s}(\mathrm{m})\)
    abs \((\mathrm{s}(\mathrm{m})+\mathrm{s}(-\mathrm{m})) \leq 2 \cdot \max \delta(\mathrm{~s})\)
    \(\operatorname{abs}(\mathrm{s}(-\mathrm{m})) \leq 2 \cdot \max \delta(\mathrm{~s})+\mathrm{abs}(\mathrm{s}(\mathrm{m}))\)
    \(\mathrm{s}(-\mathrm{m}) \leq \operatorname{abs}(\mathrm{s}(\mathbf{0}))+\max \delta(\mathrm{s})-\mathrm{s}(\mathrm{m})\)
proof -
    from A1 A2 have T:
        \((-m) \in \mathbb{Z}\) abs(s(m)) \(\in \mathbb{Z} \quad s(\mathbf{0}) \in \mathbb{Z} \quad\) abs \((s(0)) \in \mathbb{Z}\)
        \(\delta(s, m,-m) \in \mathbb{Z} \quad s(m) \in \mathbb{Z} \quad s(-m) \in \mathbb{Z}\)
        \((-(\mathrm{s}(\mathrm{m}))) \in \mathbb{Z} \mathrm{s}(0)-\delta(\mathrm{s}, \mathrm{m},-\mathrm{m}) \in \mathbb{Z}\)
        using Int_ZF_1_1_L4 Int_ZF_2_1_L2B Int_ZF_2_L14 Int_ZF_2_1_L2
            Int_ZF_1_1_L5 int_zero_one_are_int by auto
    with A2 show \(I: s(-m)=s(0)-\delta(s, m,-m)-s(m)\)
        using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp
    from \(T\) have \(\operatorname{abs}(s(0)-\delta(s, m,-m)) \leq \operatorname{abs}(s(0))+\operatorname{abs}(\delta(s, m,-m))\)
        using Int_triangle_ineq1 by simp
    moreover from A1 A2 T have abs \((\mathrm{s}(0))+\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{m})) \leq 2 \cdot \max \delta(\mathrm{~s})\)
        using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 by simp
    ultimately have abs(s(0) \(-\delta(\mathrm{s}, \mathrm{m},-\mathrm{m})\) ) \(\leq 2 \cdot \max \delta(\mathrm{~s})\)
        by (rule Int_order_transitive)
    moreover
    from I have \(s(m)+s(-m)=s(m)+(s(0)-\delta(s, m,-m)-s(m))\)
        by simp
    with \(T\) have \(\operatorname{abs}(\mathrm{s}(\mathrm{m})+\mathrm{s}(-\mathrm{m}))=\operatorname{abs}(\mathrm{s}(0)-\delta(\mathrm{s}, \mathrm{m},-\mathrm{m}))\)
        using Int_ZF_1_2_L3 by simp
    ultimately show abs \((\mathrm{s}(\mathrm{m})+\mathrm{s}(-\mathrm{m})) \leq 2 \cdot \max \delta(\mathrm{~s})\)
        by simp
    from I have abs \((\mathrm{s}(-\mathrm{m}))=\operatorname{abs}(\mathrm{s}(0)-\delta(\mathrm{s}, \mathrm{m},-\mathrm{m})-\mathrm{s}(\mathrm{m}))\)
        by simp
    with T have
        \(\operatorname{abs}(\mathrm{s}(-\mathrm{m})) \leq \operatorname{abs}(\mathrm{s}(\mathbf{0}))+\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{m}))+\operatorname{abs}(\mathrm{s}(\mathrm{m}))\)
        using int_triangle_ineq3 by simp
    moreover from A1 A2 T have
        \(\operatorname{abs}(\mathrm{s}(0))+\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{m}))+\mathrm{abs}(\mathrm{s}(\mathrm{m})) \leq 2 \cdot \max \delta(\mathrm{~s})+\operatorname{abs}(\mathrm{s}(\mathrm{m}))\)
        using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 int_ord_transl_inv
by simp
```

```
    ultimately show abs(s(-m)) \leq 2 max }\delta(\textrm{s})+\textrm{abs}(\textrm{s}(\textrm{m})
        by (rule Int_order_transitive)
    from T have s(0) - \delta(s,m,-m) \leq abs(s(0)) + abs(\delta(s,m,-m))
        using Int_ZF_2_L15E by simp
    moreover from A1 A2 T have
        abs(s(0)) + abs(\delta(s,m,-m)) \leq abs(s(0)) + max }\delta(\textrm{s}
        using Int_ZF_2_1_L7 int_ord_transl_inv by simp
    ultimately have s(0) - \delta( s,m,-m) \leq abs(s(0)) + max \delta(s)
        by (rule Int_order_transitive)
    with T have
        s(0) - \delta(s,m,-m) - s(m) \leq abs(s(0)) + max \delta(s) - s(m)
        using int_ord_transl_inv by simp
    with I show s(-m) \leq abs(s(0)) + max \delta(s) - s(m)
        by simp
qed
```

An identity that expresses the value of an integer function at the opposite integer in terms of the value of that function at the integer, zero, and the homomorphism difference. We have a similar identity in Int_ZF_2_1_L14, but over there we assume that f is a slope.

```
lemma (in int1) Int_ZF_2_1_L14A: assumes A1: \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) and A2: \(m \in \mathbb{Z}\)
    shows \(f(-m)=(-\delta(f, m,-m))+f(0)-f(m)\)
proof -
    from A1 A2 have T:
        \(f(-m) \in \mathbb{Z} \quad \delta(f, m,-m) \in \mathbb{Z} \quad f(0) \in \mathbb{Z} \quad f(m) \in \mathbb{Z}\)
        using Int_ZF_1_1_L4 Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype
        by auto
        with A2 show \(f(-m)=(-\delta(f, m,-m))+f(0)-f(m)\)
            using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp
qed
```

The next lemma allows to use the expression maxf (f,0..M-1). Recall that $\operatorname{maxf}(\mathrm{f}, \mathrm{A})$ is the maximum of (function) f on (the set) A.

```
lemma (in int1) Int_ZF_2_1_L15:
    assumes }s\in\mathcal{S}\mathrm{ and }M\in\mp@subsup{\mathbb{Z}}{+}{
    shows
    maxf(s,0..(M-1)) \in\mathbb{Z}
    \foralln\in0..(M-1). s(n) \leq maxf(s,0..(M-1))
    minf(s,0..(M-1)) \in\mathbb{Z}
    \foralln\in0..(M-1).minf(s,0..(M-1)) \leq s(n)
    using assms AlmostHoms_def Int_ZF_1_5_L6 Int_ZF_1_4_L2
    by auto
```

A lower estimate for the value of a slope at $n M+k$.

```
lemma (in int1) Int_ZF_2_1_L16:
    assumes A1: s\in\mathcal{S}}\mathrm{ and A2: m }\in\mathbb{Z}\mathrm{ and A3: M }\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ and A4: k }\in\mathbf{0..(M-1)
    shows s(m.M) + (minf(s,0..(M-1))- max \delta(s)) \leq s(m.M+k)
```

```
proof -
    from A3 have 0..(M-1)\subseteq\mathbb{Z}
        using Int_ZF_1_5_L6 by simp
    with A1 A2 A3 A4 have T: m.M \in\mathbb{Z}}\textrm{k}\in\mathbb{Z
        using PositiveSet_def Int_ZF_1_1_L5 Int_ZF_2_1_L2B
        by auto
    with A1 A3 A4 have
        s(m.M) + (minf(s,0..(M-1)) - max \delta(s)) \leq s(m.M) + (s(k) + \delta(s,m.M,k))
        using Int_ZF_2_1_L15 Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv
        by simp
    with A1 T show thesis using Int_ZF_2_1_L3A by simp
qed
```

Identity is a slope.
lemma (in int1) Int_ZF_2_1_L17: shows $\operatorname{id}(\mathbb{Z}) \in \mathcal{S}$
using Int_ZF_2_1_L1 group1.Group_ZF_3_4_L15 by simp
Simple identities about (absolute value of) homomorphism differences.

```
lemma (in int1) Int_ZF_2_1_L18:
    assumes \(A 1: f: \mathbb{Z} \rightarrow \mathbb{Z}\) and \(A 2: m \in \mathbb{Z} \quad n \in \mathbb{Z}\)
    shows
    \(\operatorname{abs}(f(n)+f(m)-f(m+n))=\operatorname{abs}(\delta(f, m, n))\)
    \(\operatorname{abs}(f(m)+f(n)-f(m+n))=\operatorname{abs}(\delta(f, m, n))\)
    \((-(f(m)))-f(n)+f(m+n)=\delta(f, m, n)\)
    \((-(f(n)))-f(m)+f(m+n)=\delta(f, m, n)\)
    \(\operatorname{abs}((-f(m+n))+f(m)+f(n))=a b s(\delta(f, m, n))\)
proof -
    from A1 A2 have T:
        \(f(m+n) \in \mathbb{Z} \quad f(m) \in \mathbb{Z} \quad f(n) \in \mathbb{Z}\)
        \(f(m+n)-f(m)-f(n) \in \mathbb{Z}\)
        \((-(f(m))) \in \mathbb{Z}\)
        \((-f(m+n))+f(m)+f(n) \in \mathbb{Z}\)
        using apply_funtype Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto
    then have
        abs ( \(-(\mathrm{f}(\mathrm{m}+\mathrm{n})-\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{n})))=\mathrm{abs}(\mathrm{f}(\mathrm{m}+\mathrm{n})-\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{n}))\)
        using Int_ZF_2_L17 by simp
    moreover from \(T\) have
        \((-(f(m+n)-f(m)-f(n)))=f(n)+f(m)-f(m+n)\)
        using Int_ZF_1_2_L9A by simp
    ultimately show abs \((\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{m}+\mathrm{n}))=\operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n}))\)
        by simp
    moreover from \(T\) have \(f(n)+f(m)=f(m)+f(n)\)
        using Int_ZF_1_1_L5 by simp
    ultimately show abs \((f(m)+f(n)-f(m+n))=\operatorname{abs}(\delta(f, m, n))\)
        by simp
    from \(T\) show
        \((-(f(m)))-f(n)+f(m+n)=\delta(f, m, n)\)
        \((-(\mathrm{f}(\mathrm{n})))-\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{m}+\mathrm{n})=\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})\)
        using Int_ZF_1_2_L9 by auto
```

```
    from T have
        abs}((-f(m+n))+f(m)+f(n))
        abs(-((-f(m+n)) + f(m) + f(n)))
        using Int_ZF_2_L17 by simp
    also from T have
        abs(-((-f(m+n)) + f(m) + f(n))) = abs(\delta(f,m,n))
        using Int_ZF_1_2_L9 by simp
    finally show abs((-f(m+n)) + f(m) + f(n)) = abs(\delta(f,m,n))
    by simp
qed
```

Some identities about the homomorphism difference of odd functions.

```
lemma (in int1) Int_ZF_2_1_L19:
    assumes A1: f:\mathbb{Z}->\mathbb{Z}\mathrm{ and A2: }\forallx\in\mathbb{Z}.(-f(-x)) = f(x)
    and A3: m\in\mathbb{Z}}n\in\mathbb{Z
    shows
    abs(\delta(f,-m,m+n)) = abs(\delta(f,m,n))
    abs(\delta(f,-n,m+n)) = abs(\delta(f,m,n))
    \delta(f,n,-(m+n)) = \delta(f,m,n)
    \delta(f,m,-(m+n))}=\delta(f,m,n
    abs(\delta(f,-m,-n)) = abs(\delta(f,m,n))
proof -
    from A1 A2 A3 show
        abs}(\delta(f,-m,m+n))=\operatorname{abs}(\delta(f,m,n)
        abs(\delta(f,-n,m+n)) = abs( ( (f,m,n))
        using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto
    from A3 have T: m+n \in\mathbb{Z}}\mathrm{ using Int_ZF_1_1_L5 by simp
    from A1 A2 have I: }\forallx\in\mathbb{Z}.f(-x)=(-f(x)
        using Int_ZF_1_5_L13 by simp
    with A1 A2 A3 T show
        \delta(f,n,-(m+n)) = \delta(f,m,n)
        \delta(f,m,-(m+n)) = \delta(f,m,n)
        using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto
    from A3 have
        abs(\delta(f,-m,-n)) = abs(f(-(m+n)) - f(-m) - f(-n))
        using Int_ZF_1_1_L5 by simp
    also from A1 A2 A3 T I have ... = abs ( }\delta(\textrm{f},\textrm{m},\textrm{n})
        using Int_ZF_2_1_L18 by simp
    finally show abs( }\delta(\textrm{f},-\textrm{m},-\textrm{n}))=\operatorname{abs}(\delta(f,m,n)) by sim
qed
```

Recall that f is a slope iff $f(m+n)-f(m)-f(n)$ is bounded as m, n ranges over integers. The next lemma is the first step in showing that we only need to check this condition as m, n ranges over positive intergers. Namely we show that if the condition holds for positive integers, then it holds if one integer is positive and the second one is nonnegative.

```
lemma (in int1) Int_ZF_2_1_L20: assumes A1: \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) and
    A2: \(\forall \mathrm{a} \in \mathbb{Z}_{+} . \forall \mathrm{b} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{f}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}\) and
    A3: \(\mathrm{m} \in \mathbb{Z}^{+} \quad \mathrm{n} \in \mathbb{Z}_{+}\)
```

shows

```
    \(\mathbf{0} \leq \mathrm{L}\)
    \(\operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}+\operatorname{abs}(\mathrm{f}(\mathbf{0}))\)
proof -
    from A1 A2 have
        \(\delta(\mathrm{f}, \mathbf{1}, 1) \in \mathbb{Z} \quad\) and \(\operatorname{abs}(\delta(\mathrm{f}, \mathbf{1}, \mathbf{1})) \leq \mathrm{L}\)
        using int_one_two_are_pos PositiveSet_def Int_ZF_2_1_L3B
        by auto
    then show I: \(\mathbf{0} \leq \mathrm{L}\) using Int_ZF_1_3_L19 by simp
    from A1 A3 have T:
        \(n \in \mathbb{Z} \quad f(n) \in \mathbb{Z} \quad f(0) \in \mathbb{Z}\)
        \(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n}) \in \mathbb{Z} \quad \operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \in \mathbb{Z}\)
        using PositiveSet_def int_zero_one_are_int apply_funtype
            Nonnegative_def Int_ZF_2_1_L3B Int_ZF_2_L14 by auto
    from A3 have \(m=0 \vee m \in \mathbb{Z}_{+}\)using Int_ZF_1_5_L3A by auto
    moreover
    \{ assume m = 0
        with T I have \(\operatorname{abs}(\delta(f, m, n)) \leq L+a b s(f(0))\)
            using Int_ZF_1_1_L4 Int_ZF_1_2_L3 Int_ZF_2_L17
    int_ord_is_refl refl_def Int_ZF_2_L15F by simp \}
    moreover
    \{ assume \(m \in \mathbb{Z}_{+}\)
        with A2 A3 T have \(\operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}+\mathrm{abs}(\mathrm{f}(0))\)
                using int_abs_nonneg Int_ZF_2_L15F by simp \}
    ultimately show \(\operatorname{abs}(\delta(f, m, n)) \leq L+\operatorname{abs}(f(0))\)
        by auto
qed
```

If the slope condition holds for all pairs of integers such that one integer is positive and the second one is nonnegative, then it holds when both integers are nonnegative.

```
lemma (in int1) Int_ZF_2_1_L21: assumes A1: \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) and
    A2: \(\forall \mathrm{a} \in \mathbb{Z}^{+} . \forall \mathrm{b} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{f}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}\) and
    A3: \(\mathrm{n} \in \mathbb{Z}^{+} \quad \mathrm{m} \in \mathbb{Z}^{+}\)
    shows \(\operatorname{abs}(\delta(f, m, n)) \leq L+\operatorname{abs}(f(0))\)
proof -
    from A1 A2 have
        \(\delta(\mathrm{f}, \mathbf{1}, \mathbf{1}) \in \mathbb{Z} \quad\) and \(\operatorname{abs}(\delta(\mathrm{f}, \mathbf{1}, \mathbf{1})) \leq \mathrm{L}\)
        using int_one_two_are_pos PositiveSet_def Nonnegative_def Int_ZF_2_1_L3B
        by auto
    then have I: \(0 \leq\) L using Int_ZF_1_3_L19 by simp
    from A1 A3 have \(T\) :
        \(m \in \mathbb{Z} \quad f(m) \in \mathbb{Z} \quad f(0) \in \mathbb{Z} \quad(-f(0)) \in \mathbb{Z}\)
        \(\delta(f, m, n) \in \mathbb{Z} \quad \operatorname{abs}(\delta(f, m, n)) \in \mathbb{Z}\)
        using int_zero_one_are_int apply_funtype Nonnegative_def
            Int_ZF_2_1_L3B Int_ZF_2_L14 Int_ZF_1_1_L4 by auto
    from A3 have \(n=0 \vee n \in \mathbb{Z}_{+}\)using Int_ZF_1_5_L3A by auto
    moreover
    \{ assume \(\mathrm{n}=0\)
```

```
        with T have \delta(f,m,n) = -f(0)
        using Int_ZF_1_1_L4 by simp
        with T have abs(\delta(f,m,n)) = abs(f(0))
        using Int_ZF_2_L17 by simp
    with T have abs(\delta(f,m,n)) \leq abs(f(0))
        using int_ord_is_refl refl_def by simp
    with T I have abs(\delta(f,m,n)) \leq L + abs(f(0))
        using Int_ZF_2_L15F by simp }
    moreover
    { assume n\in\mathbb{Z}
    with A2 A3 T have abs(\delta(f,m,n)) \leq L + abs(f(0))
        using int_abs_nonneg Int_ZF_2_L15F by simp }
    ultimately show abs(\delta(f,m,n))\leqL+abs(f(0))
        by auto
qed
```

If the homomorphism difference is bounded on $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$, then it is bounded on $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$.
lemma (in int1) Int_ZF_2_1_L22: assumes A1: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and
$\mathrm{A} 2: ~ \forall \mathrm{a} \in \mathbb{Z}_{+} . \forall \mathrm{b} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{f}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}$
shows $\exists \mathrm{M} . \forall \mathrm{m} \in \mathbb{Z}^{+} . \forall \mathrm{n} \in \mathbb{Z}^{+} . \operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \leq \mathrm{m}$
proof -
from A1 A2 have
$\forall \mathrm{m} \in \mathbb{Z}^{+} . \forall \mathrm{n} \in \mathbb{Z}^{+} . \operatorname{abs}(\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}+\mathrm{abs}(\mathrm{f}(\mathbf{0}))+\mathrm{abs}(\mathrm{f}(\mathbf{0}))$
using Int_ZF_2_1_L20 Int_ZF_2_1_L21 by simp
then show thesis by auto
qed

For odd functions we can do better than in Int_ZF_2_1_L22: if the homomorphism difference of f is bounded on $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$, then it is bounded on $\mathbb{Z} \times \mathbb{Z}$, hence f is a slope. Loong prof by splitting the $\mathbb{Z} \times \mathbb{Z}$ into six subsets.
lemma (in int1) Int_ZF_2_1_L23: assumes A1: $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and A2: $\forall \mathrm{a} \in \mathbb{Z}_{+} \cdot \forall \mathrm{b} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{f}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}$
and A3: $\forall x \in \mathbb{Z} .(-f(-x))=f(x)$
shows $f \in \mathcal{S}$
proof -
from A1 A2 have
$\exists \mathrm{M} . \forall \mathrm{a} \in \mathbb{Z}^{+} . \forall \mathrm{b} \in \mathbb{Z}^{+} . \operatorname{abs}(\delta(\mathrm{f}, \mathrm{a}, \mathrm{b})) \leq \mathrm{M}$
by (rule Int_ZF_2_1_L22)
then obtain M where $I: \forall m \in \mathbb{Z}^{+} . \forall n \in \mathbb{Z}^{+} . \operatorname{abs}(\delta(f, m, n)) \leq M$
by auto
\{ fix $a \operatorname{b}$ assume $A 4: a \in \mathbb{Z} \quad b \in \mathbb{Z}$
then have
$\mathbf{0} \leq \mathrm{a} \wedge \mathbf{0} \leq \mathrm{b} \quad \vee \mathrm{a} \leq \mathbf{0} \wedge \mathrm{b} \leq \mathbf{0} \vee$
$\mathrm{a} \leq \mathbf{0} \wedge \mathbf{0} \leq \mathrm{b} \wedge \mathbf{0} \leq \mathrm{a}+\mathrm{b} \vee \mathrm{a} \leq \mathbf{0} \wedge \mathbf{0} \leq \mathrm{b} \wedge \mathrm{a}+\mathrm{b} \leq \mathbf{0} \vee$
$\mathbf{0} \leq \mathrm{a} \wedge \mathrm{b} \leq \mathbf{0} \wedge \mathbf{0} \leq \mathrm{a}+\mathrm{b} \vee \mathbf{0} \leq \mathrm{a} \wedge \mathrm{b} \leq \mathbf{0} \wedge \mathrm{a}+\mathrm{b} \leq \mathbf{0}$
using int_plane_split_in6 by simp
moreover
\{ assume $0 \leq \mathrm{a} \wedge 0 \leq b$

```
        then have \(a \in \mathbb{Z}^{+} \quad b \in \mathbb{Z}^{+}\)
using Int_ZF_2_L16 by auto
        with I have abs \((\delta(f, a, b)) \leq M\) by simp \(\}\)
    moreover
    \{ assume \(\mathrm{a} \leq 0 \wedge \mathrm{~b} \leq 0\)
    with I have abs \((\delta(f,-a,-b)) \leq M\)
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
    with A1 A3 A4 have \(\operatorname{abs}(\delta(f, a, b)) \leq M\)
using Int_ZF_2_1_L19 by simp \}
    moreover
    \{ assume \(\mathrm{a} \leq 0 \wedge 0 \leq \mathrm{b} \wedge \mathbf{0} \leq \mathrm{a}+\mathrm{b}\)
        with I have \(\operatorname{abs}(\delta(f,-a, a+b)) \leq M\)
using Int_ZF_2_L10A Int_ZF_2_L16 by simp
            with A1 A3 A4 have \(\operatorname{abs}(\delta(f, a, b)) \leq M\)
using Int_ZF_2_1_L19 by simp \}
    moreover
    \{ assume \(\mathrm{a} \leq \mathbf{0} \wedge \mathbf{0} \leq \mathrm{b} \wedge \mathrm{a}+\mathrm{b} \leq \mathbf{0}\)
        with \(I\) have \(\operatorname{abs}(\delta(f, b,-(a+b))) \leq M\)
    using Int_ZF_2_L10A Int_ZF_2_L16 by simp
        with A1 A3 A4 have abs \((\delta(f, a, b)) \leq M\)
    using Int_ZF_2_1_L19 by simp \}
    moreover
    \{ assume \(0 \leq \mathrm{a} \wedge \mathrm{b} \leq \mathbf{0} \wedge \mathbf{0} \leq \mathrm{a}+\mathrm{b}\)
        with \(I\) have \(\operatorname{abs}(\delta(f,-b, a+b)) \leq M\)
    using Int_ZF_2_L10A Int_ZF_2_L16 by simp
        with A1 A3 A4 have abs \((\delta(f, a, b)) \leq M\)
    using Int_ZF_2_1_L19 by simp \}
    moreover
    \{ assume \(0 \leq \mathrm{a} \wedge \mathrm{b} \leq \mathbf{0} \wedge \mathrm{a}+\mathrm{b} \leq \mathbf{0}\)
        with I have \(\operatorname{abs}(\delta(f, a,-(a+b))) \leq M\)
    using Int_ZF_2_L10A Int_ZF_2_L16 by simp
        with A1 A3 A4 have \(\operatorname{abs}(\delta(f, a, b)) \leq M\)
    using Int_ZF_2_1_L19 by simp \}
        ultimately have \(\operatorname{abs}(\delta(f, a, b)) \leq M\) by auto \(\}\)
    then have \(\forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z}\). abs \((\delta(\mathrm{f}, \mathrm{m}, \mathrm{n})) \leq \mathrm{M}\) by \(\operatorname{simp}\)
    with A1 show \(f \in \mathcal{S}\) by (rule Int_ZF_2_1_L5)
qed
```

If the homomorphism difference of a function defined on positive integers is bounded, then the odd extension of this function is a slope.

```
lemma (in int1) Int_ZF_2_1_L24:
    assumes A1: \(\mathrm{f}: \mathbb{Z}_{+} \rightarrow \mathbb{Z}\) and \(\mathrm{A} 2: ~ \forall \mathrm{a} \in \mathbb{Z}_{+} . \forall \mathrm{b} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{f}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}\)
    shows OddExtension( \(\mathbb{Z}\),IntegerAddition,IntegerOrder,f) \(\in \mathcal{S}\)
proof -
    let \(\mathrm{g}=\) OddExtension( \(\mathbb{Z}\),IntegerAddition,IntegerOrder, f\()\)
    from \(A 1\) have \(g: \mathbb{Z} \rightarrow \mathbb{Z}\)
        using Int_ZF_1_5_L10 by simp
    moreover have \(\forall \mathrm{a} \in \mathbb{Z}_{+} . \forall \mathrm{b} \in \mathbb{Z}_{+}\). abs \((\delta(\mathrm{g}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}\)
    proof -
```

\{ fix $\mathrm{a} b$ assume $\mathrm{A} 3: \mathrm{a} \in \mathbb{Z}_{+} \quad \mathrm{b} \in \mathbb{Z}_{+}$
with A1 have $\operatorname{abs}(\delta(f, a, b))=a b s(\delta(g, a, b))$
using pos_int_closed_add_unfolded Int_ZF_1_5_L11
by simp
moreover from A2 A3 have abs $(\delta(f, a, b)) \leq$ L by simp
ultimately have abs $(\delta(\mathrm{g}, \mathrm{a}, \mathrm{b})) \leq \mathrm{L}$ by simp
\} then show thesis by simp
qed
moreover from A1 have $\forall x \in \mathbb{Z} .(-g(-x))=g(x)$
using int_oddext_is_odd_alt by simp
ultimately show $\mathrm{g} \in \mathcal{S}$ by (rule Int_ZF_2_1_L23)
qed
Type information related to γ.

```
lemma (in int1) Int_ZF_2_1_L25:
    assumes A1: f:\mathbb{Z}->\mathbb{Z}\mathrm{ and A2: m}\in\mathbb{Z}\quadn\in\mathbb{Z}
    shows
    \delta(f,m,-n) \in\mathbb{Z}
    \delta(f,n,-n) \in\mathbb{Z}
    (-\delta(f,n,-n)) \in\mathbb{Z}
    f(0) \in\mathbb{Z}
    \gamma(f,m,n) \in\mathbb{Z}
proof -
    from A1 A2 show T1:
        \delta(f,m,-n) \in\mathbb{Z}}\textrm{f}(0)\in\mathbb{Z
        using Int_ZF_1_1_L4 Int_ZF_2_1_L3B int_zero_one_are_int apply_funtype
        by auto
    from A2 have (-n) \in\mathbb{Z}
        using Int_ZF_1_1_L4 by simp
    with A1 A2 show }\delta(\textrm{f},\textrm{n},-\textrm{n})\in\mathbb{Z
        using Int_ZF_2_1_L3B by simp
    then show (-\delta(f,n,-n)) \in\mathbb{Z}
        using Int_ZF_1_1_L4 by simp
    with T1 show }\gamma(\textrm{f},\textrm{m},\textrm{n})\quad\in\mathbb{Z
        using Int_ZF_1_1_L5 by simp
qed
```

A couple of formulae involving $f(m-n)$ and $\gamma(f, m, n)$.
lemma (in int1) Int_ZF_2_1_L26:
assumes $A 1: f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $A 2: m \in \mathbb{Z} \quad n \in \mathbb{Z}$
shows
$\mathrm{f}(\mathrm{m}-\mathrm{n})=\gamma(\mathrm{f}, \mathrm{m}, \mathrm{n})+\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{n})$
$\mathrm{f}(\mathrm{m}-\mathrm{n})=\gamma(\mathrm{f}, \mathrm{m}, \mathrm{n})+(\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{n}))$
$f(m-n)+(f(n)-\gamma(f, m, n))=f(m)$
proof -
from A1 A2 have T :
$(-\mathrm{n}) \in \mathbb{Z} \quad \delta(\mathrm{f}, \mathrm{m},-\mathrm{n}) \in \mathbb{Z}$
$\mathrm{f}(\mathbf{0}) \in \mathbb{Z} \quad \mathrm{f}(\mathrm{m}) \in \mathbb{Z} \quad \mathrm{f}(\mathrm{n}) \in \mathbb{Z} \quad(-\mathrm{f}(\mathrm{n})) \in \mathbb{Z}$
$(-\delta(\mathrm{f}, \mathrm{n},-\mathrm{n})) \in \mathbb{Z}$

```
    (-\delta(f,n,-n)) + f(0) \in\mathbb{Z}
    (f,m,n) \in\mathbb{Z}
    using Int_ZF_1_1_L4 Int_ZF_2_1_L25 apply_funtype Int_ZF_1_1_L5
    by auto
    with A1 A2 have f(m-n) =
        \delta(f,m,-n) + ((-\delta(f,n,-n)) + f(0) - f(n)) + f(m)
        using Int_ZF_2_1_L3C Int_ZF_2_1_L14A by simp
    with T have f(m-n) =
        \delta(f,m,-n) + ((-\delta(f,n,-n)) + f(0)) + f(m) - f(n)
        using Int_ZF_1_2_L16 by simp
    moreover from T have
        \delta(f,m,-n) + ((-\delta(f,n,-n)) + f(0)) = \gamma(f,m,n)
        using Int_ZF_1_1_L7 by simp
    ultimately show I: f(m-n) = \gamma(f,m,n) + f(m) - f(n)
        by simp
    then have f(m-n) + (f(n) - \gamma(f,m,n)) =
        (\gamma(f,m,n) + f(m)-f(n)) +(f(n) - \gamma(f,m,n))
        by simp
    moreover from T have ... = f(m) using Int_ZF_1_2_L18
        by simp
    ultimately show f(m-n) + (f(n) - \gamma(f,m,n)) = f(m)
        by simp
    from T have }\gamma(f,m,n)\in\mathbb{Z}f(m)\in\mathbb{Z}\quad(-f(n))\in\mathbb{Z
        by auto
    then have
        \gamma(f,m,n) + f(m) + (-f(n)) = \gamma(f,m,n) + (f(m) + (-f(n)))
        by (rule Int_ZF_1_1_L7)
    with I show f(m-n) = \gamma(f,m,n) + (f(m) - f(n)) by simp
qed
```

A formula expressing the difference between $f(m-n-k)$ and $f(m)-f(n)-$ $f(k)$ in terms of γ.

```
lemma (in int1) Int_ZF_2_1_L26A:
    assumes A1: f:\mathbb{Z}->\mathbb{Z}\mathrm{ and A2: m}\in\mathbb{Z}\quadn\in\mathbb{Z}\quadk\in\mathbb{Z}
    shows
    f(m-n-k) - (f(m)- f(n) - f(k)) = \gamma(f,m-n,k) + \gamma(f,m,n)
proof -
    from A1 A2 have
        T: m-n \in\mathbb{Z}
        T1: \gamma(f,m,n) \in\mathbb{Z}}\textrm{f}(\textrm{m})-\textrm{f}(\textrm{n})\in\mathbb{Z}\quad(-f(k)) \in\mathbb{Z
        using Int_ZF_1_1_L4 Int_ZF_1_1_L5 Int_ZF_2_1_L25 apply_funtype
        by auto
    from A1 A2 have
        f(m-n) - f(k) = \gamma(f,m,n) + (f(m) - f(n)) + (-f(k))
        using Int_ZF_2_1_L26 by simp
    also from T1 have ... = \gamma (f,m,n) + (f(m) - f(n) + (-f(k)))
        by (rule Int_ZF_1_1_L7)
    finally have
        f(m-n) - f(k) = \gamma(f,m,n) +(f(m) - f(n) - f(k))
```

by simp
moreover from A1 A2 T have
$\mathrm{f}(\mathrm{m}-\mathrm{n}-\mathrm{k})=\gamma(\mathrm{f}, \mathrm{m}-\mathrm{n}, \mathrm{k})+(\mathrm{f}(\mathrm{m}-\mathrm{n})-\mathrm{f}(\mathrm{k}))$
using Int_ZF_2_1_L26 by simp
ultimately have
$f(m-n-k)-(f(m)-f(n)-f(k))=$
$\gamma(\mathrm{f}, \mathrm{m}-\mathrm{n}, \mathrm{k})+(\gamma(\mathrm{f}, \mathrm{m}, \mathrm{n})+(\mathrm{f}(\mathrm{m})-\mathrm{f}(\mathrm{n})-\mathrm{f}(\mathrm{k})))$

- $(f(m)-f(n)-f(k))$
by simp
with T T1 show thesis
using Int_ZF_1_2_L17 by simp
qed
If s is a slope, then $\gamma(s, m, n)$ is uniformly bounded.
lemma (in int1) Int_ZF_2_1_L27: assumes A1: $s \in \mathcal{S}$
shows $\exists \mathrm{L} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \operatorname{abs}(\gamma(\mathrm{s}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}$
proof -
let $\mathrm{L}=\max \delta(\mathrm{s})+\max \delta(\mathrm{s})+\operatorname{abs}(\mathrm{s}(0))$
from $A 1$ have T :
$\max \delta(\mathrm{s}) \in \mathbb{Z} \quad \operatorname{abs}(\mathrm{s}(\mathbf{0})) \in \mathbb{Z} \quad \mathrm{L} \in \mathbb{Z}$
using Int_ZF_2_1_L8 int_zero_one_are_int Int_ZF_2_1_L2B
Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

moreover

\{ fix m
fix n
assume $A 2: m \in \mathbb{Z} \quad n \in \mathbb{Z}$
with A1 have T :
$(-\mathrm{n}) \in \mathbb{Z}$
$\delta(\mathrm{s}, \mathrm{m},-\mathrm{n}) \in \mathbb{Z}$ $\delta(\mathrm{s}, \mathrm{n},-\mathrm{n}) \in \mathbb{Z}$ $(-\delta(\mathrm{s}, \mathrm{n},-\mathrm{n})) \in \mathbb{Z}$ $\mathrm{s}(\mathbf{0}) \in \mathbb{Z} \quad \operatorname{abs}(\mathrm{s}(\mathbf{0})) \in \mathbb{Z}$
using Int_ZF_1_1_L4 AlmostHoms_def Int_ZF_2_1_L25 Int_ZF_2_L14
by auto
with T have
$\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{n})-\delta(\mathrm{s}, \mathrm{n},-\mathrm{n})+\mathrm{s}(0)) \leq$
$\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{n}))+\operatorname{abs}(-\delta(\mathrm{s}, \mathrm{n},-\mathrm{n}))+\operatorname{abs}(\mathrm{s}(\mathbf{0}))$
using Int_triangle_ineq3 by simp
moreover from A1 A2 T have
$\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{n}))+\operatorname{abs}(-\delta(\mathrm{s}, \mathrm{n},-\mathrm{n}))+\operatorname{abs}(\mathrm{s}(0)) \leq \mathrm{L}$
using Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv Int_ZF_2_L17 by simp
ultimately have $\operatorname{abs}(\delta(\mathrm{s}, \mathrm{m},-\mathrm{n})-\delta(\mathrm{s}, \mathrm{n},-\mathrm{n})+\mathrm{s}(0)) \leq \mathrm{L}$
by (rule Int_order_transitive)
then have $\operatorname{abs}(\gamma(\mathrm{s}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}$ by simp $\}$
ultimately show $\exists \mathrm{L} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z}$. abs $(\gamma(\mathrm{s}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}$
by auto
qed
If s is a slope, then $s(m) \leq s(m-1)+M$, where L does not depend on m.

```
lemma (in int1) Int_ZF_2_1_L28: assumes A1: s\in\mathcal{S}
    shows }\exists\textrm{M}\in\mathbb{Z}.\forall\textrm{m}\in\mathbb{Z}.\textrm{s}(\textrm{m})\leq\textrm{s}(\textrm{m}-1)+
proof -
    from A1 have
        \exists\textrm{L}\in\mathbb{Z}.}\forall\textrm{m}\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\operatorname{abs}(\gamma(\textrm{s},\textrm{m},\textrm{n}))\leq\textrm{L
        using Int_ZF_2_1_L27 by simp
    then obtain L where T: L\in\mathbb{Z}}\mathrm{ and }\forall\textrm{m}\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\operatorname{abs}(\gamma(\textrm{s},\textrm{m},\textrm{n})))\leq
        using Int_ZF_2_1_L27 by auto
    then have I: }\forall\textrm{m}\in\mathbb{Z}.\operatorname{abs}(\gamma(\textrm{s},\textrm{m},\mathbf{1}))\leq\textrm{L
        using int_zero_one_are_int by simp
    let M = s(1) + L
    from A1 T have M }\in\mathbb{Z
        using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L5
        by simp
    moreover
    { fix m assume A2: m\in\mathbb{Z}
        with A1 have
            T1: s:\mathbb{Z}->\mathbb{Z}\quadm\in\mathbb{Z}\quad1\in\mathbb{Z}\mathrm{ and}
            T2: }\gamma(\textrm{s},\textrm{m},\mathbf{1})\in\mathbb{Z}\textrm{s}(\mathbf{1})\in\mathbb{Z
            using int_zero_one_are_int AlmostHoms_def
    Int_ZF_2_1_L25 by auto
        from A2 T1 have T3: s(m-1) \in\mathbb{Z}
            using Int_ZF_1_1_L5 apply_funtype by simp
        from I A2 T2 have
                (-\gamma(s,m,1)) \leq abs(\gamma(s,m,1))
                abs(\gamma(s,m,1)) \leq L
                using Int_ZF_2_L19C by auto
        then have ( }-\gamma(\textrm{s},\textrm{m},1))\leq\textrm{L
                by (rule Int_order_transitive)
        with T2 T3 have
                s(m-1) + (s(1) - \gamma(s,m,1)) \leq s(m-1) + M
                using int_ord_transl_inv by simp
        moreover from T1 have
                s(m-1) + (s(1) - \gamma(s,m,1)) = s(m)
                by (rule Int_ZF_2_1_L26)
            ultimately have s(m) \leqs(m-1) + M by simp }
    ultimately show }\exists\textrm{M}\in\mathbb{Z}.\forall\textrm{m}\in\mathbb{Z}.\textrm{s}(\textrm{m})\leq\textrm{s}(\textrm{m}-1)+
        by auto
qed
```

If s is a slope, then the difference between $s(m-n-k)$ and $s(m)-s(n)-s(k)$ is uniformly bounded.

```
lemma (in int1) Int_ZF_2_1_L29: assumes A1: s \(\in \mathcal{S}\)
    shows
    \(\exists \mathrm{M} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \forall \mathrm{k} \in \mathbb{Z} . \operatorname{abs}(\mathrm{s}(\mathrm{m}-\mathrm{n}-\mathrm{k})-(\mathrm{s}(\mathrm{m})-\mathrm{s}(\mathrm{n})-\mathrm{s}(\mathrm{k}))) \leq \mathrm{M}\)
proof -
    from A1 have \(\exists \mathrm{L} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \operatorname{abs}(\gamma(\mathrm{s}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}\)
        using Int_ZF_2_1_L27 by simp
    then obtain \(L\) where \(I: L \in \mathbb{Z}\) and
```

```
    II: }\forall\textrm{m}\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\operatorname{abs}(\gamma(\textrm{s},\textrm{m},\textrm{n}))=\textrm{L
    by auto
from I have L+L \in\mathbb{Z}
    using Int_ZF_1_1_L5 by simp
moreover
{ fix m n k assume A2: m\in\mathbb{Z}}n=\mathbb{Z
    with A1 have T:
m-n}\in\mathbb{Z}\quad\gamma(\textrm{s},\textrm{m}-\textrm{n},\textrm{k})\in\mathbb{Z}\quad\gamma(\textrm{s},\textrm{m},\textrm{n})\in\mathbb{Z
using Int_ZF_1_1_L5 AlmostHoms_def Int_ZF_2_1_L25
by auto
    then have
I: abs(\gamma(s,m-n,k) + \gamma(s,m,n)) \leq abs(\gamma(s,m-n,k)) + abs(\gamma(s,m,n))
using Int_triangle_ineq by simp
    from II A2 T have
            abs(\gamma(s,m-n,k))\leqL
            abs(\gamma(s,m,n)) \leq L
            by auto
    then have abs( }\gamma(\textrm{s},\textrm{m}-\textrm{n},\textrm{k}))+\operatorname{abs}(\gamma(\textrm{s},\textrm{m},\textrm{n}))\leq\textrm{L}+\textrm{L
            using int_ineq_add_sides by simp
    with I have abs( }\gamma(\textrm{s},\textrm{m}-\textrm{n},\textrm{k})+\gamma(\textrm{s},\textrm{m},\textrm{n}))=\textrm{L}+\textrm{L
                by (rule Int_order_transitive)
    moreover from A1 A2 have
                s(m-n-k) - (s(m)-s(n) - s(k)) = \gamma (s,m-n,k) + \gamma(s,m,n)
                using AlmostHoms_def Int_ZF_2_1_L26A by simp
    ultimately have
        abs(s(m-n-k) - (s(m)-s(n) - s(k))) \leq L+L
        by simp }
    ultimately show thesis by auto
```

qed

If s is a slope, then we can find integers M, K such that $s(m-n-k) \leq$ $s(m)-s(n)-s(k)+M$ and $s(m)-s(n)-s(k)+K \leq s(m-n-k)$, for all integer m, n, k.
lemma (in int1) Int_ZF_2_1_L30: assumes A1: $s \in \mathcal{S}$
shows
$\exists \mathrm{M} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \forall \mathrm{k} \in \mathbb{Z} . \mathrm{s}(\mathrm{m}-\mathrm{n}-\mathrm{k}) \leq \mathrm{s}(\mathrm{m})-\mathrm{s}(\mathrm{n})-\mathrm{s}(\mathrm{k})+\mathrm{M}$
$\exists \mathrm{K} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \forall \mathrm{k} \in \mathbb{Z} . \mathrm{s}(\mathrm{m})-\mathrm{s}(\mathrm{n})-\mathrm{s}(\mathrm{k})+\mathrm{K} \leq \mathrm{s}(\mathrm{m}-\mathrm{n}-\mathrm{k})$
proof -
from A1 have
$\exists \mathrm{M} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \forall \mathrm{k} \in \mathbb{Z} . \operatorname{abs}(\mathrm{s}(\mathrm{m}-\mathrm{n}-\mathrm{k})-(\mathrm{s}(\mathrm{m})-\mathrm{s}(\mathrm{n})-\mathrm{s}(\mathrm{k}))) \leq \mathrm{M}$
using Int_ZF_2_1_L29 by simp
then obtain M where $I: M \in \mathbb{Z}$ and $I I$:
$\forall \mathrm{m} \in \mathbb{Z} . \forall \mathrm{n} \in \mathbb{Z} . \forall \mathrm{k} \in \mathbb{Z} . \operatorname{abs}(\mathrm{s}(\mathrm{m}-\mathrm{n}-\mathrm{k})-(\mathrm{s}(\mathrm{m})-\mathrm{s}(\mathrm{n})-\mathrm{s}(\mathrm{k}))) \leq \mathrm{M}$
by auto
from I have III: $(-M) \in \mathbb{Z}$ using Int_ZF_1_1_L4 by simp
\{ fix $m \mathrm{n} k$ assume $\mathrm{A} 2: \mathrm{m} \in \mathbb{Z} \quad \mathrm{n} \in \mathbb{Z} \quad \mathrm{k} \in \mathbb{Z}$
with $A 1$ have $s(m-n-k) \in \mathbb{Z}$ and $s(m)-s(n)-s(k) \in \mathbb{Z}$
using Int_ZF_1_1_L5 Int_ZF_2_1_L2B by auto
moreover from II A2 have

```
        abs(s(m-n-k) - (s(m)-s(n)-s(k))) \leqM
        by simp
    ultimately have
        s(m-n-k) \leq s(m)-s(n)-s(k)+M ^
        s(m)-s(n)-s(k) - M \leq s(m-n-k)
        using Int_triangle_ineq2 by simp
    } then have
        \forallm\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\forall\textrm{k}\in\mathbb{Z}.}\textrm{s}(\textrm{m}-\textrm{n}-\textrm{k})\leq\textrm{s}(\textrm{m})-\textrm{s}(\textrm{n})-\textrm{s}(\textrm{k})+\textrm{M
        \forallm\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\forall\textrm{k}\in\mathbb{Z}.\textrm{s}(\textrm{m})-\textrm{s}(\textrm{n})-\textrm{s}(\textrm{k})}-\textrm{M}\leq\textrm{s}(\textrm{m}-\textrm{n}-\textrm{k}
    by auto
with I III show
    \existsM\in\mathbb{Z}.\forall\textrm{m}\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\forall\textrm{k}\in\mathbb{Z}. s(m-n-k) \leq s(m)-s(n)-s(k)+M
    \exists\textrm{K}\in\mathbb{Z}.\forall\textrm{m}\in\mathbb{Z}.\forall\textrm{n}\in\mathbb{Z}.\forall\textrm{k}\in\mathbb{Z}.\textrm{s}(\textrm{m})-\textrm{s}(\textrm{n})-\textrm{s}(\textrm{k})+\textrm{K}\leq\textrm{s}(\textrm{m}-\textrm{n}-\textrm{k})
    by auto
qed
```

By definition functions f, g are almost equal if $f-g^{*}$ is bounded. In the next lemma we show it is sufficient to check the boundedness on positive integers.

```
lemma (in int1) Int_ZF_2_1_L31: assumes A1: \(s \in \mathcal{S} \quad \mathrm{r} \in \mathcal{S}\)
    and A2: \(\forall \mathrm{m} \in \mathbb{Z}_{+}\). abs \((\mathrm{s}(\mathrm{m})-\mathrm{r}(\mathrm{m})) \leq \mathrm{L}\)
    shows \(\mathrm{s} \sim \mathrm{r}\)
proof -
    let \(\mathrm{a}=\mathrm{abs}(\mathrm{s}(\mathbf{0})-\mathrm{r}(\mathbf{0}))\)
    let \(c=2 \cdot \max \delta(s)+2 \cdot \max \delta(r)+L\)
    let \(M=\) Maximum(IntegerOrder, \(\{a, L, c\}\) )
    from A2 have abs \((s(1)-r(1)) \leq L\)
        using int_one_two_are_pos by simp
    then have \(T: L \in \mathbb{Z}\) using Int_ZF_2_L1A by simp
    moreover from \(A 1\) have \(a \in \mathbb{Z}\)
        using int_zero_one_are_int Int_ZF_2_1_L2B
            Int_ZF_1_1_L5 Int_ZF_2_L14 by simp
    moreover from A1 \(T\) have \(c \in \mathbb{Z}\)
        using Int_ZF_2_1_L8 int_two_three_are_int Int_ZF_1_1_L5
        by simp
    ultimately have
        I: \(a \leq M\) and
        II: L \(\leq \mathrm{M}\) and
        III: \(\mathrm{c} \leq \mathrm{M}\)
        using Int_ZF_1_4_L1A by auto
    \{ fix \(m\) assume A5: \(m \in \mathbb{Z}\)
        with A1 have T :
            \(s(m) \in \mathbb{Z} \quad r(m) \in \mathbb{Z} \quad s(m)-r(m) \in \mathbb{Z}\)
            \(s(-m) \in \mathbb{Z} \quad r(-m) \in \mathbb{Z}\)
            using Int_ZF_2_1_L2B Int_ZF_1_1_L4 Int_ZF_1_1_L5
            by auto
        from A5 have \(m=0 \vee m \in \mathbb{Z}_{+} \vee(-m) \in \mathbb{Z}_{+}\)
            using int_decomp_cases by simp
```

```
    moreover
    { assume m=0
        with I have abs(s(m) - r(m)) \leqM
    by simp }
    moreover
    { assume m\in\mathbb{Z}
        with A2 II have
    abs(s(m)-r(m)) \leq L and L\leqM
    by auto
        then have abs(s(m)-r(m)) \leq M
    by (rule Int_order_transitive) }
    moreover
    { assume A6: (-m) \in }\mp@subsup{\mathbb{Z}}{+}{
        from T have abs(s(m)-r(m)) \leq
    abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m))
    using Int_ZF_1_3_L22A by simp
        moreover
        from A1 A2 III A5 A6 have
    abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m)) \leq c
    c}\leq
    using Int_ZF_2_1_L14 int_ineq_add_sides by auto
        then have
    abs(s(m)+s(-m)) + abs(r(m)+r(-m)) + abs(s(-m)-r(-m)) \leqM
    by (rule Int_order_transitive)
        ultimately have abs(s(m)-r(m)) \leq M
    by (rule Int_order_transitive) }
        ultimately have abs(s(m) - r(m)) \leqM
            by auto
    } then have }\forall\textrm{m}\in\mathbb{Z}.\operatorname{abs}(\textrm{s}(\textrm{m})-\textrm{r}(\textrm{m}))\leq
        by simp
    with A1 show s ~ r by (rule Int_ZF_2_1_L9)
qed
```

A sufficient condition for an odd slope to be almost equal to identity: If for all positive integers the value of the slope at m is between m and m plus some constant independent of m, then the slope is almost identity.

```
lemma (in int1) Int_ZF_2_1_L32: assumes A1: \(s \in \mathcal{S} \quad \mathrm{M} \in \mathbb{Z}\)
    and \(\mathrm{A} 2: ~ \forall \mathrm{~m} \in \mathbb{Z}_{+} \cdot \mathrm{m} \leq \mathrm{s}(\mathrm{m}) \wedge \mathrm{s}(\mathrm{m}) \leq \mathrm{m}+\mathrm{M}\)
    shows \(\mathrm{s} \sim \operatorname{id}(\mathbb{Z})\)
proof -
    let \(r=i d(\mathbb{Z})\)
    from A1 have \(s \in \mathcal{S} \quad \mathrm{r} \in \mathcal{S}\)
            using Int_ZF_2_1_L17 by auto
    moreover from A1 A2 have \(\forall \mathrm{m} \in \mathbb{Z}_{+}\). abs \((\mathrm{s}(\mathrm{m})-\mathrm{r}(\mathrm{m})) \leq \mathrm{M}\)
            using Int_ZF_1_3_L23 PositiveSet_def id_conv by simp
    ultimately show s \(\sim\) id \((\mathbb{Z})\) by (rule Int_ZF_2_1_L31)
qed
```

A lemma about adding a constant to slopes. This is actually proven in

Group_ZF_3_5_L1, in Group_ZF_3.thy here we just refer to that lemma to show it in notation used for integers. Unfortunately we have to use raw set notation in the proof.

```
lemma (in int1) Int_ZF_2_1_L33:
    assumes \(\mathrm{A} 1: \mathrm{s} \in \mathcal{S}\) and \(\mathrm{A} 2: \mathrm{c} \in \mathbb{Z}\) and
    A3: \(r=\{\langle m, s(m)+c\rangle . m \in \mathbb{Z}\}\)
    shows
    \(\forall \mathrm{m} \in \mathbb{Z} . \mathrm{r}(\mathrm{m})=\mathrm{s}(\mathrm{m})+\mathrm{c}\)
    \(r \in \mathcal{S}\)
    \(\mathrm{s} \sim \mathrm{r}\)
proof -
    let \(G=\mathbb{Z}\)
    let \(\mathrm{f}=\) IntegerAddition
    let \(\mathrm{AH}=\) AlmostHoms ( \(\mathrm{G}, \mathrm{f}\) )
    from assms have I:
        group1 (G, f)
        \(s \in\) AlmostHoms(G, f)
        \(c \in G\)
        \(r=\{\langle x, f\langle s(x), c\rangle\rangle . x \in G\}\)
        using Int_ZF_2_1_L1 by auto
    then have \(\forall x \in G . r(x)=f\langle s(x), c\rangle\)
        by (rule group1.Group_ZF_3_5_L1)
    moreover from \(I\) have \(r \in\) AlmostHoms ( \(G\), f)
        by (rule group1.Group_ZF_3_5_L1)
    moreover from I have
        \(\langle s, r\rangle \in\) QuotientGroupRel(AlmostHoms(G, f), AlHomOp1(G, f), FinRangeFunctions(G,
G) )
            by (rule group1.Group_ZF_3_5_L1)
    ultimately show
        \(\forall \mathrm{m} \in \mathbb{Z} . \mathrm{r}(\mathrm{m})=\mathrm{s}(\mathrm{m})+\mathrm{c}\)
        \(r \in \mathcal{S}\)
        \(\mathrm{s} \sim \mathrm{r}\)
        by auto
qed
```


44.2 Composing slopes

Composition of slopes is not commutative. However, as we show in this section if f and g are slopes then the range of $f \circ g-g \circ f$ is bounded. This allows to show that the multiplication of real numbers is commutative.

Two useful estimates.

```
lemma (in int1) Int_ZF_2_2_L1:
    assumes A1: f:\mathbb{Z}->\mathbb{Z}\mathrm{ and A2: p}\in\mathbb{Z}\quadq\in\mathbb{Z}
    shows
    abs(f((p+1)\cdotq)-(p+1)\cdotf(q)) \leq abs(\delta(f,p\cdotq,q))+abs(f(p\cdotq)-p.f(q))
    abs(f((p-1)\cdotq)-(p-1)\cdotf(q)) \leq abs(\delta(f,(p-1)\cdotq,q))+abs(f(p\cdotq)-p\cdotf(q))
proof -
```

let $R=\mathbb{Z}$
let $A=$ IntegerAddition
let $M=$ IntegerMultiplication
let $I=\operatorname{GroupInv}(R, A)$
let $a=f((p+1) \cdot q)$
let $b=p$
let $c=f(q)$
let $d=f(p \cdot q)$
from A1 A2 have T1:
ring0 (R, A, M) $a \in R \quad b \in R \quad c \in R \quad d \in R$
using Int_ZF_1_1_L2 int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype
by auto
then have
$\mathrm{A}\langle\mathrm{a}, \mathrm{I}(\mathrm{M}\langle\mathrm{A}\langle\mathrm{b}$, TheNeutralElement $(\mathrm{R}, \mathrm{M})\rangle, \mathrm{c}\rangle)\rangle=$
$\mathrm{A}\langle\mathrm{A}\langle\mathrm{A}\langle\mathrm{a}, \mathrm{I}(\mathrm{d})\rangle, \mathrm{I}(\mathrm{c})\rangle, \mathrm{A}\langle\mathrm{d}, \mathrm{I}(\mathrm{M}\langle\mathrm{b}, \mathrm{c}\rangle)\rangle\rangle$
by (rule ring0.Ring_ZF_2_L2)
with A2 have
$\mathrm{f}((\mathrm{p}+1) \cdot \mathrm{q})-(\mathrm{p}+\mathbf{1}) \cdot \mathrm{f}(\mathrm{q})=\delta(\mathrm{f}, \mathrm{p} \cdot \mathrm{q}, \mathrm{q})+(\mathrm{f}(\mathrm{p} \cdot \mathrm{q})-\mathrm{p} \cdot \mathrm{f}(\mathrm{q}))$
using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 by simp
moreover from A1 A2 T1 have $\delta(f, p \cdot q, q) \in \mathbb{Z} f(p \cdot q)-p \cdot f(q) \in \mathbb{Z}$
using Int_ZF_1_1_L5 apply_funtype by auto
ultimately show
$\operatorname{abs}(f((p+1) \cdot q)-(p+1) \cdot f(q)) \leq \operatorname{abs}(\delta(f, p \cdot q, q))+a b s(f(p \cdot q)-p \cdot f(q))$
using Int_triangle_ineq by simp
from A1 A2 have T1:
$f((p-1) \cdot q) \in \mathbb{Z} \quad p \in \mathbb{Z} \quad f(q) \in \mathbb{Z} \quad f(p \cdot q) \in \mathbb{Z}$
using int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype by auto
then have
$f((p-1) \cdot q)-(p-1) \cdot f(q)=(f(p \cdot q)-p \cdot f(q))-(f(p \cdot q)-f((p-1) \cdot q)-f(q))$
by (rule Int_ZF_1_2_L6)
with A2 have $f((p-1) \cdot q)-(p-1) \cdot f(q)=(f(p \cdot q)-p \cdot f(q))-\delta(f,(p-1) \cdot q, q)$ using Int_ZF_1_2_L7 by simp
moreover from A1 A2 have
$\mathrm{f}(\mathrm{p} \cdot \mathrm{q})-\mathrm{p} \cdot \mathrm{f}(\mathrm{q}) \in \mathbb{Z} \quad \delta(\mathrm{f},(\mathrm{p}-\mathbf{1}) \cdot \mathrm{q}, \mathrm{q}) \in \mathbb{Z}$
using Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype by auto
ultimately show
$\operatorname{abs}(f((p-1) \cdot q)-(p-1) \cdot f(q)) \leq \operatorname{abs}(\delta(f,(p-1) \cdot q, q))+a b s(f(p \cdot q)-p \cdot f(q))$
using Int_triangle_ineq1 by simp
qed
If f is a slope, then $|f(p \cdot q)-p \cdot f(q)| \leq(|p|+1) \cdot \max \delta(f)$. The proof is by induction on p and the next lemma is the induction step for the case when $0 \leq p$.
lemma (in int1) Int_ZF_2_2_L2:
assumes A1: $\mathrm{f} \in \mathcal{S}$ and $\mathrm{A} 2: 0 \leq \mathrm{p} \quad \mathrm{q} \in \mathbb{Z}$
and $A 3: \operatorname{abs}(f(p \cdot q)-p \cdot f(q)) \leq(a b s(p)+1) \cdot \max \delta(f)$
shows
$\operatorname{abs}(f((p+1) \cdot q)-(p+1) \cdot f(q)) \leq(\operatorname{abs}(p+1)+1) \cdot \max \delta(f)$
proof -
from $A 2$ have $q \in \mathbb{Z} \quad p \cdot q \in \mathbb{Z}$ using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
with A1 have I: abs $(\delta(f, p \cdot q, q)$) $\leq \max \delta(f)$ by (rule Int_ZF_2_1_L7)
moreover note A3
moreover from A1 A2 have $\operatorname{abs}(f((p+1) \cdot q)-(p+1) \cdot f(q)) \leq \operatorname{abs}(\delta(f, p \cdot q, q))+a b s(f(p \cdot q)-p \cdot f(q))$ using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp
ultimately have $\operatorname{abs}(f((p+1) \cdot q)-(p+1) \cdot f(q)) \leq \max \delta(f)+(\operatorname{abs}(p)+1) \cdot \max \delta(f)$ by (rule Int_ZF_2_L15)
moreover from I A2 have $\max \delta(\mathrm{f})+(\operatorname{abs}(\mathrm{p})+1) \cdot \max \delta(\mathrm{f})=(\operatorname{abs}(\mathrm{p}+1)+1) \cdot \max \delta(\mathrm{f})$ using Int_ZF_2_L1A Int_ZF_1_2_L2 by simp
ultimately show
$\operatorname{abs}(f((p+1) \cdot q)-(p+1) \cdot f(q)) \leq(\operatorname{abs}(p+1)+1) \cdot \max \delta(f)$ by simp
qed
If f is a slope, then $|f(p \cdot q)-p \cdot f(q)| \leq(|p|+1) \cdot \max \delta$. The proof is by induction on p and the next lemma is the induction step for the case when $p \leq 0$.
lemma (in int1) Int_ZF_2_2_L3:
assumes A1: $f \in \mathcal{S}$ and A2: $p \leq 0 \quad q \in \mathbb{Z}$
and $A 3: \operatorname{abs}(f(p \cdot q)-p \cdot f(q)) \leq(a b s(p)+1) \cdot \max \delta(f)$
shows $\operatorname{abs}(f((p-1) \cdot q)-(p-1) \cdot f(q)) \leq(\operatorname{abs}(p-1)+1) \cdot \max \delta(f)$
proof -
from $A 2$ have $q \in \mathbb{Z} \quad(p-1) \cdot q \in \mathbb{Z}$
using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_1_L5 by auto
with A1 have I: abs $(\delta(f,(p-1) \cdot q, q)) \leq \max \delta(f)$ by (rule Int_ZF_2_1_L7)
moreover note A3
moreover from A1 A2 have
$\operatorname{abs}(f((p-1) \cdot q)-(p-1) \cdot f(q)) \leq \operatorname{abs}(\delta(f,(p-1) \cdot q, q))+a b s(f(p \cdot q)-p \cdot f(q))$ using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp
ultimately have
$\operatorname{abs}(f((p-1) \cdot q)-(p-1) \cdot f(q)) \leq \max \delta(f)+(\operatorname{abs}(p)+1) \cdot \max \delta(f)$
by (rule Int_ZF_2_L15)
with I A2 show thesis using Int_ZF_2_L1A Int_ZF_1_2_L5 by simp qed

If f is a slope, then $|f(p \cdot q)-p \cdot f(q)| \leq(|p|+1) \cdot \max \delta(f)$. Proof by cases on $0 \leq p$.
lemma (in int1) Int_ZF_2_2_L4:
assumes $\mathrm{A} 1: \mathrm{f} \in \mathcal{S}$ and $\mathrm{A} 2: \mathrm{p} \in \mathbb{Z} \mathrm{q} \in \mathbb{Z}$
shows abs $(f(p \cdot q)-p \cdot f(q)) \leq(\operatorname{abs}(p)+1) \cdot \max \delta(f)$
proof -
\{ assume $0 \leq p$
moreover from A1 A2 have abs $(f(0 \cdot q)-0 \cdot f(q)) \leq(\operatorname{abs}(0)+1) \cdot \max \delta(f)$ using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L4

```
Int_ZF_2_1_L8 Int_ZF_2_L18 by simp
    moreover from A1 A2 have
            \forallp. 0}\leq\textrm{p}\wedge \ abs(f(p\cdotq)-p\cdotf(q)) \leq(abs(p)+1)\cdotmax \delta(f)
            abs(f((p+1)\cdotq)-(p+1)\cdotf(q)) \leq(abs(p+1)+1)\cdotmax}\delta(f
            using Int_ZF_2_2_L2 by simp
        ultimately have abs(f(p\cdotq)-p\cdotf(q)) \leq(abs(p)+1)\cdotmax}\delta(f
            by (rule Induction_on_int) }
    moreover
    { assume }\neg(0\leqp
        with A2 have p\leq0 using Int_ZF_2_L19A by simp
        moreover from A1 A2 have abs(f(0.q)-0.f(q)) \leq (abs(0)+1)\cdotmax \delta(f)
            using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L4
        Int_ZF_2_1_L8 Int_ZF_2_L18 by simp
            moreover from A1 A2 have
        \forallp. p\leq0^ abs(f(p.q)-p.f(q)) \leq (abs(p)+1)\cdotmax \delta(f)}
        abs(f((p-1)\cdotq)-(p-1)\cdotf(q)) \leq(abs(p-1)+1)\cdotmax }\delta(f
            using Int_ZF_2_2_L3 by simp
    ultimately have abs(f(p\cdotq)-p\cdotf(q)) \leq (abs(p)+1)\cdotmax \delta(f)
            by (rule Back_induct_on_int) }
    ultimately show thesis by blast
qed
```

The next elegant result is Lemma 7 in the Arthan's paper [2].

```
lemma (in int1) Arthan_Lem_7:
    assumes A1: \(f \in \mathcal{S}\) and A2: \(p \in \mathbb{Z} \quad q \in \mathbb{Z}\)
    shows abs \((q \cdot f(p)-p \cdot f(q)) \leq(a b s(p)+a b s(q)+2) \cdot \max \delta(f)\)
proof -
    from A1 A2 have \(T\) :
        \(q \cdot f(p)-f(p \cdot q) \in \mathbb{Z}\)
        \(f(p \cdot q)-p \cdot f(q) \in \mathbb{Z}\)
        \(f(q \cdot p) \in \mathbb{Z} \quad f(p \cdot q) \in \mathbb{Z}\)
        \(\mathrm{q} \cdot \mathrm{f}(\mathrm{p}) \in \mathbb{Z} \quad \mathrm{p} \cdot \mathrm{f}(\mathrm{q}) \in \mathbb{Z}\)
        \(\max \delta(\mathrm{f}) \in \mathbb{Z}\)
        \(\operatorname{abs}(\mathrm{q}) \in \mathbb{Z}\) abs(p) \(\in \mathbb{Z}\)
        using Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_2_1_L7 Int_ZF_2_L14 by auto
    moreover have abs \((q \cdot f(p)-f(p \cdot q)) \leq(\operatorname{abs}(q)+1) \cdot \max \delta(f)\)
    proof -
        from A1 A2 have abs \((f(q \cdot p)-q \cdot f(p)) \leq(a b s(q)+1) \cdot \max \delta(f)\)
            using Int_ZF_2_2_L4 by simp
        with T A2 show thesis
                using Int_ZF_2_L20 Int_ZF_1_1_L5 by simp
    qed
    moreover from A1 A2 have \(\operatorname{abs}(f(p \cdot q)-p \cdot f(q)) \leq(\operatorname{abs}(p)+1) \cdot \max \delta(f)\)
        using Int_ZF_2_2_L4 by simp
    ultimately have
        \(\operatorname{abs}(q \cdot f(p)-f(p \cdot q)+(f(p \cdot q)-p \cdot f(q))) \leq(a b s(q)+1) \cdot \max \delta(f)+(a b s(p)+1) \cdot \max \delta(f)\)
        using Int_ZF_2_L21 by simp
    with T show thesis using Int_ZF_1_2_L9 int_zero_one_are_int Int_ZF_1_2_L10
        by simp
```


qed

This is Lemma 8 in the Arthan's paper.

```
lemma (in int1) Arthan_Lem_8: assumes A1: f\in\mathcal{S}
    shows }\exists\textrm{A}B.A\in\mathbb{Z}\wedgeB\in\mathbb{Z}\wedge(\forallp\in\mathbb{Z}.abs(f(p))\leqA\cdotabs(p)+B
proof -
    let A = max (f) + abs(f(1))
    let B = 3.max (f)
    from A1 have }A\in\mathbb{Z}B\in\mathbb{Z
            using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_1_L2B
                Int_ZF_2_1_L7 Int_ZF_2_L14 by auto
    moreover have }\forall\textrm{p}\in\mathbb{Z}.\operatorname{abs}(f(p))\leqA\cdotabs(p)+
    proof
            fix p assume A2: p\in\mathbb{Z}
            with A1 have T:
                    f(p) \in\mathbb{Z}\quad\operatorname{abs}(p)\in\mathbb{Z}\quadf(1)\in\mathbb{Z}
                    p}f(1)\in\mathbb{Z}\quad3\in\mathbb{Z}\quad\operatorname{max}\delta(f)\in\mathbb{Z
                    using Int_ZF_2_1_L2B Int_ZF_2_L14 int_zero_one_are_int
    Int_ZF_1_1_L5 Int_ZF_2_1_L7 by auto
            from A1 A2 have
                    abs(1.f(p)-p.f(1)) \leq (abs(p)+abs(1)+2)}\cdot\operatorname{max}\delta(f
                    using int_zero_one_are_int Arthan_Lem_7 by simp
            with T have abs(f(p)) \leq abs(p.f(1))+(abs(p)+3)\cdotmax (f)
                using Int_ZF_2_L16A Int_ZF_1_1_L4 Int_ZF_1_2_L11
    Int_triangle_ineq2 by simp
            with A2 T show abs(f(p)) \leq A abs(p)+B
                using Int_ZF_1_3_L14 by simp
    qed
    ultimately show thesis by auto
qed
```

If f and g are slopes, then $f \circ g$ is equivalent (almost equal) to $g \circ f$. This is Theorem 9 in Arthan's paper [2].
theorem (in int1) Arthan_Th_9: assumes A1: f $\in \mathcal{S} \quad \mathrm{g} \in \mathcal{S}$
shows fog \sim gof
proof -
from A1 have
$\exists \mathrm{A}$ B. $\mathrm{A} \in \mathbb{Z} \wedge \mathrm{B} \in \mathbb{Z} \wedge(\forall \mathrm{p} \in \mathbb{Z} . \operatorname{abs}(\mathrm{f}(\mathrm{p})) \leq \mathrm{A} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{B})$
$\exists \mathrm{C}$. $C \in \mathbb{Z} \wedge \mathrm{D} \in \mathbb{Z} \wedge(\forall \mathrm{p} \in \mathbb{Z} . \operatorname{abs}(\mathrm{g}(\mathrm{p})) \leq \mathrm{C} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{D})$
using Arthan_Lem_8 by auto
then obtain $A B C D$ where $D 1: A \in \mathbb{Z} B \in \mathbb{Z} C \in \mathbb{Z} \quad D \in \mathbb{Z}$ and $D 2$:
$\forall \mathrm{p} \in \mathbb{Z} . \operatorname{abs}(\mathrm{f}(\mathrm{p})) \leq \mathrm{A} \cdot \operatorname{abs}(\mathrm{p})+\mathrm{B}$
$\forall \mathrm{p} \in \mathbb{Z} \cdot \operatorname{abs}(\mathrm{g}(\mathrm{p})) \leq \mathrm{C} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{D}$
by auto
let $\mathrm{E}=\max \delta(\mathrm{g}) \cdot(\mathrm{A}+1)+\max \delta(\mathrm{f}) \cdot(\mathrm{C}+1)$
let $\mathrm{F}=(\mathrm{B} \cdot \max \delta(\mathrm{g})+2 \cdot \max \delta(\mathrm{~g}))+(\mathrm{D} \cdot \max \delta(\mathrm{f})+2 \cdot \max \delta(\mathrm{f}))$
\{ fix p assume $A 2: p \in \mathbb{Z}$
with A1 have T1:
$\mathrm{g}(\mathrm{p}) \in \mathbb{Z} \quad \mathrm{f}(\mathrm{p}) \in \mathbb{Z} \quad \operatorname{abs}(\mathrm{p}) \in \mathbb{Z} \quad \mathbf{2} \in \mathbb{Z}$

```
    f(g(p)) \in\mathbb{Z}}\textrm{g}(\textrm{f}(\textrm{p}))\in\mathbb{Z}\quad\textrm{f}(\textrm{g}(\textrm{p}))-g(f(p))\in\mathbb{Z
    p}\cdot\textrm{f}(\textrm{g}(\textrm{p}))\in\mathbb{Z}\quad\textrm{p}\cdot\textrm{g}(\textrm{f}(\textrm{p}))\in\mathbb{Z
    abs(f(g(p))-g(f(p))) \in\mathbb{Z}
    using Int_ZF_2_1_L2B Int_ZF_2_1_L10 Int_ZF_1_1_L5 Int_ZF_2_L14 int_two_three_are_int
    by auto
```

 with A1 A2 have
 \(\operatorname{abs}((f(g(p))-g(f(p))) \cdot p) \leq\)
 \((\operatorname{abs}(\mathrm{p})+\operatorname{abs}(\mathrm{f}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{g})+(\operatorname{abs}(\mathrm{p})+\operatorname{abs}(\mathrm{g}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{f})\)
 using Arthan_Lem_7 Int_ZF_1_2_L10A Int_ZF_1_2_L12 by simp
 moreover have
 \((\operatorname{abs}(\mathrm{p})+\operatorname{abs}(\mathrm{f}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{g})+(\operatorname{abs}(\mathrm{p})+\operatorname{abs}(\mathrm{g}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{f}) \leq\)
 \(((\max \delta(\mathrm{g}) \cdot(\mathrm{A}+1)+\max \delta(\mathrm{f}) \cdot(\mathrm{C}+1))) \cdot \mathrm{abs}(\mathrm{p})+\)
 \(((\mathrm{B} \cdot \max \delta(\mathrm{g})+2 \cdot \max \delta(\mathrm{~g}))+(\mathrm{D} \cdot \max \delta(\mathrm{f})+2 \cdot \max \delta(\mathrm{f})))\)
 proof -
from D2 A2 T1 have
$\operatorname{abs}(p)+\operatorname{abs}(f(p))+2 \leq a b s(p)+(A \cdot a b s(p)+B)+2$
$\operatorname{abs}(\mathrm{p})+\mathrm{abs}(\mathrm{g}(\mathrm{p}))+2 \leq \mathrm{abs}(\mathrm{p})+(\mathrm{C} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{D})+2$
using Int_ZF_2_L15C by auto
with A1 have
$(\operatorname{abs}(\mathrm{p})+\operatorname{abs}(\mathrm{f}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{g}) \leq(\operatorname{abs}(\mathrm{p})+(\mathrm{A} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{B})+2) \cdot \max \delta(\mathrm{g})$
$(\operatorname{abs}(p)+\operatorname{abs}(g(p))+2) \cdot \max \delta(f) \leq(\operatorname{abs}(p)+(C \cdot a b s(p)+D)+2) \cdot \max \delta(f)$
using Int_ZF_2_1_L8 Int_ZF_1_3_L13 by auto
moreover from A1 D1 T1 have
$(\operatorname{abs}(\mathrm{p})+(\mathrm{A} \cdot \operatorname{abs}(\mathrm{p})+\mathrm{B})+2) \cdot \max \delta(\mathrm{g})=$
$\max \delta(\mathrm{g}) \cdot(\mathrm{A}+1) \cdot \mathrm{abs}(\mathrm{p})+(\mathrm{B} \cdot \max \delta(\mathrm{g})+2 \cdot \max \delta(\mathrm{~g}))$
$(\operatorname{abs}(\mathrm{p})+(\mathrm{C} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{D})+2) \cdot \max \delta(\mathrm{f})=$
$\max \delta(f) \cdot(C+1) \cdot \operatorname{abs}(p)+(D \cdot \max \delta(f)+2 \cdot \max \delta(f))$
using Int_ZF_2_1_L8 Int_ZF_1_2_L13 by auto
ultimately have
(abs $(\mathrm{p})+\operatorname{abs}(\mathrm{f}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{g})+(\operatorname{abs}(\mathrm{p})+\operatorname{abs}(\mathrm{g}(\mathrm{p}))+2) \cdot \max \delta(\mathrm{f}) \leq$
$(\max \delta(\mathrm{g}) \cdot(\mathrm{A}+1) \cdot \operatorname{abs}(\mathrm{p})+(\mathrm{B} \cdot \max \delta(\mathrm{g})+2 \cdot \max \delta(\mathrm{~g})))+$
$(\max \delta(f) \cdot(C+1) \cdot a b s(p)+(D \cdot \max \delta(f)+2 \cdot \max \delta(f)))$
using int_ineq_add_sides by simp
moreover from A1 A2 D1 have abs $(\mathrm{p}) \in \mathbb{Z}$
$\max \delta(\mathrm{g}) \cdot(\mathrm{A}+1) \in \mathbb{Z} \quad \mathrm{B} \cdot \max \delta(\mathrm{g})+2 \cdot \max \delta(\mathrm{~g}) \in \mathbb{Z}$
$\max \delta(\mathrm{f}) \cdot(\mathrm{C}+1) \in \mathbb{Z} \quad \mathrm{D} \cdot \max \delta(\mathrm{f})+2 \cdot \max \delta(\mathrm{f}) \in \mathbb{Z}$
using Int_ZF_2_L14 Int_ZF_2_1_L8 int_zero_one_are_int
Int_ZF_1_1_L5 int_two_three_are_int by auto
ultimately show thesis using Int_ZF_1_2_L14 by simp
qed
ultimately have
$\operatorname{abs}((f(g(p))-g(f(p))) \cdot p) \leq E \cdot a b s(p)+F$
by (rule Int_order_transitive)
with A2 T1 have
$\operatorname{abs}(f(g(p))-g(f(p))) \cdot a b s(p) \leq E \cdot a b s(p)+F$
$\operatorname{abs}(f(g(p))-g(f(p))) \in \mathbb{Z}$
using Int_ZF_1_3_L5 by auto
$\}$ then have
$\forall \mathrm{p} \in \mathbb{Z} . \operatorname{abs}(\mathrm{f}(\mathrm{g}(\mathrm{p}))-\mathrm{g}(\mathrm{f}(\mathrm{p}))) \in \mathbb{Z}$

```
            \(\forall \mathrm{p} \in \mathbb{Z} . \operatorname{abs}(\mathrm{f}(\mathrm{g}(\mathrm{p}))-\mathrm{g}(\mathrm{f}(\mathrm{p}))) \cdot \mathrm{abs}(\mathrm{p}) \leq \mathrm{E} \cdot \mathrm{abs}(\mathrm{p})+\mathrm{F}\)
    by auto
    moreover from \(A 1\) D1 have \(E \in \mathbb{Z} \quad F \in \mathbb{Z}\)
        using int_zero_one_are_int int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5
        by auto
    ultimately have
        \(\exists \mathrm{L} . \forall \mathrm{p} \in \mathbb{Z} . \operatorname{abs}(\mathrm{f}(\mathrm{g}(\mathrm{p}))-\mathrm{g}(\mathrm{f}(\mathrm{p}))) \leq \mathrm{L}\)
        by (rule Int_ZF_1_7_L1)
    with A1 obtain L where \(\forall \mathrm{p} \in \mathbb{Z}\). abs \(((\mathrm{f} \circ \mathrm{g})(\mathrm{p})-(\mathrm{g} \circ \mathrm{f})(\mathrm{p})) \leq \mathrm{L}\)
    using Int_ZF_2_1_L10 by auto
    moreover from A1 have fog \(\in \mathcal{S}\) gof \(\in \mathcal{S}\)
    using Int_ZF_2_1_L11 by auto
    ultimately show fog \(\sim\) gof using Int_ZF_2_1_L9 by auto
qed
end
```


45 Integers 3

```
theory Int_ZF_3 imports Int_ZF_2
```


begin

This theory is a continuation of Int_ZF_2. We consider here the properties of slopes (almost homomorphisms on integers) that allow to define the order relation and multiplicative inverse on real numbers. We also prove theorems that allow to show completeness of the order relation of real numbers we define in Real_ZF.

45.1 Positive slopes

This section provides background material for defining the order relation on real numbers.

Positive slopes are functions (of course.)
lemma (in int1) Int_ZF_2_3_L1: assumes A1: $f \in \mathcal{S}_{+}$shows $f: \mathbb{Z} \rightarrow \mathbb{Z}$ using assms AlmostHoms_def PositiveSet_def by simp

A small technical lemma to simplify the proof of the next theorem.
lemma (in int1) Int_ZF_2_3_L1A:
assumes A1: $\mathrm{f} \in \mathcal{S}_{+}$and $\mathrm{A} 2: \exists \mathrm{n} \in \mathrm{f}\left(\mathbb{Z}_{+}\right) \cap \mathbb{Z}_{+} \cdot \mathrm{a} \leq \mathrm{n}$
shows $\exists M \in \mathbb{Z}_{+} \cdot a \leq f(M)$
proof -
from A1 have $f: \mathbb{Z} \rightarrow \mathbb{Z} \quad \mathbb{Z}_{+} \subseteq \mathbb{Z}$
using AlmostHoms_def PositiveSet_def by auto
with A2 show thesis using func_imagedef by auto
qed

The next lemma is Lemma 3 in the Arthan's paper.

```
lemma (in int1) Arthan_Lem_3:
    assumes A1: f\in\mathcal{S}}
    shows }\exists\textrm{M}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{m}\in\mp@subsup{\mathbb{Z}}{+}{}.(\textrm{m}+1)\cdot\textrm{D}\leq\textrm{f}(\textrm{m}\cdot\textrm{M}
proof -
    let E = max}\delta(f)+
    let A}=f(\mp@subsup{\mathbb{Z}}{+}{})\cap\mp@subsup{\mathbb{Z}}{+}{
    from A1 A2 have I: D\leqE
        using Int_ZF_1_5_L3 Int_ZF_2_1_L8 Int_ZF_2_L1A Int_ZF_2_L15D
        by simp
    from A1 A2 have A}\subseteq\mp@subsup{\mathbb{Z}}{+}{}A|\notAF\operatorname{Fin}(\mathbb{Z})\quad\mathbf{2}\cdot\textrm{E}\in\mathbb{Z
        using int_two_three_are_int Int_ZF_2_1_L8 PositiveSet_def Int_ZF_1_1_L5
        by auto
    with A1 have }\exists\textrm{M}\in\mp@subsup{\mathbb{Z}}{+}{}.\quad2\cdotE\leqf(M
        using Int_ZF_1_5_L2A Int_ZF_2_3_L1A by simp
    then obtain M where II: M\in\mathbb{Z}}
        by auto
    { fix m assume m\in\mathbb{Z}}+\mathrm{ then have A4: 1}\leq
                using Int_ZF_1_5_L3 by simp
        moreover from II III have (1+1) ·E }\leqf(1\cdotM
                using PositiveSet_def Int_ZF_1_1_L4 by simp
        moreover have }\forall\textrm{k}\mathrm{ .
            1\leqk ^(k+1)}\cdot\textrm{E}\leq\textrm{f}(\textrm{k}\cdot\textrm{M})\longrightarrow(\textrm{k}+1+1)\cdot\textrm{E}\leq\textrm{f}((\textrm{k}+1)\cdot\textrm{M}
        proof -
            { fix k assume A5: 1\leqk and A6: (k+1)\cdotE \leq f(k\cdotM)
    with A1 A2 II have T:
        k\in\mathbb{Z}\quadM\in\mathbb{Z}\quadk+1}\in\mathbb{Z}\quadE\in\mathbb{Z}\quad(k+1)\cdotE\in\mathbb{Z}\quad\mathbf{2}\cdot\textrm{E}\in\mathbb{Z
        using Int_ZF_2_L1A PositiveSet_def int_zero_one_are_int
            Int_ZF_1_1_L5 Int_ZF_2_1_L8 by auto
    from A1 A2 A5 II have
        \delta(f,k\cdotM,M) \in\mathbb{Z}\quad\operatorname{abs}(\delta(f,k\cdotM,M)) \leq max \delta(f) 0
        using Int_ZF_2_L1A PositiveSet_def Int_ZF_1_1_L5
            Int_ZF_2_1_L7 Int_ZF_2_L16C by auto
    with III A6 have
        (k+1)\cdotE + (2\cdotE - E) \leq f(k\cdotM) + (f(M) + \delta(f,k\cdotM,M))
        using Int_ZF_1_3_L19A int_ineq_add_sides by simp
    with A1 T have (k+1+1)\cdotE\leqf((k+1)\cdotM)
        using Int_ZF_1_1_L1 int_zero_one_are_int Int_ZF_1_1_L4
            Int_ZF_1_2_L11 Int_ZF_2_1_L13 by simp
                } then show thesis by simp
            qed
            ultimately have (m+1)}\cdot\textrm{E}\leq\textrm{f}(\textrm{m}\cdot\textrm{M})\mathrm{ by (rule Induction_on_int)
            with A4 I have (m+1)\cdotD \leq f(m.M) using Int_ZF_1_3_L13A
                by simp
    } then have }\forall\textrm{m}\in\mp@subsup{\mathbb{Z}}{+}{}\cdot(m+1)\cdotD\leqf(m\cdotM) by sim
    with II show thesis by auto
qed
```

A special case of Arthan_Lem_3 when $D=1$.

```
corollary (in int1) Arthan_L_3_spec: assumes A1: f \(\in \mathcal{S}_{+}\)
    shows \(\exists \mathrm{M} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{n}+1 \leq \mathrm{f}(\mathrm{n} \cdot \mathrm{M})\)
proof -
    have \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{n}+1 \in \mathbb{Z}\)
        using PositiveSet_def int_zero_one_are_int Int_ZF_1_1_L5
        by simp
    then have \(\forall \mathrm{n} \in \mathbb{Z}_{+} .(\mathrm{n}+1) \cdot 1=\mathrm{n}+1\)
        using Int_ZF_1_1_L4 by simp
    moreover from \(A 1\) have \(\exists M \in \mathbb{Z}_{+} . \forall n \in \mathbb{Z}_{+} .(n+1) \cdot 1 \leq f(n \cdot M)\)
        using int_one_two_are_pos Arthan_Lem_3 by simp
    ultimately show thesis by simp
qed
```

We know from Group_ZF_3.thy that finite range functions are almost homomorphisms. Besides reminding that fact for slopes the next lemma shows that finite range functions do not belong to \mathcal{S}_{+}. This is important, because the projection of the set of finite range functions defines zero in the real number construction in Real_ZF_x.thy series, while the projection of \mathcal{S}_{+}becomes the set of (strictly) positive reals. We don't want zero to be positive, do we? The next lemma is a part of Lemma 5 in the Arthan's paper [2].

```
lemma (in int1) Int_ZF_2_3_L1B:
    assumes A1: f \in FinRangeFunctions(\mathbb{Z},\mathbb{Z})
    shows f\in\mathcal{S}\quadf}\not\in\mp@subsup{\mathcal{S}}{+}{
proof -
    from A1 show f\in\mathcal{S using Int_ZF_2_1_L1 group1.Group_ZF_3_3_L1}
        by auto
    have }\mp@subsup{\mathbb{Z}}{+}{}\subseteq\mathbb{Z}\mathrm{ using PositiveSet_def by auto
    with A1 have f(\mathbb{Z}}+) \in Fin(\mathbb{Z}
        using Finite1_L21 by simp
    then have f(\mp@subsup{\mathbb{Z}}{+}{})\cap\mp@subsup{\mathbb{Z}}{+}{}\in\operatorname{Fin}(\mathbb{Z})
        using Fin_subset_lemma by blast
    thus f}\not\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ by auto
qed
```

We want to show that if f is a slope and neither f nor $-f$ are in \mathcal{S}_{+}, then f is bounded. The next lemma is the first step towards that goal and shows that if slope is not in \mathcal{S}_{+}then $f\left(\mathbb{Z}_{+}\right)$is bounded above.

```
lemma (in int1) Int_ZF_2_3_L2: assumes A1: f\in\mathcal{S}\mathrm{ and A2: f & S S}+
    shows IsBoundedAbove(f(\mp@subsup{\mathbb{Z}}{+}{}), IntegerOrder)
proof -
    from A1 have f:\mathbb{Z}->\mathbb{Z}\mathrm{ using AlmostHoms_def by simp}
    then have f(\mathbb{Z}
    moreover from A1 A2 have f(\mp@subsup{\mathbb{Z}}{+}{})\cap\mp@subsup{\mathbb{Z}}{+}{}\in\operatorname{Fin}(\mathbb{Z})\mathrm{ by auto}
    ultimately show thesis using Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L4
        by simp
qed
```

If f is a slope and $-f \notin \mathcal{S}_{+}$, then $f\left(\mathbb{Z}_{+}\right)$is bounded below.

```
lemma (in int1) Int_ZF_2_3_L3: assumes A1: f\in\mathcal{S}\mathrm{ and A2: -f & S S+}
    shows IsBoundedBelow(f(\mathbb{Z}
proof -
    from A1 have T: f:\mathbb{Z}->\mathbb{Z}\mathrm{ using AlmostHoms_def by simp}
    then have (-(f(\mp@subsup{\mathbb{Z}}{+}{}))) = (-f)(\mp@subsup{\mathbb{Z}}{+}{})
        using Int_ZF_1_T2 group0_2_T2 PositiveSet_def func1_1_L15C
        by auto
    with A1 A2 T show IsBoundedBelow(f(\mathbb{Z}
        using Int_ZF_2_1_L12 Int_ZF_2_3_L2 PositiveSet_def func1_1_L6
                Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L5 by simp
qed
```

A slope that is bounded on \mathbb{Z}_{+}is bounded everywhere.
lemma (in int1) Int_ZF_2_3_L4:
assumes $\mathrm{A} 1: \mathrm{f} \in \mathcal{S}$ and $\mathrm{A} 2: \mathrm{m} \in \mathbb{Z}$
and $\mathrm{A} 3: \forall \mathrm{n} \in \mathbb{Z}_{+}$. abs $(\mathrm{f}(\mathrm{n})) \leq \mathrm{L}$
shows abs $(f(m)) \leq 2 \cdot \max \delta(f)+L$
proof -
from A1 A3 have
$0 \leq \operatorname{abs}(f(\mathbf{1})) \quad \operatorname{abs}(f(\mathbf{1})) \leq L$
using int_zero_one_are_int Int_ZF_2_1_L2B int_abs_nonneg int_one_two_are_pos
by auto
then have II: $0 \leq \mathrm{L}$ by (rule Int_order_transitive)
note A2
moreover have abs $(\mathrm{f}(0)) \leq 2 \cdot \max \delta(f)+\mathrm{L}$
proof -
from A1 have
$\operatorname{abs}(f(0)) \leq \max \delta(f) \quad 0 \leq \max \delta(f)$
and $T: \max \delta(f) \in \mathbb{Z}$
using Int_ZF_2_1_L8 by auto
with II have abs $(f(0)) \leq \max \delta(f)+\max \delta(f)+L$
using Int_ZF_2_L15F by simp
with T show thesis using Int_ZF_1_1_L4 by simp
qed
moreover from A1 A3 II have
$\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\mathrm{f}(\mathrm{n})) \leq 2 \cdot \max \delta(\mathrm{f})+\mathrm{L}$
using Int_ZF_2_1_L8 Int_ZF_1_3_L5A Int_ZF_2_L15F
by simp
moreover have $\forall \mathrm{n} \in \mathbb{Z}_{+}$. abs $(\mathrm{f}(-\mathrm{n})) \leq \mathbf{2} \cdot \max \delta(\mathrm{f})+\mathrm{L}$
proof
fix n assume $n \in \mathbb{Z}_{+}$
with A1 A3 have
$2 \cdot \max \delta(f) \in \mathbb{Z}$
$\operatorname{abs}(\mathrm{f}(-\mathrm{n})) \leq 2 \cdot \max \delta(\mathrm{f})+\operatorname{abs}(\mathrm{f}(\mathrm{n}))$
abs $(f(n)) \leq L$
using int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5
PositiveSet_def Int_ZF_2_1_L14 by auto
then show abs $(\mathrm{f}(-\mathrm{n})) \leq 2 \cdot \max \delta(\mathrm{f})+\mathrm{L}$
using Int_ZF_2_L15A by blast

```
    qed
    ultimately show thesis by (rule Int_ZF_2_L19B)
qed
```

A slope whose image of the set of positive integers is bounded is a finite range function．

```
lemma (in int1) Int_ZF_2_3_L4A:
    assumes A1: f\in\mathcal{S}\mathrm{ and A2: IsBounded(f(趾), IntegerOrder)}
    shows f}\in\mathrm{ FinRangeFunctions(}\mathbb{Z},\mathbb{Z}
proof -
    have T1: }\mp@subsup{\mathbb{Z}}{+}{}\subseteq\mathbb{Z}\mathrm{ using PositiveSet_def by auto
    from A1 have T2: f:\mathbb{Z}->\mathbb{Z}\mathrm{ using AlmostHoms_def by simp}
    from A2 obtain L where }\forall\textrm{a}\in\textrm{f}(\mp@subsup{\mathbb{Z}}{+}{}).\mathrm{ . abs(a) < L
        using Int_ZF_1_3_L20A by auto
    with T2 T1 have }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{\prime}.\operatorname{abs}(\textrm{f}(\textrm{n}))\leq
        by (rule func1_1_L15B)
    with A1 have }\forall\textrm{m}\in\mathbb{Z
        using Int_ZF_2_3_L4 by simp
    with T2 have f(\mathbb{Z})\in\operatorname{Fin}(\mathbb{Z})
        by (rule Int_ZF_1_3_L20C)
    with T2 show f}\in\mathrm{ FinRangeFunctions(仅,Z्Z)
        using FinRangeFunctions_def by simp
qed
```

A slope whose image of the set of positive integers is bounded below is a finite range function or a positive slope．

```
lemma (in int1) Int_ZF_2_3_L4B:
    assumes }f\in\mathcal{S}\mathrm{ and IsBoundedBelow(f(䩗), IntegerOrder)
    shows f}\in\mathrm{ FinRangeFunctions(化,Z})\veef\in\mathcal{S
    using assms Int_ZF_2_3_L2 IsBounded_def Int_ZF_2_3_L4A
    by auto
```

If one slope is not greater then another on positive integers，then they are almost equal or the difference is a positive slope．

```
lemma (in int1) Int_ZF_2_3_L4C: assumes A1: \(f \in \mathcal{S} \quad \mathrm{~g} \in \mathcal{S}\) and
    A2: \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{f}(\mathrm{n}) \leq \mathrm{g}(\mathrm{n})\)
    shows \(f \sim g \vee g+(-f) \in \mathcal{S}_{+}\)
proof -
    let \(\mathrm{h}=\mathrm{g}+(-\mathrm{f})\)
    from A1 have (-f) \(\in \mathcal{S}\) using Int_ZF_2_1_L12
        by simp
    with A1 have I: h \(\in \mathcal{S}\) using Int_ZF_2_1_L12C
        by simp
    moreover have IsBoundedBelow \(\left(h\left(\mathbb{Z}_{+}\right)\right.\), IntegerOrder)
    proof -
        from I have
            \(h: \mathbb{Z} \rightarrow \mathbb{Z}\) and \(\mathbb{Z}_{+} \subseteq \mathbb{Z}\) using AlmostHoms_def PositiveSet_def
            by auto
```

moreover from A1 A2 have $\forall \mathrm{n} \in \mathbb{Z}_{+} .\langle\mathbf{0}, \mathrm{h}(\mathrm{n})\rangle \in$ IntegerOrder using Int_ZF_2_1_L2B PositiveSet_def Int_ZF_1_3_L10A
Int_ZF_2_1_L12 Int_ZF_2_1_L12B Int_ZF_2_1_L12A by simp
ultimately show IsBoundedBelow(h($\left.\mathbb{Z}_{+}\right)$, IntegerOrder) by (rule func_ZF_8_L1)
qed
ultimately have $\mathrm{h} \in$ FinRangeFunctions $(\mathbb{Z}, \mathbb{Z}) \vee \mathrm{h} \in \mathcal{S}_{+}$ using Int_ZF_2_3_L4B by simp
with A1 show $f \sim g \vee g+(-f) \in \mathcal{S}_{+}$ using Int_ZF_2_1_L9C by auto
qed
Positive slopes are arbitrarily large for large enough arguments.

```
lemma (in int1) Int_ZF_2_3_L5:
    assumes A1: f}\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ and A2: K}\in\mathbb{Z
    shows }\exists\textrm{N}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{m}.\textrm{N}\leq\textrm{m}\longrightarrow\textrm{K}\leq\textrm{f}(\textrm{m}
proof -
    from A1 obtain M where I: M\in\mathbb{Z}}
        using Arthan_L_3_spec by auto
    let j = GreaterOf(IntegerOrder,M,K - (minf(f,0..(M-1)) - max \delta(f)) -
1)
    from A1 I have T1:
        minf(f,0..(M-1)) - max \delta(f) \in\mathbb{Z}\quadM\in\mathbb{Z}
        using Int_ZF_2_1_L15 Int_ZF_2_1_L8 Int_ZF_1_1_L5 PositiveSet_def
        by auto
    with A2 I have T2:
        K - (minf(f,0..(M-1)) - max (f)) \in\mathbb{Z}
        K - (minf(f,0..(M-1)) - max\delta(f)) - 1 \in\mathbb{Z}
        using Int_ZF_1_1_L5 int_zero_one_are_int by auto
    with T1 have III: M 
        K - (minf(f,0..(M-1)) - max \delta(f)) - 1 \leq j
        using Int_ZF_1_3_L18 by auto
    with A2 T1 T2 have
        IV: K \leq j+1 + (minf(f,0..(M-1)) - max (f))
        using int_zero_one_are_int Int_ZF_2_L9C by simp
    let N = GreaterOf(IntegerOrder,1,j·M)
    from T1 III have T3: j \in\mathbb{Z}}\textrm{j}\cdot\textrm{M}\in\mathbb{Z
        using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto
    then have V: N \in Z्Z + and VI: j·M\leqN
        using int_zero_one_are_int Int_ZF_1_5_L3 Int_ZF_1_3_L18
        by auto
    { fix m
        let n = m zdiv M
        let k=m zmod M
        assume N\leqm
        with VI have j·M \leqm by (rule Int_order_transitive)
        with I III have
            VII: m = n}\cdot\textrm{M}+\textrm{k
```

$\mathrm{j} \leq \mathrm{n}$ and
VIII: $\mathrm{n} \in \mathbb{Z}_{+} \mathrm{k} \in \mathbf{0} . .(\mathrm{M}-1)$
using IntDiv_ZF_1_L5 by auto
with II have
$j+1 \leq n+1 \quad n+1 \leq f(n \cdot M)$
using int_zero_one_are_int int_ord_transl_inv by auto
then have $j+1 \leq f(n \cdot M)$
by (rule Int_order_transitive)
with T1 have
$j+1+(\operatorname{minf}(f, 0 . .(M-1))-\max \delta(f)) \leq$
$\mathrm{f}(\mathrm{n} \cdot \mathrm{M})+(\operatorname{minf}(\mathrm{f}, \mathbf{0} .(\mathrm{M}-1))-\max \delta(\mathrm{f}))$
using int_ord_transl_inv by simp
with IV have $K \leq f(n \cdot M)+(\operatorname{minf}(f, 0 \ldots(M-1))-\max \delta(f))$
by (rule Int_order_transitive)
moreover from A1 I VIII have
$f(n \cdot M)+(\operatorname{minf}(f, 0 \ldots(M-1))-\max \delta(f)) \leq f(n \cdot M+k)$
using PositiveSet_def Int_ZF_2_1_L16 by simp
ultimately have $K \leq f(n \cdot M+k)$
by (rule Int_order_transitive)
with VII have $K \leq f(m)$ by simp
$\}$ then have $\forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{K} \leq \mathrm{f}(\mathrm{m})$
by simp
with V show thesis by auto
qed
Positive slopes are arbitrarily small for small enough arguments. Kind of dual to Int_ZF_2_3_L5.

```
lemma (in int1) Int_ZF_2_3_L5A: assumes A1: \(f \in \mathcal{S}_{+}\)and \(\mathrm{A} 2: \mathrm{K} \in \mathbb{Z}\)
    shows \(\exists \mathrm{N} \in \mathbb{Z}_{+} . \forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{f}(-\mathrm{m}) \leq \mathrm{K}\)
proof -
    from A1 have \(T 1: \operatorname{abs}(f(0))+\max \delta(f) \in \mathbb{Z}\)
        using Int_ZF_2_1_L8 by auto
    with A2 have abs \((f(0))+\max \delta(f)-K \in \mathbb{Z}\)
        using Int_ZF_1_1_L5 by simp
    with A1 have
        \(\exists \mathrm{N} \in \mathbb{Z}_{+} . \forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \operatorname{abs}(\mathrm{f}(\mathbf{0}))+\max \delta(\mathrm{f})-\mathrm{K} \leq \mathrm{f}(\mathrm{m})\)
        using Int_ZF_2_3_L5 by simp
    then obtain \(N\) where \(I: N \in \mathbb{Z}_{+}\)and II:
        \(\forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \quad \operatorname{abs}(\mathrm{f}(\mathbf{0}))+\max \delta(\mathrm{f})-\mathrm{K} \leq \mathrm{f}(\mathrm{m})\)
        by auto
    \{ fix \(m\) assume A3: \(N \leq m\)
        with A1 have
            \(f(-m) \leq \operatorname{abs}(f(0))+\max \delta(f)-f(m)\)
            using Int_ZF_2_L1A Int_ZF_2_1_L14 by simp
        moreover
        from II T1 A3 have \(\operatorname{abs}(f(0))+\max \delta(f)-f(m) \leq\)
            (abs(f(0)) \(+\max \delta(f))-(\operatorname{abs}(f(0))+\max \delta(f)-K)\)
            using Int_ZF_2_L10 int_ord_transl_inv by simp
            with A2 T1 have abs \((f(0))+\max \delta(f)-f(m) \leq K\)
```

```
        using Int_ZF_1_2_L3 by simp
        ultimately have f(-m) \leqK
            by (rule Int_order_transitive)
    } then have }\forall\textrm{m}.\textrm{N}\leq\textrm{m}\longrightarrow\textrm{f}(-\textrm{m})\leq\textrm{K
        by simp
    with I show thesis by auto
qed
A special case of Int_ZF_2_3_L5 where K=1.
corollary (in int1) Int_ZF_2_3_L6: assumes f\in\mathcal{S}
    shows }\exists\textrm{N}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{m}.\textrm{N}\leq\textrm{m}\longrightarrow\textrm{f}(\textrm{m})\in\mp@subsup{\mathbb{Z}}{+}{
    using assms int_zero_one_are_int Int_ZF_2_3_L5 Int_ZF_1_5_L3
    by simp
```

A special case of Int_ZF_2_3_L5 where $m=N$.
corollary (in int1) Int_ZF_2_3_L6A: assumes $f \in \mathcal{S}_{+}$and $\mathrm{K} \in \mathbb{Z}$
shows $\exists \mathrm{N} \in \mathbb{Z}_{+} . \mathrm{K} \leq \mathrm{f}(\mathrm{N})$
proof -
from assms have $\exists \mathrm{N} \in \mathbb{Z}_{+} . \forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{K} \leq \mathrm{f}(\mathrm{m})$
using Int_ZF_2_3_L5 by simp
then obtain N where $I: N \in \mathbb{Z}_{+}$and II: $\forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{K} \leq \mathrm{f}(\mathrm{m})$
by auto
then show thesis using PositiveSet_def int_ord_is_refl refl_def
by auto
qed

If values of a slope are not bounded above, then the slope is positive.

```
lemma (in int1) Int_ZF_2_3_L7: assumes A1: \(f \in \mathcal{S}\)
    and \(\mathrm{A} 2: ~ \forall \mathrm{~K} \in \mathbb{Z} . \exists \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{K} \leq \mathrm{f}(\mathrm{n})\)
    shows \(f \in \mathcal{S}_{+}\)
proof -
    \{ fix \(K\) assume \(K \in \mathbb{Z}\)
        with \(A 2\) obtain \(n\) where \(n \in \mathbb{Z}_{+} K \leq f(n)\)
                by auto
        moreover from \(A 1\) have \(\mathbb{Z}_{+} \subseteq \mathbb{Z} \quad f: \mathbb{Z} \rightarrow \mathbb{Z}\)
            using PositiveSet_def AlmostHoms_def by auto
        ultimately have \(\exists \mathrm{m} \in \mathrm{f}\left(\mathbb{Z}_{+}\right) . \mathrm{K} \leq \mathrm{m}\)
            using func1_1_L15D by auto
    \(\}\) then have \(\forall K \in \mathbb{Z} . \exists \mathrm{m} \in \mathrm{f}\left(\mathbb{Z}_{+}\right) . \mathrm{K} \leq \mathrm{m}\) by simp
    with A1 show \(f \in \mathcal{S}_{+}\)using Int_ZF_4_L9 Int_ZF_2_3_L2
        by auto
qed
For unbounded slope \(f\) either \(f \in \mathcal{S}_{+}\)of \(-f \in \mathcal{S}_{+}\).
theorem (in int1) Int_ZF_2_3_L8:
    assumes A1: \(f \in \mathcal{S}\) and A2: \(f \notin\) FinRangeFunctions \((\mathbb{Z}, \mathbb{Z})\)
    shows \(\left(f \in \mathcal{S}_{+}\right)\)Xor \(\left((-f) \in \mathcal{S}_{+}\right)\)
proof -
```

have $\mathrm{T} 1: \mathbb{Z}_{+} \subseteq \mathbb{Z}$ using PositiveSet_def by auto
from A1 have $T 2: f: \mathbb{Z} \rightarrow \mathbb{Z}$ using AlmostHoms_def by simp
then have $I: f\left(\mathbb{Z}_{+}\right) \subseteq \mathbb{Z}$ using func1_1_L6 by auto
from A1 A2 have $f \in \mathcal{S}_{+} \vee(-f) \in \mathcal{S}_{+}$
using Int_ZF_2_3_L2 Int_ZF_2_3_L3 IsBounded_def Int_ZF_2_3_L4A
by blast
moreover have $\neg\left(\mathrm{f} \in \mathcal{S}_{+} \wedge(-\mathrm{f}) \in \mathcal{S}_{+}\right)$
proof -
$\left\{\right.$ assume A3: $f \in \mathcal{S}_{+}$and A4: $(-f) \in \mathcal{S}_{+}$ from A3 obtain N 1 where
I: $\mathrm{N} 1 \in \mathbb{Z}_{+}$and II: $\forall \mathrm{m} . \mathrm{N} 1 \leq \mathrm{m} \longrightarrow \mathrm{f}(\mathrm{m}) \in \mathbb{Z}_{+}$ using Int_ZF_2_3_L6 by auto from A4 obtain N 2 where
III: $\mathrm{N} 2 \in \mathbb{Z}_{+}$and IV: $\forall \mathrm{m} . \mathrm{N} 2 \leq \mathrm{m} \longrightarrow(-\mathrm{f})(\mathrm{m}) \in \mathbb{Z}_{+}$ using Int_ZF_2_3_L6 by auto let $N=$ GreaterOf(IntegerOrder, $\mathrm{N} 1, \mathrm{~N} 2$) from I III have $\mathrm{N} 1 \leq \mathrm{N} \quad \mathrm{N} 2 \leq \mathrm{N}$
using PositiveSet_def Int_ZF_1_3_L18 by auto with A1 II IV have
$\mathrm{f}(\mathrm{N}) \in \mathbb{Z}_{+}(-\mathrm{f})(\mathrm{N}) \in \mathbb{Z}_{+}(-\mathrm{f})(\mathrm{N})=-(\mathrm{f}(\mathrm{N}))$
using Int_ZF_2_L1A PositiveSet_def Int_ZF_2_1_L12A
by auto
then have False using Int_ZF_1_5_L8 by simp
\} thus thesis by auto
qed
ultimately show ($f \in \mathcal{S}_{+}$) Xor $\left((-f) \in \mathcal{S}_{+}\right)$
using Xor_def by simp
qed
The sum of positive slopes is a positive slope.

```
theorem (in int1) sum_of_pos_sls_is_pos_sl:
    assumes A1: \(\mathrm{f} \in \mathcal{S}_{+} \mathrm{g} \in \mathcal{S}_{+}\)
    shows \(\mathrm{f}+\mathrm{g} \in \mathcal{S}_{+}\)
proof -
    \{ fix \(K\) assume \(K \in \mathbb{Z}\)
        with A1 have \(\exists \mathrm{N} \in \mathbb{Z}_{+} . \forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{K} \leq \mathrm{f}(\mathrm{m})\)
        using Int_ZF_2_3_L5 by simp
        then obtain \(N\) where \(I: N \in \mathbb{Z}_{+}\)and II: \(\forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{K} \leq \mathrm{f}(\mathrm{m})\)
        by auto
    from A1 have \(\exists \mathrm{M} \in \mathbb{Z}_{+} . \forall \mathrm{m} . \mathrm{M} \leq \mathrm{m} \longrightarrow \mathbf{0} \leq \mathrm{g}(\mathrm{m})\)
        using int_zero_one_are_int Int_ZF_2_3_L5 by simp
            then obtain \(M\) where III: \(M \in \mathbb{Z}_{+}\)and IV: \(\forall \mathrm{m} . \mathrm{M} \leq \mathrm{m} \longrightarrow \mathbf{0} \leq \mathrm{g}(\mathrm{m})\)
                by auto
    let \(\mathrm{L}=\) GreaterOf(IntegerOrder, \(\mathrm{N}, \mathrm{M}\) )
    from I III have \(\mathrm{V}: \mathrm{L} \in \mathbb{Z}_{+} \mathbb{Z}_{+} \subseteq \mathbb{Z}\)
        using GreaterOf_def PositiveSet_def by auto
    moreover from A1 \(V\) have \((f+g)(L)=f(L)+g(L)\)
        using Int_ZF_2_1_L12B by auto
    moreover from I II III IV have \(K \leq f(L)+g(L)\)
```

```
        using PositiveSet_def Int_ZF_1_3_L18 Int_ZF_2_L15F
        by simp
        ultimately have L \in }\mp@subsup{\mathbb{Z}}{+}{
        by auto
        then have }\exists\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{K}\leq(\textrm{f}+\textrm{g})(\textrm{n}
        by auto
    } with A1 show f+g \in S S+
    using Int_ZF_2_1_L12C Int_ZF_2_3_L7 by simp
qed
```

The composition of positive slopes is a positive slope.
theorem (in int1) comp_of_pos_sls_is_pos_sl:
assumes A1: $\mathrm{f} \in \mathcal{S}_{+} \mathrm{g} \in \mathcal{S}_{+}$
shows $f \circ g \in \mathcal{S}_{+}$
proof -
\{ fix K assume $K \in \mathbb{Z}$
with A1 have $\exists \mathrm{N} \in \mathbb{Z}_{+} . \forall \mathrm{m} . \mathrm{N} \leq \mathrm{m} \longrightarrow \mathrm{K} \leq \mathrm{f}(\mathrm{m})$ using Int_ZF_2_3_L5 by simp
then obtain N where $N \in \mathbb{Z}_{+}$and $I: \forall m . N \leq m \longrightarrow K \leq f(m)$ by auto
with A1 have $\exists \mathrm{M} \in \mathbb{Z}_{+} . N \leq g(M)$ using PositiveSet_def Int_ZF_2_3_L6A by simp
then obtain M where $M \in \mathbb{Z}_{+} N \leq g(M)$
by auto
with A1 I have $\exists \mathrm{M} \in \mathbb{Z}_{+} \cdot \mathrm{K} \leq$ (fog) (M)
using PositiveSet_def Int_ZF_2_1_L10
by auto
$\}$ with A1 show $f \circ g \in \mathcal{S}_{+}$
using Int_ZF_2_1_L11 Int_ZF_2_3_L7
by simp
qed
A slope equivalent to a positive one is positive.
lemma (in int1) Int_ZF_2_3_L9:
assumes A1: $\mathrm{f} \in \mathcal{S}_{+}$and A2: $\langle\mathrm{f}, \mathrm{g}\rangle \in$ AlEqRel shows $\mathrm{g} \in \mathcal{S}_{+}$
proof -
from A2 have $\mathrm{T}: \mathrm{g} \in \mathcal{S}$ and $\exists \mathrm{L} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z} . \operatorname{abs}(\mathrm{f}(\mathrm{m})-\mathrm{g}(\mathrm{m})) \leq \mathrm{L}$ using Int_ZF_2_1_L9A by auto
then obtain L where
I: $L \in \mathbb{Z}$ and II: $\forall m \in \mathbb{Z}$. abs $(f(m)-g(m)) \leq L$
by auto
\{ fix K assume $A 3: K \in \mathbb{Z}$
with I have $\mathrm{K}+\mathrm{L} \in \mathbb{Z}$
using Int_ZF_1_1_L5 by simp
with A1 obtain M where III: $M \in \mathbb{Z}_{+}$and IV: $K+L \leq f(M)$ using Int_ZF_2_3_L6A by auto
with A1 A3 I have $K \leq f(M)-L$ using PositiveSet_def Int_ZF_2_1_L2B Int_ZF_2_L9B by simp

```
        moreover from A1 T II III have
            f(M)-L}\leqg(M
            using PositiveSet_def Int_ZF_2_1_L2B Int_triangle_ineq2
            by simp
        ultimately have K \leqg(M)
            by (rule Int_order_transitive)
        with III have }\exists\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{K}\leq\textrm{g}(\textrm{n}
            by auto
    } with T show g }\in\mp@subsup{\mathcal{S}}{+}{
    using Int_ZF_2_3_L7 by simp
qed
```

The set of positive slopes is saturated with respect to the relation of equivalence of slopes.

```
lemma (in int1) pos_slopes_saturated: shows IsSaturated(AlEqRel, }\mp@subsup{\mathcal{S}}{+}{}\mathrm{ )
proof -
    have
        equiv(S ,AlEqRel)
        AlEqRel }\subseteq\mathcal{S}\times\mathcal{S
        using Int_ZF_2_1_L9B by auto
    moreover have }\mp@subsup{\mathcal{S}}{+}{}\subseteq\mathcal{S}\mathrm{ by auto
    moreover have }\forall\textrm{f}\in\mp@subsup{\mathcal{S}}{+}{}.\forall\textrm{g}\in\mathcal{S}.\langle\textrm{f},\textrm{g}\rangle\in\textrm{AlEqRel}\longrightarrow\textrm{g}\in\mp@subsup{\mathcal{S}}{+}{
        using Int_ZF_2_3_L9 by blast
    ultimately show IsSaturated(AlEqRel, (\mathcal{S}
        by (rule EquivClass_3_L3)
qed
```

A technical lemma involving a projection of the set of positive slopes and a logical epression with exclusive or.

```
lemma (in int1) Int_ZF_2_3_L10:
    assumes A1: f\in\mathcal{S g}\in\mathcal{S}
    and A2: R = {AlEqRel{s}. s\inS S }
    and A3: (f\in\mathcal{S}
    shows (AlEqRel{f} \in R) Xor (AlEqRel{g} \in R)
proof -
    from A1 A2 A3 have
        equiv(S,AlEqRel)
```



```
        \mathcal{S}
        f}\in\mathcal{S}\quad\textrm{g}\in\mathcal{S
        R = {AlEqRel{s}. s\inS S
        (f\in\mathcal{S}
        using pos_slopes_saturated Int_ZF_2_1_L9B by auto
    then show thesis by (rule EquivClass_3_L7)
qed
```

Identity function is a positive slope.
lemma (in int1) Int_ZF_2_3_L11: shows $\operatorname{id}(\mathbb{Z}) \in \mathcal{S}_{+}$

```
proof -
    let f = id(\mathbb{Z})
    { fix }K\mathrm{ assume }K\in\mathbb{Z
        then obtain n where T: n\in\mathbb{Z}}
            using Int_ZF_1_5_L9 by auto
        moreover from T have f(n) = n
            using PositiveSet_def by simp
        ultimately have }n\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ and }\textrm{K}\leq\textrm{f}(\textrm{n}
            by auto
        then have }\exists\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{K}\leq\textrm{f}(\textrm{n})\mathrm{ by auto
    } then show f \in S S +
        using Int_ZF_2_1_L17 Int_ZF_2_3_L7 by simp
qed
```

The identity function is not almost equal to any bounded function.

```
lemma (in int1) Int_ZF_2_3_L12: assumes A1: f \in FinRangeFunctions(\mathbb{Z},\mathbb{Z})
    shows }\neg(id(\mathbb{Z})~\textrm{f}
proof -
    { from A1 have id(\mathbb{Z})\in S S
                using Int_ZF_2_3_L11 by simp
            moreover assume \langleid(\mathbb{Z}),f\rangle\in AlEqRel
            ultimately have f}\in\mp@subsup{\mathcal{S}}{+}{
                by (rule Int_ZF_2_3_L9)
            with A1 have False using Int_ZF_2_3_L1B
                by simp
    } then show }\neg(id(\mathbb{Z})~\textrm{f})\mathrm{ by auto
qed
```


45.2 Inverting slopes

Not every slope is a $1: 1$ function. However, we can still invert slopes in the sense that if f is a slope, then we can find a slope g such that $f \circ g$ is almost equal to the identity function. The goal of this this section is to establish this fact for positive slopes.

If f is a positive slope, then for every positive integer p the set $\left\{n \in Z_{+}\right.$: $p \leq f(n)\}$ is a nonempty subset of positive integers. Recall that $f^{-1}(p)$ is the notation for the smallest element of this set.

```
lemma (in int1) Int_ZF_2_4_L1:
    assumes A1: \(f \in \mathcal{S}_{+}\)and \(\mathrm{A} 2: \mathrm{p} \in \mathbb{Z}_{+}\)and \(\mathrm{A} 3: \mathrm{A}=\left\{\mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{p} \leq \mathrm{f}(\mathrm{n})\right\}\)
    shows
    \(\mathrm{A} \subseteq \mathbb{Z}_{+}\)
    A \(\neq 0\)
    \(\mathrm{f}^{-1}(\mathrm{p}) \in \mathrm{A}\)
    \(\forall \mathrm{m} \in \mathrm{A} . \mathrm{f}^{-1}(\mathrm{p}) \leq \mathrm{m}\)
proof -
    from A3 show I: \(A \subseteq \mathbb{Z}_{+}\)by auto
    from A1 A2 have \(\exists \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{p} \leq \mathrm{f}(\mathrm{n})\)
```

using PositiveSet_def Int_ZF_2_3_L6A by simp
with A3 show II: A $\neq 0$ by auto
from A3 I II show

$$
\mathrm{f}^{-1}(\mathrm{p}) \in \mathrm{A}
$$

$\forall \mathrm{m} \in \mathrm{A} . \mathrm{f}^{-1}(\mathrm{p}) \leq \mathrm{m}$
using Int_ZF_1_5_L1C by auto
qed
If f is a positive slope and p is a positive integer p, then $f^{-1}(p)$ (defined as the minimum of the set $\left\{n \in Z_{+}: p \leq f(n)\right\}$) is a (well defined) positive integer.

```
lemma (in int1) Int_ZF_2_4_L2:
    assumes \(f \in \mathcal{S}_{+}\)and \(\mathrm{p} \in \mathbb{Z}_{+}\)
    shows
    \(\mathrm{f}^{-1}(\mathrm{p}) \in \mathbb{Z}_{+}\)
    \(\mathrm{p} \leq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{p})\right)\)
    using assms Int_ZF_2_4_L1 by auto
```

If f is a positive slope and p is a positive integer such that $n \leq f(p)$, then $f^{-1}(n) \leq p$.
lemma (in int1) Int_ZF_2_4_L3:
assumes $f \in \mathcal{S}_{+}$and $m \in \mathbb{Z}_{+} \quad p \in \mathbb{Z}_{+}$and $m \leq f(p)$
shows $\mathrm{f}^{-1}(\mathrm{~m}) \leq \mathrm{p}$
using assms Int_ZF_2_4_L1 by simp
An upper bound $f\left(f^{-1}(m)-1\right)$ for positive slopes.

```
lemma (in int1) Int_ZF_2_4_L4:
    assumes A1: f \in S S + and A2: m\in\mathbb{Z}}
    shows f(f
proof -
    from A1 A2 have T: f
        by simp
    from A1 A3 have f:\mathbb{Z}->\mathbb{Z}}\mathrm{ and }\mp@subsup{f}{}{-1}(m)-\mathbb{1}\in\mathbb{Z
        using Int_ZF_2_3_L1 PositiveSet_def by auto
    with A1 A2 have T1: f(f
        using apply_funtype PositiveSet_def by auto
    { assume m \leq f(fm
        with A1 A2 A3 have f-1}(m)\leq\mp@subsup{f}{}{-1}(m)-
            by (rule Int_ZF_2_4_L3)
        with T have False using Int_ZF_1_2_L3AA
            by simp
    } then have I: }\neg(m\leqf(\mp@subsup{f}{}{-1}(m)-1)) by aut
    with T1 show f(f f
        by (rule Int_ZF_2_L19)
    from T1 I show f(f (f)
        by (rule Int_ZF_2_L19)
qed
```

The (candidate for) the inverse of a positive slope is nondecreasing.

```
lemma (in int1) Int_ZF_2_4_L5:
    assumes A1: f }\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ and A2: m}\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ and A3: m}\leq\textrm{n
    shows f}\mp@subsup{f}{}{-1}(m)\leq\mp@subsup{f}{}{-1}(n
proof -
    from A2 A3 have T: n \in Z्Z}+\mp@code{using Int_ZF_1_5_L7 by blast
    with A1 have n \leq f(ff
        by simp
    with A3 have m \leq f(fm
    with A1 A2 T show f}\mp@subsup{f}{}{-1}(m)\leq\mp@subsup{f}{}{-1}(n
        using Int_ZF_2_4_L2 Int_ZF_2_4_L3 by simp
qed
```

If $f^{-1}(m)$ is positive and n is a positive integer, then, then $f^{-1}(m+n)-1$ is positive.

```
lemma (in int1) Int_ZF_2_4_L6:
    assumes A1: f }\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ and A2: m}\in\mp@subsup{\mathbb{Z}}{+}{}\quad\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ and
    A3: f-1}(\textrm{m})-\mathbf{1}\in\mp@subsup{\mathbb{Z}}{+}{
    shows f}\mp@subsup{}{}{-1}(\textrm{m}+\textrm{n})-\mathbf{1}\in\mp@subsup{\mathbb{Z}}{+}{
proof -
    from A1 A2 have f}\mp@subsup{f}{}{-1}(m)-1\leq\mp@subsup{f}{}{-1}(m+n)-
        using PositiveSet_def Int_ZF_1_5_L7A Int_ZF_2_4_L2
            Int_ZF_2_4_L5 int_zero_one_are_int Int_ZF_1_1_L4
            int_ord_transl_inv by simp
    with A3 show f}\mp@subsup{}{}{-1}(m+n)-1\in\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ using Int_ZF_1_5_L7
        by blast
qed
```

If f is a slope, then $f\left(f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)\right)$ is uniformly bounded above and below. Will it be the messiest IsarMathLib proof ever? Only time will tell.

```
lemma (in int1) Int_ZF_2_4_L7: assumes A1: f \(\in \mathcal{S}_{+}\)and
    A2: \(\forall \mathrm{m} \in \mathbb{Z}_{+} \cdot \mathrm{f}^{-1}(\mathrm{~m}) \mathbf{- 1} \in \mathbb{Z}_{+}\)
    shows
    \(\exists \mathrm{U} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right) \leq \mathrm{U}\)
    \(\exists \mathrm{N} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{N} \leq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right)\)
proof -
    from A1 have \(\exists \mathrm{L} \in \mathbb{Z} . \forall \mathrm{r} \in \mathbb{Z} . f(\mathrm{r}) \leq \mathrm{f}(\mathrm{r}-1)+\mathrm{L}\)
        using Int_ZF_2_1_L28 by simp
    then obtain \(L\) where
        I: \(L \in \mathbb{Z}\) and II: \(\forall r \in \mathbb{Z} . f(r) \leq f(r-1)+L\)
        by auto
    from A1 have
        \(\exists \mathrm{M} \in \mathbb{Z} . \forall \mathrm{r} \in \mathbb{Z} . \forall \mathrm{p} \in \mathbb{Z} . \forall \mathrm{q} \in \mathbb{Z} . \mathrm{f}(\mathrm{r}-\mathrm{p}-\mathrm{q}) \leq \mathrm{f}(\mathrm{r})-\mathrm{f}(\mathrm{p})-\mathrm{f}(\mathrm{q})+\mathrm{M}\)
        \(\exists K \in \mathbb{Z} . \forall r \in \mathbb{Z} . \forall \mathrm{p} \in \mathbb{Z} . \forall \mathrm{q} \in \mathbb{Z} . \mathrm{f}(\mathrm{r})-\mathrm{f}(\mathrm{p})-\mathrm{f}(\mathrm{q})+\mathrm{K} \leq \mathrm{f}(\mathrm{r}-\mathrm{p}-\mathrm{q})\)
        using Int_ZF_2_1_L30 by auto
    then obtain \(M K\) where III: \(M \in \mathbb{Z}\) and
        IV: \(\forall r \in \mathbb{Z} . \forall \mathrm{p} \in \mathbb{Z} . \forall \mathrm{q} \in \mathbb{Z} . \mathrm{f}(\mathrm{r}-\mathrm{p}-\mathrm{q}) \leq \mathrm{f}(\mathrm{r})-\mathrm{f}(\mathrm{p})-\mathrm{f}(\mathrm{q})+\mathrm{M}\)
        and
        \(\mathrm{V}: \mathrm{K} \in \mathbb{Z}\) and \(\mathrm{VI}: \forall \mathrm{r} \in \mathbb{Z} . \forall \mathrm{p} \in \mathbb{Z} . \forall \mathrm{q} \in \mathbb{Z} . \mathrm{f}(\mathrm{r})-\mathrm{f}(\mathrm{p})-\mathrm{f}(\mathrm{q})+\mathrm{K} \leq \mathrm{f}(\mathrm{r}-\mathrm{p}-\mathrm{q})\)
```

```
    by auto
    from I III \(V\) have
    \(\mathrm{L}+\mathrm{M} \in \mathbb{Z} \quad(-\mathrm{L})-\mathrm{L}+\mathrm{K} \in \mathbb{Z}\)
    using Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto
    moreover
    \{ fix m \(n\)
        assume \(\mathrm{A} 3: \mathrm{m} \in \mathbb{Z}_{+} \mathrm{n} \in \mathbb{Z}_{+}\)
        have \(f\left(f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)\right) \leq L+M \wedge\)
\((-L)-L+K \leq f\left(f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)\right)\)
    proof -
let \(r=f^{-1}(m+n)\)
let \(p=f^{-1}(m)\)
let \(q=f^{-1}(n)\)
from A1 A3 have T1:
    \(\mathrm{p} \in \mathbb{Z}_{+} \quad \mathrm{q} \in \mathbb{Z}_{+} \quad \mathrm{r} \in \mathbb{Z}_{+}\)
    using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto
with A3 have T2:
    \(m \in \mathbb{Z} \quad n \in \mathbb{Z} \quad p \in \mathbb{Z} \quad q \in \mathbb{Z} \quad r \in \mathbb{Z}\)
    using PositiveSet_def by auto
from A2 A3 have T3:
    \(\mathrm{r} \mathbf{- 1} \in \mathbb{Z}_{+} \mathrm{p}-\mathbf{1} \in \mathbb{Z}_{+} \quad \mathrm{q}-\mathbf{1} \in \mathbb{Z}_{+}\)
    using pos_int_closed_add_unfolded by auto
from A1 A3 have VII:
    \(\mathrm{m}+\mathrm{n} \leq \mathrm{f}(\mathrm{r})\)
    \(m \leq f(p)\)
    \(\mathrm{n} \leq \mathrm{f}\) ( q )
    using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto
from A1 A3 T3 have VIII:
    \(f(r-1) \leq m+n\)
    \(f(p-1) \leq m\)
    \(\mathrm{f}(\mathrm{q}-1) \leq \mathrm{n}\)
    using pos_int_closed_add_unfolded Int_ZF_2_4_L4 by auto
have \(f(r-p-q) \leq L+M\)
proof -
    from IV T2 have \(f(r-p-q) \leq f(r)-f(p)-f(q)+M\)
        by simp
    moreover
    from I II T2 VIII have
        \(f(r) \leq f(r-1)+L\)
        \(\mathrm{f}(\mathrm{r}-1)+\mathrm{L} \leq \mathrm{m}+\mathrm{n}+\mathrm{L}\)
        using int_ord_transl_inv by auto
    then have \(f(r) \leq m+n+L\)
            by (rule Int_order_transitive)
    with VII have \(f(r)-f(p) \leq m+n+L-m\)
        using int_ineq_add_sides by simp
    with I T2 VII have \(f(r)-f(p)-f(q) \leq n+L-n\)
        using Int_ZF_1_2_L9 int_ineq_add_sides by simp
    with I III T2 have \(f(r)-f(p)-f(q)+M \leq L+M\)
        using Int_ZF_1_2_L3 int_ord_transl_inv by simp
```

ultimately show $f(r-p-q) \leq L+M$
by (rule Int_order_transitive)
qed
moreover have (-L) $-L+K \leq f(r-p-q)$
proof -
from I II T2 VIII have
$\mathrm{f}(\mathrm{p}) \leq \mathrm{f}(\mathrm{p}-1)+\mathrm{L}$
$\mathrm{f}(\mathrm{p}-1)+\mathrm{L} \leq \mathrm{m}+\mathrm{L}$
using int_ord_transl_inv by auto
then have $f(p) \leq m+L$ by (rule Int_order_transitive)
with VII have $m+n-(m+L) \leq f(r)-f(p)$ using int_ineq_add_sides by simp
with I T2 have $n-L \leq f(r)-f(p)$ using Int_ZF_1_2_L9 by simp
moreover
from I II T2 VIII have $\mathrm{f}(\mathrm{q}) \leq \mathrm{f}(\mathrm{q}-1)+\mathrm{L}$ $\mathrm{f}(\mathrm{q}-1)+\mathrm{L} \leq \mathrm{n}+\mathrm{L}$ using int_ord_transl_inv by auto
then have $f(q) \leq n+L$ by (rule Int_order_transitive)
ultimately have
$n-L-(n+L) \leq f(r)-f(p)-f(q)$
using int_ineq_add_sides by simp
with I V T2 have $(-L)-L+K \leq f(r)-f(p)-f(q)+K$
using Int_ZF_1_2_L3 int_ord_transl_inv by simp
moreover from VI T2 have $f(r)-f(p)-f(q)+K \leq f(r-p-q)$
by simp
ultimately show (-L) $-\mathrm{L}+\mathrm{K} \leq \mathrm{f}(\mathrm{r}-\mathrm{p}-\mathrm{q})$ by (rule Int_order_transitive)
qed
ultimately show
$f(r-p-q) \leq L+M \wedge$
$(-L)-L+K \leq f\left(f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)\right)$
by simp
qed
\}
ultimately show
$\exists \mathrm{U} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right) \leq \mathrm{U}$
$\exists \mathrm{N} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{N} \leq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right)$
by auto
qed
The expression $f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)$ is uniformly bounded for all pairs $\langle m, n\rangle \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}$. Recall that in the int1 context $\varepsilon(\mathrm{f}, \mathrm{x})$ is defined so that $\varepsilon(f,\langle m, n\rangle)=f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)$.
lemma (in int1) Int_ZF_2_4_L8: assumes A1: $f \in \mathcal{S}_{+}$and
A2: $\forall \mathrm{m} \in \mathbb{Z}_{+} \cdot \mathrm{f}^{-1}(\mathrm{~m})-\mathbf{1} \in \mathbb{Z}_{+}$
shows $\exists \mathrm{M} . \forall \mathrm{x} \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \cdot \operatorname{abs}(\varepsilon(\mathrm{f}, \mathrm{x})) \leq \mathrm{M}$
proof -
from A1 A2 have
$\exists \mathrm{U} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right) \leq \mathrm{U}$ $\exists \mathrm{N} \in \mathbb{Z} . \forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{N} \leq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right)$ using Int_ZF_2_4_L7 by auto
then obtain $U N$ where I :
$\forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right) \leq \mathrm{U}$
$\forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{N} \leq \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})-\mathrm{f}^{-1}(\mathrm{~m})-\mathrm{f}^{-1}(\mathrm{n})\right)$
by auto
have $\mathbb{Z}_{+} \times \mathbb{Z}_{+} \neq 0$ using int_one_two_are_pos by auto
moreover from A1 have $f: \mathbb{Z} \rightarrow \mathbb{Z}$
using AlmostHoms_def by simp
moreover from A1 have
$\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} . \forall \mathrm{x} . \mathrm{b} \leq \mathrm{x} \longrightarrow \mathrm{a} \leq \mathrm{f}(\mathrm{x})$
using Int_ZF_2_3_L5 by simp
moreover from A1 have $\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} . \forall \mathrm{y} . \mathrm{b} \leq \mathrm{y} \longrightarrow \mathrm{f}(-\mathrm{y}) \leq \mathrm{a}$ using Int_ZF_2_3_L5A by simp
moreover have $\forall \mathrm{x} \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \cdot \varepsilon(\mathrm{f}, \mathrm{x}) \in \mathbb{Z} \wedge \mathrm{f}(\varepsilon(\mathrm{f}, \mathrm{x})) \leq \mathrm{U} \wedge \mathrm{N} \leq \mathrm{f}(\varepsilon(\mathrm{f}, \mathrm{x}))$
proof -
\{ fix x assume A3: $x \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}$
let $\mathrm{m}=\mathrm{fst}(\mathrm{x})$
let $n=\operatorname{snd}(x)$
from A3 have $T: m \in \mathbb{Z}_{+} n \in \mathbb{Z}_{+} \quad m+n \in \mathbb{Z}_{+}$
using pos_int_closed_add_unfolded by auto with A1 have
$\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n}) \in \mathbb{Z} \quad \mathrm{f}^{-1}(\mathrm{~m}) \in \mathbb{Z} \quad \mathrm{f}^{-1}(\mathrm{n}) \in \mathbb{Z}$
using Int_ZF_2_4_L2 PositiveSet_def by auto with I T have
$\varepsilon(f, x) \in \mathbb{Z} \wedge f(\varepsilon(f, x)) \leq U \wedge N \leq f(\varepsilon(f, x))$
using Int_ZF_1_1_L5 by auto
\} thus thesis by simp
qed
ultimately show $\exists \mathrm{M} . \forall \mathrm{x} \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \cdot \operatorname{abs}(\varepsilon(\mathrm{f}, \mathrm{x})) \leq \mathrm{M}$
by (rule Int_ZF_1_6_L4)
qed
The (candidate for) inverse of a positive slope is a (well defined) function on \mathbb{Z}_{+}.
lemma (in int1) Int_ZF_2_4_L9:
assumes $\mathrm{A} 1: \mathrm{f} \in \mathcal{S}_{+}$and $\mathrm{A} 2: \mathrm{g}=\left\{\left\langle\mathrm{p}, \mathrm{f}^{-1}(\mathrm{p})\right\rangle . \mathrm{p} \in \mathbb{Z}_{+}\right\}$
shows
$\mathrm{g}: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$
$\mathrm{g}: \mathbb{Z}_{+} \rightarrow \mathbb{Z}$
proof -

```
    from A1 have
        \forall\mp@code{Z}\mp@subsup{\mathbb{Z}}{+}{\prime}.\mp@subsup{\textrm{f}}{}{-1}(\textrm{p})\in\mp@subsup{\mathbb{Z}}{+}{}
    \forallp\in\mathbb{Z}
    using Int_ZF_2_4_L2 PositiveSet_def by auto
    with A2 show
```



```
    using ZF_fun_from_total by auto
qed
```

What are the values of the (candidate for) the inverse of a positive slope?

```
lemma (in int1) Int_ZF_2_4_L10:
    assumes A1: f }\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ and A2: g = {\p,f,
    shows g(p) = f }\mp@subsup{f}{}{-1}(p
proof -
    from A1 A2 have g : }\mp@subsup{\mathbb{Z}}{+}{}->\mp@subsup{\mathbb{Z}}{+}{}\mathrm{ using Int_ZF_2_4_L9 by simp
    with A2 A3 show g(p) = f-1 (p) using ZF_fun_from_tot_val by simp
qed
```

The (candidate for) the inverse of a positive slope is a slope.

```
lemma (in int1) Int_ZF_2_4_L11: assumes A1: f \(\in \mathcal{S}_{+}\)and
    A2: \(\forall \mathrm{m} \in \mathbb{Z}_{+} \cdot \mathrm{f}^{-1}(\mathrm{~m})-\mathbf{1} \in \mathbb{Z}_{+}\)and
    A3: \(g=\left\{\left\langle p, f^{-1}(p)\right\rangle . p \in \mathbb{Z}_{+}\right\}\)
    shows OddExtension( \(\mathbb{Z}\),IntegerAddition,IntegerOrder,g) \(\in \mathcal{S}\)
proof -
    from A1 A2 have \(\exists \mathrm{L} . \forall \mathrm{x} \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}\). abs \((\varepsilon(\mathrm{f}, \mathrm{x})) \leq \mathrm{L}\)
            using Int_ZF_2_4_L8 by simp
    then obtain L where I: \(\forall x \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \cdot \operatorname{abs}(\varepsilon(f, x)) \leq L\)
            by auto
    from A1 A3 have \(g: \mathbb{Z}_{+} \rightarrow \mathbb{Z}\) using Int_ZF_2_4_L9
            by simp
    moreover have \(\forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+}\). abs \((\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}\)
    proof-
        \{ fix m n
            assume A4: \(\mathrm{m} \in \mathbb{Z}_{+} \quad \mathrm{n} \in \mathbb{Z}_{+}\)
            then have \(\langle\mathrm{m}, \mathrm{n}\rangle \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}\)by simp
            with I have abs \((\varepsilon(\mathrm{f},\langle\mathrm{m}, \mathrm{n}\rangle)) \leq \mathrm{L}\) by simp
            moreover have \(\varepsilon(f,\langle m, n\rangle)=f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)\)
    by simp
                moreover from A1 A3 A4 have
    \(\mathrm{f}^{-1}(\mathrm{~m}+\mathrm{n})=\mathrm{g}(\mathrm{m}+\mathrm{n}) \quad \mathrm{f}^{-1}(\mathrm{~m})=\mathrm{g}(\mathrm{m}) \quad \mathrm{f}^{-1}(\mathrm{n})=\mathrm{g}(\mathrm{n})\)
    using pos_int_closed_add_unfolded Int_ZF_2_4_L10 by auto
            ultimately have \(\operatorname{abs}(\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}\) by simp
        \(\}\) thus \(\forall \mathrm{m} \in \mathbb{Z}_{+} \cdot \forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})) \leq \mathrm{L}\) by simp
    qed
    ultimately show thesis by (rule Int_ZF_2_1_L24)
qed
```

Every positive slope that is at least 2 on positive integers almost has an inverse.

```
lemma (in int1) Int_ZF_2_4_L12: assumes A1: f \in S S+ and
    A2: }\forall\textrm{m}\in\mp@subsup{\mathbb{Z}}{+}{}.\mp@subsup{\textrm{f}}{}{-1}(\textrm{m})-\mathbf{1}\in\mp@subsup{\mathbb{Z}}{+}{
    shows }\exists\textrm{h}\in\mathcal{S}.f(\textrm{foh}~\operatorname{id}(\mathbb{Z}
proof -
    let g = {\langlep,f-1 (p)\rangle. p\in\mp@subsup{\mathbb{Z}}{+}{}}
    let h = OddExtension(\mathbb{Z},IntegerAddition,IntegerOrder,g)
    from A1 have
        \existsM\in\mathbb{Z}.\foralln\in\mathbb{Z}.f(n) < f(n-1) + M
        using Int_ZF_2_1_L28 by simp
    then obtain M where
        I: M\in\mathbb{Z and II: }\forall\textrm{n}\in\mathbb{Z}.f(n) \leq f(n-1) + M
        by auto
    from A1 A2 have T: h }\in\mathcal{S
        using Int_ZF_2_4_L11 by simp
    moreover have foh ~ id(\mathbb{Z})
    proof -
        from A1 T have foh }\in\mathcal{S}\mathrm{ using Int_ZF_2_1_L11
                by simp
            moreover note I
            moreover
```



```
                with A1 have f}\mp@subsup{f}{}{-1}(\textrm{m})\in\mathbb{Z
    using Int_ZF_2_4_L2 PositiveSet_def by simp
                with II have f(fm
    by simp
                moreover from A1 A2 I A3 have f(f (f)
    using Int_ZF_2_4_L4 int_ord_transl_inv by simp
                ultimately have f(f f
    by (rule Int_order_transitive)
        moreover from A1 A3 have m}\leqf(\mp@subsup{f}{}{-1}(m)
    using Int_ZF_2_4_L2 by simp
                moreover from A1 A2 T A3 have f(ff
    using Int_ZF_2_4_L9 Int_ZF_1_5_L11
        Int_ZF_2_4_L10 PositiveSet_def Int_ZF_2_1_L10
    by simp
                ultimately have m}\leq(f\circh)(m) ^(f\circh)(m) \leqm+
    by simp }
        ultimately show foh ~ id(\mathbb{Z}) using Int_ZF_2_1_L32
                by simp
    qed
    ultimately show }\exists\textrm{h}\in\mathcal{S}. foh ~ id(\mathbb{Z}
        by auto
qed
```

Int_ZF_2_4_L12 is almost what we need, except that it has an assumption that the values of the slope that we get the inverse for are not smaller than 2 on positive integers. The Arthan's proof of Theorem 11 has a mistake where he says "note that for all but finitely many $m, n \in N p=g(m)$ and $q=g(n)$ are both positive". Of course there may be infinitely many pairs $\langle m, n\rangle$ such
that p, q are not both positive. This is however easy to workaround: we just modify the slope by adding a constant so that the slope is large enough on positive integers and then look for the inverse.

```
theorem (in int1) pos_slope_has_inv: assumes A1: f \(\in \mathcal{S}_{+}\)
    shows \(\exists \mathrm{g} \in \mathcal{S} . \mathrm{f} \sim \mathrm{g} \wedge(\exists \mathrm{h} \in \mathcal{S} . \operatorname{goh} \sim \operatorname{id}(\mathbb{Z}))\)
proof -
    from \(A 1\) have \(f: \mathbb{Z} \rightarrow \mathbb{Z} \quad 1 \in \mathbb{Z} \quad 2 \in \mathbb{Z}\)
        using AlmostHoms_def int_zero_one_are_int int_two_three_are_int
        by auto
    moreover from A1 have
        \(\forall \mathrm{a} \in \mathbb{Z} . \exists \mathrm{b} \in \mathbb{Z}_{+} . \forall \mathrm{x} . \mathrm{b} \leq \mathrm{x} \longrightarrow \mathrm{a} \leq \mathrm{f}(\mathrm{x})\)
        using Int_ZF_2_3_L5 by simp
    ultimately have
        \(\exists \mathrm{c} \in \mathbb{Z} . \mathbf{2} \leq\) Minimum(IntegerOrder, \(\left\{\mathrm{n} \in \mathbb{Z}_{+} \cdot \mathbf{1} \leq \mathrm{f}(\mathrm{n})+\mathrm{c}\right\}\) )
        by (rule Int_ZF_1_6_L7)
    then obtain \(c\) where \(I: c \in \mathbb{Z}\) and
            II: \(\mathbf{2} \leq\) Minimum(IntegerOrder, \(\left\{n \in \mathbb{Z}_{+} .1 \leq f(n)+c\right\}\) )
            by auto
    let \(g=\{\langle m, f(m)+c\rangle . m \in \mathbb{Z}\}\)
    from A1 I have III: \(g \in \mathcal{S}\) and IV: f~g using Int_ZF_2_1_L33
        by auto
    from IV have \(\langle\mathrm{f}, \mathrm{g}\rangle \in\) AlEqRel by simp
    with A1 have \(\mathrm{T}: \mathrm{g} \in \mathcal{S}_{+}\)by (rule Int_ZF_2_3_L9)
    moreover have \(\forall \mathrm{m} \in \mathbb{Z}_{+} \cdot \mathrm{g}^{-1}(\mathrm{~m})-\mathbf{1} \in \mathbb{Z}_{+}\)
    proof
        fix \(m\) assume \(A 2: m \in \mathbb{Z}_{+}\)
        from A1 I II have \(V: 2 \leq g^{-1}(1)\)
            using Int_ZF_2_1_L33 PositiveSet_def by simp
            moreover from A2 \(T\) have \(g^{-1}(1) \leq g^{-1}(m)\)
                using Int_ZF_1_5_L3 int_one_two_are_pos Int_ZF_2_4_L5
                by simp
            ultimately have \(2 \leq \mathrm{g}^{-1}(\mathrm{~m})\)
                by (rule Int_order_transitive)
            then have 2-1 \(\leq g^{-1}(m)-1\)
                using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv
                by simp
            then show \(g^{-1}(m)-1 \in \mathbb{Z}_{+}\)
                using int_zero_one_are_int Int_ZF_1_2_L3 Int_ZF_1_5_L3
                by simp
    qed
    ultimately have \(\exists \mathrm{h} \in \mathcal{S}\). goh \(\sim \operatorname{id}(\mathbb{Z})\)
        by (rule Int_ZF_2_4_L12)
    with III IV show thesis by auto
qed
```


45.3 Completeness

In this section we consider properties of slopes that are needed for the proof of completeness of real numbers constructred in Real_ZF_1.thy. In particular we consider properties of embedding of integers into the set of slopes by the mapping $m \mapsto m^{S}$, where m^{S} is defined by $m^{S}(n)=m \cdot n$.

If m is an integer, then m^{S} is a slope whose value is $m \cdot n$ for every integer.

```
lemma (in int1) Int_ZF_2_5_L1: assumes A1: \(m \in \mathbb{Z}\)
    shows
    \(\forall \mathrm{n} \in \mathbb{Z} .\left(\mathrm{m}^{S}\right)(\mathrm{n})=\mathrm{m} \cdot \mathrm{n}\)
    \(\mathrm{m}^{S} \in \mathcal{S}\)
proof -
    from \(A 1\) have \(I: m^{S}: \mathbb{Z} \rightarrow \mathbb{Z}\)
                using Int_ZF_1_1_L5 ZF_fun_from_total by simp
    then show II: \(\forall \mathrm{n} \in \mathbb{Z}\). ( \(\mathrm{m}^{S}\) ) (n) = m•n using ZF_fun_from_tot_val
                by simp
    \{ fix nk
            assume \(A 2: n \in \mathbb{Z} \quad k \in \mathbb{Z}\)
            with A1 have \(T: m \cdot n \in \mathbb{Z} \quad \mathrm{~m} \cdot \mathrm{k} \in \mathbb{Z}\)
                using Int_ZF_1_1_L5 by auto
            from A1 A2 II T have \(\delta\left(\mathrm{m}^{S}, \mathrm{n}, \mathrm{k}\right)=\mathrm{m} \cdot \mathrm{k}-\mathrm{m} \cdot \mathrm{k}\)
                using Int_ZF_1_1_L5 Int_ZF_1_1_L1 Int_ZF_1_2_L3
                by simp
            also from T have \(\ldots=0\) using Int_ZF_1_1_L4
                by simp
            finally have \(\delta\left(\mathrm{m}^{S}, \mathrm{n}, \mathrm{k}\right)=0\) by simp
            then have abs \(\left(\delta\left(\mathrm{m}^{S}, \mathrm{n}, \mathrm{k}\right)\right) \leq 0\)
                using Int_ZF_2_L18 int_zero_one_are_int int_ord_is_refl refl_def
                    by simp
    \(\}\) then have \(\forall \mathrm{n} \in \mathbb{Z} . \forall \mathrm{k} \in \mathbb{Z} . \operatorname{abs}\left(\delta\left(\mathrm{m}^{S}, \mathrm{n}, \mathrm{k}\right)\right) \leq \mathbf{0}\)
        by simp
    with I show \(\mathrm{m}^{S} \in \mathcal{S}\) by (rule Int_ZF_2_1_L5)
qed
```

For any slope f there is an integer m such that there is some slope g that is almost equal to m^{S} and dominates f in the sense that $f \leq g$ on positive integers (which implies that either g is almost equal to f or $g-f$ is a positive slope. This will be used in Real_ZF_1.thy to show that for any real number there is an integer that (whose real embedding) is greater or equal.

```
lemma (in int1) Int_ZF_2_5_L2: assumes A1: f \in S
    shows }\exists\textrm{m}\in\mathbb{Z}.\exists\textrm{g}\in\mathcal{S}.(\mp@subsup{\textrm{m}}{}{S}~\textrm{g}\wedge(\textrm{f}~\textrm{g}\vee\textrm{g}+(-\textrm{f})\in\mp@subsup{\mathcal{S}}{+}{\prime})
proof -
    from A1 have
            \existsm k. m\in\mathbb{Z}}\wedge k\in\mathbb{Z}\wedge(\forallp\in\mathbb{Z}.abs(f(p)) \leqm·abs(p)+k
            using Arthan_Lem_8 by simp
    then obtain m k where I: m\in\mathbb{Z}}\mathrm{ and II: k}\mathbb{Z}\mathbb{Z}\mathrm{ and
            III: }\forall\textrm{p}\in\mathbb{Z}.\operatorname{abs}(\textrm{f}(\textrm{p}))\leqm\cdotabs(p)+
```

```
    by auto
    let g}={\langlen,\mp@subsup{m}{}{S}(n)+k\rangle. n\in\mathbb{Z}
    from I have IV: m}\mp@subsup{}{}{S}\in\mathcal{S}\mathrm{ using Int_ZF_2_5_L1 by simp
    with II have V: g\inS and VI: m
    by auto
    { fix n assume A2: n\in\mathbb{Z}
    with A1 have f(n) \in\mathbb{Z}
        using Int_ZF_2_1_L2B PositiveSet_def by simp
    then have f(n) \leq abs(f(n)) using Int_ZF_2_L19C
        by simp
    moreover
    from III A2 have abs(f(n)) \leqm·abs(n) + k
        using PositiveSet_def by simp
    with A2 have abs(f(n)) \leqm.n+k
        using Int_ZF_1_5_L4A by simp
    ultimately have f(n) \leqm\cdotn+k
        by (rule Int_order_transitive)
    moreover
    from II IV A2 have g(n) = (m
        using Int_ZF_2_1_L33 PositiveSet_def by simp
    with I A2 have g(n) = m.n+k
        using Int_ZF_2_5_L1 PositiveSet_def by simp
    ultimately have f(n) \leqg(n)
        by simp
    } then have }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{f}(\textrm{n})\leq\textrm{g}(\textrm{n}
    by simp
    with A1 V have f~g V g + (-f) \in S S 
    using Int_ZF_2_3_L4C by simp
    with I V VI show thesis by auto
qed
```

The negative of an integer embeds in slopes as a negative of the orgiginal embedding.

```
lemma (in int1) Int_ZF_2_5_L3: assumes A1: \(m \in \mathbb{Z}\)
    shows \((-m)^{S}=-\left(m^{S}\right)\)
proof -
    from \(A 1\) have \((-\mathrm{m})^{S}: \mathbb{Z} \rightarrow \mathbb{Z}\) and \(\left(-\left(\mathrm{m}^{S}\right)\right): \mathbb{Z} \rightarrow \mathbb{Z}\)
            using Int_ZF_1_1_L4 Int_ZF_2_5_L1 AlmostHoms_def Int_ZF_2_1_L12
            by auto
    moreover have \(\forall \mathrm{n} \in \mathbb{Z}\). \(\left((-\mathrm{m})^{S}\right)(\mathrm{n})=\left(-\left(\mathrm{m}^{S}\right)\right)(\mathrm{n})\)
    proof
        fix n assume \(\mathrm{A} 2: \mathrm{n} \in \mathbb{Z}\)
        with A1 have
            \(\left((-\mathrm{m})^{S}\right)(\mathrm{n})=(-\mathrm{m}) \cdot \mathrm{n}\)
            \(\left(-\left(m^{S}\right)\right)(n)=-(m \cdot n)\)
            using Int_ZF_1_1_L4 Int_ZF_2_5_L1 Int_ZF_2_1_L12A
            by auto
            with A1 A2 show \(\left((-m)^{S}\right)(n)=\left(-\left(m^{S}\right)\right)(n)\)
                using Int_ZF_1_1_L5 by simp
```

```
    qed
    ultimately show (-m)}\mp@subsup{}{}{S}=-(\mp@subsup{m}{}{S})\mathrm{ using fun_extension_iff
        by simp
qed
```

The sum of embeddings is the embeding of the sum.

```
lemma (in int1) Int_ZF_2_5_L3A: assumes A1: \(m \in \mathbb{Z} \quad k \in \mathbb{Z}\)
```

 shows \(\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right)=\left((\mathrm{m}+\mathrm{k})^{S}\right)\)
 proof -
from A1 have $\mathrm{T} 1: \mathrm{m}+\mathrm{k} \in \mathbb{Z}$ using Int_ZF_1_1_L5
by simp
with A1 have T2:
$\left(\mathrm{m}^{S}\right) \in \mathcal{S} \quad\left(\mathrm{k}^{S}\right) \in \mathcal{S}$
$(\mathrm{m}+\mathrm{k})^{S} \in \mathcal{S}$
$\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right) \in \mathcal{S}$
using Int_ZF_2_5_L1 Int_ZF_2_1_L12C by auto
then have
$\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right): \mathbb{Z} \rightarrow \mathbb{Z}$
$(\mathrm{m}+\mathrm{k})^{S}: \mathbb{Z} \rightarrow \mathbb{Z}$
using AlmostHoms_def by auto
moreover have $\forall \mathrm{n} \in \mathbb{Z}$. $\left(\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right)\right)(\mathrm{n})=\left((\mathrm{m}+\mathrm{k})^{S}\right)(\mathrm{n})$
proof
fix n assume $\mathrm{A} 2: \mathrm{n} \in \mathbb{Z}$
with A1 T1 T2 have $\left(\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right)\right)(\mathrm{n})=(\mathrm{m}+\mathrm{k}) \cdot \mathrm{n}$
using Int_ZF_2_1_L12B Int_ZF_2_5_L1 Int_ZF_1_1_L1
by simp
also from T1 A2 have $\ldots=\left((\mathrm{m}+\mathrm{k})^{S}\right)(\mathrm{n})$
using Int_ZF_2_5_L1 by simp
finally show $\left(\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right)\right)(\mathrm{n})=\left((\mathrm{m}+\mathrm{k})^{S}\right)(\mathrm{n})$
by simp
qed
ultimately show $\left(\mathrm{m}^{S}\right)+\left(\mathrm{k}^{S}\right)=\left((\mathrm{m}+\mathrm{k})^{S}\right)$
using fun_extension_iff by simp
qed

The composition of embeddings is the embeding of the product.

```
lemma (in int1) Int_ZF_2_5_L3B: assumes A1: \(m \in \mathbb{Z} \quad k \in \mathbb{Z}\)
    shows \(\left(\mathrm{m}^{S}\right) \circ\left(\mathrm{k}^{S}\right)=\left((\mathrm{m} \cdot \mathrm{k})^{S}\right)\)
proof -
    from A1 have T1: m•k \(\in \mathbb{Z}\) using Int_ZF_1_1_L5
        by simp
    with A1 have T2:
        \(\left(\mathrm{m}^{S}\right) \in \mathcal{S} \quad\left(\mathrm{k}^{S}\right) \in \mathcal{S}\)
        \((\mathrm{m} \cdot \mathrm{k})^{S} \in \mathcal{S}\)
        \(\left(\mathrm{m}^{S}\right) \circ\left(\mathrm{k}^{S}\right) \in \mathcal{S}\)
        using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
    then have
        \(\left(\mathrm{m}^{S}\right) \circ\left(\mathrm{k}^{S}\right): \mathbb{Z} \rightarrow \mathbb{Z}\)
        \((\mathrm{m} \cdot \mathrm{k})^{S}: \mathbb{Z} \rightarrow \mathbb{Z}\)
```

```
    using AlmostHoms_def by auto
    moreover have }\forall\textrm{n}\in\mathbb{Z
    proof
        fix n assume A2: n\in\mathbb{Z}
        with A1 T2 have
        ((mS})\circ(\mp@subsup{k}{}{S}))(n)=(\mp@subsup{m}{}{S})(k\cdotn
            using Int_ZF_2_1_L10 Int_ZF_2_5_L1 by simp
    moreover
    from A1 A2 have k\cdotn }\in\mathbb{Z
        by simp
    with A1 A2 have (mS})(\textrm{k}\cdot\textrm{n})=\textrm{m}\cdot\textrm{k}\cdot\textrm{n
        using Int_ZF_2_5_L1 Int_ZF_1_1_L7 by simp
    ultimately have ((mS})\circ(\mp@subsup{\textrm{k}}{}{S}))(\textrm{n})=\textrm{m}\cdot\textrm{k}\cdot\textrm{n
        by simp
    also from T1 A2 have m\cdotk\cdotn = ((m.k) )
        using Int_ZF_2_5_L1 by simp
    finally show ((m}\mp@subsup{m}{}{S})\circ(\mp@subsup{\textrm{k}}{}{S}))(\textrm{n})=((\textrm{m}\cdot\textrm{k}\mp@subsup{)}{}{S})(\textrm{n}
        by simp
    qed
    ultimately show (m}\mp@subsup{}{}{S})\circ(\mp@subsup{k}{}{S})=((m\cdotk)\mp@subsup{}{}{S}
    using fun_extension_iff by simp
qed
```

Embedding integers in slopes preserves order.

```
lemma (in int1) Int_ZF_2_5_L4: assumes A1: \(m \leq n\)
    shows \(\left(\mathrm{m}^{S}\right) \sim\left(\mathrm{n}^{S}\right) \vee\left(\mathrm{n}^{S}\right)+\left(-\left(\mathrm{m}^{S}\right)\right) \in \mathcal{S}_{+}\)
proof -
    from A1 have \(\mathrm{m}^{S} \in \mathcal{S}\) and \(\mathrm{n}^{S} \in \mathcal{S}\)
        using Int_ZF_2_L1A Int_ZF_2_5_L1 by auto
    moreover from A1 have \(\forall k \in \mathbb{Z}_{+} .\left(\mathrm{m}^{S}\right)(\mathrm{k}) \leq\left(\mathrm{n}^{S}\right)(\mathrm{k})\)
        using Int_ZF_1_3_L13B Int_ZF_2_L1A PositiveSet_def Int_ZF_2_5_L1
        by simp
    ultimately show thesis using Int_ZF_2_3_L4C
        by simp
qed
```

We aim at showing that $m \mapsto m^{S}$ is an injection modulo the relation of almost equality. To do that we first show that if m^{S} has finite range, then $m=0$.

```
lemma (in int1) Int_ZF_2_5_L5:
    assumes \(m \in \mathbb{Z}\) and \(m^{S} \in\) FinRangeFunctions \((\mathbb{Z}, \mathbb{Z})\)
    shows m=0
    using assms FinRangeFunctions_def Int_ZF_2_5_L1 AlmostHoms_def
        func_imagedef Int_ZF_1_6_L8 by simp
```

Embeddings of two integers are almost equal only if the integers are equal.

```
lemma (in int1) Int_ZF_2_5_L6:
    assumes A1: m\in\mathbb{Z}\quadk\in\mathbb{Z}\mathrm{ and A2: (mS) }~(\mp@subsup{k}{}{S})
```

```
    shows m=k
proof -
    from A1 have T: m-k \in\mathbb{Z}}\mathrm{ using Int_ZF_1_1_L5 by simp
    from A1 have (-(k
        using Int_ZF_2_5_L3 by simp
    then have mS + (- (k}\mp@subsup{\textrm{k}}{}{S}))=(\mp@subsup{\textrm{m}}{}{S})+((-\textrm{k}\mp@subsup{)}{}{S}
        by simp
    with A1 have m}\mp@subsup{\textrm{m}}{}{S}+(-(\mp@subsup{\textrm{k}}{}{S}))=((m-k)S
        using Int_ZF_1_1_L4 Int_ZF_2_5_L3A by simp
    moreover from A1 A2 have mS + (-(k (k)) \in FinRangeFunctions(\mathbb{Z},\mathbb{Z})
        using Int_ZF_2_5_L1 Int_ZF_2_1_L9D by simp
    ultimately have (m-k)S}\in\mathrm{ FinRangeFunctions(苂,苂)
        by simp
    with T have m-k = 0 using Int_ZF_2_5_L5
        by simp
    with A1 show m=k by (rule Int_ZF_1_L15)
qed
```

Embedding of 1 is the identity slope and embedding of zero is a finite range function．

```
lemma (in int1) Int_ZF_2_5_L7: shows
    1 }\mp@subsup{}{}{S}=\operatorname{id}(\mathbb{Z}
    \mp@subsup{0}{}{S}}\in\mathrm{ FinRangeFunctions(}\mathbb{Z},\mathbb{Z}
proof -
    have id(\mathbb{Z})={\langlex,x\rangle. x\in\mathbb{Z}}
        using id_def by blast
    then show 1 }\mp@subsup{1}{}{S}=id(\mathbb{Z})\mathrm{ using Int_ZF_1_1_L4 by simp
    have {0}\mp@subsup{0}{}{S}(\textrm{n}).\textrm{n}\in\mathbb{Z}}={0\cdot\textrm{n}.\textrm{n}\in\mathbb{Z}
        using int_zero_one_are_int Int_ZF_2_5_L1 by simp
    also have ... = {0} using Int_ZF_1_1_L4 int_not_empty
        by simp
    finally have {0}\mp@subsup{0}{}{S}(\textrm{n}).\textrm{n}\in\mathbb{Z}}={0} by sim
    then have {0}\mp@subsup{0}{}{S}(\textrm{n}).\textrm{n}\in\mathbb{Z}}\in\operatorname{Fin}(\mathbb{Z}
        using int_zero_one_are_int Finite1_L16 by simp
    moreover have 0}\mp@subsup{0}{}{S}:\mathbb{Z}->\mathbb{Z
        using int_zero_one_are_int Int_ZF_2_5_L1 AlmostHoms_def
        by simp
    ultimately show }\mp@subsup{0}{}{S}\in\mathrm{ FinRangeFunctions(价,Z्Z)
        using Finite1_L19 by simp
qed
```

A somewhat technical condition for a embedding of an integer to be＂less or equal＂（in the sense apriopriate for slopes）than the composition of a slope and another integer（embedding）．

```
lemma (in int1) Int_ZF_2_5_L8:
    assumes A1: f }\in\mathcal{S}\mathrm{ and A2: N }\in\mathbb{Z}\quad\textrm{M}\in\mathbb{Z}\mathrm{ and
    A3: }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\textrm{M}\cdot\textrm{n}\leq\textrm{f}(\textrm{N}\cdot\textrm{n}
    shows M}\mp@subsup{M}{}{S}~\textrm{fO}(\mp@subsup{\textrm{N}}{}{S})\vee(f\circ(\mp@subsup{N}{}{S}))+(-(\mp@subsup{M}{}{S}))\in\mp@subsup{\mathcal{S}}{+}{
proof -
```

```
    from A1 A2 have \(M^{S} \in \mathcal{S} \quad \mathrm{f} \circ\left(\mathrm{N}^{S}\right) \in \mathcal{S}\)
        using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
    moreover from A1 A2 A3 have \(\forall \mathrm{n} \in \mathbb{Z}_{+} .\left(\mathrm{M}^{S}\right)(\mathrm{n}) \leq\left(\mathrm{f} \circ\left(\mathrm{N}^{S}\right)\right.\) ) (n)
        using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10
        by simp
    ultimately show thesis using Int_ZF_2_3_L4C
    by simp
qed
```

Another technical condition for the composition of a slope and an integer (embedding) to be "less or equal" (in the sense apriopriate for slopes) than embedding of another integer.

```
lemma (in int1) Int_ZF_2_5_L9:
    assumes A1: f }\in\mathcal{S}\mathrm{ and A2: N }\in\mathbb{Z}\quad\textrm{M}\in\mathbb{Z}\mathrm{ and
    A3: }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{}.\quad\textrm{f}(\textrm{N}\cdot\textrm{n})\leqM\cdot\textrm{n
    shows f\circ(NS})~(\mp@subsup{\textrm{N}}{}{S})\vee(\mp@subsup{\textrm{M}}{}{S})+(-(f\circ(\mp@subsup{N}{}{S})))\in\mp@subsup{\mathcal{S}}{+}{
proof -
    from A1 A2 have f\circ(N N
        using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto
    moreover from A1 A2 A3 have }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{\prime}.(\textrm{f}\circ(\mp@subsup{N}{}{S}))(\textrm{n})\leq(\mp@subsup{M}{}{S})(\textrm{n}
        using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10
        by simp
    ultimately show thesis using Int_ZF_2_3_L4C
        by simp
qed
end
```


46 Construction real numbers - the generic part

theory Real_ZF imports Int_ZF_IML Ring_ZF_1

begin

The goal of the Real_ZF series of theory files is to provide a contruction of the set of real numbers. There are several ways to construct real numbers. Most common start from the rational numbers and use Dedekind cuts or Cauchy sequences. Real_ZF_x.thy series formalizes an alternative approach that constructs real numbers directly from the group of integers. Our formalization is mostly based on [2]. Different variants of this contruction are also described in [1] and [3]. I recommend to read these papers, but for the impatient here is a short description: we take a set of maps $s: Z \rightarrow Z$ such that the set $\{s(m+n)-s(m)-s(n)\}_{n, m \in Z}$ is finite (Z means the integers here). We call these maps slopes. Slopes form a group with the natural addition $(s+r)(n)=s(n)+r(n)$. The maps such that the set $s(Z)$ is finite (finite range functions) form a subgroup of slopes. The additive group of real numbers is defined as the quotient group of slopes by the (sub)group of
finite range functions. The multiplication is defined as the projection of the composition of slopes into the resulting quotient (coset) space.

46.1 The definition of real numbers

This section contains the construction of the ring of real numbers as classes of slopes - integer almost homomorphisms. The real definitions are in Group_ZF_2 theory, here we just specialize the definitions of almost homomorphisms, their equivalence and operations to the additive group of integers from the general case of abelian groups considered in Group_ZF_2.

The set of slopes is defined as the set of almost homomorphisms on the additive group of integers.

```
definition
    Slopes \equiv AlmostHoms(int,IntegerAddition)
```

The first operation on slopes (pointwise addition) is a special case of the first operation on almost homomorphisms.

```
definition
    SlopeOp1 \equiv AlHomOp1(int,IntegerAddition)
```

The second operation on slopes (composition) is a special case of the second operation on almost homomorphisms.

```
definition
    SlopeOp2 \equiv AlHomOp2(int,IntegerAddition)
```

Bounded integer maps are functions from integers to integers that have finite range. They play a role of zero in the set of real numbers we are constructing.

```
definition
    BoundedIntMaps \equiv FinRangeFunctions(int,int)
```

Bounded integer maps form a normal subgroup of slopes. The equivalence relation on slopes is the (group) quotient relation defined by this subgroup.

```
definition
    SlopeEquivalenceRel \equiv QuotientGroupRel(Slopes,SlopeOp1,BoundedIntMaps)
```

The set of real numbers is the set of equivalence classes of slopes.

```
definition
    RealNumbers \equiv Slopes//SlopeEquivalenceRel
```

The addition on real numbers is defined as the projection of pointwise addition of slopes on the quotient. This means that the additive group of real numbers is the quotient group: the group of slopes (with pointwise addition) defined by the normal subgroup of bounded integer maps.

definition

```
RealAddition \equiv ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp1)
```

Multiplication is defined as the projection of composition of slopes on the quotient. The fact that it works is probably the most surprising part of the construction.

```
definition
    RealMultiplication \equiv ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp2)
```

We first show that we can use theorems proven in some proof contexts (locales). The locale group1 requires assumption that we deal with an abelian group. The next lemma allows to use all theorems proven in the context called group1.

```
lemma Real_ZF_1_L1: shows group1(int,IntegerAddition)
    using group1_axioms.intro group1_def Int_ZF_1_T2 by simp
```

Real numbers form a ring. This is a special case of the theorem proven in Ring_ZF_1.thy, where we show the same in general for almost homomorphisms rather than slopes.

```
theorem Real_ZF_1_T1: shows IsAring(RealNumbers,RealAddition,RealMultiplication)
proof -
    let AH = AlmostHoms(int,IntegerAddition)
    let Op1 = AlHomOp1(int,IntegerAddition)
    let FR = FinRangeFunctions(int,int)
    let Op2 = AlHomOp2(int,IntegerAddition)
    let R = QuotientGroupRel(AH,Op1,FR)
    let A = ProjFun2(AH,R,Op1)
    let M = ProjFun2(AH,R,Op2)
    have IsAring(AH//R,A,M) using Real_ZF_1_L1 group1.Ring_ZF_1_1_T1
        by simp
    then show thesis using Slopes_def SlopeOp2_def SlopeOp1_def
        BoundedIntMaps_def SlopeEquivalenceRel_def RealNumbers_def
        RealAddition_def RealMultiplication_def by simp
qed
```

We can use theorems proven in group0 and group1 contexts applied to the group of real numbers.

```
lemma Real_ZF_1_L2: shows
    group0(RealNumbers,RealAddition)
    RealAddition {is commutative on} RealNumbers
    group1(RealNumbers,RealAddition)
proof -
    have
        IsAgroup(RealNumbers,RealAddition)
        RealAddition {is commutative on} RealNumbers
        using Real_ZF_1_T1 IsAring_def by auto
    then show
        group0(RealNumbers,RealAddition)
```

```
    RealAddition {is commutative on} RealNumbers
    group1(RealNumbers,RealAddition)
    using group1_axioms.intro group0_def group1_def
    by auto
qed
Let's define some notation.
locale real0 =
    fixes real (\mathbb{R})
    defines real_def [simp]: \mathbb{R}\equiv RealNumbers
    fixes ra (infixl + 69)
    defines ra_def [simp]: a+ b \equiv RealAddition\a,b\rangle
    fixes rminus (- _ 72)
    defines rminus_def [simp]:-a \equiv GroupInv(\mathbb{R},RealAddition)(a)
    fixes rsub (infixl - 69)
    defines rsub_def [simp]: a-b \equiv a+(-b)
    fixes rm (infixl . 70)
    defines rm_def [simp]: a·b \equiv RealMultiplication\langlea,b\rangle
    fixes rzero (0)
    defines rzero_def [simp]:
    0 \equiv TheNeutralElement(RealNumbers,RealAddition)
    fixes rone (1)
    defines rone_def [simp]:
    1 \equiv TheNeutralElement(RealNumbers,RealMultiplication)
    fixes rtwo (2)
    defines rtwo_def [simp]: 2 \equiv 1+1
    fixes non_zero ( }\mp@subsup{\mathbb{R}}{0}{}\mathrm{ )
    defines non_zero_def [simp]: \mathbb{R}
    fixes inv (_-1 [90] 91)
    defines inv_def[simp]:
    a}\mp@subsup{}{}{-1}\equiv\operatorname{GroupInv}(\mp@subsup{\mathbb{R}}{0}{},\mathrm{ restrict(RealMultiplication, }\mp@subsup{\mathbb{R}}{0}{}\times\mp@subsup{\mathbb{R}}{0}{})\mathrm{ ) (a)
```

In real0 context all theorems proven in the ring0, context are valid.
lemma (in real0) Real_ZF_1_L3: shows
ring0(\mathbb{R},RealAddition, RealMultiplication)
using Real_ZF_1_T1 ring0_def ring0.Ring_ZF_1_L1
by auto
Lets try out our notation to see that zero and one are real numbers.

```
lemma (in real0) Real_ZF_1_L4: shows 0\in\mathbb{R }1\in\mathbb{R}
    using Real_ZF_1_L3 ring0.Ring_ZF_1_L2 by auto
```

The lemma below lists some properties that require one real number to state.

```
lemma (in real0) Real_ZF_1_L5: assumes A1: \(a \in \mathbb{R}\)
    shows
    \((-a) \in \mathbb{R}\)
    \((-(-a))=a\)
    \(a+0=a\)
    \(0+a=a\)
    \(\mathrm{a} \cdot 1=\mathrm{a}\)
    \(1 \cdot a=a\)
    \(a-a=0\)
    \(\mathrm{a}-\mathbf{0}=\mathrm{a}\)
    using assms Real_ZF_1_L3 ring0.Ring_ZF_1_L3 by auto
```

The lemma below lists some properties that require two real numbers to state.

```
lemma (in real0) Real_ZF_1_L6: assumes a\in\mathbb{R}}\textrm{b}\in\mathbb{R
    shows
    a+b}\in\mathbb{R
    a-b}\in\mathbb{R
    a\cdotb}\in\mathbb{R
    a+b = b+a
    (-a)\cdotb = - (a\cdotb)
    a}\cdot(-b)=-(a\cdotb
    using assms Real_ZF_1_L3 ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L7
    by auto
```

Multiplication of reals is associative.

```
lemma (in real0) Real_ZF_1_L6A: assumes a\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}
    shows a.(b\cdotc) = (a\cdotb)\cdotc
    using assms Real_ZF_1_L3 ring0.Ring_ZF_1_L11
    by simp
```

Addition is distributive with respect to multiplication.

```
lemma (in real0) Real_ZF_1_L7: assumes a\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}
    shows
    a\cdot(b+c) = a\cdotb + a\cdotc
    (b+c)\cdota = b}\cdot\textrm{a}+\textrm{c}\cdot\textrm{a
    a\cdot(b-c) = a\cdotb - a\cdotc
    (b-c)\cdota = b}\cdot\textrm{a}-\textrm{c}\cdot\textrm{a
    using assms Real_ZF_1_L3 ring0.ring_oper_distr ring0.Ring_ZF_1_L8
    by auto
```

A simple rearrangement with four real numbers.

```
lemma (in real0) Real_ZF_1_L7A:
    assumes a\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}\quadd\in\mathbb{R}
```

```
shows a-b + (c-d) = a+c-b-d
using assms Real_ZF_1_L2 group0.group0_4_L8A by simp
```

RealAddition is defined as the projection of the first operation on slopes (that is, slope addition) on the quotient (slopes divided by the "almost equal" relation. The next lemma plays with definitions to show that this is the same as the operation induced on the appriopriate quotient group. The names AH, Op1 and FR are used in group1 context to denote almost homomorphisms, the first operation on AH and finite range functions resp.

```
lemma Real_ZF_1_L8: assumes
    AH = AlmostHoms(int,IntegerAddition) and
    Op1 = AlHomOp1(int,IntegerAddition) and
    FR = FinRangeFunctions(int,int)
    shows RealAddition = QuotientGroupOp(AH,Op1,FR)
    using assms RealAddition_def SlopeEquivalenceRel_def
        QuotientGroupOp_def Slopes_def SlopeOp1_def BoundedIntMaps_def
    by simp
```

The symbol $\mathbf{0}$ in the real0 context is defined as the neutral element of real addition. The next lemma shows that this is the same as the neutral element of the appriopriate quotient group.

```
lemma (in real0) Real_ZF_1_L9: assumes
    AH = AlmostHoms(int,IntegerAddition) and
    Op1 = AlHomOp1(int,IntegerAddition) and
    FR = FinRangeFunctions(int,int) and
    r = QuotientGroupRel(AH,Op1,FR)
    shows
    TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR)) = 0
    SlopeEquivalenceRel = r
    using assms Slopes_def Real_ZF_1_L8 RealNumbers_def
        SlopeEquivalenceRel_def SlopeOp1_def BoundedIntMaps_def
    by auto
```

Zero is the class of any finite range function.

```
lemma (in real0) Real_ZF_1_L10:
    assumes A1: s \in Slopes
    shows SlopeEquivalenceRel{s} = 0 \longleftrightarrows B
proof -
    let AH = AlmostHoms(int,IntegerAddition)
    let Op1 = AlHomOp1(int,IntegerAddition)
    let FR = FinRangeFunctions(int,int)
    let r = QuotientGroupRel(AH,Op1,FR)
    let e = TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR))
    from A1 have
        group1(int,IntegerAddition)
        s\inAH
        using Real_ZF_1_L1 Slopes_def
        by auto
```

```
    then have r{s} = e \longleftrightarrows c FR
    using group1.Group_ZF_3_3_L5 by simp
    moreover have
    r = SlopeEquivalenceRel
    e = 0
    FR = BoundedIntMaps
    using SlopeEquivalenceRel_def Slopes_def SlopeOp1_def
        BoundedIntMaps_def Real_ZF_1_L9 by auto
    ultimately show thesis by simp
qed
```

We will need a couple of results from Group_ZF_3.thy The first two that state that the definition of addition and multiplication of real numbers are consistent, that is the result does not depend on the choice of the slopes representing the numbers. The second one implies that what we call SlopeEquivalenceRel is actually an equivalence relation on the set of slopes. We also show that the neutral element of the multiplicative operation on reals (in short number 1) is the class of the identity function on integers.

```
lemma Real_ZF_1_L11: shows
    Congruent2(SlopeEquivalenceRel,SlopeOp1)
    Congruent2(SlopeEquivalenceRel,SlopeOp2)
    SlopeEquivalenceRel }\subseteq\mathrm{ Slopes }\times\mathrm{ Slopes
    equiv(Slopes, SlopeEquivalenceRel)
    SlopeEquivalenceRel{id(int)} =
    TheNeutralElement(RealNumbers,RealMultiplication)
    BoundedIntMaps \subseteq Slopes
proof -
    let G = int
    let f = IntegerAddition
    let AH = AlmostHoms(int,IntegerAddition)
    let Op1 = AlHomOp1(int,IntegerAddition)
    let Op2 = AlHomOp2(int,IntegerAddition)
    let FR = FinRangeFunctions(int,int)
    let R = QuotientGroupRel(AH,Op1,FR)
        have
        Congruent2(R,Op1)
        Congruent2(R,Op2)
        using Real_ZF_1_L1 group1.Group_ZF_3_4_L13A group1.Group_ZF_3_3_L4
        by auto
    then show
        Congruent2(SlopeEquivalenceRel,SlopeOp1)
        Congruent2(SlopeEquivalenceRel,SlopeOp2)
        using SlopeEquivalenceRel_def SlopeOp1_def Slopes_def
            BoundedIntMaps_def SlopeOp2_def by auto
    have equiv(AH,R)
        using Real_ZF_1_L1 group1.Group_ZF_3_3_L3 by simp
    then show equiv(Slopes,SlopeEquivalenceRel)
        using BoundedIntMaps_def SlopeEquivalenceRel_def SlopeOp1_def Slopes_def
```

```
    by simp
    then show SlopeEquivalenceRel }\subseteq\mathrm{ Slopes }\times\mathrm{ Slopes
        using equiv_type by simp
    have R{id(int)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))
        using Real_ZF_1_L1 group1.Group_ZF_3_4_T2 by simp
    then show SlopeEquivalenceRel{id(int)}=
        TheNeutralElement (RealNumbers,RealMultiplication)
        using Slopes_def RealNumbers_def
        SlopeEquivalenceRel_def SlopeOp1_def BoundedIntMaps_def
        RealMultiplication_def SlopeOp2_def
        by simp
    have FR \subseteq AH using Real_ZF_1_L1 group1.Group_ZF_3_3_L1
        by simp
    then show BoundedIntMaps \subseteq Slopes
    using BoundedIntMaps_def Slopes_def by simp
qed
```

A one-side implication of the equivalence from Real_ZF_1_L10: the class of a bounded integer map is the real zero.

```
lemma (in real0) Real_ZF_1_L11A: assumes s \in BoundedIntMaps
    shows SlopeEquivalenceRel{s} = 0
    using assms Real_ZF_1_L11 Real_ZF_1_L10 by auto
```

The next lemma is rephrases the result from Group_ZF_3.thy that says that the negative (the group inverse with respect to real addition) of the class of a slope is the class of that slope composed with the integer additive group inverse. The result and proof is not very readable as we use mostly generic set theory notation with long names here. Real_ZF_1.thy contains the same statement written in a more readable notation: $[-s]=-[s]$.

```
lemma (in real0) Real_ZF_1_L12: assumes A1: s \in Slopes and
    Dr: r = QuotientGroupRel(Slopes,SlopeOp1,BoundedIntMaps)
    shows r{GroupInv(int,IntegerAddition) O s} = -(r{s})
proof -
    let G = int
    let f = IntegerAddition
    let AH = AlmostHoms(int,IntegerAddition)
    let Op1 = AlHomOp1(int,IntegerAddition)
    let FR = FinRangeFunctions(int,int)
    let F = ProjFun2(Slopes,r,SlopeOp1)
    from A1 Dr have
        group1(G, f)
        s \in AlmostHoms(G, f)
        r = QuotientGroupRel(
        AlmostHoms(G, f), AlHomOp1(G, f), FinRangeFunctions(G, G))
        and F = ProjFun2(AlmostHoms(G, f), r, AlHomOp1(G, f))
        using Real_ZF_1_L1 Slopes_def SlopeOp1_def BoundedIntMaps_def
        by auto
    then have
```

```
    r{GroupInv(G, f) O s} =
    GroupInv(AlmostHoms(G, f) // r, F)(r {s})
    using group1.Group_ZF_3_3_L6 by simp
    with Dr show thesis
        using RealNumbers_def Slopes_def SlopeEquivalenceRel_def RealAddition_def
        by simp
qed
```

Two classes are equal iff the slopes that represent them are almost equal.

```
lemma Real_ZF_1_L13: assumes s \in Slopes p \in Slopes
    and r = SlopeEquivalenceRel
    shows r{s} = r{p} \longleftrightarrow\langles,p\rangle\inr
    using assms Real_ZF_1_L11 eq_equiv_class equiv_class_eq
    by blast
```

Identity function on integers is a slope. Thislemma concludes the easy part of the construction that follows from the fact that slope equivalence classes form a ring. It is easy to see that multiplication of classes of almost homomorphisms is not commutative in general. The remaining properties of real numbers, like commutativity of multiplication and the existence of multiplicative inverses have to be proven using properties of the group of integers, rather that in general setting of abelian groups.

```
lemma Real_ZF_1_L14: shows id(int) \in Slopes
proof -
    have id(int) \in AlmostHoms(int,IntegerAddition)
        using Real_ZF_1_L1 group1.Group_ZF_3_4_L15
        by simp
    then show thesis using Slopes_def by simp
qed
```

end

47 Construction of real numbers

theory Real_ZF_1 imports Real_ZF Int_ZF_3 OrderedField_ZF

begin

In this theory file we continue the construction of real numbers started in Real_ZF to a succesful conclusion. We put here those parts of the construction that can not be done in the general settings of abelian groups and require integers.

47.1 Definitions and notation

In this section we define notions and notation needed for the rest of the construction.

We define positive slopes as those that take an infinite number of posititive values on the positive integers (see Int_ZF_2 for properties of positive slopes).

```
definition
    PositiveSlopes }\equiv{\mp@code{s}\in\mathrm{ Slopes.
    s(PositiveIntegers) \cap PositiveIntegers }\not\in\mathrm{ Fin(int)}
```

The order on the set of real numbers is constructed by specifying the set of positive reals. This set is defined as the projection of the set of positive slopes.

```
definition
    PositiveReals \equiv {SlopeEquivalenceRel{s}. s \in PositiveSlopes}
```

The order relation on real numbers is constructed from the set of positive elements in a standard way (see section "Alternative definitions" in OrderedGroup_ZF.)

definition

```
    OrderOnReals \equiv OrderFromPosSet(RealNumbers,RealAddition,PositiveReals)
```

The next locale extends the locale realo to define notation specific to the construction of real numbers. The notation follows the one defined in Int_ZF_2.thy. If m is an integer, then the real number which is the class of the slope $n \mapsto m \cdot n$ is denoted m^{R}. For a real number a notation $\lfloor a\rfloor$ means the largest integer m such that the real version of it (that is, m^{R}) is not greater than a. For an integer m and a subset of reals S the expression $\Gamma(S, m)$ is defined as $\max \left\{\left\lfloor p^{R} \cdot x\right\rfloor: x \in S\right\}$. This is plays a role in the proof of completeness of real numbers. We also reuse some notation defined in the int0 context, like \mathbb{Z}_{+}(the set of positive integers) and abs (m) (the absolute value of an integer, and some defined in the int1 context, like the addition $(+)$ and composition (o of slopes.

```
locale real1 = real0 +
    fixes AlEq(infix ~ 68)
    defines AlEq_def[simp]: s ~ r \equiv\langles,r\rangle\in SlopeEquivalenceRel
    fixes slope_add (infix + 70)
    defines slope_add_def[simp]:
    s + r \equivSlopeOp1\langles,r\rangle
    fixes slope_comp (infix ○ 71)
    defines slope_comp_def[simp]: s ○ r \equiv SlopeOp2\langles,r\rangle
    fixes slopes (S)
    defines slopes_def[simp]:S \equiv AlmostHoms(int,IntegerAddition)
    fixes posslopes ( }\mp@subsup{\mathcal{S}}{+}{}\mathrm{ )
```


fixes slope_class ([_])
defines slope_class_def[simp]: [f] 三 SlopeEquivalenceRel\{f\}

```
fixes slope_neg (-_ [90] 91)
defines slope_neg_def[simp]: -s \(\equiv\) GroupInv(int,IntegerAddition) O s
fixes lesseqr (infix \(\leq 60\) )
defines lesseqr_def[simp]: \(\mathrm{a} \leq \mathrm{b} \equiv\langle\mathrm{a}, \mathrm{b}\rangle \in\) OrderOnReals
fixes sless (infix < 60)
defines sless_def [simp]: \(\mathrm{a}<\mathrm{b} \equiv \mathrm{a} \leq \mathrm{b} \wedge \mathrm{a} \neq \mathrm{b}\)
fixes positivereals \(\left(\mathbb{R}_{+}\right)\)
defines positivereals_def [simp]: \(\mathbb{R}_{+} \equiv \operatorname{PositiveSet(\mathbb {R},RealAddition,OrderOnReals)~}\)
fixes intembed (_ \({ }^{R}\) [90] 91)
defines intembed_def [simp]:
\(\mathrm{m}^{R} \equiv[\{\langle\mathrm{n}\), IntegerMultiplication \(\langle\mathrm{m}, \mathrm{n}\rangle\rangle . \mathrm{n} \in \operatorname{int}\}]\)
fixes floor ( \(\lfloor\) _ \(\rfloor\) )
defines floor_def [simp]:
\(\lfloor\mathrm{a}\rfloor \equiv\) Maximum(IntegerOrder, \(\left\{\mathrm{m} \in\right.\) int. \(\left.\mathrm{m}^{R} \leq \mathrm{a}\right\}\) )
fixes \(\Gamma\)
defines \(\Gamma_{\text {_ def }}[\) simp \(]: \Gamma(S, p) \equiv\) Maximum (IntegerOrder, \(\left\{\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor \cdot \mathrm{x} \in \mathrm{S}\right\}\) )
fixes ia (infixl + 69)
defines ia_def[simp]: \(\mathrm{a}+\mathrm{b} \equiv\) IntegerAddition \(\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes iminus (- _ 72)
defines iminus_def[simp]: -a \(\equiv\) GroupInv(int,IntegerAddition) (a)
fixes isub (infixl - 69)
defines isub_def[simp]: a-b \(\equiv \mathrm{a}+(-\mathrm{b})\)
fixes intpositives \(\left(\mathbb{Z}_{+}\right)\)
defines intpositives_def[simp]:
\(\mathbb{Z}_{+} \equiv\) PositiveSet(int,IntegerAddition,IntegerOrder)
fixes zlesseq (infix \(\leq 60\) )
defines lesseq_def[simp]: \(\mathrm{m} \leq \mathrm{n} \equiv\langle\mathrm{m}, \mathrm{n}\rangle \in\) IntegerOrder
fixes imult (infixl • 70)
defines imult_def[simp]: \(\mathrm{a} \cdot \mathrm{b} \equiv\) IntegerMultiplication \(\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes izero ( \(0_{Z}\) )
defines izero_def[simp]: \(\mathbf{0}_{Z} \equiv\) TheNeutralElement(int,IntegerAddition)
```

```
fixes ione ( \(\mathbf{1}_{Z}\) )
defines ione_def[simp]: \(\mathbf{1}_{Z} \equiv\) TheNeutralElement(int,IntegerMultiplication)
fixes itwo ( \(2_{Z}\) )
defines itwo_def[simp]: \(2_{Z} \equiv \mathbf{1}_{Z}+\mathbf{1}_{Z}\)
fixes abs
defines abs_def[simp]:
abs(m) \(\equiv\) AbsoluteValue(int,IntegerAddition,IntegerOrder) (m)
fixes \(\delta\)
defines \(\delta_{-}\)def \([\mathrm{simp}]: \delta(\mathrm{s}, \mathrm{m}, \mathrm{n}) \equiv \mathrm{s}(\mathrm{m}+\mathrm{n})-\mathrm{s}(\mathrm{m})-\mathrm{s}(\mathrm{n})\)
```


47.2 Multiplication of real numbers

Multiplication of real numbers is defined as a projection of composition of slopes onto the space of equivalence classes of slopes. Thus, the product of the real numbers given as classes of slopes s and r is defined as the class of $s \circ r$. The goal of this section is to show that multiplication defined this way is commutative.

Let's recall a theorem from Int_ZF_2.thy that states that if f, g are slopes, then $f \circ g$ is equivalent to $g \circ f$. Here we conclude from that that the classes of $f \circ g$ and $g \circ f$ are the same.

```
lemma (in real1) Real_ZF_1_1_L2: assumes A1: f \in\mathcal{S}g\textrm{g}\in\mathcal{S}
    shows [fog] = [gof]
proof -
    from A1 have fog ~ gof
        using Slopes_def int1.Arthan_Th_9 SlopeOp1_def BoundedIntMaps_def
            SlopeEquivalenceRel_def SlopeOp2_def by simp
    then show thesis using Real_ZF_1_L11 equiv_class_eq
        by simp
qed
```

Classes of slopes are real numbers.

```
lemma (in real1) Real_ZF_1_1_L3: assumes A1: f \in\mathcal{S}
    shows [f] }\in\mathbb{R
proof -
    from A1 have [f] \in Slopes//SlopeEquivalenceRel
        using Slopes_def quotientI by simp
    then show [f] \in R using RealNumbers_def by simp
qed
```

Each real number is a class of a slope.

```
lemma (in real1) Real_ZF_1_1_L3A: assumes A1: a\in\mathbb{R}
    shows }\exists\textrm{f}\in\mathcal{S}.\mp@code{a = [f]
proof -
```

```
    from A1 have a }\in\mathcal{S}//\mathrm{ SlopeEquivalenceRel
        using RealNumbers_def Slopes_def by simp
    then show thesis using quotient_def
    by simp
qed
```

It is useful to have the definition of addition and multiplication in the real1 context notation.

```
lemma (in real1) Real_ZF_1_1_L4:
    assumes A1: f }\in\mathcal{S}\textrm{g}\in\mathcal{S
    shows
    [f] + [g] = [f+g]
    [f] . [g] = [fog]
proof -
    let r = SlopeEquivalenceRel
    have [f].[g] = ProjFun2(S,r,SlopeOp2)\langle[f],[g]\rangle
        using RealMultiplication_def Slopes_def by simp
    also from A1 have ... = [fog]
        using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def
        by simp
    finally show [f] . [g] = [fog] by simp
    have [f] + [g] = ProjFun2(S,r,SlopeOp1)\langle[f],[g]\rangle
        using RealAddition_def Slopes_def by simp
    also from A1 have ... = [f+g]
        using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def
        by simp
    finally show [f] + [g] = [f+g] by simp
qed
```

The next lemma is essentially the same as Real_ZF_1_L12, but written in the notation defined in the reall context. It states that if f is a slope, then $-[f]=[-f]$.
lemma (in real1) Real_ZF_1_1_L4A: assumes $f \in \mathcal{S}$
shows [-f] $=-[f]$
using assms Slopes_def SlopeEquivalenceRel_def Real_ZF_1_L12
by simp

Subtracting real numbers correspods to adding the opposite slope.

```
lemma (in real1) Real_ZF_1_1_L4B: assumes A1: f \in\mathcal{S}g\textrm{g}\in\mathcal{S}
    shows [f] - [g] = [f+(-g)]
proof -
    from A1 have [f+(-g)] = [f] + [-g]
        using Slopes_def BoundedIntMaps_def int1.Int_ZF_2_1_L12
            Real_ZF_1_1_L4 by simp
    with A1 show [f] - [g] = [f+(-g)]
        using Real_ZF_1_1_L4A by simp
qed
```

Multiplication of real numbers is commutative.

```
theorem (in real1) real_mult_commute: assumes A1: a\in\mathbb{R}}\textrm{b}\in\mathbb{R
    shows a\cdotb = b}\cdot\textrm{a
proof -
    from A1 have
        \existsf\in\mathcal{S . a = [f]}
        \existsg\in\mathcal{S . b = [g]}
        using Real_ZF_1_1_L3A by auto
    then obtain f g where
        f \inS g G S and a = [f] b = [g]
        by auto
    then show a\cdotb = b}\textrm{a
        using Real_ZF_1_1_L4 Real_ZF_1_1_L2 by simp
qed
```

Multiplication is commutative on reals.

```
lemma real_mult_commutative: shows
    RealMultiplication {is commutative on} RealNumbers
    using real1.real_mult_commute IsCommutative_def
    by simp
```

The neutral element of multiplication of reals (denoted as $\mathbf{1}$ in the reall context) is the class of identity function on integers. This is really shown in Real_ZF_1_L11, here we only rewrite it in the notation used in the real1 context.
lemma (in real1) real_one_cl_identity: shows [id(int)] = 1

```
    using Real_ZF_1_L11 by simp
```

If f is bounded, then its class is the neutral element of additive operation on reals (denoted as $\mathbf{0}$ in the reall context).

```
lemma (in real1) real_zero_cl_bounded_map:
    assumes f \in BoundedIntMaps shows [f] = 0
    using assms Real_ZF_1_L11A by simp
```

Two real numbers are equal iff the slopes that represent them are almost equal. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation used in the reall context.

```
lemma (in real1) Real_ZF_1_1_L5:
    assumes f \inS S g G S
    shows [f] = [g] \longleftrightarrowf ~ g
    using assms Slopes_def Real_ZF_1_L13 by simp
```

If the pair of function belongs to the slope equivalence relation, then their classes are equal. This is convenient, because we don't need to assume that f, g are slopes (follows from the fact that $f \sim g$).

```
lemma (in real1) Real_ZF_1_1_L5A: assumes f ~ g
    shows [f] = [g]
    using assms Real_ZF_1_L11 Slopes_def Real_ZF_1_1_L5
```

by auto
Identity function on integers is a slope. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation used in the reall context.

```
lemma (in real1) id_on_int_is_slope: shows id(int) }\in\mathcal{S
    using Real_ZF_1_L14 Slopes_def by simp
```

A result from Int_ZF_2.thy: the identity function on integers is not almost equal to any bounded function.

```
lemma (in real1) Real_ZF_1_1_L7:
    assumes A1: \(f \in\) BoundedIntMaps
    shows \(\neg(i d(i n t) \sim\) f)
    using assms Slopes_def SlopeOp1_def BoundedIntMaps_def
        SlopeEquivalenceRel_def BoundedIntMaps_def int1.Int_ZF_2_3_L12
    by simp
```

Zero is not one.

```
lemma (in real1) real_zero_not_one: shows 1\not=0
proof -
    { assume A1: 1=0
        have }\exists\textrm{f}\in\mathcal{S.0 = [f]
            using Real_ZF_1_L4 Real_ZF_1_1_L3A by simp
        with A1 have
            \existsf\in\mathcal{S. [id(int)] = [f] ^ [f] = 0}
            using real_one_cl_identity by auto
        then have False using Real_ZF_1_1_L5 Slopes_def
            Real_ZF_1_L10 Real_ZF_1_1_L7 id_on_int_is_slope
            by auto
    } then show 1}=0\mathrm{ by auto
qed
```

Negative of a real number is a real number. Property of groups.

```
lemma (in real1) Real_ZF_1_1_L8: assumes a\in\mathbb{R}\mathrm{ shows (-a) }\in\mathbb{R}
    using assms Real_ZF_1_L2 group0.inverse_in_group
    by simp
```

An identity with three real numbers.

```
lemma (in real1) Real_ZF_1_1_L9: assumes a\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}
    shows a.(b}c) = a\cdotc\cdot
    using assms real_mult_commutative Real_ZF_1_L3 ring0.Ring_ZF_2_L4
    by simp
```


47.3 The order on reals

In this section we show that the order relation defined by prescribing the set of positive reals as the projection of the set of positive slopes makes the ring of real numbers into an ordered ring. We also collect the facts about ordered groups and rings that we use in the construction.

Positive slopes are slopes and positive reals are real.

```
lemma Real_ZF_1_2_L1: shows
    PositiveSlopes \subseteq Slopes
    PositiveReals \subseteq RealNumbers
proof -
    have PositiveSlopes =
        {s \in Slopes. s(PositiveIntegers) \cap PositiveIntegers & Fin(int)}
        using PositiveSlopes_def by simp
    then show PositiveSlopes \subseteq Slopes by (rule subset_with_property)
    then have
        {SlopeEquivalenceRel{s}. s \in PositiveSlopes } \subseteq
        Slopes//SlopeEquivalenceRel
        using EquivClass_1_L1A by simp
    then show PositiveReals \subseteq RealNumbers
        using PositiveReals_def RealNumbers_def by simp
qed
```

Positive reals are the same as classes of a positive slopes.

```
lemma (in real1) Real_ZF_1_2_L2:
    shows a \in PositiveReals \longleftrightarrow (\existsf\in\mathcal{S}
proof
    assume a \in PositiveReals
    then have a }\in{([s]). s \in 诨
        by simp
    then show }\exists\textrm{f}\in\mp@subsup{\mathcal{S}}{+}{}. a = [f] by aut
next assume }\exists\textrm{f}\in\mp@subsup{\mathcal{S}}{+}{\prime}.a=[f
    then have a }\in{([s]). s\in\mathcal{S
    then show a \in PositiveReals using PositiveReals_def
        by simp
qed
```

Let's recall from Int_ZF_2.thy that the sum and composition of positive slopes is a positive slope.

```
lemma (in real1) Real_ZF_1_2_L3:
    assumes f\in\mathcal{S}
    shows
    f+g}\in\mp@subsup{\mathcal{S}}{+}{
    fog }\in\mp@subsup{\mathcal{S}}{+}{
    using assms Slopes_def PositiveSlopes_def PositiveIntegers_def
        SlopeOp1_def int1.sum_of_pos_sls_is_pos_sl
        SlopeOp2_def int1.comp_of_pos_sls_is_pos_sl
    by auto
```

Bounded integer maps are not positive slopes.

```
lemma (in real1) Real_ZF_1_2_L5:
    assumes f }\in\mathrm{ BoundedIntMaps
    shows f }\not\in\mp@subsup{\mathcal{S}}{+}{
    using assms BoundedIntMaps_def Slopes_def PositiveSlopes_def
```

PositiveIntegers_def int1.Int_ZF_2_3_L1B by simp
The set of positive reals is closed under addition and multiplication. Zero (the neutral element of addition) is not a positive number.

```
lemma (in real1) Real_ZF_1_2_L6: shows
    PositiveReals {is closed under} RealAddition
    PositiveReals {is closed under} RealMultiplication
    0 # PositiveReals
proof -
    { fix a fix b
            assume a \in PositiveReals and b \in PositiveReals
            then obtain f g where
                    I: f}\in\mp@subsup{\mathcal{S}}{+}{}\textrm{g}\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ and
                    II: a = [f] b = [g]
                    using Real_ZF_1_2_L2 by auto
            then have f \in\mathcal{S}g\in\mathcal{S}\mathrm{ using Real_ZF_1_2_L1 Slopes_def}
                    by auto
            with I II have
                    a+b}\in\mathrm{ PositiveReals }\wedge a\cdotb \in PositiveReals
                        using Real_ZF_1_1_L4 Real_ZF_1_2_L3 Real_ZF_1_2_L2
                        by auto
    } then show
                    PositiveReals {is closed under} RealAddition
                    PositiveReals {is closed under} RealMultiplication
            using IsOpClosed_def
            by auto
    { assume 0 \in PositiveReals
            then obtain f where f}\in\mp@subsup{\mathcal{S}}{+}{}\mathrm{ and 0 = [f]
                    using Real_ZF_1_2_L2 by auto
            then have False
                    using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_L10 Real_ZF_1_2_L5
                    by auto
    } then show 0}\not\in\mathrm{ PositiveReals by auto
qed
```

If a class of a slope f is not zero, then either f is a positive slope or $-f$ is a positive slope. The real proof is in Int_ZF_2.thy.

```
lemma (in real1) Real_ZF_1_2_L7:
    assumes A1: f }\in\mathcal{S}\mathrm{ and A2: [f] }\not=
    shows (f \in S S ) Xor ((-f) \in S S +)
    using assms Slopes_def SlopeEquivalenceRel_def BoundedIntMaps_def
        PositiveSlopes_def PositiveIntegers_def
        Real_ZF_1_L10 int1.Int_ZF_2_3_L8 by simp
```

The next lemma rephrases Int_ZF_2_3_L10 in the notation used in real1 context.
lemma (in real1) Real_ZF_1_2_L8:
assumes A1: $\mathrm{f} \in \mathcal{S} \mathrm{g} \in \mathcal{S}$

```
and A2: (f \in S S+) Xor (g \in S S+)
shows ([f] \in PositiveReals) Xor ([g] \in PositiveReals)
using assms PositiveReals_def SlopeEquivalenceRel_def Slopes_def
    SlopeOp1_def BoundedIntMaps_def PositiveSlopes_def PositiveIntegers_def
    int1.Int_ZF_2_3_L10 by simp
```

The trichotomy law for the (potential) order on reals: if $a \neq 0$, then either a is positive or $-a$ is potitive.

```
lemma (in real1) Real_ZF_1_2_L9:
    assumes A1: a\in\mathbb{R}\mathrm{ and A2: a}=0
    shows (a \in PositiveReals) Xor ((-a) \in PositiveReals)
proof -
    from A1 obtain f where I: f \in S a = [f]
        using Real_ZF_1_1_L3A by auto
    with A2 have ([f] \in PositiveReals) Xor ([-f] \in PositiveReals)
        using Slopes_def BoundedIntMaps_def int1.Int_ZF_2_1_L12
            Real_ZF_1_2_L7 Real_ZF_1_2_L8 by simp
    with I show (a \in PositiveReals) Xor ((-a) \in PositiveReals)
        using Real_ZF_1_1_L4A by simp
qed
```

Finally we are ready to prove that real numbers form an ordered ring with no zero divisors.

```
theorem reals_are_ord_ring: shows
    IsAnOrdRing(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
    OrderOnReals {is total on} RealNumbers
    PositiveSet(RealNumbers,RealAddition,OrderOnReals) = PositiveReals
    HasNoZeroDivs(RealNumbers,RealAddition,RealMultiplication)
proof -
    let R = RealNumbers
    let A = RealAddition
    let M = RealMultiplication
    let P = PositiveReals
    let r = OrderOnReals
    let z = TheNeutralElement(R, A)
    have I:
        ring0(R, A, M)
        M {is commutative on} R
        P}\subseteq
        P {is closed under} A
        TheNeutralElement(R, A) & P
        \foralla\inR. a }\not=\textrm{z}\longrightarrow(a\inP) Xor (GroupInv(R,A) (a) \in P),
        P {is closed under} M
        r = OrderFromPosSet(R, A, P)
        using real0.Real_ZF_1_L3 real_mult_commutative Real_ZF_1_2_L1
            real1.Real_ZF_1_2_L6 real1.Real_ZF_1_2_L9 OrderOnReals_def
        by auto
    then show IsAnOrdRing(R, A, M, r)
        by (rule ring0.ring_ord_by_positive_set)
```

```
    from I show r {is total on} R
        by (rule ring0.ring_ord_by_positive_set)
    from I show PositiveSet(R,A,r) = P
    by (rule ring0.ring_ord_by_positive_set)
    from I show HasNoZeroDivs(R,A,M)
        by (rule ring0.ring_ord_by_positive_set)
qed
```

All theorems proven in the ring1 (about ordered rings), group3 (about ordered groups) and group1 (about groups) contexts are valid as applied to ordered real numbers with addition and (real) order.

```
lemma Real_ZF_1_2_L10: shows
    ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
    IsAnOrdGroup(RealNumbers,RealAddition,OrderOnReals)
    group3(RealNumbers,RealAddition,OrderOnReals)
    OrderOnReals {is total on} RealNumbers
proof -
    show ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
        using reals_are_ord_ring OrdRing_ZF_1_L2 by simp
    then show
        IsAnOrdGroup(RealNumbers,RealAddition,OrderOnReals)
        group3(RealNumbers,RealAddition,OrderOnReals)
        OrderOnReals {is total on} RealNumbers
        using ring1.OrdRing_ZF_1_L4 by auto
qed
```

If $a=b$ or $b-a$ is positive, then a is less or equal b.

```
lemma (in real1) Real_ZF_1_2_L11: assumes A1: a\in\mathbb{R}}\textrm{b}\in\mathbb{R}\mathrm{ and
    A3: a=b \vee b-a }\in\mathrm{ PositiveReals
    shows a\leqb
    using assms reals_are_ord_ring Real_ZF_1_2_L10
        group3.OrderedGroup_ZF_1_L30 by simp
```

A sufficient condition for two classes to be in the real order.

```
lemma (in real1) Real_ZF_1_2_L12: assumes A1: f \inS g g G\mathcal{S}\mathrm{ and}
    A2: f~g V (g + (-f)) \in S S +
    shows [f] \leq [g]
proof -
    from A1 A2 have [f] = [g] V [g]-[f] E PositiveReals
        using Real_ZF_1_1_L5A Real_ZF_1_2_L2 Real_ZF_1_1_L4B
        by auto
    with A1 show [f] \leq [g] using Real_ZF_1_1_L3 Real_ZF_1_2_L11
        by simp
qed
```

Taking negative on both sides reverses the inequality, a case with an inverse on one side. Property of ordered groups.
lemma (in real1) Real_ZF_1_2_L13:

```
assumes A1: \(\mathrm{a} \in \mathbb{R}\) and A2: \((-\mathrm{a}) \leq \mathrm{b}\)
shows (-b) \(\leq \mathrm{a}\)
using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5AG
by simp
```

Real order is antisymmetric.

```
lemma (in real1) real_ord_antisym:
    assumes A1: a 
proof -
    from A1 have
        group3(RealNumbers,RealAddition,OrderOnReals)
        <a,b\rangle\in OrderOnReals \langleb,a\rangle\in OrderOnReals
        using Real_ZF_1_2_L10 by auto
    then show a=b by (rule group3.group_order_antisym)
qed
```

Real order is transitive.

```
lemma (in real1) real_ord_transitive: assumes A1: a\leqb b\leqc
    shows a\leqc
proof -
    from A1 have
            group3(RealNumbers,RealAddition,OrderOnReals)
            <a,b\rangle\in OrderOnReals }\langle\textrm{b},\textrm{c}\rangle\in\mathrm{ OrderOnReals
            using Real_ZF_1_2_L10 by auto
    then have }\langle\textrm{a},\textrm{c}\rangle\in\mathrm{ OrderOnReals
            by (rule group3.Group_order_transitive)
    then show a\leqc by simp
qed
```

We can multiply both sides of an inequality by a nonnegative real number.

```
lemma (in real1) Real_ZF_1_2_L14:
    assumes a\leqb and 0\leqc
    shows
    a}\cdot\textrm{c}\leq\textrm{b}\cdot\textrm{c
    c\cdota\leqc.b
    using assms Real_ZF_1_2_L10 ring1.OrdRing_ZF_1_L9
    by auto
```

A special case of Real_ZF_1_2_L14: we can multiply an inequality by a real number.

```
lemma (in real1) Real_ZF_1_2_L14A:
    assumes A1: a\leqb and A2: c\in\mathbb{R}
    shows c.a }\leq\textrm{c}\cdot\textrm{b
    using assms Real_ZF_1_2_L10 ring1.OrdRing_ZF_1_L9A
    by simp
```

In the reall context notation $a \leq b$ implies that a and b are real numbers.
lemma (in real1) Real_ZF_1_2_L15: assumes $a \leq b$ shows $a \in \mathbb{R} \quad b \in \mathbb{R}$

```
using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L4
```

by auto
$a \leq b$ implies that $0 \leq b-a$.
lemma (in real1) Real_ZF_1_2_L16: assumes $\mathrm{a} \leq \mathrm{b}$
shows $0 \leq \mathrm{b}-\mathrm{a}$
using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12A
by simp

A sum of nonnegative elements is nonnegative.

```
lemma (in real1) Real_ZF_1_2_L17: assumes 0\leqa 0\leqb
    shows 0}\leq\textrm{a}+\textrm{b
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12
    by simp
```

We can add sides of two inequalities

```
lemma (in real1) Real_ZF_1_2_L18: assumes a\leqb c\leqd
    shows a+c}\leqb+
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5B
    by simp
```

The order on real is reflexive.

```
lemma (in real1) real_ord_refl: assumes a\in\mathbb{R}\mathrm{ shows }a\leqa
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L3
    by simp
```

We can add a real number to both sides of an inequality.
lemma (in real1) add_num_to_ineq: assumes $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \in \mathbb{R}$ shows $\mathrm{a}+\mathrm{c} \leq \mathrm{b}+\mathrm{c}$ using assms Real_ZF_1_2_L10 IsAnOrdGroup_def by simp

We can put a number on the other side of an inequality, changing its sign.

```
lemma (in real1) Real_ZF_1_2_L19:
    assumes a\in\mathbb{R}\quadb\in\mathbb{R}\mathrm{ and c}\leqa+b
    shows c-b \leq a
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L9C
    by simp
```

What happens when one real number is not greater or equal than another?

```
lemma (in real1) Real_ZF_1_2_L20: assumes a\in\mathbb{R }b\in\mathbb{R}\mathrm{ and }\neg(\textrm{a}\leq\textrm{b})
    shows b < a
proof -
    from assms have I:
        group3(\mathbb{R},RealAddition,OrderOnReals)
        OrderOnReals {is total on} }\mathbb{R
        a\in\mathbb{R}\quad\textrm{b}\in\mathbb{R}\quad\neg(\langlea,b\rangle\in OrderOnReals)
        using Real_ZF_1_2_L10 by auto
    then have }\langle\textrm{b},\textrm{a}\rangle\in\mathrm{ OrderOnReals
```

```
        by (rule group3.OrderedGroup_ZF_1_L8)
    then have b \leq a by simp
    moreover from I have a\not=b by (rule group3.OrderedGroup_ZF_1_L8)
    ultimately show b < a by auto
qed
```

We can put a number on the other side of an inequality, changing its sign, version with a minus.

```
lemma (in real1) Real_ZF_1_2_L21:
    assumes a\in\mathbb{R}\quad\textrm{b}\in\mathbb{R}\mathrm{ and c }\leq\textrm{a}-\textrm{b}
    shows c+b \leq a
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5J
    by simp
```

The order on reals is a relation on reals.

```
lemma (in real1) Real_ZF_1_2_L22: shows OrderOnReals }\subseteq\mathbb{R}\times\mathbb{R
    using Real_ZF_1_2_L10 IsAnOrdGroup_def
    by simp
```

A set that is bounded above in the sense defined by order on reals is a subset of real numbers.

```
lemma (in real1) Real_ZF_1_2_L23:
    assumes A1: IsBoundedAbove(A,OrderOnReals)
    shows A}\subseteq\mathbb{R
    using A1 Real_ZF_1_2_L22 Order_ZF_3_L1A
    by blast
```

Properties of the maximum of three real numbers.

```
lemma (in real1) Real_ZF_1_2_L24:
    assumes A1: a\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}
    shows
    Maximum(OrderOnReals,{a,b,c}) \in {a,b,c}
    Maximum(OrderOnReals,{a,b,c}) \in\mathbb{R}
    a \leq Maximum(OrderOnReals,{a,b,c})
    b}\leqM\operatorname{Maximum(OrderOnReals,{a,b,c})
    c \leq Maximum(OrderOnReals,{a,b,c})
proof -
    have IsLinOrder(\mathbb{R},OrderOnReals)
        using Real_ZF_1_2_L10 group3.group_ord_total_is_lin
        by simp
    with A1 show
        Maximum(OrderOnReals,{a,b,c}) \in {a,b,c}
        Maximum(OrderOnReals,{a,b,c}) \in\mathbb{R}
        a \leq Maximum(OrderOnReals,{a,b,c})
        b}\leq\mathrm{ Maximum(OrderOnReals,{a,b,c})
        c \leqMaximum(OrderOnReals,{a,b,c})
        using Finite_ZF_1_L2A by auto
qed
```

A form of transitivity for the order on reals.

```
lemma (in real1) real_strict_ord_transit:
    assumes A1: a\leqb and A2: b<c
    shows a<c
proof -
    from A1 A2 have I:
        group3(\mathbb{R},RealAddition,OrderOnReals)
        <a,b\rangle\in OrderOnReals \langleb,c\rangle\in OrderOnReals ^ b}=\textrm{c
        using Real_ZF_1_2_L10 by auto
    then have \langlea,c\rangle\in OrderOnReals ^ a\not=c by (rule group3.group_strict_ord_transit)
    then show a<c by simp
qed
```

We can multiply a right hand side of an inequality between positive real numbers by a number that is greater than one.

```
lemma (in real1) Real_ZF_1_2_L25:
    assumes }\textrm{b}\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ and }\textrm{a}<\textrm{b}\mathrm{ and 1<c
    shows a<b}
    using assms reals_are_ord_ring Real_ZF_1_2_L10 ring1.OrdRing_ZF_3_L17
    by simp
```

We can move a real number to the other side of a strict inequality, changing its sign.

```
lemma (in real1) Real_ZF_1_2_L26:
    assumes a\in\mathbb{R b}b\in\mathbb{R}\mathrm{ and a-b < c}<0
    shows a < c+b
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12B
    by simp
```

Real order is translation invariant.

```
lemma (in real1) real_ord_transl_inv:
    assumes a\leqb and c\in\mathbb{R}
    shows c+a \leq c+b
    using assms Real_ZF_1_2_L10 IsAnOrdGroup_def
    by simp
```

It is convenient to have the transitivity of the order on integers in the notation specific to reall context. This may be confusing for the presentation readers: even though \leq and \leq are printed in the same way, they are different symbols in the source. In the real1 context the former denotes inequality between integers, and the latter denotes inequality between real numbers (classes of slopes). The next lemma is about transitivity of the order relation on integers.

```
lemma (in real1) int_order_transitive:
    assumes A1: a\leqb b\leqc
    shows a\leqc
proof -
```

```
    from A1 have
        \langlea,b\rangle\in IntegerOrder and }\langle\textrm{b},\textrm{c}\rangle\in\mathrm{ IntegerOrder
        by auto
    then have \langlea,c\rangle\in IntegerOrder
    by (rule Int_ZF_2_L5)
    then show a\leqc by simp
qed
```

A property of nonempty subsets of real numbers that don't have a maximum: for any element we can find one that is (strictly) greater.

```
lemma (in real1) Real_ZF_1_2_L27:
    assumes }A\subseteq\mathbb{R}\mathrm{ and }\neg\mathrm{ HasAmaximum(OrderOnReals,A) and }x\in
    shows }\exists\textrm{y}\in\textrm{A}.\textrm{x}<\textrm{y
    using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_2_L2B
    by simp
```

The next lemma shows what happens when one real number is not greater or equal than another.

```
lemma (in real1) Real_ZF_1_2_L28:
    assumes a\in\mathbb{R}\quadb\in\mathbb{R}\mathrm{ and }\neg(a\leqb)
    shows b<a
proof -
    from assms have
        group3(\mathbb{R},RealAddition,OrderOnReals)
        OrderOnReals {is total on} }\mathbb{R
        a\in\mathbb{R}\quadb\in\mathbb{R}\quad\langlea,b\rangle\not\in\mathrm{ OrderOnReals}
        using Real_ZF_1_2_L10 by auto
    then have }\langle\textrm{b},\textrm{a}\rangle\in\mathrm{ OrderOnReals }\wedge\textrm{b}\not=\textrm{a
        by (rule group3.OrderedGroup_ZF_1_L8)
    then show b<a by simp
qed
```

If a real number is less than another, then the second one can not be less or equal that the first.

```
lemma (in real1) Real_ZF_1_2_L29:
    assumes a<b shows }\neg(\textrm{b}\leq\textrm{a}
proof -
    from assms have
        group3(\mathbb{R},RealAddition,OrderOnReals)
        <a,b\rangle\in OrderOnReals a\not=b
        using Real_ZF_1_2_L10 by auto
    then have \langleb,a\rangle\not\in OrderOnReals
        by (rule group3.OrderedGroup_ZF_1_L8AA)
    then show }\neg(\textrm{b}\leq\textrm{a})\mathrm{ by simp
qed
```


47.4 Inverting reals

In this section we tackle the issue of existence of (multiplicative) inverses of real numbers and show that real numbers form an ordered field. We also restate here some facts specific to ordered fields that we need for the construction. The actual proofs of most of these facts can be found in Field_ZF.thy and OrderedField_ZF.thy

We rewrite the theorem from Int_ZF_2. thy that shows that for every positive slope we can find one that is almost equal and has an inverse.

```
lemma (in real1) pos_slopes_have_inv: assumes f \in S S
    shows }\exists\textrm{g}\in\mathcal{S}.f~g^(\exists\textrm{h}\in\mathcal{S}.goh ~ id(int)
    using assms PositiveSlopes_def Slopes_def PositiveIntegers_def
        int1.pos_slope_has_inv SlopeOp1_def SlopeOp2_def
        BoundedIntMaps_def SlopeEquivalenceRel_def
    by simp
```

The set of real numbers we are constructing is an ordered field.

```
theorem (in real1) reals_are_ord_field: shows
    IsAnOrdField(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
proof -
    let R = RealNumbers
    let A = RealAddition
    let M = RealMultiplication
    let r = OrderOnReals
    have ring1(R,A,M,r) and 0}\not=
        using reals_are_ord_ring OrdRing_ZF_1_L2 real_zero_not_one
        by auto
    moreover have M {is commutative on} R
        using real_mult_commutative by simp
    moreover have
        \foralla\inPositiveSet(R,A,r). \existsb\inR. a b = 1
    proof
        fix a assume a \in PositiveSet(R,A,r)
        then obtain f where I: f\inS S
            using reals_are_ord_ring Real_ZF_1_2_L2
            by auto
        then have }\exists\textrm{g}\in\mathcal{S}.f~g^(\exists\textrm{h}\in\mathcal{S}.goh~ id(int)
            using pos_slopes_have_inv by simp
        then obtain g}\mathrm{ where
                III: g\in\mathcal{S}\mathrm{ and IV: f~g and V: }\exists\textrm{h}\in\mathcal{S}.goh ~ id(int)
                by auto
        from V obtain h where VII: h\inS and VIII: goh ~ id(int)
                by auto
        from I III IV have [f] = [g]
                using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_1_L5
                by auto
        with II III VII VIII have a.[h] = 1
            using Real_ZF_1_1_L4 Real_ZF_1_1_L5A real_one_cl_identity
```

```
        by simp
    with VII show }\exists\textrm{b}\in\textrm{R}.\textrm{a}\cdot\textrm{b}=1\mathrm{ using Real_ZF_1_1_L3
        by auto
    qed
    ultimately show thesis using ring1.OrdField_ZF_1_L4
    by simp
qed
Reals form a field.
```

```
lemma reals_are_field:
```

lemma reals_are_field:
shows IsAfield(RealNumbers,RealAddition,RealMultiplication)
shows IsAfield(RealNumbers,RealAddition,RealMultiplication)
using real1.reals_are_ord_field OrdField_ZF_1_L1A
using real1.reals_are_ord_field OrdField_ZF_1_L1A
by simp

```
    by simp
```

Theorem proven in field0 and field1 contexts are valid as applied to real numbers.

```
lemma field_cntxts_ok: shows
    field0(RealNumbers,RealAddition,RealMultiplication)
    field1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
    using reals_are_field real1.reals_are_ord_field
        field_fieldO OrdField_ZF_1_L2 by auto
```

If a is positive, then a^{-1} is also positive.

```
lemma (in real1) Real_ZF_1_3_L1: assumes a }\in\mp@subsup{\mathbb{R}}{+}{
    shows a}\mp@subsup{}{}{-1}\in\mp@subsup{\mathbb{R}}{+}{}\quad\mp@subsup{a}{}{-1}\in\mathbb{R
    using assms field_cntxts_ok field1.OrdField_ZF_1_L8 PositiveSet_def
    by auto
```

A technical fact about multiplying strict inequality by the inverse of one of the sides.

```
lemma (in real1) Real_ZF_1_3_L2:
    assumes a }\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ and a }\mp@subsup{\textrm{a}}{}{-1}<\textrm{b
    shows 1 < b
    using assms field_cntxts_ok field1.OrdField_ZF_2_L2
    by simp
```

If a is smaller than b, then $(b-a)^{-1}$ is positive.
lemma (in real1) Real_ZF_1_3_L3: assumes a<b
shows (b-a) ${ }^{-1} \in \mathbb{R}_{+}$
using assms field_cntxts_ok field1.OrdField_ZF_1_L9
by simp

We can put a positive factor on the other side of a strict inequality, changing it to its inverse.

```
lemma (in real1) Real_ZF_1_3_L4:
    assumes A1: a\in\mathbb{R}}\textrm{b}\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ and A2: a.b < c
    shows a < c.b-1
```

```
using assms field_cntxts_ok field1.OrdField_ZF_2_L6
by simp
```

We can put a positive factor on the other side of a strict inequality, changing it to its inverse, version with the product initially on the right hand side.

```
lemma (in real1) Real_ZF_1_3_L4A:
    assumes A1: b\in\mathbb{R }c\in\mathbb{R}+\mathrm{ and A2: a < b c}
    shows a\cdotc}\mp@subsup{c}{}{-1}<
    using assms field_cntxts_ok field1.OrdField_ZF_2_L6A
    by simp
```

We can put a positive factor on the other side of an inequality, changing it to its inverse, version with the product initially on the right hand side.

```
lemma (in real1) Real_ZF_1_3_L4B:
    assumes A1: b\in\mathbb{R c}\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ and A2: a }\leq\textrm{b}\cdot\textrm{c}
    shows a.c
    using assms field_cntxts_ok field1.OrdField_ZF_2_L5A
    by simp
```

We can put a positive factor on the other side of an inequality, changing it to its inverse, version with the product initially on the left hand side.

```
lemma (in real1) Real_ZF_1_3_L4C:
    assumes A1: a\in\mathbb{R}}\textrm{b}\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ and A2: a}b\leq
    shows a \leqc.b-1
    using assms field_cntxts_ok field1.OrdField_ZF_2_L5
    by simp
```

A technical lemma about solving a strict inequality with three real numbers and inverse of a difference.

```
lemma (in real1) Real_ZF_1_3_L5:
    assumes \(a<b\) and \((b-a)^{-1}<c\)
    shows \(1+a \cdot c<b \cdot c\)
    using assms field_cntxts_ok field1.OrdField_ZF_2_L9
    by simp
```

We can multiply an inequality by the inverse of a positive number.

```
lemma (in real1) Real_ZF_1_3_L6:
    assumes \(a \leq b\) and \(c \in \mathbb{R}_{+}\)shows \(a \cdot c^{-1} \leq b \cdot c^{-1}\)
    using assms field_cntxts_ok field1.OrdField_ZF_2_L3
    by simp
```

We can multiply a strict inequality by a positive number or its inverse.

```
lemma (in real1) Real_ZF_1_3_L7:
    assumes a<b and c\in\mp@subsup{\mathbb{R}}{+}{}}\mathrm{ shows
    a}\cdot\textrm{c}<\textrm{b}\cdot\textrm{c
    c.a<c.b
    a}\cdot\mp@subsup{\textrm{c}}{}{-1}<\textrm{b}\cdot\mp@subsup{\textrm{c}}{}{-1
```

```
using assms field_cntxts_ok field1.OrdField_ZF_2_L4
by auto
```

An identity with three real numbers, inverse and cancelling.

```
lemma (in real1) Real_ZF_1_3_L8: assumesa\in\mathbb{R}\quadb\in\mathbb{R}\quadb\not=\mathbf{0}\quadc\in\mathbb{R}
    shows a\cdotb}(\textrm{c}\cdot\mp@subsup{\textrm{b}}{}{-1})=a\cdot
    using assms field_cntxts_ok fieldO.Field_ZF_2_L6
    by simp
```


47.5 Completeness

This goal of this section is to show that the order on real numbers is complete, that is every subset of reals that is bounded above has a smallest upper bound.

If m is an integer, then m^{R} is a real number. Recall that in reall context m^{R} denotes the class of the slope $n \mapsto m \cdot n$.

```
lemma (in real1) real_int_is_real: assumes m \in int
    shows m}\mp@subsup{m}{}{R}\in\mathbb{R
    using assms int1.Int_ZF_2_5_L1 Real_ZF_1_1_L3 by simp
```

The negative of the real embedding of an integer is the embedding of the negative of the integer.

```
lemma (in real1) Real_ZF_1_4_L1: assumes m \in int
    shows (-m)}\mp@subsup{}{}{R}=-(\mp@subsup{m}{}{R}
    using assms int1.Int_ZF_2_5_L3 int1.Int_ZF_2_5_L1 Real_ZF_1_1_L4A
    by simp
```

The embedding of sum of integers is the sum of embeddings.

```
lemma (in real1) Real_ZF_1_4_L1A: assumes m f int k int
    shows m}\mp@subsup{\textrm{m}}{}{R}+\mp@subsup{\textrm{k}}{}{R}=((\textrm{m}+\textrm{k}\mp@subsup{)}{}{R}
    using assms int1.Int_ZF_2_5_L1 SlopeOp1_def int1.Int_ZF_2_5_L3A
        Real_ZF_1_1_L4 by simp
```

The embedding of a difference of integers is the difference of embeddings.

```
lemma (in real1) Real_ZF_1_4_L1B: assumes A1: m \(\in\) int \(k \in i n t\)
    shows \(\mathrm{m}^{R}-\mathrm{k}^{R}=(\mathrm{m}-\mathrm{k})^{R}\)
proof -
    from A1 have (-k) \(\in\) int using int0.Int_ZF_1_1_L4
        by simp
    with A1 have \((\mathrm{m}-\mathrm{k})^{R}=\mathrm{m}^{R}+(-\mathrm{k})^{R}\)
        using Real_ZF_1_4_L1A by simp
    with A1 show \(\mathrm{m}^{R}-\mathrm{k}^{R}=(\mathrm{m}-\mathrm{k})^{R}\)
        using Real_ZF_1_4_L1 by simp
qed
```

The embedding of the product of integers is the product of embeddings.

```
lemma (in real1) Real_ZF_1_4_L1C: assumes m \in int k \in int
    shows m}\mp@subsup{\textrm{m}}{}{R}\cdot\mp@subsup{\textrm{k}}{}{R}=(\textrm{m}\cdot\textrm{k}\mp@subsup{)}{}{R
    using assms int1.Int_ZF_2_5_L1 SlopeOp2_def int1.Int_ZF_2_5_L3B
        Real_ZF_1_1_L4 by simp
```

For any real numbers there is an integer whose real version is greater or equal.

```
lemma (in real1) Real_ZF_1_4_L2: assumes A1: \(a \in \mathbb{R}\)
    shows \(\exists \mathrm{m} \in\) int. \(\mathrm{a} \leq \mathrm{m}^{R}\)
proof -
    from A1 obtain \(f\) where I: \(f \in \mathcal{S}\) and II: \(a=[f]\)
        using Real_ZF_1_1_L3A by auto
    then have \(\exists \mathrm{m} \in\) int. \(\exists \mathrm{g} \in \mathcal{S}\).
        \(\{\langle\mathrm{n}, \mathrm{m} \cdot \mathrm{n}\rangle . \mathrm{n} \in \mathrm{int}\} \sim \mathrm{g} \wedge\left(\mathrm{f} \sim \mathrm{g} \vee(\mathrm{g}+(-\mathrm{f})) \in \mathcal{S}_{+}\right)\)
        using int1.Int_ZF_2_5_L2 Slopes_def SlopeOp1_def
            BoundedIntMaps_def SlopeEquivalenceRel_def
            PositiveIntegers_def PositiveSlopes_def
        by simp
    then obtain \(\mathrm{m} g\) where III: \(\mathrm{m} \in\) int and IV: \(\mathrm{g} \in \mathcal{S}\) and
        \(\{\langle\mathrm{n}, \mathrm{m} \cdot \mathrm{n}\rangle . \mathrm{n} \in \operatorname{int}\} \sim \mathrm{g} \wedge\left(\mathrm{f} \sim \mathrm{g} \vee(\mathrm{g}+(-\mathrm{f})) \in \mathcal{S}_{+}\right)\)
            by auto
    then have \(\mathrm{m}^{R}=[\mathrm{g}]\) and \(\mathrm{f} \sim \mathrm{g} \vee(\mathrm{g}+(-\mathrm{f})) \in \mathcal{S}_{+}\)
        using Real_ZF_1_1_L5A by auto
    with I II IV have \(\mathrm{a} \leq \mathrm{m}^{R}\) using Real_ZF_1_2_L12
        by simp
    with III show \(\exists \mathrm{m} \in\) int. \(\mathrm{a} \leq \mathrm{m}^{R}\) by auto
qed
```

For any real numbers there is an integer whose real version (embedding) is less or equal.
lemma (in real1) Real_ZF_1_4_L3: assumes A1: $a \in \mathbb{R}$
shows $\left\{\mathrm{m} \in\right.$ int. $\left.\mathrm{m}^{R} \leq \mathrm{a}\right\} \neq 0$
proof -
from A1 have (-a) $\in \mathbb{R}$ using Real_ZF_1_1_L8
by simp
then obtain m where $\mathrm{I}: \mathrm{m} \in$ int and II: (-a) $\leq \mathrm{m}^{R}$
using Real_ZF_1_4_L2 by auto
let $\mathrm{k}=$ GroupInv(int, IntegerAddition) (m)
from A1 I II have $\mathrm{k} \in$ int and $\mathrm{k}^{R} \leq \mathrm{a}$
using Real_ZF_1_2_L13 Real_ZF_1_4_L1 int0.Int_ZF_1_1_L4
by auto
then show thesis by auto
qed
Embeddings of two integers are equal only if the integers are equal.

```
lemma (in real1) Real_ZF_1_4_L4:
    assumes A1: m \in int k \in int and A2: m
    shows m=k
```

```
proof -
    let r = {\langlen, IntegerMultiplication \langlem, n\rangle\rangle. n \in int}
    let s}={\langlen, IntegerMultiplication \langlek, n\rangle\rangle. n \in int
    from A1 A2 have r ~ s
        using int1.Int_ZF_2_5_L1 AlmostHoms_def Real_ZF_1_1_L5
        by simp
    with A1 have
        m}\in\mathrm{ int }k\in\mathrm{ int
        <r,s\rangle\in QuotientGroupRel(AlmostHoms(int, IntegerAddition),
        AlHomOp1(int, IntegerAddition),FinRangeFunctions(int, int))
        using SlopeEquivalenceRel_def Slopes_def SlopeOp1_def
            BoundedIntMaps_def by auto
    then show m=k by (rule int1.Int_ZF_2_5_L6)
qed
```

The embedding of integers preserves the order.
lemma (in real1) Real_ZF_1_4_L5: assumes A1: $\mathrm{m} \leq \mathrm{k}$
shows $\mathrm{m}^{R} \leq \mathrm{k}^{R}$
proof -
let $r=\{\langle n, m \cdot n\rangle . n \in \operatorname{int}\}$
let $\mathrm{s}=\{\langle\mathrm{n}, \mathrm{k} \cdot \mathrm{n}\rangle . \mathrm{n} \in \operatorname{int}\}$
from A1 have $r \in \mathcal{S} s \in \mathcal{S}$
using int0.Int_ZF_2_L1A int1.Int_ZF_2_5_L1 by auto
moreover from A1 have $r \sim s \vee s+(-r) \in \mathcal{S}_{+}$
using Slopes_def SlopeOp1_def BoundedIntMaps_def SlopeEquivalenceRel_def
PositiveIntegers_def PositiveSlopes_def
int1.Int_ZF_2_5_L4 by simp
ultimately show $\mathrm{m}^{R} \leq \mathrm{k}^{R}$ using Real_ZF_1_2_L12
by simp
qed

The embedding of integers preserves the strict order.

```
lemma (in real1) Real_ZF_1_4_L5A: assumes A1: m\leqk m\not=k
    shows m}\mp@subsup{\textrm{m}}{}{R}<\mp@subsup{\textrm{k}}{}{R
proof -
    from A1 have m}\mp@subsup{}{}{R}\leq\mp@subsup{k}{}{R}\mathrm{ using Real_ZF_1_4_L5
            by simp
    moreover
    from A1 have T: m \in int k f int
            using int0.Int_ZF_2_L1A by auto
    with A1 have m}\mp@subsup{}{}{R}\not=\mp@subsup{\textrm{k}}{}{R}\mathrm{ using Real_ZF_1_4_L4
            by auto
    ultimately show m}\mp@subsup{\textrm{m}}{}{R}<\mp@subsup{\textrm{k}}{}{R}\mathrm{ by simp
qed
```

For any real number there is a positive integer whose real version is (strictly) greater. This is Lemma 14 i) in [2].
lemma (in real1) Arthan_Lemma14i: assumes A1: $a \in \mathbb{R}$
shows $\exists \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{a}<\mathrm{n}^{R}$

```
proof -
    from A1 obtain \(m\) where I: meint and II: \(\mathrm{a} \leq \mathrm{m}^{R}\)
        using Real_ZF_1_4_L2 by auto
    let \(\mathrm{n}=\) GreaterOf(IntegerOrder, \(\left.\mathbf{1}_{Z}, \mathrm{~m}\right)+\mathbf{1}_{Z}\)
    from I have \(\mathrm{T}: \mathrm{n} \in \mathbb{Z}_{+}\)and \(\mathrm{m} \leq \mathrm{n} \quad \mathrm{m} \neq \mathrm{n}\)
        using int0.Int_ZF_1_5_L7B by auto
    then have III: \(\mathrm{m}^{R}<\mathrm{n}^{R}\)
        using Real_ZF_1_4_L5A by simp
    with II have \(\mathrm{a}<\mathrm{n}^{R}\) by (rule real_strict_ord_transit)
    with \(T\) show thesis by auto
qed
```

If one embedding is less or equal than another, then the integers are also less or equal.

```
lemma (in real1) Real_ZF_1_4_L6:
    assumes A1: \(\mathrm{k} \in\) int \(\mathrm{m} \in\) int and \(\mathrm{A} 2: \mathrm{m}^{R} \leq \mathrm{k}^{R}\)
    shows \(m \leq k\)
proof -
    \{ assume A3: \(\langle\mathrm{m}, \mathrm{k}\rangle \notin\) IntegerOrder
        with A1 have \(\langle k, m\rangle \in\) IntegerOrder
                by (rule int0.Int_ZF_2_L19)
        then have \(\mathrm{k}^{R} \leq \mathrm{m}^{R}\) using Real_ZF_1_4_L5
            by simp
        with A2 have \(\mathrm{m}^{R}=\mathrm{k}^{R}\) by (rule real_ord_antisym)
        with A1 have \(\mathrm{k}=\mathrm{m}\) using Real_ZF_1_4_L4
            by auto
        moreover from A1 A3 have \(\mathrm{k} \neq \mathrm{m}\) by (rule int0.Int_ZF_2_L19)
        ultimately have False by simp
    \} then show \(m \leq k\) by auto
qed
```

The floor function is well defined and has expected properties.

```
lemma (in real1) Real_ZF_1_4_L7: assumes A1: \(a \in \mathbb{R}\)
    shows
    IsBoundedAbove( \(\left\{\mathrm{m} \in\right.\) int. \(\left.\mathrm{m}^{R} \leq \mathrm{a}\right\}\), IntegerOrder)
    \(\left\{\mathrm{m} \in\right.\) int. \(\left.\mathrm{m}^{R} \leq \mathrm{a}\right\} \neq 0\)
    \(\lfloor a\rfloor \in\) int
    \(\lfloor\mathrm{a}\rfloor^{R} \leq \mathrm{a}\)
proof -
    let \(\mathrm{A}=\left\{\mathrm{m} \in\right.\) int. \(\left.\mathrm{m}^{R} \leq \mathrm{a}\right\}\)
    from A1 obtain K where I : \(\mathrm{K} \in\) int and II: \(\mathrm{a} \leq\left(\mathrm{K}^{R}\right)\)
        using Real_ZF_1_4_L2 by auto
    \(\{\) fix \(n\) assume \(n \in A\)
        then have III: \(\mathrm{n} \in\) int and IV: \(\mathrm{n}^{R} \leq \mathrm{a}\)
            by auto
        from IV II have \(\left(\mathrm{n}^{R}\right) \leq\left(\mathrm{K}^{R}\right)\)
            by (rule real_ord_transitive)
        with I III have \(\mathrm{n} \leq \mathrm{K}\) using Real_ZF_1_4_L6
                        by simp
```

```
    } then have }\forall\textrm{n}\in\textrm{A}.\langle\textrm{n},\textrm{K}\rangle\in\mathrm{ IntegerOrder
        by simp
    then show IsBoundedAbove(A,IntegerOrder)
        by (rule Order_ZF_3_L10)
    moreover from A1 show A }=0\mathrm{ using Real_ZF_1_4_L3
        by simp
    ultimately have Maximum(IntegerOrder,A) \in A
        by (rule int0.int_bounded_above_has_max)
    then show \lfloora\rfloor\in int \lfloora \\rfloor 
qed
```

Every integer whose embedding is less or equal a real number a is less or equal than the floor of a.

```
lemma (in real1) Real_ZF_1_4_L8:
    assumes A1: m \(\in\) int and A2: \(\mathrm{m}^{R} \leq \mathrm{a}\)
    shows \(m \leq\lfloor a\rfloor\)
proof -
    let \(A=\left\{m \in\right.\) int. \(\left.\mathrm{m}^{R} \leq \mathrm{a}\right\}\)
    from A2 have IsBoundedAbove(A, IntegerOrder) and \(A \neq 0\)
            using Real_ZF_1_2_L15 Real_ZF_1_4_L7 by auto
    then have \(\forall x \in A .\langle x, M a x i m u m(\) IntegerOrder, \(A)\rangle \in\) IntegerOrder
            by (rule int0.int_bounded_above_has_max)
    with A1 A2 show \(m \leq\lfloor a\rfloor\) by simp
qed
```

Integer zero and one embed as real zero and one.

```
lemma (in real1) int_0_1_are_real_zero_one:
    shows \(\mathbf{0}_{Z}{ }^{R}=\mathbf{0} \quad \mathbf{1}_{Z}{ }^{R}=\mathbf{1}\)
    using int1.Int_ZF_2_5_L7 BoundedIntMaps_def
        real_one_cl_identity real_zero_cl_bounded_map
    by auto
```

Integer two embeds as the real two.

```
lemma (in real1) int_two_is_real_two: shows \(2_{Z}{ }^{R}=\mathbf{2}\)
proof -
    have \(2_{Z}{ }^{R}=1_{Z}{ }^{R}+1_{Z}{ }^{R}\)
        using int0.int_zero_one_are_int Real_ZF_1_4_L1A
        by simp
    also have ... = 2 using int_0_1_are_real_zero_one
        by simp
    finally show \(2_{Z}{ }^{R}=2\) by simp
qed
```

A positive integer embeds as a positive (hence nonnegative) real.

```
lemma (in real1) int_pos_is_real_pos: assumes A1: p\in\mp@subsup{\mathbb{Z}}{+}{}
    shows
    p}\mp@subsup{}{}{R}\in\mathbb{R
    0}\leq\mp@subsup{\textrm{p}}{}{R
```

```
    \(\mathrm{p}^{R} \in \mathbb{R}_{+}\)
proof -
    from A1 have I: \(\mathrm{p} \in\) int \(\mathbf{0}_{Z} \leq \mathrm{p} \quad \mathbf{0}_{Z} \neq \mathrm{p}\)
        using PositiveSet_def by auto
    then have \(\mathrm{p}^{R} \in \mathbb{R} \quad \mathbf{0}_{Z}{ }^{R} \leq \mathrm{p}^{R}\)
        using real_int_is_real Real_ZF_1_4_L5 by auto
    then show \(\mathrm{p}^{R} \in \mathbb{R} \quad 0 \leq \mathrm{p}^{R}\)
        using int_0_1_are_real_zero_one by auto
    moreover have \(0 \neq \mathrm{p}^{R}\)
    proof -
        \{ assume \(0=\mathrm{p}^{R}\)
            with I have False using int_0_1_are_real_zero_one
    int0.int_zero_one_are_int Real_ZF_1_4_L4 by auto
        \} then show \(0 \neq \mathrm{p}^{R}\) by auto
    qed
    ultimately show \(\mathrm{p}^{R} \in \mathbb{R}_{+}\)using PositiveSet_def
        by simp
qed
```

The ordered field of reals we are constructing is archimedean, i.e., if x, y are its elements with y positive, then there is a positive integer M such that x is smaller than $M^{R} y$. This is Lemma 14 ii) in [2].

```
lemma (in real1) Arthan_Lemma14ii: assumes A1: \(x \in \mathbb{R} \quad y \in \mathbb{R}_{+}\)
    shows \(\exists \mathrm{M} \in \mathbb{Z}_{+} . \mathrm{x}<\mathrm{M}^{R} \cdot \mathrm{y}\)
proof -
    from A1 have
        \(\exists \mathrm{C} \in \mathbb{Z}_{+} \cdot \mathrm{x}<\mathrm{C}^{R}\) and \(\exists \mathrm{D} \in \mathbb{Z}_{+} \cdot \mathrm{y}^{-1}<\mathrm{D}^{R}\)
        using Real_ZF_1_3_L1 Arthan_Lemma14i by auto
    then obtain C D where
        I: \(\mathrm{C} \in \mathbb{Z}_{+}\)and II: \(\mathrm{x}<\mathrm{C}^{R}\) and
        III: \(\mathrm{D} \in \mathbb{Z}_{+}\)and IV: \(\mathrm{y}^{-1}<\mathrm{D}^{R}\)
        by auto
    let \(M=C \cdot D\)
    from I III have
        \(\mathrm{T}: \mathrm{M} \in \mathbb{Z}_{+} \mathrm{C}^{R} \in \mathbb{R} \quad \mathrm{D}^{R} \in \mathbb{R}\)
        using int0.pos_int_closed_mul_unfold PositiveSet_def real_int_is_real
        by auto
    with A1 I III have \(\mathrm{C}^{R} \cdot\left(\mathrm{D}^{R} \cdot \mathrm{y}\right)=\mathrm{M}^{R} \cdot \mathrm{y}\)
        using PositiveSet_def Real_ZF_1_L6A Real_ZF_1_4_L1C
        by simp
    moreover from A1 I II IV have
        \(\mathrm{x}<\mathrm{C}^{R} \cdot\left(\mathrm{D}^{R} \cdot \mathrm{y}\right)\)
        using int_pos_is_real_pos Real_ZF_1_3_L2 Real_ZF_1_2_L25
        by auto
    ultimately have \(\mathrm{x}<\mathrm{M}^{R} \cdot \mathrm{y}\)
        by auto
    with T show thesis by auto
qed
```

Taking the floor function preserves the order.

```
lemma (in real1) Real_ZF_1_4_L9: assumes A1: a\leqb
    shows \lfloora\rfloor\leq\lfloorb\rfloor
proof -
    from A1 have T: a\in\mathbb{R using Real_ZF_1_2_L15}
        by simp
    with A1 have \lfloora \ \ 
        using Real_ZF_1_4_L7 by auto
    then have \lfloora \ \
    moreover from T have \lfloora\rfloor\in int using Real_ZF_1_4_L7
        by simp
    ultimately show \lfloora\rfloor\leq \b\rfloorusing Real_ZF_1_4_L8
        by simp
qed
```

If S is bounded above and p is a positive intereger, then $\Gamma(S, p)$ is well defined.
lemma (in real1) Real_ZF_1_4_L10:
assumes A1: IsBoundedAbove(S,OrderOnReals) $S \neq 0$ and A2: $p \in \mathbb{Z}_{+}$
shows
IsBoundedAbove ($\left\{\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor . \mathrm{x} \in \mathrm{S}\right\}$, IntegerOrder)
$\Gamma(\mathrm{S}, \mathrm{p}) \in\left\{\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor . \mathrm{x} \in \mathrm{S}\right\}$
$\Gamma(S, p) \in$ int
proof -
let $\mathrm{A}=\left\{\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor \cdot \mathrm{x} \in \mathrm{S}\right\}$
from A1 obtain X where I : $\forall x \in S$. $x \leq X$
using IsBoundedAbove_def by auto
\{ fix m assume $m \in A$
then obtain x where $\mathrm{x} \in \mathrm{S}$ and $I I: \mathrm{m}=\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor$
by auto
with I have $x \leq X$ by simp
moreover from A2 have $0 \leq \mathrm{p}^{R}$ using int_pos_is_real_pos by simp
ultimately have $\mathrm{p}^{R} \cdot \mathrm{x} \leq \mathrm{p}^{R} \cdot \mathrm{X}$ using Real_ZF_1_2_L14
by simp
with II have $\mathrm{m} \leq\left\lfloor\mathrm{p}^{R} \cdot \mathrm{X}\right\rfloor$ using Real_ZF_1_4_L9
by simp
$\}$ then have $\forall \mathrm{m} \in \mathrm{A} .\left\langle\mathrm{m},\left\lfloor\mathrm{p}^{R} \cdot \mathrm{X}\right\rfloor\right\rangle \in$ IntegerOrder by auto
then show II: IsBoundedAbove(A,IntegerOrder) by (rule Order_ZF_3_L10)
moreover from A1 have III: $A \neq 0$ by simp
ultimately have Maximum(IntegerOrder, A) $\in A$ by (rule int0.int_bounded_above_has_max)
moreover from II III have Maximum(IntegerOrder, A) \in int by (rule int0.int_bounded_above_has_max)
ultimately show $\Gamma(\mathrm{S}, \mathrm{p}) \in\left\{\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor \cdot \mathrm{x} \in \mathrm{S}\right\}$ and $\Gamma(\mathrm{S}, \mathrm{p}) \in$ int by auto
qed

If p is a positive integer, then for all $s \in S$ the floor of $p \cdot x$ is not greater that $\Gamma(S, p)$.

```
lemma (in real1) Real_ZF_1_4_L11:
    assumes A1: IsBoundedAbove(S,OrderOnReals) and A2: \(x \in S\) and A3: \(p \in \mathbb{Z}_{+}\)
    shows \(\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor \leq \Gamma(\mathrm{S}, \mathrm{p})\)
proof -
    let \(\mathrm{A}=\left\{\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor . \mathrm{x} \in \mathrm{S}\right\}\)
    from A2 have \(S \neq 0\) by auto
    with A1 A3 have IsBoundedAbove(A, IntegerOrder) \(A \neq 0\)
        using Real_ZF_1_4_L10 by auto
    then have \(\forall \mathrm{x} \in \mathrm{A} .\langle\mathrm{x}\), Maximum(IntegerOrder, A\()\rangle \in\) IntegerOrder
        by (rule int0.int_bounded_above_has_max)
    with A 2 show \(\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor \leq \Gamma(\mathrm{S}, \mathrm{p})\) by simp
qed
```

The candidate for supremum is an integer mapping with values given by Γ.

```
lemma (in real1) Real_ZF_1_4_L12:
    assumes A1: IsBoundedAbove(S,OrderOnReals) \(\mathrm{S} \neq 0\) and
    \(\mathrm{A} 2: \mathrm{g}=\left\{\langle\mathrm{p}, \Gamma(\mathrm{S}, \mathrm{p})\rangle . \mathrm{p} \in \mathbb{Z}_{+}\right\}\)
    shows
    \(\mathrm{g}: \mathbb{Z}_{+} \rightarrow\) int
    \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{g}(\mathrm{n})=\Gamma(\mathrm{S}, \mathrm{n})\)
proof -
    from A1 have \(\forall \mathrm{n} \in \mathbb{Z}_{+} . \Gamma(\mathrm{S}, \mathrm{n}) \in\) int using Real_ZF_1_4_L10
        by simp
    with A2 show I: g : \(\mathbb{Z}_{+} \rightarrow\) int using ZF _fun_from_total by simp
    \{ fix \(n\) assume \(n \in \mathbb{Z}_{+}\)
        with A2 I have \(\mathrm{g}(\mathrm{n})=\Gamma(\mathrm{S}, \mathrm{n})\) using ZF_fun_from_tot_val
            by simp
    \(\}\) then show \(\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{g}(\mathrm{n})=\Gamma(\mathrm{S}, \mathrm{n})\) by simp
qed
```

Every integer is equal to the floor of its embedding.
lemma (in real1) Real_ZF_1_4_L14: assumes A1: m \in int
shows $\left\lfloor\mathrm{m}^{R}\right\rfloor=\mathrm{m}$
proof -
let $\mathrm{A}=\left\{\mathrm{n} \in\right.$ int. $\left.\mathrm{n}^{R} \leq \mathrm{m}^{R}\right\}$
have antisym(IntegerOrder) using int0.Int_ZF_2_L4
by simp
moreover from A1 have m $\in A$
using real_int_is_real real_ord_refl by auto
moreover from A1 have $\forall \mathrm{n} \in \mathrm{A} .\langle\mathrm{n}, \mathrm{m}\rangle \in$ IntegerOrder
using Real_ZF_1_4_L6 by auto
ultimately show $\left\lfloor\mathrm{m}^{R}\right\rfloor=\mathrm{m}$ using Order_ZF_4_L14
by auto
qed

Floor of (real) zero is (integer) zero.

```
lemma (in real1) floor_01_is_zero_one: shows
    \(\lfloor 0\rfloor=0_{Z} \quad\lfloor 1\rfloor=1_{Z}\)
proof -
    have \(\left\lfloor\left(0_{Z}\right)^{R}\right\rfloor=\mathbf{0}_{Z}\) and \(\left\lfloor\left(\mathbf{1}_{Z}\right)^{R}\right\rfloor=\mathbf{1}_{Z}\)
        using int0.int_zero_one_are_int Real_ZF_1_4_L14
        by auto
    then show \(\lfloor 0\rfloor=0_{Z}\) and \(\lfloor 1\rfloor=1_{Z}\)
        using int_0_1_are_real_zero_one
        by auto
qed
```

Floor of (real) two is (integer) two.

```
lemma (in real1) floor_2_is_two: shows \lfloor2 \ = 2_Z
```

proof -
have $\left\lfloor\left(2_{Z}\right)^{R}\right\rfloor=\mathbf{2}_{Z}$
using int0.int_two_three_are_int Real_ZF_1_4_L14
by simp
then show $\lfloor 2\rfloor=2_{Z}$ using int_two_is_real_two
by simp
qed

Floor of a product of embeddings of integers is equal to the product of integers.
lemma (in real1) Real_ZF_1_4_L14A: assumes A1: m \in int $k \in$ int
shows $\left\lfloor\mathrm{m}^{R} \cdot \mathrm{k}{ }^{R}\right\rfloor=\mathrm{m} \cdot \mathrm{k}$
proof -
from A1 have $T: m \cdot k \in$ int
using int0.Int_ZF_1_1_L5 by simp
from A1 have $\left\lfloor\mathrm{m}^{R} \cdot \mathrm{k}^{R}\right\rfloor=\left\lfloor(\mathrm{m} \cdot \mathrm{k})^{R}\right\rfloor$ using Real_ZF_1_4_L1C
by simp
with T show $\left\lfloor\mathrm{m}^{R} \cdot \mathrm{k}^{R}\right\rfloor=\mathrm{m} \cdot \mathrm{k}$ using Real_ZF_1_4_L14
by simp
qed

Floor of the sum of a number and the embedding of an integer is the floor of the number plus the integer.

```
lemma (in real1) Real_ZF_1_4_L15: assumes A1: \(x \in \mathbb{R}\) and A2: \(p \in\) int
    shows \(\left\lfloor\mathrm{x}+\mathrm{p}^{R}\right\rfloor=\lfloor\mathrm{x}\rfloor+\mathrm{p}\)
proof -
    let \(\mathrm{A}=\left\{\mathrm{n} \in\right.\) int. \(\left.\mathrm{n}^{R} \leq \mathrm{x}+\mathrm{p}^{R}\right\}\)
    have antisym(IntegerOrder) using intO.Int_ZF_2_L4
        by simp
    moreover have \(\lfloor x\rfloor+p \in A\)
    proof -
        from A1 A2 have \(\lfloor\mathrm{x}\rfloor^{R} \leq \mathrm{x}\) and \(\mathrm{p}^{R} \in \mathbb{R}\)
            using Real_ZF_1_4_L7 real_int_is_real by auto
            then have \(\lfloor\mathrm{x}\rfloor^{R}+\mathrm{p}^{R} \leq \mathrm{x}+\mathrm{p}^{R}\)
            using add_num_to_ineq by simp
```

```
    moreover from A1 A2 have \((\lfloor\mathrm{x}\rfloor+\mathrm{p})^{R}=\lfloor\mathrm{x}\rfloor^{R}+\mathrm{p}^{R}\)
        using Real_ZF_1_4_L7 Real_ZF_1_4_L1A by simp
    ultimately have \((\lfloor\mathrm{x}\rfloor+\mathrm{p})^{R} \leq \mathrm{x}+\mathrm{p}^{R}\)
        by simp
    moreover from A1 A2 have \(\lfloor x\rfloor+p \in\) int
        using Real_ZF_1_4_L7 int0.Int_ZF_1_1_L5 by simp
    ultimately show \(\lfloor x\rfloor+p \in A\) by auto
    qed
    moreover have \(\forall \mathrm{n} \in \mathrm{A} . \mathrm{n} \leq\lfloor\mathrm{x}\rfloor+\mathrm{p}\)
    proof
    fix \(n\) assume \(n \in A\)
    then have \(\mathrm{I}: \mathrm{n} \in\) int and \(\mathrm{n}^{R} \leq \mathrm{x}+\mathrm{p}^{R}\)
        by auto
    with A1 A2 have \(\mathrm{n}^{R}-\mathrm{p}^{R} \leq \mathrm{x}\)
        using real_int_is_real Real_ZF_1_2_L19
        by simp
    with A2 I have \(\left\lfloor(\mathrm{n}-\mathrm{p})^{R}\right\rfloor \leq\lfloor\mathrm{x}\rfloor\)
        using Real_ZF_1_4_L1B Real_ZF_1_4_L9
        by simp
    moreover
    from A2 I have \(n-p \in\) int
        using int0.Int_ZF_1_1_L5 by simp
    then have \(\left\lfloor(\mathrm{n}-\mathrm{p})^{R}\right\rfloor=\mathrm{n}-\mathrm{p}\)
        using Real_ZF_1_4_L14 by simp
    ultimately have \(n-p \leq\lfloor x\rfloor\)
        by simp
    with A2 I show \(\mathrm{n} \leq\lfloor\mathrm{x}\rfloor+\mathrm{p}\)
        using int0.Int_ZF_2_L9C by simp
    qed
    ultimately show \(\left\lfloor\mathrm{x}+\mathrm{p}^{R}\right\rfloor=\lfloor\mathrm{x}\rfloor+\mathrm{p}\)
    using Order_ZF_4_L14 by auto
qed
```

Floor of the difference of a number and the embedding of an integer is the floor of the number minus the integer.
lemma (in real1) Real_ZF_1_4_L16: assumes A1: $x \in \mathbb{R}$ and A2: $p \in$ int
shows $\left\lfloor\mathrm{x}-\mathrm{p}^{R}\right\rfloor=\lfloor\mathrm{x}\rfloor-\mathrm{p}$
proof -
from A2 have $\left\lfloor\mathrm{x}-\mathrm{p}^{R}\right\rfloor=\left\lfloor\mathrm{x}+(-\mathrm{p})^{R}\right\rfloor$
using Real_ZF_1_4_L1 by simp
with A1 A2 show $\left\lfloor\mathrm{x}-\mathrm{p}^{R}\right\rfloor=\lfloor\mathrm{x}\rfloor-\mathrm{p}$
using int0.Int_ZF_1_1_L4 Real_ZF_1_4_L15 by simp
qed

The floor of sum of embeddings is the sum of the integers.

```
lemma (in real1) Real_ZF_1_4_L17: assumes m \in int n \in int
    shows \lfloor(m}\mp@subsup{}{}{R})+\mp@subsup{\textrm{n}}{}{R}\rfloor=m+\textrm{n
    using assms real_int_is_real Real_ZF_1_4_L15 Real_ZF_1_4_L14
    by simp
```

A lemma about adding one to floor.

```
lemma (in real1) Real_ZF_1_4_L17A: assumes A1: \(a \in \mathbb{R}\)
    shows \(1+\lfloor a\rfloor^{R}=\left(\mathbf{1}_{Z}+\lfloor a\rfloor\right)^{R}\)
proof -
    have \(\mathbf{1}+\lfloor\mathrm{a}\rfloor^{R}=\mathbf{1}_{Z}^{R}+\lfloor\mathrm{a}\rfloor^{R}\)
        using int_0_1_are_real_zero_one by simp
    with A1 show \(1+\lfloor\mathrm{a}\rfloor^{R}=\left(\mathbf{1}_{Z}+\lfloor\mathrm{a}\rfloor\right)^{R}\)
        using int0.int_zero_one_are_int Real_ZF_1_4_L7 Real_ZF_1_4_L1A
        by simp
qed
```

The difference between the a number and the embedding of its floor is (strictly) less than one.

```
lemma (in real1) Real_ZF_1_4_L17B: assumes A1: a\in\mathbb{R}
    shows
    a - \lfloora \ 盾 < 
    a}<(\mp@subsup{\mathbf{1}}{Z}{}+\lfloor\textrm{a}\rfloor\mp@subsup{)}{}{R
proof -
    from A1 have T1: \lfloora\rfloor\in int }\lfloor\textrm{a}\mp@subsup{\}{}{R}\in\mathbb{R}\mathrm{ and
        T2: 1 \in\mathbb{R}}\mathrm{ a - \a \ \}\in\mathbb{R
        using Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_L6 Real_ZF_1_L4
        by auto
```



```
        with A1 T1 have \lfloor\mp@subsup{1}{Z}{R}+\lfloor\textrm{a}\mp@subsup{\rfloor}{}{R}\rfloor\leq\lfloor\textrm{a}\rfloor
            using Real_ZF_1_2_L21 Real_ZF_1_4_L9 int_0_1_are_real_zero_one
            by simp
        with T1 have False
            using int0.int_zero_one_are_int Real_ZF_1_4_L17
            int0.Int_ZF_1_2_L3AA by simp
    } then have I: }\neg(1\leqa-\lfloora\mp@subsup{\rfloor}{}{R})\mathrm{ by auto
    with T2 show II: a - \a \ 午<1
        by (rule Real_ZF_1_2_L20)
        with A1 T1 I II have
            a}<<\mathbf{1}+\lfloor\textrm{a}\mp@subsup{\rfloor}{}{R
        using Real_ZF_1_2_L26 by simp
    with A1 show a < (1 ( 
        using Real_ZF_1_4_L17A by simp
qed
```

The next lemma corresponds to Lemma 14 iii) in [2]. It says that we can find a rational number between any two different real numbers.

```
lemma (in real1) Arthan_Lemma14iii: assumes A1: x<y
    shows }\exists\textrm{M}\in\mathrm{ int. }\exists\textrm{N}\in\mp@subsup{\mathbb{Z}}{+}{\prime}. \textrm{x}\cdot\mp@subsup{\textrm{N}}{}{R}<\mp@subsup{\textrm{M}}{}{R}\wedge\mp@subsup{\textrm{M}}{}{R}<\textrm{y}\cdot\mp@subsup{\textrm{N}}{}{R
proof -
    from A1 have (y-x)-1}\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ using Real_ZF_1_3_L3
        by simp
    then have
        \exists\textrm{N}\in\mp@subsup{\mathbb{Z}}{+}{}.}.(\textrm{y}-\textrm{x}\mp@subsup{)}{}{-1}<\mp@subsup{\textrm{N}}{}{R
```

using Arthan_Lemma14i PositiveSet_def by simp
then obtain N where I: $\mathrm{N} \in \mathbb{Z}_{+}$and II: $(\mathrm{y}-\mathrm{x})^{-1}<\mathrm{N}^{R}$
by auto
let $\mathrm{M}=\mathbf{1}_{Z}+\left\lfloor\mathrm{x} \cdot \mathrm{N}^{R}\right\rfloor$
from A1 I have
$\mathrm{T} 1: ~ \mathrm{x} \in \mathbb{R} \quad \mathrm{N}^{R} \in \mathbb{R} \quad \mathrm{~N}^{R} \in \mathbb{R}_{+} \quad \mathrm{x} \cdot \mathrm{N}^{R} \in \mathbb{R}$
using Real_ZF_1_2_L15 PositiveSet_def real_int_is_real
Real_ZF_1_L6 int_pos_is_real_pos by auto
then have $\mathrm{T} 2: \mathrm{M} \in$ int using
int0.int_zero_one_are_int Real_ZF_1_4_L7 int0.Int_ZF_1_1_L5
by simp
from T1 have III: $\mathrm{x} \cdot \mathrm{N}^{R}<\mathrm{M}^{R}$
using Real_ZF_1_4_L17B by simp
from T1 have $\left(1+\left\lfloor\mathrm{x} \cdot \mathrm{N}^{R}\right\rfloor^{R}\right) \leq\left(1+\mathrm{x} \cdot \mathrm{N}^{R}\right)$
using Real_ZF_1_4_L7 Real_ZF_1_L4 real_ord_transl_inv
by simp
with T1 have $\mathrm{M}^{R} \leq\left(1+\mathrm{x} \cdot \mathrm{N}^{R}\right)$
using Real_ZF_1_4_L17A by simp
moreover from A1 II have $\left(1+\mathrm{x} \cdot \mathrm{N}^{R}\right)<\mathrm{y} \cdot \mathrm{N}^{R}$
using Real_ZF_1_3_L5 by simp
ultimately have $\mathrm{M}^{R}<\mathrm{y} \cdot \mathrm{N}^{R}$
by (rule real_strict_ord_transit)
with I T2 III show thesis by auto
qed
Some estimates for the homomorphism difference of the floor function.

```
lemma (in real1) Real_ZF_1_4_L18: assumes A1: \(x \in \mathbb{R} y \in \mathbb{R}\)
    shows
    \(\operatorname{abs}(\lfloor\mathrm{x}+\mathrm{y}\rfloor-\lfloor\mathrm{x}\rfloor-\lfloor\mathrm{y}\rfloor) \leq \mathbf{2}_{Z}\)
proof -
    from A1 have T :
        \(\lfloor\mathrm{x}\rfloor^{R} \in \mathbb{R}\lfloor\mathrm{y}\rfloor^{R} \in \mathbb{R}\)
        \(\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right) \in \mathbb{R}\)
            using Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_L6
            by auto
    from A1 have
        \(\mathbf{0} \leq \mathrm{x}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)+\left(\mathrm{y}-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right)\)
        \(\mathrm{x}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)+\left(\mathrm{y}-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right) \leq 2\)
        using Real_ZF_1_4_L7 Real_ZF_1_2_L16 Real_ZF_1_2_L17
            Real_ZF_1_4_L17B Real_ZF_1_2_L18 by auto
    moreover from A1 T have
        \(\mathrm{x}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)+\left(\mathrm{y}-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right)=\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\)
        using Real_ZF_1_L7A by simp
    ultimately have
        \(0 \leq \mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\)
        \(\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right) \leq \mathbf{2}\)
        by auto
    then have
        \(\lfloor 0\rfloor \leq\left\lfloor\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right\rfloor\)
```

```
        \(\left\lfloor\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right\rfloor \leq\lfloor\mathbf{2}\rfloor\)
        using Real_ZF_1_4_L9 by auto
    then have
    \(\mathbf{0}_{Z} \leq\left\lfloor\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right\rfloor\)
        \(\left\lfloor\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right\rfloor \leq \mathbf{2}_{Z}\)
        using floor_01_is_zero_one floor_2_is_two by auto
    moreover from A1 have
        \(\left\lfloor\mathrm{x}+\mathrm{y}-\left(\lfloor\mathrm{x}\rfloor^{R}\right)-\left(\lfloor\mathrm{y}\rfloor^{R}\right)\right\rfloor=\lfloor\mathrm{x}+\mathrm{y}\rfloor-\lfloor\mathrm{x}\rfloor-\lfloor\mathrm{y}\rfloor\)
        using Real_ZF_1_L6 Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_4_L16
        by simp
    ultimately have
        \(\mathbf{0}_{Z} \leq\lfloor\mathrm{x}+\mathrm{y}\rfloor-\lfloor\mathrm{x}\rfloor-\lfloor\mathrm{y}\rfloor\)
        \(\lfloor\mathrm{x}+\mathrm{y}\rfloor-\lfloor\mathrm{x}\rfloor-\lfloor\mathrm{y}\rfloor \leq \mathbf{2}_{Z}\)
        by auto
    then show abs \((\lfloor x+y\rfloor-\lfloor x\rfloor-\lfloor y\rfloor) \leq 2_{Z}\)
        using int0.Int_ZF_2_L16 by simp
qed
```

Suppose $S \neq \emptyset$ is bounded above and $\Gamma(S, m)=\left\lfloor m^{R} \cdot x\right\rfloor$ for some positive integer m and $x \in S$. Then if $y \in S, x \leq y$ we also have $\Gamma(S, m)=\left\lfloor m^{R} \cdot y\right\rfloor$.
lemma (in real1) Real_ZF_1_4_L20:
assumes A1: IsBoundedAbove(S,OrderOnReals) $S \neq 0$ and
A2: $\mathrm{n} \in \mathbb{Z}_{+} \mathrm{x} \in \mathrm{S}$ and
A3: $\Gamma(\mathrm{S}, \mathrm{n})=\left\lfloor\mathrm{n}^{R} \cdot \mathrm{x}\right\rfloor$ and
A4: $y \in S \quad x \leq y$
shows $\Gamma(\mathrm{S}, \mathrm{n})=\left\lfloor\mathrm{n}^{R} \cdot \mathrm{y}\right\rfloor$
proof -
from A2 A4 have $\left\lfloor\mathrm{n}^{R} \cdot \mathrm{x}\right\rfloor \leq\left\lfloor\left(\mathrm{n}^{R}\right) \cdot \mathrm{y}\right\rfloor$
using int_pos_is_real_pos Real_ZF_1_2_L14 Real_ZF_1_4_L9
by simp
with A3 have $\left\langle\Gamma(\mathrm{S}, \mathrm{n}),\left\lfloor\left(\mathrm{n}^{R}\right) \cdot \mathrm{y}\right\rfloor\right\rangle \in$ IntegerOrder
by simp
moreover from A1 A2 A4 have $\left\langle\left\lfloor\mathrm{n}^{R} \cdot \mathrm{y}\right\rfloor, \Gamma(\mathrm{S}, \mathrm{n})\right\rangle \in$ IntegerOrder
using Real_ZF_1_4_L11 by simp
ultimately show $\Gamma(\mathrm{S}, \mathrm{n})=\left\lfloor\mathrm{n}^{R} \cdot \mathrm{y}\right\rfloor$
by (rule int0.Int_ZF_2_L3)
qed

The homomorphism difference of $n \mapsto \Gamma(S, n)$ is bounded by 2 on positive integers.

```
lemma (in real1) Real_ZF_1_4_L21:
    assumes A1: IsBoundedAbove(S,OrderOnReals) \(S \neq 0\) and
    \(\mathrm{A} 2: \mathrm{m} \in \mathbb{Z}_{+} \quad \mathrm{n} \in \mathbb{Z}_{+}\)
    shows abs \((\Gamma(\mathrm{S}, \mathrm{m}+\mathrm{n})-\Gamma(\mathrm{S}, \mathrm{m})-\Gamma(\mathrm{S}, \mathrm{n})) \leq \mathbf{2}_{Z}\)
proof -
    from A2 have \(T: m+n \in \mathbb{Z}_{+}\)using int0.pos_int_closed_add_unfolded
        by simp
    with A1 A2 have
        \(\Gamma(\mathrm{S}, \mathrm{m}) \in\left\{\left\lfloor\mathrm{m}^{R} \cdot \mathrm{x}\right\rfloor . \mathrm{x} \in \mathrm{S}\right\}\) and
```

```
    \Gamma(S,n) \in {\lfloorn n
    \Gamma(S,m+n) \in {\lfloor(m+n)}\mp@subsup{)}{}{R}\cdot\textrm{x}\rfloor. \textrm{x}\in\textrm{S}
    using Real_ZF_1_4_L10 by auto
    then obtain a b c where I: a\inS b\inS c\inS
    and II:
    \Gamma(S,m) = \m m
    \Gamma ( \mathrm { S } , \mathrm { n } ) = \lfloor \mathrm { n } ^ { R } \cdot \mathrm { b } \rfloor
    \Gamma(S,m+n)=\lfloor(m+n)}\mp@subsup{}{}{R}\cdot\textrm{c}
    by auto
    let d = Maximum(OrderOnReals,{a,b,c})
    from A1 I have a\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}
    using Real_ZF_1_2_L23 by auto
then have IV:
    d}\in{a,b,c
    d}\in\mathbb{R
    a}\leq\textrm{d
    b}\leq\textrm{d
    c}\leq\textrm{d
    using Real_ZF_1_2_L24 by auto
with I have V: d \in S by auto
from A1 T I II IV V have }\Gamma(\textrm{S},\textrm{m}+\textrm{n})=\lfloor(\textrm{m}+\textrm{n}\mp@subsup{)}{}{R}\cdot\textrm{d}
    using Real_ZF_1_4_L20 by blast
    also from A2 have ...= \((m}\mp@subsup{m}{}{R})+(\mp@subsup{\textrm{n}}{}{R}))\cdot\textrm{d}
    using Real_ZF_1_4_L1A PositiveSet_def by simp
    also from A2 IV have ... = \lfloor(m}\mp@subsup{m}{}{R})\cdotd+(\mp@subsup{n}{}{R})\cdot\textrm{d}
        using PositiveSet_def real_int_is_real Real_ZF_1_L7
        by simp
    finally have }\Gamma(\textrm{S},\textrm{m}+\textrm{n})=\lfloor(\mp@subsup{\textrm{m}}{}{R})\cdot\textrm{d}+(\mp@subsup{\textrm{n}}{}{R})\cdot\textrm{d}
    by simp
    moreover from A1 A2 I II IV V have }\Gamma(\textrm{S},\textrm{m})=\lfloor\mp@subsup{m}{}{R}\cdot\textrm{d}
    using Real_ZF_1_4_L20 by blast
    moreover from A1 A2 I II IV V have }\Gamma(\textrm{S},\textrm{n})=\lfloor\mp@subsup{\textrm{n}}{}{R}\cdot\textrm{d}
    using Real_ZF_1_4_L20 by blast
    moreover from A1 T I II IV V have }\Gamma(\textrm{S},\textrm{m}+\textrm{n})=\lfloor(\textrm{m}+\textrm{n}\mp@subsup{)}{}{R}\cdot\textrm{d}
        using Real_ZF_1_4_L20 by blast
    ultimately have abs(\Gamma(S,m+n) - \Gamma(S,m) - \Gamma(S,n)) =
        abs}(\lfloor(\mp@subsup{m}{}{R})\cdot\textrm{d}+(\mp@subsup{\textrm{n}}{}{R})\cdot\textrm{d}\rfloor-\lfloor\mp@subsup{\textrm{m}}{}{R}\cdot\textrm{d}\rfloor-\lfloor\mp@subsup{\textrm{n}}{}{R}\cdot\textrm{d}\rfloor
        by simp
    with A2 IV show
    abs(\Gamma(S,m+n) - \Gamma(S,m)-\Gamma(S,n)) \leq 2 2
    using PositiveSet_def real_int_is_real Real_ZF_1_L6
        Real_ZF_1_4_L18 by simp
qed
```

The next lemma provides sufficient condition for an odd function to be an almost homomorphism. It says for odd functions we only need to check that the homomorphism difference (denoted δ in the reall context) is bounded on positive integers. This is really proven in Int_ZF_2.thy, but we restate it here for convenience. Recall from Group_ZF_3.thy that OddExtension of a
function defined on the set of positive elements (of an ordered group) is the only odd function that is equal to the given one when restricted to positive elements.

```
lemma (in real1) Real_ZF_1_4_L21A:
    assumes A1: f:\mp@subsup{\mathbb{Z}}{+}{}->\mathrm{ int }\forall\textrm{a}\in\mp@subsup{\mathbb{Z}}{+}{}.\forall\textrm{b}\in\mp@subsup{\mathbb{Z}}{+}{}.}\operatorname{abs}(\delta(\textrm{f},\textrm{a},\textrm{b}))\leq
    shows OddExtension(int,IntegerAddition,IntegerOrder,f) }\in\mathcal{S
    using A1 int1.Int_ZF_2_1_L24 by auto
```

The candidate for (a representant of) the supremum of a nonempty bounded above set is a slope.
lemma (in real1) Real_ZF_1_4_L22:
assumes A1: IsBoundedAbove(S,OrderOnReals) $\mathrm{S} \neq 0$ and
A2: $g=\left\{\langle p, \Gamma(S, p)\rangle . p \in \mathbb{Z}_{+}\right\}$
shows OddExtension(int, IntegerAddition, IntegerOrder,g) $\in \mathcal{S}$
proof -
from A1 A2 have $\mathrm{g}: \mathbb{Z}_{+} \rightarrow$ int by (rule Real_ZF_1_4_L12)
moreover have $\forall \mathrm{m} \in \mathbb{Z}_{+} . \forall \mathrm{n} \in \mathbb{Z}_{+}$. abs $(\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})) \leq \mathbf{2}_{Z}$
proof -
\{ fix m n assume A3: $\mathrm{m} \in \mathbb{Z}_{+} \mathrm{n} \in \mathbb{Z}_{+}$
then have $m+n \in \mathbb{Z}_{+} \quad m \in \mathbb{Z}_{+} \quad n \in \mathbb{Z}_{+}$
using int0.pos_int_closed_add_unfolded
by auto
moreover from A1 A2 have $\forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \mathrm{g}(\mathrm{n})=\Gamma(\mathrm{S}, \mathrm{n})$
by (rule Real_ZF_1_4_L12) ultimately have $\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})=\Gamma(\mathrm{S}, \mathrm{m}+\mathrm{n})-\Gamma(\mathrm{S}, \mathrm{m})-\Gamma(\mathrm{S}, \mathrm{n})$
by simp moreover from A1 A3 have
$\operatorname{abs}(\Gamma(\mathrm{S}, \mathrm{m}+\mathrm{n})-\Gamma(\mathrm{S}, \mathrm{m})-\Gamma(\mathrm{S}, \mathrm{n})) \leq \mathbf{2}_{Z}$
by (rule Real_ZF_1_4_L21)
ultimately have $\operatorname{abs}(\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})) \leq 2_{Z}$
by simp
$\}$ then show $\forall \mathrm{m} \in \mathbb{Z}_{+} \cdot \forall \mathrm{n} \in \mathbb{Z}_{+} \cdot \operatorname{abs}(\delta(\mathrm{g}, \mathrm{m}, \mathrm{n})) \leq \mathbf{2}_{Z}$ by simp
qed
ultimately show thesis by (rule Real_ZF_1_4_L21A)
qed
A technical lemma used in the proof that all elements of S are less or equal than the candidate for supremum of S.

```
lemma (in real1) Real_ZF_1_4_L23:
    assumes A1: \(\mathrm{f} \in \mathcal{S}\) and \(\mathrm{A} 2: \mathrm{N} \in\) int \(\mathrm{M} \in\) int and
    A3: \(\forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{M} \cdot \mathrm{n} \leq \mathrm{f}(\mathrm{N} \cdot \mathrm{n})\)
    shows \(\mathrm{M}^{R} \leq[\mathrm{f}] \cdot\left(\mathrm{N}^{R}\right)\)
proof -
    let \(\mathrm{M}_{S}=\{\langle\mathrm{n}, \mathrm{M} \cdot \mathrm{n}\rangle . \mathrm{n} \in \operatorname{int}\}\)
    let \(N_{S}=\{\langle\mathrm{n}, \mathrm{N} \cdot \mathrm{n}\rangle . \mathrm{n} \in\) int \(\}\)
    from A1 A2 have \(\mathrm{T}: \mathrm{M}_{S} \in \mathcal{S} \quad \mathrm{~N}_{S} \in \mathcal{S} \quad\) fon \(N_{S} \in \mathcal{S}\)
        using int1.Int_ZF_2_5_L1 int1.Int_ZF_2_1_L11 SlopeOp2_def
```

```
    by auto
```



```
    using int1.Int_ZF_2_5_L8 SlopeOp2_def SlopeOp1_def Slopes_def
        BoundedIntMaps_def SlopeEquivalenceRel_def PositiveIntegers_def
        PositiveSlopes_def by simp
    ultimately have [MS] \leq [foN S ] using Real_ZF_1_2_L12
        by simp
    with A1 T show M }\mp@subsup{M}{}{R}\leq[f]\cdot(\mp@subsup{N}{}{R})\mathrm{ using Real_ZF_1_1_L4
        by simp
qed
```

A technical lemma aimed used in the proof the candidate for supremum of S is less or equal than any upper bound for S.

```
lemma (in real1) Real_ZF_1_4_L23A:
    assumes A1: f \inS S and A2: N \in int M }\in\mathrm{ int and
    A3: }\forall\textrm{n}\in\mp@subsup{\mathbb{Z}}{+}{\prime}.\textrm{f}(\textrm{N}\cdot\textrm{n})<\textrm{M}\cdot\textrm{n
    shows [f].(N N
proof -
    let M}\mp@subsup{M}{S}{}={\langlen,M\cdotn\rangle. n \in int
    let N}\mp@subsup{N}{S}{}={\langlen,N\cdotn\rangle. n \in int
    from A1 A2 have T: M
        using int1.Int_ZF_2_5_L1 int1.Int_ZF_2_1_L11 SlopeOp2_def
        by auto
    moreover from A1 A2 A3 have
        f\circN}\mp@subsup{N}{S}{~}~\mp@subsup{M}{S}{}\vee\mp@subsup{M}{S}{}+(-(f\circ\mp@subsup{N}{S}{}))\in\mp@subsup{\mathcal{S}}{+}{
        using int1.Int_ZF_2_5_L9 SlopeOp2_def SlopeOp1_def Slopes_def
            BoundedIntMaps_def SlopeEquivalenceRel_def PositiveIntegers_def
            PositiveSlopes_def by simp
    ultimately have [foN N
        by simp
    with A1 T show [f].(N }\mp@subsup{}{}{R
        by simp
qed
```

The essential condition to claim that the candidate for supremum of S is greater or equal than all elements of S.

```
lemma (in real1) Real_ZF_1_4_L24:
    assumes A1: IsBoundedAbove(S,OrderOnReals) and
    A2: \(x<y \quad y \in S\) and
    A4: \(N \in \mathbb{Z}_{+} M \in\) int and
    A5: \(\mathrm{M}^{R}<\mathrm{y} \cdot \mathrm{N}^{R}\) and A6: \(\mathrm{p} \in \mathbb{Z}_{+}\)
    shows \(\mathrm{p} \cdot \mathrm{M} \leq \Gamma(\mathrm{S}, \mathrm{p} \cdot \mathrm{N})\)
proof -
    from A2 A4 A6 have T1:
        \(\mathrm{N}^{R} \in \mathbb{R}_{+} \quad \mathrm{y} \in \mathbb{R} \quad \mathrm{p}^{R} \in \mathbb{R}_{+}\)
        \(\mathrm{p} \cdot \mathrm{N} \in \mathbb{Z}_{+} \quad(\mathrm{p} \cdot \mathrm{N})^{R} \in \mathbb{R}_{+}\)
        using int_pos_is_real_pos Real_ZF_1_2_L15
        int0.pos_int_closed_mul_unfold by auto
    with A4 A6 have T2:
```

```
    \(\mathrm{p} \in\) int \(\quad \mathrm{p}^{R} \in \mathbb{R} \quad \mathrm{~N}^{R} \in \mathbb{R} \quad \mathrm{~N}^{R} \neq \mathbf{0} \quad \mathrm{M}^{R} \in \mathbb{R}\)
    using real_int_is_real PositiveSet_def by auto
    from T1 A5 have \(\left\lfloor(\mathrm{p} \cdot \mathrm{N})^{R} \cdot\left(\mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1}\right)\right\rfloor \leq\left\lfloor(\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{y}\right\rfloor\)
        using Real_ZF_1_3_L4A Real_ZF_1_3_L7 Real_ZF_1_4_L9
        by simp
    moreover from A1 A2 T1 have \(\left\lfloor(\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{y}\right\rfloor \leq \Gamma(\mathrm{S}, \mathrm{p} \cdot \mathrm{N})\)
        using Real_ZF_1_4_L11 by simp
    ultimately have I: \(\left\lfloor(\mathrm{p} \cdot \mathrm{N})^{R} \cdot\left(\mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1}\right)\right\rfloor \leq \Gamma(\mathrm{S}, \mathrm{p} \cdot \mathrm{N})\)
        by (rule int_order_transitive)
    from A4 A6 have \((\mathrm{p} \cdot \mathrm{N})^{R} \cdot\left(\mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1}\right)=\mathrm{p}^{R} \cdot \mathrm{~N}^{R} \cdot\left(\mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1}\right)\)
        using PositiveSet_def Real_ZF_1_4_L1C by simp
    with A4 T2 have \(\left\lfloor(\mathrm{p} \cdot \mathrm{N})^{R} \cdot\left(\mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1}\right)\right\rfloor=\mathrm{p} \cdot \mathrm{M}\)
        using Real_ZF_1_3_L8 Real_ZF_1_4_L14A by simp
    with I show \(\mathrm{p} \cdot \mathrm{M} \leq \Gamma(\mathrm{S}, \mathrm{p} \cdot \mathrm{N})\) by simp
qed
```

An obvious fact about odd extension of a function $p \mapsto \Gamma(s, p)$ that is used a couple of times in proofs.

```
lemma (in real1) Real_ZF_1_4_L24A:
    assumes A1: IsBoundedAbove(S,OrderOnReals) S\not=0 and A2: p \in }\mp@subsup{\mathbb{Z}}{+}{
    and A3:
    h = OddExtension(int,IntegerAddition,IntegerOrder,{\langlep,\Gamma(S,p)\rangle. p\in\mathbb{Z}}+}
    shows h(p) = \Gamma(S,p)
proof -
    let g = {\langlep,\Gamma(S,p)\rangle. p\in\mp@subsup{\mathbb{Z}}{+}{}}
    from A1 have I: g : }\mp@subsup{\mathbb{Z}}{+}{}->\mathrm{ int using Real_ZF_1_4_L12
        by blast
    with A2 A3 show h(p) = \Gamma(S,p)
        using int0.Int_ZF_1_5_L11 ZF_fun_from_tot_val
        by simp
qed
```

The candidate for the supremum of S is not smaller than any element of S.
lemma (in real1) Real_ZF_1_4_L25:
assumes A1: IsBoundedAbove(S,OrderOnReals) and
A2: \neg HasAmaximum(OrderOnReals,S) and
A3: $x \in S$ and A4:
$\mathrm{h}=$ OddExtension(int, IntegerAddition, IntegerOrder, $\left\{\langle\mathrm{p}, \Gamma(\mathrm{S}, \mathrm{p})\rangle . \mathrm{p} \in \mathbb{Z}_{+}\right\}$)
shows $\mathrm{x} \leq$ [h]
proof -
from A1 A2 A3 have
$S \subseteq \mathbb{R} \quad \neg$ HasAmaximum(OrderOnReals,S) $\quad x \in S$
using Real_ZF_1_2_L23 by auto
then have $\exists \mathrm{y} \in \mathrm{S} . \mathrm{x}<\mathrm{y}$ by (rule Real_ZF_1_2_L27)
then obtain y where $I: y \in S$ and II: $x<y$
by auto
from II have
$\exists \mathrm{M} \in$ int. $\exists \mathrm{N} \in \mathbb{Z}_{+} . \quad \mathrm{x} \cdot \mathrm{N}^{R}<\mathrm{M}^{R} \wedge \mathrm{M}^{R}<\mathrm{y} \cdot \mathrm{N}^{R}$
using Arthan_Lemma14iii by simp
then obtain $\mathrm{M} N$ where III: $\mathrm{M} \in$ int $\mathrm{N} \in \mathbb{Z}_{+}$and IV: $\mathrm{x} \cdot \mathrm{N}^{R}<\mathrm{M}^{R} \quad \mathrm{M}^{R}<\mathrm{y} \cdot \mathrm{N}^{R}$
by auto
from II III IV have $\mathrm{V}: \mathrm{x} \leq \mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1}$
using int_pos_is_real_pos Real_ZF_1_2_L15 Real_ZF_1_3_L4
by auto
from A3 have VI: $\mathrm{S} \neq 0$ by auto
with A1 A4 have $\mathrm{T} 1: \mathrm{h} \in \mathcal{S}$ using Real_ZF_1_4_L22 by simp
moreover from III have $N \in$ int $M \in$ int using PositiveSet_def by auto
moreover have $\forall \mathrm{n} \in \mathbb{Z}_{+} . \mathrm{M} \cdot \mathrm{n} \leq \mathrm{h}(\mathrm{N} \cdot \mathrm{n})$
proof
let $g=\left\{\langle p, \Gamma(S, p)\rangle . p \in \mathbb{Z}_{+}\right\}$
fix n assume A5: $n \in \mathbb{Z}_{+}$
with III have T2: $\mathrm{N} \cdot \mathrm{n} \in \mathbb{Z}_{+}$
using int0.pos_int_closed_mul_unfold by simp
from III A5 have
$\mathrm{N} \cdot \mathrm{n}=\mathrm{n} \cdot \mathrm{N} \quad$ and $\mathrm{n} \cdot \mathrm{M}=\mathrm{M} \cdot \mathrm{n}$
using PositiveSet_def int0.Int_ZF_1_1_L5 by auto
moreover
from A1 I II III IV A5 have
IsBoundedAbove(S,OrderOnReals)
$x<y \quad y \in S$
$\mathrm{N} \in \mathbb{Z}_{+} \mathrm{M} \in$ int
$\mathrm{M}^{R}<\mathrm{y} \cdot \mathrm{N}^{R} \quad \mathrm{n} \in \mathbb{Z}_{+}$
by auto
then have $n \cdot M \leq \Gamma(S, n \cdot N)$ by (rule Real_ZF_1_4_L24)
moreover from A1 A4 VI T2 have $\mathrm{h}(\mathrm{N} \cdot \mathrm{n})=\Gamma(\mathrm{S}, \mathrm{N} \cdot \mathrm{n})$
using Real_ZF_1_4_L24A by simp
ultimately show $M \cdot n \leq h(N \cdot n)$ by auto
qed
ultimately have $\mathrm{M}^{R} \leq[\mathrm{h}] \cdot \mathrm{N}^{R}$ using Real_ZF_1_4_L23
by simp
with III T1 have $\mathrm{M}^{R} \cdot\left(\mathrm{~N}^{R}\right)^{-1} \leq[\mathrm{h}]$
using int_pos_is_real_pos Real_ZF_1_1_L3 Real_ZF_1_3_L4B
by simp
with V show $\mathrm{x} \leq[\mathrm{h}]$ by (rule real_ord_transitive)
qed
The essential condition to claim that the candidate for supremum of S is less or equal than any upper bound of S.

```
lemma (in real1) Real_ZF_1_4_L26:
    assumes A1: IsBoundedAbove(S,OrderOnReals) and
    A2: }\textrm{x}\leq\textrm{y}\quad\textrm{x}\in\textrm{S}\mathrm{ and
    A4: N \in Z्Z + M M int and
    A5: y.N }\mp@subsup{N}{}{R}<\mp@subsup{\textrm{M}}{}{R}\mathrm{ and A6: }\textrm{p}\in\mp@subsup{\mathbb{Z}}{+}{
    shows \lfloor(N\cdotp)}\mp@subsup{}{}{R}\cdot\textrm{x}\rfloor\leq\textrm{M}\cdot\textrm{p
proof -
```

```
    from A2 A4 A6 have \(T\) :
    \(\mathrm{p} \cdot \mathrm{N} \in \mathbb{Z}_{+} \mathrm{p} \in\) int \(\mathrm{N} \in\) int
    \(\mathrm{p}^{R} \in \mathbb{R}_{+} \mathrm{p}^{R} \in \mathbb{R} \quad \mathrm{~N}^{R} \in \mathbb{R} \quad \mathrm{x} \in \mathbb{R} \quad \mathrm{y} \in \mathbb{R}\)
    using int0.pos_int_closed_mul_unfold PositiveSet_def
        real_int_is_real Real_ZF_1_2_L15 int_pos_is_real_pos
    by auto
    with A2 have \((\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{x} \leq(\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{y}\)
    using int_pos_is_real_pos Real_ZF_1_2_L14A
    by simp
    moreover from A4 T have I:
        \((\mathrm{p} \cdot \mathrm{N})^{R}=\mathrm{p}^{R} \cdot \mathrm{~N}^{R}\)
        \((\mathrm{p} \cdot \mathrm{M})^{R}=\mathrm{p}^{R} \cdot \mathrm{M}^{R}\)
    using Real_ZF_1_4_L1C by auto
    ultimately have \((\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{x} \leq \mathrm{p}^{R} \cdot \mathrm{~N}^{R} \cdot \mathrm{y}\)
        by simp
    moreover
    from A5 T I have \(\mathrm{p}^{R} \cdot\left(\mathrm{y} \cdot \mathrm{N}^{R}\right)<(\mathrm{p} \cdot \mathrm{M})^{R}\)
        using Real_ZF_1_3_L7 by simp
    with T have \(\mathrm{p}^{R} \cdot \mathrm{~N}^{R} \cdot \mathrm{y}<(\mathrm{p} \cdot \mathrm{M})^{R}\) using Real_ZF_1_1_L9
        by simp
    ultimately have \((\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{x}<(\mathrm{p} \cdot \mathrm{M})^{R}\)
        by (rule real_strict_ord_transit)
    then have \(\left\lfloor(\mathrm{p} \cdot \mathrm{N})^{R} \cdot \mathrm{x}\right\rfloor \leq\left\lfloor(\mathrm{p} \cdot \mathrm{M})^{R}\right\rfloor\)
        using Real_ZF_1_4_L9 by simp
    moreover
    from A4 T have \(\mathrm{p} \cdot \mathrm{M} \in\) int using int0.Int_ZF_1_1_L5
        by simp
    then have \(\left\lfloor(\mathrm{p} \cdot \mathrm{M})^{R}\right\rfloor=\mathrm{p} \cdot \mathrm{M}\) using Real_ZF_1_4_L14
        by simp
    moreover from A4 A6 have \(p \cdot N=N \cdot p\) and \(p \cdot M=M \cdot p\)
    using PositiveSet_def int0.Int_ZF_1_1_L5 by auto
    ultimately show \(\left\lfloor(\mathrm{N} \cdot \mathrm{p})^{R} \cdot \mathrm{x}\right\rfloor \leq \mathrm{M} \cdot \mathrm{p}\) by simp
qed
```

A piece of the proof of the fact that the candidate for the supremum of S is not greater than any upper bound of S, done separately for clarity (of mind).

```
lemma (in real1) Real_ZF_1_4_L27:
    assumes IsBoundedAbove(S,OrderOnReals) \(S \neq 0\) and
    \(\mathrm{h}=\) OddExtension(int,IntegerAddition, IntegerOrder, \(\left\{\langle\mathrm{p}, \Gamma(\mathrm{S}, \mathrm{p})\rangle . \mathrm{p} \in \mathbb{Z}_{+}\right\}\))
    and \(\mathrm{p} \in \mathbb{Z}_{+}\)
    shows \(\exists \mathrm{x} \in \mathrm{S} . \mathrm{h}(\mathrm{p})=\left\lfloor\mathrm{p}^{R} \cdot \mathrm{x}\right\rfloor\)
    using assms Real_ZF_1_4_L10 Real_ZF_1_4_L24A by auto
```

The candidate for the supremum of S is not greater than any upper bound of S.
lemma (in real1) Real_ZF_1_4_L28:
assumes A1: IsBoundedAbove (S,OrderOnReals) $\mathrm{S} \neq 0$
and A2: $\forall x \in S . x \leq y$ and $A 3$:

```
    h = OddExtension(int,IntegerAddition,IntegerOrder,{\langlep,\Gamma(S,p)\rangle. p\in\mathbb{Z}
    shows [h] \leq y
proof -
    from A1 obtain a where a\inS by auto
    with A1 A2 A3 have T: y\in\mathbb{R}}\textrm{h}\in\mathcal{S}\mathrm{ [h] }\in\mathbb{R
        using Real_ZF_1_2_L15 Real_ZF_1_4_L22 Real_ZF_1_1_L3
        by auto
    { assume }\neg([\textrm{h}]\leq\textrm{y}
        with T have y < [h] using Real_ZF_1_2_L28
            by blast
        then have }\exists\textrm{M}\in\mathrm{ int. }\exists\textrm{N}\in\mp@subsup{\mathbb{Z}}{+}{}. \textrm{y}\cdot\mp@subsup{\textrm{N}}{}{R}<\mp@subsup{\textrm{M}}{}{R}\wedge\mp@subsup{\textrm{M}}{}{R}<[\textrm{h}]\cdot\mp@subsup{\textrm{N}}{}{R
            using Arthan_Lemma14iii by simp
        then obtain M N where I: M\inint N\in\mathbb{Z}}
                II: y.N N
                by auto
            from I have III: N N
                by simp
            have }\forall\textrm{p}\in\mp@subsup{\mathbb{Z}}{+}{}\cdot\textrm{h}(\textrm{N}\cdot\textrm{p})\leq\textrm{M}\cdot\textrm{p
            proof
                fix p assume A4: p\in\mp@subsup{\mathbb{Z}}{+}{}
                with A1 A3 I have }\exists\textrm{x}\in\textrm{S}.\textrm{h}(\textrm{N}\cdot\textrm{p})=\lfloor(\textrm{N}\cdot\textrm{p}\mp@subsup{)}{}{R}\cdot\textrm{x}
    using int0.pos_int_closed_mul_unfold Real_ZF_1_4_L27
    by simp
            with A1 A2 I II A4 show h(N.p) \leq M.p
    using Real_ZF_1_4_L26 by auto
            qed
            with T I have [h] }\cdot\mp@subsup{\textrm{N}}{}{R}\leq\mp@subsup{\textrm{M}}{}{R
                using PositiveSet_def Real_ZF_1_4_L23A
                by simp
            with T III have [h] \leq M M
                using Real_ZF_1_3_L4C by simp
            moreover from T II III have M}\mp@subsup{M}{}{R}\cdot(\mp@subsup{N}{}{R}\mp@subsup{)}{}{-1}< [h
                using Real_ZF_1_3_L4A by simp
            ultimately have False using Real_ZF_1_2_L29 by blast
    } then show [h] \leq y by auto
qed
```

Now we can prove that every nonempty subset of reals that is bounded above has a supremum. Proof by considering two cases: when the set has a maximum and when it does not.

```
lemma (in real1) real_order_complete:
    assumes A1: IsBoundedAbove(S,OrderOnReals) S}\not=
    shows HasAminimum(OrderOnReals,\bigcapa\inS. OrderOnReals{a})
proof -
    { assume HasAmaximum(OrderOnReals,S)
            with A1 have HasAminimum(OrderOnReals,\bigcapa\inS. OrderOnReals{a})
                using Real_ZF_1_2_L10 IsAnOrdGroup_def IsPartOrder_def
    Order_ZF_5_L6 by simp }
    moreover
```

```
    { assume A2: \negHasAmaximum(OrderOnReals,S)
    let h = OddExtension(int,IntegerAddition,IntegerOrder, {\langlep,\Gamma(S,p)\rangle.
p\in䩴})
    let r = OrderOnReals
    from A1 have antisym(OrderOnReals) S}\not=
        using Real_ZF_1_2_L10 IsAnOrdGroup_def IsPartOrder_def by auto
    moreover from A1 A2 have }\forallx\inS. \langlex,[h]\rangle\in 
        using Real_ZF_1_4_L25 by simp
    moreover from A1 have }\forally.(\forallx\inS. \langlex,y\rangle\inr)\longrightarrow\langle[h],y\rangle\in
        using Real_ZF_1_4_L28 by simp
    ultimately have HasAminimum(OrderOnReals,\bigcapa\inS. OrderOnReals{a})
        by (rule Order_ZF_5_L5) }
    ultimately show thesis by blast
qed
```

Finally, we are ready to formulate the main result: that the construction of real numbers from the additive group of integers results in a complete ordered field. This theorem completes the construction. It was fun.

```
theorem eudoxus_reals_are_reals: shows
    IsAmodelOfReals(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)
    using real1.reals_are_ord_field real1.real_order_complete
        IsComplete_def IsAmodelOfReals_def by simp
end
```


48 Complex numbers

theory Complex_ZF imports func_ZF_1 OrderedField_ZF
begin
The goal of this theory is to define complex numbers and prove that the Metamath complex numbers axioms hold.

48.1 From complete ordered fields to complex numbers

This section consists mostly of definitions and a proof context for talking about complex numbers. Suppose we have a set R with binary operations A and M and a relation r such that the quadruple (R, A, M, r) forms a complete ordered field. The next definitions take (R, A, M, r) and construct the sets that represent the structure of complex numbers: the carrier $(\mathbb{C}=$ $R \times R$), binary operations of addition and multiplication of complex numbers and the order relation on $\mathbb{R}=R \times 0$. The ImCxAdd, ReCxAdd, ImCxMul, ReCxMul are helper meta-functions representing the imaginary part of a sum of complex numbers, the real part of a sum of real numbers, the imaginary part of a product of complex numbers and the real part of a product of real
numbers, respectively. The actual operations (subsets of $(R \times R) \times R$ are named CplxAdd and CplxMul.
When R is an ordered field, it comes with an order relation. This induces a natural strict order relation on $\{\langle x, 0\rangle: x \in R\} \subseteq R \times R$. We call the set $\{\langle x, 0\rangle: x \in R\}$ ComplexReals (R, A) and the strict order relation CplxROrder ($\mathrm{R}, \mathrm{A}, \mathrm{r}$). The order on the real axis of complex numbers is defined as the relation induced on it by the canonical projection on the first coordinate and the order we have on the real numbers. OK, lets repeat this slower. We start with the order relation r on a (model of) real numbers R. We want to define an order relation on a subset of complex numbers, namely on $R \times\{0\}$. To do that we use the notion of a relation induced by a mapping. The mapping here is $f: R \times\{0\} \rightarrow R, f\langle x, 0\rangle=x$ which is defined under a name of SliceProjection in func_ZF.thy. This defines a relation r_{1} (called InducedRelation(f,r), see func_ZF) on $R \times\{0\}$ such that $\left\langle\langle x, 0\rangle,\langle y, 0\rangle \in r_{1}\right.$ iff $\langle x, y\rangle \in r$. This way we get what we call CplxROrder ($\mathrm{R}, \mathrm{A}, \mathrm{r}$). However, this is not the end of the story, because Metamath uses strict inequalities in its axioms, rather than weak ones like IsarMathLib (mostly). So we need to take the strict version of this order relation. This is done in the syntax definition of $<_{\mathbb{R}}$ in the definition of complex0 context. Since Metamath proves a lot of theorems about the real numbers extended with $+\infty$ and $-\infty$, we define the notation for inequalites on the extended real line as well.

A helper expression representing the real part of the sum of two complex numbers.

```
definition
    ReCxAdd(R,A, a,b) \equivA\langlefst(a),fst(b)\rangle
```

An expression representing the imaginary part of the sum of two complex numbers.

```
definition
    ImCxAdd(R,A , a , b) \equiv A <snd(a),snd(b)\rangle
```

The set (function) that is the binary operation that adds complex numbers.

```
definition
    CplxAdd(R,A) \equiv
    {\langlep, < ReCxAdd(R,A,fst (p), snd (p)),ImCxAdd(R,A,fst (p), snd (p)) \rangle>.
    p\in(R\timesR)\times(R\timesR)}
```

The expression representing the imaginary part of the product of complex numbers.

definition

$\operatorname{ImCxMul}(R, A, M, a, b) \equiv A\langle M\langle f s t(a), \operatorname{snd}(b)\rangle, M\langle\operatorname{snd}(a), f s t(b)\rangle\rangle$
The expression representing the real part of the product of complex numbers.

definition

```
ReCxMul(R,A,M,a,b) \equiv
A}\langleM\langlefst(a),fst(b)\rangle,GroupInv(R,A) (M\langlesnd (a), snd (b) \rangle) \rangle
```

The function (set) that represents the binary operation of multiplication of complex numbers.

```
definition
    CplxMul(R,A,M) \equiv
    {\langlep, <ReCxMul(R,A,M,fst(p), snd(p)),ImCxMul(R,A,M,fst(p), snd(p))\rangle\rangle.
    p \in (R\timesR) }\times(R\timesR)
```

The definition real numbers embedded in the complex plane.

```
definition
    ComplexReals(R,A) \equivR}\times{{TheNeutralElement(R,A)
```

Definition of order relation on the real line.

```
definition
    CplxROrder(R,A,r) \equiv
    InducedRelation(SliceProjection(ComplexReals(R,A)),r)
```

The next locale defines proof context and notation that will be used for complex numbers.

```
locale complex0 =
    fixes R and A and M and r
    assumes R_are_reals: IsAmodelOfReals(R,A,M,r)
    fixes complex (\mathbb{C}
    defines complex_def[simp]: \mathbb{C }\equivR\timesR
    fixes rone (1 ( }\mp@subsup{R}{R}{\prime
    defines rone_def[simp]: 1}\mp@subsup{\mathbf{1}}{R}{}\equiv\mathrm{ TheNeutralElement(R,M)
    fixes rzero (0
    defines rzero_def[simp]: 0}\mp@subsup{\mathbf{0}}{R}{}\equiv\mathrm{ TheNeutralElement(R,A)
    fixes one (1)
    defines one_def[simp]: 1 \equiv\langle1 (1, 0
    fixes zero (0)
    defines zero_def[simp]: 0 \equiv <0}\mp@subsup{\mathbf{0}}{R}{},\mp@subsup{\mathbf{0}}{R}{}
    fixes iunit (i)
    defines iunit_def[simp]: i }\equiv\langle\mp@subsup{\mathbf{0}}{R}{},\mp@subsup{\mathbf{1}}{R}{}
    fixes creal (\mathbb{R}
    defines creal_def [simp]: \mathbb{R}\equiv{\langler,\mp@subsup{0}{R}{\prime}\rangle. r }\in\textrm{R}
    fixes rmul (infixl · 71)
```

```
defines rmul_def[simp]: \(\mathrm{a} \cdot \mathrm{b} \equiv \mathrm{M}\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes radd (infixl + 69)
defines radd_def[simp]: \(\mathrm{a}+\mathrm{b} \equiv \mathrm{A}\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes rneg (- _ 70)
defines rneg_def[simp]: - \(\mathrm{a} \equiv \operatorname{GroupInv}(\mathrm{R}, \mathrm{A})(\mathrm{a})\)
fixes ca (infixl + 69)
defines ca_def[simp]: \(\mathrm{a}+\mathrm{b} \equiv \operatorname{CplxAdd}(\mathrm{R}, \mathrm{A})\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes cm (infixl . 71)
defines cm_def [simp]: a \(\cdot \mathrm{b} \equiv \operatorname{CplxMul}(\mathrm{R}, \mathrm{A}, \mathrm{M})\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes cdiv (infixl / 70)
defines cdiv_def[simp]: a \(/ \mathrm{b} \equiv \bigcup\{\mathrm{x} \in \mathbb{C} . \mathrm{b} \cdot \mathrm{x}=\mathrm{a}\}\)
fixes sub (infixl - 69)
defines sub_def[simp]: \(\mathrm{a}-\mathrm{b} \equiv \bigcup\{\mathrm{x} \in \mathbb{C} \cdot \mathrm{b}+\mathrm{x}=\mathrm{a}\}\)
fixes cneg (-_ 95)
defines cneg_def [simp]: - \(\mathrm{a} \equiv \mathbf{0}\) - a
fixes lessr (infix \(<_{\mathbb{R}}\) 68)
defines lessr_def [simp]:
\(\mathrm{a}<_{\mathbb{R}} \mathrm{b} \equiv\langle\mathrm{a}, \mathrm{b}\rangle \in \operatorname{StrictVersion}(\) CplxROrder \((\mathrm{R}, \mathrm{A}, \mathrm{r}))\)
fixes cpnf ( \(+\infty\) )
defines cpnf_def[simp]: \(+\infty \equiv \mathbb{C}\)
fixes cmnf ( \(-\infty\) )
defines cmnf_def[simp]: \(-\infty \equiv\{\mathbb{C}\}\)
fixes \(\operatorname{cxr}\left(\mathbb{R}^{*}\right)\)
defines cxr_def [simp]: \(\mathbb{R}^{*} \equiv \mathbb{R} \cup\{+\infty,-\infty\}\)
fixes cxn (N)
defines cxn_def[simp]:
\(\mathbb{N} \equiv \bigcap\{\mathrm{N} \in \operatorname{Pow}(\mathbb{R}) . \mathbf{1} \in \mathrm{N} \wedge(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow \mathrm{n}+\mathbf{1} \in \mathrm{N})\}\)
fixes cltrrset (<)
defines cltrrset_def[simp]:
\(<\equiv\) StrictVersion(CplxROrder (R,A,r)) \(\cap \mathbb{R} \times \mathbb{R} \cup\)
\(\{\langle-\infty,+\infty\rangle\} \cup(\mathbb{R} \times\{+\infty\}) \cup(\{-\infty\} \times \mathbb{R})\)
fixes cltrr (infix < 68)
defines cltrr_def[simp]: \(\mathrm{a}<\mathrm{b} \equiv\langle\mathrm{a}, \mathrm{b}\rangle \in<\)
fixes lsq (infix \(\leq 68\) )
```

```
defines lsq_def[simp]: \(\mathrm{a} \leq \mathrm{b} \equiv \neg(\mathrm{b}<\mathrm{a})\)
fixes two (2)
defines two_def[simp]: \(2 \equiv 1+1\)
fixes three (3)
defines three_def[simp]: \(3 \equiv 2+1\)
fixes four (4)
defines four_def [simp]: \(\mathbf{4} \equiv \mathbf{3 + 1}\)
fixes five (5)
defines five_def [simp]: \(5 \equiv 4+1\)
fixes six (6)
defines six_def[simp]: \(6 \equiv \mathbf{5 + 1}\)
fixes seven (7)
defines seven_def[simp]: 7 \(\equiv \mathbf{6 + 1}\)
fixes eight (8)
defines eight_def[simp]: \(8 \equiv \mathbf{7 + 1}\)
fixes nine (9)
defines nine_def [simp]: \(9 \equiv 8+1\)
```


48.2 Axioms of complex numbers

In this section we will prove that all Metamath's axioms of complex numbers hold in the complex0 context.

The next lemma lists some contexts that are valid in the complex0 context.

```
lemma (in complex0) valid_cntxts: shows
    field1(R,A,M,r)
    fieldO(R,A,M)
    ring1(R,A,M,r)
    group3(R,A,r)
    ring0(R,A,M)
    M {is commutative on} R
    group0(R,A)
proof -
    from R_are_reals have I: IsAnOrdField(R,A,M,r)
        using IsAmodelOfReals_def by simp
    then show field1(R,A,M,r) using OrdField_ZF_1_L2 by simp
    then show ring1(R,A,M,r) and I: field0(R,A,M)
        using field1.axioms ring1_def field1.OrdField_ZF_1_L1B
        by auto
    then show group3(R,A,r) using ring1.OrdRing_ZF_1_L4
        by simp
```

```
    from I have IsAfield(R,A,M) using field0.Field_ZF_1_L1
        by simp
    then have IsAring(R,A,M) and M {is commutative on} R
        using IsAfield_def by auto
    then show ring0(R,A,M) and M {is commutative on} R
    using ring0_def by auto
    then show group0(R,A) using ring0.Ring_ZF_1_L1
        by simp
qed
```

The next lemma shows the definition of real and imaginary part of complex sum and product in a more readable form using notation defined in complex0 locale.

```
lemma (in complex0) cplx_mul_add_defs: shows
    \(\operatorname{ReCxAdd}(\mathrm{R}, \mathrm{A},\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{c}, \mathrm{d}\rangle)=\mathrm{a}+\mathrm{c}\)
    \(\operatorname{ImCxAdd}(\mathrm{R}, \mathrm{A},\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{c}, \mathrm{d}\rangle)=\mathrm{b}+\mathrm{d}\)
    \(\operatorname{ImCxMul}(\mathrm{R}, \mathrm{A}, \mathrm{M},\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{c}, \mathrm{d}\rangle)=\mathrm{a} \cdot \mathrm{d}+\mathrm{b} \cdot \mathrm{c}\)
    \(\operatorname{ReCxMul}(R, A, M,\langle a, b\rangle,\langle c, d\rangle)=a \cdot c+(-b \cdot d)\)
proof -
    let \(z_{1}=\langle a, b\rangle\)
    let \(z_{2}=\langle c, d\rangle\)
    have \(\operatorname{ReCxAdd}\left(\mathrm{R}, \mathrm{A}, \mathrm{z}_{1}, \mathrm{z}_{2}\right) \equiv \mathrm{A}\left\langle\mathrm{fst}\left(\mathrm{z}_{1}\right)\right.\),fst \(\left.\left(\mathrm{z}_{2}\right)\right\rangle\)
        by (rule ReCxAdd_def)
    moreover have \(\operatorname{ImCxAdd}\left(R, A, z_{1}, z_{2}\right) \equiv A\left\langle\operatorname{snd}\left(z_{1}\right), \operatorname{snd}\left(z_{2}\right)\right\rangle\)
        by (rule ImCxAdd_def)
    moreover have
        \(\operatorname{ImCxMul}\left(R, A, M, z_{1}, z_{2}\right) \equiv A\left\langle M<f s t\left(z_{1}\right), \operatorname{snd}\left(z_{2}\right)>, M<\operatorname{snd}\left(z_{1}\right), f s t\left(z_{2}\right)>\right\rangle\)
        by (rule ImCxMul_def)
    moreover have
        \(\operatorname{ReCxMul}\left(R, A, M, z_{1}, z_{2}\right) \equiv\)
        \(\left.\mathrm{A}\left\langle\mathrm{M}<\mathrm{fst}\left(\mathrm{z}_{1}\right), \mathrm{fst}\left(\mathrm{z}_{2}\right)\right\rangle, \operatorname{GroupInv}(\mathrm{R}, \mathrm{A})\left(\mathrm{M}\left\langle\operatorname{snd}\left(\mathrm{z}_{1}\right), \operatorname{snd}\left(\mathrm{z}_{2}\right)\right\rangle\right)\right\rangle\)
        by (rule ReCxMul_def)
    ultimately show
        \(\operatorname{ReCxAdd}\left(\mathrm{R}, \mathrm{A}, \mathrm{z}_{1}, \mathrm{z}_{2}\right)=\mathrm{a}+\mathrm{c}\)
        \(\operatorname{ImCxAdd}(\mathrm{R}, \mathrm{A},\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{c}, \mathrm{d}\rangle)=\mathrm{b}+\mathrm{d}\)
        \(\operatorname{ImCxMul}(\mathrm{R}, \mathrm{A}, \mathrm{M},\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{c}, \mathrm{d}\rangle)=\mathrm{a} \cdot \mathrm{d}+\mathrm{b} \cdot \mathrm{c}\)
        \(\operatorname{ReCxMul}(R, A, M,\langle a, b\rangle,\langle c, d\rangle)=a \cdot c+(-b \cdot d)\)
        by auto
qed
```

Real and imaginary parts of sums and products of complex numbers are real.

```
lemma (in complex0) cplx_mul_add_types:
    assumes A1: \(z_{1} \in \mathbb{C} \quad z_{2} \in \mathbb{C}\)
    shows
    \(\operatorname{ReCxAdd}\left(\mathrm{R}, \mathrm{A}, \mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathrm{R}\)
    \(\operatorname{ImCxAdd}\left(R, A, z_{1}, z_{2}\right) \in R\)
    \(\operatorname{ImCxMul}\left(R, A, M, z_{1}, z_{2}\right) \in R\)
    \(\operatorname{ReCxMul}\left(\mathrm{R}, \mathrm{A}, \mathrm{M}, \mathrm{z}_{1}, \mathrm{z}_{2}\right) \in \mathrm{R}\)
```

```
proof -
    let a = fst(z (z)
    let b = snd(z
    let c = fst( }\mp@subsup{z}{2}{}
    let d = snd(z
    from A1 have a }\inR\quadb\inR c\inR d \in R
        by auto
    then have
            a + c \inR
            b + d \inR
            a}\cdotd+b\cdotc\in
            a}c+(-b\cdotd)\in
            using valid_cntxts ring0.Ring_ZF_1_L4 by auto
    with A1 show
            ReCxAdd(R,A,z
            ImCxAdd(R,A,z
            ImCxMul(R,A,M, z ( , z2 ) \in R
            ReCxMul(R,A,M,\mp@subsup{z}{1}{},\mp@subsup{z}{2}{}) \in R
            using cplx_mul_add_defs by auto
qed
```

Complex reals are complex. Recall the definition of \mathbb{R} in the complex0 locale.

```
lemma (in complex0) axresscn: shows }\mathbb{R}\subseteq\mathbb{C
    using valid_cntxts group0.group0_2_L2 by auto
```

Complex 1 is not complex 0 .

```
lemma (in complex0) ax1ne0: shows 1 = 0
proof -
    have IsAfield(R,A,M) using valid_cntxts fieldO.Field_ZF_1_L1
        by simp
    then show 1 = 0 using IsAfield_def by auto
qed
```

Complex addition is a complex valued binary operation on complex numbers.
lemma (in complex0) axaddopr: shows CplxAdd (R, A) : $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$
proof -
have $\forall \mathrm{p} \in \mathbb{C} \times \mathbb{C}$.
$\langle\operatorname{ReCxAdd}(R, A, f s t(p), \operatorname{snd}(p)), \operatorname{ImCxAdd}(R, A, f s t(p), \operatorname{snd}(p))\rangle \in \mathbb{C}$
using cplx_mul_add_types by simp
then have
$\{\langle p,\langle\operatorname{ReCxAdd}(R, A, f s t(p), \operatorname{snd}(p)), \operatorname{ImCxAdd}(R, A, f s t(p), \operatorname{snd}(p))\rangle\rangle$.
$p \in \mathbb{C} \times \mathbb{C}\}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$
by (rule ZF_fun_from_total)
then show CplxAdd $(\mathrm{R}, \mathrm{A}): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ using CplxAdd_def by simp
qed

Complex multiplication is a complex valued binary operation on complex numbers.
lemma (in complex0) axmulopr: shows $\operatorname{CplxMul}(\mathrm{R}, \mathrm{A}, \mathrm{M}): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$

```
proof -
    have }\forall\textrm{p}\in\mathbb{C}\times\mathbb{C}
            <ReCxMul(R,A,M,fst(p), snd(p)),ImCxMul(R,A,M,fst(p),snd(p))\rangle\in\mathbb{C}
            using cplx_mul_add_types by simp
    then have
        {\langlep,\langleReCxMul(R,A,M,fst(p), snd(p)),ImCxMul(R,A,M,fst(p), snd (p)) )\rangle.
        p \in\mathbb{C}\times\mathbb{C}}:\mathbb{C}\times\mathbb{C}->\mathbb{C}\mathrm{ by (rule ZF_fun_from_total)}
    then show CplxMul(R,A,M):\mathbb{C}\times\mathbb{C}->\mathbb{C}\mathrm{ using CplxMul_def by simp}
qed
```

What are the values of omplex addition and multiplication in terms of their real and imaginary parts?
lemma (in complex0) cplx_mul_add_vals:
assumes A1: $a \in R \quad b \in R \quad c \in R \quad d \in R$
shows
$\langle\mathrm{a}, \mathrm{b}\rangle+\langle\mathrm{c}, \mathrm{d}\rangle=\langle\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d}\rangle$
$\langle\mathrm{a}, \mathrm{b}\rangle \cdot\langle\mathrm{c}, \mathrm{d}\rangle=\langle\mathrm{a} \cdot \mathrm{c}+(-\mathrm{b} \cdot \mathrm{d}), \mathrm{a} \cdot \mathrm{d}+\mathrm{b} \cdot \mathrm{c}\rangle$
proof -
let $S=\operatorname{CplxAdd}(R, A)$
let $P=C p l x M u l(R, A, M)$
let $p=\langle\langle a, b\rangle,\langle c, d\rangle\rangle$
from $A 1$ have $S: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ and $p \in \mathbb{C} \times \mathbb{C}$ using axaddopr by auto
moreover have

```
        S = {\langlep, <ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))>\rangle.
```

 \(\mathrm{p} \in \mathbb{C} \times \mathbb{C}\}\)
 using CplxAdd_def by simp
 ultimately have \(S(p)=\langle\operatorname{ReCxAdd}(R, A, f s t(p), \operatorname{snd}(p)), \operatorname{ImCxAdd}(R, A, f s t(p), \operatorname{snd}(p))\rangle\)
 by (rule ZF_fun_from_tot_val)
 then show \(\langle\mathrm{a}, \mathrm{b}\rangle+\langle\mathrm{c}, \mathrm{d}\rangle=\langle\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d}\rangle\)
 using cplx_mul_add_defs by simp
 from A1 have \(P: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}\) and \(p \in \mathbb{C} \times \mathbb{C}\)
 using axmulopr by auto
 moreover have
 \(P=\{\langle p,\langle\operatorname{ReCxMul}(R, A, M, f s t(p)\), snd (p) \(), \operatorname{ImCxMul}(R, A, M, f s t(p)\), snd \((p))\rangle\)
 \rangle.
$\mathrm{p} \in \mathbb{C} \times \mathbb{C}\}$
using CplxMul_def by simp
ultimately have
$P(p)=\langle\operatorname{ReCxMul}(R, A, M, f s t(p), \operatorname{snd}(p)), \operatorname{ImCxMul}(R, A, M, f s t(p), \operatorname{snd}(p))\rangle$
by (rule ZF_fun_from_tot_val)
then show $\langle\mathrm{a}, \mathrm{b}\rangle \cdot\langle\mathrm{c}, \mathrm{d}\rangle=\langle\mathrm{a} \cdot \mathrm{c}+(-\mathrm{b} \cdot \mathrm{d}), \mathrm{a} \cdot \mathrm{d}+\mathrm{b} \cdot \mathrm{c}\rangle$
using cplx_mul_add_defs by simp
qed

Complex multiplication is commutative.
lemma (in complex0) axmulcom: assumes A1: $a \in \mathbb{C} \quad b \in \mathbb{C}$
shows $\mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}$
using assms cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L4 fieldo.field_mult_comm by auto

A sum of complex numbers is complex.
lemma (in complex0) axaddcl: assumes $a \in \mathbb{C} \quad \mathrm{~b} \in \mathbb{C}$
shows $a+b \in \mathbb{C}$
using assms axaddopr apply_funtype by simp
A product of complex numbers is complex.
lemma (in complex0) axmulcl: assumes $a \in \mathbb{C} \quad b \in \mathbb{C}$
shows $a \cdot b \in \mathbb{C}$
using assms axmulopr apply_funtype by simp
Multiplication is distributive with respect to addition.

```
lemma (in complex0) axdistr:
    assumes A1: \(a \in \mathbb{C} \quad b \in \mathbb{C} \quad c \in \mathbb{C}\)
    shows \(a \cdot(b+c)=a \cdot b+a \cdot c\)
proof -
    let \(\mathrm{a}_{r}=\mathrm{fst}(\mathrm{a})\)
    let \(\mathrm{a}_{i}=\operatorname{snd}(\mathrm{a})\)
    let \(\mathrm{b}_{r}=\mathrm{fst}(\mathrm{b})\)
    let \(\mathrm{b}_{i}=\operatorname{snd}(\mathrm{b})\)
    let \(c_{r}=\mathrm{fst}(\mathrm{c})\)
    let \(c_{i}=\operatorname{snd}(c)\)
    from A1 have \(T\) :
        \(\mathrm{a}_{r} \in \mathrm{R} \quad \mathrm{a}_{i} \in \mathrm{R} \quad \mathrm{b}_{r} \in \mathrm{R} \quad \mathrm{b}_{i} \in \mathrm{R} \quad \mathrm{c}_{r} \in \mathrm{R} \quad \mathrm{c}_{i} \in \mathrm{R}\)
        \(\mathrm{b}_{r}+\mathrm{c}_{r} \in \mathrm{R} \quad \mathrm{b}_{i}+\mathrm{c}_{i} \in \mathrm{R}\)
        \(\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right) \in \mathrm{R}\)
        \(\mathrm{a}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{c}_{i}\right) \in \mathrm{R}\)
        \(\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r} \in \mathrm{R}\)
        \(\mathrm{a}_{r} \cdot \mathrm{c}_{i}+\mathrm{a}_{i} \cdot \mathrm{c}_{r} \in \mathrm{R}\)
        using valid_cntxts ring0.Ring_ZF_1_L4 by auto
    with A1 have \(a \cdot(b+c)=\)
        \(\left\langle\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{r}+\mathrm{c}_{r}\right)+\left(-\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{i}+\mathrm{c}_{i}\right)\right), \mathrm{a}_{r} \cdot\left(\mathrm{~b}_{i}+\mathrm{c}_{i}\right)+\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{r}+\mathrm{c}_{r}\right)\right\rangle\)
        using cplx_mul_add_vals by auto
    moreover from \(T\) have
        \(\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{r}+\mathrm{c}_{r}\right)+\left(-\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{i}+\mathrm{c}_{i}\right)\right)=\)
        \(\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right)+\left(\mathrm{a}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{c}_{i}\right)\right)\)
        and
        \(\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{i}+\mathrm{c}_{i}\right)+\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{r}+\mathrm{c}_{r}\right)=\)
        \(\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r}+\left(\mathrm{a}_{r} \cdot \mathrm{c}_{i}+\mathrm{a}_{i} \cdot \mathrm{c}_{r}\right)\)
        using valid_cntxts ring0.Ring_ZF_2_L6 by auto
    moreover from A1 T have
        \(\left\langle\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right)+\left(\mathrm{a}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{c}_{i}\right)\right)\right.\),
        \(\left.\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r}+\left(\mathrm{a}_{r} \cdot \mathrm{c}_{i}+\mathrm{a}_{i} \cdot \mathrm{c}_{r}\right)\right\rangle\)
        \(\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \cdot \mathrm{c}\)
        using cplx_mul_add_vals by auto
    ultimately show \(a \cdot(b+c)=a \cdot b+a \cdot c\)
        by simp
```


qed

Complex addition is commutative.

```
lemma (in complex0) axaddcom: assumes a }\in\mathbb{C}\textrm{b}\in\mathbb{C
    shows a+b = b+a
    using assms cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L4
    by auto
```

Complex addition is associative.

```
lemma (in complex0) axaddass: assumes A1: \(a \in \mathbb{C} \quad b \in \mathbb{C} \quad c \in \mathbb{C}\)
    shows \(\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})\)
proof -
    let \(\mathrm{a}_{r}=\mathrm{fst}(\mathrm{a})\)
    let \(\mathrm{a}_{i}=\operatorname{snd}(\mathrm{a})\)
    let \(\mathrm{b}_{r}=\mathrm{fst}(\mathrm{b})\)
    let \(\mathrm{b}_{i}=\operatorname{snd}(\mathrm{b})\)
    let \(\mathrm{c}_{r}=\mathrm{fst}(\mathrm{c})\)
    let \(c_{i}=\operatorname{snd}(c)\)
    from A1 have \(T\) :
        \(\mathrm{a}_{r} \in \mathrm{R} \quad \mathrm{a}_{i} \in \mathrm{R} \quad \mathrm{b}_{r} \in \mathrm{R} \quad \mathrm{b}_{i} \in \mathrm{R} \quad \mathrm{c}_{r} \in \mathrm{R} \quad \mathrm{c}_{i} \in \mathrm{R}\)
        \(\mathrm{a}_{r}+\mathrm{b}_{r} \in \mathrm{R} \quad \mathrm{a}_{i}+\mathrm{b}_{i} \in \mathrm{R}\)
        \(\mathrm{b}_{r}+\mathrm{c}_{r} \in \mathrm{R} \quad \mathrm{b}_{i}+\mathrm{c}_{i} \in \mathrm{R}\)
        using valid_cntxts ring0.Ring_ZF_1_L4 by auto
    with A 1 have \(\mathrm{a}+\mathrm{b}+\mathrm{c}=\left\langle\mathrm{a}_{r}+\mathrm{b}_{r}+\mathrm{c}_{r}, \mathrm{a}_{i}+\mathrm{b}_{i}+\mathrm{c}_{i}\right\rangle\)
        using cplx_mul_add_vals by auto
    also from A 1 T have \(\ldots=\mathrm{a}+(\mathrm{b}+\mathrm{c})\)
        using valid_cntxts ring0.Ring_ZF_1_L11 cplx_mul_add_vals
        by auto
    finally show \(a+b+c=a+(b+c)\)
        by simp
qed
```

Complex multiplication is associative.

```
lemma (in complex0) axmulass: assumes A1: a }\in\mathbb{C
    shows a . b | c = a . (b | c)
proof -
    let }\mp@subsup{\textrm{a}}{r}{}=\textrm{fst}(\textrm{a}
    let }\mp@subsup{\textrm{a}}{i}{}=\operatorname{snd(a)
    let \mp@subsup{b}{r}{}= fst(b)
    let \mp@subsup{b}{i}{}=\operatorname{snd(b)}
    let cr = fst(c)
    let c}\mp@subsup{c}{i}{}=\operatorname{snd}(c
    from A1 have T:
        \mp@subsup{a}{r}{}\in\textrm{R}}\quad\mp@subsup{\textrm{a}}{i}{}\in\textrm{R}\quad\mp@subsup{\textrm{b}}{r}{}\in\textrm{R}\quad\mp@subsup{\textrm{b}}{i}{}\in\textrm{R}\quad\mp@subsup{\textrm{c}}{r}{}\in\textrm{R}\quad\mp@subsup{\textrm{c}}{i}{}\in\textrm{R
        \mp@subsup{a}{r}{}}\cdot\mp@subsup{\textrm{b}}{r}{}+(-\mp@subsup{\textrm{a}}{i}{}\cdot\mp@subsup{\textrm{b}}{i}{})\in\textrm{R
        \mp@subsup{a}{r}{}}\cdot\mp@subsup{\textrm{b}}{i}{}+\mp@subsup{\textrm{a}}{i}{}\cdot\mp@subsup{\textrm{b}}{r}{}\in\textrm{R
        \mp@subsup{b}{r}{}}\cdot\mp@subsup{\textrm{c}}{r}{}+(-\mp@subsup{\textrm{b}}{i}{}\cdot\mp@subsup{\textrm{c}}{i}{})\in\textrm{R
        \mp@subsup{b}{r}{}}\cdot\mp@subsup{\textrm{c}}{i}{}+\mp@subsup{\textrm{b}}{i}{}\cdot\mp@subsup{\textrm{c}}{r}{}\in\textrm{R
        using valid_cntxts ring0.Ring_ZF_1_L4 by auto
```

```
    with A1 have a • b • c =
        \(\left\langle\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right)\right) \cdot \mathrm{c}_{r}+\left(-\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r}\right) \cdot \mathrm{c}_{i}\right)\right.\),
        \(\left.\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right)\right) \cdot \mathrm{c}_{i}+\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r}\right) \cdot \mathrm{c}_{r}\right\rangle\)
        using cplx_mul_add_vals by auto
    moreover from A1 \(T\) have
        \(\left\langle\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{b}_{i} \cdot \mathrm{c}_{i}\right)\right)+\left(-\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{i}+\mathrm{b}_{i} \cdot \mathrm{c}_{r}\right)\right)\right.\),
        \(\left.\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{i}+\mathrm{b}_{i} \cdot \mathrm{c}_{r}\right)+\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{b}_{i} \cdot \mathrm{c}_{i}\right)\right)\right\rangle=\)
        a . (b \(\cdot \mathrm{c}\) )
        using cplx_mul_add_vals by auto
    moreover from \(T\) have
    \(\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{b}_{i} \cdot \mathrm{c}_{i}\right)\right)+\left(-\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{i}+\mathrm{b}_{i} \cdot \mathrm{c}_{r}\right)\right)=\)
        \(\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right)\right) \cdot \mathrm{c}_{r}+\left(-\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r}\right) \cdot \mathrm{c}_{i}\right)\)
        and
        \(\mathrm{a}_{r} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{i}+\mathrm{b}_{i} \cdot \mathrm{c}_{r}\right)+\mathrm{a}_{i} \cdot\left(\mathrm{~b}_{r} \cdot \mathrm{c}_{r}+\left(-\mathrm{b}_{i} \cdot \mathrm{c}_{i}\right)\right)=\)
        \(\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{r}+\left(-\mathrm{a}_{i} \cdot \mathrm{~b}_{i}\right)\right) \cdot \mathrm{c}_{i}+\left(\mathrm{a}_{r} \cdot \mathrm{~b}_{i}+\mathrm{a}_{i} \cdot \mathrm{~b}_{r}\right) \cdot \mathrm{c}_{r}\)
        using valid_cntxts ring0.Ring_ZF_2_L6 by auto
    ultimately show \(\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})\)
    by auto
qed
```

Complex 1 is real. This really means that the pair $\langle 1,0\rangle$ is on the real axis.

```
lemma (in complex0) ax1re: shows 1\in\mathbb{R}
    using valid_cntxts ring0.Ring_ZF_1_L2 by simp
```

The imaginary unit is a "square root" of -1 (that is, $i^{2}+1=0$).

```
lemma (in complex0) axi2m1: shows i.i + 1 = 0
    using valid_cntxts ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L3
    cplx_mul_add_vals ring0.Ring_ZF_1_L6 group0.group0_2_L6
    by simp
```

0 is the neutral element of complex addition.

```
lemma (in complex0) ax0id: assumes a }\in\mathbb{C
    shows a + 0 = a
    using assms cplx_mul_add_vals valid_cntxts
        ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L3
    by auto
```

The imaginary unit is a complex number.

```
lemma (in complex0) axicn: shows i }\in\mathbb{C
    using valid_cntxts ring0.Ring_ZF_1_L2 by auto
```

All complex numbers have additive inverses.

```
lemma (in complex0) axnegex: assumes A1: a \(\in \mathbb{C}\)
    shows \(\exists x \in \mathbb{C} . a+x=0\)
proof -
    let \(\mathrm{a}_{r}=\mathrm{fst}(\mathrm{a})\)
    let \(\mathrm{a}_{i}=\operatorname{snd}(\mathrm{a})\)
    let \(\mathrm{x}=\left\langle-\mathrm{a}_{r},-\mathrm{a}_{i}\right\rangle\)
```

```
    from A1 have T:
    ar
    using valid_cntxts ring0.Ring_ZF_1_L3 by auto
    then have x }\in\mathbb{C}\mathrm{ using valid_cntxts ring0.Ring_ZF_1_L3
    by auto
    moreover from A1 T have a + x = 0
        using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L3
        by auto
    ultimately show }\exists\textrm{x}\in\mathbb{C}.a+x=
        by auto
qed
```

A non-zero complex number has a multiplicative inverse.

```
lemma (in complex0) axrecex: assumes A1: \(a \in \mathbb{C}\) and A2: \(a \neq 0\)
    shows \(\exists x \in \mathbb{C} . a \cdot x=1\)
proof -
    let \(\mathrm{a}_{r}=\mathrm{fst}(\mathrm{a})\)
    let \(\mathrm{a}_{i}=\operatorname{snd}(\mathrm{a})\)
    let \(\mathrm{m}=\mathrm{a}_{r} \cdot \mathrm{a}_{r}+\mathrm{a}_{i} \cdot \mathrm{a}_{i}\)
    from A1 have \(\mathrm{T} 1: \mathrm{a}_{r} \in \mathrm{R} \quad \mathrm{a}_{i} \in \mathrm{R}\) by auto
    moreover from A1 A2 have \(\mathrm{a}_{r} \neq 0_{R} \vee \mathrm{a}_{i} \neq \mathbf{0}_{R}\)
        by auto
    ultimately have \(\exists \mathrm{c} \in \mathrm{R}\). m.c \(=1_{R}\)
        using valid_cntxts field1.OrdField_ZF_1_L10
        by auto
    then obtain \(c\) where \(I: c \in R\) and II: \(m \cdot c=\mathbf{1}_{R}\)
        by auto
    let \(\mathrm{x}=\left\langle\mathrm{a}_{r} \cdot \mathrm{c},-\mathrm{a}_{i} \cdot \mathrm{c}\right\rangle\)
    from T1 I have T2: \(\mathrm{a}_{r} \cdot \mathrm{c} \in \mathrm{R} \quad\left(-\mathrm{a}_{i} \cdot \mathrm{c}\right) \in \mathrm{R}\)
        using valid_cntxts ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L3
        by auto
    then have \(\mathrm{x} \in \mathbb{C}\) by auto
    moreover from A1 T1 T2 I II have \(\mathrm{a} \cdot \mathrm{x}=1\)
        using cplx_mul_add_vals valid_cntxts ring0.ring_rearr_3_elemA
        by auto
    ultimately show \(\exists x \in \mathbb{C}\). \(a \cdot x=1\) by auto
qed
```

Complex 1 is a right neutral element for multiplication.
lemma (in complex0) ax1id: assumes A1: a $\in \mathbb{C}$
shows $\mathrm{a} \cdot 1=\mathrm{a}$
using assms valid_cntxts ring0.Ring_ZF_1_L2 cplx_mul_add_vals
ring0.Ring_ZF_1_L3 ring0.Ring_ZF_1_L6 by auto

A formula for sum of (complex) real numbers.
lemma (in complex 0) sum_of_reals: assumes $a \in \mathbb{R} \quad b \in \mathbb{R}$
shows
$\mathrm{a}+\mathrm{b}=\left\langle\mathrm{fst}(\mathrm{a})+\mathrm{fst}(\mathrm{b}), \mathbf{0}_{R}\right\rangle$
using assms valid_cntxts ring0.Ring_ZF_1_L2 cplx_mul_add_vals
ring0.Ring_ZF_1_L3 by auto
The sum of real numbers is real.

```
lemma (in complex0) axaddrcl: assumes A1: a\in\mathbb{R}}\textrm{b}\in\mathbb{R
    shows a + b \in\mathbb{R}
    using assms sum_of_reals valid_cntxts ring0.Ring_ZF_1_L4
    by auto
```

The formula for the product of (complex) real numbers.

```
lemma (in complex0) prod_of_reals: assumes A1: a\in\mathbb{R}}\textrm{b}\in\mathbb{R
    shows a \cdot b = \langlefst(a).fst(b),0}\mp@subsup{0}{R}{}
proof -
    let }\mp@subsup{\textrm{a}}{r}{}=\textrm{fst}(\textrm{a}
    let \mp@subsup{b}{r}{}=fst(b)
    from A1 have T:
        \mp@subsup{a}{r}{}}\in\textrm{R b
        using valid_cntxts ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L4
        by auto
    with A1 show a \cdot b = \langlear \cdot\mp@subsup{b}{r}{},\mp@subsup{\mathbf{0}}{R}{}\rangle
        using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L2
            ring0.Ring_ZF_1_L6 ring0.Ring_ZF_1_L3 by auto
qed
```

The product of (complex) real numbers is real.

```
lemma (in complex0) axmulrcl: assumes a\in\mathbb{R} b\in\mathbb{R}
    shows a \cdot b \in\mathbb{R}
    using assms prod_of_reals valid_cntxts ring0.Ring_ZF_1_L4
    by auto
```

The existence of a real negative of a real number.

```
lemma (in complex0) axrnegex: assumes A1: \(a \in \mathbb{R}\)
    shows \(\exists \mathrm{x} \in \mathbb{R}\). \(\mathrm{a}+\mathrm{x}=0\)
proof -
    let \(\mathrm{a}_{r}=\mathrm{fst}(\mathrm{a})\)
    let \(\mathrm{x}=\left\langle-\mathrm{a}_{\mathrm{r}}, \mathbf{0}_{R}\right\rangle\)
    from A1 have \(T\) :
            \(\mathrm{a}_{r} \in \mathrm{R} \quad\left(-\mathrm{a}_{r}\right) \in \mathrm{R} \quad \mathbf{0}_{R} \in \mathrm{R}\)
            using valid_cntxts ring0.Ring_ZF_1_L3 ring0.Ring_ZF_1_L2
            by auto
    then have \(x \in \mathbb{R}\) by auto
    moreover from A1 T have \(a+x=0\)
        using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L3
        by auto
    ultimately show \(\exists \mathrm{x} \in \mathbb{R}\). a \(+\mathrm{x}=0\) by auto
qed
```

Each nonzero real number has a real inverse
lemma (in complex0) axrrecex:

```
    assumes A1: \(a \in \mathbb{R} \quad a \neq 0\)
    shows \(\exists \mathrm{x} \in \mathbb{R}\). a \(\cdot \mathrm{x}=1\)
proof -
    let \(\mathrm{R}_{0}=\mathrm{R}-\left\{\mathbf{0}_{R}\right\}\)
    let \(\mathrm{a}_{r}=\mathrm{fst}(\mathrm{a})\)
    let \(\mathrm{y}=\operatorname{Group} \operatorname{Inv}\left(\mathrm{R}_{0}\right.\), restrict \(\left(\mathrm{M}, \mathrm{R}_{0} \times \mathrm{R}_{0}\right)\) ) ( \(\mathrm{a}_{r}\) )
    from A1 have \(\mathrm{T}:\left\langle\mathrm{y}, \mathbf{0}_{R}\right\rangle \in \mathbb{R}\) using valid_cntxts field0.Field_ZF_1_L5
        by auto
    moreover from A1 T have a \(\cdot\left\langle\mathrm{y}, \mathbf{0}_{R}\right\rangle=1\)
        using prod_of_reals valid_cntxts
        field0.Field_ZF_1_L5 field0.Field_ZF_1_L6 by auto
    ultimately show \(\exists \mathrm{x} \in \mathbb{R}\). a \(\cdot \mathrm{x}=1\) by auto
qed
```

Our \mathbb{R} symbol is the real axis on the complex plane.

```
lemma (in complex0) real_means_real_axis: shows }\mathbb{R}=\mathrm{ ComplexReals(R,A)
    using ComplexReals_def by auto
```

The CplxROrder thing is a relation on the complex reals.

```
lemma (in complex0) cplx_ord_on_cplx_reals:
    shows CplxROrder(R,A,r) \subseteq\mathbb{R}\times\mathbb{R}
    using ComplexReals_def slice_proj_bij real_means_real_axis
        CplxROrder_def InducedRelation_def by auto
```

The strict version of the complex relation is a relation on complex reals.

```
lemma (in complex0) cplx_strict_ord_on_cplx_reals:
    shows StrictVersion(CplxROrder(R,A,r)) \subseteq\mathbb{R}\times\mathbb{R}
    using cplx_ord_on_cplx_reals strict_ver_rel by simp
```

The CplxROrder thing is a relation on the complex reals. Here this is formulated as a statement that in complex0 context $a<b$ implies that a, b are complex reals

```
lemma (in complex0) strict_cplx_ord_type: assumes a < < 
    shows a\in\mathbb{R}\quadb\in\mathbb{R}
    using assms CplxROrder_def def_of_strict_ver InducedRelation_def
        slice_proj_bij ComplexReals_def real_means_real_axis
    by auto
```

A more readable version of the definition of the strict order relation on the real axis. Recall that in the complex0 context r denotes the (non-strict) order relation on the underlying model of real numbers.

```
lemma (in complex0) def_of_real_axis_order: shows
    \(\left\langle\mathrm{x}, \mathbf{0}_{R}\right\rangle<_{\mathbb{R}}\left\langle\mathrm{y}, \mathbf{0}_{R}\right\rangle \longleftrightarrow\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \wedge \mathrm{x} \neq \mathrm{y}\)
proof
    let \(f=\) SliceProjection(ComplexReals(R,A))
    assume A1: \(\left\langle\mathrm{x}, \mathbf{0}_{R}\right\rangle<_{\mathbb{R}}\left\langle\mathrm{y}, \mathbf{0}_{R}\right\rangle\)
    then have \(\left\langle\mathrm{f}\left\langle\mathrm{x}, \mathbf{0}_{R}\right\rangle, \mathrm{f}\left\langle\mathrm{y}, \mathbf{0}_{R}\right\rangle\right\rangle \in \mathrm{r} \wedge \mathrm{x} \neq \mathrm{y}\)
        using CplxROrder_def def_of_strict_ver def_of_ind_relA
```

```
    by simp
    moreover from A1 have }\langle\textrm{x},\mp@subsup{0}{R}{}\rangle\in\mathbb{R}\langle\textrm{y},\mp@subsup{0}{R}{}\rangle\in\mathbb{R
        using strict_cplx_ord_type by auto
    ultimately show }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\wedge\textrm{x}\not=\textrm{y
        using slice_proj_bij ComplexReals_def by simp
next assume A1: \langlex,y\rangle\in r ^ x\not=y
    let f = SliceProjection(ComplexReals(R,A))
    have f : \mathbb{R}->R
        using ComplexReals_def slice_proj_bij real_means_real_axis
        by simp
    moreover from A1 have T: }\langle\textrm{x},\mp@subsup{0}{R}{}\rangle\in\mathbb{R}\quad\langle\textrm{y},\mp@subsup{0}{R}{}\rangle\in\mathbb{R
        using valid_cntxts ring1.OrdRing_ZF_1_L3 by auto
    moreover from A1 T have }\langle\textrm{f}\langle\textrm{x},\mp@subsup{0}{R}{\prime}\rangle,\textrm{f}\langle\textrm{y},\mp@subsup{0}{R}{}\rangle\rangle\rangle\in\textrm{r
        using slice_proj_bij ComplexReals_def by simp
    ultimately have }\langle\langle\textrm{x},\mp@subsup{0}{R}{}\rangle,\langle\textrm{y},\mp@subsup{\mathbf{0}}{R}{}\rangle\rangle\in\operatorname{InducedRelation(f,r)
        using def_of_ind_relB by simp
    with A1 show }\langle\textrm{x},\mp@subsup{\mathbf{0}}{R}{}\rangle<\mp@subsup{<}{\mathbb{R}}{}\langle\textrm{y},\mp@subsup{\mathbf{0}}{R}{}
        using CplxROrder_def def_of_strict_ver
        by simp
qed
```

The (non strict) order on complex reals is antisymmetric, transitive and total.

```
lemma (in complex0) cplx_ord_antsym_trans_tot: shows
    antisym(CplxROrder(R,A,r))
    trans(CplxROrder(R,A,r))
    CplxROrder(R,A,r) {is total on} }\mathbb{R
proof -
    let f = SliceProjection(ComplexReals(R,A))
    have f \in ord_iso(\mathbb{R,CplxROrder(R,A,r),R,r)}
        using ComplexReals_def slice_proj_bij real_means_real_axis
            bij_is_ord_iso CplxROrder_def by simp
    moreover have CplxROrder(R,A,r) \subseteq\mathbb{R}\times\mathbb{R}
            using cplx_ord_on_cplx_reals by simp
    moreover have I:
        antisym(r) r {is total on} R trans(r)
            using valid_cntxts ring1.OrdRing_ZF_1_L1 IsAnOrdRing_def
                IsLinOrder_def by auto
    ultimately show
        antisym(CplxROrder(R,A,r))
        trans(CplxROrder(R,A,r))
        CplxROrder(R,A,r) {is total on} }\mathbb{R
        using ord_iso_pres_antsym ord_iso_pres_tot ord_iso_pres_trans
        by auto
qed
```

The trichotomy law for the strict order on the complex reals.

```
lemma (in complex0) cplx_strict_ord_trich:
    assumes a }\in\mathbb{R}\quad\textrm{b}\in\mathbb{R
```

```
shows Exactly_1_of_3_holds \(\left(a<\mathbb{R}^{b}, a=b, b<\mathbb{R}^{a}\right)\)
using assms cplx_ord_antsym_trans_tot strict_ans_tot_trich
by simp
```

The strict order on the complex reals is kind of antisymetric.

```
lemma (in complex0) pre_axlttri: assumes A1: a }\in\mathbb{R
    shows a < <\mathbb{R}
proof -
    from A1 have Exactly_1_of_3_holds(a<\mathbb{R}
        by (rule cplx_strict_ord_trich)
    then show a < 化 b \longleftrightarrow (a=b \vee b <\mathbb{R}}\textrm{a}
        by (rule Fol1_L8A)
qed
```

The strict order on complex reals is transitive.

```
lemma (in complex0) cplx_strict_ord_trans:
    shows trans(StrictVersion(CplxROrder(R,A,r)))
    using cplx_ord_antsym_trans_tot strict_of_transB by simp
```

The strict order on complex reals is transitive - the explicit version of cplx_strict_ord_trans.

```
lemma (in complex0) pre_axlttrn:
    assumes A1: a < <\mathbb{R}
    shows a < <\mathbb{R}
proof -
    let s = StrictVersion(CplxROrder(R,A,r))
    from A1 have
        trans(s) \langlea,b\rangle\ins ^\langleb,c\rangle\ins
        using cplx_strict_ord_trans by auto
    then have }\langle\textrm{a},\textrm{c}\rangle\in\textrm{s}\mathrm{ by (rule Fol1_L3)
    then show a < <\mathbb{R}}\mathrm{ c by simp
qed
```

The strict order on complex reals is preserved by translations.

```
lemma (in complex0) pre_axltadd:
    assumes A1: a }<\mathbb{R
    shows c+a < <\mathbb{R c+b}
proof -
    from A1 have T: a\in\mathbb{R}}\textrm{b}\in\mathbb{R}\mathrm{ using strict_cplx_ord_type
        by auto
    with A1 A2 show c+a < < 
        using def_of_real_axis_order valid_cntxts
            group3.group_strict_ord_transl_inv sum_of_reals
        by auto
qed
```

The set of positive complex reals is closed with respect to multiplication.
lemma (in complex0) pre_axmulgt0: assumes A1: $0<\mathbb{R}$ a $0<\mathbb{R}_{\mathbb{R}}$ b

```
    shows \(0<\mathbb{R}^{\mathrm{R}} \mathrm{a} \cdot \mathrm{b}\)
proof -
    from A1 have \(T: a \in \mathbb{R} \quad b \in \mathbb{R}\) using strict_cplx_ord_type
        by auto
    with A1 show \(0 \ll_{\mathbb{R}} a \cdot b\)
        using def_of_real_axis_order valid_cntxts field1.pos_mul_closed
                def_of_real_axis_order prod_of_reals
        by auto
qed
```

The order on complex reals is linear and complete.

```
lemma (in complex0) cmplx_reals_ord_lin_compl: shows
    CplxROrder(R,A,r) {is complete}
    IsLinOrder(\mathbb{R},CplxROrder(R,A,r))
proof -
    have SliceProjection(\mathbb{R})\in\operatorname{bij}(\mathbb{R},\textrm{R})
        using slice_proj_bij ComplexReals_def real_means_real_axis
        by simp
    moreover have r \subseteq R }\timesR\mathrm{ R using valid_cntxts ring1.OrdRing_ZF_1_L1
        IsAnOrdRing_def by simp
    moreover from R_are_reals have
        r {is complete} and IsLinOrder(R,r)
        using IsAmodelOfReals_def valid_cntxts ring1.OrdRing_ZF_1_L1
        IsAnOrdRing_def by auto
    ultimately show
        CplxROrder(R,A,r) {is complete}
        IsLinOrder(\mathbb{R},\textrm{CplxROrder}(R,A,r))
        using CplxROrder_def real_means_real_axis ind_rel_pres_compl
            ind_rel_pres_lin by auto
qed
```

The property of the strict order on complex reals that corresponds to completeness.

```
lemma (in complex0) pre_axsup: assumes A1: X \subseteq\mathbb{R}\quadX\not=0 and
    A2: \existsx\in\mathbb{R}.}\forall\textrm{y}\in\textrm{X}.\textrm{y}<\mathbb{R}\textrm{x
    shows
    \existsx\in\mathbb{R. ( }\forall\textrm{y}\in\textrm{X.}.\neg(\textrm{x}<\mathbb{R}\textrm{y}))}\wedge(\forall\textrm{y}\in\mathbb{R}.(y<\mathbb{R}x\longrightarrow(\exists\textrm{x}\in\textrm{X}.y<\mathbb{R}z))
proof -
    let s = StrictVersion(CplxROrder(R,A,r))
    have
        CplxROrder(R,A,r) \subseteq\mathbb{R}\times\mathbb{R}
        IsLinOrder(\mathbb{R},CplxROrder(R,A,r))
        CplxROrder(R,A,r) {is complete}
        using cplx_ord_on_cplx_reals cmplx_reals_ord_lin_compl
        by auto
    moreover note A1
    moreover have s = StrictVersion(CplxROrder(R,A,r))
        by simp
    moreover from A2 have }\exists\textrm{u}\in\mathbb{R}.|y\inX.{y,u\rangle\in
```

```
    by simp
    ultimately have
    \existsx\in\mathbb{R}.(\forally\inX. <x,y\rangle\not\ins ) ^
    (\forally\in\mathbb{R}.\langley,x\rangle\ins \longrightarrow (\existsz\inX. \langley,z\rangle\ins))
    by (rule strict_of_compl)
    then show (\existsx\in\mathbb{R}.(\forally\inX. \neg(x<<\mathbb{R}y))^
    (\forally\in\mathbb{R}.(y<\mathbb{R}x\longrightarrow(\existsz\inX.y<\mathbb{R}z))))
    by simp
qed
end
```


49 Topology - introduction

```
theory Topology_ZF imports ZF1 Finite_ZF Fol1
```


begin

This theory file provides basic definitions and properties of topology, open and closed sets, closure and boundary.

49.1 Basic definitions and properties

A typical textbook defines a topology on a set X as a collection T of subsets of X such that $X \in T, \emptyset \in T$ and T is closed with respect to arbitrary unions and intersection of two sets. One can notice here that since we always have $\bigcup T=X$, the set on which the topology is defined (the "carrier" of the topology) can always be constructed from the topology itself and is superfluous in the definition. Moreover, as Marnix Klooster pointed out to me, the fact that the empty set is open can also be proven from other axioms. Hence, we define a topology as a collection of sets that is closed under arbitrary unions and intersections of two sets, without any mention of the set on which the topology is defined. Recall that $\operatorname{Pow}(T)$ is the powerset of T, so that if $M \in \operatorname{Pow}(T)$ then M is a subset of T. The sets that belong to a topology T will be sometimes called "open in" T or just "open" if the topology is clear from the context.

Topology is a collection of sets that is closed under arbitrary unions and intersections of two sets.

```
definition
    IsATopology (_ {is a topology} [90] 91) where
    T {is a topology} \equiv( }\forall\textrm{M}\in\operatorname{Pow}(\textrm{T}).\M\inT)
    ( }\forall\textrm{U}\in\textrm{T}.\forall\textrm{V}\in\textrm{T}.\textrm{U}\cap\textrm{V}\in\textrm{T}
```

We define interior of a set A as the union of all open sets contained in A. We use Interior (A, T) to denote the interior of A .

```
definition
    Interior (A,T) \equiv\ {U\inT. U \subseteqA}
```

A set is closed if it is contained in the carrier of topology and its complement is open.

```
definition
    IsClosed (infixl {is closed in} 90) where
    D {is closed in} T \equiv(D\subseteq\bigcupT ^ UT - D G T)
```

To prove various properties of closure we will often use the collection of closed sets that contain a given set A. Such collection does not have a separate name in informal math. We will call it ClosedCovers (A,T).

definition

```
ClosedCovers(A,T) \equiv{D \in Pow(\T). D {is closed in} T ^ A\subseteqD}
```

The closure of a set A is defined as the intersection of the collection of closed sets that contain A.

```
definition
    Closure(A,T) \equiv\bigcap ClosedCovers(A,T)
```

We also define boundary of a set as the intersection of its closure with the closure of the complement (with respect to the carrier).

```
definition
    Boundary(A,T) \equivClosure(A,T) \cap Closure(UT - A,T)
```

A set K is compact if for every collection of open sets that covers K we can choose a finite one that still covers the set. Recall that FinPow(M) is the collection of finite subsets of M (finite powerset of M), defined in IsarMathLib's Finite_ZF theory.

```
definition
    IsCompact (infixl {is compact in} 90) where
    K {is compact in} T }\equiv\mathrm{ (K }\subseteq\bigcup\T
    (\forall M\inPow(T). K \subseteq \M \longrightarrow (\exists N G FinPow(M). K \subseteq UN)))
```

A basic example of a topology: the powerset of any set is a topology.

```
lemma Pow_is_top: shows Pow(X) {is a topology}
proof -
    have }\forallA\in\operatorname{Pow}(\operatorname{Pow}(X)). \A \in Pow(X) by fas
    moreover have }\forall\textrm{U}\in\operatorname{Pow (X). }\forall\textrm{V}\in\operatorname{Pow}(X). U\capV \in Pow(X) by fas
    ultimately show Pow(X) {is a topology} using IsATopology_def
        by auto
qed
```

Empty set is open.
lemma empty_open:
assumes T \{is a topology\} shows $0 \in \mathrm{~T}$

```
proof -
    have 0 \in Pow(T) by simp
    with assms have }\bigcup0\inT\mathrm{ using IsATopology_def by blast
    thus 0 \in T by simp
qed
```

The carrier is open.
lemma carr_open: assumes T \{is a topology\} shows (UT) $\in T$ using assms IsATopology_def by auto

Union of a collection of open sets is open.

```
lemma union_open: assumes T {is a topology} and }\forall\textrm{A}\in\mathcal{A}.\textrm{A}\in\textrm{T
    shows (\bigcup\mathcal{A})\inT using assms IsATopology_def by auto
```

Union of a indexed family of open sets is open.

```
lemma union_indexed_open: assumes A1: T {is a topology} and A2: \foralli\inI.
P(i) \in T
    shows (Ui\inI. P(i)) \in T using assms union_open by simp
```

The intersection of any nonempty collection of topologies on a set X is a topology.

```
lemma Inter_tops_is_top:
    assumes \(\mathrm{A} 1: \mathcal{M} \neq 0\) and \(\mathrm{A} 2: ~ \forall \mathrm{~T} \in \mathcal{M}\). T \{is a topology\}
    shows \((\bigcap \mathcal{M})\) \{is a topology\}
proof -
    \{ fix A assume \(\mathrm{A} \in \operatorname{Pow}(\bigcap \mathcal{M})\)
        with \(A 1\) have \(\forall T \in \mathcal{M}\). \(A \in \operatorname{Pow}(T)\) by auto
        with A1 A2 have \(\bigcup A \in \bigcap \mathcal{M}\) using IsATopology_def
                by auto
    \(\}\) then have \(\forall A . A \in \operatorname{Pow}(\bigcap \mathcal{M}) \longrightarrow \bigcup A \in \bigcap \mathcal{M}\) by simp
    hence \(\forall A \in \operatorname{Pow}(\bigcap \mathcal{M}) . \cup A \in \bigcap \mathcal{M}\) by auto
    moreover
    \(\{\) fix \(U V\) assume \(U \in \bigcap \mathcal{M}\) and \(V \in \bigcap \mathcal{M}\)
        then have \(\forall T \in \mathcal{M} . U \in T \wedge V \in T\) by auto
        with A1 A2 have \(\forall T \in \mathcal{M}\). U \(\cap V \in T\) using IsATopology_def
                by simp
    \} then have \(\forall U \in \bigcap \mathcal{M} . \forall V \in \bigcap \mathcal{M} . U \cap V \in \bigcap \mathcal{M}\)
        by auto
    ultimately show ( \(\bigcap \mathcal{M}\) ) \{is a topology\}
        using IsATopology_def by simp
qed
```

We will now introduce some notation. In Isar, this is done by definining a "locale". Locale is kind of a context that holds some assumptions and notation used in all theorems proven in it. In the locale (context) below called topology0 we assume that T is a topology. The interior of the set A (with respect to the topology in the context) is denoted int(A). The closure of a set $A \subseteq \bigcup T$ is denoted $\mathrm{cl}(\mathrm{A})$ and the boundary is $\partial \mathrm{A}$.

```
locale topology0 =
    fixes T
    assumes topSpaceAssum: T {is a topology}
    fixes int
    defines int_def [simp]: int(A) \equiv Interior(A,T)
    fixes cl
    defines cl_def [simp]: cl(A) \equiv Closure(A,T)
    fixes boundary (\partial_ [91] 92)
    defines boundary_def [simp]: \partialA \equiv Boundary(A,T)
```

Intersection of a finite nonempty collection of open sets is open.

```
lemma (in topology0) fin_inter_open_open: assumes \(N \neq 0 \mathrm{~N} \in\) FinPow( T )
    shows \(\bigcap \mathrm{N} \in \mathrm{T}\)
    using topSpaceAssum assms IsATopology_def inter_two_inter_fin
    by simp
```

Having a topology T and a set X we can define the induced topology as the one consisting of the intersections of X with sets from T. The notion of a collection restricted to a set is defined in ZF1.thy.

```
lemma (in topology0) Top_1_L4:
    shows (T {restricted to} X) {is a topology}
proof -
    let S = T {restricted to} X
    have }\forallA\in\operatorname{Pow}(S).\bigcupA\in
    proof
        fix A assume A1: A\inPow(S)
        have }\forallV\inA.\bigcup{U\inT.V = U\capX} \in 
        proof -
            { fix V
let M = {U \in T. V = U\capX}
have M \in Pow(T) by auto
with topSpaceAssum have \M G T using IsATopology_def by simp
            } thus thesis by simp
        qed
        hence {\bigcup{U\inT. V = U\capX}.V\in A} \subseteq T by auto
        with topSpaceAssum have ( UV\inA. U{U\inT. V = U\capX}) \in T
            using IsATopology_def by auto
        then have ( }\cupV\inA.\cup{U\inT.V = U\capX})\cap X G 
        using RestrictedTo_def by auto
        moreover
        from A1 have }\forall\textrm{V}\in\textrm{A}.\exists\textrm{U}\in\textrm{T}.\textrm{V}=\textrm{U}\cap\textrm{X
            using RestrictedTo_def by auto
        hence ( UV\inA. \bigcup{U\inT. V = U\capX})\capX = \bigcupA by blast
        ultimately show }\bigcupA\inS by sim
    qed
    moreover have }\forall\textrm{U}\in\textrm{S}.\forall\textrm{V}\in\textrm{S}.\textrm{U}\cap\textrm{V}\in
```

```
    proof -
        { fix U V assume U\inS V\inS
        then obtain }\mp@subsup{U}{1}{}\mp@subsup{V}{1}{}\mathrm{ where
    U}\mp@subsup{\textrm{U}}{1}{}\in\textrm{T}\wedge\textrm{U}=\mp@subsup{\textrm{U}}{1}{}\cap\textrm{X}\mathrm{ and }\mp@subsup{\textrm{V}}{1}{}\in\textrm{T}\wedge\textrm{V}=\mp@subsup{\textrm{V}}{1}{}\cap\textrm{X
    using RestrictedTo_def by auto
        with topSpaceAssum have }\mp@subsup{U}{1}{}\cap\mp@subsup{V}{1}{}\inT\mathrm{ and U@V = ( }\mp@subsup{U}{1}{}\cap\mp@subsup{V}{1}{})\cap
    using IsATopology_def by auto
        then have U\capV \inS using RestrictedTo_def by auto
    } thus }\forall\textrm{U}\in\textrm{S}.\forallV\inS. U\capV \in
        by simp
    qed
    ultimately show S {is a topology} using IsATopology_def
    by simp
qed
```


49.2 Interior of a set

In this section we show basic properties of the interior of a set.
Interior of a set A is contained in A.
lemma (in topology0) Top_2_L1: shows int(A) $\subseteq A$
using Interior_def by auto
Interior is open.
lemma (in topology0) Top_2_L2: shows $\operatorname{int}(A) \in T$
proof -
have $\{U \in T . U \subseteq A\} \in \operatorname{Pow}(T)$ by auto
with topSpaceAssum show int (A) $\in T$
using IsATopology_def Interior_def by auto
qed
A set is open iff it is equal to its interior.
lemma (in topology0) Top_2_L3: shows $U \in T \longleftrightarrow$ int $(U)=U$
proof
assume $U \in T$ then show $\operatorname{int}(U)=U$
using Interior_def by auto
next assume A1: int $(U)=U$
have int(U) \in T using Top_2_L2 by simp
with A1 show $U \in T$ by simp
qed
Interior of the interior is the interior.

```
lemma (in topology0) Top_2_L4: shows int(int(A)) = int(A)
proof -
    let U = int(A)
    from topSpaceAssum have U\inT using Top_2_L2 by simp
    then show int(int(A)) = int(A) using Top_2_L3 by simp
qed
```

Interior of a bigger set is bigger.

```
lemma (in topology0) interior_mono:
    assumes A1: A\subseteqB shows int(A) \subseteq int(B)
proof -
    from A1 have }\forallU\inT. (U\subseteqA \longrightarrowU\subseteqB) by aut
    then show int(A) \subseteq int(B) using Interior_def by auto
qed
```

An open subset of any set is a subset of the interior of that set.

```
lemma (in topology0) Top_2_L5: assumes U\subseteqA and U\inT
    shows U \subseteq int(A)
    using assms Interior_def by auto
```

If a point of a set has an open neighboorhood contained in the set, then the point belongs to the interior of the set.

```
lemma (in topology0) Top_2_L6: assumes \existsU\inT. (x\inU ^ U\subseteqA)
    shows x f int(A)
    using assms Interior_def by auto
```

A set is open iff its every point has a an open neighbourhood contained in the set. We will formulate this statement as two lemmas (implication one way and the other way). The lemma below shows that if a set is open then every point has a an open neighbourhood contained in the set.

```
lemma (in topology0) open_open_neigh:
    assumes A1: V\inT
    shows }\forallx\inV.\existsU\inT. (x\inU ^ U\subseteqV
proof -
    from A1 have }\forall\textrm{x}\in\textrm{V}.\textrm{V}\in\textrm{T}\wedge\textrm{x}\in\textrm{V}\wedge\textrm{V}\subseteq\textrm{V}\mathrm{ by simp
    thus thesis by auto
qed
```

If every point of a set has a an open neighbourhood contained in the set then the set is open.

```
lemma (in topology0) open_neigh_open:
    assumes A1: }\forallx\inV.\existsU\inT. (x\inU ^ U\subseteqV
    shows V\inT
proof -
    from A1 have V = int(V) using Top_2_L1 Top_2_L6
            by blast
    then show V\inT using Top_2_L3 by simp
qed
```


49.3 Closed sets, closure, boundary.

This section is devoted to closed sets and properties of the closure and boundary operators.

The carrier of the space is closed.

```
lemma (in topology0) Top_3_L1: shows (\T) {is closed in} T
proof -
    have \T - \T = 0 by auto
    with topSpaceAssum have \T - \bigcupT \in T using IsATopology_def by auto
    then show thesis using IsClosed_def by simp
qed
Empty set is closed.
```

```
lemma (in topology0) Top_3_L2: shows 0 {is closed in} T
```

lemma (in topology0) Top_3_L2: shows 0 {is closed in} T
using topSpaceAssum IsATopology_def IsClosed_def by simp

```
    using topSpaceAssum IsATopology_def IsClosed_def by simp
```

The collection of closed covers of a subset of the carrier of topology is never empty. This is good to know, as we want to intersect this collection to get the closure.

```
lemma (in topology0) Top_3_L3:
    assumes A1: A \subseteq UT shows ClosedCovers(A,T) \not=0
proof -
    from A1 have UT \in ClosedCovers(A,T) using ClosedCovers_def Top_3_L1
            by auto
    thus thesis by auto
qed
```

Intersection of a nonempty family of closed sets is closed.

```
lemma (in topology0) Top_3_L4: assumes A1: K\not=0 and
    A2: }\forall\textrm{D}\in\textrm{K}. D {is closed in} 
    shows (\bigcapK) {is closed in} T
proof -
    from A2 have I: }\forall\textrm{D}\in\textrm{K}.(\textrm{D}\subseteq\bigcup\T^(UT - D)\in T
        using IsClosed_def by simp
    then have {UT - D. D\inK}\subseteqT by auto
    with topSpaceAssum have ( U {\bigcupT - D. D\in K}) \in T
        using IsATopology_def by auto
    moreover from A1 have }\bigcup{\bigcupT - D. D\in K} = \bigcupT - \bigcapK by fas
    moreover from A1 I have \bigcapK}\subseteq\\cupT by blas
    ultimately show ( }\cap\textrm{K}\mathrm{ ) {is closed in} T using IsClosed_def
        by simp
qed
```

The union and intersection of two closed sets are closed.

```
lemma (in topology0) Top_3_L5:
    assumes A1: D D {is closed in} T D D {is closed in} T
    shows
    ( }\mp@subsup{D}{1}{}\cap\mp@subsup{D}{2}{}) {is closed in} 
    ( }\mp@subsup{D}{1}{}\cup\mp@subsup{D}{2}{}) {is closed in} 
proof -
```



```
    with A1 have ( }\cap{\mp@subsup{D}{1}{},\mp@subsup{D}{2}{}}\mathrm{ ) {is closed in} T using Top_3_L4
```

```
    by fast
    thus ( }\mp@subsup{D}{1}{}\cap\mp@subsup{D}{2}{}) {is closed in} T by sim
    from topSpaceAssum A1 have (UT - D D ) \cap (UT - D D ) \in T
        using IsClosed_def IsATopology_def by simp
    moreover have ( UT - D D ) \cap ( UT - D D ) = \bigcupT - ( D ( U D D )
        by auto
    moreover from A1 have D }\mp@subsup{D}{1}{}\cup\mp@subsup{D}{2}{}\subseteq\bigcupT\mathrm{ using IsClosed_def
        by auto
    ultimately show ( }\mp@subsup{D}{1}{}\cup\mp@subsup{D}{2}{}) {is closed in} T using IsClosed_def
        by simp
qed
```

Finite union of closed sets is closed. To understand the proof recall that $D \in \operatorname{Pow}(\cup \mathrm{~T})$ means that D is a subset of the carrier of the topology.

```
lemma (in topology0) fin_union_cl_is_cl:
    assumes
    A1: N \in FinPow({D\inPow(\T). D {is closed in} T})
    shows (UN) {is closed in} T
proof -
    let C = {D\inPow(UT). D {is closed in} T}
    have 0\inC using Top_3_L2 by simp
    moreover have }\forallA\inC.\forallB\inC. A\cupB \in
        using Top_3_L5 by auto
    moreover note A1
    ultimately have UN \in C by (rule union_two_union_fin)
    thus (UN) {is closed in} T by simp
qed
```

Closure of a set is closed.

```
lemma (in topology0) cl_is_closed: assumes A \subseteq UT
    shows cl(A) {is closed in} T
    using assms Closure_def Top_3_L3 ClosedCovers_def Top_3_L4
    by simp
```

Closure of a bigger sets is bigger.
lemma (in topology0) top_closure_mono:
assumes A1: $A \subseteq \bigcup T \quad B \subseteq \bigcup T$ and $A 2: A \subseteq B$
shows $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{cl}(\mathrm{B})$
proof -
from A2 have ClosedCovers $(B, T) \subseteq$ ClosedCovers (A, T)
using ClosedCovers_def by auto
with A1 show thesis using Top_3_L3 Closure_def by auto
qed

Boundary of a set is closed.
lemma (in topology0) boundary_closed:
assumes A1: $\mathrm{A} \subseteq \bigcup \mathrm{T}$ shows $\partial \mathrm{A}$ \{is closed in\} T
proof -

```
    from A1 have UT - A\subseteq\bigcupT by fast
    with A1 show }\partial\textrm{A}\mathrm{ {is closed in} T
    using cl_is_closed Top_3_L5 Boundary_def by auto
qed
```

A set is closed iff it is equal to its closure.
lemma (in topology0) Top_3_L8: assumes A1: A \subseteq UT
shows A is closed in\} $T \longleftrightarrow c l(A)=A$
proof
assume A \{is closed in\} T
with A 1 show $\mathrm{cl}(\mathrm{A})=\mathrm{A}$
using Closure_def ClosedCovers_def by auto
next assume cl(A) = A
then have $\bigcup T-A=\bigcup T-c l(A)$ by simp
with A1 show A \{is closed in\} T using cl_is_closed IsClosed_def by simp
qed
Complement of an open set is closed.

```
lemma (in topology0) Top_3_L9:
    assumes A1: \(A \in T\)
    shows ( \(\cup T\) - A) \{is closed in\} \(T\)
proof -
    from topSpaceAssum A1 have \(\bigcup T-(\bigcup T-A)=A\) and \(\bigcup T-A \subseteq \bigcup T\)
        using IsATopology_def by auto
    with A1 show ( \(\mathrm{U}^{T}-\mathrm{A}\) ) \{is closed in\} T using IsClosed_def by simp
qed
```

A set is contained in its closure.
lemma (in topology0) cl_contains_set: assumes $A \subseteq \bigcup T$ shows $A \subseteq c l(A)$ using assms Top_3_L1 ClosedCovers_def Top_3_L3 Closure_def by auto

Closure of a subset of the carrier is a subset of the carrier and closure of the complement is the complement of the interior.

```
lemma (in topology0) Top_3_L11: assumes A1: A \(\subseteq \bigcup T\)
    shows
    \(\mathrm{cl}(\mathrm{A}) \subseteq \bigcup \mathrm{T}\)
    \(\operatorname{cl}(U T-A)=\bigcup T-\operatorname{int}(A)\)
proof -
    from A1 show cl(A) \(\subseteq \bigcup T\) using Top_3_L1 Closure_def ClosedCovers_def
        by auto
    from A1 have \(\bigcup T\) - A \(\subseteq \bigcup T\) - int (A) using Top_2_L1
        by auto
    moreover have I: \(\bigcup T-\operatorname{int}(A) \subseteq \bigcup T \quad \bigcup T-A \subseteq \bigcup T\) by auto
    ultimately have \(c l(\bigcup T-A) \subseteq c l(\bigcup T-\operatorname{int}(A))\)
        using top_closure_mono by simp
    moreover
    from I have ( \(\bigcup\) T - int (A)) \{is closed in\} \(T\)
```

using Top_2_L2 Top_3_L9 by simp
with I have $c l((\bigcup T)-\operatorname{int}(A))=\bigcup T-\operatorname{int}(A)$
using Top_3_L8 by simp
ultimately have $c l(\bigcup T-A) \subseteq \bigcup T$ - $\operatorname{int}(A)$ by simp
moreover
from I have $\cup T-A \subseteq c l(\bigcup T-A)$ using cl_contains_set by simp
hence $\bigcup T-c l(\bigcup T-A) \subseteq A$ and $\bigcup T-A \subseteq \bigcup T$ by auto
then have $\cup T-c l(\bigcup T-A) \subseteq \operatorname{int}(A)$
using cl_is_closed IsClosed_def Top_2_L5 by simp
hence $\cup T$ - int $(A) \subseteq c l(U T-A)$ by auto
ultimately show $c l(\bigcup T-A)=\bigcup T-\operatorname{int}(A)$ by auto
qed
Boundary of a set is the closure of the set minus the interior of the set.

```
lemma (in topology0) Top_3_L12: assumes A1: A \(\subseteq \cup T\)
    shows \(\partial \mathrm{A}=\mathrm{cl}(\mathrm{A})-\operatorname{int}(\mathrm{A})\)
proof -
    from A1 have \(\partial \mathrm{A}=\mathrm{cl}(\mathrm{A}) \cap(\bigcup \mathrm{T}-\operatorname{int}(\mathrm{A}))\)
            using Boundary_def Top_3_L11 by simp
    moreover from A1 have
        \(\mathrm{cl}(\mathrm{A}) \cap(\bigcup \mathrm{T}-\operatorname{int}(\mathrm{A}))=\mathrm{cl}(\mathrm{A})-\operatorname{int}(\mathrm{A})\)
        using Top_3_L11 by blast
    ultimately show \(\partial \mathrm{A}=\mathrm{cl}(\mathrm{A})\) - int (A) by simp
qed
```

If a set A is contained in a closed set B, then the closure of A is contained in B.

```
lemma (in topology0) Top_3_L13:
    assumes A1: B {is closed in} T A\subseteqB
    shows cl(A) \subseteq B
proof -
    from A1 have B \subseteq\bigcupT using IsClosed_def by simp
    with A1 show cl(A) \subseteq B using ClosedCovers_def Closure_def by auto
qed
```

If a set is disjoint with an open set, then we can close it and it will still be disjoint.

```
lemma (in topology0) disj_open_cl_disj:
    assumes A1: \(A \subseteq \bigcup T \quad V \in T\) and \(A 2: A \cap V=0\)
    shows \(\mathrm{cl}(\mathrm{A}) \cap \mathrm{V}=0\)
proof -
    from assms have \(A \subseteq \bigcup T-V\) by auto
    moreover from A1 have ( \(\bigcup T-V\) ) \{is closed in\} T using Top_3_L9 by
simp
    ultimately have \(\mathrm{cl}(\mathrm{A})-(\bigcup T-V)=0\)
            using Top_3_L13 by blast
    moreover from A1 have \(c l(A) \subseteq \bigcup T\) using cl_is_closed IsClosed_def
by simp
```

```
    then have cl(A) - (\bigcupT - V) = cl(A) \cap V by auto
    ultimately show thesis by simp
qed
```

A reformulation of disj_open_cl_disj: If a point belongs to the closure of a set, then we can find a point from the set in any open neighboorhood of the point.
lemma (in topology0) cl_inter_neigh:
assumes $A \subseteq \bigcup T$ and $U \in T$ and $x \in c l(A) \cap U$
shows $A \cap U \neq 0$ using assms disj_open_cl_disj by auto
A reverse of cl_inter_neigh: if every open neiboorhood of a point has a nonempty intersection with a set, then that point belongs to the closure of the set.

```
lemma (in topology0) inter_neigh_cl:
    assumes A1: \(A \subseteq \bigcup T\) and \(A 2: x \in \bigcup T\) and \(A 3: ~ \forall U \in T . x \in U \longrightarrow U \cap A \neq 0\)
    shows \(\mathrm{x} \in \mathrm{cl}(\mathrm{A})\)
proof -
    \(\{\) assume \(\mathrm{x} \notin \mathrm{cl}(\mathrm{A})\)
            with \(A 1\) obtain \(D\) where \(D\) is closed in\} \(T\) and \(A \subseteq D\) and \(x \notin D\)
                using Top_3_L3 Closure_def ClosedCovers_def by auto
            let \(U=(U T)-D\)
            from A2 〈D \{is closed in\} \(T\rangle\langle x \notin D\rangle\langle A \subseteq D\rangle\) have \(U \in T x \in U\) and \(U \cap A=0\)
                unfolding IsClosed_def by auto
            with A3 have False by auto
    \} thus thesis by auto
qed
end
```


50 Topology 1

theory Topology_ZF_1 imports Topology_ZF
begin
In this theory file we study separation axioms and the notion of base and subbase. Using the products of open sets as a subbase we define a natural topology on a product of two topological spaces.

50.1 Separation axioms.

Topological spaces cas be classified according to certain properties called "separation axioms". In this section we define what it means that a topological space is T_{0}, T_{1} or T_{2}.

A topology on X is T_{0} if for every pair of distinct points of X there is an open set that contains only one of them.

definition

```
isTO (_ {is T T } [90] 91) where
```



```
(\existsU\inT. (x\inU ^ y\not\inU) \vee (y\inU ^ x\not\inU)))
```

A topology is T_{1} if for every such pair there exist an open set that contains the first point but not the second.

```
definition
    isT1 (_ {is T T1} [90] 91) where
    T {is T T } \equiv\forallxy. ((x\in\bigcupT^ y G UT^ x\not=y) \longrightarrow
    (\existsU\inT. (x\inU ^ y\not\inU)))
```

A topology is T_{2} (Hausdorff) if for every pair of points there exist a pair of disjoint open sets each containing one of the points. This is an important class of topological spaces. In particular, metric spaces are Hausdorff.

definition

```
isT2 (_ {is T T } [90] 91) where
T {is T T } \equiv\forallxy. ((x\in\bigcupT^ y \in UT^ x\not=y) \longrightarrow
(\existsU\inT. \existsV\inT. x\inU ^ y\inV ^ U\capV=0))
```

If a topology is T_{1} then it is T_{0}. We don't really assume here that T is a topology on X. Instead, we prove the relation between isT0 condition and isT1.

```
lemma T1_is_T0: assumes A1: T {is T T } shows T {is T T }
proof -
    from A1 have }\forall\textrm{x}y.\textrm{x}\in\bigcup\textrm{T}\wedge\textrm{y}\in\bigcup\textrm{UT}\wedge\textrm{x}\not=\textrm{y}
        ( \existsU\inT. x\inU ^ y\not\inU)
        using isT1_def by simp
    then have }\forall\textrm{x}y.\textrm{x}\in\bigcup\textrm{T}\wedge\textrm{y}\in\bigcup\textrm{T}\wedge\textrm{x}\not=\textrm{y}
            (\existsU\inT. x\inU ^ y }\not=|\veey\inU\wedgex\not\inU
            by auto
    then show T {is T T } using isT0_def by simp
qed
```

If a topology is T_{2} then it is T_{1}.

```
lemma T2_is_T1: assumes A1: T {is T T } shows T {is T T }
proof -
    { fix x y assume x 
            with A1 have \existsU\inT. \existsV\inT. x\inU ^ y\inV ^ U\capV=0
                using isT2_def by auto
            then have }\exists\textrm{U}\inT.\textrm{T}.x\inU\wedge y\not\inU by aut
    } then have }\forall\textrm{x}y.\textrm{x}\in\bigcup\mp@code{T}\wedge\textrm{y}\in\bigcup\textrm{U}\wedge \ x\not=y
                ( }\exists\textrm{U}\in\textrm{T}.\textrm{x}\in\textrm{U}\wedge \ y\not\inU) by sim
    then show T {is T T } using isT1_def by simp
qed
```

In a T_{0} space two points that can not be separated by an open set are equal. Proof by contradiction.

```
lemma Top_1_1_L1: assumes A1: \(T\) is \(\left.T_{0}\right\}\) and A2: \(x \in \bigcup T y \in \bigcup T\)
    and A3: \(\forall U \in T . \quad(x \in U \longleftrightarrow y \in U)\)
    shows \(x=y\)
proof -
    \{ assume \(\mathrm{x} \neq \mathrm{y}\)
            with A1 A2 have \(\exists \mathrm{U} \in \mathrm{T} . \mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \notin \mathrm{U} \vee \mathrm{y} \in \mathrm{U} \wedge \mathrm{x} \notin \mathrm{U}\)
                using isTO_def by simp
            with A3 have False by auto
    \} then show \(x=y\) by auto
qed
```


50.2 Bases and subbases.

Sometimes it is convenient to talk about topologies in terms of their bases and subbases. These are certain collections of open sets that define the whole topology.

A base of topology is a collection of open sets such that every open set is a union of the sets from the base.

```
definition
    IsAbaseFor (infixl {is a base for} 65) where
    B {is a base for} T \equiv B\subseteqT^T = {\bigcupA. A\inPow(B)}
```

A subbase is a collection of open sets such that finite intersection of those sets form a base.

```
definition
    IsAsubBaseFor (infixl {is a subbase for} 65) where
    B {is a subbase for} T \equiv
    B\subseteqT}^{{\bigcapA. A \in FinPow(B)} {is a base for} T
```

Below we formulate a condition that we will prove to be necessary and sufficient for a collection B of open sets to form a base. It says that for any two sets U, V from the collection B we can find a point $x \in U \cap V$ with a neighboorhod from B contained in $U \cap V$.

```
definition
    SatisfiesBaseCondition (_ {satisfies the base condition} [50] 50)
    where
    B {satisfies the base condition} \equiv
    \forallU V. ((U\inB ^ V\inB) \longrightarrow ( }\forall\textrm{x}\in\textrm{U}\cap\textrm{V}.\exists\textrm{F}\in\textrm{B}.\textrm{x}\in\textrm{W}\wedge \ W\subseteqU\capV)
```

A collection that is closed with respect to intersection satisfies the base condition.

```
lemma inter_closed_base: assumes }\forall\textrm{U}\in\textrm{B}.(\forallV\inB. U\capV \inB
    shows B {satisfies the base condition}
proof -
    { fix U V x assume U\inB and V\inB and }x\inU\cap
        with assms have }\exists\textrm{W}\in\textrm{B}.\textrm{x}\in\textrm{W}\wedge\W\subseteqU\capV by blas
```

```
    } then show thesis using SatisfiesBaseCondition_def by simp
qed
```

Each open set is a union of some sets from the base.

```
lemma Top_1_2_L1: assumes B {is a base for} T and U\inT
    shows }\exists\textrm{A}\in\textrm{Pow}(\textrm{B}).U=\bigcup
    using assms IsAbaseFor_def by simp
```

Elements of base are open.

```
lemma base_sets_open:
    assumes B {is a base for} T and U \in B
    shows U \in T
    using assms IsAbaseFor_def by auto
```

A base defines topology uniquely.

```
lemma same_base_same_top:
    assumes B {is a base for} T and B {is a base for} S
    shows T = S
    using assms IsAbaseFor_def by simp
```

Every point from an open set has a neighboorhood from the base that is contained in the set.

```
lemma point_open_base_neigh:
    assumes A1: \(B\) \{is a base for\} \(T\) and \(A 2: U \in T\) and \(A 3: x \in U\)
    shows \(\exists V \in B . V \subseteq U \wedge x \in V\)
proof -
    from A1 A2 obtain \(A\) where \(A \in \operatorname{Pow}(B)\) and \(U=\bigcup A\)
        using Top_1_2_L1 by blast
    with \(A 3\) obtain \(V\) where \(V \in A\) and \(x \in V\) by auto
    with \(\langle A \in \operatorname{Pow}(B)\rangle\langle U=\bigcup A\rangle\) show thesis by auto
qed
```

A criterion for a collection to be a base for a topology that is a slight reformulation of the definition. The only thing different that in the definition is that we assume only that every open set is a union of some sets from the base. The definition requires also the opposite inclusion that every union of the sets from the base is open, but that we can prove if we assume that T is a topology.

```
lemma is_a_base_criterion: assumes A1: T {is a topology}
    and A2: B \subseteq T and A3: \forallV G T. \existsA \in Pow(B). V = \A
    shows B {is a base for} T
proof -
    from A3 have T\subseteq{\A. A\inPow(B)} by auto
    moreover have {\A. A\inPow(B)}\subseteqT
    proof
        fix U assume U \in{\A. A\inPow(B)}
        then obtain A where A }\in\operatorname{Pow}(B)\mathrm{ and U = \A
```

```
        by auto
    with \langleB\subseteqT\rangle have A }\in\operatorname{Pow(T) by auto
    with A1 }\langleU=\bigcupA\rangle\mathrm{ show U }\in
        unfolding IsATopology_def by simp
    qed
    ultimately have T = {\A. A\inPow(B)} by auto
    with A2 show B {is a base for} T
    unfolding IsAbaseFor_def by simp
qed
```

A necessary condition for a collection of sets to be a base for some topology : every point in the intersection of two sets in the base has a neighboorhood from the base contained in the intersection.

```
lemma Top_1_2_L2:
    assumes A1:\existsT. T {is a topology} ^ B {is a base for} T
    and A2: V\inB W\inB
    shows }\forall\textrm{x}\in\textrm{V}\cap\textrm{W}.\exists\textrm{U}\in\textrm{B}.\textrm{x}\in\textrm{U}\wedge\U\subseteq\textrm{V}\cap\textrm{W
proof -
    from A1 obtain T where
        D1: T {is a topology} B {is a base for} T
        by auto
    then have B \subseteq T using IsAbaseFor_def by auto
    with A2 have V }\inT\mathrm{ and }W\inT\mathrm{ using IsAbaseFor_def by auto
    with D1 have }\exists\textrm{A}\in\textrm{Pow}(B). V\capW = \A using IsATopology_def Top_1_2_L1
        by auto
    then obtain A where A}\subseteqB\mathrm{ and V }\cap\textrm{W}=\bigcup\textrm{A}\mathrm{ by auto
    then show }\forallx\inV\capW. \existsU\inB. (x\inU ^U\subseteqV\capW) by aut
qed
```

We will construct a topology as the collection of unions of (would-be) base. First we prove that if the collection of sets satisfies the condition we want to show to be sufficient, the the intersection belongs to what we will define as topology (am I clear here?). Having this fact ready simplifies the proof of the next lemma. There is not much topology here, just some set theory.

```
lemma Top_1_2_L3:
    assumes A1: \(\forall \mathrm{x} \in \mathrm{V} \cap \mathrm{W} . \exists \mathrm{U} \in \mathrm{B} . \mathrm{x} \in \mathrm{U} \wedge \mathrm{U} \subseteq \mathrm{V} \cap \mathrm{W}\)
    shows \(V \cap W \in\{\bigcup A . A \in \operatorname{Pow}(B)\}\)
proof
    let \(A=\bigcup x \in V \cap W .\{U \in B . \quad x \in U \wedge U \subseteq V \cap W\}\)
    show \(A \in \operatorname{Pow}(B)\) by auto
    from A1 show \(\mathrm{V} \cap \mathrm{W}=\bigcup \mathrm{A}\) by blast
qed
```

The next lemma is needed when proving that the would-be topology is closed with respect to taking intersections. We show here that intersection of two sets from this (would-be) topology can be written as union of sets from the topology.
lemma Top_1_2_L4:

```
    assumes A1: }\mp@subsup{U}{1}{}\in{\A.A\inPow(B)} \mp@subsup{U}{2}{}\in{\cupA.A\in\operatorname{Pow}(B)
    and A2: B {satisfies the base condition}
    shows \existsC. C\subseteq{UA. A\inPow(B)}^ U U \capU U = UC
proof -
    from A1 A2 obtain A A A2 where
        D1: }\mp@subsup{A}{1}{}\in\operatorname{Pow(B) U}\mp@subsup{U}{1}{}=\\mp@subsup{A}{1}{}\quad\mp@subsup{A}{2}{}\in\operatorname{Pow(B) U
        by auto
    let C = UU\inA. .{U\capV. V\inA A }
    from D1 have ( }\forall\textrm{U}\in\mp@subsup{A}{1}{}.,U\inB)\wedge(\forallV\in\mp@subsup{A}{2}{}.V\inB) by aut
    with A2 have C \subseteq{{\A. A \in Pow(B)}
        using Top_1_2_L3 SatisfiesBaseCondition_def by auto
    moreover from D1 have }\mp@subsup{\textrm{U}}{1}{}\cap\mp@subsup{\textrm{U}}{2}{}=\\textrm{UC}\mathrm{ by auto
    ultimately show thesis by auto
qed
```

If B satisfies the base condition, then the collection of unions of sets from B is a topology and B is a base for this topology.

```
theorem Top_1_2_T1:
    assumes A1: B \{satisfies the base condition\}
    and \(A 2: T=\{\bigcup A . A \in \operatorname{Pow}(B)\}\)
    shows T \{is a topology\} and B \{is a base for\} T
proof -
    show T \{is a topology\}
    proof -
        have I: \(\forall C \in \operatorname{Pow}(T) . \bigcup C \in T\)
        proof -
            \{ fix \(C\) assume A3: \(C \in \operatorname{Pow}(T)\)
                let \(Q=\bigcup\{\bigcup\{A \in \operatorname{Pow}(B) . U=\bigcup A\} . U \in C\}\)
                from \(A 2\) A3 have \(\forall U \in C . \exists A \in \operatorname{Pow}(B) . U=\bigcup A\) by auto
                then have \(\bigcup Q=\bigcup C\) using ZF1_1_L10 by simp
                moreover from \(A 2\) have \(\cup Q \in T\) by auto
                ultimately have \(\cup C \in T\) by simp
            \} thus \(\forall C \in \operatorname{Pow}(T) . \bigcup C \in T\) by auto
        qed
        moreover have \(\forall U \in T . \forall V \in T . U \cap V \in T\)
        proof -
            \{ fix \(U V\) assume \(U \in T V \in T\)
                with A1 A2 have \(\exists \mathrm{C} .(\mathrm{C} \subseteq \mathrm{T} \wedge \mathrm{U} \cap \mathrm{V}=\bigcup \mathrm{C})\)
                using Top_1_2_L4 by simp
                then obtain \(C\) where \(C \subseteq T\) and \(U \cap V=\bigcup C\)
                    by auto
                        with I have U \(\cap V \in T\) by simp
            \} then show \(\forall \mathrm{U} \in \mathrm{T} . \forall \mathrm{V} \in \mathrm{T} . \mathrm{U} \cap \mathrm{V} \in \mathrm{T}\) by simp
        qed
        ultimately show T \{is a topology\} using IsATopology_def
                by simp
    qed
    from \(A 2\) have \(B \subseteq T\) by auto
    with A2 show B \{is a base for\} T using IsAbaseFor_def
```

```
    by simp
qed
```

The carrier of the base and topology are the same.

```
lemma Top_1_2_L5: assumes B {is a base for} T
    shows \bigcupT = UB
    using assms IsAbaseFor_def by auto
```

If B is a base for T, then T is the smallest topology containing B.

```
lemma base_smallest_top:
    assumes A1: B {is a base for} T and A2: S {is a topology} and A3:
B\subseteqS
    shows T\subseteqS
proof
    fix U assume U\inT
    with A1 obtain }\mp@subsup{B}{U}{}\mathrm{ where }\mp@subsup{B}{U}{}\subseteqB\mathrm{ and }U=\bigcup\mp@subsup{B}{U}{}\mathrm{ w using IsAbaseFor_def
by auto
    with A3 have }\mp@subsup{\textrm{B}}{U}{}\subseteq\textrm{S}\mathrm{ by auto
    with A2 \langleU = \bigcup B B \ show U\inS using IsATopology_def by simp
qed
```

If B is a base for T and B is a topology, then $B=T$.
lemma base_topology: assumes B \{is a topology\} and B \{is a base for\}
T
shows $\mathrm{B}=\mathrm{T}$ using assms base_sets_open base_smallest_top by blast

50.3 Product topology

In this section we consider a topology defined on a product of two sets.
Given two topological spaces we can define a topology on the product of the carriers such that the cartesian products of the sets of the topologies are a base for the product topology. Recall that for two collections S, T of sets the product collection is defined (in ZF1.thy) as the collections of cartesian products $A \times B$, where $A \in S, B \in T$.

```
definition
    ProductTopology (T,S) \(\equiv\{\bigcup \mathrm{W} . \mathrm{W} \in \operatorname{Pow}(\operatorname{ProductCollection(T,S))\} }\)
```

The product collection satisfies the base condition.

```
lemma Top_1_4_L1:
    assumes A1: T {is a topology} S {is a topology}
    and A2: A \in ProductCollection(T,S) B \in ProductCollection(T,S)
    shows }\forallx\in(A\capB). \existsW\inProductCollection(T,S). (x\inW ^W\subseteqA\capB
proof
    fix x assume A3: x }\inA\cap
    from A2 obtain U1 V }\mp@subsup{V}{1}{}\mp@subsup{U}{2}{}\mp@subsup{V}{2}{}\mathrm{ where
        D1: U}\mp@subsup{U}{1}{}\inT\quad\mp@subsup{V}{1}{}\inS A=\mp@subsup{U}{1}{}\times\mp@subsup{V}{1}{}\quad\mp@subsup{U}{2}{}\inT\quad\mp@subsup{V}{2}{}\inS\quadB=\mp@subsup{U}{2}{}\times\mp@subsup{V}{2}{
```

using ProductCollection_def by auto
let $\mathrm{W}=\left(\mathrm{U}_{1} \cap \mathrm{U}_{2}\right) \times\left(\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right)$
from A1 $D 1$ have $U_{1} \cap U_{2} \in T$ and $V_{1} \cap V_{2} \in S$
using IsATopology_def by auto
then have $W \in$ ProductCollection(T,S) using ProductCollection_def by auto
moreover from A3 D1 have $x \in W$ and $W \subseteq A \cap B$ by auto
ultimately have $\exists \mathrm{W}$. ($W \in$ ProductCollection(T, S) $\wedge x \in W \wedge W \subseteq A \cap B$) by auto
thus $\exists \mathrm{W} \in$ ProductCollection(T, S). ($x \in W \wedge W \subseteq A \cap B)$ by auto qed

The product topology is indeed a topology on the product.

```
theorem Top_1_4_T1: assumes A1: T {is a topology} S {is a topology}
    shows
    ProductTopology(T,S) {is a topology}
    ProductCollection(T,S) {is a base for} ProductTopology(T,S)
    UProductTopology(T,S) = \T }\times\\
proof -
    from A1 show
        ProductTopology(T,S) {is a topology}
        ProductCollection(T,S) {is a base for} ProductTopology(T,S)
        using Top_1_4_L1 ProductCollection_def
            SatisfiesBaseCondition_def ProductTopology_def Top_1_2_T1
        by auto
    then show }\bigcup\mathrm{ ProductTopology(T,S) = UT }\times\\
        using Top_1_2_L5 ZF1_1_L6 by simp
qed
```

Each point of a set open in the product topology has a neighborhood which is a cartesian product of open sets.

```
lemma prod_top_point_neighb:
    assumes A1: T {is a topology} S {is a topology} and
    A2: U \in ProductTopology(T,S) and A3: x \in U
    shows \existsV W. V\inT ^ W\inS ^V\timesW\subseteqU ^ x f V \ W
proof -
    from A1 have
        ProductCollection(T,S) {is a base for} ProductTopology(T,S)
        using Top_1_4_T1 by simp
    with A2 A3 obtain Z where
        Z \in ProductCollection(T,S) and Z \subseteq U ^ x\inZ
        using point_open_base_neigh by blast
    then obtain V W where V G T and W\inS and V }\timesW\mathrm{ W }\subseteqU\wedge \ x\inV V W
            using ProductCollection_def by auto
    thus thesis by auto
qed
Products of open sets are open in the product topology.
lemma prod_open_open_prod:
```

```
    assumes A1: T {is a topology} S {is a topology} and
    A2: U UT V }\in
    shows U\timesV \in ProductTopology(T,S)
proof -
    from A1 have
        ProductCollection(T,S) {is a base for} ProductTopology(T,S)
        using Top_1_4_T1 by simp
    moreover from A2 have U }\timesV=\mathrm{ VroductCollection(T,S)
        unfolding ProductCollection_def by auto
    ultimately show U }\timesV=1, ProductTopology(T,S
        using base_sets_open by simp
qed
```

Sets that are open in th product topology are contained in the product of the carrier.

```
lemma prod_open_type: assumes A1: T {is a topology} S {is a topology}
```

and
A2: V \in ProductTopology (T,S)
shows $V \subseteq \bigcup T \times \bigcup S$
proof -
from A2 have $V \subseteq \bigcup$ ProductTopology(T,S) by auto
with A1 show thesis using Top_1_4_T1 by simp
qed

Suppose we have subsets $A \subseteq X, B \subseteq Y$, where X, Y are topological spaces with topologies T, S. We can the consider relative topologies on T_{A}, S_{B} on sets A, B and the collection of cartesian products of sets open in T_{A}, S_{B}, (namely $\left\{U \times V: U \in T_{A}, V \in S_{B}\right\}$. The next lemma states that this collection is a base of the product topology on $X \times Y$ restricted to the product $A \times B$.

```
lemma prod_restr_base_restr:
    assumes A1: T {is a topology} S {is a topology}
    shows
    ProductCollection(T {restricted to} A, S {restricted to} B)
    {is a base for} (ProductTopology(T,S) {restricted to} A }\times\mathrm{ B)
proof -
    let \mathcal{B = ProductCollection(T {restricted to} A, S {restricted to} B)}
    let }\tau=\mathrm{ ProductTopology(T,S)
    from A1 have ( }\tau\mathrm{ {restricted to} A }\times\textrm{B}\mathrm{ ) {is a topology}
        using Top_1_4_T1 topology0_def topology0.Top_1_L4
        by simp
    moreover have \mathcal{B}\subseteq(\tau {restricted to} A }\times\textrm{B}\mathrm{ )
    proof
        fix }U\mathrm{ assume }U\in\mathcal{B
        then obtain }\mp@subsup{\textrm{U}}{A}{}\mp@subsup{\textrm{U}}{B}{}\mathrm{ where U = U U
            U}\mp@subsup{A}{A}{}\in(T {restricted to} A) and U UB (S {restricted to} B),
            using ProductCollection_def by auto
        then obtain }\mp@subsup{\textrm{W}}{A}{}\mp@subsup{\textrm{W}}{B}{}\mathrm{ where
```

```
        \(\mathrm{W}_{A} \in \mathrm{~T} \quad \mathrm{U}_{A}=\mathrm{W}_{A} \cap \mathrm{~A}\) and \(\mathrm{W}_{B} \in \mathrm{~S} \quad \mathrm{U}_{B}=\mathrm{W}_{B} \cap \mathrm{~B}\)
        using RestrictedTo_def by auto
    with \(\left\langle\mathrm{U}=\mathrm{U}_{A} \times \mathrm{U}_{B}\right.\) 〉 have \(\mathrm{U}=\mathrm{W}_{A} \times \mathrm{W}_{B} \cap(\mathrm{~A} \times \mathrm{B})\) by auto
    moreover from \(\mathrm{A} 1\left\langle\mathrm{~W}_{A} \in \mathrm{~T}\right\rangle\) and \(\left\langle\mathrm{W}_{B} \in \mathrm{~S}\right\rangle\) have \(\mathrm{W}_{A} \times \mathrm{W}_{B} \in \tau\)
        using prod_open_open_prod by simp
    ultimately show \(U \in \tau\) \{restricted to\} \(A \times B\)
        using RestrictedTo_def by auto
    qed
    moreover have \(\forall U \in \tau\) \{restricted to\} \(A \times B\).
    \(\exists \mathrm{C} \in \operatorname{Pow}(\mathcal{B}) . \mathrm{U}=\bigcup \mathrm{C}\)
proof
    fix \(U\) assume \(U \in \tau\) \{restricted to\} \(A \times B\)
    then obtain \(W\) where \(W \in \tau\) and \(U=W \cap(A \times B)\)
        using RestrictedTo_def by auto
    from \(\mathrm{A} 1\langle\mathrm{~W} \in \tau\rangle\) obtain \(\mathrm{A}_{W}\) where
        \(\mathrm{A}_{W} \in \operatorname{Pow}(\operatorname{ProductCollection}(\mathrm{~T}, \mathrm{~S}))\) and \(\mathrm{W}=\bigcup \mathrm{A}_{W}\)
            using Top_1_4_T1 IsAbaseFor_def by auto
    let \(C=\left\{V \cap A \times B . V \in A_{W}\right\}\)
    have \(C \in \operatorname{Pow}(\mathcal{B})\) and \(U=\bigcup C\)
    proof -
        \{ fix \(R\) assume \(R \in C\)
then obtain \(V\) where \(V \in A_{W}\) and \(R=V \cap A \times B\)
    by auto
with \(\left\langle\mathrm{A}_{W} \in \operatorname{Pow}(\right.\) ProductCollection(T,S)) \(\rangle\) obtain \(\mathrm{V}_{T} \mathrm{~V}_{S}\) where
    \(\mathrm{V}_{T} \in \mathrm{~T}\) and \(\mathrm{V}_{S} \in \mathrm{~S}\) and \(\mathrm{V}=\mathrm{V}_{T} \times \mathrm{V}_{S}\)
    using ProductCollection_def by auto
with \(\langle R=V \cap A \times B\rangle\) have \(R \in \mathcal{B}\)
    using ProductCollection_def RestrictedTo_def
    by auto
            \(\}\) then show \(C \in \operatorname{Pow}(\mathcal{B})\) by auto
        from \(\langle U=W \cap(A \times B)\rangle\) and \(\left\langle W=\bigcup A_{W}\right\rangle\)
        show \(U=\bigcup C\) by auto
            qed
            thus \(\exists C \in \operatorname{Pow}(\mathcal{B}) . U=\bigcup C\) by blast
    qed
    ultimately show thesis by (rule is_a_base_criterion)
qed
```

We can commute taking restriction (relative topology) and product topology.
The reason the two topologies are the same is that they have the same base.

```
lemma prod_top_restr_comm:
    assumes A1: T {is a topology} S {is a topology}
    shows
    ProductTopology(T {restricted to} A,S {restricted to} B) =
    ProductTopology(T,S) {restricted to} (A A B)
proof -
    let \mathcal{B = ProductCollection(T {restricted to} A, S {restricted to} B)}
    from A1 have
        \mathcal{B {is a base for} ProductTopology(T {restricted to} A,S {restricted}
```

```
to} B)
    using topology0_def topology0.Top_1_L4 Top_1_4_T1 by simp
    moreover from A1 have
        \mathcal{B {is a base for} ProductTopology(T,S) {restricted to} (A}\times\textrm{B})
        using prod_restr_base_restr by simp
    ultimately show thesis by (rule same_base_same_top)
qed
```

Projection of a section of an open set is open.

```
lemma prod_sec_open1: assumes A1: T {is a topology} S {is a topology}
and
    A2: V \in ProductTopology(T,S) and A3: x }\in\bigcup\
    shows {y \in \S. {x,y\rangle\inV} \in S
proof -
    let A = {y \in US. \langlex,y\rangle\inV}
    from A1 have topology0(S) using topology0_def by simp
    moreover have }\forally\inA.\existsW\inS.(y\inW \wedge W\subseteqA
        proof
            fix y assume y }\in
            then have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{V}\mathrm{ by simp
            with A1 A2 have }\langle\textrm{x},\textrm{y}\rangle\in\bigcupT\times\S\mathrm{ using prod_open_type by blast
            hence }x\in\bigcupT\mathrm{ and }y\in\bigcupS\mathrm{ by auto
            from A1 A2 }\langle\langle\textrm{x},\textrm{y}\rangle\in\textrm{V}\rangle\mathrm{ have }\exists\textrm{U}W.\textrm{W}.\textrm{U}\in\textrm{T}\wedge\textrm{W}\in\textrm{S}\wedge|\textrm{U}\times\textrm{W}\subseteq\textrm{V}\wedge\langle\textrm{x},\textrm{y}
E U\timesW
                by (rule prod_top_point_neighb)
            then obtain U W where U\inT W\inS U }\times\textrm{W}\subseteq\textrm{V}\langle\textrm{x},\textrm{y}\rangle\in\textrm{U}\times\textrm{W
                    by auto
            with A1 A2 show }\exists\textrm{W}\in\textrm{S}.(y\inW ^ W\subseteqA) using prod_open_type section_pro
                    by auto
        qed
    ultimately show thesis by (rule topology0.open_neigh_open)
qed
```

Projection of a section of an open set is open. This is dual of prod_sec_open1 with a very similar proof.
lemma prod_sec_open2: assumes A1: T \{is a topology\} S \{is a topology\} and
A2: $V \in \operatorname{ProductTopology(T,S)~and~A3:~y~} \in \bigcup S$
shows $\{x \in \bigcup T .\langle x, y\rangle \in V\} \in T$
proof -
let $A=\{x \in \bigcup T .\langle x, y\rangle \in V\}$
from A1 have topology0(T) using topology0_def by simp
moreover have $\forall x \in A . \exists W \in T$. $(x \in W \wedge W \subseteq A)$
proof
fix x assume $x \in A$
then have $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{V}$ by simp
with A1 A2 have $\langle\mathrm{x}, \mathrm{y}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{S}$ using prod_open_type by blast
hence $x \in \bigcup T$ and $y \in \bigcup S$ by auto
from A1 A2 $\langle\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{V}\rangle$ have $\exists \mathrm{U} \mathrm{W} . \mathrm{U} \in \mathrm{T} \wedge \mathrm{W} \in \mathrm{S} \wedge \mathrm{U} \times \mathrm{W} \subseteq \mathrm{V} \wedge\langle\mathrm{x}, \mathrm{y}\rangle$ $\in \mathrm{U} \times \mathrm{W}$
by (rule prod_top_point_neighb)
then obtain $U W$ where $U \in T W \in S U \times W \subseteq V\langle x, y\rangle \in U \times W$ by auto
with A1 A2 show $\exists \mathrm{W} \in \mathrm{T}$. ($x \in \mathrm{~W} \wedge \mathrm{~W} \subseteq \mathrm{~A}$) using prod_open_type section_proj by auto
qed
ultimately show thesis by (rule topology0.open_neigh_open)
qed
end

51 Topology 1b

theory Topology_ZF_1b imports Topology_ZF_1

begin

One of the facts demonstrated in every class on General Topology is that in a T_{2} (Hausdorff) topological space compact sets are closed. Formalizing the proof of this fact gave me an interesting insight into the role of the Axiom of Choice (AC) in many informal proofs.
A typical informal proof of this fact goes like this: we want to show that the complement of K is open. To do this, choose an arbitrary point $y \in K^{c}$. Since X is T_{2}, for every point $x \in K$ we can find an open set U_{x} such that $y \notin \overline{U_{x}}$. Obviously $\left\{U_{x}\right\}_{x \in K}$ covers K, so select a finite subcollection that covers K, and so on. I had never realized that such reasoning requires the Axiom of Choice. Namely, suppose we have a lemma that states "In T_{2} spaces, if $x \neq y$, then there is an open set U such that $x \in U$ and $y \notin \bar{U}$ " (like our lemma T2_cl_open_sep below). This only states that the set of such open sets U is not empty. To get the collection $\left\{U_{x}\right\}_{x \in K}$ in this proof we have to select one such set among many for every $x \in K$ and this is where we use the Axiom of Choice. Probably in 99/100 cases when an informal calculus proof states something like $\forall \varepsilon \exists \delta_{\varepsilon} \cdots$ the proof uses AC. Most of the time the use of AC in such proofs can be avoided. This is also the case for the fact that in a T_{2} space compact sets are closed.

51.1 Compact sets are closed - no need for AC

In this section we show that in a T_{2} topological space compact sets are closed.

First we prove a lemma that in a T_{2} space two points can be separated by the closure of an open set.

```
lemma (in topology0) T2_cl_open_sep:
```



```
    shows }\exists\textrm{U}\in\textrm{T}.\quad(x\inU\wedgey\not\incl(U)
proof -
    from assms have }\exists\textrm{U}\inT
        using isT2_def by simp
    then obtain U V where U\inT V\inT }x\inU\quady\inV\quadU\capV=
        by auto
    then have U\inT ^ x\inU ^ y\inV ^ cl(U) \cap V = 0
        using disj_open_cl_disj by auto
    thus }\exists\textrm{U}\in\textrm{T}.(x\inU\wedgey\not\incl(U)) by aut
qed
```

AC-free proof that in a Hausdorff space compact sets are closed. To understand the notation recall that in Isabelle/ZF Pow(A) is the powerset (the set of subsets) of A and FinPow(A) denotes the set of finite subsets of A in IsarMathLib.

```
theorem (in topology0) in_t2_compact_is_cl:
    assumes A1: T {is T T } and A2: K {is compact in} T
    shows K {is closed in} T
proof -
    let X = UT
    have }\forall\textrm{y}\in\textrm{X}-\textrm{K}.\exists\textrm{U}\in\textrm{T}.\textrm{y}\in\textrm{U}\wedge|\textrm{U}\subseteq\textrm{X}-\textrm{K
    proof -
        { fix y assume y \in X y }\not\in\textrm{K
            have }\exists\textrm{U}\inT.y\inU\wedgeU\subseteqX-
            proof -
    let B = \bigcup x\inK. {V\inT. x\inV ^ y \not\incl(V)}
    have I: B \in Pow(T) FinPow(B) \subseteq Pow(B)
        using FinPow_def by auto
    from \langleK {is compact in} T\rangle\langley \in X \ \langley\not\inK\rangle have
        \forallx\inK. x }\in\textrm{X}\wedge y \in X ^ x\not=
        using IsCompact_def by auto
    with \T {is T T } \ have }\forall\textrm{x}\in\textrm{K}.{\mp@code{V}\in\textrm{T}.\textrm{x}\in\textrm{V}\wedge\textrm{y}\not\in\textrm{cl}(\textrm{V})}\not=
        using T2_cl_open_sep by auto
    hence K}\subseteq\bigcup\ b by blas
    with <K {is compact in} T〉 I have
        \existsN}\in\operatorname{FinPow(B). K\subseteq\bigcupN
        using IsCompact_def by auto
    then obtain N where N G FinPow(B) K \subseteq\ UN
        by auto
    with I have N \subseteq B by auto
    hence }\forall\textrm{V}\in\textrm{N}.\textrm{V}\in\textrm{B}\mathrm{ by auto
    let M = {cl(V). V\inN}
    let C = {D \in Pow(X). D {is closed in} T}
    from <N \in FinPow(B) \ have }\forall\textrm{V}\in\textrm{B}.\textrm{cl}(\textrm{V})\in\textrm{C}N|\operatorname{NinPow(B)
        using cl_is_closed IsClosed_def by auto
    then have M G FinPow(C) by (rule fin_image_fin)
    then have X - \M G T using fin_union_cl_is_cl IsClosed_def
```

```
    by simp
moreover from <y \in X < <y\not\inK> \langle\forallV\inN. V\inB\rangle have
    y \in X - \bigcupM by simp
moreover have X - \M\subseteq X - K
proof -
    from \langle\forallV\inN. V\inB\rangle have \ \N\subseteq\bigcupM using cl_contains_set by auto
    with \langleK}\subseteq\bigcup\N` show X - \bigcupM\subseteq X - K by aut
qed
ultimately have \existsU. U\inT ^ y \in U ^ U\subseteq X - K
    by auto
thus }\exists\textrm{U}\in\textrm{T}.\textrm{y}\in\textrm{U}\wedgeU\subseteq\textrm{U}\subseteq\textrm{X}-\textrm{K}\mathrm{ by auto
            qed
    } thus }\forally\inX-K.\existsU\inT. y\inU ^U\subseteqX - 
            by auto
    qed
    with A2 show K {is closed in} T
    using open_neigh_open IsCompact_def IsClosed_def by auto
qed
end
```


52 Topology 2

theory Topology_ZF_2 imports Topology_ZF_1 func1 Fol1

begin

This theory continues the series on general topology and covers the definition and basic properties of continuous functions. We also introduce the notion of homeomorphism an prove the pasting lemma.

52.1 Continuous functions.

In this section we define continuous functions and prove that certain conditions are equivalent to a function being continuous.

In standard math we say that a function is contiuous with respect to two topologies τ_{1}, τ_{2} if the inverse image of sets from topology τ_{2} are in τ_{1}. Here we define a predicate that is supposed to reflect that definition, with a difference that we don't require in the definition that τ_{1}, τ_{2} are topologies. This means for example that when we define measurable functions, the definition will be the same.
The notation f -(A) means the inverse image of (a set) A with respect to (a function) f.

definition

IsContinuous $\left(\tau_{1}, \tau_{2}, \mathrm{f}\right) \equiv\left(\forall \mathrm{U} \in \tau_{2} . \mathrm{f}-(\mathrm{U}) \in \tau_{1}\right)$

A trivial example of a continuous function - identity is continuous.

```
lemma id_cont: shows IsContinuous \((\tau, \tau, \operatorname{id}(\bigcup \tau))\)
proof -
    \{ fix \(U\) assume \(U \in \tau\)
        then have \(\operatorname{id}(\bigcup \tau)-(U)=U\) using vimage_id_same by auto
        with \(\langle\mathrm{U} \in \tau\rangle\) have \(\operatorname{id}(\cup \tau)-(\mathrm{U}) \in \tau\) by simp
    \(\}\) then show IsContinuous \((\tau, \tau\),id \((\bigcup \tau)\) ) using IsContinuous_def
        by simp
qed
```

We will work with a pair of topological spaces. The following locale sets up our context that consists of two topologies τ_{1}, τ_{2} and a continuous function $f: X_{1} \rightarrow X_{2}$, where X_{i} is defined as $\bigcup \tau_{i}$ for $i=1,2$. We also define notation $\mathrm{cl}_{1}(\mathrm{~A})$ and $\mathrm{cl}_{2}(\mathrm{~A})$ for closure of a set A in topologies τ_{1} and τ_{2}, respectively.

```
locale two_top_spaces0 =
    fixes }\mp@subsup{\tau}{1}{
assumes tau1_is_top: }\mp@subsup{\tau}{1}{}\mathrm{ {is a topology}
fixes }\mp@subsup{\tau}{2}{
assumes tau2_is_top: }\mp@subsup{\tau}{2}{}\mathrm{ {is a topology}
fixes }\mp@subsup{\textrm{X}}{1}{
defines X1_def [simp]: X 
fixes }\mp@subsup{\textrm{X}}{2}{
defines X2_def [simp]: X X \equiv\bigcup \tau \
fixes f
assumes fmapAssum: f: X }\mp@subsup{X}{1}{}->\mp@subsup{X}{2}{
fixes isContinuous (_ {is continuous} [50] 50)
defines isContinuous_def [simp]: g {is continuous} \equiv IsContinuous( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{},\textrm{g}
fixes cl 
defines cl1_def [simp]: cl (A) \equiv Closure(A, , (1)
fixes }\mp@subsup{\textrm{cl}}{2}{
defines cl2_def [simp]: cl (A) \equiv Closure(A, }\mp@subsup{\tau}{2}{\prime}\mathrm{ )
```

First we show that theorems proven in locale topology0 are valid when applied to topologies τ_{1} and τ_{2}.

```
lemma (in two_top_spaces0) topol_cntxs_valid:
    shows topology0( }\tau1)\mathrm{ ) and topology0( }\tau2\mathrm{ )
    using tau1_is_top tau2_is_top topology0_def by auto
```

For continuous functions the inverse image of a closed set is closed.

```
lemma (in two_top_spaces0) TopZF_2_1_L1:
    assumes A1: f {is continuous} and A2: D {is closed in} }\mp@subsup{\tau}{2}{
    shows f-(D) {is closed in} }\mp@subsup{\tau}{1}{
proof -
    from fmapAssum have f-(D) \subseteq X ( using func1_1_L3 by simp
    moreover from fmapAssum have f-( }\mp@subsup{X}{2}{}-D\mathrm{ ) = ( X - f-(D)
        using Pi_iff function_vimage_Diff func1_1_L4 by auto
    ultimately have }\mp@subsup{X}{1}{}-f-(\mp@subsup{X}{2}{}-D)=f-(D) by aut
    moreover from A1 A2 have ( }\mp@subsup{\textrm{X}}{1}{}-\textrm{f}-(\mp@subsup{\textrm{X}}{2}{}-\textrm{D})\mathrm{ ) {is closed in} }\mp@subsup{\tau}{1}{
        using IsClosed_def IsContinuous_def topol_cntxs_valid topology0.Top_3_L9
        by simp
    ultimately show f-(D) {is closed in} }\mp@subsup{\tau}{1}{}\mathrm{ by simp
qed
```

If the inverse image of every closed set is closed, then the image of a closure is contained in the closure of the image.

```
lemma (in two_top_spaces0) Top_ZF_2_1_L2:
    assumes A1: \(\forall \mathrm{D}\). ( ( D \{is closed in\} \(\tau_{2}\) ) \(\longrightarrow \mathrm{f}-(\mathrm{D})\) \{is closed in\} \(\tau_{1}\) )
    and A2: \(\mathrm{A} \subseteq \mathrm{X}_{1}\)
    shows \(f\left(\mathrm{cl}_{1}(\mathrm{~A})\right) \subseteq \mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\)
proof -
    from fmapAssum have \(f(A) \subseteq \mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\)
        using func1_1_L6 topol_cntxs_valid topology0.cl_contains_set
        by simp
    with fmapAssum have \(f-(f(A)) \subseteq f-\left(c l_{2}(f(A))\right)\)
        by auto
    moreover from fmapAssum \(A 2\) have \(A \subseteq f-(f(A))\)
        using func1_1_L9 by simp
    ultimately have \(\mathrm{A} \subseteq \mathrm{f}-\left(\mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\right.\) ) by auto
    with fmapAssum A1 have \(f\left(c l_{1}(A)\right) \subseteq f\left(f-\left(c l_{2}(f(A))\right)\right)\)
        using func1_1_L6 func1_1_L8 IsClosed_def
                topol_cntxs_valid topology0.cl_is_closed topology0.Top_3_L13
        by simp
    moreover from fmapAssum have \(f\left(f-\left(\mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\right)\right) \subseteq \mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\)
        using fun_is_function function_image_vimage by simp
    ultimately show \(f\left(\mathrm{cl}_{1}(\mathrm{~A})\right) \subseteq \mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\)
        by auto
qed
```

If $f(\bar{A}) \subseteq \overline{f(A)}$ (the image of the closure is contained in the closure of the image), then $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$ (the inverse image of the closure contains the closure of the inverse image).

```
lemma (in two_top_spaces0) Top_ZF_2_1_L3:
    assumes A1: \(\forall \mathrm{A} .\left(\mathrm{A} \subseteq \mathrm{X}_{1} \longrightarrow \mathrm{f}\left(\mathrm{cl} 1_{1}(\mathrm{~A})\right) \subseteq \mathrm{cl}_{2}(\mathrm{f}(\mathrm{A}))\right)\)
    shows \(\forall B . \quad\left(B \subseteq X_{2} \longrightarrow c l_{1}(f-(B)) \subseteq f-\left(c l_{2}(B)\right)\right)\)
proof -
    \(\left\{\right.\) fix \(B\) assume \(B \subseteq X_{2}\)
        from fmapAssum A1 have \(f\left(c l_{1}(f-(B))\right) \subseteq c_{2}(f(f-(B)))\)
            using func1_1_L3 by simp
```

```
    moreover from fmapAssum }\langle\textrm{B}\subseteq\mp@subsup{X}{2}{}\rangle\mathrm{ have cl (f(f-(B))) }\subseteqc\mp@subsup{l}{2}{\prime}(B
        using fun_is_function function_image_vimage func1_1_L6
topol_cntxs_valid topology0.top_closure_mono
        by simp
        ultimately have f-(f(cl (f-(B)))) \subseteqf-(cl_ (B))
            using fmapAssum fun_is_function by auto
    moreover from fmapAssum < 
        Cl l
        using func1_1_L3 func1_1_L9 IsClosed_def
topol_cntxs_valid topology0.cl_is_closed by simp
    ultimately have cl (f-(B)) \subseteqf-(cl_(B)) by auto
    } then show thesis by simp
qed
```

If $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$ (the inverse image of a closure contains the closure of the inverse image), then the function is continuous. This lemma closes a series of implications in lemmas Top_ZF_2_1_L1, Top_ZF_2_1_L2 and Top_ZF_2_1_L3 showing equivalence of four definitions of continuity.

```
lemma (in two_top_spaces0) Top_ZF_2_1_L4:
    assumes A1: \(\forall \mathrm{B} .\left(\mathrm{B} \subseteq \mathrm{X}_{2} \longrightarrow \mathrm{cl}_{1}(\mathrm{f}-(\mathrm{B})) \subseteq \mathrm{f}-\left(\mathrm{cl}_{2}(\mathrm{~B})\right)\right)\)
    shows \(f\) \{is continuous\}
proof -
    \(\left\{\right.\) fix \(U\) assume \(U \in \tau_{2}\)
        then have ( \(\mathrm{X}_{2}-\mathrm{U}\) ) \{is closed in\} \(\tau_{2}\)
            using topol_cntxs_valid topology0.Top_3_L9 by simp
            moreover have \(\mathrm{X}_{2}-\mathrm{U} \subseteq \bigcup \tau_{2}\) by auto
            ultimately have \(\mathrm{cl}_{2}\left(\mathrm{X}_{2}-\mathrm{U}\right)=\mathrm{X}_{2}-\mathrm{U}\)
                using topol_cntxs_valid topology0.Top_3_L8 by simp
            moreover from A1 have \(\mathrm{cl}_{1}\left(\mathrm{f}-\left(\mathrm{X}_{2}-\mathrm{U}\right)\right) \subseteq \mathrm{f}-\left(\mathrm{cl} \mathrm{l}_{2}\left(\mathrm{X}_{2}-\mathrm{U}\right)\right)\)
                by auto
            ultimately have \(\mathrm{cl}_{1}\left(\mathrm{f}-\left(\mathrm{X}_{2}-\mathrm{U}\right)\right) \subseteq \mathrm{f}-\left(\mathrm{X}_{2}-\mathrm{U}\right)\) by simp
            moreover from fmapAssum have \(f-\left(X_{2}-U\right) \subseteq l_{1}\left(f-\left(X_{2}-U\right)\right)\)
                using func1_1_L3 topol_cntxs_valid topology0.cl_contains_set
            by simp
            ultimately have \(\mathrm{f}-\left(\mathrm{X}_{2}-\mathrm{U}\right)\) \{is closed in\} \(\tau_{1}\)
                using fmapAssum func1_1_L3 topol_cntxs_valid topology0.Top_3_L8
                by auto
            with fmapAssum have \(\mathrm{f}-(\mathrm{U}) \in \tau_{1}\)
                using fun_is_function function_vimage_Diff func1_1_L4
    func1_1_L3 IsClosed_def double_complement by simp
    \} then have \(\forall U \in \tau_{2}\). \(f-(U) \in \tau_{1}\) by simp
    then show thesis using IsContinuous_def by simp
qed
```

Another condition for continuity: it is sufficient to check if the inverse image of every set in a base is open.

```
lemma (in two_top_spaces0) Top_ZF_2_1_L5:
    assumes A1: B {is a base for} }\mp@subsup{\tau}{2}{}\mathrm{ and A2: }\forall\textrm{U}\in\textrm{B}.\textrm{f}-(\textrm{U})\in\mp@subsup{\tau}{1}{
    shows f {is continuous}
```

```
proof -
    { fix V assume A3: V }\in\mp@subsup{\tau}{2}{
        with A1 obtain A where A}\subseteqB\quadV=\
            using IsAbaseFor_def by auto
        with A2 have {f-(U). U\inA} \subseteq 
        with tau1_is_top have }\{f-(U). U\inA} \in \tau < |
            using IsATopology_def by simp
        moreover from \langleA\subseteqB\rangle\langleV = \A\rangle have f-(V)= \bigcup{f-(U). U\inA}
            by auto
        ultimately have f-(V) \in 
    } then show f {is continuous} using IsContinuous_def
        by simp
qed
```

We can strenghten the previous lemma: it is sufficient to check if the inverse image of every set in a subbase is open. The proof is rather awkward, as usual when we deal with general intersections. We have to keep track of the case when the collection is empty.

```
lemma (in two_top_spaces0) Top_ZF_2_1_L6:
    assumes A1: B {is a subbase for} }\mp@subsup{\tau}{2}{}\mathrm{ and A2: }\forall\textrm{U}\in\textrm{B}.\textrm{f}-(\textrm{U})\in\mp@subsup{\tau}{1}{
    shows f {is continuous}
proof -
    let C = {\bigcapA. A \in FinPow(B)}
    from A1 have C {is a base for} }\mp@subsup{\tau}{2}{
        using IsAsubBaseFor_def by simp
    moreover have }\forall\textrm{U}\in\textrm{C}.\textrm{f}-(\textrm{U})\in\mp@subsup{\tau}{1}{
    proof
        fix U assume U\inC
        { assume f-(U) = 0
            with tau1_is_top have f-(U) \in 
    using empty_open by simp }
        moreover
        { assume f-(U) }\not=
            then have U\not=0 by (rule func1_1_L13)
            moreover from \U\inC` obtain A where
    A G FinPow(B) and U = \bigcapA
    by auto
            ultimately have }\bigcapA\not=0\mathrm{ by simp
            then have A\not=0 by (rule inter_nempty_nempty)
            then have {f-(W). W\inA} \not= 0 by simp
            moreover from A2 \langleA \in FinPow(B)\rangle have {f-(W). W\inA} \in FinPow( }\mp@subsup{\tau}{1}{}\mathrm{ )
by (rule fin_image_fin)
            ultimately have }\bigcap{f-(W).W\inA}\in\mp@subsup{\tau}{1}{
    using topol_cntxs_valid topology0.fin_inter_open_open by simp
            moreover
            from \langleA \in FinPow(B)\rangle have A \subseteq B using FinPow_def by simp
            with tau2_is_top A1 have A \subseteq Pow(X ( 
using IsAsubBaseFor_def IsATopology_def by auto
            with fmapAssum \langleA\not=0\rangle\langleU = \bigcapA\rangle have f-(U) = \bigcap{f-(W). W\inA}
```

```
using func1_1_L12 by simp
            ultimately have f-(U) \in 
        ultimately show f-(U) \in \tau
    qed
    ultimately show f {is continuous}
    using Top_ZF_2_1_L5 by simp
qed
```

A dual of Top_ZF_2_1_L5: a function that maps base sets to open sets is open.

```
lemma (in two_top_spaces0) base_image_open:
    assumes A1: \mathcal{B {is a base for} }\mp@subsup{\tau}{1}{}\mathrm{ and A2: }\forall\textrm{B}\in\mathcal{B}.\textrm{f}(\textrm{B})\in\mp@subsup{\tau}{2}{}\mathrm{ and A3:}
U}\in\mp@subsup{\tau}{1}{
    shows f(U) \in \tau \tau
proof -
    from A1 A3 obtain }\mathcal{E}\mathrm{ where }\mathcal{E}\in\operatorname{Pow}(\mathcal{B})\mathrm{ and U = \{ E using Top_1_2_L1
by blast
    with A1 have f(U) = \bigcup{f(E). E \in\mathcal{E}} using Top_1_2_L5 fmapAssum image_of_Union
            by auto
    moreover
    from A2 {\mathcal{E}\in\operatorname{Pow}(\mathcal{B})\rangle have {f(E). E \in\mathcal{E}}\in\operatorname{Pow}(\mp@subsup{\tau}{2}{\prime})\mathrm{ by auto}
    then have }\bigcup{f(E). E\in\mathcal{E}}\in\mp@subsup{\tau}{2}{}\mathrm{ using tau2_is_top IsATopology_def by
simp
    ultimately show thesis using tau2_is_top IsATopology_def by auto
qed
```

A composition of two continuous functions is continuous.
lemma comp_cont: assumes IsContinuous(T,S,f) and IsContinuous(S,R,g)
shows IsContinuous(T,R,g 0 f)
using assms IsContinuous_def vimage_comp by simp

A composition of three continuous functions is continuous.

```
lemma comp_cont3:
    assumes IsContinuous(T,S,f) and IsContinuous(S,R,g) and IsContinuous(R,P,h)
    shows IsContinuous(T,P,h O g O f)
    using assms IsContinuous_def vimage_comp by simp
```


52.2 Homeomorphisms

This section studies "homeomorphisms" - continous bijections whose inverses are also continuous. Notions that are preserved by (commute with) homeomorphisms are called "topological invariants".

Homeomorphism is a bijection that preserves open sets.

```
definition IsAhomeomorphism(T,S,f) \equiv
    f \in bij(UT,\S) ^ IsContinuous(T,S,f) ^ IsContinuous(S,T,converse(f))
```

Inverse (converse) of a homeomorphism is a homeomorphism.
lemma homeo_inv: assumes IsAhomeomorphism(T,S,f)

```
shows IsAhomeomorphism(S,T,converse(f))
using assms IsAhomeomorphism_def bij_converse_bij bij_converse_converse
    by auto
```

Homeomorphisms are open maps.

```
lemma homeo_open: assumes IsAhomeomorphism(T,S,f) and \(U \in T\)
    shows \(f(U) \in S\)
    using assms image_converse IsAhomeomorphism_def IsContinuous_def by
simp
```

A continuous bijection that is an open map is a homeomorphism.

```
lemma bij_cont_open_homeo:
    assumes f \in bij(UT,\bigcupS) and IsContinuous(T,S,f) and \forallU\inT. f(U) \in
S
    shows IsAhomeomorphism(T,S,f)
    using assms image_converse IsAhomeomorphism_def IsContinuous_def by
auto
```

A continuous bijection that maps base to open sets is a homeomorphism.

```
lemma (in two_top_spaces0) bij_base_open_homeo:
    assumes A1: f \in bij( }\mp@subsup{\textrm{X}}{1}{},\mp@subsup{\textrm{X}}{2}{})\mathrm{ and A2: }\mathcal{B}\mathrm{ {is a base for} }\mp@subsup{\tau}{1}{}\mathrm{ and A3: }\mathcal{C
{is a base for} }\mp@subsup{\tau}{2}{}\mathrm{ and
    A4: }\forall\textrm{U}\in\mathcal{C}.\textrm{f}-(\textrm{U})\in\mp@subsup{\tau}{1}{}\mathrm{ and A5: }\forall\textrm{V}\in\mathcal{B}.\textrm{f}(\textrm{V})\in\mp@subsup{\tau}{2}{
    shows IsAhomeomorphism( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{\prime},\textrm{f}
    using assms tau2_is_top tau1_is_top bij_converse_bij bij_is_fun two_top_spaces0_def
    image_converse two_top_spaces0.Top_ZF_2_1_L5 IsAhomeomorphism_def by
simp
```

A bijection that maps base to base is a homeomorphism.

```
lemma (in two_top_spaces0) bij_base_homeo:
    assumes A1: f \in bij( }\mp@subsup{\textrm{X}}{1}{},\mp@subsup{\textrm{X}}{2}{})\mathrm{ and A2: }\mathcal{B}\mathrm{ {is a base for} }\mp@subsup{\tau}{1}{}\mathrm{ and
    A3: {f(B). B\in\mathcal{B} {is a base for} }\mp@subsup{\tau}{2}{}
    shows IsAhomeomorphism( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{},\textrm{f}
proof -
    note A1
    moreover have f {is continuous}
    proof -
        { fix C assume C \in {f(B). B\in\mathcal{B}}
        then obtain B where B\in\mathcal{B and I: C = f(B) by auto}
        with A2 have B \subseteq X X using Top_1_2_L5 by auto
        with A1 A2 \langleB\in\mathcal{B}\rangle I have f-(C) \in 
                    using bij_def inj_vimage_image base_sets_open by auto
            } hence }\forallC\in{f(B). B\in\mathcal{B}}. f-(C) \in \tau l by aut
            with A3 show thesis by (rule Top_ZF_2_1_L5)
    qed
    moreover
    from A3 have }\forallB\in\mathcal{B}.f(B)\in\mp@subsup{\tau}{2}{}\mathrm{ using base_sets_open by auto
```

```
    with A2 have }\forall\textrm{U}\in\mp@subsup{\tau}{1}{}. f(U) \in \tau ~ using base_image_open by simp
    ultimately show thesis using bij_cont_open_homeo by simp
qed
```

Interior is a topological invariant.

```
theorem int_top_invariant: assumes A1: A\subseteq\bigcupT and A2: IsAhomeomorphism(T,S,f)
    shows f(Interior(A,T)) = Interior(f(A),S)
proof -
```



```
    have I: {f(U). U\in\mathcal{A}}={V\inS.V\subseteqf(A)}
    proof
        from A2 show {f(U). U\in\mathcal{A}}\subseteq{V\inS.V\subseteqf(A)}
            using homeo_open by auto
            { fix V assume V }\in{V\inS.V\subseteqf(A)
                hence V\inS and II: V \subseteqf(A) by auto
                let U = f-(V)
                from II have U \subseteqf-(f(A)) by auto
                moreover from assms have f-(f(A)) = A
                    using IsAhomeomorphism_def bij_def inj_vimage_image by auto
                moreover from A2 \langleV\inS\rangle have U\inT
                    using IsAhomeomorphism_def IsContinuous_def by simp
                moreover
                from \V GS` have V \subseteq US by auto
                with A2 have V = f(U)
                    using IsAhomeomorphism_def bij_def surj_image_vimage by auto
            ultimately have V \in{f(U). U\in\mathcal{A}} by auto
        } thus {V\inS. V \subseteqf(A)}\subseteq{f(U). U\in\mathcal{A}} by auto
    qed
    have f(Interior(A,T)) = f(\bigcup\mathcal{A})\mathrm{ unfolding Interior_def by simp}
    also from A2 have ... = \bigcup{f(U). U\in\mathcal{A}}
        using IsAhomeomorphism_def bij_def inj_def image_of_Union by auto
    also from I have ... = Interior(f(A),S) unfolding Interior_def by simp
    finally show thesis by simp
qed
```


52.3 Topologies induced by mappings

In this section we consider various ways a topology may be defined on a set that is the range (or the domain) of a function whose domain (or range) is a topological space.

A bijection from a topological space induces a topology on the range.

```
theorem bij_induced_top: assumes A1: T {is a topology} and A2: f \in bij(UT,Y)
    shows
    {f(U). U\inT} {is a topology} and
    { {f(x).x\inU}. U\inT} {is a topology} and
    (U{f(U). U\inT}) = Y and
    IsAhomeomorphism(T, {f(U). U\inT},f)
proof -
```

```
    from A2 have f \in inj(UT,Y) using bij_def by simp
    then have f:\T->Y using inj_def by simp
    let S = {f(U). U\inT}
    { fix M assume M \in Pow(S)
        let }\mp@subsup{M}{T}{}={f-(V).V\inM
        have M}\mp@subsup{M}{T}{}\subseteq\textrm{T
        proof
        fix W assume W\inM
        then obtain V where V\inM and I: W = f-(V) by auto
        with <M \in Pow(S) have V\inS by auto
        then obtain U where U\inT and V = f(U) by auto
        with I have W = f-(f(U)) by simp
        with <f \in inj(UT,Y)\rangle \langleU\inT\rangle have W = U using inj_vimage_image by
blast
            with \langleU\inT\rangle show W\inT by simp
        qed
        with A1 have ( }\\mp@subsup{M}{T}{})\inT\mathrm{ using IsATopology_def by simp
        hence f(U絃) \in S by auto
        moreover have f(UMM
        proof -
        from \langlef:\T->Y\rangle\langleM
            using image_of_Union by auto
        moreover have {f(U). U\inM M } = M
        proof -
            from \langlef:\bigcupT->Y\rangle have }\forall\textrm{U}\in\textrm{T}.\textrm{f}(\textrm{U})\subseteqY using func1_1_L6 by sim
                    with <M \in Pow(S) \ have M \subseteq Pow(Y) by auto
                    with A2 show {f(U). U\inMT
auto
            qed
        ultimately show f(\ \MT) = \M by simp
    qed
    ultimately have }\cupM\inS\mathrm{ by auto
    } then have }\forallM\in\operatorname{Pow}(S). UM\inS by aut
    moreover
    { fix U V assume U U S V V S
        then obtain }\mp@subsup{U}{T}{}\mp@subsup{\textrm{V}}{T}{}\mathrm{ where }\mp@subsup{\textrm{U}}{T}{}\in\textrm{T}\quad\mp@subsup{\textrm{V}}{T}{}\in\textrm{T}\mathrm{ and
            I: U = f( ( UT) V = f (V
            by auto
        with A1 have }\mp@subsup{\textrm{U}}{T}{}\cap\mp@subsup{\textrm{V}}{T}{}\in\textrm{T}\mathrm{ using IsATopology_def by simp
        hence }\textrm{f}(\mp@subsup{\textrm{U}}{T}{}\cap\mp@subsup{V}{T}{})\inS\mathrm{ by auto
        moreover have f( }\mp@subsup{U}{T}{}\cap\mp@subsup{V}{T}{})=U\cap
        proof -
            from \langle\mp@subsup{U}{T}{}\inT\rangle\langle\mp@subsup{V}{T}{}\in\textrm{T}\rangle\mathrm{ have }\mp@subsup{\textrm{U}}{T}{}\subseteq\bigcup\textrm{T}}\mp@subsup{\textrm{V}}{T}{}\subseteq\bigcup\textrm{T
                    using bij_def by auto
                with <f \in inj(UT,Y)\rangle I show f( }\mp@subsup{\textrm{U}}{T}{}\cap\mp@subsup{V}{T}{})=U\capV using inj_image_inter
            by simp
        qed
        ultimately have U\capV \inS by simp
```

```
    } then have }\forall\textrm{U}\in\textrm{S}.|\textrm{V}\in\textrm{S}.|\capV\inS by aut
    ultimately show S {is a topology} using IsATopology_def by simp
    moreover from \langlef:\T->Y\rangle have \forallU\inT. f(U)={f(x).x\inU}
    using func_imagedef by blast
    ultimately show { {f(x). x\inU}. U\inT} {is a topology} by simp
    show US = Y
    proof
        from \langlef:\T->Y\rangle have }\forallU\inT. f(U)\subseteqY using func1_1_L6 by sim
        thus US \subseteqY by auto
        from A1 have f(UT) \subseteq US using IsATopology_def by auto
        with A2 show Y \subseteq US using bij_def surj_range_image_domain
        by auto
    qed
    show IsAhomeomorphism(T,S,f)
    proof -
        from A2 \US = Y〉 have f \in bij(UT,\bigcupS) by simp
        moreover have IsContinuous(T,S,f)
        proof -
            { fix V assume V\inS
                then obtain U where U\inT and V = f(U) by auto
                hence U \subseteqUT and f-(V) = f-(f(U)) by auto
                with <f \in inj(UT,Y)\rangle \langleU\inT\rangle have f-(V) \in T using inj_vimage_image
                    by simp
        } then show IsContinuous(T,S,f) unfolding IsContinuous_def by auto
    qed
    ultimately showIsAhomeomorphism(T,S,f) using bij_cont_open_homeo
        by auto
    qed
qed
```


52.4 Partial functions and continuity

Suppose we have two topologies τ_{1}, τ_{2} on sets $X_{i}=\bigcup \tau_{i}, i=1,2$. Consider some function $f: A \rightarrow X_{2}$, where $A \subseteq X_{1}$ (we will call such function "partial"). In such situation we have two natural possibilities for the pairs of topologies with respect to which this function may be continuous. One is obvously the original τ_{1}, τ_{2} and in the second one the first element of the pair is the topology relative to the domain of the function: $\left\{A \cap U \mid U \in \tau_{1}\right\}$. These two possibilities are not exactly the same and the goal of this section is to explore the differences.

If a function is continuous, then its restriction is continous in relative topology.

```
lemma (in two_top_spaces0) restr_cont:
    assumes A1: A \subseteq X ( and A2: f {is continuous}
    shows IsContinuous( }\mp@subsup{\tau}{1}{}\mathrm{ {restricted to} A, }\mp@subsup{\tau}{2}{},\mathrm{ restrict(f,A))
```

```
proof -
    let g = restrict(f,A)
    { fix U assume U }\in\mp@subsup{\tau}{2}{
        with A2 have f-(U) \in 
        moreover from A1 have g-(U) = f-(U) \cap A
            using fmapAssum func1_2_L1 by simp
        ultimately have g-(U) \in ( }\tau1\mathrm{ {restricted to} A)
            using RestrictedTo_def by auto
    } then show thesis using IsContinuous_def by simp
qed
```

If a function is continuous, then it is continuous when we restrict the topology on the range to the image of the domain.

```
lemma (in two_top_spaces0) restr_image_cont:
    assumes A1: \(f\) \{is continuous\}
    shows IsContinuous \(\left(\tau_{1}, \tau_{2}\right.\) \{restricted to\} \(\left.\mathrm{f}\left(\mathrm{X}_{1}\right), \mathrm{f}\right)\)
proof -
    have \(\forall U \in \tau_{2}\) \{restricted to\} \(\mathrm{f}\left(\mathrm{X}_{1}\right) . \mathrm{f}-(\mathrm{U}) \in \tau_{1}\)
    proof
        fix \(U\) assume \(U \in \tau_{2}\) \{restricted to\} \(f\left(X_{1}\right)\)
        then obtain \(V\) where \(V \in \tau_{2}\) and \(U=V \cap f\left(X_{1}\right)\)
            using RestrictedTo_def by auto
        with A1 show \(\mathrm{f}-(\mathrm{U}) \in \tau_{1}\)
                using fmapAssum inv_im_inter_im IsContinuous_def
                by simp
    qed
    then show thesis using IsContinuous_def by simp
qed
```

A combination of restr_cont and restr_image_cont.

```
lemma (in two_top_spaces0) restr_restr_image_cont:
    assumes A1: A\subseteq X X and A2: f {is continuous} and
    A3: g = restrict(f,A) and
    A4: }\mp@subsup{\tau}{3}{}=\mp@subsup{\tau}{1}{}{\mathrm{ {restricted to} A
    shows IsContinuous( }\mp@subsup{\tau}{3}{},\mp@subsup{\tau}{2}{}\mathrm{ {restricted to} g(A),g)
proof -
    from A1 A4 have }\bigcup\mp@subsup{\tau}{3}{}=\textrm{A
            using union_restrict by auto
    have two_top_spaces0( }\mp@subsup{\tau}{3}{},\mp@subsup{\tau}{2}{},\textrm{g}
    proof -
            from A4 have
                \tau
                using tau1_is_top tau2_is_top
    topology0_def topology0.Top_1_L4 by auto
            moreover from A1 A3 U 
                using fmapAssum restrict_type2 by simp
            ultimately show thesis using two_top_spaces0_def
                by simp
    qed
```

```
    moreover from assms have IsContinuous( }\mp@subsup{\tau}{3}{},\mp@subsup{\tau}{2}{},\textrm{g}
    using restr_cont by simp
```



```
    by (rule two_top_spaces0.restr_image_cont)
    moreover note \U < < = A)
    ultimately show thesis by simp
qed
```

We need a context similar to two_top_spaces0 but without the global function $f: X_{1} \rightarrow X_{2}$.
locale two_top_spaces1 $=$
fixes τ_{1}
assumes tau1_is_top: τ_{1} \{is a topology\}
fixes τ_{2}
assumes tau2_is_top: τ_{2} \{is a topology\}
fixes X_{1}
defines X1_def [simp]: $\mathrm{X}_{1} \equiv \bigcup \tau_{1}$
fixes X_{2}
defines X2_def [simp]: $\mathrm{X}_{2} \equiv \bigcup \tau_{2}$
If a partial function $g: X_{1} \supseteq A \rightarrow X_{2}$ is continuous with respect to (τ_{1}, τ_{2}), then A is open (in τ_{1}) and the function is continuous in the relative topology.

```
lemma (in two_top_spaces1) partial_fun_cont:
    assumes A1: g:A }->\mp@subsup{\textrm{X}}{2}{}\mathrm{ and A2: IsContinuous ( }\tau1,\mp@subsup{\tau}{2}{},\textrm{g}
    shows A }\in\mp@subsup{\tau}{1}{}\mathrm{ and IsContinuous( }\tau1 {restricted to} A, \tau , , g
proof -
    from A2 have g-(X (X) \in 
        using tau2_is_top IsATopology_def IsContinuous_def by simp
    with A1 show A }\in\mp@subsup{\tau}{1}{}\mathrm{ using func1_1_L4 by simp
    { fix V assume V }\in\mp@subsup{\tau}{2}{
        with A2 have g-(V) \in 
        moreover
        from A1 have g-(V) \subseteq A using func1_1_L3 by simp
        hence g-(V) = A \cap g-(V) by auto
        ultimately have g-(V) \in ( }\mp@subsup{\tau}{1}{}\mathrm{ {restricted to} A)
            using RestrictedTo_def by auto
    } then show IsContinuous( }\tau1\mathrm{ {restricted to} A, }\mp@subsup{\tau}{2}{},\textrm{g}
        using IsContinuous_def by simp
qed
```

For partial function defined on open sets continuity in the whole and relative topologies are the same.

```
lemma (in two_top_spaces1) part_fun_on_open_cont:
    assumes A1: g:A }->\mp@subsup{\textrm{X}}{2}{}\mathrm{ and A2: A }\in\mp@subsup{\tau}{1}{
```

```
    shows IsContinuous( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{},\textrm{g})
        IsContinuous( }\tau1\mathrm{ {restricted to} A, }\mp@subsup{\tau}{2}{},\textrm{g}
proof
    assume IsContinuous( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{},\textrm{g}
    with A1 show IsContinuous( }\tau1\mathrm{ {restricted to} A, }\mp@subsup{\tau}{2}{},\textrm{g}
        using partial_fun_cont by simp
    next
        assume I: IsContinuous( }\tau1\mathrm{ {restricted to} A, }\mp@subsup{\tau}{2}{},\textrm{g}\mathrm{ )
        { fix V assume V \in 
            with I have g-(V) \in ( }\mp@subsup{\tau}{1}{}\mathrm{ {restricted to} A)
                using IsContinuous_def by simp
            then obtain W where W }
                using RestrictedTo_def by auto
            with A2 have g-(V) \in 
                by simp
        } then show IsContinuous( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{},\textrm{g})\mathrm{ ) using IsContinuous_def
            by simp
qed
```


52.5 Product topology and continuity

We start with three topological spaces $\left(\tau_{1}, X_{1}\right),\left(\tau_{2}, X_{2}\right)$ and $\left(\tau_{3}, X_{3}\right)$ and a function $f: X_{1} \times X_{2} \rightarrow X_{3}$. We will study the properties of f with respect to the product topology $\tau_{1} \times \tau_{2}$ and τ_{3}. This situation is similar as in locale two_top_spaces0 but the first topological space is assumed to be a product of two topological spaces.

First we define a locale with three topological spaces.

```
locale prod_top_spaces0 =
    fixes }\mp@subsup{\tau}{1}{
assumes tau1_is_top: }\mp@subsup{\tau}{1}{}\mathrm{ {is a topology}
fixes }\mp@subsup{\tau}{2}{
assumes tau2_is_top: }\mp@subsup{\tau}{2}{}\mathrm{ {is a topology}
fixes }\mp@subsup{\tau}{3}{
assumes tau3_is_top: }\mp@subsup{\tau}{3}{}\mathrm{ {is a topology}
fixes X1
defines X1_def [simp]: X 
fixes }\mp@subsup{X}{2}{
defines X2_def [simp]: X 
fixes X3
defines X3_def [simp]: X X }\equiv\bigcup\bigcup\mp@subsup{\tau}{3}{
fixes }
```

```
defines eta_def [simp]: \(\eta \equiv \operatorname{ProductTopology}\left(\tau_{1}, \tau_{2}\right)\)
```

Fixing the first variable in a two-variable continuous function results in a continuous function.

```
lemma (in prod_top_spaces0) fix_1st_var_cont:
    assumes f: X 
    and }x\in\mp@subsup{X}{1}{
    shows IsContinuous( }\tau2,\mp@subsup{\tau}{3}{},\mathrm{ Fix1stVar(f,x))
    using assms fix_1st_var_vimage IsContinuous_def tau1_is_top tau2_is_top
        prod_sec_open1 by simp
```

Fixing the second variable in a two-variable continuous function results in a continuous function.

```
lemma (in prod_top_spaces0) fix_2nd_var_cont:
    assumes f: }\mp@subsup{\textrm{X}}{1}{}\times\mp@subsup{\textrm{X}}{2}{}->\mp@subsup{\textrm{X}}{3}{}\mathrm{ and IsContinuous( }\eta,\mp@subsup{\tau}{3}{},\textrm{f}
    and y\in\mp@subsup{X}{2}{}
    shows IsContinuous( }\tau1,\mp@subsup{\tau}{3}{\prime},Fix2ndVar(f,y)
    using assms fix_2nd_var_vimage IsContinuous_def tau1_is_top tau2_is_top
        prod_sec_open2 by simp
```

Having two constinuous mappings we can construct a third one on the cartesian product of the domains.

```
lemma cart_prod_cont:
    assumes A1: \(\tau_{1}\) \{is a topology\} \(\tau_{2}\) \{is a topology\} and
    A2: \(\eta_{1}\) \{is a topology\} \(\eta_{2}\) \{is a topology\} and
    A3a: \(\mathbf{f}_{1}: \bigcup \tau_{1} \rightarrow \bigcup \eta_{1}\) and A3b: \(\mathrm{f}_{2}: \bigcup \tau_{2} \rightarrow \bigcup \eta_{2}\) and
    A4: IsContinuous \(\left(\tau_{1}, \eta_{1}, \mathbf{f}_{1}\right)\) IsContinuous \(\left(\tau_{2}, \eta_{2}, \mathbf{f}_{2}\right)\) and
    A5: \(\mathrm{g}=\left\{\left\langle\mathrm{p},\left\langle\mathrm{f}_{1}(\mathrm{fst}(\mathrm{p})), \mathrm{f}_{2}(\operatorname{snd}(\mathrm{p}))\right\rangle\right\rangle . \mathrm{p} \in \bigcup \tau_{1} \times \bigcup \tau_{2}\right\}\)
    shows IsContinuous (ProductTopology ( \(\tau_{1}, \tau_{2}\) ), ProductTopology ( \(\eta_{1}, \eta_{2}\) ), g)
proof -
    let \(\tau=\operatorname{ProductTopology}\left(\tau_{1}, \tau_{2}\right)\)
    let \(\eta=\operatorname{ProductTopology}\left(\eta_{1}, \eta_{2}\right)\)
    let \(\mathrm{X}_{1}=\bigcup \tau_{1}\)
    let \(X_{2}=\bigcup \tau_{2}\)
    let \(\mathrm{Y}_{1}=\bigcup \eta_{1}\)
    let \(\mathrm{Y}_{2}=\bigcup \eta_{2}\)
    let \(\mathrm{B}=\operatorname{ProductCollection}\left(\eta_{1}, \eta_{2}\right)\)
    from A1 A2 have \(\tau\) \{is a topology\} and \(\eta\) \{is a topology\}
        using Top_1_4_T1 by auto
    moreover have \(\mathrm{g}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}\)
    proof -
        \(\left\{\right.\) fix \(p\) assume \(p \in X_{1} \times X_{2}\)
        hence fst \((p) \in X_{1}\) and \(\operatorname{snd}(p) \in X_{2}\) by auto
        from A3a \(\left\langle f s t(p) \in X_{1}\right\rangle\) have \(f_{1}(f s t(p)) \in Y_{1}\)
            by (rule apply_funtype)
        moreover from A3b \(\left\langle\right.\) snd \(\left.(\mathrm{p}) \in \mathrm{X}_{2}\right\rangle\) have \(\mathrm{f}_{2}(\operatorname{snd}(\mathrm{p})) \in \mathrm{Y}_{2}\)
            by (rule apply_funtype)
        ultimately have \(\left\langle\mathbf{f}_{1}(\mathrm{fst}(\mathrm{p})), \mathrm{f}_{2}(\operatorname{snd}(\mathrm{p}))\right\rangle \in \bigcup \eta_{1} \times \bigcup \eta_{2}\) by auto
```

```
    \(\}\) hence \(\forall \mathrm{p} \in \mathrm{X}_{1} \times \mathrm{X}_{2} .\left\langle\mathrm{f}_{1}(\mathrm{fst}(\mathrm{p})), \mathrm{f}_{2}(\operatorname{snd}(\mathrm{p}))\right\rangle \in \mathrm{Y}_{1} \times \mathrm{Y}_{2}\)
        by simp
    with A5 show \(\mathrm{g}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}\) using \(\mathrm{ZF}_{\text {_f }}\) fun_from_total
        by simp
    qed
    moreover from A1 A2 have \(\bigcup \tau=X_{1} \times \mathrm{X}_{2}\) and \(\bigcup \eta=\mathrm{Y}_{1} \times \mathrm{Y}_{2}\)
        using Top_1_4_T1 by auto
    ultimately have two_top_spaces \(0(\tau, \eta, g)\) using two_top_spaces0_def
        by simp
    moreover from A2 have B \{is a base for\} \(\eta\) using Top_1_4_T1
        by simp
    moreover have \(\forall \mathrm{U} \in \mathrm{B}\). \(\mathrm{g}-(\mathrm{U}) \in \tau\)
    proof
        fix \(U\) assume \(U \in B\)
        then obtain V W where \(\mathrm{V} \in \eta_{1} \mathrm{~W} \in \eta_{2}\) and \(\mathrm{U}=\mathrm{V} \times \mathrm{W}\)
            using ProductCollection_def by auto
    with АЗа АЗb A5 have \(g\)-( U ) \(=\mathrm{f}_{1}-(\mathrm{V}) \times \mathrm{f}_{2}\)-(W)
        using cart_prod_fun_vimage by simp
    moreover from A1 A4 \(\left\langle V \in \eta_{1}\right\rangle\left\langle W \in \eta_{2}\right\rangle\) have \(f_{1}-(V) \times f_{2}-(W) \in \tau\)
        using IsContinuous_def prod_open_open_prod by simp
    ultimately show \(\mathrm{g}-(\mathrm{U}) \in \tau\) by simp
    qed
    ultimately show thesis using two_top_spaces0.Top_ZF_2_1_L5
    by simp
qed
A reformulation of the cart_prod_cont lemma above in slightly different notation.
theorem (in two_top_spaces0) product_cont_functions:
assumes \(\mathrm{f}: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2} \mathrm{~g}: \cup \tau_{3} \rightarrow \bigcup \tau_{4}\)
IsContinuous ( \(\tau_{1}, \tau_{2}, \mathrm{f}\) ) IsContinuous ( \(\tau_{3}, \tau_{4}, \mathrm{~g}\) )
\(\tau_{4}\left\{i s\right.\) a topology \(\tau_{3}\{\) is a topology\}
shows IsContinuous (ProductTopology \(\left(\tau_{1}, \tau_{3}\right)\), ProductTopology \(\left(\tau_{2}, \tau_{4}\right),\{\langle\langle\mathrm{x}, \mathrm{y}\rangle,\langle\mathrm{fx}, \mathrm{gy}\rangle\rangle\).
\(\left.\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X}_{1} \times \bigcup \tau_{3}\right\}\) )
proof -
have \(\left\{\langle\langle\mathrm{x}, \mathrm{y}\rangle,\langle\mathrm{fx}, \mathrm{gy}\rangle\rangle .\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{X}_{1} \times \bigcup \tau_{3}\right\}=\{\langle\mathrm{p},\langle\mathrm{f}(\mathrm{fst}(\mathrm{p})), \mathrm{g}(\operatorname{snd}(\mathrm{p}))\rangle\rangle . \mathrm{p}\)
\(\left.\in \mathrm{X}_{1} \times \bigcup \tau_{3}\right\}\)
by force
with tau1_is_top tau2_is_top assms show thesis using cart_prod_cont
by simp
qed
A special case of cart_prod_cont when the function acting on the second axis is the identity.
lemma cart_prod_cont1:
assumes A1: \(\tau_{1}\) \{is a topology\} and A1a: \(\tau_{2}\) \{is a topology\} and
A2: \(\eta_{1}\) \{is a topology\} and
A3: \(\mathrm{f}_{1}: \bigcup \tau_{1} \rightarrow \bigcup \eta_{1}\) and A4: IsContinuous ( \(\left.\tau_{1}, \eta_{1}, \mathrm{f}_{1}\right)\) and
A5: \(\mathrm{g}=\left\{\left\langle\mathrm{p},\left\langle\mathrm{f}_{1}(\mathrm{fst}(\mathrm{p})), \operatorname{snd}(\mathrm{p})\right\rangle\right\rangle . \mathrm{p} \in \bigcup \tau_{1} \times \bigcup \tau_{2}\right\}\)
```

```
    shows IsContinuous(ProductTopology ( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}),\operatorname{ProductTopology ( }\mp@subsup{\eta}{1}{},\mp@subsup{\tau}{2}{}),\textrm{g}
proof -
    let f}\mp@subsup{\textrm{f}}{2}{}=\textrm{id}(\bigcup\mp@subsup{\tau}{2}{}
    have }\forall\textrm{x}\in\bigcup\mp@subsup{\tau}{2}{}.\mp@subsup{\textrm{f}}{2}{}(\textrm{x})=\textrm{x}\mathrm{ using id_conv by blast
    hence I: }\forall\textrm{p}\in\bigcup\mp@subsup{\tau}{1}{}\times\bigcup\mp@subsup{\tau}{2}{}.\operatorname{snd}(\textrm{p})=\mp@subsup{\textrm{f}}{2}{}(\mathrm{ snd (p)) by simp
    note A1 A1a A2 A1a A3
    moreover have f}\mp@subsup{f}{2}{}:\\mp@subsup{\tau}{2}{}->\bigcup\mp@subsup{\tau}{2}{}\mathrm{ using id_type by simp
    moreover note A4
    moreover have IsContinuous( }\mp@subsup{\tau}{2}{},\mp@subsup{\tau}{2}{},\mp@subsup{\textrm{f}}{2}{})\mathrm{ using id_cont by simp
    moreover have g = {\langlep, \langlef
    proof
```



```
                by auto
            from A5 I show {\langlep, \langlef f
                by auto
    qed
    ultimately show thesis by (rule cart_prod_cont)
qed
```


52.6 Pasting lemma

The classical pasting lemma states that if U_{1}, U_{2} are both open (or closed) and a function is continuous when restricted to both U_{1} and U_{2} then it is continuous when restricted to $U_{1} \cup U_{2}$. In this section we prove a generalization statement stating that the set $\left\{U \in \tau_{1}|f|_{U}\right.$ is continuous $\}$ is a topology.

A typical statement of the pasting lemma uses the notion of a function restricted to a set being continuous without specifying the topologies with respect to which this continuity holds. In two_top_spaces0 context the notation g \{is continuous\} means continuity wth respect to topologies τ_{1}, τ_{2}. The next lemma is a special case of partial_fun_cont and states that if for some set $A \subseteq X_{1}=\bigcup \tau_{1}$ the function $\left.f\right|_{A}$ is continuous (with respect to $\left(\tau_{1}, \tau_{2}\right)$), then A has to be open. This clears up terminology and indicates why we need to pay attention to the issue of which topologies we talk about when we say that the restricted (to some closed set for example) function is continuos.

```
lemma (in two_top_spaces0) restriction_continuous1:
    assumes A1: A \subseteq X ( and A2: restrict(f,A) {is continuous}
    shows A \in 
proof -
    from assms have two_top_spaces1( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{})\mathrm{ and
        restrict(f,A):A->\mp@subsup{X}{2}{}}\mathrm{ and restrict(f,A) {is continuous}
        using tau1_is_top tau2_is_top two_top_spaces1_def fmapAssum restrict_fun
                by auto
    then show thesis using two_top_spaces1.partial_fun_cont by simp
qed
```

If a fuction is continuous on each set of a collection of open sets, then it is continuous on the union of them. We could use continuity with respect to the relative topology here, but we know that on open sets this is the same as the original topology.

```
lemma (in two_top_spaces0) pasting_lemma1:
    assumes A1: \(\mathrm{M} \subseteq \tau_{1}\) and A2: \(\forall \mathrm{U} \in \mathrm{M}\). restrict( \(\mathrm{f}, \mathrm{U}\) ) \{is continuous\}
    shows restrict (f, \(\bigcup M\) ) \{is continuous\}
proof -
    \{ fix V assume \(\mathrm{V} \in \tau_{2}\)
        from A1 have \(\bigcup M \subseteq X_{1}\) by auto
        then have restrict (f, \(\bigcup M)-(V)=f-(V) \cap(\bigcup M)\)
            using func1_2_L1 fmapAssum by simp
        also have \(\ldots=\bigcup\{f-(V) \cap \mathrm{U} . \mathrm{U} \in \mathrm{M}\}\) by auto
        finally have restrict \((f, \bigcup M)-(V)=\bigcup\{f-(V) \cap U\). \(U \in M\}\) by simp
        moreover
        have \(\{f-(V) \cap \mathrm{U} . \mathrm{U} \in \mathrm{M}\} \in \operatorname{Pow}\left(\tau_{1}\right)\)
        proof -
            \{ fix \(W\) assume \(W \in\{f-(V) \cap U . U \in M\}\)
                    then obtain \(U\) where \(U \in M\) and \(I: W=f-(V) \cap U\) by auto
                    with A2 have restrict ( \(f, U\) ) \{is continuous\} by simp
                    with \(\left\langle\mathrm{V} \in \tau_{2}\right\rangle\) have restrict \((\mathrm{f}, \mathrm{U})-(\mathrm{V}) \in \tau_{1}\)
                        using IsContinuous_def by simp
                    moreover from \(\bigcup M \subseteq X_{1}\) 〉 and \(\langle U \in M\rangle\)
                    have restrict \((f, U)-(V)=f-(V) \cap U\)
                        using fmapAssum func1_2_L1 by blast
                            ultimately have \(f-(V) \cap U \in \tau_{1}\) by simp
                    with I have \(W \in \tau_{1}\) by simp
            \} then show thesis by auto
        qed
        then have \(\bigcup\{f-(V) \cap U . U \in M\} \in \tau_{1}\)
            using tau1_is_top IsATopology_def by auto
        ultimately have restrict \((\mathrm{f}, \bigcup \mathrm{M})-(\mathrm{V}) \in \tau_{1}\)
            by simp
    \} then show thesis using IsContinuous_def by simp
qed
```

If a function is continuous on two sets, then it is continuous on intersection.

```
lemma (in two_top_spaces 0 ) cont_inter_cont:
    assumes A1: \(\mathrm{A} \subseteq \mathrm{X}_{1} \mathrm{~B} \subseteq \mathrm{X}_{1}\) and
    A2: restrict(f,A) \{is continuous\} restrict(f,B) \{is continuous\}
    shows restrict(f,A A ) \{is continuous\}
proof -
    \{ fix V assume \(\mathrm{V} \in \tau_{2}\)
        with assms have
            restrict (f, \(A)-(V)=f-(V) \cap A \quad\) restrict \((f, B)-(V)=f-(V) \cap B\) and
            restrict (f,A)-(V) \(\in \tau_{1}\) and restrict(f,B)-(V) \(\in \tau_{1}\)
                    using func1_2_L1 fmapAssum IsContinuous_def by auto
        then have (restrict (f,A)-(V)) \(\cap\) (restrict \((f, B)-(V))=f-(V) \cap(A \cap B)\)
                by auto
```

```
    moreover
    from A2 \langleV }\in\mp@subsup{\tau}{2}{}\rangle\mathrm{ have
        restrict(f,A)-(V) \in \tau
        using IsContinuous_def by auto
    then have (restrict(f,A)-(V)) \cap (restrict(f,B)-(V)) \in \tau _1
        using tau1_is_top IsATopology_def by simp
    moreover
    from A1 have (A\capB) \subseteq X 
    then have restrict(f,A\capB)-(V) = f-(V) \cap (A\capB)
        using func1_2_L1 fmapAssum by simp
    ultimately have restrict(f,A\capB)-(V) \in \tau < by simp
    } then show thesis using IsContinuous_def by auto
qed
```

The collection of open sets U such that f restricted to U is continuous, is a topology.

```
theorem (in two_top_spaces0) pasting_theorem:
    shows {U \in \tau . restrict(f,U) {is continuous}} {is a topology}
proof -
    let T = {U \in \mp@subsup{\tau}{1}{}. restrict(f,U) {is continuous}}
    have }\forallM\in\operatorname{Pow}(T).\M\in
    proof
        fix M assume M \in Pow(T)
        then have restrict(f,\M) {is continuous}
                using pasting_lemma1 by auto
            with <M \in Pow(T) show }\M\in
                using tau1_is_top IsATopology_def by auto
    qed
    moreover have }\forall\textrm{U}\in\textrm{T}.\forallV\inT. U\capV \in 
            using cont_inter_cont tau1_is_top IsATopology_def by auto
    ultimately show thesis using IsATopology_def by simp
qed
0 is continuous.
corollary (in two_top_spaces0) zero_continuous: shows 0 {is continuous}
proof -
    let T = {U \in \tau . restrict(f,U) {is continuous}}
    have T {is a topology} by (rule pasting_theorem)
    then have 0\inT by (rule empty_open)
    hence restrict(f,0) {is continuous} by simp
    moreover have restrict(f,0) = 0 by simp
    ultimately show thesis by simp
qed
end
```


53 Topology 3

theory Topology_ZF_3 imports Topology_ZF_2 FiniteSeq_ZF

begin

Topology_ZF_1 theory describes how we can define a topology on a product of two topological spaces. One way to generalize that is to construct topology for a cartesian product of n topological spaces. The cartesian product approach is somewhat inconvenient though. Another way to approach product topology on X^{n} is to model cartesian product as sets of sequences (of length n) of elements of X. This means that having a topology on X we want to define a toplogy on the space $n \rightarrow X$, where n is a natural number (recall that $n=\{0,1, \ldots, n-1\}$ in ZF). However, this in turn can be done more generally by defining a topology on any function space $I \rightarrow X$, where I is any set of indices. This is what we do in this theory.

53.1 The base of the product topology

In this section we define the base of the product topology.
Suppose $\mathcal{X}=I \rightarrow \bigcup T$ is a space of functions from some index set I to the carrier of a topology T. Then take a finite collection of open sets $W: N \rightarrow T$ indexed by $N \subseteq I$. We can define a subset of \mathcal{X} that models the cartesian product of W.

```
definition
    FinProd}(\mathcal{X},W)\equiv{x\in\mathcal{X}.\foralli\indomain(W). x(i) \in W(i)
```

Now we define the base of the product topology as the collection of all finite products (in the sense defined above) of open sets.

```
definition
    ProductTopBase(I,T) \equiv \N NFinPow(I).{FinProd(I }->\bigcup\textrm{T},\textrm{W}).W\inN->T
```

Finally, we define the product topology on sequences. We use the "Seq" prefix although the definition is good for any index sets, not only natural numbers.

```
definition
    SeqProductTopology(I,T) \equiv{\B. B \in Pow(ProductTopBase(I,T))}
```

Product topology base is closed with respect to intersections.

```
lemma prod_top_base_inter:
    assumes A1: T {is a topology} and
    A2: U \in ProductTopBase(I,T) V \in ProductTopBase(I,T)
    shows U\capV \in ProductTopBase(I,T)
proof -
    let \mathcal{X = I }->\bigcup\textrm{T}
    from A2 obtain N}\mp@subsup{N}{1}{}\quad\mp@subsup{W}{1}{}\quad\mp@subsup{N}{2}{}\mp@subsup{W}{2}{}\mathrm{ where
        I: N
        II: N}\mp@subsup{N}{2}{}\in\operatorname{FinPow(I) }\mp@subsup{\textrm{W}}{2}{}\in\mp@subsup{\textrm{N}}{2}{}->\textrm{T}\quad\textrm{V}=\operatorname{FinProd}(\mathcal{X},\mp@subsup{W}{2}{}
```

using ProductTopBase_def by auto
let $N_{3}=N_{1} \cup N_{2}$
let $W_{3}=\left\{\left\langle i\right.\right.$, if $i \in N_{1}-N_{2}$ then $W_{1}(i)$
else if i $\in N_{2}-N_{1}$ then $W_{2}(i)$
else $\left.\left.\left(W_{1}(i)\right) \cap\left(W_{2}(i)\right)\right\rangle . i \in N_{3}\right\}$
from A1 I II have $\forall i \in N_{1} \cap N_{2}$. ($\left.W_{1}(i) \cap W_{2}(i)\right) \in T$
using apply_funtype IsATopology_def by auto
moreover from I II have $\forall i \in N_{1}-N_{2} . W_{1}(i) \in T$ and $\forall i \in N_{2}-N_{1} . W_{2}(i) \in$
T
using apply_funtype by auto
ultimately have $\mathrm{W}_{3}: \mathrm{N}_{3} \rightarrow \mathrm{~T}$ by (rule fun_union_overlap)
with I II have $\operatorname{FinProd}\left(\mathcal{X}, W_{3}\right) \in \operatorname{ProductTopBase(I,T)}$ using union_finpow
ProductTopBase_def
by auto
moreover have $\mathrm{U} \cap \mathrm{V}=\operatorname{FinProd}\left(\mathcal{X}, \mathrm{W}_{3}\right)$
proof
$\{$ fix x assume $x \in U$ and $x \in V$
with $\left\langle\mathrm{U}=\operatorname{FinProd}\left(\mathcal{X}, \mathrm{W}_{1}\right)\right\rangle\left\langle\mathrm{W}_{1} \in \mathrm{~N}_{1} \rightarrow \mathrm{~T}\right\rangle$ and $\left\langle\mathrm{V}=\operatorname{FinProd}\left(\mathcal{X}, \mathrm{W}_{2}\right)\right\rangle\left\langle\mathrm{W}_{2} \in \mathrm{~N}_{2} \rightarrow \mathrm{~T}\right\rangle$
have $\mathrm{x} \in \mathcal{X}$ and $\forall \mathrm{i} \in \mathrm{N}_{1}$. $\mathrm{x}(\mathrm{i}) \in \mathrm{W}_{1}(\mathrm{i})$ and $\forall i \in \mathrm{~N}_{2}$. $\mathrm{x}(\mathrm{i}) \in \mathrm{W}_{2}(\mathrm{i})$
using func1_1_L1 FinProd_def by auto
with $\left\langle W_{3}: N_{3} \rightarrow T\right\rangle\langle\mathrm{x} \in \mathcal{X}\rangle$ have $\mathrm{x} \in \operatorname{FinProd}\left(\mathcal{X}, \mathrm{W}_{3}\right)$
using ZF_fun_from_tot_val func1_1_L1 FinProd_def by auto
$\}$ thus $U \cap V \subseteq \operatorname{FinProd}\left(\mathcal{X}, W_{3}\right)$ by auto
$\left\{\right.$ fix x assume $x \in \operatorname{FinProd}\left(\mathcal{X}, W_{3}\right)$
with $\left\langle W_{3}: N_{3} \rightarrow T\right\rangle$ have $x: I \rightarrow \bigcup T$ and III: $\forall i \in N_{3}$. $x(i) \in W_{3}(i)$
using FinProd_def func1_1_L1 by auto
$\left\{\right.$ fix i assume $i \in N_{1}$
with $\left\langle W_{3}: N_{3} \rightarrow T\right\rangle$ have $W_{3}(i) \subseteq W_{1}(i)$ using $Z F$ _fun_from_tot_val by
auto
with III $\left\langle i \in N_{1}\right\rangle$ have $x(i) \in W_{1}(i)$ by auto
$\}$ with $\left\langle\mathrm{W}_{1} \in \mathrm{~N}_{1} \rightarrow \mathrm{~T}\right\rangle\langle\mathrm{x}: \mathrm{I} \rightarrow \bigcup \mathrm{T}\rangle\left\langle\mathrm{U}=\operatorname{FinProd}\left(\mathcal{X}, \mathrm{W}_{1}\right)\right\rangle$
have $\mathrm{x} \in \mathrm{U}$ using func1_1_L1 FinProd_def by auto
moreover
\{ fix i assume $i \in N_{2}$
with $\left\langle W_{3}: N_{3} \rightarrow T\right\rangle$ have $W_{3}(i) \subseteq W_{2}(i)$ using $Z F_{\text {_f }}$ fun_from_tot_val by
auto
with III $\left\langle i \in N_{2}\right\rangle$ have $x(i) \in W_{2}(i)$ by auto
$\}$ with $\left\langle\mathrm{W}_{2} \in \mathrm{~N}_{2} \rightarrow \mathrm{~T}\right\rangle\langle\mathrm{x}: \mathrm{I} \rightarrow \bigcup \mathrm{T}\rangle\left\langle\mathrm{V}=\operatorname{FinProd}\left(\mathcal{X}, \mathrm{W}_{2}\right)\right\rangle$ have $\mathrm{x} \in \mathrm{V}$
using func1_1_L1 FinProd_def by auto
ultimately have $x \in U \cap V$ by simp
$\}$ thus $\operatorname{Fin} \operatorname{Prod}\left(\mathcal{X}, W_{3}\right) \subseteq U \cap V$ by auto
qed
ultimately show thesis by simp
qed
In the next theorem we show the collection of sets defined above as ProductTopBase (\mathcal{X}, T) satisfies the base condition. This is a condition, defined in Topology_ZF_1 that allows to claim that this collection is a base for some topology.
theorem prod_top_base_is_base: assumes T \{is a topology\}

```
shows ProductTopBase(I,T) \{satisfies the base condition\}
using assms prod_top_base_inter inter_closed_base by simp
```

The (sequence) product topology is indeed a topology on the space of sequences. In the proof we are using the fact that $(\emptyset \rightarrow X)=\{\emptyset\}$.

```
theorem seq_prod_top_is_top: assumes T \{is a topology\}
    shows
    SeqProductTopology (I,T) \{is a topology\} and
    ProductTopBase(I,T) \{is a base for\} SeqProductTopology(I,T) and
    \(\bigcup\) SeqProductTopology (I,T) = (I \(\rightarrow \bigcup \mathrm{T})\)
proof -
    from assms show SeqProductTopology(I,T) \{is a topology\} and
        I: ProductTopBase(I,T) \{is a base for\} SeqProductTopology (I,T)
                using prod_top_base_is_base SeqProductTopology_def Top_1_2_T1
                    by auto
    from I have USeqProductTopology (I,T) = \ProductTopBase(I,T)
        using Top_1_2_L5 by simp
    also have \(\bigcup\) ProductTopBase \((\mathrm{I}, \mathrm{T})=(\mathrm{I} \rightarrow \bigcup T)\)
    proof
        show \(\bigcup\) ProductTopBase \((I, T) \subseteq(I \rightarrow \bigcup T)\) using ProductTopBase_def FinProd_def
                by auto
            have \(0 \in\) FinPow(I) using empty_in_finpow by simp
            hence \(\{\operatorname{FinProd}(\mathrm{I} \rightarrow \bigcup \mathrm{T}, \mathrm{W}) . \mathrm{W} \in 0 \rightarrow \mathrm{~T}\} \subseteq(\bigcup \mathrm{N} \in \operatorname{FinPow}(\mathrm{I}) .\{\operatorname{FinProd}(\mathrm{I} \rightarrow \bigcup \mathrm{T}, \mathrm{W})\).
\(\mathrm{W} \in \mathrm{N} \rightarrow \mathrm{T}\}\) )
            by blast
            then show ( \(\mathrm{I} \rightarrow \bigcup \mathrm{T}\) ) \(\subseteq \bigcup\) ProductTopBase (I,T) using ProductTopBase_def
FinProd_def
                by auto
    qed
    finally show \(\bigcup\) SeqProductTopology \((I, T)=(I \rightarrow \bigcup T)\) by simp
qed
```


53.2 Finite product of topologies

As a special case of the space of functions $I \rightarrow X$ we can consider space of lists of elements of X, i.e. space $n \rightarrow X$, where n is a natural number (recall that in ZF set theory $n=\{0,1, \ldots, n-1\})$. Such spaces model finite cartesian products X^{n} but are easier to deal with in formalized way (than the said products). This section discusses natural topology defined on $n \rightarrow X$ where X is a topological space.

When the index set is finite, the definition of ProductTopBase(I,T) can be simplifed.
lemma fin_prod_def_nat: assumes A1: n \in nat and A2: T \{is a topology\}

```
    shows ProductTopBase(n,T) = {FinProd(n->\bigcupT,W). W\inn->T}
proof
```

```
    from A1 have \(n \in \operatorname{FinPow}(n)\) using nat_finpow_nat fin_finpow_self by
auto
    then show \(\{\operatorname{FinProd}(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}) . \mathrm{W} \in \mathrm{n} \rightarrow \mathrm{T}\} \subseteq \operatorname{ProductTopBase}(\mathrm{n}, \mathrm{T})\) using ProductTopBase_def
        by auto
    \{ fix B assume B \(\in\) ProductTopBase ( \(n, T\) )
        then obtain \(N W\) where \(N \in \operatorname{FinPow}(n)\) and \(W \in N \rightarrow T\) and \(B=\operatorname{FinProd}(n \rightarrow \bigcup T, W)\)
            using ProductTopBase_def by auto
        let \(W_{n}=\{\langle i, i f i \in N\) then \(W(i)\) else \(\bigcup T\rangle\). \(i \in n\}\)
        from \(A 2\langle\mathbb{N} \in \operatorname{FinPow}(\mathrm{n})\rangle\langle W \in N \rightarrow T\rangle\) have \(\forall i \in \mathrm{n}\). (if \(i \in N\) then \(W(i)\) else
\(\bigcup T) \in T\)
                using apply_funtype FinPow_def IsATopology_def by auto
            then have \(\mathrm{W}_{n}: \mathrm{n} \rightarrow \mathrm{T}\) by (rule \(\mathrm{ZF}_{-}\)fun_from_total)
            moreover have \(B=\operatorname{FinProd}\left(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}_{n}\right)\)
            proof
                \{ fix \(x\) assume \(x \in B\)
                    with \(\langle\mathrm{B}=\operatorname{FinProd}(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W})\rangle\) have \(\mathrm{x} \in \mathrm{n} \rightarrow \bigcup \mathrm{T}\) using FinProd_def
by simp
                    moreover have \(\forall i \in \operatorname{domain}\left(W_{n}\right) . x(i) \in W_{n}(i)\)
                    proof
                fix i assume i \(\in \operatorname{domain}\left(W_{n}\right)\)
                with \(\left\langle\mathrm{W}_{n}: \mathrm{n} \rightarrow \mathrm{T}\right\rangle\) have \(\mathrm{i} \in \mathrm{n}\) using func1_1_L1 by simp
                with \(\langle x: n \rightarrow \bigcup T\) have \(x(i) \in \bigcup T\) using apply_funtype by blast
                with \(\langle\mathrm{x} \in \mathrm{B}\rangle\langle\mathrm{B}=\operatorname{FinProd}(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W})\rangle\langle\mathrm{W} \in \mathrm{N} \rightarrow \mathrm{T}\rangle\left\langle\mathrm{W}_{n}: \mathrm{n} \rightarrow \mathrm{T}\right\rangle\langle\mathrm{i} \in \mathrm{n}\rangle\)
                show \(x(i) \in W_{n}(i)\) using func1_1_L1 FinProd_def ZF_fun_from_tot_val
                    by simp
            qed
            ultimately have \(x \in \operatorname{FinProd}\left(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}_{n}\right)\) using FinProd_def by simp
        \} thus \(B \subseteq \operatorname{FinProd}\left(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}_{n}\right)\) by auto
        next
        \(\left\{\right.\) fix x assume \(\mathrm{x} \in \operatorname{FinProd}\left(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}_{n}\right)\)
            then have \(\mathrm{x} \in \mathrm{n} \rightarrow \bigcup \mathrm{T}\) and \(\forall \mathrm{i} \in \operatorname{domain}\left(\mathrm{W}_{n}\right) . \mathrm{x}(\mathrm{i}) \in \mathrm{W}_{n}(\mathrm{i})\)
                using FinProd_def by auto
            with \(\left\langle\mathrm{W}_{n}: \mathrm{n} \rightarrow \mathrm{T}\right\rangle\) and \(\langle\mathrm{N} \in \operatorname{FinPow}(\mathrm{n})\rangle\) have \(\forall \mathrm{i} \in \mathrm{N}\). \(\mathrm{x}(\mathrm{i}) \in \mathrm{W}_{n}(\mathrm{i})\)
                using func1_1_L1 FinPow_def by auto
            moreover from \(\left\langle W_{n}: n \rightarrow T\right\rangle\) and \(\langle N \in \operatorname{FinPow}(n)\rangle\)
            have \(\forall i \in N . W_{n}(i)=W(i)\)
                using ZF_fun_from_tot_val FinPow_def by auto
            ultimately have \(\forall i \in N\). \(x(i) \in W(i)\) by simp
            with \(\langle W \in N \rightarrow T\rangle\langle x \in n \rightarrow \bigcup T\rangle\langle B=\operatorname{FinProd}(n \rightarrow \bigcup T, W)\rangle\) have \(x \in B\)
                using func1_1_L1 FinProd_def by simp
        \(\}\) thus FinProd \(\left(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}_{n}\right) \subseteq \mathrm{B}\) by auto
    qed
        ultimately have \(B \in\{\operatorname{FinProd}(\mathrm{n} \rightarrow \bigcup \mathrm{T}, \mathrm{W}) . \mathrm{W} \in \mathrm{n} \rightarrow \mathrm{T}\}\) by auto
    \(\}\) thus ProductTopBase ( \(n, T\) ) \(\subseteq\{\operatorname{FinProd}(n \rightarrow \bigcup T, W) . W \in n \rightarrow T\}\) by auto
qed
A technical lemma providing a formula for finite product on one topological space.
```

```
lemma single_top_prod: assumes A1: W:1 \(\rightarrow \tau\)
    shows FinProd \((1 \rightarrow \bigcup \tau, W)=\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{W}(0)\}\)
proof -
    have 1 = \{0\} by auto
    from A1 have domain \((W)=\{0\}\) using func1_1_L1 by auto
    then have \(\operatorname{FinProd}(1 \rightarrow \bigcup \tau, \mathrm{~W})=\{\mathrm{x} \in 1 \rightarrow \bigcup \tau . \mathrm{x}(0) \in \mathrm{W}(0)\}\)
        using FinProd_def by simp
    also have \(\{\mathrm{x} \in 1 \rightarrow \bigcup \tau . \mathrm{x}(0) \in \mathrm{W}(0)\}=\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{W}(0)\}\)
    proof
        from \(\langle 1=\{0\}\) show \(\{\mathrm{x} \in 1 \rightarrow \bigcup \tau . \mathrm{x}(0) \in \mathrm{W}(0)\} \subseteq\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{W}(0)\}\)
                using func_singleton_pair by auto
        \(\{\) fix x assume \(\mathrm{x} \in\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{W}(0)\}\)
            then obtain \(y\) where \(x=\{\langle 0, y\rangle\}\) and II: \(y \in W(0)\) by auto
            with A1 have \(\mathrm{y} \in \bigcup \tau\) using apply_funtype by auto
            with \(\langle\mathrm{x}=\{\langle 0, \mathrm{y}\rangle\}\rangle\langle 1=\{0\}\rangle\) have \(\mathrm{x}: 1 \rightarrow \bigcup \tau\) using pair_func_singleton
                by auto
            with \(\langle\mathrm{x}=\{\langle 0, \mathrm{y}\rangle\}\rangle\) II have \(\mathrm{x} \in\{\mathrm{x} \in 1 \rightarrow \bigcup \tau . \mathrm{x}(0) \in \mathrm{W}(0)\}\)
                using pair_val by simp
        \(\}\) thus \(\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{W}(0)\} \subseteq\{\mathrm{x} \in 1 \rightarrow \bigcup \tau . \mathrm{x}(0) \in \mathrm{W}(0)\}\) by auto
    qed
    finally show thesis by simp
qed
```

Intuitively，the topological space of singleton lists valued in X is the same as X ．However，each element of this space is a list of length one，i．e a set consisting of a pair $\langle 0, x\rangle$ where x is an element of X ．The next lemma provides a formula for the product topology in the corner case when we have only one factor and shows that the product topology of one space is essentially the same as the space．

```
lemma singleton_prod_top: assumes A1: \(\tau\) \{is a topology\}
    shows
            SeqProductTopology \((1, \tau)=\{\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} . \mathrm{U} \in \tau\}\) and
            IsAhomeomorphism ( \(\tau\), SeqProductTopology (1, \(\tau\) ), \(\{\langle\mathrm{y},\{\langle 0, \mathrm{y}\rangle\}\rangle . \mathrm{y} \in \bigcup \tau\}\) )
proof -
    have \(\{0\}=1\) by auto
    let \(\mathrm{b}=\{\langle\mathrm{y},\{\langle 0, \mathrm{y}\rangle\}\rangle \cdot \mathrm{y} \in \bigcup \tau\}\)
    have \(\mathrm{b} \in \operatorname{bij}(\bigcup \tau, 1 \rightarrow \bigcup \tau)\) using list_singleton_bij by blast
    with A1 have \(\{b(U) . U \in \tau\}\) \{is a topology\} and IsAhomeomorphism( \(\tau\), \{b(U).
\(\mathrm{U} \in \tau\}, \mathrm{b})\)
        using bij_induced_top by auto
    moreover have \(\forall \mathrm{U} \in \tau . \mathrm{b}(\mathrm{U})=\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\}\)
    proof
        fix \(U\) assume \(U \in \tau\)
        from \(\langle\mathrm{b} \in \operatorname{bij}(\bigcup \tau, 1 \rightarrow \bigcup \tau)\) 〉 have \(\mathrm{b}: \bigcup \tau \rightarrow(1 \rightarrow \bigcup \tau)\) using bij_def inj_def
            by simp
        \(\{\) fix y assume \(y \in \bigcup \tau\)
            with 〈b: \(\bigcup \tau \rightarrow(1 \rightarrow \bigcup \tau)\) 〉 have \(\mathrm{b}(\mathrm{y})=\{\langle 0, \mathrm{y}\rangle\}\) using ZF_fun_from_tot_val
                    by simp
        \(\}\) hence \(\forall \mathrm{y} \in \bigcup \tau\). \(\mathrm{b}(\mathrm{y})=\{\langle 0, \mathrm{y}\rangle\}\) by auto
```

with $\langle\mathrm{U} \in \tau\rangle\langle\mathrm{b}: \bigcup \tau \rightarrow(1 \rightarrow \bigcup \tau)\rangle$ show $\mathrm{b}(\mathrm{U})=\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\}$ using func_imagedef by auto
qed
moreover have ProductTopBase $(1, \tau)=\{\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} . \mathrm{U} \in \tau\}$
proof
\{ fix V assume $\mathrm{V} \in \operatorname{ProductTopBase(1,\tau)}$
with A1 obtain W where $\mathrm{W}: 1 \rightarrow \tau$ and $\mathrm{V}=\operatorname{FinProd}(1 \rightarrow \bigcup \tau$, W$)$ using fin_prod_def_nat by auto
then have $V \in\{\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} . \mathrm{U} \in \tau\}$ using apply_funtype single_top_prod by auto
$\}$ thus ProductTopBase $(1, \tau) \subseteq\{\{\{\langle 0, y\rangle\} . y \in U\} . \mathrm{U} \in \tau\}$ by auto
\{ fix V assume $V \in\{\{\{\langle 0, y\rangle\} . y \in U\}$. $U \in \tau\}$
then obtain U where $U \in \tau$ and $V=\{\{\langle 0, y\rangle\} . y \in U\}$ by auto
let $W=\{\langle 0, U\rangle\}$
from $\langle\mathrm{U} \in \tau\rangle$ have $\mathrm{W}:\{0\} \rightarrow \tau$ using pair_func_singleton by simp
with $\langle\{0\}=1\rangle$ have $W: 1 \rightarrow \tau$ and $W(0)=U$ using pair_val by auto
with $\langle\mathrm{V}=\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\}\rangle$ have $\mathrm{V}=\operatorname{FinProd}(1 \rightarrow \bigcup \tau, \mathrm{~W})$
using single_top_prod by simp
with A1 $\langle\mathrm{W}: 1 \rightarrow \tau\rangle$ have $\mathrm{V} \in \operatorname{ProductTopBase}(1, \tau)$ using fin_prod_def_nat by auto
$\}$ thus $\{\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} . \mathrm{U} \in \tau\} \subseteq \operatorname{ProductTopBase}(1, \tau)$ by auto
qed
ultimately have I: ProductTopBase (1, τ) \{is a topology\} and
II: IsAhomeomorphism(τ, ProductTopBase(1, τ),b) by auto
from A1 have ProductTopBase (1, τ) \{is a base for\} SeqProductTopology $(1, \tau)$
using seq_prod_top_is_top by simp
with I have ProductTopBase $(1, \tau)=\operatorname{SeqProductTopology~}(1, \tau)$ by (rule base_topology)
with $\langle\operatorname{ProductTopBase}(1, \tau)=\{\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} . \mathrm{U} \in \tau\}$) II show SeqProductTopology $(1, \tau)=\{\{\{\langle 0, \mathrm{y}\rangle\} . \mathrm{y} \in \mathrm{U}\} . \mathrm{U} \in \tau\}$ and IsAhomeomorphism (τ, SeqProductTopology ($1, \tau$), $\{\langle\mathrm{y},\{\langle 0, \mathrm{y}\rangle\}\rangle . \mathrm{y} \in \bigcup \tau\}$) by auto
qed
A special corner case of finite_top_prod_homeo: a space X is homeomorphic to the space of one element lists of X.

```
theorem singleton_prod_top1: assumes A1: \tau {is a topology}
    shows IsAhomeomorphism(SeqProductTopology(1,\tau),\tau,{\langlex,x(0)\rangle. x\in1->\bigcup\tau})
proof -
    have {\langlex,x(0)\rangle. x\in1->\bigcup \} = converse({\langley,{\langle0,y\rangle}\rangle. y\in\bigcup \} )
            using list_singleton_bij by blast
    with A1 show thesis using singleton_prod_top homeo_inv by simp
qed
```

A technical lemma describing the carrier of a (cartesian) product topology of the (sequence) product topology of n copies of topology τ and another copy of τ.
lemma finite_prod_top: assumes τ \{is a topology\} and $T=$ SeqProductTopology (n, τ)

```
shows ( \(\bigcup\) ProductTopology \((T, \tau))=(\mathrm{n} \rightarrow \bigcup \tau) \times \bigcup \tau\)
using assms Top_1_4_T1 seq_prod_top_is_top by simp
```

If U is a set from the base of X^{n} and V is open in X, then $U \times V$ is in the base of X^{n+1}. The next lemma is an analogue of this fact for the function space approach.

```
lemma finite_prod_succ_base: assumes A1: \tau {is a topology} and A2:
n}\in\mathrm{ nat and
    A3: U \in ProductTopBase( }\textrm{n},\tau)\mathrm{ and A4: V }\in
    shows {x \in succ(n) }->\bigcup\tau\mathrm{ . Init(x) }\in\textrm{U}\wedge ^ x(n) \in V} \in ProductTopBase(succ(n),\tau
    proof -
```



```
        from A1 A2 have ProductTopBase(n,\tau) = {FinProd (n}->\bigcup\tau,W).W\inn->\tau
            using fin_prod_def_nat by simp
            with A3 obtain }\mp@subsup{W}{U}{}\mathrm{ where }\mp@subsup{W}{U}{}:n->\tau and U =FinProd (n 䜣tau, W W ) by aut
            let W = Append(W W W,V)
            from A4 and \langleW WU: n}->\tau\rangle\mathrm{ have W:succ(n) }->\tau\mathrm{ using append_props by simp
            moreover have B = FinProd(succ(n) }->\bigcup\tau\mathrm{ ,W)
            proof
            { fix x assume x\inB
                            with \langleW:\operatorname{succ}(n)->\tau\rangle have x 
using func1_1_L1
                    by auto
                    moreover from A2 A4 \langlex\inB\rangle\langleU =FinProd (n}->\bigcup\tau,\mp@subsup{W}{U}{})\rangle\langle\mp@subsup{W}{U}{}:\textrm{n}->\tau\rangle\langle\textrm{x
\operatorname{succ}(\textrm{n})->\bigcup\tau\rangle
            have }\foralli\in\operatorname{succ}(n). x(i) \in W(i) using func1_1_L1 FinProd_def init_prop
append_props
                by simp
            ultimately have x }\in\mathrm{ FinProd(succ(n) }->\bigcup\\mathrm{ , W) using FinProd_def
by simp
            } thus B \subseteq FinProd(succ(n)->\bigcup\tau,W) by auto
            next
            { fix x assume x \in FinProd(succ (n) }->\bigcup\tau\mathrm{ ,W)
            then have x:\operatorname{succ}(n)->\bigcup\tau and I: \foralli G domain(W). x(i) \inW(i)
                using FinProd_def by auto
            moreover have Init(x) \in U
            proof -
                from A2 and {x:succ}(\textrm{n})->\bigcup\tau\rangle have Init(x):n->\bigcup\tau using init_prop
by simp
                moreover have }\foralli\in\operatorname{domain}(\mp@subsup{W}{U}{}).\operatorname{Init}(x)(i)\in\mp@subsup{W}{U}{\prime}(i
                proof -
                        from A2 <x }\in\operatorname{FinProd}(\operatorname{succ}(\textrm{n})->\bigcup\tau,W)\rangle\langleW:\operatorname{succ}(\textrm{n})->\tau\rangle have \foralli\inn
x(i) \in W(i)
                                    using FinProd_def func1_1_L1 by simp
                        moreover from A2 <x: succ(n)}->\bigcup\tau\rangle\mathrm{ have }\forall\textrm{i}\in\textrm{n}\mathrm{ . Init(x)(i)
= x(i)
                                    using init_props by simp
                                    moreover from A4 and }\langle\mp@subsup{\textrm{W}}{U}{}:\textrm{n}->\tau\rangle\mathrm{ have }\forall\textrm{i}\in\textrm{n}.\textrm{W}(\textrm{i})=\mp@subsup{\textrm{W}}{U}{}(\textrm{i}
                                    using append_props by simp
```

```
            ultimately have }\forall\textrm{i}\in\textrm{n}\mathrm{ . Init(x) (i) }\in\mp@subsup{\textrm{W}}{U}{}(\textrm{i})\mathrm{ by simp
            with \langleW }\mp@subsup{W}{U}{}:\textrm{n}->\tau\rangle\mathrm{ show thesis using func1_1_L1 by simp
        qed
        ultimately have Init(x) \in FinProd(n }->\bigcup\tau\mathrm{ , W W ) using FinProd_def
by simp
            with <U =FinProd(n->\bigcup\tau,W W ) show thesis by simp
        qed
        moreover have x(n) \inV
        proof -
        from \W:succ(n)->\tau\rangle I have x(n) \in W(n) using func1_1_L1 by
simp
    moreover from A4 \langleW W : n }->\tau\rangle\mathrm{ have W W (n) = V using append_props
by simp
            ultimately show thesis by simp
            qed
            ultimately have x\inB by simp
        } thus FinProd(\operatorname{succ}(\textrm{n})->\bigcup\tau,W)\subseteq B by auto
    qed
    moreover from A1 A2 have
    ProductTopBase(succ(n),\tau) = {FinProd(\operatorname{succ}(n)->\bigcup\tau,W). W\in\operatorname{succ}(n)->\tau}
    using fin_prod_def_nat by simp
    ultimately show thesis by auto
qed
```

If U is open in X^{n} and V is open in X, then $U \times V$ is open in X^{n+1}. The next lemma is an analogue of this fact for the function space approach.
lemma finite_prod_succ: assumes A1: τ \{is a topology\} and A2: $\mathrm{n} \in$ nat and
A3: $U \in \operatorname{SeqProductTopology}(n, \tau)$ and A4: $V \in \tau$
shows $\{x \in \operatorname{succ}(n) \rightarrow \bigcup \tau$. Init $(x) \in U \wedge x(n) \in V\} \in \operatorname{SeqProductTopology}(\operatorname{succ}(n), \tau)$
proof -
from A1 have ProductTopBase (n, τ) \{is a base for\} SeqProductTopology (n, τ)
and
I: ProductTopBase (succ $(n), \tau)$ \{is a base for\} SeqProductTopology (succ $(n), \tau)$
and
II: SeqProductTopology (succ $(n), \tau$) \{is a topology\}
using seq_prod_top_is_top by auto
with A3 have $\exists \mathcal{B} \in \operatorname{Pow}(\operatorname{ProductTopBase}(\mathrm{n}, \tau))$. U = $\bigcup \mathcal{B}$ using Top_1_2_L1
by simp

then have
$\{\mathrm{x}: \operatorname{succ}(\mathrm{n}) \rightarrow \bigcup \tau$. Init $(\mathrm{x}) \in \mathrm{U} \wedge \mathrm{x}(\mathrm{n}) \in \mathrm{V}\}=(\bigcup B \in \mathcal{B} .\{\mathrm{x}: \operatorname{succ}(\mathrm{n}) \rightarrow \bigcup \tau$.
Init $(x) \in B \wedge x(n) \in V\})$
by auto
moreover from A1 A2 A4 $\langle\mathcal{B} \subseteq$ ProductTopBase $(n, \tau)\rangle$ have
$\forall B \in \mathcal{B} .(\{x: \operatorname{succ}(n) \rightarrow \bigcup \tau$. Init $(x) \in B \wedge x(n) \in V\} \in \operatorname{ProductTopBase}(\operatorname{succ}(n), \tau))$
using finite_prod_succ_base by auto
with I II have
$(\bigcup B \in \mathcal{B} .\{x: \operatorname{succ}(\mathrm{n}) \rightarrow \bigcup \tau$. Init $(\mathrm{x}) \in \mathrm{B} \wedge \mathrm{x}(\mathrm{n}) \in \mathrm{V}\}) \in \operatorname{SeqProductTopology}(\operatorname{succ}(\mathrm{n}), \tau)$
using base_sets_open union_indexed_open by auto
ultimately show thesis by simp
qed
In the Topology_ZF_2 theory we define product topology of two topological spaces. The next lemma explains in what sense the topology on finite lists of length n of elements of topological space X can be thought as a model of the product topology on the cartesian product of n copies of that space. Namely, we show that the space of lists of length $n+1$ of elements of X is homeomorphic to the product topology (as defined in Topology_ZF_2) of two spaces: the space of lists of length n and X. Recall that if \mathcal{B} is a base (i.e. satisfies the base condition), then the collection $\{\bigcup B \mid B \in \operatorname{Pow}(\mathcal{B})\}$ is a topology (generated by \mathcal{B}).
theorem finite_top_prod_homeo: assumes A1: τ \{is a topology\} and A2: $\mathrm{n} \in$ nat and

A3: $f=\{\langle x,\langle\operatorname{Init}(x), x(n)\rangle\rangle . x \in \operatorname{succ}(n) \rightarrow \bigcup \tau\}$ and
A4: $T=\operatorname{SeqProductTopology(~} n, \tau$) and
A5: $S=$ SeqProductTopology (succ (n) , τ)
shows IsAhomeomorphism(S, ProductTopology (T, τ),f)
proof -
let $C=$ ProductCollection(T, τ)
let $B=\operatorname{ProductTopBase}(\operatorname{succ}(n), \tau)$
from A1 A4 have T \{is a topology\} using seq_prod_top_is_top by simp
with A1 A5 have S \{is a topology\} and ProductTopology(T, τ) \{is a
topology\}
using seq_prod_top_is_top Top_1_4_T1 by auto
moreover
from assms have $f \in \operatorname{bij}(\bigcup S, \bigcup$ ProductTopology (T, τ))

> using lists_cart_prod seq_prod_top_is_top Top_1_4_T1 by simp
then have $f: \cup S \rightarrow \bigcup$ ProductTopology (T, τ) using bij_is_fun by simp
ultimately have two_top_spaces0(S, ProductTopology (T, τ), f) using two_top_spaces0_def

by simp

moreover note $\langle f \in \operatorname{bij}(\bigcup S, \bigcup$ ProductTopology $(T, \tau))\rangle$
moreover from A1 A5 have B \{is a base for\} S
using seq_prod_top_is_top by simp
moreover from A1 〈T \{is a topology\}〉 have C \{is a base for\} ProductTopology(T, τ)
using Top_1_4_T1 by auto
moreover have $\forall W \in C$. $f-(W) \in S$
proof
fix W assume $\mathrm{W} \in \mathrm{C}$
then obtain $U V$ where $U \in T V \in \tau$ and $W=U \times V$ using ProductCollection_def
by auto
from A1 A5 $\langle f: \bigcup S \rightarrow \bigcup$ ProductTopology $(T, \tau)\rangle$ have $\mathrm{f}:(\operatorname{succ}(\mathrm{n}) \rightarrow \bigcup \tau) \rightarrow \bigcup$ ProductTopology $($ using seq_prod_top_is_top by simp
with assms $\langle W=U \times V\rangle\langle U \in T\rangle\langle V \in \tau\rangle$ show $f-(W) \in S$
using ZF_fun_from_tot_val func1_1_L15 finite_prod_succ by simp

```
    qed
    moreover have }\forall\textrm{V}\in\textrm{B}.\textrm{f}(\textrm{V})\in\mathrm{ ProductTopology(T, }\tau
    proof
        fix V assume V\inB
        with A1 A2 obtain }\mp@subsup{\textrm{W}}{V}{}\mathrm{ where }\mp@subsup{\textrm{W}}{V}{}\in\operatorname{succ}(\textrm{n})->\tau\mathrm{ and V = FinProd(succ(n) }->\bigcup\tau,\mp@subsup{\textrm{W}}{V}{}
        using fin_prod_def_nat by auto
    let U = FinProd(n->\bigcup 
    let W = W
    have }U\in
    proof -
        from A1 A2 }\langle\mp@subsup{\textrm{W}}{V}{}\in\operatorname{succ}(\textrm{n})->\tau\rangle\mathrm{ have U }\in\operatorname{ProductTopBase(n,\tau)
            using fin_prod_def_nat init_props by auto
        with A1 A4 show thesis using seq_prod_top_is_top base_sets_open
by blast
    qed
    from A1 \langleW}\mp@subsup{W}{V}{}\in\operatorname{succ}(\textrm{n})->\tau\rangle\langleT {is a topology}\rangle\langleU \in T\rangle have U\timesW \in ProductTopology(T,\tau
        using apply_funtype prod_open_open_prod by simp
    moreover have f(V) = U WW
    proof -
        from A2 \langleW (W : succ(n)->\tau\rangle have Init (W}\mp@subsup{W}{V}{}):\textrm{n}->\tau\mathrm{ and III: }\forall\textrm{k}\in\textrm{n}.\operatorname{Init}(\mp@subsup{\textrm{W}}{V}{})(\textrm{k}
= W
            using init_props by auto
        then have domain(Init( }\mp@subsup{W}{V}{})\mathrm{ ) = n using func1_1_L1 by simp
        have f(V) = {\langleInit (x),x(n)\rangle. x\inV}
        proof -
            have f(V) = {f(x). x\inV}
            proof -
                from A1 A5 have B {is a base for} S using seq_prod_top_is_top
by simp
                with }\langle\textrm{V}\in\textrm{B}\rangle\mathrm{ have V }\subseteq\bigcup\S using IsAbaseFor_def by aut
                with <f: \S }->\bigcup\mathrm{ ProductTopology(T, }\tau\mathrm{ ) \ show thesis using func_imagedef
by simp
            qed
            moreover have }\forall\textrm{x}\in\textrm{V}.\textrm{f}(\textrm{x})=\langle\operatorname{Init}(\textrm{x}),\textrm{x}(\textrm{n})
            proof -
                from A1 A3 A5 <V = FinProd(succ (n) }\longrightarrow\bigcup\tau,\mp@subsup{\textrm{W}}{V}{})\rangle\mathrm{ have V }\subseteq\cup\S\mathrm{ and
                    fdef: f = {\langlex,\langleInit(x),x(n)\rangle\rangle. x \in \S} using seq_prod_top_is_top
FinProd_def
                    by auto
                            from <f: \S->\bigcupProductTopology(T,\tau)\rangle fdef have }\forallx\in\bigcupS.f(x
= \langleInit(x),x(n)}
            by (rule ZF_fun_from_tot_val0)
            with <V \subseteqUS` show thesis by auto
            qed
            ultimately show thesis by simp
        qed
        also have {\langleInit(x),x(n)\rangle. x\inV} = U }\times\textrm{W
```

```
    proof
    { fix y assume y }\in{\langle|\operatorname{Init}(x),x(n)\rangle. x\inV
        then obtain }x\mathrm{ where I: y = <Init(x),x(n)\ and x:V by auto
        with <V = FinProd(succ(n) }->\bigcup\tau\mathrm{ , W}\mp@subsup{W}{V}{})\rangle\mathrm{ have
            x:\operatorname{succ}(\textrm{n})->\bigcup\tau}\mathrm{ and II: }\forall\textrm{k}\in\operatorname{domain}(\mp@subsup{\textrm{W}}{V}{}).\textrm{x}(\textrm{k})\in\mp@subsup{\textrm{W}}{V}{}(\textrm{k}
            unfolding FinProd_def by auto
        with A2 \langleW W}: \operatorname{succ}(\textrm{n})->\tau\rangle\mathrm{ have IV: }\forall\textrm{k}\in\textrm{n}.\operatorname{Init}(\textrm{x})(\textrm{k})=\textrm{x}(\textrm{k}
            using init_props by simp
            have Init(x) \in U
            proof -
                from A2 <x:\operatorname{succ}(n)->\bigcup\tau\rangle have Init(x): n}->\bigcup\tau\mathrm{ using init_props
by simp
            moreover have }\forallk\in\operatorname{domain}(\operatorname{Init}(\mp@subsup{W}{V}{})).\operatorname{Init}(\textrm{x})(\textrm{k})\in\operatorname{Init}(\mp@subsup{W}{V}{})(k
                    proof -
                            from A2 \langle }\mp@subsup{\textrm{W}}{V}{}:\operatorname{succ}(\textrm{n})->\tau\rangle\mathrm{ have Init(W
by simp
                    then have domain(Init(\mp@subsup{W}{V}{})) = n using func1_1_L1 by simp
                    note III IV <domain(Init (W}\mp@subsup{W}{V}{}))=n
                        moreover from II }\langle\mp@subsup{W}{V}{}\in\operatorname{succ}(\textrm{n})->\tau\rangle\mathrm{ have }\forall\textrm{k}\in\textrm{n}.\textrm{x}(\textrm{k})\in\mp@subsup{\textrm{W}}{V}{}(\textrm{k}
                        using func1_1_L1 by simp
                    ultimately show thesis by simp
                    qed
                            ultimately show Init(x) \in U using FinProd_def by simp
            qed
            moreover from \langleW
by simp
        ultimately have \langleInit(x),x(n)\rangle\inU\timesW by simp
        with I have y }\inU\timesW\mathrm{ by simp
    } thus {\langleInit(x),x(n)\rangle. x\inV} \subseteq U }\times\textrm{WW}\mathrm{ by auto
    { fix y assume y \in U }\times\textrm{W
        then have fst(y) \in U and snd(y) \in W by auto
        with <domain(Init(W}\mp@subsup{W}{V}{}))=n\mp@code{have fst(y): n }->\bigcup\\tau\mathrm{ and
            V: \forallk\inn. fst(y)(k) \in Init(W}\mp@subsup{W}{V}{})(k
            using FinProd_def by auto
        from \langleW}\mp@subsup{W}{V}{}: succ(n)->\tau\rangle have W \in \tau using apply_funtype by sim
        with \snd(y) \in W> have snd(y) \in \bigcup \tau by auto
        let x = Append(fst(y),snd(y))
        have }x\in
        proof -
            from <fst(y): n->\bigcup \tau\rangle\langlesnd(y) \in \bigcup \tau\rangle have x:succ(n) }->\bigcup\tau\mathrm{ us-
ing append_props by simp
            moreover have }\foralli\in\operatorname{domain}(\mp@subsup{W}{V}{}). x(i) \in W W (i
            proof -
                    from \langlefst(y): n->\bigcup \\rangle\langlesnd(y) \in \bigcup \tau\rangle
                        have }\forallk\inn. x(k) = fst(y)(k) and x(n) = snd(y
                        using append_props by auto
                    moreover from III V have }\forall\textrm{k}\in\textrm{n}.\mathrm{ . fst(y)(k) }\in\mp@subsup{\textrm{W}}{V}{}(\textrm{k})\mathrm{ by simp
```

```
                    moreover note <snd (y) \in W`
                    ultimately have }\foralli\in\operatorname{succ}(n). x(i) \in W W (i) by simp
                    with }\langle\mp@subsup{W}{V}{}\in\operatorname{succ}(\textrm{n})->\tau\rangle\mathrm{ show thesis using func1_1_L1 by
simp
            qed
            ultimately have x }\in\operatorname{FinProd}(\operatorname{succ}(\textrm{n})->\bigcup\tau,\mp@subsup{W}{V}{}) using FinProd_def
by simp
            with <V = FinProd(succ(n)->\bigcup\tau,W}\mp@subsup{W}{V}{})\rangle\mathrm{ show }\textrm{x}\in\textrm{V}\mathrm{ by simp
            qed
```



```
y = \langleInit(x),x(n)\rangle
                    using init_append append_props by auto
                    ultimately have y }\in{{\\operatorname{Init}(\textrm{x}),\textrm{x}(\textrm{n})\rangle.\textrm{x}\in\textrm{V}}\mathrm{ by auto
            } thus U }\timesW\subseteq{{\Init(x),x(n)\rangle. x\inV} by aut
            qed
            finally show f(V) = U }\times\textrm{W}\mathrm{ by simp
            qed
            ultimately show f(V) \in ProductTopology(T,\tau) by simp
    qed
    ultimately show thesis using two_top_spaces0.bij_base_open_homeo by
simp
qed
end
```


54 Topology 4

theory Topology_ZF_4 imports Topology_ZF_1 Order_ZF func1 NatOrder_ZF begin

This theory deals with convergence in topological spaces. Contributed by Daniel de la Concepcion.

54.1 Nets

Nets are a generalization of sequences. It is known that sequences do not determine the behavior of the topological spaces that are not first countable; i.e., have a countable neighborhood base for each point. To solve this problem, nets were defined so that the behavior of any topological space can be thought in terms of convergence of nets.

First we need to define what a directed set is:

```
definition
    IsDirectedSet (_ directs _ 90)
    where \(r\) directs \(D \equiv \operatorname{refl}(\mathrm{D}, \mathrm{r}) \wedge \operatorname{trans}(\mathrm{r}) \wedge(\forall \mathrm{x} \in \mathrm{D} . \forall \mathrm{y} \in \mathrm{D} . \exists \mathrm{z} \in \mathrm{D} .\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{r}\)
\(\wedge\langle y, z\rangle \in r)\)
```

Any linear order is a directed set; in particular (\mathbb{N}, \leq).

```
lemma linorder_imp_directed:
    assumes IsLinOrder(X,r)
    shows r directs X
proof-
    from assms have trans(r) using IsLinOrder_def by auto
    moreover
    from assms have r:refl(X,r) using IsLinOrder_def total_is_refl by auto
    moreover
    {
        fix x y
        assume R: x\inX y\inX
        with assms have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\vee\langle\textrm{y},\textrm{x}\rangle\in\textrm{r}\mathrm{ using IsLinOrder_def IsTotal_def
by auto
        with r have (\langlex,y\rangle\inr ^ \langley,y\rangle\inr) \vee(\langley,x\rangle\inr ^ \langlex,x\rangle\inr) using R refl_def
by auto
            then have }\exists\textrm{z}\in\textrm{X}.\langlex,z\rangle\inr\wedge\langley,z\rangle\inr using R by aut
    }
    ultimately show thesis using IsDirectedSet_def function_def by auto
qed
```

Natural numbers are a directed set.

```
corollary Le_directs_nat:
    shows IsLinOrder(nat,Le) Le directs nat
proof -
    show IsLinOrder(nat,Le) by (rule NatOrder_ZF_1_L2)
    then show Le directs nat using linorder_imp_directed by auto
qed
```

We are able to define the concept of net, now that we now what a directed set is.

```
definition
    IsNet (_ {is a net on} _ 90)
    where N {is a net on} X \equiv fst(N):domain(fst(N)) }->\textrm{X}\wedge\mathrm{ (snd(N) directs
domain(fst(N))) ^ domain(fst(N))\not=0
```

Provided a topology and a net directed on its underlying set, we can talk about convergence of the net in the topology.

```
definition (in topology0)
    NetConverges (_ \(\rightarrow_{N}\) _ 90)
    where \(N\) is a net on\} \(\cup T \Longrightarrow N \rightarrow_{N} \mathrm{x} \equiv\)
    \((x \in \bigcup T) \wedge(\forall U \in \operatorname{Pow}(\bigcup T) .(x \in \operatorname{int}(U) \longrightarrow(\exists t \in \operatorname{domain}(f s t(N)) . \forall m \in \operatorname{domain}(f s t(N))\).
        \((\langle t, m\rangle \in \operatorname{snd}(N) \longrightarrow f s t(N) m \in U)))\)
```

One of the most important directed sets, is the neighborhoods of a point.
theorem (in topology0) directedset_neighborhoods:
assumes $x \in \bigcup T$

```
    defines Neigh\equiv{U\inPow(UT). x\inint(U)}
    defines r\equiv{\langleU,V\rangle\in(Neigh }\times\mathrm{ Neigh). V`U}
    shows r directs Neigh
proof-
    {
        fix U
        assume U \in Neigh
        then have }\langle\textrm{U},\textrm{U}\rangle\in\textrm{r}\mathrm{ using r_def by auto
    }
    then have refl(Neigh,r) using refl_def by auto
    moreover
    {
        fix U V W
        assume }\langle\textrm{U},\textrm{V}\rangle\in\textrm{r}\langle\textrm{V},\textrm{W}\rangle\in\textrm{r
        then have }U\inNeigh W Neigh W\subseteqU using r_def by aut
        then have }\langle\textrm{U},\textrm{W}\rangle\inr using r_def by aut
    }
    then have trans(r) using trans_def by blast
    moreover
    {
        fix A B
        assume p: A\inNeigh B\inNeigh
        have A\capB \in Neigh
        proof-
            from p have A\capB \in Pow(\T) using Neigh_def by auto
                moreover
                { from p have x\inint(A)x\inint(B) using Neigh_def by auto
                    then have }x\in\operatorname{int}(A)\capint(B) by aut
                    moreover
                        { have int(A)\capint(B)\subseteqA\capB using Top_2_L1 by auto
                        moreover have int(A)\capint(B)\inT
                            using Top_2_L2 Top_2_L2 topSpaceAssum IsATopology_def by blast
                            ultimately have int (A)\capint (B)\subseteqint (A\capB)
                        using Top_2_L5 by auto
                    }
                        ultimately have x }\in\operatorname{int}(A\capB)\mathrm{ by auto
                }
                ultimately show thesis using Neigh_def by auto
            qed
            moreover from }\langle\textrm{A}\cap\textrm{B}\in\mathrm{ Neigh have }\langle\textrm{A},\textrm{A}\cap\textrm{B}\rangle\in\textrm{r}\wedge\\langle\textrm{B},\textrm{A}\cap\textrm{B}\rangle\in\textrm{r
                    using r_def p by auto
            ultimately
            have \existsz\inNeigh. \langleA,z\rangle\inr ^ <B,z\rangle\inr by auto
    }
    ultimately show thesis using IsDirectedSet_def by auto
qed
```

There can be nets directed by the neighborhoods that converge to the point;
if there is a choice function.

```
theorem (in topology0) net_direct_neigh_converg:
    assumes }x\in\bigcup
    defines Neigh\equiv{U\inPow(\T). x\inint(U)}
    defines r\equiv{\langleU,V\rangle\in(Neigh }\times\mathrm{ Neigh). V¢U}
    assumes f:Neigh }->\bigcupT\forallU\inNeigh. f(U) \in
    shows }\langle\textrm{f},\textrm{r}\rangle\mp@subsup{->}{N}{}\textrm{x
proof -
    from assms(4) have dom_def: Neigh = domain(f) using Pi_def by auto
    moreover
        have \T\inT using topSpaceAssum IsATopology_def by auto
        then have int(\T)=\T using Top_2_L3 by auto
        with assms(1) have \T\inNeigh using Neigh_def by auto
        then have }\bigcupT\indomain(fst(\langlef,r\rangle)) using dom_def by aut
    moreover from assms(4) dom_def have fst(\langlef,r\rangle):domain(fst(\langlef,r\rangle))->\bigcupT
        by auto
    moreover from assms(1,2,3) dom_def have snd(\langlef,r\rangle) directs domain(fst(\langlef,r\rangle))
        using directedset_neighborhoods by simp
    ultimately have Net: \langlef,r\rangle {is a net on} UT unfolding IsNet_def by
auto
    {
        fix U
        assume U \in Pow(UT) x }\in\operatorname{int}(U
        then have U \in Neigh using Neigh_def by auto
        then have t: U \in domain(f) using dom_def by auto
        {
            fix W
                        assume A: W\indomain(f) \langleU,W\rangle\inr
                        then have W\inNeigh using dom_def by auto
                        with assms(5) have fW\inW by auto
                with A(2) r_def have fW\inU by auto
        }
        then have }\forallW\in\mathrm{ domain(f). ( }\langleU,W\rangle\inr \longrightarrow fW\inU) by aut
        with t have }\exists\textrm{V}\in\mathrm{ domain(f). }\forall\textrm{W}\in\operatorname{domain(f). (\langleV,W\rangle\inr \longrightarrow fW\inU) by auto
    }
    then have }\forall\textrm{U}\in\operatorname{Pow}(\cupT). (x\inint(U) \longrightarrow (\existsV\indomain(f). \forallW\indomain(f)
(\langleV,W\rangle\inr \longrightarrow f(W) \in U)))
            by auto
    with assms(1) Net show thesis using NetConverges_def by auto
qed
```


54.2 Filters

Nets are a generalization of sequences that can make us see that not all topological spaces can be described by sequences. Nevertheless, nets are not always the tool used to deal with convergence. The reason is that they make use of directed sets which are completely unrelated with the topology.

The topological tools to deal with convergence are what is called filters.

```
definition
    IsFilter (_ {is a filter on} _ 90)
    where }\mathfrak{F}\mathrm{ {is a filter on} X 三 (0&{F) ^ (X }\in\mathfrak{F})\wedge(\mathfrak{F}\subseteqPow(X)) ^
    (\forall\textrm{A}\in\mathfrak{F}.\forall\textrm{B}\in\mathfrak{F}.}\textrm{A}\cap\textrm{B}\in\mathfrak{F})\wedge(\forall\textrm{B}\in\mathfrak{F}.\forall\textrm{C}\in\operatorname{Pow}(\textrm{X}). B\subseteqC\longrightarrow\longrightarrowC\in\mathcal{F}
```

Not all the sets of a filter are needed to be consider at all times; as it happens with a topology we can consider bases.

```
definition
    IsBaseFilter (_ {is a base filter} _ 90)
    where C {is a base filter} }\mathfrak{F}\equivC\subseteq\mathfrak{F}\wedge\mathfrak{F}={A\in\operatorname{Pow}(\bigcup\mathfrak{F}).(\existsD\inC.D\subseteqA)
```

Not every set is a base for a filter, as it happens with topologies, there is a condition to be satisfied.

```
definition
    SatisfiesFilterBase (_ {satisfies the filter base condition} 90)
    where C {satisfies the filter base condition} \equiv (\forallA\inC. }\forall\textrm{B}\in\textrm{C}.\exists\textrm{D}\in\textrm{C}
D\subseteqA\capB) ^ C\not=0 ^ 0\not\inC
```

Every set of a filter contains a set from the filter's base.
lemma basic_element_filter:
assumes $A \in \mathfrak{F}$ and C \{is a base filter\} \mathfrak{F}
shows $\exists D \in C$. $D \subseteq A$
proof-
from assms (2) have $t: \mathfrak{F}=\{A \in \operatorname{Pow}(\bigcup \mathfrak{F})$. ($\exists \mathrm{D} \in \mathrm{C} . \mathrm{D} \subseteq A)\}$ using IsBaseFilter_def
by auto
with assms (1) have $A \in\{A \in \operatorname{Pow}(\bigcup \mathfrak{F}) .(\exists D \in C . D \subseteq A)\}$ by auto
then have $A \in \operatorname{Pow}(\bigcup \mathfrak{F}) \exists D \in C . D \subseteq A$ by auto
then show thesis by auto
qed
The following two results state that the filter base condition is necessary and sufficient for the filter generated by a base, to be an actual filter. The third result, rewrites the previous two.

```
theorem basic_filter_1:
    assumes C {is a base filter} F
    shows }\mathfrak{F}\mathrm{ {is a filter on} \{F
proof-
    {
        fix A B
        assume AF: A\in\mathcal{F}\mathrm{ and BF: B}\in\mathfrak{F}
        with assms(1) have }\exists\textrm{DA}\in\textrm{C}. DA\subseteqA using basic_element_filter by sim
        then obtain DA where perA: DA\inC and subA: DA\subseteqA by auto
        from BF assms have }\exists\textrm{DB}\inC
        then obtain DB where perB: DB\inC and subB: DB\subseteqB by auto
        from assms(2) perA perB have }\exists\textrm{D}\in\textrm{C}. D\subseteqDA\capD
            unfolding SatisfiesFilterBase_def by auto
```

```
    then obtain D where D\inC D\subseteqDA\capDB by auto
    with subA subB AF BF have A\capB\in{A \in Pow(U\mathfrak{F}). \existsD\inC. D \subseteqA} by auto
    with assms(1) have A\capB\in\mathcal{F unfolding IsBaseFilter_def by auto}
    }
moreover
{
    fix A B
    assume AF: A\in\mathcal{F}\mathrm{ and BS: }\textrm{B}\in\operatorname{Pow}(\bigcup\mathcal{F})\mathrm{ and sub: }A\subseteqB
    from assms(1) AF have }\exists\textrm{D}\in\textrm{C}.\textrm{D}\subseteqA\mathrm{ using basic_element_filter by auto
    then obtain D where D\subseteqA D\inC by auto
    with sub BS have }B\in{A\in\operatorname{Pow}(\\mathfrak{F}).\existsD\inC. D\subseteqA} by aut
    with assms(1) have B\in\mathcal{F unfolding IsBaseFilter_def by auto}
    }
    moreover
    from assms(2) have C\not=0 using SatisfiesFilterBase_def by auto
    then obtain D where D\inC by auto
    with assms(1) have D\subseteq\bigcup\mathfrak{F}\mathrm{ using IsBaseFilter_def by auto}
    with \langleD\inC` have \}\{FF{A\in\operatorname{Pow}(\cup\mathfrak{F}).\existsD\inC. D\subseteqA} by aut
    with assms(1) have \}\bigcup\mathfrak{F}\in\mathfrak{F}\mathrm{ unfolding IsBaseFilter_def by auto
    moreover
    {
    assume 0\in\mathfrak{F}
    with assms(1) have \existsD\inC. D\subseteq0 using basic_element_filter by simp
    then obtain D where D\inCD\subseteq0 by auto
    then have }D\inC=0\mathrm{ by auto
    with assms(2) have False using SatisfiesFilterBase_def by auto
    }
    then have }0\not\in\mathfrak{F}\mathrm{ by auto
    ultimately show thesis using IsFilter_def by auto
qed
A base filter satisfies the filter base condition.
```

```
theorem basic_filter_2:
```

theorem basic_filter_2:
assumes C {is a base filter} }\mathfrak{F}\mathrm{ and }\mathfrak{F}\mathrm{ {is a filter on} \{F
shows C {satisfies the filter base condition}
proof-
{
fix A B
assume AF: A\inC and BF: B\inC
then have }A\in\mathfrak{F}\mathrm{ and }B\in\mathfrak{F}\mathrm{ using assms(1) IsBaseFilter_def by auto
then have A\capB\in\mathcal{F}\mathrm{ using assms(2) IsFilter_def by auto}
then have }\exists\textrm{D}\in\textrm{C}.\textrm{D}\subseteqA\capB using assms(1) basic_element_filter by blas
}
then have }\forall\textrm{A}\in\textrm{C}.,\forall\textrm{B}\in\textrm{C}.\exists\textrm{D}\in\textrm{C}.\textrm{D}\subseteqA\capB by aut
moreover
{
assume 0\inC
then have 0\in\mathfrak{F}\mathrm{ using assms(1) IsBaseFilter_def by auto}

```
```

 then have False using assms(2) IsFilter_def by auto
 }
 then have }0\not\in\textrm{C}\mathrm{ by auto
 moreover
 {
 assume C=0
 then have }\mathfrak{F}=0\mathrm{ using assms(1) IsBaseFilter_def by auto
 then have False using assms(2) IsFilter_def by auto
 }
 then have C\not=0 by auto
 ultimately show thesis using SatisfiesFilterBase_def by auto
 qed

```

A base filter for a collection satisfies the filter base condition iff that collection is in fact a filter.
```

theorem basic_filter:
assumes C {is a base filter} \mathfrak{F}
shows (C {satisfies the filter base condition}) \longleftrightarrow(F) {is a filter
on} \{F)
using assms basic_filter_1 basic_filter_2 by auto
A base for a filter determines a filter up to the underlying set.

```
```

theorem base_unique_filter:

```
```

theorem base_unique_filter:

```


```

 shows }\mathfrak{F}1=\mathfrak{F}2\longleftrightarrow\\\mathfrak{F}1=\\mathfrak{F}
    ```
    shows }\mathfrak{F}1=\mathfrak{F}2\longleftrightarrow\\\mathfrak{F}1=\\mathfrak{F}
using assms unfolding IsBaseFilter_def by auto
```

using assms unfolding IsBaseFilter_def by auto

```

Suppose that we take any nonempty collection \(C\) of subsets of some set \(X\). Then this collection is a base filter for the collection of all supersets (in \(X\) ) of sets from \(C\).
```

theorem base_unique_filter_set1:
assumes C\subseteq Pow(X) and C}\not=
shows C {is a base filter} {A\inPow(X). \existsD\inC. D\subseteqA} and \bigcup{A\inPow(X).
\existsD\inC. D\subseteqA}=X
proof-
from assms(1) have }C\subseteq{A\in\operatorname{Pow}(X).\existsD\inC.D\subseteqA} by aut
moreover
from assms(2) obtain D where D\inC by auto
then have D\subseteqX using assms(1) by auto
with {D\inC` have X\in{A\inPow(X). \existsD\inC. D\subseteqA} by auto
then show }\bigcup{A\in\operatorname{Pow}(X).\existsD\inC. D\subseteqA}=X by aut
ultimately
show C {is a base filter} {A\inPow(X). \existsD\inC. D\subseteqA} using IsBaseFilter_def
by auto
qed

```

A collection \(C\) that satisfies the filter base condition is a base filter for some other collection \(\mathfrak{F}\) iff \(\mathfrak{F}\) is the collection of supersets of \(C\).
```

theorem base_unique_filter_set2:
assumes C\subseteq\operatorname{Pow(X) and C {satisfies the filter base condition}}
shows ((C {is a base filter} F) ^ U\mathfrak{F}=X) \longleftrightarrow F}={A\inPow(X). \existsD\inC. D\subseteqA
using assms IsBaseFilter_def SatisfiesFilterBase_def base_unique_filter_set1
by auto

```

A simple corollary from the previous lemma.
```

corollary base_unique_filter_set3:
assumes C\subseteqPow(X) and C {satisfies the filter base condition}
shows C {is a base filter} {A\inPow(X). \existsD\inC. D\subseteqA} and \bigcup{A\inPow(X).
\existsD\inC. D\subseteqA} = X
proof -
let \mathfrak{F}={A\in\operatorname{Pow}(X). \existsD\inC. D\subseteqA}
from assms have (C {is a base filter} \mathfrak{F) }\wedge \bigcup\mathfrak{F}=\textrm{X}
using base_unique_filter_set2 by simp
thus C {is a base filter} }\mathfrak{F}\mathrm{ and \ UF = X
by auto
qed

```

The convergence for filters is much easier concept to write. Given a topology and a filter on the same underlying set, we can define convergence as containing all the neighborhoods of the point.
```

definition (in topology0)
FilterConverges (_ \rightarrow_{F} _ 50) where
$\mathfrak{F}\left\{\right.$ is a filter on\} $\backslash T \Longrightarrow \mathfrak{F} \rightarrow_{F} \mathrm{x} \equiv$
$\mathrm{x} \in \bigcup \mathrm{T} \wedge(\{\mathrm{U} \in \operatorname{Pow}(\bigcup \mathrm{T}) . \mathrm{x} \in \operatorname{int}(\mathrm{U})\} \subseteq \mathfrak{F})$

```

The neighborhoods of a point form a filter that converges to that point.
```

lemma (in topology0) neigh_filter:
assumes }x\in\cup
defines Neigh }\equiv{U\in\operatorname{Pow}(UT). x\inint(U)
shows Neigh {is a filter on}\UT and Neigh }\mp@subsup{->}{F}{}\textrm{x
proof-
{
fix A B
assume p:A\inNeigh B\inNeigh
have A\capB\inNeigh
proof-
from p have A\capB\inPow(UT) using Neigh_def by auto
moreover
{from p have x\inint(A) x\inint(B) using Neigh_def by auto
then have x\inint(A)\capint(B) by auto
moreover
{ have int(A)\capint(B)\subseteqA\capB using Top_2_L1 by auto
moreover have int(A) }\operatorname{int}(B)\in
using Top_2_L2 topSpaceAssum IsATopology_def by blast
ultimately have int(A)\capint(B)\subseteqint(A\capB) using Top_2_L5 by auto}
ultimately have }x\in\operatorname{int}(A\capB) by aut

```
```

 }
 ultimately show thesis using Neigh_def by auto
 qed
 }
 moreover
{
fix A B
assume A: A\inNeigh and B: B\inPow (\bigcupT) and sub: A\subseteqB
from sub have int (A)\inT int(A)\subseteqB using Top_2_L2 Top_2_L1
by auto
then have int(A)\subseteqint(B) using Top_2_L5 by auto
with A have x\inint(B) using Neigh_def by auto
with B have B\inNeigh using Neigh_def by auto
}
moreover
{
assume 0\inNeigh
then have x\inInterior(0,T) using Neigh_def by auto
then have x\in0 using Top_2_L1 by auto
then have False by auto
}
then have 0\not\inNeigh by auto
moreover
have \bigcupT\inT using topSpaceAssum IsATopology_def by auto
then have Interior (\T,T)=\T using Top_2_L3 by auto
with assms(1) have ab: \bigcupT\inNeigh unfolding Neigh_def by auto
moreover have Neigh\subseteqPow(UT) using Neigh_def by auto
ultimately show Neigh {is a filter on} UT using IsFilter_def
by auto
moreover from ab have \ \eigh=\ \ unfolding Neigh_def by auto
ultimately show Neigh }\mp@subsup{->}{F}{}\mathrm{ x using FilterConverges_def assms(1) Neigh_def
by auto
qed

```

Note that with the net we built in a previous result, it wasn't clear that we could construct an actual net that converged to the given point without the axiom of choice. With filters, there is no problem.
Another positive point of filters is due to the existence of filter basis. If we have a basis for a filter, then the filter converges to a point iff every neighborhood of that point contains a basic filter element.
```

theorem (in topology0) convergence_filter_base1:
assumes \mathfrak{F} \{is a filter on\} $\bigcup T$ and C is a base filter \mathfrak{F} and $\mathfrak{F} \rightarrow_{F}$
x
shows $\forall U \in \operatorname{Pow}(\bigcup T) . x \in \operatorname{int}(U) \longrightarrow(\exists D \in C . D \subseteq U)$ and $x \in \bigcup T$
proof -
\{ fix U
assume $U \subseteq(\bigcup T)$ and $x \in \operatorname{int}(U)$
with assms $(1,3)$ have $U \in \mathfrak{F}$ using FilterConverges_def by auto

```
with assms(2) have \(\exists D \in C . D \subseteq U\) using basic_element_filter by blast
\} thus \(\forall U \in \operatorname{Pow}(\cup T) . x \in \operatorname{int}(U) \longrightarrow(\exists D \in C . D \subseteq U)\) by auto
from assms \((1,3)\) show \(x \in \bigcup T\) using FilterConverges_def by auto qed

A sufficient condition for a filter to converge to a point.
```

theorem (in topology0) convergence_filter_base2:
assumes }\mathfrak{F}\mathrm{ {is a filter on} UT and C {is a base filter} }\mathfrak{F
and }\forallU\in\operatorname{Pow}(\bigcupT). x\inint(U) \longrightarrow(\existsD\inC. D\subseteqU) and x\in\
shows \mathfrak{F }\mp@subsup{->}{F}{}\textrm{x}
proof-
{
fix U
assume AS: U\inPow(UT) x\inint(U)
then obtain D where pD:D\inC and s:D\subseteqU using assms(3) by blast
with assms(2) AS have D\inF
using IsBaseFilter_def by auto
with assms(1) have U\in\mathcal{F using IsFilter_def by auto}
}
with assms(1,4) show thesis using FilterConverges_def by auto
qed

```

A necessary and sufficient condition for a filter to converge to a point.
```

theorem (in topology0) convergence_filter_base_eq:
assumes }\mathfrak{F}\mathrm{ {is a filter on} UT and C {is a base filter} }\mathfrak{F

```

```

proof
assume }\mathfrak{F}\mp@subsup{->}{F}{}\textrm{x
with assms show ((\forallU\inPow(\T). x\inint(U) \longrightarrow(
using convergence_filter_base1 by simp
next
assume (}\forall\textrm{U}\in\operatorname{Pow}(\bigcupT). x\inint(U)\longrightarrow(\existsD\inC. D\subseteqU)) ^ x\in\
with assms show }\mathfrak{F}\mp@subsup{->}{F}{}\timesx\mathrm{ using convergence_filter_base2
by auto
qed

```

\subsection*{54.3 Relation between nets and filters}

In this section we show that filters do not generalize nets, but still nets and filter are in w way equivalent as far as convergence is considered.

Let's build now a net from a filter, such that both converge to the same points.
```

definition
NetOfFilter (Net(_) 40) where
\mathfrak{F} \{is a filter on\} $\bigcup \mathfrak{F} \Longrightarrow \operatorname{Net}(\mathfrak{F}) \equiv$
$\langle\{\langle A, f s t(A)\rangle . A \in\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F} . x \in F\}\},\{\langle A, B\rangle \in\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F} . x \in F\} \times\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F}$.
$x \in F\}$. snd $(B) \subseteq$ snd $(A)\}\rangle$

```

Net of a filter is indeed a net.
```

theorem net_of_filter_is_net:
assumes \mathfrak{F} \{is a filter on\} X
shows (Net(F)) \{is a net on\} X
proof-
from assms have $\mathrm{X} \in \mathfrak{F} \mathfrak{F} \subseteq \operatorname{Pow}(\mathrm{X})$ using IsFilter_def by auto
then have uu: $\bigcup \mathfrak{F}=X$ by blast
let $f=\{\langle A, f s t(A)\rangle . A \in\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F} . \quad x \in F\}\}$
let $r=\{\langle A, B\rangle \in\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F} . x \in F\} \times\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F} . x \in F\}$. \quad nd $(B) \subseteq \operatorname{snd}(A)\}$
have function(f) using function_def by auto
moreover have relation(f) using relation_def by auto
ultimately have $\mathrm{f}:$ domain(f) \rightarrow range (f) using function_imp_Pi
by auto
have dom:domain $(f)=\{\langle x, F\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F} . x \in F\}$ by auto
have range (f) $\subseteq \bigcup \mathfrak{F}$ by auto
with $\langle f:$ domain(f) \rightarrow range (f) 〉 have $f:$ domain(f) $\rightarrow \bigcup \mathfrak{F}$ using fun_weaken_type
by auto
moreover
\{
\{
fix t
assume pp:t ${ }^{\text {domain(f) }}$
then have snd $(t) \subseteq \operatorname{snd}(t)$ by auto
with dom pp have $\langle\mathrm{t}, \mathrm{t}\rangle \in \mathrm{r}$ by auto
\}
then have refl(domain(f),r) using refl_def by auto
moreover
\{
fix t1 t2 t3
assume $\langle\mathrm{t} 1, \mathrm{t} 2\rangle \in \mathrm{r}\langle\mathrm{t} 2, \mathrm{t} 3\rangle \in \mathrm{r}$
then have snd (t3) \subseteq snd (t 1) $\mathrm{t} 1 \in$ domain(f) t3 $\operatorname{domain(f)~using~dom~}$
by auto
then have $\langle\mathrm{t} 1, \mathrm{t} 3\rangle \in \mathrm{r}$ by auto
\}
then have trans(r) using trans_def by auto
moreover
\{
fix x y
assume as:x \in domain(f) $y \in \operatorname{domain}(f)$
then have $\operatorname{snd}(x) \in \mathfrak{F}$ snd $(y) \in \mathfrak{F}$ by auto
then have $\mathrm{p}: \operatorname{snd}(\mathrm{x}) \cap \operatorname{snd}(\mathrm{y}) \in \mathfrak{F}$ using assms IsFilter_def by auto
\{
assume snd (x) \cap snd (y) $=0$
with p have $0 \in \mathfrak{F}$ by auto
then have False using assms IsFilter_def by auto
\}
then have $\operatorname{snd}(x) \cap \operatorname{snd}(y) \neq 0$ by auto
then obtain $x y$ where $x y \in \operatorname{snd}(x) \cap \operatorname{snd}(y)$ by auto
then have $x y \in \operatorname{snd}(x) \cap \operatorname{snd}(y)\langle x y, \operatorname{snd}(x) \cap \operatorname{snd}(y)\rangle \in(\bigcup \mathfrak{F}) \times \mathfrak{F}$ using p

```
by auto
then have \(\langle x y, \operatorname{snd}(x) \cap \operatorname{snd}(y)\rangle \in\{\langle x, F\rangle \in(\cup \mathfrak{F}) \times \mathfrak{F} . x \in F\}\) by auto with dom have \(d:\langle x y\), snd \((x) \cap\) snd \((y)\rangle \in \operatorname{domain}(f)\) by auto with as have \(\langle x,\langle x y, \operatorname{snd}(x) \cap \operatorname{snd}(y)\rangle\rangle \in r \wedge\langle y,\langle x y, \operatorname{snd}(x) \cap \operatorname{snd}(y)\rangle\rangle \in r\) by auto
with \(d\) have \(\exists \mathrm{z} \in\) domain(f). \(\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{r} \wedge\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{r}\) by blast
\}
then have \(\forall x \in \operatorname{domain}(f) . \forall y \in \operatorname{domain}(f) . \exists z \in \operatorname{domain}(f) .\langle x, z\rangle \in r \wedge\langle y, z\rangle \in r\) by blast
ultimately have \(r\) directs domain(f) using IsDirectedSet_def by blast \}
moreover
\{
have \(\mathrm{p}: \mathrm{X} \in \mathfrak{F}\) and \(0 \notin \mathfrak{F}\) using assms IsFilter_def by auto
then have \(X \neq 0\) by auto
then obtain \(q\) where \(q \in X\) by auto
with \(p\) dom have \(\langle q, X\rangle \in \operatorname{domain}(f)\) by auto
then have domain \((f) \neq 0\) by blast
\}
ultimately have \(\langle f, r\rangle\) \{is a net on\} \(\backslash \mathfrak{F}\) using IsNet_def by auto
 auto
qed
If a filter converges to some point then its net converges to the same point.
```

theorem (in topology0) filter_conver_net_of_filter_conver:
assumes }\mathfrak{F}\mathrm{ {is a filter on} \T and }\mathfrak{F}\mp@subsup{->}{F}{}\textrm{x
shows (Net(\mathfrak{F})) }\mp@subsup{->}{N}{N}\textrm{x
proof-
from assms have \T\in\mathfrak{F}\mathfrak{F}\subseteqPow(\T) using IsFilter_def by auto
then have uu: \{F=\bigcupT by blast
from assms(1) have func: fst(Net(\mathfrak{F}))={\langleA,fst(A)\rangle.A\in{\langlex,F\rangle\in(U\mathfrak{F})\times\mathfrak{F}.
x\inF}}
and dir: snd (Net(\mathfrak{F}))={\langleA,B\rangle\in{\langlex,F\rangle\in(U\mathfrak{F})\times\mathfrak{F}. x\inF}\times{\langlex,F\rangle\in(U\mathfrak{F})\times\mathfrak{F}.
x\inF}. snd (B)\subseteq\operatorname{snd}(A)}
using NetOfFilter_def uu by auto
then have dom_def: domain(fst(Net(\mathfrak{F})))={\langlex,F\rangle\in(U\mathfrak{F})\times\mathfrak{F}.x\inF} by auto
from func have fun: fst(Net(\mathfrak{F})): {\langlex,F\rangle\in(U\mathfrak{F})\times\mathfrak{F}. x\inF} ->(U\mathfrak{F})
using ZF_fun_from_total by simp
from assms(1) have NN: (Net(\mathfrak{F})) {is a net on}\T using net_of_filter_is_net
by auto
moreover from assms have }\textrm{x}\in\bigcup\textrm{T}\mathrm{ using FilterConverges_def
by auto
moreover
{
fix U
assume AS: U\inPow(\T) x\inint(U)
with assms have U\in\mathscr{F}x\inU using Top_2_L1 FilterConverges_def by auto

```
```

 then have pp: \langlex,U\rangle\indomain(fst(Net(\mathfrak{F}))) using dom_def by auto
 {
 fix m
 assume ASS: m\indomain(fst(Net(\mathfrak{F}))) \langle\langlex,U\rangle,m\rangle\in\operatorname{snd}(Net(\mathfrak{F}))
 from ASS(1) fun func have fst(Net(F))(m) = fst(m)
 using func1_1_L1 ZF_fun_from_tot_val by simp
 with dir ASS have fst(Net(\mathfrak{F}))(m) \in U using dom_def by auto
 }
 then have }\forall\textrm{m}\in\operatorname{domain(fst(Net(\mathfrak{F}))). (\langle\langlex,U\rangle,m\rangle\in\operatorname{snd}(Net(\mathfrak{F}))\longrightarrowfst(Net(\mathfrak{F}))m\inU)
 by auto
with pp have }\exists\textrm{t}\in\operatorname{domain(fst(Net(\mathfrak{F}))). \forallm\indomain(fst(Net(\mathfrak{F}))). (\langlet,m\rangle\in\operatorname{snd}(Net(\mathfrak{F}))
fst(Net(\mathfrak{F}))m\inU)
by auto
}
then have }\forall\textrm{U}\in\operatorname{Pow}(\cupT)
(x\inint(U) \longrightarrow(\existst\in\operatorname{domain(fst(Net(\mathfrak{F}))). \forallm\indomain(fst(Net(\mathfrak{F}))).}
(\langlet,m\rangle\in\operatorname{snd}(Net(F)})\longrightarrow\textrm{fst}(\operatorname{Net}(\mathfrak{F}))m\inU))
by auto
ultimately show thesis using NetConverges_def by auto
qed

```

If a net converges to a point, then a filter also converges to a point.
theorem (in topology0) net_of_filter_conver_filter_conver:
assumes \(\mathfrak{F}\) \{is a filter on\} \(\bigcup T\) and \((\operatorname{Net}(\mathfrak{F})) \rightarrow_{N} \mathrm{x}\)
shows \(\mathfrak{F} \rightarrow_{F} \mathrm{x}\)
proof-
from assms have \(\bigcup T \in \mathfrak{F} \mathfrak{F} \subseteq \operatorname{Pow}(\bigcup T)\) using IsFilter_def by auto
then have uu: \(\bigcup \mathfrak{F}=\bigcup T\) by blast
have \(x \in \bigcup T\) using assms NetConverges_def net_of_filter_is_net by auto
moreover
\{
fix \(U\)
assume \(U \in \operatorname{Pow}(\bigcup T) x \in \operatorname{int}(U)\)
then obtain \(t\) where \(t: t \in \operatorname{domain}(f s t(\operatorname{Net}(\mathfrak{F})))\) and
reg: \(\forall \mathrm{m} \in \operatorname{domain}(\mathrm{fst}(\operatorname{Net}(\mathfrak{F}))) .\langle\mathrm{t}, \mathrm{m}\rangle \in \operatorname{snd}(\operatorname{Net}(\mathfrak{F})) \longrightarrow \mathrm{fst}(\operatorname{Net}(\mathfrak{F})) \mathrm{m} \in \mathrm{U}\)
using assms net_of_filter_is_net NetConverges_def by blast
with assms(1) uu obtain t1 t2 where t_def: \(t=\langle t 1, t 2\rangle\) and \(t 1 \in t 2\) and
\(\mathrm{tFF}: \mathrm{t} 2 \in \mathfrak{F}\)
using NetOfFilter_def by auto
\{
fix s
assume \(s \in t 2\)
then have \(\langle\mathrm{s}, \mathrm{t} 2\rangle \in\{\langle\mathrm{q} 1, \mathrm{q} 2\rangle \in \bigcup \mathfrak{F} \times \mathfrak{F}\). \(\mathrm{q} 1 \in \mathrm{q} 2\}\) using tFF by auto
moreover
from assms(1) uu have domain(fst \((\operatorname{Net}(\mathfrak{F})))=\{\langle q 1, q 2\rangle \in \bigcup \mathfrak{F} \times \mathfrak{F} . q 1 \in q 2\}\)
using NetOfFilter_def
by auto
ultimately
have \(\mathrm{tt}:\langle\mathrm{s}, \mathrm{t} 2\rangle \in \operatorname{domain}(\mathrm{fst}(\operatorname{Net}(\mathfrak{F})))\) by auto
```

 moreover
 from assms(1) uu t t_def tt have }\langle\langlet1,t2\rangle,\langles,t2\rangle\rangle\in\operatorname{snd}(Net(\mathfrak{F})) us
 ing NetOfFilter_def
by auto
ultimately
have fst(Net(\mathfrak{F}))\langles,t2\rangle\inU using reg t_def by auto
moreover
from assms(1) uu have function(fst(Net(\mathfrak{F}))) using NetOfFilter_def
function_def
by auto
moreover
from tt assms(1) uu have \langle\langles,t2\rangle,s\rangle\infst(Net(\mathfrak{F})) using NetOfFilter_def
by auto
ultimately
have s\inU using NetOfFilter_def function_apply_equality by auto
}
then have t2\subseteqU by auto
with tFF assms(1) \U\inPow(UT)\rangle have U\in\mathfrak{F using IsFilter_def by auto}
}
then have {U\in\operatorname{Pow}(\bigcupT). x\inint(U)} \subseteq{F by auto
ultimately
show thesis using FilterConverges_def assms(1) by auto
qed

```

A filter converges to a point if and only if its net converges to the point.
```

theorem (in topology0) filter_conver_iff_net_of_filter_conver:
assumes }\mathfrak{F}\mathrm{ {is a filter on}\T
shows (\mathfrak{F }\mp@subsup{->}{F}{}\textrm{x})\longleftrightarrow((\operatorname{Net}(\mathfrak{F}))}\mp@subsup{->}{N}{}\textrm{x}
using filter_conver_net_of_filter_conver net_of_filter_conver_filter_conver
assms
by auto

```

The previous result states that, when considering convergence, the filters do not generalize nets. When considering a filter, there is always a net that converges to the same points of the original filter.
Now we see that with nets, results come naturally applying the axiom of choice; but with filters, the results come, may be less natural, but with no choice. The reason is that \(\operatorname{Net}(\mathfrak{F})\) is a net that doesn't come into our attention as a first choice; maybe because we restrict ourselves to the antisymmetry property of orders without realizing that a directed set is not an order.
The following results will state that filters are not just a subclass of nets, but that nets and filters are equivalent on convergence: for every filter there is a net converging to the same points, and also, for every net there is a filter converging to the same points.
```

definition
FilterOfNet (Filter (_ .. _) 40) where

```
```

 (N {is a net on} X) \Longrightarrow Filter N..X \equiv {A\inPow(X). \existsD\in{{fst(N)snd(s).
 s\in{s\indomain(fst(N))}\times\operatorname{domain(fst(N)). s\insnd(N) ^ fst(s)=tO}}. t0\indomain(fst(N))}.
D\subseteqA}

```

Filter of a net is indeed a filter
```

theorem filter_of_net_is_filter:
assumes N {is a net on} X
shows (Filter N..X) {is a filter on} X and
{{fst(N)snd(s). s\in{s\indomain(fst(N))\timesdomain(fst(N)). s\insnd(N) ^ fst(s)=t0}}.
t0\indomain(fst(N))} {is a base filter} (Filter N..X)
proof -
let C = {{fst(N)(snd(s)). s\in{s\indomain(fst(N)) \domain(fst(N)). s\insnd(N)
fst(s)=t0}}. t0\indomain(fst(N))}
have C\subseteqPow(X)
proof -
{
fix t
assume t\inC
then obtain t1 where t1\indomain(fst(N)) and
t_Def: t={fst(N)snd(s). s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)). sGsnd(N)
^fst(s)=t1}}
by auto
{
fix x
assume x\int
with t_Def obtain ss where ss\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)).
s\insnd(N) ^ fst(s)=t1} and
x_def: x = fst(N)(snd(ss)) by blast
then have snd(ss) \in domain(fst(N)) by auto
from assms have fst(N):domain(fst(N)) }->\textrm{X}\mathrm{ unfolding IsNet_def
by simp
with <snd(ss) \in domain(fst(N)) have x\inX using apply_funtype
x_def

```
            by auto
            \}
            hence \(t \subseteq X\) by auto
        \}
        thus thesis by blast
    qed
    have sat: C \{satisfies the filter base condition\}
    proof -
        from assms obtain t1 where t1 \(\operatorname{tiomain(fst(N))~using~IsNet\_ def~by~}\)
blast
            hence \(\{f s t(N) \operatorname{snd}(s) . s \in\{s \in \operatorname{domain}(f s t(N)) \times \operatorname{domain}(f s t(N)) . s \in \operatorname{snd}(N)\)
\(\wedge\) fst (s) \(=\mathrm{t} 1\}\} \in \mathrm{C}\)
            by auto
            hence \(C \neq 0\) by auto
            moreover
            \{
```

 fix U
 assume U\inC
 then obtain q where q_dom: q\indomain(fst(N)) and
 U_def: U={fst(N)snd(s). s\in{s\indomain(fst(N)) \domain(fst(N)). s\insnd(N)
 ^fst(s)=q}}
by blast
with assms have \langleq,q\rangle\insnd(N) ^ fst(\langleq,q\rangle)=q unfolding IsNet_def
IsDirectedSet_def refl_def
by auto
with q_dom have \langleq,q\rangle\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)). sfsnd(N)
^fst(s)=q}
by auto
with U_def have fst(N)(snd(\langleq,q\rangle)) \in U by blast
hence U\not=0 by auto
}
then have 0\not\inC by auto
moreover
have }\forallA\inC.|B\inC. (\existsD\inC. D\subseteqA\capB
proof
fix A
assume pA: A\inC
show }\forall\textrm{B}\in\textrm{C}.\exists\textrm{D}\in\textrm{C}.\textrm{D}\subseteqA\cap
proof
{
fix B
assume B\inC
with pA obtain qA qB where per: qA\indomain(fst(N)) qB\indomain(fst(N))
and
A_def: A={fst(N)snd(s). s\in{s\indomain(fst(N)) }\times\mathrm{ domain(fst(N)).
s\insnd(N) ^ fst(s)=qA}} and
B_def: B={fst(N)snd(s). s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)).
s\insnd(N) ^ fst(s)=qB}}
by blast
have dir: snd(N) directs domain(fst(N)) using assms IsNet_def
by auto
with per obtain qD where ine: }\langle\textrm{qA},\textrm{qD}\rangle\in\operatorname{snd}(\textrm{N})\langleqB,qD\rangle\in\operatorname{snd}(N
and
perD: qD\indomain(fst(N)) unfolding IsDirectedSet_def
by blast
let D = {fst(N) snd(s). s\in{s\indomain(fst(N)) }\times\mathrm{ domain(fst(N)). sfsnd(N)
^fst(s)=qD}}
from perD have }D\inC\mathrm{ by auto
moreover
{
fix d
assume d\inD
then obtain sd where sd\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)).
s\in\operatorname{snd}(N) ^ fst(s)=qD} and
d_def: d=fst(N)snd(sd) by blast

```
then have \(s d N: ~ s d \in \operatorname{snd}(N)\) and \(q d d: f s t(s d)=q D\) and \(s d \in \operatorname{domain}(f s t(N)) \times \operatorname{domain}(f s t\)
by auto
then obtain \(q I\) aa where \(s d=\langle a a, q I\rangle q I \in \operatorname{domain}(f s t(N))\) aa \(\in \operatorname{domain}(f s t(N))\)
by auto
with qdd have sd_def: sd= \(\mathrm{qD}, \mathrm{qI}\rangle\) and \(\mathrm{qIdom}: \mathrm{qI} \in \operatorname{domain}(\mathrm{fst}(\mathrm{N})\) )
by auto
with sdN have \(\langle q D, q I\rangle \in \operatorname{snd}(N)\) by auto
from dir have trans(snd(N)) unfolding IsDirectedSet_def by
auto
then have \(\langle q A, q D\rangle \in \operatorname{snd}(N) \wedge\langle q D, q I\rangle \in \operatorname{snd}(N) \longrightarrow\langle q A, q I\rangle \in \operatorname{snd}(N)\)
and
\(\langle\mathrm{qB}, \mathrm{qD}\rangle \in \operatorname{snd}(\mathrm{N}) \wedge\langle\mathrm{qD}, \mathrm{qI}\rangle \in \operatorname{snd}(\mathrm{N}) \longrightarrow\langle\mathrm{qB}, \mathrm{qI}\rangle \in \operatorname{snd}(\mathrm{N})\)
using trans_def by auto
with ine \(\langle\langle q \mathrm{D}, \mathrm{qI}\rangle \in \operatorname{snd}(\mathrm{N})\rangle\) have \(\langle\mathrm{qA}, \mathrm{qI}\rangle \in \operatorname{snd}(\mathrm{N})\langle\mathrm{qB}, \mathrm{qI}\rangle \in \operatorname{snd}(\mathrm{N})\)
by auto
with qIdom per have \(\langle\mathrm{qA}, \mathrm{qI}\rangle \in\{\mathrm{s} \in \operatorname{domain}(\mathrm{fst}(\mathrm{N})) \times \operatorname{domain}(\mathrm{fst}(\mathrm{N}))\).
\(s \in \operatorname{snd}(N) \wedge f s t(s)=q A\}\)
\(\langle q B, q I\rangle \in\{s \in \operatorname{domain}(f s t(N)) \times \operatorname{domain}(f s t(N)) . s \in \operatorname{snd}(N) \wedge f s t(s)=q B\}\)
by auto
then have fst(N) (qI) \(\in A \cap B\) using \(A_{-} d e f B_{-} d e f\) by auto
then have fst(N) (snd(sd)) \(\in A \cap B\) using sd_def by auto
then have \(d \in A \cap B\) using d_def by auto
\}
then have \(\mathrm{D} \subseteq \mathrm{A} \cap \mathrm{B}\) by blast
ultimately show \(\exists \mathrm{D} \in \mathrm{C} . \mathrm{D} \subseteq \mathrm{A} \cap \mathrm{B}\) by blast
\}
qed
qed
ultimately
show thesis unfolding SatisfiesFilterBase_def by blast
qed
have
Base: C \{is a base filter\} \{A Pow(X). ヨD \(\in C . D \subseteq A\} \bigcup\{A \in \operatorname{Pow}(X) . \exists D \in C\).
\(D \subseteq A\}=X\)
proof -
from 〈C \(\subseteq \operatorname{Pow}(X)\rangle\) sat show \(C\) is a base filter\} \(\{A \in \operatorname{Pow}(X) . \exists D \in C . D \subseteq A\}\) by (rule base_unique_filter_set3)
from \(\langle C \subseteq \operatorname{Pow}(X)\rangle\) sat show \(\bigcup\{A \in \operatorname{Pow}(X) . \exists D \in C . D \subseteq A\}=X\) by (rule base_unique_filter_set3)
qed
with sat show (Filter N..X) \{is a filter on\} X
using sat basic_filter FilterOfNet_def assms by auto
from Base(1) show C \{is a base filter\} (Filter N..X)
using FilterOfNet_def assms by auto
qed

Convergence of a net implies the convergence of the corresponding filter.
```

theorem (in topology0) net_conver_filter_of_net_conver:
assumes N {is a net on} \T and N }\mp@subsup{->}{N}{}\textrm{x
shows (Filter N..(UT)) }\mp@subsup{->}{F}{}\textrm{x
proof -
let C = {{fst(N)snd(s). s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)). sfsnd(N)
fst(s)=t}}.
t\indomain(fst(N))}
from assms(1) have
(Filter N..(UT)) {is a filter on} (UT) and C {is a base filter}
Filter N..(UT)
using filter_of_net_is_filter by auto
moreover have }\forallU\in\operatorname{Pow}(\cupT). x\inint(U)\longrightarrow(\existsD\inC. D\subseteqU
proof -
{
fix U
assume U\inPow(UT) x\inint(U)
with assms have }\exists\textrm{t}\in\operatorname{domain(fst(N)). (}\forall\textrm{m}\in\operatorname{domain(fst(N)). (\langlet,m\rangle\insnd(N)
|st(N)m\inU))
using NetConverges_def by auto
then obtain t where t\indomain(fst(N)) and
reg: }\forall\textrm{m}\in\operatorname{domain(fst(N)). (\langlet,m\rangle\insnd(N) \longrightarrow fst(N)m\inU) by auto
{
fix f
assume f\in{fst(N)snd(s). s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)).
s\insnd(N) ^ fst(s)=t}}
then obtain s where s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)). sfsnd(N)
^fst(s)=t} and
f_def: f=fst(N)snd(s) by blast
hence s\indomain(fst(N))}\times\mathrm{ domain(fst(N)) and sfsnd(N) and fst(s)=t
by auto
hence s=\langlet,snd(s)\rangle and snd(s)\indomain(fst(N)) by auto
with <s\insnd(N)> reg have fst(N) snd(s)\inU by auto
with f_def have f}f\inU\mathrm{ by auto
}
hence {fst(N)snd(s). s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)). sfsnd(N)
fst(s)=t}}}\subseteq
by blast
with <t\indomain(fst(N))> have \existsD\inC. D\subseteqU
by auto
} thus }\forallU\in\operatorname{Pow}(\bigcupT). x\inint(U)\longrightarrow(\existsD\inC. D\subseteqU) by aut
qed
moreover from assms have x\in\T using NetConverges_def by auto
ultimately show (Filter N..(UT)) 䖝 x by (rule convergence_filter_base2)
qed

```

Convergence of a filter corresponding to a net implies convergence of the net.
```

 theorem (in topology0) filter_of_net_conver_net_conver:
 assumes N {is a net on} UT and (Filter N..(UT)) 仵 x
 shows N }\mp@subsup{->}{N}{}\textrm{x
 proof -
let C = {{fst(N)snd(s). s\in{s\indomain(fst(N))}\times\mathrm{ domain(fst(N)). sfsnd(N)
|fst(s)=t}}.
t\indomain(fst(N))}
from assms have I: (Filter N..(UT)) {is a filter on} (UT)
C {is a base filter} (Filter N..(UT)) (Filter N..(UT)) 䖝 x
using filter_of_net_is_filter by auto
then have reg: }\forall\textrm{U}\in\operatorname{Pow}(\cupT).x\inint(U)\longrightarrow(\existsD\inC. D\subseteqU
by (rule convergence_filter_base1)
from I have }x\in\bigcupT by (rule convergence_filter_base1
moreover
{
fix U
assume U\inPow(UT) x\inint(U)
with reg have }\exists\textrm{D}\in\textrm{C}. D\subseteqU by aut
then obtain D where D\inC D\subseteqU
by auto
then obtain td where td\indomain(fst(N)) and
D_def: D={fst(N)snd(s). s\in{s\indomain(fst(N)) \domain(fst(N)). s\insnd(N)
fst(s)=td}}
by auto
{
fix m
assume m\indomain(fst(N)) \langletd,m\rangle\insnd(N)
with <td\indomain(fst(N))> have
\langletd,m\rangle\in{s\indomain(fst(N))}\times\operatorname{domain(fst(N)). s\insnd(N) ^ fst(s)=td}
by auto
with D_def have fst(N)m\inD by auto
with \D\subseteqU` have fst(N)m\inU by auto
}
then have }\forall\textrm{m}\in\operatorname{domain(fst(N)). \langletd,m\rangle\insnd(N) \longrightarrow fst(N)m\inU by auto
with <td\indomain(fst(N))> have
\existst\indomain(fst(N)). \forallm\indomain(fst(N)). \langlet,m\rangle\insnd(N) \longrightarrow fst(N)m\inU
by auto
}
then have
U\in\operatorname{Pow}(UT). x\inint(U) \longrightarrow
(\existst\indomain(fst(N)). \forallm\indomain(fst(N)). \langlet,m\rangle\insnd(N) \longrightarrow fst(N)m\inU)
by auto
ultimately show thesis using NetConverges_def assms(1) by auto
qed

```

Filter of net converges to a point \(x\) if and only the net converges to \(x\).
theorem (in topology0) filter_of_net_conv_iff_net_conv:
assumes \(N\) \{is a net on\} \(\cup T\)
shows \(\left((\right.\) Filter \(\left.N . .(\bigcup T)) \rightarrow_{F} \mathrm{x}\right) \longleftrightarrow\left(\mathrm{N} \rightarrow_{N} \mathrm{x}\right)\)
```

using assms filter_of_net_conver_net_conver net_conver_filter_of_net_conver

```
    by auto

We know now that filters and nets are the same thing, when working convergence of topological spaces. Sometimes, the nature of filters makes it easier to generalized them as follows.
Instead of considering all subsets of some set \(X\), we can consider only open sets (we get an open filter) or closed sets (we get a closed filter). There are many more useful examples that characterize topological properties.
This type of generalization cannot be done with nets.
Also a filter can give us a topology in the following way:
```

theorem top_of_filter:
assumes }\mathfrak{F}\mathrm{ {is a filter on} \{
shows (\mathfrak{F}\cup{0}) {is a topology}
proof -
{
fix A B
assume A\in(\mathfrak{F}\cup{0})B\in(\mathfrak{F}\cup{0})
then have (A\in\mathcal{F}}\wedgeB\in\mathcal{F})\vee(A\capB=0) by aut
with assms have A\capB\in(\mathfrak{F}\cup{0}) unfolding IsFilter_def
by blast
}
then have }\forall\textrm{A}\in(\mathfrak{F}\cup{0}).\forallB\in(\mathfrak{F}\cup{0}). A\capB\in(\mathfrak{F}\cup{0}) by aut
moreover
{
fix M
assume A:M\inPow(F)\cup{0})
then have M=0\veeM={0}\vee(}\exists\textrm{T}\in\textrm{M}.\textrm{T}\in\mathfrak{F})\mathrm{ by blast
then have }\bigcupM=0\vee(\exists\textrm{T}\in\textrm{M}.\textrm{T}\in\mathfrak{F})\mathrm{ by auto
then obtain T where \ M=O\vee (T\in\mathfrak{F}\wedgeT\inM) by auto
then have }\bigcupM=O\vee(T\in\mathcal{F}\wedgeT\subseteq\bigcupM) by aut
moreover from this a have \
subseteq\bigcup\{ by auto
ultimately have \ \ M (\mathfrak{F}\cup{0}) using IsFilter_def assms by auto
}
then have }\forallM\in\operatorname{Pow}(\mathfrak{F}\cup{0}). \bigcupM\in(\mathfrak{F}\cup{0}) by aut
ultimately show thesis using IsATopology_def by auto
qed

```

We can use topologyo locale with filters.
lemma topology0_filter:
assumes \(\mathfrak{F}\) \{is a filter on\} \(\bigcup \mathfrak{F}\)
shows topology0 ( \(\mathfrak{F} \cup\{0\}\) )
using top_of_filter topology0_def assms by auto
The next abbreviation introduces notation where we want to specify the space where the filter convergence takes place.
```

abbreviation FilConvTop(_ }\mp@subsup{->}{F}{
where }\mathfrak{F}\mp@subsup{->}{F}{}\times\textrm{x}{\mathrm{ {in} T }\equiv\mathrm{ topology0.FilterConverges(T, F,x)

```

The next abbreviation introduces notation where we want to specify the space where the net convergence takes place.
```

abbreviation NetConvTop(_ }\mp@subsup{->}{N}{N}_{in} _
where N }\mp@subsup{->}{N}{}\textrm{x}{\textrm{in}}\textrm{T}\equiv\mathrm{ topology0.NetConverges(T,N,x)

```

Each point of a the union of a filter is a limit of that filter.
```

lemma lim_filter_top_of_filter:
assumes }\mathfrak{F}\mathrm{ {is a filter on} \{}\mathrm{ and }\textrm{x}\in\bigcup\mathfrak{F
shows }\mathfrak{F}\mp@subsup{->}{F}{}\textrm{x}{\textrm{in}}(\mathfrak{F}\cup{0}
proof-
have
mathfrak{F}=\bigcup(\mathfrak{F}\cup{0}) by auto
with assms(1) have assms1: \mathfrak{F {is a filter on} \(\mathfrak{F}\cup{0}) by auto}
{
fix U
assume U\inPow(\(\mathfrak{F}\cup{0})) x\inInterior(U,(\mathfrak{F}\cup{0}))
with assms(1) have Interior(U,(\mathfrak{F}\cup{0}))\in\mathfrak{F using topology0_def top_of_filter}
topology0.Top_2_L2 by blast
moreover
from assms(1) have Interior(U,(\mathfrak{F}\cup{0}))\subseteqU using topology0_def top_of_filter
topology0.Top_2_L1 by auto
moreover
from \langleU\inPow(U(\mathfrak{F}\cup{0}))\rangle have U\inPow(\bigcup\mathfrak{F}) by auto
ultimately have U\in\mathcal{F}}\mathrm{ using assms(1) IsFilter_def by auto
}
with assms assms1 show thesis using topology0.FilterConverges_def top_of_filter
topology0_def by auto
qed
end

```

\section*{55 Topology and neighborhoods}
theory Topology_ZF_4a imports Topology_ZF_4
begin
This theory considers the relations between topology and systems of neighborhood filters.

\subsection*{55.1 Neighborhood systems}

The standard way of defining a topological space is by specifying a collection of sets that we consider "open" (see the Topology_ZF theory). An alternative of this approach is to define a collection of neighborhoods for each point of the space.

We define a neighborhood system as a function that takes each point \(x \in X\) and assigns it a collection of subsets of \(X\) which is called the neighborhoods of \(x\). The neighborhoods of a point \(x\) form a filter that satisfies an additional axiom that for every neighborhood \(N\) of \(x\) we can find another one \(U\) such that \(N\) is a neighborhood of every point of \(U\).
```

definition
IsNeighSystem (_ {is a neighborhood system on} _ 90)
where \mathcal{M {is a neighborhood system on} X }\equiv(\mathcal{M}: X }->\mathrm{ Pow(Pow(X))) ^
(\forallx\inX. (\mathcal{M (x) {is a filter on} X) ^ (}\forall\textrm{N}\in\mathcal{M}(\textrm{x}). \textrm{x}\in\textrm{N}}\wedge$\exists\textrm{U}\in\mathcal{M}(\textrm{x}).\forall\textrm{y}\in\textrm{U}.(N\in\mathcal{M}(\textrm{y})
)))
A neighborhood system on \(X$ consists of collections of subsets of X.

```
```

lemma neighborhood_subset:

```
lemma neighborhood_subset:
    assumes }\mathcal{M}\mathrm{ {is a neighborhood system on} X and x 
    assumes }\mathcal{M}\mathrm{ {is a neighborhood system on} X and x 
    shows }N\subseteqX\mathrm{ and }x\in
    shows }N\subseteqX\mathrm{ and }x\in
proof -
proof -
    from <M {is a neighborhood system on} X` have \mathcal{M : X }->\operatorname{Pow(Pow(X))}
    from <M {is a neighborhood system on} X` have \mathcal{M : X }->\operatorname{Pow(Pow(X))}
            unfolding IsNeighSystem_def by simp
            unfolding IsNeighSystem_def by simp
    with \langlex\inX\rangle have \mathcal{M (x) \in Pow(Pow(X)) using apply_funtype by blast}
    with \langlex\inX\rangle have \mathcal{M (x) \in Pow(Pow(X)) using apply_funtype by blast}
    with <N\in\mathcal{M(x) show N\subseteqX by blast}
    with <N\in\mathcal{M(x) show N\subseteqX by blast}
    from assms show x\inN using IsNeighSystem_def by simp
    from assms show x\inN using IsNeighSystem_def by simp
qed
```

qed

```

Some sources (like Wikipedia) use a bit different definition of neighborhood systems where the \(U\) is required to be contained in \(N\). The next lemma shows that this stronger version can be recovered from our definition.
```

lemma neigh_def_stronger:
assumes }\mathcal{M}\mathrm{ {is a neighborhood system on} X and x:X and N}N\in\mathcal{M}(\textrm{x}
shows }\exists\textrm{U}\in\mathcal{M}(\textrm{x}).\textrm{U}\subseteq\textrm{N}\wedge(\forally\inU.(N\in\mathcal{M}(\textrm{y}))
proof -
from assms obtain W where }\textrm{W}\in\mathcal{M}(\textrm{x})\mathrm{ and areNeigh: }\forall\textrm{y}\in\textrm{W}.(N\in\mathcal{M}(\textrm{y})
using IsNeighSystem_def by blast
let U = N\capW
from assms \langleW\in\mathcal{M}(\textrm{x})\rangle\mathrm{ have }U\in\mathcal{M}(\textrm{x})
unfolding IsNeighSystem_def IsFilter_def by blast
moreover have U\subseteqN by blast
moreover from areNeigh have }\forally\inU.(N\in\mathcal{M}(y)) by aut
ultimately show thesis by auto
qed

```

\subsection*{55.2 Topology from neighborhood systems}

Given a neighborhood system \(\left\{\mathcal{M}_{x}\right\}_{x \in X}\) we can define a topology on \(X\). Namely, we consider a subset of \(X\) open if \(U \in \mathcal{M}_{x}\) for every element \(x\) of \(U\).

The collection of sets defined as above is indeed a topology.
```

theorem topology_from_neighs:
assumes }\mathcal{M}\mathrm{ {is a neighborhood system on} X
defines Tdef: T \equiv {U\inPow(X). \forallx\inU. U }\in\mathcal{M}(\textrm{x})
shows T {is a topology} and UT = X
proof -
{ fix UU assume }\mathfrak{U}\in\operatorname{Pow}(T
have
mathfrak{U}\inT
proof -
from {U \in Pow(T)` Tdef have \{U }\in\operatorname{Pow}(X)\mathrm{ by blast
moreover
{ fix x assume x }\in\bigcup\{
then obtain U where U\in\mathscr{U}\mathrm{ and }x\inU\mathrm{ by blast}
with assms {U }\in\operatorname{Pow}(T)
have U }\in\mathcal{M}(x)\mathrm{ and }U\subseteq\bigcup\{U\mathrm{ and }\mathcal{M}(x)\mathrm{ {is a filter on} }\textrm{X
unfolding IsNeighSystem_def by auto
with \bigcupUU \in Pow(X) \ have }\bigcup\mathfrak{U}\in\mathcal{M}(\textrm{x})\mathrm{ unfolding IsFilter_def
by simp
}
ultimately show }\bigcup\mathfrak{U}\in\textrm{T}\mathrm{ using Tdef by blast
qed
}
moreover
{ fix U V assume U\inT and V\inT
have U\capV \in T
proof -
from Tdef }\langle\textrm{U}\in\textrm{T}\rangle\langleU\inT\rangle\mathrm{ have U\V G Pow(X) by auto
moreover
{ fix x assume x \in U\capV
with assms }\langle\textrm{U}\in\textrm{T}\rangle\langle\textrm{V}\in\textrm{T}\rangle\mathrm{ Tdef have }\textrm{U}\in\mathcal{M}(\textrm{x})\textrm{V}\in\mathcal{M}(\textrm{x})\mathrm{ and }\mathcal{M}(\textrm{x}
{is a filter on} X
unfolding IsNeighSystem_def by auto
then have U\capV }\in\mathcal{M}(\textrm{x})\mathrm{ unfolding IsFilter_def by simp
}
ultimately show U\capV \inT using Tdef by simp
qed
}
ultimately show T {is a topology} unfolding IsATopology_def by blast
from assms show UT = X unfolding IsNeighSystem_def IsFilter_def by
blast
qed
Some sources (like Wikipedia) define the open sets generated by a neighborhood system "as those sets containing a neighborhood of each of their points". The next lemma shows that this definition is equivalent to the one we are using.

```
```

lemma topology_from_neighs1:

```
lemma topology_from_neighs1:
    assumes }\mathcal{M}\mathrm{ {is a neighborhood system on} X
    assumes }\mathcal{M}\mathrm{ {is a neighborhood system on} X
    shows {U\in\operatorname{Pow}(X).}\forall\textrm{x}\in\textrm{U}.\textrm{U}\in\mathcal{M}(\textrm{x})}={U\in\operatorname{Pow}(\textrm{X}).\forall\textrm{x}\in\textrm{U}.\exists\textrm{V}\in\mathcal{M}(\textrm{x})
```

 shows {U\in\operatorname{Pow}(X).}\forall\textrm{x}\in\textrm{U}.\textrm{U}\in\mathcal{M}(\textrm{x})}={U\in\operatorname{Pow}(\textrm{X}).\forall\textrm{x}\in\textrm{U}.\exists\textrm{V}\in\mathcal{M}(\textrm{x})
    ```
```

V\subseteqU}
proof
let T = {U\inPow(X). \forallx\inU. U \in M M(x)}
let S = {U\inPow(X). \forallx\inU. \existsV G M M(x). V\subseteqU}
show S\subseteqT
proof -
{ fix U assume U\inS
then have U\inPow(X) by simp
moreover
from assms \langleU\inS\rangle\langleU\inPow(X)\rangle have }\forall\textrm{x}\in\textrm{U}.\textrm{U
unfolding IsNeighSystem_def IsFilter_def by blast
ultimately have U\inT by auto
} thus thesis by auto
qed
show T\subseteqS by auto
qed

```

\subsection*{55.3 Neighborhood system from topology}

Once we have a topology \(T\) we can define a natural neighborhood system on \(X=\bigcup T\). In this section we define such neighborhood system and prove its basic properties.

For a topology \(T\) we define a neighborhood system of \(T\) as a function that takes an \(x \in X=\bigcup T\) and assigns it a collection supersets of open sets containing \(x\). We call that the "neighborhood system of \(T\) "
```

definition
NeighSystem ({neighborhood system of} _ 91)
where {neighborhood system of} T }\equiv{{\langlex,{V\in\operatorname{Pow}(\bigcupT).\existsU\inT.(x\inU ^ U\subseteqV)}\rangle
x \in \T }

```

The next lemma shows that open sets are members of (what we will prove later to be) the natural neighborhood system on \(X=\bigcup T\).
```

lemma open_are_neighs:
assumes U\inT x\inU
shows }x\in\bigcupT\mathrm{ and }U\in{V\in\operatorname{Pow}(\bigcupT).\existsU\inT.(x\inU ^U\subseteqV)
using assms by auto

```

Another fact we will need is that for every \(x \in X=\bigcup T\) the neighborhoods of \(x\) form a filter
```

lemma neighs_is_filter:
assumes T {is a topology} and x }\in\bigcup
defines Mdef: \mathcal{M }\equiv {neighborhood system of} T
shows \mathcal{M(x) {is a filter on} (UT)}
proof -
let X = \T
let \mathfrak{F}={V\in\operatorname{Pow}(X).\existsU\inT.(x\inU ^ U\subseteqV)}
have 0\not\in\mathfrak{F}\mathrm{ by blast}

```
```

 moreover have }\textrm{X}\in\mathfrak{F
 proof -
 from assms (}\textrm{x}\in\textrm{X}\mathrm{) have }\textrm{X}\in\operatorname{Pow(X) X\inT}\mathrm{ and }\textrm{x}\in\textrm{X}\wedge\X\X using carr_open
 by auto
 hence }\exists\textrm{U}\in\textrm{T}.(x\inU\wedgeU\subseteqX) by aut
 thus thesis by auto
 qed
 moreover have }\forallA\in\mathfrak{F}.\forallB\in\mathfrak{F}.A\capB\in\mathfrak{F
 proof -
 { fix A B assume }A\in\mathfrak{F}B\in\mathfrak{F
 then obtain }\mp@subsup{\textrm{U}}{A}{}\mp@subsup{\textrm{U}}{B}{}\mathrm{ where }\mp@subsup{\textrm{U}}{A}{}\in\textrm{T}x\in\mp@subsup{\textrm{U}}{A}{}\quad\mp@subsup{\textrm{U}}{A}{}\subseteqA\quad\mp@subsup{\textrm{U}}{B}{}\in\textrm{T}\textrm{x}\in\mp@subsup{\textrm{U}}{B}{}\quad\mp@subsup{\textrm{U}}{B}{}\subseteq
 by auto
 with \T {is a topology}\rangle\langleA\in\mathfrak{F}\rangle\langleB\in\mathfrak{F}\rangle\mathrm{ have A AB }\in\operatorname{Pow(X) and}
 \mp@subsup{U}{A}{}\cap\mp@subsup{U}{B}{}\in\textrm{T}x\in\mp@subsup{\textrm{U}}{A}{}\cap\mp@subsup{\textrm{U}}{B}{}\mp@subsup{\textrm{U}}{A}{}\cap\mp@subsup{\cap}{B}{}\subseteqA\capB
 by auto
 hence }\textrm{A}\cap\textrm{B}\in\mathfrak{F}\mathrm{ by blast
 } thus thesis by blast
 qed
 moreover have }\forall\textrm{B}\in\mathfrak{F}.\forall\textrm{C}\in\operatorname{Pow}(\textrm{X}).\textrm{B}\subseteq\textrm{C}\longrightarrow\textrm{C}\in\mathfrak{F
 proof -
 { fix B C assume B\in{ C C \in Pow(X) B\subseteqC
 then obtain U where U\inT and x\inU U\subseteqB by blast
 with \C \in Pow(X)\rangle\langleB\subseteqC\rangle have C\in{ by blast
 } thus thesis by auto
 qed
 ultimately have }\mathfrak{F}\mathrm{ {is a filter on} X unfolding IsFilter_def by blast
 with Mdef { }\textrm{x}\in\textrm{X}\mathrm{) show M(x) {is a filter on} X using ZF_fun_from_tot_val1
 NeighSystem_def
by simp
qed

```

The next theorem states that the the natural neighborhood system on \(X=\) \(\bigcup T\) indeed is a neighborhood system.
```

theorem neigh_from_topology:
assumes T {is a topology}
shows ({neighborhood system of} T) {is a neighborhood system on} (UT)
proof -
let X = UT
let }\mathcal{M}={neighborhood system of}
have \mathcal{M : X }->\mathrm{ Pow(Pow(X))}
proof -
{ fix x assume x\inX
hence {V\in\operatorname{Pow (UT).\existsU\inT. (x\inU ^ U\subseteqV)} \in Pow(Pow(X)) by auto}
} hence }\forallx\inX.{V\in\operatorname{Pow}(\cupT).\existsU\inT.(x\inU\wedgeU\subseteqV)}\in\operatorname{Pow}(\operatorname{Pow}(X)) by aut
then show thesis using ZF_fun_from_total NeighSystem_def by simp
qed
moreover from assms have }\forall\textrm{x}\in\textrm{X}\mathrm{ . (M(x) {is a filter on} X)
using neighs_is_filter NeighSystem_def by auto

```
```

 moreover have }\forallx\inX.\forallN\in\mathcal{M}(x). x\inN^(\existsU\in\mathcal{M}(x).\forally\inU.(N\in\mathcal{M}(y))
 proof -
 { fix x N assume x\inX N \in M (x)
    ```

```

 from \langlex\inX> have }\mathcal{M}(x)=\mathfrak{F}\mathrm{ using ZF_fun_from_tot_val1 NeighSystem_def
 by simp
 with }\langle\textrm{N}\in\mathcal{M}(\textrm{x})\rangle\mathrm{ have }\textrm{N}\in\mathfrak{F}\mathrm{ by simp
 hence }x\inN\mathrm{ by blast
 from \langleN\in\mathfrak{F}\rangle}\mathrm{ obtain }U\mathrm{ where U UGT x }x\inU\mathrm{ and }U\subseteqN\mathrm{ by blast
 with }\langle\textrm{N}\in\mathfrak{F}\rangle\langle\mathcal{M}(\textrm{x})={\mathfrak{F}\rangle\mathrm{ have }\textrm{U}\in\mathcal{M}(\textrm{x})\mathrm{ by auto
 moreover from assms \langleU\inT\rangle \langleU\subseteqN\rangle\langleN\in\mathfrak{F}\rangle\mathrm{ have }\forally\inU.(N \in\mathcal{M}(y))
 using ZF_fun_from_tot_val1 open_are_neighs neighs_is_filter
 NeighSystem_def IsFilter_def by auto
 ultimately have }\exists\textrm{U}\in\mathcal{M}(\textrm{x}).\forall\textrm{y}\in\textrm{U}.(N\in\mathcal{M}(\textrm{y}))\mathrm{ by blast
 with {x\inN\rangle have }x\inN\wedge(\existsU\in\mathcal{M}(x).\forally\inU.(N\in\mathcal{M}(y))) by sim
 } thus thesis by auto
 qed
 ultimately show thesis unfolding IsNeighSystem_def by blast
 qed
end

```

\section*{56 Topology - examples}
theory Topology_ZF_examples imports Topology_ZF Cardinal_ZF
begin
This theory deals with some concrete examples of topologies.

\subsection*{56.1 CoCardinal Topology}

In this section we define and prove the basic properties of the co-cardinal topology on a set \(X\).

The collection of subsets of a set whose complement is strictly bounded by a cardinal is a topology given some assumptions on the cardinal.
definition
CoCardinal \((X, T) \equiv\{F \in \operatorname{Pow}(X) . X-F \prec T\} \cup\{0\}\)
For any set and any infinite cardinal we prove that CoCardinal ( \(\mathrm{X}, \mathrm{Q}\) ) forms a topology. The proof is done with an infinite cardinal, but it is obvious that the set \(Q\) can be any set equipollent with an infinite cardinal. It is a topology also if the set where the topology is defined is too small or the cardinal too large; in this case, as it is later proved the topology is a discrete topology. And the last case corresponds with \(\mathrm{Q}=1\) which translates in the indiscrete topology.
```

lemma CoCar_is_topology:
assumes InfCard (Q)
shows CoCardinal(X,Q) {is a topology}
proof -
let T = CoCardinal(X,Q)
{
fix M
assume A:M\inPow(T)
hence M\subseteqT by auto
then have M\subseteqPow(X) using CoCardinal_def by auto
then have \ \M\inPow(X) by auto
moreover
{
assume B:M=0
then have \ \ M T using CoCardinal_def by auto
}
moreover
{
assume B:M={0}
then have \ \M\inT using CoCardinal_def by auto
}
moreover
{
assume B:M }\not=0\quadM\not={0
from B obtain T where C:T\inM and T}\not=0\mathrm{ by auto
with A have D:X-T \prec (Q) using CoCardinal_def by auto
from C have X-\bigcupM\subseteqX-T by blast
with D have X-\M\prec(Q) using subset_imp_lepoll lesspoll_trans1
by blast
}
ultimately have \ M T using CoCardinal_def by auto
}
moreover
{
fix U and V
assume }\textrm{U}\in\textrm{T}\mathrm{ and }\textrm{V}\in
then have A:U=0 \vee (U\inPow(X) ^ X-U\prec (Q)) and
B:V=0 \vee (V\inPow(X) ^ X-V\prec (Q)) using CoCardinal_def by auto
hence D:U\inPow(X)V\inPow(X) by auto
have C:X-(U\cap V)=(X-U)\cup(X-V) by fast
with A B C have U\capV=0V (U\capV\inPow(X) ^ X-(U \cap V)\prec (Q)) using less_less_imp_un_less
assms
by auto
then have U\capV\inT using CoCardinal_def by auto
}
ultimately show thesis using IsATopology_def by auto
qed

```

We can use theorems proven in topology0 context for the co-cardinal topol-
ogy.
```

theorem topology0_CoCardinal:
assumes InfCard(T)
shows topology0(CoCardinal(X,T))
using topology0_def CoCar_is_topology assms by auto

```

It can also be proven that if CoCardinal ( \(\mathrm{X}, \mathrm{T}\) ) is a topology, \(\mathrm{X} \neq 0, \operatorname{Card}(\mathrm{~T})\) and \(\mathrm{T} \neq 0\); then T is an infinite cardinal, \(\mathrm{X} \prec \mathrm{T}\) or \(\mathrm{T}=1\). It follows from the fact that the union of two closed sets is closed. Choosing the appropriate cardinals, the cofinite and the cocountable topologies are obtained.
The cofinite topology is a very special topology because it is closely related to the separation axiom \(T_{1}\). It also appears naturally in algebraic geometry.
```

definition
Cofinite (CoFinite _ 90) where
CoFinite X \equiv CoCardinal(X,nat)

```

Cocountable topology in fact consists of the empty set and all cocountable subsets of \(X\).

\section*{definition}

Cocountable (CoCountable _ 90) where
CoCountable X \(\equiv\) CoCardinal (X,csucc (nat))

\subsection*{56.2 Total set, Closed sets, Interior, Closure and Boundary}

There are several assertions that can be done to the CoCardinal ( \(\mathrm{X}, \mathrm{T}\) ) topology. In each case, we will not assume sufficient conditions for CoCardinal (X,T) to be a topology, but they will be enough to do the calculations in every posible case.

The topology is defined in the set \(X\)
```

lemma union_cocardinal:
assumes T\not=0
shows }\bigcup\mathrm{ CoCardinal(X,T) = X
proof-
have X:X-X=0 by auto
have 0 \lesssim 0 by auto
with assms have 0\prec11 \lesssimT using not_0_is_lepoll_1 lepoll_imp_lesspoll_succ
by auto
then have 0\precT using lesspoll_trans2 by auto
with X have (X-X)\precT by auto
then have X\inCoCardinal(X,T) using CoCardinal_def by auto
hence X\subseteq\bigcup CoCardinal(X,T) by blast
then show }\bigcup\mathrm{ CoCardinal(X,T)=X using CoCardinal_def by auto
qed

```

The closed sets are the small subsets of \(X\) and \(X\) itself.
```

lemma closed_sets_cocardinal:

```
```

 assumes T\not=0
 shows D {is closed in} CoCardinal(X,T) \longleftrightarrow(D\inPow(X) ^D\precT) \vee D=X
 proof-
{
assume A:D \subseteq X X - D G CoCardinal(X,T) D \# X
from }A(1,3) have X-(X-D)=D X-D\not=0 by auto
with A(2) have D\precT using CoCardinal_def by simp
}
with assms have D {is closed in} CoCardinal(X,T) \longrightarrow(D\inPow(X) ^ D<T)\vee
D=X using IsClosed_def
union_cocardinal by auto
moreover
{
assume A:D \prec TD \subseteqX
from A(2) have X-(X-D)=D by blast
with A(1) have X-(X-D)\prec T by auto
then have X-D\in CoCardinal(X,T) using CoCardinal_def by auto
}
with assms have (D\inPow (X) ^ D}\precT)\longrightarrowD {is closed in} CoCardinal(X,T
using union_cocardinal
IsClosed_def by auto
moreover
have X-X=0 by auto
then have }X-X\inCoCardinal(X,T)using CoCardinal_def by aut
with assms have X{is closed in} CoCardinal(X,T) using union_cocardinal
IsClosed_def by auto
ultimately show thesis by auto
qed

```

The interior of a set is itself if it is open or 0 if it isn't open.
```

lemma interior_set_cocardinal:
assumes noC: T\not=0 and A\subseteqX
shows Interior(A,CoCardinal(X,T))=(if ((X-A) \prec T) then A else 0)
proof-
from assms(2) have dif_dif:X-(X-A)=A by blast
{
assume (X-A) \prec T
then have (}X-A)\in\operatorname{Pow}(X)\wedge(X-A)\precT by aut
with noC have (X-A) {is closed in} CoCardinal(X,T) using closed_sets_cocardinal
by auto
with noC have X-(X-A)\inCoCardinal(X,T) using IsClosed_def union_cocardinal
by auto
with dif_dif have A\inCoCardinal(X,T) by auto
hence }A\in{U\inCoCardinal(X,T). U\subseteqA} by aut
hence a1:A\subseteq\bigcup{U\inCoCardinal(X,T). U \subseteqA} by auto
have a2:\{U\inCoCardinal(X,T). U \subseteq A}\subseteqA by blast
from a1 a2 have Interior(A,CoCardinal(X,T))=A using Interior_def
by auto}
moreover

```
```

 {
 assume as:~((X-A) \prec T)
 {
 fix U
 assume U \subseteqA
 hence X-A \subseteq X-U by blast
 then have Q:X-A \lesssim X-U using subset_imp_lepoll by auto
 {
 assume X-U\prec T
 with Q have X-A\prec T using lesspoll_trans1 by auto
 with as have False by auto
 }
 hence ~ ((X-U) \prec T) by auto
 then have U\not\inCoCardinal(X,T)\veeU=0 using CoCardinal_def by auto
 }
 hence {U\inCoCardinal(X,T). U \subseteqA}\subseteq{0} by blast
 then have Interior(A,CoCardinal(X,T))=0 using Interior_def by auto
 }
 ultimately show thesis by auto
 qed
X is a closed set that contains A. This lemma is necessary because we cannot use the lemmas proven in the topology0 context since $\mathrm{T} \neq 0\}$ is too weak for CoCardinal (X, T) to be a topology.

```
```

lemma X_closedcov_cocardinal:

```
lemma X_closedcov_cocardinal:
    assumes T}=0\mathrm{ A }\subseteq
    assumes T}=0\mathrm{ A }\subseteq
    shows X\inClosedCovers(A,CoCardinal(X,T)) using ClosedCovers_def
    shows X\inClosedCovers(A,CoCardinal(X,T)) using ClosedCovers_def
    using union_cocardinal closed_sets_cocardinal assms by auto
```

 using union_cocardinal closed_sets_cocardinal assms by auto
    ```

The closure of a set is itself if it is closed or X if it isn't closed.
```

lemma closure_set_cocardinal:
assumes T}\not=OA\subseteq
shows Closure(A,CoCardinal(X,T))=(if (A \prec T) then A else X)
proof-
{
assume A \prec T
with assms have A {is closed in} CoCardinal(X,T) using closed_sets_cocardinal
by auto
with assms(2) have A\in {D \in Pow(X). D {is closed in} CoCardinal(X,T)
A G\subseteqD} by auto
with assms(1) have S:A\inClosedCovers(A,CoCardinal(X,T)) using ClosedCovers_def
using union_cocardinal by auto
hence 11:\bigcapClosedCovers(A,CoCardinal(X,T))\subseteqA by blast
from S have 12:A \subseteq\bigcapClosedCovers(A,CoCardinal(X,T))
unfolding ClosedCovers_def by auto
from l1 l2 have Closure(A,CoCardinal(X,T))=A using Closure_def
by auto
}
moreover

```
```

 {
 assume as:\neg A \prec T
 {
 fix U
 assume A\subseteqU
 then have Q:A \lesssim U using subset_imp_lepoll by auto
 {
 assume U\prec T
 with Q have A\prec T using lesspoll_trans1 by auto
 with as have False by auto
 }
 hence }\neg\textrm{U}\prec\textrm{T}\mathrm{ by auto
 with assms(1) have }\neg\mathrm{ (U {is closed in} CoCardinal(X,T)) V U=X us-
 ing closed_sets_cocardinal
by auto
}
with assms(1) have }\forall\textrm{U}\in\operatorname{Pow}(X). U{is closed in}CoCardinal(X,T) ^ A\subseteqU\longrightarrowU=X
by auto
with assms(1) have ClosedCovers(A,CoCardinal(X,T))\subseteq{X}
using union_cocardinal using ClosedCovers_def by auto
with assms have ClosedCovers(A,CoCardinal(X,T))={X} using X_closedcov_cocardinal
by auto
then have Closure(A,CoCardinal(X,T)) = X using Closure_def by auto
}
ultimately show thesis by auto
qed

```

The boundary of a set is empty if \(A\) and \(X-A\) are closed, x if not \(A\) neither \(X-A\) are closed and; if only one is closed, then the closed one is its boundary.
```

lemma boundary_cocardinal:
assumes T}=0\textrm{A}\subseteq\textrm{X
shows Boundary(A,CoCardinal(X,T)) = (if A\prec T then (if (X-A)\prec T then
O else A) else (if (X-A)\prec T then X-A else X))
proof-
from assms(2) have X-A \subseteqX by auto
{
assume AS: A\precT X-A }\prec
with assms \langleX-A \subseteq X \ have
Closure(X-A,CoCardinal(X,T)) = X-A and Closure(A,CoCardinal(X,T))
= A
using closure_set_cocardinal by auto
with assms(1) have Boundary(A,CoCardinal(X,T)) = 0
using Boundary_def union_cocardinal by auto
}
moreover
{
assume AS: ~ (A\precT) X-A \prec T
with assms \ X-A \subseteq X % have

```
        Closure ( \(\mathrm{X}-\mathrm{A}, \operatorname{CoCardinal}(\mathrm{X}, \mathrm{T}))=\mathrm{X}-\mathrm{A}\) and Closure(A,CoCardinal(X,T))
\(=\mathrm{X}\)
            using closure_set_cocardinal by auto
        with assms(1) have Boundary (A,CoCardinal (X,T)) \(=\mathrm{X}-\mathrm{A}\) using Boundary_def
            union_cocardinal by auto
    \}
    moreover
    \{
        assume AS: \(\sim(\mathrm{A} \prec T) \sim(X-A \prec T)\)
        with assms \(\langle X-A \subseteq X\rangle\) have
            Closure ( \(\mathrm{X}-\mathrm{A}, \operatorname{CoCardinal}(\mathrm{X}, \mathrm{T})\) ) \(=\mathrm{X}\) and Closure (A,CoCardinal \((\mathrm{X}, \mathrm{T})\) ) \(=\mathrm{X}\)
            using closure_set_cocardinal by auto
        with assms(1) have Boundary(A,CoCardinal(X,T))=X using Boundary_def
union_cocardinal
            by auto
    \}
    moreover
    \{
        assume \(A S: A \prec T \sim(X-A \prec T)\)
        with assms \(\langle X-A \subseteq X\rangle\) have
            Closure \((X-A, C o C a r d i n a l(X, T))=X\) and Closure \((A, C o C a r d i n a l(X, T))=\)
A
            using closure_set_cocardinal by auto
        with assms have Boundary (A,CoCardinal (X,T))=A using Boundary_def
union_cocardinal
            by auto
    \}
    ultimately show thesis by auto
qed

If the set is too small or the cardinal too large, then the topology is just the discrete topology.
```

lemma discrete_cocardinal:
assumes X}\prec
shows CoCardinal(X,T) = Pow(X)
proof
{
fix U
assume U\inCoCardinal(X,T)
then have }U\in\operatorname{Pow}(X)\mathrm{ using CoCardinal_def by auto
}
then show CoCardinal(X,T) \subseteq Pow(X) by auto
{
fix U
assume A:U \in Pow(X)
then have X-U\subseteqX by auto
then have X-U }\lesssimX using subset_imp_lepoll by aut
then have X-U\prec T using lesspoll_trans1 assms by auto
with A have U\inCoCardinal(X,T) using CoCardinal_def

```
```

 by auto
 }
 then show Pow(X) \subseteq CoCardinal(X,T) by auto
 qed

```

If the cardinal is taken as \(\mathrm{T}=1\) then the topology is indiscrete.
```

lemma indiscrete_cocardinal:
shows CoCardinal(X,1) = {0,X}
proof
{
fix Q
assume Q \in CoCardinal(X,1)
then have Q \in Pow(X) and Q=0 \vee X-Q\prec1 using CoCardinal_def by auto
then have Q \in Pow(X) and Q=0 \vee X-Q=0 using lesspoll_succ_iff lepoll_0_iff
by auto
then have Q=0 \vee Q=X by blast
}
then show CoCardinal(X,1) \subseteq {0, X} by auto
have 0 \in CoCardinal(X,1) using CoCardinal_def by auto
moreover
have 0\prec1 and X-X=0 using lesspoll_succ_iff by auto
then have X\inCoCardinal(X,1) using CoCardinal_def by auto
ultimately show {0, X} \subseteq CoCardinal(X,1) by auto
qed

```

The topological subspaces of the CoCardinal ( \(\mathrm{X}, \mathrm{T}\) ) topology are also CoCardinal topologies.
lemma subspace_cocardinal:
    shows CoCardinal(X,T) \{restricted to\} \(Y=\operatorname{CoCardinal}(\mathrm{Y} \cap \mathrm{X}, \mathrm{T})\)
proof
    \(\{\)
            fix \(M\)
            assume \(M \in\) (CoCardinal (X,T) \{restricted to\} \(Y\) )
            then obtain A where A1:A \(\in\) CoCardinal( \(\mathrm{X}, \mathrm{T}\) ) \(\mathrm{M}=\mathrm{Y} \cap \mathrm{A}\) using RestrictedTo_def
by auto
            then have \(M \in \operatorname{Pow}(X \cap Y)\) using CoCardinal_def by auto
            moreover
            from A1 have ( \(\mathrm{Y} \cap \mathrm{X}\) )-M \(=(\mathrm{Y} \cap \mathrm{X})-\mathrm{A}\) using CoCardinal_def by auto
            with \(\langle(Y \cap X)-M=(Y \cap X)-A\rangle\) have \((Y \cap X)-M \subseteq X-A\) by auto
            then have ( \(Y \cap X\) )-M \(\lesssim X-A\) using subset_imp_lepoll by auto
            with A1 have ( \(\mathrm{Y} \cap \mathrm{X}\) ) - \(\mathrm{M} \prec \mathrm{T} \vee \mathrm{M}=0\) using lesspoll_trans1 CoCardinal_def
                by auto

                by auto
    \}
    then show CoCardinal(X,T) \{restricted to\} Y \(\subseteq\) CoCardinal(Y \(\cap \mathrm{X}, \mathrm{T}\) ) by
auto
    \{
            fix M
```

 let A = M U (X-Y)
 assume A:M }\in\operatorname{CoCardinal(Y \cap X,T)
 {
 assume M=0
 hence M=0 \cap Y by auto
 then have M\inCoCardinal(X,T) {restricted to} Y using RestrictedTo_def
 CoCardinal_def by auto
 }
 moreover
 {
 assume AS:M\not=0
 from A AS have A1: (M\inPow (Y \cap X) ^ (Y \cap X)-M\precT) using CoCardinal_def
 by auto
hence A\inPow(X) by blast
moreover
have }X-A=(Y\capX)-M by blas
with A1 have X-A\prec T by auto
ultimately have A\inCoCardinal(X,T) using CoCardinal_def by auto
then have AT:Y \cap A\inCoCardinal(X,T) {restricted to} Y using RestrictedTo_def
by auto
have }\textrm{Y}\cap\textrm{A}=\textrm{Y}\cap\textrm{M}\mathrm{ by blast
also from A1 have ...=M by auto
finally have }Y\capA=M\mathrm{ by simp
with AT have M\inCoCardinal(X,T) {restricted to} Y
by auto
}
ultimately have M\inCoCardinal(X,T) {restricted to} Y by auto
}
then show CoCardinal(Y \cap X, T) \subseteq CoCardinal(X,T) {restricted to} Y
by auto
qed

```

\subsection*{56.3 Excluded Set Topology}

In this section, we consider all the subsets of a set which have empty intersection with a fixed set.

The excluded set topology consists of subsets of \(X\) that are disjoint with a fixed set \(U\).
definition ExcludedSet \((X, U) \equiv\{F \in \operatorname{Pow}(X) . U \cap F=0\} \cup\{X\}\)
For any set; we prove that ExcludedSet ( \(\mathrm{X}, \mathrm{Q}\) ) forms a topology.
```

theorem excludedset_is_topology:
shows ExcludedSet(X,Q) {is a topology}
proof-
{
fix M
assume M \in Pow(ExcludedSet(X,Q))

```
```

 then have A:M\subseteq{F\inPow(X). Q \cap F=0}\cup{X} using ExcludedSet_def by
 auto
hence \ \M\inPow(X) by auto
moreover
{
have B:Q \cap\M=\bigcup{Q \capT. T\inM} by auto
{
assume X\not\inM
with A have M\subseteq{F\inPow(X). Q \cap F=0} by auto
with B have Q \cap \M=0 by auto
}
moreover
{
assume X\inM
with A have }\bigcup\textrm{M}=\textrm{X}\mathrm{ by auto
}
ultimately have }Q\cap\bigcupM=0\vee\bigcupM=X by aut
}
ultimately have \ M\inExcludedSet(X,Q) using ExcludedSet_def by auto
}
moreover
{
fix U V
assume U\inExcludedSet(X,Q) V\inExcludedSet(X,Q)
then have U\inPow(X)V\inPow(X)U=X\vee U \cap Q=0V=X\vee V \cap Q=0 using ExcludedSet_def
by auto
hence U\in\operatorname{Pow (X)V\inPow(X)(U \cap V)=X V Q (U \cap V)=0 by auto}
then have (U \cap V)\inExcludedSet(X,Q) using ExcludedSet_def by auto
}
ultimately show thesis using IsATopology_def by auto
qed

```

We can use topology0 when discussing excluded set topology.
theorem topology0_excludedset:
shows topology0(ExcludedSet(X,T))
using topology0_def excludedset_is_topology by auto
Choosing a singleton set, it is considered a point in excluded topology.
```

definition
ExcludedPoint(X,p) \equiv ExcludedSet(X,{p})

```

\subsection*{56.4 Total set, closed sets, interior, closure and boundary}

Here we discuss what are closed sets, interior, closure and boundary in excluded set topology.

The topology is defined in the set \(X\)
lemma union_excludedset:
```

 shows \(\bigcup \operatorname{ExcludedSet}(X, T)=X\)
 proof-
have $X \in E x c l u d e d S e t(X, T)$ using ExcludedSet_def by auto
then show thesis using ExcludedSet_def by auto
qed

```

The closed sets are those which contain the set ( \(\mathrm{X} \cap \mathrm{T}\) ) and 0 .
lemma closed_sets_excludedset:
shows \(D\) \{is closed in\}ExcludedSet \((X, T) \longleftrightarrow(D \in \operatorname{Pow}(X) \wedge(X \cap T) \subseteq D)\)
\(\vee\) D=0
proof-
\{
fix \(x\)
assume \(A: D \subseteq X X-D \in E x c l u d e d S e t(X, T) D \neq 0 \quad x \in T x \in X\)
from \(A(1)\) have \(B: X-(X-D)=D\) by auto
from \(A(2)\) have \(T \cap(X-D)=0 \vee X-D=X\) using ExcludedSet_def by auto
hence \(T \cap(X-D)=0 \vee X-(X-D)=X-X\) by auto
with \(B\) have \(T \cap(X-D)=0 \vee D=X-X\) by auto
hence \(T \cap(X-D)=0 \vee D=0\) by auto
with \(A(3)\) have \(T \cap(X-D)=0\) by auto
with \(A(4)\) have \(x \notin X-D\) by auto
with \(A(5)\) have \(x \in D\) by auto
\}
moreover
\{
assume \(A: X \cap T \subseteq D ~ D \subseteq X\)
from \(A(1)\) have \(X-D \subseteq X-(X \cap T)\) by auto
also have \(\ldots=X-T\) by auto
finally have \(T \cap(X-D)=0\) by auto
moreover
have \(X-D \in \operatorname{Pow}(X)\) by auto
ultimately have \(X-D \in E x c l u d e d S e t(X, T)\) using ExcludedSet_def by auto
\}
ultimately show thesis using IsClosed_def union_excludedset ExcludedSet_def
by auto
qed
The interior of a set is itself if it is X or the difference with the set T
```

lemma interior_set_excludedset:
assumes A\subseteqX
shows Interior(A,ExcludedSet(X,T)) = (if A=X then X else A-T)
proof-
{
assume A:A\not=X
from assms have A-T \inExcludedSet(X,T) using ExcludedSet_def by auto
then have A-T\subseteqInterior(A,ExcludedSet(X,T))
using Interior_def by auto
moreover

```
```

 {
 fix U
 assume U \inExcludedSet(X,T) U\subseteqA
 then have T\capU=0 V U=XU\subseteqA using ExcludedSet_def by auto
 with A assms have T\capU=OU\subseteqA by auto
 then have U-T=UU-T\subseteqA-T by auto
 then have U\subseteqA-T by auto
 }
 then have Interior(A,ExcludedSet(X,T))\subseteqA-T using Interior_def by
 auto
ultimately have Interior(A,ExcludedSet(X,T))=A-T by auto
}
moreover
have X\inExcludedSet(X,T) using ExcludedSet_def
union_excludedset by auto
then have Interior(X,ExcludedSet(X,T)) = X using topology0.Top_2_L3
topology0_excludedset by auto
ultimately show thesis by auto
qed
The closure of a set is itself if it is 0 or the union with T .

```
```

lemma closure_set_excludedset:

```
lemma closure_set_excludedset:
    assumes A\subseteqX
    assumes A\subseteqX
    shows Closure(A,ExcludedSet (X,T))=(if A=0 then O else A \cup(X\capT))
    shows Closure(A,ExcludedSet (X,T))=(if A=0 then O else A \cup(X\capT))
proof-
proof-
    have 0\inClosedCovers(0,ExcludedSet(X,T)) using ClosedCovers_def
    have 0\inClosedCovers(0,ExcludedSet(X,T)) using ClosedCovers_def
        closed_sets_excludedset by auto
        closed_sets_excludedset by auto
    then have Closure(0,ExcludedSet (X,T))\subseteq0 using Closure_def by auto
    then have Closure(0,ExcludedSet (X,T))\subseteq0 using Closure_def by auto
    hence Closure(0,ExcludedSet (X,T))=0 by blast
    hence Closure(0,ExcludedSet (X,T))=0 by blast
    moreover
    moreover
    {
    {
        assume A:A\not=0
        assume A:A\not=0
        with assms have (A\cup(X\capT)) {is closed in}ExcludedSet(X,T) using closed_sets_excludedset
        with assms have (A\cup(X\capT)) {is closed in}ExcludedSet(X,T) using closed_sets_excludedset
            by blast
            by blast
        then have (A \cup(X\capT))\in{D \in Pow(X). D {is closed in}ExcludedSet (X,T)
        then have (A \cup(X\capT))\in{D \in Pow(X). D {is closed in}ExcludedSet (X,T)
\wedge A\subseteqD}
\wedge A\subseteqD}
            using assms by auto
            using assms by auto
            then have (A \cup(X\capT))\inClosedCovers(A,ExcludedSet (X,T)) unfolding
            then have (A \cup(X\capT))\inClosedCovers(A,ExcludedSet (X,T)) unfolding
ClosedCovers_def
ClosedCovers_def
    using union_excludedset by auto
    using union_excludedset by auto
    then have 11:\bigcapClosedCovers(A,ExcludedSet (X,T)) \subseteq(A \cup(X\capT)) by
    then have 11:\bigcapClosedCovers(A,ExcludedSet (X,T)) \subseteq(A \cup(X\capT)) by
blast
blast
    {
    {
            fix U
            fix U
            assume U\inClosedCovers(A,ExcludedSet(X,T))
            assume U\inClosedCovers(A,ExcludedSet(X,T))
            then have U{is closed in}ExcludedSet(X,T) and A\subseteqU using ClosedCovers_def
            then have U{is closed in}ExcludedSet(X,T) and A\subseteqU using ClosedCovers_def
            union_excludedset by auto
            union_excludedset by auto
            then have U=0V (X\capT)\subseteqU and A\subseteqU using closed_sets_excludedset
```

 then have U=0V (X\capT)\subseteqU and A\subseteqU using closed_sets_excludedset
    ```
```

 by auto
 with A have (X\capT)\subseteqUA\subseteqU by auto
 hence (}X\capT)\cupA\subseteqU\mathrm{ by auto
 }
 with assms have (A \cup(X\cap T)) \subseteq\bigcapClosedCovers(A,ExcludedSet(X,T))
 using topology0.Top_3_L3 topology0_excludedset union_excludedset
 by auto
 with l1 have \bigcapClosedCovers(A,ExcludedSet(X,T)) = (A\cup(X\capT)) by auto
 then have Closure(A, ExcludedSet(X,T)) = A\cup(X\capT) using Closure_def
 by auto
 }
 ultimately show thesis by auto
 qed

```

The boundary of a set is 0 if \(A\) is X or 0 , and \(\mathrm{X} \cap \mathrm{T}\) in other case.
```

lemma boundary_excludedset:
assumes A\subseteqX
shows Boundary(A,ExcludedSet (X,T)) = (if A=0\veeA=X then 0 else X\capT)
proof-
{
have Closure(0,ExcludedSet(X,T))=0Closure(X - 0,ExcludedSet(X,T))=X
using closure_set_excludedset by auto
then have Boundary(0,ExcludedSet(X,T)) = Ousing Boundary_def using
union_excludedset assms by auto
}
moreover
{
have X-X=0 by blast
then have Closure(X,ExcludedSet(X,T)) = X and Closure(X-X,ExcludedSet(X,T))
= 0
using closure_set_excludedset by auto
then have Boundary(X,ExcludedSet(X,T)) = Ounfolding Boundary_def
using
union_excludedset by auto
}
moreover
{
assume A\not=0 and A\not=X
then have X-A\not=0 using assms by auto
with assms \langleA\not=0\rangle\langleA\subseteqX\rangle have Closure(A,ExcludedSet(X,T)) = A \cup (X\capT)
using closure_set_excludedset by simp
moreover
from \langleA\subseteqX\rangle have X-A \subseteqX by blast
with \X-A\not=0\rangle have Closure(X-A,ExcludedSet(X,T)) = (X-A) \cup (X\capT)
using closure_set_excludedset by simp
ultimately have Boundary(A,ExcludedSet (X,T)) = X\capT

```
```

 using Boundary_def union_excludedset by auto
 }
 ultimately show thesis by auto
 qed

```

\subsection*{56.5 Special cases and subspaces}

This section provides some miscellaneous facts about excluded set topologies.

The excluded set topology is equal in the sets T and \(\mathrm{X} \cap \mathrm{T}\).
```

lemma smaller_excludedset:
shows ExcludedSet(X,T) = ExcludedSet(X,(X\capT))
proof
show ExcludedSet(X,T) \subseteq ExcludedSet(X, X\capT) and ExcludedSet(X, X\capT)
\subseteqExcludedSet(X,T)
unfolding ExcludedSet_def by auto
qed

```

If the set which is excluded is disjoint with X , then the topology is discrete.
```

lemma empty_excludedset:
assumes T\capX=0
shows ExcludedSet(X,T) = Pow(X)
proof
from assms show ExcludedSet(X,T) \subseteq Pow(X) using smaller_excludedset
ExcludedSet_def
by auto
from assms show Pow(X) \subseteqExcludedSet(X,T) unfolding ExcludedSet_def
by blast
qed

```

The topological subspaces of the ExcludedSet X T topology are also ExcludedSet topologies.
lemma subspace_excludedset:
    shows ExcludedSet(X,T) \{restricted to\} Y = ExcludedSet(Y \(\cap \mathrm{X}, \mathrm{T})\)
proof
    \{
            fix \(M\)
            assume \(\mathrm{M} \in(E x c l u d e d S e t(X, T)\) \{restricted to\} \(Y\) )
            then obtain A where A1:A:ExcludedSet(X,T) M=Y \(\cap\) A unfolding RestrictedTo_def
by auto
            then have \(\mathrm{M} \in \operatorname{Pow}(\mathrm{X} \cap \mathrm{Y}\) ) unfolding ExcludedSet_def by auto
            moreover
            from A1 have \(T \cap M=0 \vee M=Y \cap X\) unfolding ExcludedSet_def by blast
            ultimately have \(M \in\) ExcludedSet ( \(\mathrm{Y} \cap \mathrm{X}, \mathrm{T}\) ) unfolding ExcludedSet_def
                by auto
    \}
    then show ExcludedSet \((\mathrm{X}, \mathrm{T})\) \{restricted to\} \(\mathrm{Y} \subseteq \operatorname{ExcludedSet}(\mathrm{Y} \cap \mathrm{X}, \mathrm{T})\)
by auto
```

 {
 fix M
 let }A=M\cup((X\capY-T)-Y
 assume A:M \in ExcludedSet(Y\capX,T)
 {
 assume M = Y \cap X
 then have M E ExcludedSet(X,T) {restricted to} Y unfolding RestrictedTo_def
 ExcludedSet_def by auto
 }
 moreover
 {
 assume AS:M\not=Y \cap X
 from A AS have A1:(M\inPow (Y \cap X) ^ T\capM=0) unfolding ExcludedSet_def
 by auto
then have A\inPow(X) by blast
moreover
have T\capA=T\capM by blast
with A1 have T\capA=0 by auto
ultimately have A \inExcludedSet(X,T) unfolding ExcludedSet_def by
auto
then have AT:Y \cap A EExcludedSet(X,T) {restricted to} Y unfold-
ing RestrictedTo_def
by auto
have Y \cap A=Y \cap M by blast
also have ...=M using A1 by auto
finally have Y\capA = M by simp
with AT have M EExcludedSet(X,T) {restricted to} Y by auto
}
ultimately have M \inExcludedSet(X,T) {restricted to} Y by auto
}
then show ExcludedSet(Y \cap X,T) \subseteq ExcludedSet(X,T) {restricted to}
Y by auto
qed

```

\subsection*{56.6 Included Set Topology}

In this section we consider the subsets of a set which contain a fixed set. The family defined in this section and the one in the previous section are dual; meaning that the closed set of one are the open sets of the other.

We define the included set topology as the collection of supersets of some fixed subset of the space \(X\).
```

definition
IncludedSet(X,U) \equiv{F\inPow(X). U \subseteq F} \cup{0}

```

In the next theorem we prove that IncludedSet X Q forms a topology.
```

theorem includedset_is_topology:
shows IncludedSet(X,Q) {is a topology}

```
```

proof-
{
fix M
assume M \in Pow(IncludedSet(X,Q))
then have A:M\subseteq{F\in\operatorname{Pow (X). Q \subseteq F}\cup{0} using IncludedSet_def by auto}
then have }\bigcupM\in\operatorname{Pow}(X)\mathrm{ by auto
moreover
haveQ \subseteq\bigcupM\vee \bigcupM=0 using A by blast
ultimately have \M\inIncludedSet(X,Q) using IncludedSet_def by auto
}
moreover
{
fix U V
assume U\inIncludedSet(X,Q) V }\in\operatorname{IncludedSet(X,Q)
then have }U\in\operatorname{Pow}(X)V\in\operatorname{Pow}(X)U=OV Q\subseteqUV=OV Q\subseteqV using IncludedSet_de
by auto
then have U\inPow(X)V\inPow(X)(U\capV)=0 \vee Q\subseteq(U\capV) by auto
then have (U \cap V)\inIncludedSet(X,Q) using IncludedSet_def by auto
}
ultimately show thesis using IsATopology_def by auto
qed

```

We can reference the theorems proven in the topology0 context when discussing the included set topology.
theorem topology0_includedset:
shows topology0 (IncludedSet (X,T))
using topologyO_def includedset_is_topology by auto
Choosing a singleton set, it is considered a point excluded topology. In the following lemmas and theorems, when neccessary it will be considered that \(\mathrm{T} \neq 0\) and \(\mathrm{T} \subseteq \mathrm{X}\). These cases will appear in the special cases section.
```

definition
IncludedPoint (IncludedPoint _ _ 90) where
IncludedPoint X p \equiv IncludedSet(X,{p})

```

\subsection*{56.7 Basic topological notions in included set topology}

This section discusses total set, closed sets, interior, closure and boundary for included set topology.

The topology is defined in the set \(X\).
```

lemma union_includedset:
assumes $T \subseteq X$
shows \bigcup IncludedSet $(X, T)=X$
proof-
from assms have $\mathrm{X} \in$ IncludedSet(X, T) using IncludedSet_def by auto
then show \bigcup IncludedSet $(X, T)=X$ using IncludedSet_def by auto
qed

```

The closed sets are those which are disjoint with T and X .
```

lemma closed_sets_includedset:
assumes T\subseteqX
shows D {is closed in} IncludedSet(X,T) \longleftrightarrow(D\inPow(X) ^ (D \cap T)=0)\vee
D=X
proof-
have }X-X=0 by blas
then have X-X\inIncludedSet(X,T) using IncludedSet_def by auto
moreover
{
assume A:D \subseteq X X - D \in IncludedSet(X,T) D \# X
from A(2) have T\subseteq(X-D)\vee X-D=0 using IncludedSet_def by auto
with }A(1) have T\subseteq(X-D)\vee D=X by blas
with A(3) have T\subseteq(X-D) by auto
hence D\capT=0 by blast
}
moreover
{
assume A:D\capT=OD\subseteqX
from A(1) assms have T\subseteq(X-D) by blast
then have X-D\inIncludedSet(X,T) using IncludedSet_def by auto
}
ultimately show thesis using IsClosed_def union_includedset assms by
auto
qed

```

The interior of a set is itself if it is open or the empty set if it isn't.
```

lemma interior_set_includedset:
assumes A\subseteqX
shows Interior(A,IncludedSet(X,T))= (if T\subseteqA then A else 0)
proof-
{
fix x
assume A:Interior(A,IncludedSet(X,T)) \# O x\inT
have Interior(A,IncludedSet(X,T)) \in IncludedSet(X,T) using
topology0.Top_2_L2 topology0_includedset by auto
with A(1) have T \subseteq Interior(A,IncludedSet(X,T)) using IncludedSet_def
by auto
with A(2) have x \in Interior(A,IncludedSet(X,T)) by auto
then have x\inA using topology0.Top_2_L1 topology0_includedset by auto}
moreover
{
assume T\subseteqA
with assms have A\inIncludedSet(X,T) using IncludedSet_def by auto
then have Interior(A,IncludedSet(X,T)) = A using topology0.Top_2_L3
topologyO_includedset by auto
}
ultimately show thesis by auto
qed

```

The closure of a set is itself if it is closed or the whole space if it is not.
```

lemma closure_set_includedset:
assumes A\subseteqX T\subseteqX
shows Closure(A,IncludedSet(X,T)) = (if T\capA=O then A else X)
proof-
{
assume AS:T\capA=0
then have A {is closed in} IncludedSet(X,T) using closed_sets_includedset
assms by auto
with assms(1) have Closure(A,IncludedSet(X,T))=A using topology0.Top_3_L8
topology0_includedset union_includedset assms(2) by auto
}
moreover
{
assume AS:T\capA F= 0
have X\inClosedCovers(A,IncludedSet(X,T)) using ClosedCovers_def
closed_sets_includedset union_includedset assms by auto
then have 11:\bigcapClosedCovers(A,IncludedSet(X,T))\subseteqX using Closure_def
by auto
moreover
{
fix U
assume U\inClosedCovers(A,IncludedSet(X,T))
then have U{is closed in}IncludedSet(X,T)A\subseteqU using ClosedCovers_def
by auto
then have U=X\vee(T\capU)=OA\subseteqU using closed_sets_includedset assms(2)
by auto
then have }U=X\vee(T\capA)=0 by aut
then have U=X using AS by auto
}
then have X \subseteq\bigcapClosedCovers(A,IncludedSet(X,T)) using topology0.Top_3_L3
topology0_includedset union_includedset assms by auto
ultimately have \bigcapClosedCovers(A,IncludedSet(X,T))=X by auto
then have Closure(A,IncludedSet (X,T)) = X
using Closure_def by auto
}
ultimately show thesis by auto
qed

```

The boundary of a set is X-A if \(A\) contains T completely, is A if \(X-A\) contains T completely and X if T is divided between the two sets. The case where \(\mathrm{T}=0\) is considered as a special case.
lemma boundary_includedset:
assumes \(A \subseteq X \quad T \subseteq X \quad T \neq 0\)
shows Boundary (A,IncludedSet (X,T)) \(=(\) if \(T \subseteq A\) then \(X-A\) else (if \(T \cap A=0\)
then \(A\) else \(X\) ))
proof -
from \(\langle A \subseteq X\rangle\) have \(X-A \subseteq X\) by auto
\{
```

 assume T\subseteqA
 with assms (2,3) have T\capA\not=0 and T\cap(X-A)=0 by auto
 with assms(1,2) \langleX-A \subseteq X \ have
 Closure(A,IncludedSet(X,T)) = X and Closure(X-A,IncludedSet(X,T))
 = (X-A)
using closure_set_includedset by auto
with assms(2) have Boundary(A,IncludedSet(X,T)) = X-A
using Boundary_def union_includedset by auto
}
moreover
{
assume ~ (T\subseteqA) and T\capA=0
with assms(2) have T\cap(X-A)\not=0 by auto
with assms(1,2) \langleT\capA=0\rangle\langleX-A \subseteqX\rangle have
Closure(A,IncludedSet(X,T)) = A and Closure(X-A,IncludedSet(X,T))
= X
using closure_set_includedset by auto
with assms(1,2) have Boundary(A,IncludedSet(X,T))=A using Boundary_def
union_includedset
by auto
}
moreover
{
assume ~
with assms(1,2) have T\cap(X-A)}\not=0\mathrm{ by auto
with assms (1,2) \langleT\capA\not=0\rangle \langleX-A \subseteq X > have
Closure(A,IncludedSet(X,T)) = X and Closure(X-A,IncludedSet(X,T))
= X
using closure_set_includedset by auto
with assms(2) have Boundary(A,IncludedSet(X,T)) = X
using Boundary_def union_includedset by auto
}
ultimately show thesis by auto
qed

```

\subsection*{56.8 Special cases and subspaces}

In this section we discuss some corner cases when some parameters in our definitions are empty and provide some facts about subspaces in included set topologies.

The topology is discrete if \(\mathrm{T}=0\)
```

lemma smaller_includedset:
shows IncludedSet(X,0) = Pow(X)
proof
show IncludedSet(X,0)\subseteq Pow(X) and Pow(X)\subseteq IncludedSet(X,0)
unfolding IncludedSet_def by auto
qed

```

If the set which is included is not a subset of \(x\), then the topology is trivial.
```

lemma empty_includedset:
assumes ~
shows IncludedSet(X,T) = {0}
proof
from assms show IncludedSet(X,T) \subseteq{0} and {0} \subseteq IncludedSet(X,T)
unfolding IncludedSet_def by auto
qed

```

The topological subspaces of the IncludedSet ( \(\mathrm{X}, \mathrm{T}\) ) topology are also IncludedSet topologies. The trivial case does not fit the idea in the demonstration because if \(\mathrm{Y} \subseteq \mathrm{X}\) then IncludedSet \((\mathrm{Y} \cap \mathrm{X}, \mathrm{Y} \cap \mathrm{T}\) ) is never trivial. There is no need for a separate proof because the only subspace of the trivial topology is itself.
```

lemma subspace_includedset:
assumes T\subseteqX
shows IncludedSet(X,T) {restricted to} Y = IncludedSet(Y\capX,Y\capT)
proof
{
fix M
assume M \in (IncludedSet(X,T) {restricted to} Y)
then obtain A where A1:A:IncludedSet(X,T) M = Y\capA unfolding RestrictedTo_def
by auto
then have M \in Pow(X\capY) unfolding IncludedSet_def by auto
moreover
from A1 have Y\capT\subseteqM \vee M=0 unfolding IncludedSet_def by blast
ultimately have M }\in\mathrm{ IncludedSet(Y X, Y TT) unfolding IncludedSet_def
by auto
}
then show IncludedSet(X,T) {restricted to} Y \subseteq IncludedSet(Y\capX, Y\capT)
by auto
{
fix M
let A = M\cupT
assume A:M \in IncludedSet(Y\capX, Y\capT)
{
assume M=0
then have M\inIncludedSet(X,T) {restricted to} Y unfolding RestrictedTo_def
IncludedSet_def by auto
}
moreover
{
assume AS:M\not=0
from A AS have A1:M\inPow(Y\capX) ^ Y\capT\subseteqM unfolding IncludedSet_def
by auto
then have A\inPow(X) using assms by blast

```
```

 moreover
 have T\subseteqA by blast
 ultimately have A }\in\mathrm{ IncludedSet(X,T) unfolding IncludedSet_def by
 auto
then have AT:Y \cap A E IncludedSet(X,T) {restricted to} Yunfolding
RestrictedTo_def
by auto
from A1 have Y \cap A=Y \cap M by blast
also from A1 have ...=M by auto
finally have Y\capA = M by simp
with AT have M \in IncludedSet(X,T) {restricted to} Y
by auto
}
ultimately have M \in IncludedSet(X,T) {restricted to} Y by auto
}
thus IncludedSet(Y\capX, Y\capT) \subseteq IncludedSet(X,T) {restricted to} Y by
auto
qed
end

```

\section*{57 More examples in topology}
```

theory Topology_ZF_examples_1
imports Topology_ZF_1 Order_ZF
begin

```

In this theory file we reformulate the concepts related to a topology in relation with a base of the topology and we give examples of topologies defined by bases or subbases.

\subsection*{57.1 New ideas using a base for a topology}

\subsection*{57.2 The topology of a base}

Given a family of subsets satisfiying the base condition, it is posible to construct a topology where that family is a base. Even more, it is the only topology with such characteristics.
```

definition
TopologyWithBase (TopologyBase _ 50) where
U {satisfies the base condition} \Longrightarrow TopologyBase U \equiv THE T. U {is a
base for} T
theorem Base_topology_is_a_topology:
assumes U {satisfies the base condition}
shows (TopologyBase U) {is a topology} and U {is a base for} (TopologyBase
U)
proof-

```
```

 from assms obtain T where U {is a base for} T using
 Top_1_2_T1(2) by blast
 then have \exists!T. U {is a base for} T using same_base_same_top ex1I[where
 P=
\lambdaT. U {is a base for} T] by blast
with assms show U {is a base for} (TopologyBase U) using theI[where
P=
\lambdaT. U {is a base for} T] TopologyWithBase_def by auto
with assms show (TopologyBase U) {is a topology} using Top_1_2_T1(1)
IsAbaseFor_def by auto
qed
A base doesn't need the empty set.
lemma base_no_0:
shows B{is a base for}T}\longleftrightarrow(B-{0}){is a base for}
proof-
{
fix M
assume M\in{\A . A \in Pow(B)}
then obtain Q where M=\ \QQPPow(B) by auto
hence M=\ (Q-{0})Q-{0}\in\operatorname{Pow (B-{0}) by auto}
hence }M\in{\bigcupA.A\in\operatorname{Pow}(B-{0})} by aut
}
hence {\bigcupA. A \in Pow(B)}\subseteq{\bigcupA.A \in Pow(B - {0})} by blast
moreover
{
fix M
assume M\in{\A . A \in Pow(B-{0})}
then obtain Q where M=\ \Q PPow(B-{0}) by auto
hence M=\bigcup(Q)Q\inPow(B) by auto
hence M\in{\A. A \in Pow(B)} by auto
}
hence }{\cupA.A\in\operatorname{Pow}(B-{0})}\subseteq{\bigcupA.AG\operatorname{Pow}(B)
by auto
ultimately have {\bigcupA. A \in Pow(B - {0})} = {\bigcupA. A \in Pow(B)} by auto
then show B{is a base for}T \longleftrightarrow (B-{0}){is a base for}T using IsAbaseFor_def
by auto
qed
The interior of a set is the union of all the sets of the base which are fully contained by it.

```
```

lemma interior_set_base_topology:

```
lemma interior_set_base_topology:
    assumes U {is a base for} TT{is a topology}
    assumes U {is a base for} TT{is a topology}
    shows Interior(A,T)=\bigcup{T\inU.T\subseteqA}
    shows Interior(A,T)=\bigcup{T\inU.T\subseteqA}
proof
proof
    have {T\inU. T\subseteqA}\subseteqU by auto
    have {T\inU. T\subseteqA}\subseteqU by auto
    with assms(1) have }\bigcup{T\inU.T\subseteqA}\in
    with assms(1) have }\bigcup{T\inU.T\subseteqA}\in
        using IsAbaseFor_def by auto
        using IsAbaseFor_def by auto
    moreover
```

 moreover
    ```
```

 have }\bigcup{T\inU.T\subseteqA}\subseteqA by blas
 with calculation assms(2) show \bigcup{T\inU.T\subseteqA}\subseteqInterior(A,T)
 using topology0.Top_2_L5 topology0_def by auto
 {
 fix x
 assume x\inInterior(A,T)
 with assms obtain V where V\inUV\subseteqInterior(A,T) x\inV
 using point_open_base_neigh
 topology0.Top_2_L2 topology0_def by blast
 with assms have V }\inUx\inVV\subseteqA using topology0.Top_2_L1 topology0_def
 by(safe,blast)
 hence }x\in\bigcup{T\inU.T\subseteqA} by aut
 }
thus Interior(A,T) \subseteq\bigcup{T\inU. T\subseteqA} by auto
qed

```

In the following, we offer another lemma about the closure of a set given a basis for a topology. This lemma is based on cl_inter_neigh and inter_neigh_cl. It states that it is only necessary to check the sets of the base, not all the open sets.
```

lemma closure_set_base_topology:
assumes U {is a base for} QQ{is a topology}A\subseteq\QQ
shows Closure(A,Q)={x\in\bigcupQ. \forallT\inU. x\inT\longrightarrowA\capT\not=0}
proof
{
fix x
assume A:x\inClosure(A,Q)
with assms(2,3) have B:x\in\bigcupQ using topology0_def topology0.Top_3_L11(1)
by blast
moreover
{
fix T
assume T\inUx\inT
with assms(1) have T\inQx\inT using base_sets_open
by auto
with assms (2,3) A have A }\cap=0\mathrm{ using topology0_def
topology0.cl_inter_neigh[where U=T and T=Q and A=A]
by auto
}
hence }\forall\textrm{T}\in\textrm{U}.\textrm{x}\in\textrm{T}\longrightarrow\textrm{A}\cap\textrm{T}\not=0\mathrm{ by auto
ultimately have }x\in{x\in\Q.\forallT\inU. x\inT\longrightarrowA\capT\not=0} by aut
}
thus Closure(A, Q) \subseteq{x\in\Q. }\forall\textrm{T}\in\textrm{U}.\textrm{x}\in\textrm{T}\longrightarrow\textrm{A}\cap\textrm{T}\not=0
by auto
{
fix x

```

```

 hence }x\in\Q by blas
 moreover
    ```
```

 {
 fix R
 assume R\inQ
 with assms(1) obtain W where RR:W\subseteqUR=\W using
 IsAbaseFor_def by auto
 {
 assume x\inR
 with RR(2) obtain WW where TT:WW\inWx\inWW by auto
 {
 assume R\capA=0
 with RR(2) TT(1) have WW\capA=0 by auto
 with TT(1) RR(1) have WW\inUWW\capA=0 by auto
 with AS have }x\in\bigcup\Q-WW by aut
 with TT(2) have False by auto
 }
 hence R\capA\not=0 by auto
 }
 }
 hence }\forallU\inQ. x\inU\longrightarrowU\capA\not=0 by aut
 with calculation assms(2,3) have x\inClosure(A,Q) using topology0_def
 topology0.inter_neigh_cl by auto
 }
 then show {x\in\bigcupQ. }\forall\textrm{T}\in\textrm{U}.\textrm{x}\in\textrm{T}\longrightarrow\textrm{A}\cap\textrm{T}\not=0}\subseteqClosure(A,Q
 by auto
 qed

```

The restriction of a base is a base for the restriction.
```

lemma subspace_base_topology:
assumes $B\{i s$ a base for\}T
shows (B\{restricted to\}Y)\{is a base for\}(T\{restricted to\}Y)
proof-
\{
fix t
assume $t \in \operatorname{RepFun}(\{\bigcup A . A \in \operatorname{Pow}(B)\}$, (\cap) (Y))
then obtain x where $A: t=Y \cap x x \in\{\bigcup A . A \in \operatorname{Pow}(B)\}$ by auto
then obtain A where $B: x=\bigcup A A \in \operatorname{Pow}(B)$ by auto
from $A(1) B(1)$ have $t=\bigcup$ (A \{restricted to\} Y) using RestrictedTo_def
by auto
with $B(2)$ have $t \in\{\bigcup A . A \in \operatorname{Pow}(\operatorname{RepFun}(B,(\cap)(Y)))\}$ unfolding RestrictedTo_def
by blast
\}
hence $\operatorname{RepFun}(\{\bigcup \mathrm{A} . \mathrm{A} \in \operatorname{Pow}(\mathrm{B})\},(\cap)(Y)) \subseteq\{\bigcup \mathrm{A} . \mathrm{A} \in \operatorname{Pow}(\operatorname{RepFun}(\mathrm{B}$,
(\cap) (Y))) \} by (auto+)
moreover
\{
fix t
assume $t \in\{\bigcup A . A \in \operatorname{Pow}(\operatorname{RepFun}(B,(\cap)(Y)))\}$
then obtain A where $A: A \subseteq B\{r e s t r i c t e d ~ t o\} Y t=\bigcup A$ using RestrictedTo_def
by auto

```
```

 let }AA={C\inB. Y\capC\inA
 from A(1) have AA\subseteqBA=AA {restricted to}Y using RestrictedTo_def
 by auto
 with A(2) have AA\subseteqBt=\ (AA {restricted to}Y) by auto
 then have AA\subseteqBt=Y\cap(\bigcupAA) using RestrictedTo_def by auto
 hence t\inRepFun({\A . A \in Pow(B)}, (\cap)(Y)) by auto
 }
 hence {\A. A \in Pow(RepFun(B, (\cap)(Y)))} \subseteq RepFun({\bigcupA . A \in Pow(B)},
 (\cap)(Y)) by (auto+)
ultimately have {\A . A \in Pow(RepFun(B, (() (Y)))} = RepFun({\bigcupA . A
E Pow(B)}, (\cap)(Y)) by auto
with assms show thesis using RestrictedTo_def IsAbaseFor_def by auto
qed
If the base of a topology is contained in the base of another topology, then the topologies maintain the same relation.

```
```

theorem base_subset:

```
theorem base_subset:
    assumes B{is a base for}TB2{is a base for}T2B\subseteqB2
    assumes B{is a base for}TB2{is a base for}T2B\subseteqB2
    shows T\subseteqT2
    shows T\subseteqT2
proof
proof
    {
    {
        fix x
        fix x
        assume x\inT
        assume x\inT
        with assms(1) obtain M where M\subseteqBx=\M using IsAbaseFor_def by auto
        with assms(1) obtain M where M\subseteqBx=\M using IsAbaseFor_def by auto
        with assms(3) have M\subseteqB2x=\bigcupM by auto
        with assms(3) have M\subseteqB2x=\bigcupM by auto
        with assms(2) show x\inT2 using IsAbaseFor_def by auto
        with assms(2) show x\inT2 using IsAbaseFor_def by auto
    }
    }
qed
```

qed

```

\subsection*{57.3 Dual Base for Closed Sets}

A dual base for closed sets is the collection of complements of sets of a base for the topology.
```

definition
DualBase (DualBase _ _ 80) where
B{is a base for}T \Longrightarrow DualBase B T\equiv{\T-U. U\inB}\cup{\T}
lemma closed_inter_dual_base:
assumes D{is closed in}TB{is a base for}T
obtains M where M\subseteqDualBase B TD=\bigcapM
proof-
assume K:\M. M\subseteq DualBase B T C D = \bigcapM \Longrightarrow thesis
{
assume AS:D\not=\T
from assms(1) have D:D\inPow(UT)\T-D\inT using IsClosed_def by auto
hence A:UT-(UT-D)=D\T-D\inT by auto
with assms(2) obtain Q where QQ:Q\inPow(B)\T-D=\Q using IsAbaseFor_def
by auto

```
```

 {
 assume Q=0
 then have }\cupQ=0 by aut
 with QQ(2) have UT-D=0 by auto
 with D(1) have D=\bigcupT by auto
 with AS have False by auto
 }
 hence QNN:Q\not=0 by auto
 from QQ(2) A(1) have D=\T-\Q by auto
 with QNN have D=\bigcap{\T-R. R\inQ} by auto
 moreover
 with assms(2) QQ(1) have {\T-R. R\inQ}\subseteqDualBase B T using DualBase_def
 by auto
 with calculation K have thesis by auto
 }
 moreover
 {
 assume AS:D=\T
 with assms(2) have {\bigcupT}\subseteqDualBase B T using DualBase_def by auto
 moreover
 have }\bigcupT=\bigcap{\T} by aut
 with calculation K AS have thesis by auto
 }
 ultimately show thesis by auto
 qed

```

We have already seen for a base that whenever there is a union of open sets, we can consider only basic open sets due to the fact that any open set is a union of basic open sets. What we should expect now is that when there is an intersection of closed sets, we can consider only dual basic closed sets.
```

lemma closure_dual_base:
assumes U {is a base for} QQ{is a topology}A\subseteq\cupQ
shows Closure(A,Q)=\bigcap{T\inDualBase U Q. A\subseteqT}
proof
from assms(1) have T:\Q\inDualBase U Q using DualBase_def by auto
moreover
{
fix T
assume A:T\inDualBase U Q A\subseteqT
with assms(1) obtain R where (T=\bigcupQ-R\wedgeR\inU)\veeT=\bigcupQ using DualBase_def
by auto
with A(2) assms(1,2) have (T{is closed in}Q) A\subseteqTT\inPow(\Q) using
topology0.Top_3_L1 topology0_def
topology0.Top_3_L9 base_sets_open by auto
}
then have SUB:{T\inDualBase U Q. A\subseteqT}\subseteq{T\inPow(UQ). (T{is closed in}Q)^A\subseteqT}
by blast
with calculation assms(3) have \bigcap{T\inPow(\Q). (T{is closed in}Q)^A\subseteqT}\subseteq\bigcap{T\inDualBase
U Q. A\subseteqT}

```
```

 by auto
 then show Closure(A,Q)\subseteq\bigcap{T\inDualBase U Q. A\subseteqT} using Closure_def ClosedCovers_def
 by auto
 {
 fix x
 assume A:x\in\bigcap{T\inDualBase U Q. A\subseteqT}
 {
 fix T
 assume B:x\inTT\inU
 {
 assume C:A\capT=0
 from B(2) assms(1) have UQ-T\inDualBase U Q using DualBase_def
 by auto
 moreover
 from C assms(3) have A\subseteq\bigcupQ-T by auto
 moreover
 from B(1) have x\not\in\bigcupQ-T by auto
 ultimately have }x\not\in\bigcap{T\inDualBase U Q. A\subseteqT} by aut
 with A have False by auto
 }
 hence A\capT}\=0\mathrm{ by auto
 }
 hence }\forall\textrm{T}\in\textrm{U}.\textrm{x}\in\textrm{T}\longrightarrow\textrm{A}\cap\textrm{T}\not=0\mathrm{ by auto
 moreover
 from T A assms(3) have }x\in\bigcup\Q by aut
 with calculation assms have x\inClosure(A,Q) using closure_set_base_topology
 by auto
 }
 thus \bigcap{T \in DualBase U Q . A\subseteq }\subseteqT}\subseteqClosure(A, Q) by aut
 qed

```

\subsection*{57.4 Partition topology}

In the theory file Partitions_ZF.thy; there is a definition to work with partitions. In this setting is much easier to work with a family of subsets.
```

definition
IsAPartition (_{is a partition of}_ 90) where
(U {is a partition of} X) \equiv(UU=X ^(}\forall\textrm{A}\in\textrm{U}.|B\inU.A=B\veeA\capB=0)\wedge 0\not\inU

```

A subcollection of a partition is a partition of its union.
```

lemma subpartition:
assumes U {is a partition of} X V\subseteqU
shows V{is a partition of}\V
using assms unfolding IsAPartition_def by auto

```

A restriction of a partition is a partition. If the empty set appears it has to be removed.
```

lemma restriction_partition:

```
```

assumes U {is a partition of}X
shows ((U {restricted to} Y)-{0}) {is a partition of} (X\capY)
using assms unfolding IsAPartition_def RestrictedTo_def
by fast

```

Given a partition, the complement of a union of a subfamily is a union of a subfamily.
```

lemma diff_union_is_union_diff:
assumes R\subseteqP P {is a partition of} X
shows X - \R=\bigcup(P-R)
proof
{
fix x
assume x\inX - \ R
hence P:x\inXx\not\in\bigcupR by auto
{
fix T
assume T\inR
with P(2) have x\not\inT by auto
}
with P(1) assms(2) obtain Q where Q\in(P-R) x\inQ using IsAPartition_def
by auto
hence }x\in\bigcup(P-R) by aut
}
thus X - \R\subseteq\bigcup(P-R) by auto
{
fix x
assume }x\in\bigcup\(P-R
then obtain Q where Q\inP-Rx\inQ by auto
hence C: Q QPQ\&Rx\inQ by auto
then have }x\in\bigcupP\mathrm{ by auto
with assms(2) have x\inX using IsAPartition_def by auto
moreover
{
assume }x\in\bigcup
then obtain t where G:t\inR x\int by auto
with C(3) assms(1) have t\capQ\not=0t\inP by auto
with assms(2) C(1,3) have t=Q using IsAPartition_def
by blast
with C(2) G(1) have False by auto
}
hence }x\not\in\bigcupR by aut
ultimately have }x\inX-\R\mathrm{ by auto
}
thus }\bigcup(P-R)\subseteqX - \bigcupR by aut
qed

```

\subsection*{57.5 Partition topology is a topology.}

A partition satisfies the base condition.
```

lemma partition_base_condition:
assumes P {is a partition of} X
shows P {satisfies the base condition}
proof-
{
fix U V
assume AS:U\inP^V\inP
with assms have A:U=VV U\capV=0 using IsAPartition_def by auto
{
fix x
assume ASS:x\inU\capV
with A have U=V by auto
with AS ASS have U\inPx\inU^ U\subseteqU\capV by auto
hence }\exists\textrm{W}\inP
}
hence (}\forall\textrm{x}\in\textrm{U}\cap\textrm{V}.\exists\textrm{W}\in\textrm{P}.\textrm{x}\in\textrm{W}\wedge \ W\subseteqU\capV) by aut
}
then show thesis using SatisfiesBaseCondition_def by auto
qed

```

Since a partition is a base of a topology, and this topology is uniquely determined; we can built it. In the definition we have to make sure that we have a partition.
```

definition
PartitionTopology (PTopology _ _ 50) where
(U {is a partition of} X) \Longrightarrow PTopology X U \equiv TopologyBase U
theorem Ptopology_is_a_topology:
assumes U {is a partition of} X
shows (PTopology X U) {is a topology} and U {is a base for} (PTopology
X U)
using assms Base_topology_is_a_topology partition_base_condition
PartitionTopology_def by auto
lemma topology0_ptopology:
assumes U {is a partition of} X
shows topology0(PTopology X U)
using Ptopology_is_a_topology topology0_def assms by auto

```

\subsection*{57.6 Total set, Closed sets, Interior, Closure and Boundary}

The topology is defined in the set \(X\)
```

lemma union_ptopology:
assumes U {is a partition of} X
shows U(PTopology X U)=X

```
```

using assms Ptopology_is_a_topology(2) Top_1_2_L5
IsAPartition_def by auto

```

The closed sets are the open sets.
```

lemma closed_sets_ptopology:
assumes T \{is a partition of\} X
showsD \{is closed in\} (PTopology X T) $\longleftrightarrow \mathrm{D} \in($ PTopology X T)
proof
from assms
have B:T\{is a base for\}(PTopology X T) using Ptopology_is_a_topology(2)
by auto
\{
fix D
assume D \{is closed in\} (PTopology X T)
with assms have $A: D \in \operatorname{Pow}(X) X-D \in$ (PTopology X T)
using IsClosed_def union_ptopology by auto
from $A(2) B$ obtain R where $Q: R \subseteq T \quad X-D=\bigcup R$ using Top_1_2_L1[where
$B=T$ and $U=X-D]$
by auto
from $A(1)$ have $X-(X-D)=D$ by blast
with $Q(2)$ have $D=X-\bigcup R$ by auto
with $Q(1)$ assms have $D=\bigcup(T-R)$ using diff_union_is_union_diff
by auto
with B show D \in (PTopology X T) using IsAbaseFor_def by auto
\}
\{
fix D
assume $D \in$ (PTopology X T)
with B obtain R where $Q: R \subseteq T D=\bigcup R$ using IsAbaseFor_def by auto
hence $X-D=X-\bigcup R$ by auto
with $Q(1)$ assms have $X-D=\bigcup(T-R)$ using diff_union_is_union_diff
by auto
with B have $X-D \in$ (PTopology $X T$) using IsAbaseFor_def by auto
moreover
from Q have $D \subseteq \bigcup T$ by auto
with assms have $D \subseteq X$ using IsAPartition_def by auto
with calculation assms show D\{is closed in\} (PTopology X T)
using IsClosed_def union_ptopology by auto
\}
qed

```

There is a formula for the interior given by an intersection of sets of the dual base. Is the intersection of all the closed sets of the dual basis such that they do not complement \(A\) to \(X\). Since the interior of \(X\) must be inside \(X\), we have to enter \(X\) as one of the sets to be intersected.
```

lemma interior_set_ptopology:
assumes U {is a partition of} XA\subseteqX
shows Interior(A,(PTopology X U))=\bigcap{T\inDualBase U (PTopology X U).
T=X\veeT\cupA}\not=\textrm{X}

```
```

proof
{
fix x
assume x\inInterior(A,(PTopology X U))
with assms obtain R where A:x\inRR\in(PTopology X U)R\subseteqA
using topology0.open_open_neigh topology0_ptopology
topologyO.Top_2_L2 topologyO.Top_2_L1
by auto
with assms obtain B where B:B\subseteqUR=\B using Ptopology_is_a_topology(2)
IsAbaseFor_def by auto
from A(1,3) assms have XX:x\inXX\in{T\inDualBase U (PTopology X U). T=XVT\cupA\not=X}
using union_ptopology[of UX] DualBase_def[ofU] Ptopology_is_a_topology(2)[of
UX] by (safe,blast,auto)
moreover
from B(2) A(1) obtain S where C:S\inBx\inS by auto
{
fix T
assume AS:T\inDualBase U (PTopology X U)T \cupA}\not=\textrm{X
from AS(1) assms obtain w where (T=X - w \ w\inU) \vee (T=X)
using DualBase_def union_ptopology Ptopology_is_a_topology(2)
by auto
with assms(2) AS(2) have D:T=X-ww\inU by auto
from D(2) have w\subseteq\bigcupU by auto
with assms(1) have w\subseteq\bigcup (PTopology X U) using Ptopology_is_a_topology(2)
Top_1_2_L5[of UPTopology X U]
by auto
with assms(1) have w\subseteqX using union_ptopology by auto
with D(1) have X-T=w by auto
with D(2) have X-T\inU by auto
{
assume x\inX-T
with C B(1) have S\inUS\cap(X-T)\not=0 by auto
with \langleX-T\inU\rangle assms(1) have X-T=S using IsAPartition_def by auto
with 〈X-T=w\rangle\T=X-w\rangle have X-S=T by auto
with AS(2) have X-S\cupA}\not=X\mathrm{ by auto
from A(3) B(2) C(1) have S\subseteqA by auto
hence X-A\subseteqX-S by auto
with assms(2) have X-S\cupA=X by auto
with \X-S\cupA\not=X` have False by auto
}
then have }x\inT\mathrm{ using XX by auto
}
ultimately have x\in\bigcap{T\inDualBase U (PTopology X U). T=X\veeT\cupA\not=X}
by auto
}
thus Interior(A,(PTopology X U))\subseteq\bigcap{T\inDualBase U (PTopology X U). T=X\veeT\cupA\not=X}
by auto
{
fix x

```
assume \(p: x \in \bigcap\{T \in\) DualBase \(U\) (PTopology \(X U\) ). \(T=X \vee T \cup A \neq X\}\)
hence noE: \(\cap\{T \in D u a l B a s e ~ U ~(P T o p o l o g y ~ X ~ U) . ~ T=X \vee T \cup A \neq X\} \neq 0\) by auto \{
fix \(T\)
assume \(T \in\) DualBase \(U\) (PTopology X U)
with assms (1) obtain w where \(T=X \vee(w \in U \wedge T=X-w)\) using DualBase_def Ptopology_is_a_topology(2) union_ptopology by auto
with assms (1) have \(T=X \vee(w \in(P T o p o l o g y ~ X U) \wedge T=X-w)\) using base_sets_open Ptopology_is_a_topology(2) by blast
with assms(1) have T\{is closed in\}(PTopology X U) using topology0.Top_3_L1[where T=PTopology X U] topology0_ptopology topology0.Top_3_L9[where T=PTopology X U]
union_ptopology by auto
\}
moreover
from assms (1) \(p\) have \(X \in\{T \in D u a l\) Base \(U\) (PTopology \(X U\) ). \(T=X \vee T \cup A \neq X\}\) and \(\mathrm{X}: \mathrm{x} \in \mathrm{X}\) using Ptopology_is_a_topology (2)

DualBase_def union_ptopology by auto
with calculation assms(1) have ( \(\cap\{T \in\) DualBase \(U\) (PTopology X U). \(T=X \vee T \cup A \neq X\}\) ) \{is closed in\} (PTopology X U)

\(T=X \vee T \cup A \neq X\}\) ] topology0_ptopology[where \(U=U\) and \(X=X]\)
by auto
with assms(1) have ab: ( \(\bigcap\{T \in\) DualBase \(U\) (PTopology \(X U\) ). \(T=X \vee T \cup A \neq X\}) \in\) (PTopology X U)
using closed_sets_ptopology by auto
with assms (1) obtain B where \(B \in \operatorname{Pow}(U)(\bigcap\{T \in\) DualBase \(U\) (PTopology \(X \quad U) . T=X \vee T \cup A \neq X\})=\bigcup B\)
using Ptopology_is_a_topology (2) IsAbaseFor_def by auto
with \(p\) obtain \(R\) where \(x \in R R \in U R \subseteq(\bigcap\{T \in\) DualBase \(U\) (PTopology \(X U\) ). \(T=X \vee T \cup A \neq X\}\) )
by auto
with assms(1) have \(R: x \in R R \in(P T o p o l o g y ~ X ~ U) R \subseteq(\bigcap\{T \in D u a l B a s e ~ U ~(P T o p o l o g y ~\)
\(X \quad U\) ). \(T=X \vee T \cup A \neq X\}) X-R \in\) DualBase \(U\) (PTopology \(X U\) )
using base_sets_open Ptopology_is_a_topology(2) DualBase_def union_ptopology
by (safe,blast,simp,blast)
\{
assume ( \(X-R\) ) \(\cup A \neq X\)
with \(R(4)\) have \(X-R \in\{T \in\) DualBase \(U\) (PTopology \(X U\) ). \(T=X \vee T \cup A \neq X\}\) by auto
hence \(\bigcap\{T \in\) DualBase \(U\) (PTopology \(X U\) ). \(T=X \vee T \cup A \neq X\} \subseteq X-R\) by auto with \(R(3)\) have \(R \subseteq X-R\) using subset_trans[where \(A=R\) and \(C=X-R\) ] by auto
hence \(R=0\) by blast
with \(R(1)\) have False by auto
\}
hence \(I:(X-R) \cup A=X\) by auto
\{
```

 fix y
 assume ASR:y\inR
 with R(2) have y\in\bigcup(PTopology X U) by auto
 with assms(1) have XX:y\inX using union_ptopology by auto
 with I have }y\in(X-R)\cupA by aut
 with XX have y\not\inR\veey\inA by auto
 with ASR have y\inA by auto
 }
 hence R\subseteqA by auto
 with R(1,2) have }\exists\textrm{R}\in(PTopology X U). (x\inR\wedgeR\subseteqA) by aut
 with assms(1) have x\inInterior(A,(PTopology X U)) using topology0.Top_2_L6
 topology0_ptopology by auto
 }
 thus \bigcap{T \in DualBase U PTopology X U . T = X V T \cup A = X} \subseteq Interior(A,
 PTopology X U)
by auto
qed
The closure of a set is the union of all the sets of the partition which intersect with A.
lemma closure_set_ptopology:
assumes U \{is a partition of $\} X A \subseteq X$
shows Closure(A, (PTopology $X U))=\bigcup\{T \in U . T \cap A \neq 0\}$
proof
$\{$
fix x
assume $A: x \in C l o s u r e(A,(P T o p o l o g y ~ X ~ U)) ~$
with assms have $x \in \bigcup$ (PTopology X U) using topology0.Top_3_L11 (1) [where T=PTopology X U
and A=A] topology0_ptopology union_ptopology by auto
with assms (1) have $x \in \bigcup U$ using Top_1_2_L5[where $B=U$ and T=PTopology
X U] Ptopology_is_a_topology (2) by auto
then obtain W where $B: x \in W W \in U$ by auto
with A have $x \in C l o s u r e(A,(P T o p o l o g y ~ X U)) \cap W$ by auto
moreover

```

``` by (safe,blast)
with calculation assms (1) have \(A \cap W \neq 0\) using topology0_ptopology[where
\(\mathrm{U}=\mathrm{U}\) and \(\mathrm{X}=\mathrm{X}\)]
topology0.cl_inter_neigh union_ptopology by auto
with \(B\) have \(x \in \bigcup\{T \in U\). \(T \cap A \neq 0\}\) by blast
\}
thus Closure (A, PTopology X U) \(\subseteq \bigcup\{T \in U . T \cap A \neq 0\}\) by auto
\(\{\)
fix \(x\)
assume \(x \in \bigcup\{T \in U . T \cap A \neq 0\}\)
then obtain \(T\) where \(A: x \in T T \in U T \cap A \neq 0\) by auto
from assms have \(A \subseteq \bigcup\) (PTopology \(X U\)) using union_ptopology by auto
moreover
```

```
 from A(1,2) assms(1) have x\in\ (PTopology X U) using Top_1_2_L5[where
B=U and T=PTopology X U]
 Ptopology_is_a_topology(2) by auto
 moreover
 {
 fix Q
 assume B:Q\in(PTopology X U)x\inQ
 with assms(1) obtain M where C:Q=\ \M\\U using
 Ptopology_is_a_topology(2)
 IsAbaseFor_def by auto
 from B(2) C(1) obtain R where D:R\inMx\inR by auto
 with C(2) A(1,2) have R\capT}\not=OR\inUT\inU by aut
 with assms(1) have R=T using IsAPartition_def by auto
 with C(1) D(1) have T\subseteqQ by auto
 with A(3) have Q\capA\not=0 by auto
 }
 then have }\forall\textrm{Q}\in(PTopology X U). x\inQ \longrightarrowQ Q A =0 by aut
 with calculation assms(1) have x\inClosure(A,(PTopology X U)) using
topology0.inter_neigh_cl
 topology0_ptopology by auto
 }
 then show \{T\inU. T\capA\not= O}\subseteq Closure(A, PTopology X U) by auto
qed
The boundary of a set is given by the union of the sets of the partition which have non empty intersection with the set but that are not fully contained in it. Another equivalent statement would be: the union of the sets of the partition which have non empty intersection with the set and its complement.
```

```
lemma boundary_set_ptopology:
```

lemma boundary_set_ptopology:
assumes U {is a partition of} XA\subseteqX
assumes U {is a partition of} XA\subseteqX
shows Boundary(A,(PTopology X U))=\bigcup{T\inU. T\capA\not=0 ^ ~(T\subseteqA)}
shows Boundary(A,(PTopology X U))=\bigcup{T\inU. T\capA\not=0 ^ ~(T\subseteqA)}
proof-
proof-
from assms have Closure(A,(PTopology X U))=\{T \in U . T \cap A \# 0} us-
from assms have Closure(A,(PTopology X U))=\{T \in U . T \cap A \# 0} us-
ing
ing
closure_set_ptopology by auto
closure_set_ptopology by auto
moreover
moreover
from assms(1) have Interior(A,(PTopology X U))=\{T\inU . T \subseteqA} us-
from assms(1) have Interior(A,(PTopology X U))=\{T\inU . T \subseteqA} us-
ing
ing
interior_set_base_topology Ptopology_is_a_topology[where U=U and
interior_set_base_topology Ptopology_is_a_topology[where U=U and
X=X] by auto
X=X] by auto
with calculation assms have A:Boundary(A,(PTopology X U))=\{T \in U
with calculation assms have A:Boundary(A,(PTopology X U))=\{T \in U
T\capA}\not=0}-\bigcup{T\inU.T\subseteqA
T\capA}\not=0}-\bigcup{T\inU.T\subseteqA
using topology0.Top_3_L12 topology0_ptopology union_ptopology
using topology0.Top_3_L12 topology0_ptopology union_ptopology
by auto
by auto
from assms(1) have ({T \inU. T \capA \# 0}) {is a partition of} \ ({T
from assms(1) have ({T \inU. T \capA \# 0}) {is a partition of} \ ({T
G U T \cap A \# 0})
G U T \cap A \# 0})
using subpartition by blast
using subpartition by blast
moreover
moreover
{

```
 {
```

fix $T$
assume $T \in U T \subseteq A$
with assms(1) have $T \cap A=T T \neq 0$ using IsAPartition_def by auto
with $\langle T \in U\rangle$ have $T \cap A \neq 0 T \in U$ by auto
\}
then have $\{T \in U . T \subseteq A\} \subseteq\{T \in U . T \cap A \neq 0\}$ by auto
ultimately have $\bigcup\{T \in U . T \cap A \neq 0\}-\bigcup\{T \in U . T \subseteq A\}=\bigcup((\{T \in$ $U . T \cap A \neq 0\})-(\{T \in U . T \subseteq A\}))$
using diff_union_is_union_diff by auto
also have $\ldots=\bigcup(\{T \in U . T \cap A \neq 0 \wedge \sim(T \subseteq A)\})$ by blast with calculation A show thesis by auto
qed

### 57.7 Special cases and subspaces

The discrete and the indiscrete topologies appear as special cases of this partition topologies.

```
lemma discrete_partition:
 shows {{x}.x\inX} {is a partition of}X
 using IsAPartition_def by auto
lemma indiscrete_partition:
 assumes X\not=0
 shows {X} {is a partition of} X
 using assms IsAPartition_def by auto
theorem discrete_ptopology:
 shows (PTopology X {{x}.x\inX})=Pow(X)
proof
 {
 fix t
 assume t\in(PTopology X {{x}.x\inX})
 hence t\subseteq\bigcup (PTopology X {{x}.x\inX}) by auto
 then have t\inPow(X) using union_ptopology
 discrete_partition by auto
 }
 thus (PTopology X {{x}.x\inX})\subseteqPow(X) by auto
 {
 fix t
 assume A:t\inPow(X)
 have }\bigcup({{x}. x\int})=t by aut
 moreover
 from A have {{x}. x\int}\inPow({{x}.x\inX}) by auto
```



```
 ultimately
 have t\in(PTopology X {{x} . x \in X}) using Ptopology_is_a_topology(2)
 discrete_partition IsAbaseFor_def by auto
 }
 thus Pow(X)\subseteq(PTopology X {{x} . x \in X}) by auto
```

qed
theorem indiscrete_ptopology:
assumes $X \neq 0$
shows (PTopology $X\{X\})=\{0, X\}$
proof
\{
fix $T$
assume $T \in$ (PTopology $X\{X\}$ )
with assms obtain $M$ where $M \subseteq\{X\} \bigcup M=T$ using Ptopology_is_a_topology (2)
indiscrete_partition IsAbaseFor_def by auto
then have $T=0 \vee T=X$ by auto
\}
then show (PTopology $X\{X\}$ ) $\subseteq\{0, X\}$ by auto
from assms have $0 \in$ (PTopology $X\{X\}$ ) using Ptopology_is_a_topology (1)
empty_open
indiscrete_partition by auto
moreover
from assms have $\bigcup$ (PTopology $X\{X\}) \in$ (PTopology $X\{X\}$ ) using union_open Ptopology_is_a_topology (1)
indiscrete_partition by auto
with assms have $\mathrm{X} \in$ (PTopology $\mathrm{X}\{\mathrm{X}\}$ ) using union_ptopology indiscrete_partition by auto
ultimately show $\{0, \mathrm{X}\} \subseteq$ (PTopology $\mathrm{X}\{\mathrm{X}\}$ ) by auto
qed
The topological subspaces of the (PTopology X U) are partition topologies.
lemma subspace_ptopology:
assumes U\{is a partition of\}X
shows (PTopology X U) \{restricted to\} Y=(PTopology (X Y) ( (U \{restricted
to\} Y)-\{0\}))
proof-
from assms have U\{is a base for\} (PTopology X U) using Ptopology_is_a_topology (2)
by auto
then have (U\{restricted to\} Y) \{is a base for\} (PTopology X U)\{restricted to\} Y
using subspace_base_topology by auto
then have ( (U\{restricted to\} Y)-\{0\})\{is a base for\} (PTopology X U) \{restricted
to\} Y using base_no_0
by auto
moreover
from assms have ((U\{restricted to\} Y)-\{0\}) \{is a partition of (X $\mathrm{X} \cap$ )
using restriction_partition by auto
then have ( $(U\{$ restricted to $Y$ )-\{0\}) \{is a base for\} (PTopology (X $\mathrm{X} \cap$ )
( (U \{restricted to\} Y)-\{0\})) using Ptopology_is_a_topology(2) by auto
ultimately show thesis using same_base_same_top by auto qed

### 57.8 Order topologies

### 57.9 Order topology is a topology

Given a totally ordered set, several topologies can be defined using the order relation. First we define an open interval, notice that the set defined as Interval is a closed interval; and open rays.

```
definition
 IntervalX where
 IntervalX(X,r,b,c) \equiv(Interval(r,b,c)\capX)-{b,c}
definition
 LeftRayX where
 LeftRayX(X,r,b) \equiv{c\inX. \langlec,b\rangle\inr}-{b}
definition
 RightRayX where
 RightRayX(X,r,b)\equiv{c\inX. \langleb, c\rangle\inr}-{b}
```

Intersections of intervals and rays.

```
lemma inter_two_intervals:
 assumes bu\inXbv\inXcu\inXcv\inXIsLinOrder(X,r)
 shows IntervalX(X,r,bu,cu)\capIntervalX(X,r,bv,cv)=IntervalX(X,r,GreaterOf(r,bu,bv),Smaller
proof
 have T:GreaterOf(r,bu,bv)\inXSmallerOf(r,cu,cv)\inX using assms
 GreaterOf_def SmallerOf_def by (cases \langlebu,bv\rangle\inr,simp,simp,cases \langlecu,cv\rangle\inr,simp,simp)
 {
 fix x
 assume ASS:x\inIntervalX(X,r,bu,cu)\capIntervalX(X,r,bv,cv)
 then have x\inIntervalX(X,r,bu,cu) x\inIntervalX(X,r,bv,cv) by auto
 then have BB:x\inXx\inInterval(r,bu,cu) x\not=bux\not=cux\inInterval(r,bv,cv) x\not=bvx\not=cv
 using IntervalX_def assms by auto
 then have }x\inX\mathrm{ by auto
 moreover
 have }\textrm{x}\not=\textrm{GreaterOf(r,bu,bv)}\textrm{x}\not=\mathrm{ SmallerOf(r,cu,cv)
 proof-
 show x\not=GreaterOf(r,bu,bv) using GreaterOf_def BB (6,3) by (cases
\langlebu,bv\rangle\inr,simp+)
 show x\not=SmallerOf(r,cu,cv) using SmallerOf_def BB(7,4) by (cases
<cu,cv\rangle\inr,simp+)
 qed
 moreover
 have \langlebu,x\rangle\inr\langlex,cu\rangle\inr\langlebv,x\rangle\inr\langlex,cv\rangle\inr using BB(2,5) Order_ZF_2_L1A
by auto
 then have \langleGreaterOf(r,bu,bv),x\rangle\inr\langlex,SmallerOf(r,cu,cv)\rangle\inr using GreaterOf_def
SmallerOf_def
 by (cases \langlebu,bv\rangle\inr,simp,simp,cases \langlecu,cv\rangle\inr,simp,simp)
 then have x\inInterval(r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv)) us-
ing Order_ZF_2_L1 by auto
 ultimately
 have x\inIntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv)) using
```

```
IntervalX_def T by auto
 }
 then show IntervalX(X, r, bu, cu) \cap IntervalX(X, r, bv, cv) \subseteq IntervalX(X,
r, GreaterOf(r, bu, bv), SmallerOf(r, cu, cv))
 by auto
 {
 fix x
 assume x\inIntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))
 then have BB:x\inXx\inInterval(r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))x\not=GreaterOf(r,bu,bv
 using IntervalX_def T by auto
 then have }x\inX\mathrm{ by auto
 moreover
 from BB(2) have CC:\langleGreaterOf(r,bu,bv),x\rangle\inr\langlex,SmallerOf(r,cu,cv)\rangle\inr
using Order_ZF_2_L1A by auto
 {
 {
 assume AS: \langlebu,bv\rangle\inr
 then have GreaterOf(r,bu,bv)=bv using GreaterOf_def by auto
 then have \langlebv,x\rangle\inr using CC(1) by auto
 with AS have }\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms IsLinOrder_def trans_def
by (safe, blast)
 }
 moreover
 {
 assume AS: \langlebu,bv\rangle\not\inr
 then have GreaterOf(r,bu,bv)=bu using GreaterOf_def by auto
 then have \langlebu,x\rangle\inr using CC(1) by auto
 from AS have \langlebv,bu\rangle\inr using assms IsLinOrder_def IsTotal_def
assms by auto
 with }\langle\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\rangle\mathrm{ have }\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms IsLinOrder_def
trans_def by (safe, blast)
 }
 ultimately have R:}\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{r}\mathrm{ by auto
 moreover
 {
 assume AS:x=bu
 then have \langlebv,bu\rangle\inr using R(2) by auto
 then have GreaterOf(r,bu,bv)=bu using GreaterOf_def assms IsLinOrder_def
 antisym_def by auto
 then have False using AS BB(3) by auto
 }
 moreover
 {
 assume AS:x=bv
 then have \langlebu,bv\rangle\inr using R(1) by auto
 then have GreaterOf(r,bu,bv)=bv using GreaterOf_def by auto
 then have False using AS BB(3) by auto
 }
 ultimately have }\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{rx}\not=\textrm{bux}\not=\textrm{bv}\mathrm{ by auto
```

```
 }
 moreover
 {
 assume AS: }\langle\textrm{cu},\textrm{cv}\rangle\in\textrm{r
 then have SmallerOf(r,cu,cv)=cu using SmallerOf_def by auto
 then have }\langlex,cu\rangle\inr using CC(2) by aut
 with AS have }\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\mathrm{ using assms IsLinOrder_def trans_def
by(safe ,blast)
 }
 moreover
 {
 assume AS: }\langle\textrm{cu},\textrm{cv}\rangle\not\in\textrm{r
 then have SmallerOf(r,cu,cv)=cv using SmallerOf_def by auto
 then have \langlex,cv\rangle\inr using CC(2) by auto
 from AS have \langlecv,cu\rangle\inr using assms IsLinOrder_def IsTotal_def
by auto
 with }\langle\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\rangle\mathrm{ have }\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\mathrm{ using assms IsLinOrder_def
trans_def by(safe ,blast)
 }
 ultimately have R: }\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\mathrm{ by auto
 moreover
 {
 assume AS:x=cv
 then have \langlecv,cu\rangle\inr using R(2) by auto
 then have SmallerOf(r,cu,cv)=cv using SmallerOf_def assms IsLinOrder_def
 antisym_def by auto
 then have False using AS BB(4) by auto
 }
 moreover
 {
 assume AS:x=cu
 then have \langlecu,cv\rangle\inr using R(1) by auto
 then have SmallerOf(r,cu,cv)=cu using SmallerOf_def by auto
 then have False using AS BB(4) by auto
 }
 ultimately have }\langlex,cu\rangle\inr\langlex,cv\rangle\inrx\not=cux\not=cv by aut
 }
 ultimately
 have x\inIntervalX(X,r,bu,cu) x\inIntervalX(X,r,bv,cv) using Order_ZF_2_L1
IntervalX_def
 assms by auto
 then have x\inIntervalX(X, r, bu, cu) \cap IntervalX(X, r, bv, cv) by
auto
 }
 then show IntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv)) \subseteq IntervalX(X,
r, bu, cu) \cap IntervalX(X, r, bv, cv)
 by auto
qed
```


## lemma inter_rray_interval:

assumes $b v \in X b u \in X c v \in X I s L i n 0 r d e r(X, r)$
shows RightRayX(X,r,bu) $\cap \operatorname{IntervalX(X,r,bv,cv)=IntervalX(X,r,GreaterOf(r,bu,bv),cv)~}$ proof
\{
fix $x$
assume $x \in \operatorname{RightRay} X(X, r, b u) \cap \operatorname{IntervalX}(X, r, b v, c v)$
then have $x \in \operatorname{RightRayX}(X, r, b u) x \in \operatorname{IntervalX}(X, r, b v, c v)$ by auto

IntervalX_def
by auto
then have $\langle b v, x\rangle \in r\langle x, c v\rangle \in r$ using Order_ZF_2_L1A by auto
with $\langle\langle b u, x\rangle \in r\rangle$ have $\langle G r e a t e r 0 f(r, b u, b v), x\rangle \in r$ using GreaterOf_def by
(cases $\langle b u, b v\rangle \in r, s i m p+$ )
with $\langle\langle x, c v\rangle \in r\rangle$ have $x \in \operatorname{Interval(r,GreaterOf(r,bu,bv),~cv)~using~Order\_ ZF\_ 2\_ L1~}$
by auto
then have $x \in \operatorname{IntervalX}(X, r, G r e a t e r O f(r, b u, b v), c v)$ using $B B(1-4)$ IntervalX_def Greater0f_def by (simp)
\}
then show RightRayX(X, r, bu) $\cap$ IntervalX(X, r, bv, cv) $\subseteq$ IntervalX(X, r, GreaterOf(r, bu, bv), cv) by auto
$\{$
fix $x$
assume $x \in \operatorname{IntervalX}(X, r, G r e a t e r O f(r, b u, b v), c v)$
then have $x \in X x \in \operatorname{Interval}(r, G r e a t e r 0 f(r, b u, b v), c v) x \neq c v x \neq G r e a t e r 0 f(r$,
bu, bv) using IntervalX_def by auto
then have $R:\langle\operatorname{Greater} \operatorname{Of}(r, b u, b v), x\rangle \in r\langle x, c v\rangle \in r$ using Order_ZF_2_L1A
by auto
with $\langle x \neq c v\rangle$ have $\langle x, c v\rangle \in r x \neq c v$ by auto
moreover
\{
$\{$
assume AS: $\langle\mathrm{bu}, \mathrm{bv}\rangle \in \mathrm{r}$
then have GreaterOf(r,bu,bv)=bv using GreaterOf_def by auto
then have $\langle b v, x\rangle \in r$ using $R(1)$ by auto
with AS have $\langle b u, x\rangle \in r\langle b v, x\rangle \in r$ using assms unfolding IsLinOrder_def
trans_def by (safe,blast)
\}
moreover
\{
assume AS: $\langle\mathrm{bu}, \mathrm{bv}\rangle \notin \mathrm{r}$
then have GreaterOf (r,bu,bv)=bu using GreaterOf_def by auto
then have $\langle b u, x\rangle \in r$ using $R(1)$ by auto
from AS have $\langle b v, b u\rangle \in r$ using assms unfolding IsLinOrder_def IsTotal_def using assms by auto
with $\langle\langle\mathrm{bu}, \mathrm{x}\rangle \in \mathrm{r}\rangle$ have $\langle\mathrm{bu}, \mathrm{x}\rangle \in \mathrm{r}\langle\mathrm{bv}, \mathrm{x}\rangle \in \mathrm{r}$ using assms unfolding IsLinOrder_def trans_def by (safe,blast)

```
 }
 ultimately have T: }\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{r}\mathrm{ by auto
 moreover
 {
 assume AS:x=bu
 then have \langlebv,bu\rangle\inr using T(2) by auto
 then have GreaterOf(r,bu,bv)=bu unfolding GreaterOf_def using
assms unfolding IsLinOrder_def
 antisym_def by auto
 with {x\not=GreaterOf(r,bu,bv) \ have False using AS by auto
 }
 moreover
 {
 assume AS:x=bv
 then have \langlebu,bv\rangle\inr using T(1) by auto
 then have GreaterOf(r,bu,bv)=bv unfolding GreaterOf_def by auto
 with {x\not=GreaterOf(r,bu,bv) \ have False using AS by auto
 }
 ultimately have }\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{rx}\not=\textrm{bux}\not=\textrm{bv}\mathrm{ by auto
 }
 with calculation {x\inX\rangle have x\inRightRayX(X, r, bu)x\inIntervalX(X, r,
bv, cv) unfolding RightRayX_def IntervalX_def
 using Order_ZF_2_L1 by auto
 then have x\inRightRayX(X, r, bu) \cap IntervalX(X, r, bv, cv) by auto
 }
 then show IntervalX(X, r, GreaterOf(r, bu, bv), cv) \subseteq RightRayX(X,
r, bu) \cap IntervalX(X, r, bv, cv) by auto
qed
lemma inter_lray_interval:
 assumes bv\inXcu\inXcv\inXIsLinOrder(X,r)
 shows LeftRayX(X,r,cu)\capIntervalX(X,r,bv,cv)=IntervalX(X,r,bv,SmallerOf(r,cu,cv))
proof
 {
 fix x assume x\inLeftRayX(X,r,cu) \capIntervalX(X,r,bv,cv)
 then have B: }\textrm{x}\not=\textrm{cux}\in\textrm{X}\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\langle\textrm{bv},\textrm{x}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cv}\rangle\in\textrm{rx}=\textrm{bvx}\not=\textrm{cv}\mathrm{ unfolding LeftRayX_def
IntervalX_def Interval_def
 by auto
 from }\langle\langlex,cu\rangle\inr\rangle\langle\langlex,cv\rangle\inr\rangle have C:\x,SmallerOf(r, cu, cv)\rangle\inr using SmallerOf_def
by (cases \langlecu,cv\rangle\inr,simp+)
 from B(7,1) have x\not=SmallerOf(r,cu,cv) using SmallerOf_def by (cases
<cu,cv\rangle\inr,simp+)
 then have x\inIntervalX(X,r,bv,SmallerOf(r,cu,cv)) using B C IntervalX_def
Order_ZF_2_L1 by auto
 }
 then show LeftRayX(X, r, cu) \cap IntervalX(X, r, bv, cv) \subseteq IntervalX(X,
r, bv, SmallerOf(r, cu, cv)) by auto
 {
```

```
 fix x assume x\inIntervalX(X,r,bv,SmallerOf(r,cu,cv))
 then have R:x\inX \bv,x\rangle\inr\langlex,SmallerOf(r,cu,cv)\rangle\inrx\not=bvx\not=SmallerOf(r,cu,cv)
using IntervalX_def Interval_def
 by auto
 then have \langlebv,x\rangle\inrx\not=bv by auto
 moreover
 {
 assume AS: <cu,cv\rangle\inr
 then have SmallerOf(r,cu,cv)=cu using SmallerOf_def by auto
 then have }\langlex,cu\rangle\inr using R(3) by aut
 with AS have \langlex,cu\rangle\inr \langlex,cv\rangle\inr using assms unfolding IsLinOrder_def
trans_def by (safe, blast)
 }
 moreover
 {
 assume AS: <cu,cv\rangle\not\inr
 then have SmallerOf(r,cu,cv)=cv using SmallerOf_def by auto
 then have }\langlex,cv\rangle\inr\mathrm{ using R(3) by auto
 from AS have \langlecv,cu\rangle\inr using assms IsLinOrder_def IsTotal_def
assms by auto
 with }\langle\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\rangle\mathrm{ have }\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\mathrm{ using assms IsLinOrder_def
trans_def by (safe, blast)
 }
 ultimately have T: }\langle\textrm{x},\textrm{cv}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\mathrm{ by auto
 moreover
 {
 assume AS:x=cu
 then have \langlecu,cv\rangle\inr using T(1) by auto
 then have SmallerOf(r,cu,cv)=cu using SmallerOf_def assms IsLinOrder_def
 antisym_def by auto
 with {x\not=SmallerOf(r,cu,cv) \ have False using AS by auto
 }
 moreover
 {
 assume AS:x=cv
 then have \langlecv,cu\rangle\inr using T(2) by auto
 then have SmallerOf(r,cu,cv)=cv using SmallerOf_def assms IsLinOrder_def
 antisym_def by auto
 with {x\not=SmallerOf(r,cu,cv) \ have False using AS by auto
 }
 ultimately have }\langle\textrm{x},\textrm{cu}\rangle\in\textrm{r}\langlex,\textrm{cv}\rangle\in\textrm{rx}\not=\textrm{cux}\not=\textrm{cv}\mathrm{ by auto
 }
 with calculation {x\inX> have x\inLeftRayX(X,r,cu) x\inIntervalX(X, r, bv,
cv) using LeftRayX_def IntervalX_def Interval_def
 by auto
 then have x\inLeftRayX(X, r, cu) \cap IntervalX(X, r, bv, cv) by auto
}
 then show IntervalX(X, r, bv, SmallerOf(r, cu, cv)) \subseteq LeftRayX(X, r,
```

$c u) \cap$ IntervalX(X, r, bv, cv) by auto
qed
lemma inter_lray_rray:
assumes bu $\in \mathrm{Xcv} \in \mathrm{XIsLinOrder}(\mathrm{X}, \mathrm{r})$
shows LeftRayX(X,r,bu) $\cap$ RightRayX(X,r,cv)=IntervalX(X,r,cv,bu)
unfolding LeftRayX_def RightRayX_def IntervalX_def Interval_def by auto
lemma inter_lray_lray:
assumes bu $\in \mathrm{Xcv} \in \mathrm{XIsLinOrder}(\mathrm{X}, \mathrm{r})$
shows LeftRayX(X,r,bu) $\cap \operatorname{LeftRayX(X,r,cv)=LeftRayX(X,r,SmallerOf(r,bu,cv))~}$
proof
\{
fix $x$
assume $x \in \operatorname{LeftRayX}(X, r, b u) \cap \operatorname{LeftRayX}(X, r, c v)$
then have $B: x \in X\langle x, b u\rangle \in r\langle x, c v\rangle \in r x \neq b u x \neq c v$ using LeftRayX_def by auto
then have C: $\langle x, S m a l l e r O f(r, b u, c v)\rangle \in r$ using SmallerOf_def by (cases $\langle\mathrm{bu}, \mathrm{cv}\rangle \in \mathrm{r}$, auto)
from B have $D: x \neq$ SmallerOf ( $r, b u, c v$ ) using SmallerOf_def by (cases $\langle\mathrm{bu}, \mathrm{cv}\rangle \in \mathrm{r}$, auto)
from B C D have $x \in \operatorname{LeftRayX}(X, r, S m a l l e r O f(r, b u, c v)$ ) using LeftRayX_def by auto
\}
then show LeftRayX(X, r, bu) $\cap \operatorname{LeftRayX(X,r,~cv)~} \subseteq \operatorname{LeftRayX}(X, r$, SmallerOf(r, bu, cv)) by auto
\{
fix $x$
assume $x \in \operatorname{LeftRayX(X,~r,~SmallerOf(r,~bu,~cv))~}$
then have $R: x \in X\langle x, S m a l l e r O f(r, b u, c v)\rangle \in r x \neq \operatorname{SmallerOf}(r, b u, c v)$ using
LeftRayX_def by auto
\{ \{
assume AS: $\langle\mathrm{bu}, \mathrm{cv}\rangle \in \mathrm{r}$
then have SmallerOf ( $\mathrm{r}, \mathrm{bu}, \mathrm{cv}$ ) =bu using SmallerOf_def by auto
then have $\langle\mathrm{x}, \mathrm{bu}\rangle \in \mathrm{r}$ using $\mathrm{R}(2)$ by auto
with AS have $\langle\mathrm{x}, \mathrm{bu}\rangle \in \mathrm{r}\langle\mathrm{x}, \mathrm{cv}\rangle \in \mathrm{r}$ using assms IsLinOrder_def trans_def
by (safe, blast)
\}
moreover
\{
assume AS: $\langle\mathrm{bu}, \mathrm{cv}\rangle \notin \mathrm{r}$
then have SmallerOf (r,bu,cv)=cv using SmallerOf_def by auto
then have $\langle x, c v\rangle \in r$ using $R(2)$ by auto
from AS have $\langle c v, b u\rangle \in r$ using assms IsLinOrder_def IsTotal_def
assms by auto
with $\langle\langle\mathrm{x}, \mathrm{cv}\rangle \in \mathrm{r}\rangle$ have $\langle\mathrm{x}, \mathrm{cv}\rangle \in \mathrm{r}\langle\mathrm{x}, \mathrm{bu}\rangle \in \mathrm{r}$ using assms IsLinOrder_def
trans_def by (safe, blast)
\}
ultimately have $\mathrm{T}:\langle\mathrm{x}, \mathrm{cv}\rangle \in \mathrm{r}\langle\mathrm{x}, \mathrm{bu}\rangle \in \mathrm{r}$ by auto

```
 moreover
 {
 assume AS:x=bu
 then have \langlebu,cv\rangle\inr using T(1) by auto
 then have SmallerOf(r,bu,cv)=bu using SmallerOf_def assms IsLinOrder_def
 antisym_def by auto
 with {x\not=SmallerOf(r,bu,cv) \ have False using AS by auto
 }
 moreover
 {
 assume AS:x=cv
 then have \langlecv,bu\rangle\inr using T(2) by auto
 then have SmallerOf(r,bu,cv)=cv using SmallerOf_def assms IsLinOrder_def
 antisym_def by auto
 with {x\not=SmallerOf(r,bu,cv) \ have False using AS by auto
 }
 ultimately have }\langle\textrm{x},\textrm{bu}\rangle\in\textrm{r}\langle\textrm{x},\textrm{cv}\rangle\in\textrm{rx}\not=\textrm{bux}\not=\textrm{cv}\mathrm{ by auto
 }
 with }\langlex\inX\rangle\mathrm{ have }x\in\operatorname{LeftRayX(X, r, bu) \cap LeftRayX(X, r, cv) using LeftRayX_def
by auto
 }
 then show LeftRayX(X, r, SmallerOf(r, bu, cv)) \subseteq LeftRayX(X, r, bu)
 LeftRayX(X, r, cv) by auto
qed
lemma inter_rray_rray:
 assumes bu\inXcv\inXIsLinOrder(X,r)
 shows RightRayX(X,r,bu)\capRightRayX(X,r,cv)=RightRayX(X,r,GreaterOf(r,bu,cv))
proof
 {
 fix x
 assume x\inRightRayX(X,r,bu)\capRightRayX(X,r,cv)
 then have B: }\textrm{x}\in\textrm{X}\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{cv},\textrm{x}\rangle\in\textrm{rx}\not=\textrm{bux}\not=\textrm{cv}\mathrm{ using RightRayX_def by auto
 then have C:\langleGreaterOf(r,bu,cv),x\rangle\inr using GreaterOf_def by (cases
<bu,cv\rangle\inr,auto)
 from B have D: x\not=GreaterOf(r,bu,cv) using GreaterOf_def by (cases
<bu,cv\rangle\inr,auto)
 from B C D have x\inRightRayX(X,r,GreaterOf(r,bu,cv)) using RightRayX_def
by auto
 }
 then show RightRayX(X, r, bu) \cap RightRayX(X, r, cv) \subseteq RightRayX(X,
r, GreaterOf(r, bu, cv)) by auto
 {
 fix x
 assume x\inRightRayX(X, r, GreaterOf(r, bu, cv))
 then have R:x\inX\langleGreaterOf(r,bu,cv),x\rangle\inrx\not=GreaterOf(r,bu,cv) using
RightRayX_def by auto
 {
 {
```

```
 assume AS: \langlebu,cv\rangle\inr
 then have GreaterOf(r,bu,cv)=cv using GreaterOf_def by auto
 then have \langlecv,x\rangle\inr using R(2) by auto
 with AS have \langlebu,x\rangle\inr \langlecv,x\rangle\inr using assms IsLinOrder_def trans_def
by(safe, blast)
 }
 moreover
 {
 assume AS: \langlebu,cv\rangle\not\inr
 then have GreaterOf(r,bu,cv)=bu using GreaterOf_def by auto
 then have \langlebu,x\rangle\inr using R(2) by auto
 from AS have \langlecv,bu\rangle\inr using assms IsLinOrder_def IsTotal_def
assms by auto
 with }\langle\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\rangle\mathrm{ have }\langle\textrm{cv},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms IsLinOrder_def
trans_def by(safe, blast)
 }
 ultimately have T: }\langle\textrm{cv},\textrm{x}\rangle\in\textrm{r}\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\mathrm{ by auto
 moreover
 {
 assume AS:x=bu
 then have \langlecv,bu\rangle\inr using T(1) by auto
 then have GreaterOf(r,bu,cv)=bu using GreaterOf_def assms IsLinOrder_def
 antisym_def by auto
 with {x\not=GreaterOf(r,bu,cv) \ have False using AS by auto
 }
 moreover
 {
 assume AS:x=cv
 then have \langlebu,cv\rangle\inr using T(2) by auto
 then have GreaterOf(r,bu,cv)=cv using GreaterOf_def assms IsLinOrder_def
 antisym_def by auto
 with {x\not=GreaterOf(r,bu,cv) \ have False using AS by auto
 }
 ultimately have }\langle\textrm{bu},\textrm{x}\rangle\in\textrm{r}\langle\textrm{cv},\textrm{x}\rangle\in\textrm{rx}\not=\textrm{bux}\not=\textrm{cv}\mathrm{ by auto
 }
 with {x\inX> have x\in RightRayX(X, r, bu) \cap RightRayX(X, r, cv) us-
ing RightRayX_def by auto
 }
 then show RightRayX(X, r, GreaterOf(r, bu, cv)) \subseteq RightRayX(X, r, bu)
\cap RightRayX(X, r, cv) by auto
qed
```

The open intervals and rays satisfy the base condition.

```
lemma intervals_rays_base_condition:
 assumes IsLinOrder(X,r)
 shows {IntervalX(X,r,b,c). \langleb,c\rangle\inX XX}\cup{LeftRayX(X,r,b). b\inX}\cup{RightRayX(X,r,b).
b\inX} {satisfies the base condition}
proof-
 let I={IntervalX(X,r,b,c). \langleb,c\rangle\inX X X }
```

```
 let R={RightRayX(X,r,b). b\inX}
 let L={LeftRayX(X,r,b). b\inX}
 let B={IntervalX(X,r,b,c). \langleb, c\rangle\inX XX}\cup{LeftRayX(X,r,b). b\inX}\cup{RightRayX(X,r,b).
b}\in\textrm{X}
 {
 fix U V
 assume A:U\inBV\inB
 then have dU:U\inI\veeU }\inL\veeU\inRand dV:V\inIVV\inL\veeV\inR by aut
 {
 assume S:V\inI
 {
 assume U\inI
 with S obtain bu cu bv cv where A:U=IntervalX(X,r,bu,cu)V=IntervalX(X,r,bv,cv)bu\inX
 by auto
 then have SmallerOf(r,cu,cv)\inXGreaterOf(r,bu,bv)\inX by (cases
\langleu,cv\rangle\inr,simp add:SmallerOf_def A,simp add:SmallerOf_def A,
 cases \langlebu,bv\rangle\inr,simp add:GreaterOf_def A,simp add:GreaterOf_def
A)
 with A have U\capV\inB using inter_two_intervals assms by auto
 }
 moreover
 {
 assume U\inL
 with S obtain bu bv cv where A:U=LeftRayX(X, r,bu)V=IntervalX(X,r,bv,cv)bu\inXbv\inXcv
 by auto
 then have SmallerOf(r,bu,cv)\inX using SmallerOf_def by (cases
\langlebu, cv\rangle\inr,auto)
 with A have U\capV\inB using inter_lray_interval assms by auto
 }
 moreover
 {
 assume U\inR
 with S obtain cu bv cv where A:U=RightRayX(X,r,cu)V=IntervalX(X,r,bv,cv)cu\inXbv\inXcv
 by auto
 then have GreaterOf(r,cu,bv)\inX using GreaterOf_def by (cases
\langlecu,bv\rangle\inr,auto)
 with A have U\capV\inB using inter_rray_interval assms by auto
 }
 ultimately have U\capV\inB using dU by auto
 }
 moreover
 {
 assume S:V\inL
 {
 assume U\inI
 with S obtain bu bv cv where A:V=LeftRayX(X, r,bu)U=IntervalX(X,r,bv,cv)bu\inXbv\inXcv
 by auto
 then have SmallerOf(r,bu,cv)\inX using SmallerOf_def by (cases
\langlebu,cv\rangle\inr, auto)
```

```
 have U\capV=V\capU by auto
 with A \SmallerOf(r,bu,cv)\inX` have U\capV\inB using inter_lray_interval
assms by auto
 }
 moreover
 {
 assume U\inR
 with S obtain bu cv where A:V=LeftRayX(X,r,bu)U=RightRayX(X,r,cv)bu\inXcv\inX
 by auto
 have U\capV=V\capU by auto
 with A have U\capV\inB using inter_lray_rray assms by auto
 }
 moreover
 {
 assume U\inL
 with S obtain bu bv where A:U=LeftRayX(X,r,bu)V=LeftRayX(X,r,bv)bu\inXbv\inX
 by auto
 then have SmallerOf(r,bu,bv)\inX using SmallerOf_def by (cases
\langlebu,bv\rangle\inr, auto)
 with A have U\capV\inB using inter_lray_lray assms by auto
 }
 ultimately have U\capV\inB using dU by auto
 }
 moreover
 {
 assume S:V\inR
 {
 assume U\inI
 with S obtain cu bv cv where A:V=RightRayX(X,r,cu)U=IntervalX(X,r,bv,cv)cu\inXbv\inXcv
 by auto
 then have GreaterOf(r,cu,bv)\inX using GreaterOf_def by (cases
\langlecu,bv\rangle\inr,auto)
 have U\capV=V\capU by auto
 with A \GreaterOf(r,cu,bv)\inX` have U\capV\inB using inter_rray_interval
assms by auto
 }
 moreover
 {
 assume U\inL
 with S obtain bu cv where A:U=LeftRayX(X,r,bu)V=RightRayX(X,r,cv)bu\inXcv\inX
 by auto
 then have U\capV\inB using inter_lray_rray assms by auto
 }
 moreover
 {
 assume U\inR
 with S obtain cu cv where A:U=RightRayX(X,r,cu)V=RightRayX(X,r,cv)cu\inXcv\inX
 by auto
 then have GreaterOf(r,cu,cv)\inX using GreaterOf_def by (cases
```

```
\langlecu,cv\rangle\inr,auto)
 with A have U\capV\inB using inter_rray_rray assms by auto
 }
 ultimately have U\capV\inB using dU by auto
 }
 ultimately have S:U\capV\inB using dV by auto
 {
 fix x
 assume }x\inU\cap
 then have }x\inU\capV\wedgeU\capV\subseteqU\capV by aut
 then have }\exists\textrm{W}.\textrm{W}\in(B)\wedge x\inW ^ W \subseteq U\capV using S by blas
 then have }\exists\textrm{W}\in(B). x\inW ^ W\subseteqU\capV by blas
 }
 hence (}\forall\textrm{x}\in\textrm{U}\cap\textrm{V}.\exists\textrm{W}\in(B). x\inW \wedge W \subseteq U\capV) by auto
 }
 then show thesis using SatisfiesBaseCondition_def by auto
qed
```

Since the intervals and rays form a base of a topology, and this topology is uniquely determined; we can built it. In the definition we have to make sure that we have a totally ordered set.

```
definition
 OrderTopology (OrdTopology _ _ 50) where
 IsLinOrder(X,r) \Longrightarrow OrdTopology X r \equiv TopologyBase {IntervalX(X,r,b,c).
<b, c\rangle\inX X X}\cup{LeftRayX(X,r,b). b }\in\textrm{X}}\cup{RightRayX(X,r,b). b b X}
theorem Ordtopology_is_a_topology:
 assumes IsLinOrder(X,r)
 shows (OrdTopology X r) {is a topology} and {IntervalX(X,r,b,c). \langleb,c\rangle\inX X X}\cup{LeftRayX(X
b\inX}\cup{RightRayX(X,r,b). b\inX} {is a base for} (OrdTopology X r)
 using assms Base_topology_is_a_topology intervals_rays_base_condition
 OrderTopology_def by auto
lemma topology0_ordtopology:
 assumes IsLinOrder(X,r)
 shows topology0(OrdTopology X r)
 using Ordtopology_is_a_topology topologyO_def assms by auto
```


### 57.10 Total set

The topology is defined in the set $X$, when $X$ has more than one point

```
lemma union_ordtopology:
 assumes IsLinOrder(X,r)\existsx y. x\not=y ^ x\inX^ y\inX
 shows U(OrdTopology X r)=X
proof
 let B={IntervalX(X,r,b,c). \langleb,c\rangle\inX X X}\cup{LeftRayX(X,r,b). b\inX}\cup{RightRayX(X,r,b).
b}\in\textrm{X}
```

```
 have base:B {is a base for} (OrdTopology X r) using Ordtopology_is_a_topology(2)
assms(1)
 by auto
 from assms(2) obtain x y where T: }x\not=y\wedgex\inX\wedge y\inX by aut
 then have B:x\inLeftRayX(X,r,y) \veex\inRightRayX(X,r,y) using LeftRayX_def
RightRayX_def
 assms(1) IsLinOrder_def IsTotal_def by auto
 then have }x\in\bigcupB\mathrm{ using T by auto
 then have x:x\in\bigcup(OrdTopology X r) using Top_1_2_L5 base by auto
 {
 fix z
 assume z:z\inX
 {
 assume x=z
 then have z\in\bigcup(OrdTopology X r) using x by auto
 }
 moreover
 {
 assume x\not=z
 with z T have z\inLeftRayX(X,r,x)\veez\inRightRayX(X,r,x) x\inX using LeftRayX_def
RightRayX_def
 assms(1) IsLinOrder_def IsTotal_def by auto
 then have z}z\in\bigcupB\mathrm{ by auto
 then have z\in\bigcup (OrdTopology X r) using Top_1_2_L5 base by auto
 }
 ultimately have z }\in\bigcup\(OrdTopology X r) by aut
 }
 then show X\subseteq\bigcup(OrdTopology X r) by auto
 have \B\subseteqX using IntervalX_def LeftRayX_def RightRayX_def by auto
 then show U(OrdTopology X r)\subseteqX using Top_1_2_L5 base by auto
qed
```

The interior, closure and boundary can be calculated using the formulas proved in the section that deals with the base.

The subspace of an order topology doesn't have to be an order topology.

### 57.11 Right order and Left order topologies.

Notice that the left and right rays are closed under intersection, hence they form a base of a topology. They are called right order topology and left order topology respectively.

If the order in $X$ has a minimal or a maximal element, is necessary to consider $X$ as an element of the base or that limit point wouldn't be in any basic open set.

### 57.11.1 Right and Left Order topologies are topologies

```
lemma leftrays_base_condition:
assumes IsLinOrder(X,r)
shows {LeftRayX(X,r,b). b\inX}\cup{X} {satisfies the base condition}
proof-
 {
 fix U V
 assume U U {LeftRayX(X,r,b). b\inX} \cup{X}V\in{LeftRayX(X,r,b). b b X } }\cup{X
 then obtain b c where A:(b\inX^U=LeftRayX(X,r,b))\veeU=X(c\inX\wedgeV=LeftRayX(X,r,c))\veeV=XU\subseteqXV\subseteqX
 unfolding LeftRayX_def by auto
 then have (U\capV=LeftRayX(X,r,SmallerOf (r,b,c))^b\inX\wedgec\inX) VU\capV=XV (U\capV=LeftRayX(X,r,c)^c\in
 using inter_lray_lray assms by auto
 moreover
 have b\inX^c\inX \longrightarrow SmallerOf(r,b,c)\inX unfolding SmallerOf_def by (cases
\langleb,c\rangle\inr,auto)
 ultimately have U\capV\in{LeftRayX(X,r,b). b }\in\textrm{X}}\cup{\textrm{X}}\mathrm{ by auto
 hence }\forallx\inU\capV.\existsW\in{LeftRayX(X,r,b). b\inX}\cup{X}. x\inW^W\subseteqU\capV by blast
 }
 moreover
 then show thesis using SatisfiesBaseCondition_def by auto
qed
lemma rightrays_base_condition:
assumes IsLinOrder(X,r)
shows {RightRayX(X,r,b). b\inX}\cup{X} {satisfies the base condition}
proof-
 {
 fix U V
 assume U }\in{R\operatorname{RightRayX(X,r,b). b }\in\textrm{X}}\cup{X}V\in{RightRayX(X,r,b). b G X { \cup{X}
 then obtain b c where A:(b\inX\wedgeU=RightRayX(X,r,b))\veeU=X(c\inX\wedgeV=RightRayX(X,r,c))\veeV=XU\subseteqXV
 unfolding RightRayX_def by auto
 then have (U\capV=RightRayX(X,r,GreaterOf (r,b,c))^b\inX\wedgec\inX)VU\capV=XV (U\capV=RightRayX (X,r,c)^
 using inter_rray_rray assms by auto
 moreover
 have b\inX^c\inX \longrightarrow GreaterOf(r,b,c)\inX using GreaterOf_def by (cases
\langleb,c\rangle\inr,auto)
 ultimately have U\capV }\in{\operatorname{RightRayX(X,r,b). b }\in\textrm{X}}\cup{X} by aut
 hence }\forall\textrm{x}\in\textrm{U}\cap\textrm{V}.\existsW\in{RightRayX(X,r,b). b\inX}\cup{X}. x\inW^W\subseteqU\capV by blas
 }
 then show thesis using SatisfiesBaseCondition_def by auto
qed
definition
 LeftOrderTopology (LOrdTopology _ _ 50) where
 IsLinOrder(X,r) \Longrightarrow LOrdTopology X r \equiv TopologyBase {LeftRayX(X,r,b).
b}\in\textrm{X}}\cup{\textrm{X}
definition
```

```
 RightOrderTopology (ROrdTopology _ _ 50) where
 IsLinOrder(X,r) \Longrightarrow ROrdTopology X r \equiv TopologyBase {RightRayX(X,r,b).
b}\in\textrm{X}}\cup{X
theorem LOrdtopology_ROrdtopology_are_topologies:
 assumes IsLinOrder(X,r)
 shows (LOrdTopology X r) {is a topology} and {LeftRayX(X,r,b). b\inX}\cup{X}
{is a base for} (LOrdTopology X r)
 and (ROrdTopology X r) {is a topology} and {RightRayX(X,r,b). b\inX}\cup{X}
{is a base for} (ROrdTopology X r)
 using Base_topology_is_a_topology leftrays_base_condition assms rightrays_base_condition
 LeftOrderTopology_def RightOrderTopology_def by auto
lemma topology0_lordtopology_rordtopology
 assumes IsLinOrder(X,r)
 shows topology0(LOrdTopology X r) and topology0(ROrdTopology X r)
 using LOrdtopology_ROrdtopology_are_topologies topology0_def assms by
auto
```


### 57.11.2 Total set

The topology is defined on the set $X$

```
lemma union_lordtopology_rordtopology
 assumes IsLinOrder(X,r)
 shows \bigcup(LOrdTopology X r)=X and U(ROrdTopology X r)=X
 using Top_1_2_L5[OF LOrdtopology_ROrdtopology_are_topologies(2) [OF assms]]
 Top_1_2_L5[OF LOrdtopology_ROrdtopology_are_topologies(4) [OF assms]]
 unfolding LeftRayX_def RightRayX_def by auto
```


### 57.12 Union of Topologies

The union of two topologies is not a topology. A way to overcome this fact is to define the following topology:

```
definition
 joinT (joinT _ 90) where
 (\forallT\inM. T{is a topology} ^(}\forall\textrm{Q}\in\textrm{M}.\\Q=\T))\Longrightarrow(joinT M \equiv THE T. (UM){i
a subbase for} T)
```

First let's proof that given a family of sets, then it is a subbase for a topology.
The first result states that from any family of sets we get a base using finite intersections of them. The second one states that any family of sets is a subbase of some topology.

```
theorem subset_as_subbase:
 shows {\bigcapA. A \in FinPow(B)} {satisfies the base condition}
proof-
 {
 fix U V
```

```
 assume A:U }\in{\A.A\in\operatorname{FinPow(B)}}\wedgeV\in{\bigcapA.A G FinPow(B)
 then obtain M R where MR:Finite(M)Finite(R)M\subseteqBR\subseteqB
 U=\bigcapMV=\bigcapR
 using FinPow_def by auto
 {
 fix x
 assume AS:x\inU\capV
 then have N:M\not=OR\not=O using MR (5,6) by auto
 have Finite(M UR) using MR (1,2) by auto
 moreover
 have M U R\inPow(B) using MR (3,4) by auto
 ultimately have M\cupR\inFinPow(B) using FinPow_def by auto
 then have }\bigcap(M\cupR)\in{\bigcapA.A \in FinPow(B)} by aut
 moreover
 from N have }\bigcap(M\cupR)\subseteq\bigcapM\bigcap(M\cupR)\subseteq\bigcapR by aut
 then have }\cap(M\cupR)\subseteqU\capV using MR (5,6) by aut
 moreover
 {
 fix S
 assume }S\inM\cup
 then have }S\inM\veeS\inR by auto
 then have x\inS using AS MR (5,6) by auto
 }
 then have }x\in\bigcap(M\cupR) using N by aut
 ultimately have }\exists\textrm{W}\in{{\A.A \in FinPow(B)}. x\inW^W\subseteqU\capV by blas
 }
 then have (}\forall\textrm{x}\in\textrm{U}\cap\textrm{V}.\exists\textrm{W}\in{\bigcap\mathrm{ A. A }\in\mathrm{ FinPow(B)}. x}\inW\W W\subseteqU\capV) by
auto
 }
 then have }\forallUV.((U\in{\capA.A G FinPow(B)} ^ V G{\bigcapA. A \in FinPow(B)}
 (\forallx\inU\capV. \existsW\in{\bigcapA. A \in FinPow(B)}. x\inW ^W\subseteqU\capV)) by auto
 then show {\bigcapA. A \in FinPow(B)} {satisfies the base condition}
 using SatisfiesBaseCondition_def by auto
qed
theorem Top_subbase:
 assumes T = {\A. A APow({\bigcapA. A \in FinPow(B)})}
 shows T {is a topology} and B {is a subbase for} T
proof-
 {
 fix S
 assume S\inB
 then have {S}\inFinPow(B)\bigcap{S}=S using FinPow_def by auto
 then have {S}\inPow({\bigcapA. A \in FinPow(B)}) by (blast+)
 then have }\bigcup{S}\in{\bigcupA.A\in\operatorname{Pow}({\bigcapA.A A FinPow(B)})} by blas
 then have }S\in{\A.A\in\operatorname{Pow}({\bigcapA.A \in FinPow(B)})} by aut
 then have S\inT using assms by auto
 }
```

```
 then have B\subseteqT by auto
 moreover
 have {\bigcapA. A \in FinPow(B)} {satisfies the base condition}
 using subset_as_subbase by auto
 then have T {is a topology} and {\bigcapA. A \in FinPow(B)} {is a base for}
T
 using Top_1_2_T1 assms by auto
 ultimately show T {is a topology} and B{is a subbase for}T
 using IsAsubBaseFor_def by auto
qed
A subbase defines a unique topology.
```

```
theorem same_subbase_same_top:
```

theorem same_subbase_same_top:
assumes B {is a subbase for} T and B {is a subbase for} S
assumes B {is a subbase for} T and B {is a subbase for} S
shows T = S
shows T = S
using IsAsubBaseFor_def assms same_base_same_top
using IsAsubBaseFor_def assms same_base_same_top
by auto
by auto
end

```

\section*{58 Properties in Topology}
theory Topology_ZF_properties imports Topology_ZF_examples Topology_ZF_examples_1
begin
This theory deals with topological properties which make use of cardinals.

\subsection*{58.1 Properties of compactness}

It is already defined what is a compact topological space, but the is a generalization which may be useful sometimes.
```

definition
IsCompactOfCard (_{is compact of cardinal}_ {in}_ 90)
where K{is compact of cardinal} Q{in}T \equiv(Card(Q) ^ K\subseteqUT ^
(\forall M\in\operatorname{Pow (T). K \subseteq UM \longrightarrow (\exists N \in Pow(M). K \subseteq UN ^N NQ)))}

```

The usual compact property is the one defined over the cardinal of the natural numbers.
```

lemma Compact_is_card_nat:
shows K{is compact in}T \longleftrightarrow (K{is compact of cardinal} nat {in}T)
proof
{
assume K{is compact in}T
then have sub:K\subseteq\bigcupT and reg:(\forall M\inPow(T). K\subseteq\bigcupM\longrightarrow(\existsN\in
FinPow(M). K \subseteq \N )
using IsCompact_def by auto

```
```

    {
        fix M
        assume M\in\operatorname{Pow (T)K\subseteq\M}
        with reg obtain N where N\inFinPow(M) K\subseteq\bigcupN by blast
        then have Finite(N) using FinPow_def by auto
        then obtain n where A:n\innatN \approxn using Finite_def by auto
    from A(1) have n<nat using n_lesspoll_nat by auto
    with A(2) have N\lesssimnat using lesspoll_def eq_lepoll_trans by auto
    moreover
    {
        assume N \approxnat
        then have nat }\approxN\mathrm{ using eqpoll_sym by auto
        with A(2) have nat \approxn using eqpoll_trans by blast
        then have n \approxnat using eqpoll_sym by auto
        with «n\precnat〉 have False using lesspoll_def by auto
    }
    then have ~(N \approxnat) by auto
    with calculation \langleK\subseteq\ N\N NGFinPow(M) \ have N}\\mathrm{ \natK }\subseteq\bigcupNN\inPow(M) us
    ing lesspoll_def
FinPow_def by auto
hence ( }\exists\textrm{N}\in\operatorname{Pow}(M).K\subseteq\bigcupNN\wedgeN\prec\mathrm{ nat) by auto
}
with sub show K{is compact of cardinal} nat {in}T using IsCompactOfCard_def
Card_nat by auto
}
assume (K{is compact of cardinal} nat {in}T)
then have sub:K\subseteq\bigcupT and reg:(\forall M\inPow(T). K \subseteq UM \longrightarrow (\exists N \in Pow(M).
K}
UN ^ N\precnat))
using IsCompactOfCard_def by auto
{
fix M
assume M\inPow(T)K\subseteq\M
with reg have ( }\exists\textrm{N}\in\operatorname{Pow}(M). K\subseteq\bigcupN ^N\prec\mathrm{ nat) by auto
then obtain N where N\in\operatorname{Pow (M)K\subseteq\bigcup NN}\prec\mathrm{ nat by blast}
then have N\inFinPow(M)K\subseteq\bigcupN using lesspoll_nat_is_Finite FinPow_def
by auto
hence \existsN\inFinPow(M). K\subseteq\N by auto
}
with sub show K{is compact in}T using IsCompact_def by auto
}
qed

```

Another property of this kind widely used is the Lindeloef property; it is the one on the successor of the natural numbers.
```

definition
IsLindeloef (_{is lindeloef in}_ 90) where
K {is lindeloef in} T\equivK{is compact of cardinal}csucc(nat){in}T

```

It would be natural to think that every countable set with any topology is Lindeloef; but this statement is not provable in ZF. The reason is that to build a subcover, most of the time we need to choose sets from an infinite collection which cannot be done in ZF. Additional axioms are needed, but strictly weaker than the axiom of choice.

However, if the topology has not many open sets, then the topological space is indeed compact.
```

theorem card_top_comp:
assumes Card(Q) T\precQ K\subseteq\bigcupT
shows (K){is compact of cardinal}Q{in}T
proof-
{
fix M assume M:M\subseteqT K\subseteq\bigcupM
from M(1) assms(2) have M\precQ using subset_imp_lepoll lesspoll_trans1
by blast
with M(2) have }\exists\textrm{N}\in\operatorname{Pow(M). K\subseteq\bigcupN ^N\precQ by auto
}
with assms(1,3) show thesis unfolding IsCompactOfCard_def by auto
qed

```

The union of two compact sets, is compact; of any cardinality.
```

theorem union_compact:
assumes K{is compact of cardinal}Q{in}T K1{is compact of cardinal}Q{in}T
InfCard(Q)
shows (K U K1){is compact of cardinal}Q{in}T unfolding IsCompactOfCard_def
proof(safe)
from assms(1) show Card(Q) unfolding IsCompactOfCard_def by auto
fix x assume }x\inK\mathrm{ then show }x\in\bigcupT using assms(1) unfolding IsCompactOfCard_de
by blast
next
fix }x\mathrm{ assume }x\inK1 then show x\in\bigcupT using assms(2) unfolding IsCompactOfCard_def
by blast
next
fix M assume M\subseteqT K\cupK1\subseteq\bigcupM
then have K\subseteq\bigcupMK1\subseteq\bigcupM by auto
with \langleM\subseteqT\rangle have \existsN\inPow(M). K\subseteqUN^N\prec \ \ Q N NGPow(M). K1 \subseteqUN^N
\prec using assms unfolding IsCompactOfCard_def
by auto
then obtain NK NK1 where NK\inPow(M)NK1\inPow(M)K \subseteq\NKK1 \subseteq\NK1NK \prec
QNK1 \prec Q by auto
then have NKUNK1 \prec QKUK1\subseteq\ (NKUNK1)NKUNK1\inPow(M) using assms(3) less_less_imp_un_less
by auto
then show }\exists\textrm{N}\in\operatorname{Pow}(M). K\cupK1\subseteq\bigcupN ^N\precQQ by aut
qed

```

If a set is compact of cardinality \(Q\) for some topology, it is compact of cardinality \(Q\) for every coarser topology.
```

theorem compact_coarser:
assumes T1\subseteqT and \bigcupT1=\bigcupT and (K){is compact of cardinal}Q{in}T
shows (K){is compact of cardinal}Q{in}T1
proof-
{
fix M
assume AS:M\inPow(T1)K\subseteq\bigcupM
then have M\in\operatorname{Pow(T)K\subseteq\bigcupM using assms(1) by auto}
then have }\exists\textrm{N}\in\operatorname{Pow}(M).K\subseteq\bigcupN^N\precQ using assms(3) unfolding IsCompactOfCard_de
by auto
}
then show (K){is compact of cardinal}Q{in}T1 using assms(3,2) unfold-
ing IsCompactOfCard_def by auto
qed
If some set is compact for some cardinal, it is compact for any greater cardinal.
theorem compact_greater_card:
assumes Q\Q1 and (K){is compact of cardinal}Q{in}T and Card(Q1)
shows (K){is compact of cardinal}Q1{in}T
proof-
{
fix M
assume AS: M\inPow(T)K\subseteq\bigcupM
then have }\exists\textrm{N}\in\operatorname{Pow}(M).K\subseteq\N^N\precQ using assms(2) unfolding IsCompactOfCard_de
by auto
then have }\exists\textrm{N}\in\operatorname{Pow}(M).K\subseteq\bigcupN\wedgeN\precQ1 using assms(1) lesspoll_trans
unfolding IsCompactOfCard_def by auto
}
then show thesis using assms(2,3) unfolding IsCompactOfCard_def by
auto
qed
A closed subspace of a compact space of any cardinality, is also compact of the same cardinality.

```
```

theorem compact_closed:

```
theorem compact_closed:
 assumes K {is compact of cardinal} Q {in} T
 assumes K {is compact of cardinal} Q {in} T
 and R {is closed in} T
 and R {is closed in} T
 shows (K\capR) {is compact of cardinal} Q {in} T
 shows (K\capR) {is compact of cardinal} Q {in} T
proof-
proof-
 {
 {
 fix M
 fix M
 assume AS:M\inPow(T)K\capR\subseteq\bigcupM
 assume AS:M\inPow(T)K\capR\subseteq\bigcupM
 have \T-R\inT using assms(2) IsClosed_def by auto
 have \T-R\inT using assms(2) IsClosed_def by auto
 have K-R\subseteq(UT-R) using assms(1) IsCompactOfCard_def by auto
 have K-R\subseteq(UT-R) using assms(1) IsCompactOfCard_def by auto
 with \UT-R\inT` have K\subseteq\bigcup(M \cup{\T-R}) and M \cup{\T-R}\inPow(T)
 with \UT-R\inT` have K\subseteq\bigcup(M \cup{\T-R}) and M \cup{\T-R}\inPow(T)
 proof (safe)
 proof (safe)
 {
 {
 fix x
```

                fix x
    ```
```

            assume x\inM
            with AS(1) show }x\inT\mathrm{ by auto
        }
        {
            fix x
            assume x\inK
            have }x\inR\veex\not\inR by aut
            with {x\inK
            with AS(2) <K-R\subseteq(\bigcupT-R)\rangle have }x\in\bigcupMVx\in(\bigcupT-R) by aut
            then show }x\in\(M\cup{\T-R}) by aut
        }
    qed
    with assms(1) have \existsN\inPow(M\cup{UT-R}). K \subseteq \N ^N \prec Q unfolding
    IsCompactOfCard_def by auto
then obtain N where cub:N\inPow(M\cup{\T-R}) K\subseteq\bigcupN N\precQ by auto
have N-{\T-R}\inPow(M)K\capR\subseteq\bigcup(N-{\T-R})N-{\bigcupT-R}\precQ
proof (safe)
{
fix x
assume }x\inNx\not\in
then show x=\T-R using cub(1) by auto
}
{
fix x
assume }x\inKx\in
then have }x\not\in\bigcupT-Rx\inK by aut
then show }x\in\bigcup(N-{\bigcupT-R}) using cub(2) by blas
}
have N-{\T-R}\subseteqN by auto
with cub(3) show N-{UT-R}\precQ using subset_imp_lepoll lesspoll_trans1
by blast
qed
then have }\exists\textrm{N}\in\operatorname{Pow}(M). K\capR\subseteq\bigcupN ^N N\precQ by aut
}
then have }\forallM\in\operatorname{Pow}(T).(K\capR\subseteq\bigcupM\longrightarrow(\existsN\in\operatorname{Pow}(M).K\capR\subseteq\bigcupN^
\precQ)) by auto
then show thesis using IsCompactOfCard_def assms(1) by auto
qed

```

\subsection*{58.2 Properties of numerability}

The properties of numerability deal with cardinals of some sets built from the topology. The properties which are normally used are the ones related to the cardinal of the natural numbers or its successor.
```

definition
IsFirstOfCard (_ {is of first type of cardinal}_ 90) where
(T {is of first type of cardinal} Q) \equiv }\forall\textrm{x}\in\textrm{UT}\mathrm{ . ( }\exists\textrm{B}\mathrm{ . (B {is a base for}
T) ^({b\inB. x\inb} \precQ))

```
```

definition
IsSecondOfCard (_ {is of second type of cardinal}_ 90) where
(T {is of second type of cardinal}Q) \equiv (\existsB. (B {is a base for} T) }
(B \prec Q))

```

\section*{definition}
```

    IsSeparableOfCard (_{is separable of cardinal}_ 90) where
    T{is separable of cardinal}Q\equiv\existsU\inPow (UT). Closure(U,T)=\bigcupT ^U\precQ
    ```

\section*{definition}
```

IsFirstCountable (_ \{is first countable\} 90) where
(T {is first countable}) \equiv T {is of first type of cardinal} csucc(nat)

```

\section*{definition}
```

IsSecondCountable (_ \{is second countable\} 90) where
( $T$ \{is second countable\}) $\equiv$ ( $T$ is of second type of cardinal\}csucc(nat))

```

\section*{definition}
```

IsSeparable (_\{is separable\} 90) where
$T\{i s$ separable $\equiv \mathrm{T}\{$ is separable of cardinal\}csucc (nat)

```

If a set is of second type of cardinal \(Q\), then it is of first type of that same cardinal.
theorem second_imp_first:
assumes \(T\{i s\) of second type of cardinal\}Q
shows \(T\{i s\) of first type of cardinal\}Q
proof-
from assms have \(\exists B\). (\(B\) \{is a base for\} \(T\)) \(\wedge(B \prec Q)\) using IsSecondOfCard_def
by auto
then obtain \(B\) where base: (\(B\) \{is a base for\} \(T\)) \(\wedge(B \prec Q)\) by auto
\{
fix x
assume \(x \in \bigcup T\)
have \(\{b \in B . \quad x \in b\} \subseteq B\) by auto
then have \(\{b \in B . x \in b\} \lesssim B\) using subset_imp_lepoll by auto
with base have \(\{b \in B . x \in b\} \prec Q\) using lesspoll_trans1 by auto
with base have (\(B\) \{is a base for\} T) \(\wedge\{b \in B . x \in b\} \prec Q\) by auto
\}
then have \(\forall x \in \bigcup T . \exists B\). (B \{is a base for\} T) \(\wedge\{b \in B . x \in b\} \prec Q\) by auto
then show thesis using IsFirstOfCard_def by auto
qed
A set is dense iff it intersects all non-empty, open sets of the topology.
lemma dense_int_open:
assumes \(T\{i s\) a topology\} and \(A \subseteq \bigcup T\)
shows Closure \((A, T)=\bigcup T \longleftrightarrow(\forall U \in T . U \neq 0 \longrightarrow A \cap U \neq 0)\)
proof
assume AS:Closure \((A, T)=\bigcup T\)
\{
```

    fix U
    assume Uopen:U\inT and U\not=0
    then have U\cap\T\not=0 by auto
    with AS have U\capClosure(A,T) }\not=0\mathrm{ by auto
    with assms Uopen have U\capA\not=O using topology0.cl_inter_neigh topology0_def
    by blast
}
then show }\forall\textrm{U}\in\textrm{T}.\textrm{U}\not=0\longrightarrow\textrm{A}\cap\textrm{U}\not=0\mathrm{ by auto
next
assume AS: }\forall\textrm{U}\in\textrm{T}.\textrm{U}\not=0\longrightarrow\textrm{A}\cap\textrm{U}\not=
{
fix x
assume A:x\in\bigcupT
then have }\forallU\inT. x\inU\longrightarrowU\capA\not=0\mathrm{ using AS by auto
with assms A have x\inClosure(A,T) using topology0.inter_neigh_cl topology0_def
by auto
}
then have }\cupT\subseteqClosure(A,T) by aut
with assms show Closure(A,T)=\T using topology0.Top_3_L11(1) topology0_def
by blast
qed

```

\subsection*{58.3 Relations between numerability properties and choice principles}

It is known that some statements in topology aren't just derived from choice axioms, but also equivalent to them. Here is an example The following are equivalent:
- Every topological space of second cardinality csucc(Q) is separable of cardinality csucc (Q).
- The axiom of Q choice.

In the article [4] there is a proof of this statement for \(\mathrm{Q}=\mathbb{N}\), with more equivalences.

If a topology is of second type of cardinal \(\operatorname{csucc}(Q)\), then it is separable of the same cardinal. This result makes use of the axiom of choice for the cardinal Q on subsets of \(\cup T\).
```

theorem Q_choice_imp_second_imp_separable:
assumes T{is of second type of cardinal}csucc(Q)
and {the axiom of} Q {choice holds for subsets} \T
and T{is a topology}
shows T{is separable of cardinal}csucc(Q)
proof-
from assms(1) have \existsB. (B {is a base for} T) ^ (B \prec csucc(Q)) us-
ing IsSecondOfCard_def by auto

```
then obtain \(B\) where base: (\(B\) \{is a base for\} \(T) \wedge(B \prec \operatorname{csucc}(Q))\) by auto
let \(N=\lambda b \in B\). \(b\)
let \(B=B-\{0\}\)
have \(B-\{0\} \subseteq B\) by auto
with base have prec:B-\{0\}々csucc(Q) using subset_imp_lepoll lesspoll_trans1
by blast
from base have baseOpen: \(\forall \mathrm{b} \in \mathrm{B}\). \(\mathrm{Nb} \in \mathrm{T}\) using base_sets_open by auto
from assms(2) have car: Card (Q) and reg: \((\forall \mathrm{M} N .(\mathrm{M}) \lesssim Q \wedge \quad(\forall \mathrm{t} \in \mathrm{M} . \mathrm{Nt} \neq 0\)
\(\wedge \mathrm{Nt} \subseteq \cup \mathrm{T})) \longrightarrow(\exists \mathrm{f} . \mathrm{f}: \operatorname{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{Nt}) \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{ft} \in \mathrm{Nt})))\)
using AxiomCardinalChoice_def by auto
then have \((B \lesssim Q \wedge(\forall t \in B . N t \neq 0 \wedge N t \subseteq \bigcup T)) \longrightarrow(\exists f . f: P i(B, \lambda t . N t)\)
\(\wedge(\forall \mathrm{t} \in \mathrm{B} . \mathrm{ft} \in \mathrm{Nt}))\) by blast
with prec have \((\forall t \in B . N t \subseteq \bigcup T) \longrightarrow(\exists f . f: P i(B, \lambda t . N t) \wedge(\forall t \in B . f t \in N t))\)
using Card_less_csucc_eq_le car by auto
with baseOpen have \(\exists \mathrm{f}\). \(\mathrm{f}: \mathrm{Pi}(\mathrm{B}, \lambda \mathrm{t}\). Nt) \(\wedge(\forall \mathrm{t} \in \mathrm{B}\). \(\mathrm{ft} \in \mathrm{Nt})\) by blast
then obtain \(f\) where \(f: f: P i(B, \lambda t\). Nt) and \(f 2: \forall t \in B\). \(f t \in N t\) by auto \{
fix \(U\)
assume \(U \in T\) and \(U \neq 0\)
then obtain \(b\) where \(A 1: b \in B-\{0\}\) and \(b \subseteq U\) using Top_1_2_L1 base by

\section*{blast}
with \(f 2\) have \(f b \in U\) by auto
with \(A 1\) have \(\{f b . b \in B\} \cap U \neq 0\) by auto
\}
then have \(r: \forall U \in T . U \neq 0 \longrightarrow\{f b . b \in B\} \cap U \neq 0\) by auto
have \(\{f b . b \in B\} \subseteq \bigcup T\) using \(f 2\) baseOpen by auto
moreover
with \(r\) have Closure (\{fb. \(b \in B\}, T)=\bigcup T\) using dense_int_open assms (3)
by auto
moreover
have ffun:f:B \(\rightarrow\) range(f) using \(f\) range_of_fun by auto
then have \(f \in \operatorname{surj}(B, r a n g e(f))\) using fun_is_surj by auto
then have des1:range (f) \(\lesssim B\) using surj_fun_inv_2[of fBrange(f)Q] prec
Card_less_csucc_eq_le car
Card_is_Ord by auto
then have \(\{f b . b \in B\} \subseteq r a n g e(f)\) using apply_rangeI[0F ffun] by auto
then have \(\{\mathrm{fb} . \mathrm{b} \in \mathrm{B}\} \lesssim\) range (f) using subset_imp_lepoll by auto
with des1 have \(\{\mathrm{fb} . \mathrm{b} \in \mathrm{B}\} \lesssim \mathrm{B}\) using lepoll_trans by blast
with prec have \(\{f b . b \in B\} \prec \operatorname{csucc}(Q)\) using lesspoll_trans1 by auto ultimately show thesis using IsSeparableOfCard_def by auto
qed
The next theorem resolves that the axiom of \(Q\) choice for subsets of \(\cup T\) is necessary for second type spaces to be separable of the same cardinal csucc (Q).
theorem second_imp_separable_imp_Q_choice:
assumes \(\forall T\). (\(T\{\) is a topology\} \(\wedge\) (\(T\{\) is of second type of cardinal\}csucc(Q)))
\(\longrightarrow\) (T\{is separable of cardinal\}csucc (Q))
```

    and Card(Q)
    shows {the axiom of} Q {choice holds}
    proof-
{
fix N M
assume AS:M \lesssimQ ^ ( }\forall\textrm{t}\in\textrm{M}.\textrm{Nt}\not=0

```
 then obtain \(h\) where inj:h \(\operatorname{inj}(M, Q)\) using lepoll_def by auto
 then have bij:converse(h):bij(range(h),M) using inj_bij_range bij_converse_bij
by auto
 let \(T=\{(N(\) converse(h)i)) \(\times\{i\}\). i \(\in\) range (h) \(\}\)
 \{
 fix \(j\)
 assume AS2: \(\mathrm{j} \in\) range (h)
 from bij have converse(h):range(h) \(\rightarrow \mathrm{M}\) using bij_def inj_def by
auto
 with AS2 have converse(h) \(j \in M\) by simp
 with AS have \(N\) (converse(h) j) \(\neq 0\) by auto
 then have \((N(\) converse \((h) j)) \times\{j\} \neq 0\) by auto
 \}
 then have noEmpty: \(0 \notin \mathrm{~T}\) by auto
 moreover
 \{
 fix A B
 assume \(A S 2: A \in T B \in T A \cap B \neq 0\)
 then obtain \(j t\) where \(A_{-}\)def: \(A=N(c o n v e r s e(h) j) \times\{j\}\) and \(B _d e f: B=N(c o n v e r s e(h) t) \times\{t\}\)
 and Range:j \(\in\) range (h) t \(\in\) range (h) by auto
 from AS2(3) obtain \(x\) where \(x \in A \cap B\) by auto
 with \(A_{-}\)def \(B_{-}\)def have \(j=t\) by auto
 with \(A_{-}\)def \(B_{-}\)def have \(A=B\) by auto
 \}
 then have (\(\forall \mathrm{A} \in \mathrm{T} . \forall \mathrm{B} \in \mathrm{T} . \mathrm{A}=\mathrm{B} \vee \mathrm{A} \cap \mathrm{B}=0\)) by auto
 ultimately
 have Part:T \{is a partition of\} \(\bigcup\) T unfolding IsAPartition_def by
auto
 let \(\tau=\) PTopology \(\bigcup \mathrm{T}\) T
 from Part have top: \(\tau\) \{is a topology\} and base:T \{is a base for\} \(\tau\)
 using Ptopology_is_a_topology by auto
 let \(f=\{\langle i,(N(c o n v e r s e(h) i)) \times\{i\}\rangle\). i \(\in\) range (h) \(\}\)
 have \(f: r a n g e(h) \rightarrow T\) using functionI[of f] Pi_def by auto
 then have \(f \in \operatorname{surj}(r a n g e(h), T)\) unfolding surj_def using apply_equality
by auto
 moreover
 have range \((h) \subseteq Q\) using inj unfolding inj_def range_def domain_def
Pi_def by auto
 ultimately have \(\mathrm{T} \lesssim Q\) using surj_fun_inv[of frange(h) TQ] assms (2)
Card_is_Ord lepoll_trans
 subset_imp_lepoll by auto
 then have \(\mathrm{T} \prec c s u c c(Q)\) using Card_less_csucc_eq_le assms (2) by auto
with base have (\(\tau\) \{is of second type of cardinal\}csucc(Q)) using IsSecondOfCard_def by auto
with top have \(\tau\) is separable of cardinal\}csucc(Q) using assms(1) by auto
then obtain \(D\) where sub: \(\operatorname{D\in Pow}(\bigcup \tau)\) and clos:Closure \((D, \tau)=\bigcup \tau\) and cardd: \(\mathrm{D} \prec \operatorname{csucc}(Q)\)
using IsSeparableOfCard_def by auto
then have \(D \lesssim Q\) using Card_less_csucc_eq_le assms(2) by auto
then obtain \(r\) where \(r: r \in \operatorname{inj}(D, Q)\) using lepoll_def by auto
then have bij2:converse(r):bij(range(r),D) using inj_bij_range bij_converse_bij

\section*{by auto}
then have surj2:converse(r): surj(range(r),D) using bij_def by auto
let \(R=\lambda i \in \operatorname{range}(h)\). \(\{j \in \operatorname{range}(r)\). converse \((r) j \in((N(\) converse \((h) i)) \times\{i\})\}\)
\{
fix i
assume AS:i \(\operatorname{trange}(\mathrm{h})\)
then have \(T:(N(\) converse \((h) i)) \times\{i\} \in T\) by auto
then have \(P\) : (\(N\) (converse (h)i)) \(\times\{i\} \in \tau\) using base unfolding IsAbaseFor_def
by blast
with top sub clos have \(\forall \mathrm{U} \in \tau . \mathrm{U} \neq 0 \longrightarrow \mathrm{D} \cap \mathrm{U} \neq 0\) using dense_int_open
by auto
with \(P\) have \((N(\) converse \((h) i)) \times\{i\} \neq 0 \longrightarrow D \cap(N(\) converse \((h) i)) \times\{i\} \neq 0\)
by auto
with \(T\) noEmpty have \(D \cap(N(\) converse \((h) i)) \times\{i\} \neq 0\) by auto
then obtain \(x\) where \(x \in D\) and \(p x: x \in(N\) (converse(h)i)) \(\times\{i\}\) by auto
with surj2 obtain \(j\) where \(j \in r a n g e(r)\) and converse(r) \(j=x\) unfold-
ing surj_def by blast
with px have \(j \in\{j \in \operatorname{range}(r)\). converse(r) \(j \in((N\) (converse(h)i)) \(\times\{i\})\}\)
by auto
then have Rifo using beta_if[of range(h) _ i] AS by auto
\}
then have nonE: \(\forall i \in\) range(h). Ri \(\neq 0\) by auto
\{
fix i \(j\)
assume i:i \(\in\) range (h) and \(j: j \in R i\)
from \(j\) i have converse(r) \(j \in((N(\) converse(h)i)) \(\times\{i\})\) using beta_if
by auto
\}
then have \(\mathrm{pp}: \forall \mathrm{i} \in \operatorname{range}(\mathrm{h}) . \forall \mathrm{j} \in \mathrm{Ri} . \operatorname{converse}(\mathrm{r}) \mathrm{j} \in((\mathrm{N}(\) converse \((\mathrm{h}) \mathrm{i})) \times\{\mathrm{i}\})\)
by auto
let \(E=\{\langle m, f s t(\) converse \((r)(\mu j . j \in R(h m)))\rangle . m \in M\}\)
have ff:function(E) unfolding function_def by auto
moreover
\{
fix m
assume \(M: m \in M\)
with inj have hm:hmerange(h) using apply_rangeI inj_def by auto
```

    {
            fix j
            assume j\inR(hm)
            with hm have j\inrange(r) using beta_if by auto
            from r have r:surj(D,range(r)) using fun_is_surj inj_def by auto
            with <j\inrange(r)` obtain d where d\inD and rd=j using surj_def
    by auto
then have j\inQ using r inj_def by auto
}
then have subcar:R(hm)\subseteqQ by blast
from nonE hm obtain ee where P:ee\inR(hm) by blast
with subcar have ee\inQ by auto
then have Ord(ee) using assms(2) Card_is_Ord Ord_in_Ord by auto
with P have ( }\mu\textrm{j}.j\inR(hm))\inR(hm) using LeastI[where i=ee and P= jj
j\inR(hm)]
by auto
with pp hm have converse(r)( }\mu\textrm{j}.j\inR(hm))\in((N(converse(h)(hm)))\times{(hm)}
by auto
then have converse(r)( }\mu\textrm{j}.j\in\textrm{f}(\textrm{hm}))\in((N(m))\times{(hm)}) using left_inverse[O
inj M]
by simp
then have fst(converse(r)( }\mu\textrm{j}.j\in\textrm{j}(\textrm{hm})))\in(N(m)) by aut
}
ultimately have thesis1:}\forall\textrm{m}\in\textrm{M}.\operatorname{Em}\in(N(m)) using function_apply_equality
by auto
{
fix e
assume e\inE
then obtain m where m\inM and e=\langlem,Em\rangle using function_apply_equality
ff by auto
with thesis1 have e\inSigma(M,\lambdat. Nt) by auto
}
then have E\inPow(Sigma(M,\lambdat. Nt)) by auto
with ff have E\inPi(M,\lambdam. Nm) using Pi_iff by auto
then have ( }\exists\textrm{f}.\textrm{f}:\textrm{Pi}(\textrm{M},\lambda\textrm{t}.\textrm{Nt})\wedge(\forall\textrm{t}\in\textrm{M}.ft\inNt)) using thesis1 by
auto
}
then show thesis using AxiomCardinalChoiceGen_def assms(2) by auto
qed
Here is the equivalence from the two previous results.

```
```

theorem Q_choice_eq_secon_imp_sepa:

```
theorem Q_choice_eq_secon_imp_sepa:
 assumes Card(Q)
 assumes Card(Q)
 shows (}\forall\textrm{T}.(\textrm{T}{\textrm{i
 shows (}\forall\textrm{T}.(\textrm{T}{\textrm{i
\longrightarrow \text { (T\{is separable of cardinal\}csucc(Q)))}
\longrightarrow \text { (T\{is separable of cardinal\}csucc(Q)))}
 \longleftrightarrow({the axiom of} Q {choice holds})
 \longleftrightarrow({the axiom of} Q {choice holds})
 using Q_choice_imp_second_imp_separable choice_subset_imp_choice
 using Q_choice_imp_second_imp_separable choice_subset_imp_choice
 using second_imp_separable_imp_Q_choice assms by auto
```

    using second_imp_separable_imp_Q_choice assms by auto
    ```

Given a base injective with a set, then we can find a base whose elements
are indexed by that set.
```

lemma base_to_indexed_base:
assumes B \lesssimQ B {is a base for}T
shows \existsN. {Ni. i\inQ}{is a base for}T
proof-
from assms obtain f where f_def:f\ininj(B,Q) unfolding lepoll_def by
auto
let ff={\langleb,fb\rangle. b\inB}
have domain(ff)=B by auto
moreover
have relation(ff) unfolding relation_def by auto
moreover
have function(ff) unfolding function_def by auto
ultimately
have fun:ff:B->range(ff) using function_imp_Pi[of ff] by auto
then have injj:ff\ininj(B,range(ff)) unfolding inj_def
proof
{
fix w x
assume AS:w\inBx\inB{\langleb, f b\rangle. b \in B} w = {\langleb, f b\rangle. b \in B} x
then have fw=fx using apply_equality[OF _ fun] by auto
then have w=x using f_def inj_def AS(1,2) by auto
}
then show }\forall\textrm{w}\in\textrm{B}.\forall\textrm{x}\in\textrm{B}.{\b,f b\rangle.b b B} w = {\langleb,f b\rangle. b \in
B} }\textrm{x}\longrightarrow\textrm{w}=\textrm{x}\mathrm{ by auto
qed
then have bij:ff\inbij(B,range(ff)) using inj_bij_range by auto
from fun have range(ff)={fb. b\inB} by auto
with f_def have ran:range(ff)\subseteqQ using inj_def by auto
let N={\langlei,(if i\inrange(ff) then converse(ff)i else 0)\rangle. i\inQ}
have FN:function(N) unfolding function_def by auto
have B\subseteq{Ni. i\inQ}
proof
fix t
assume a:t\inB
from bij have rr:ff:B->range(ff) unfolding bij_def inj_def by auto
have ig:fft=ft using a apply_equality[OF _ rr] by auto
have r:fft\inrange(ff) using apply_type[OF rr a].
from ig have t:fft\inQ using apply_type[OF _ a] f_def unfolding inj_def
by auto
with r have N(fft)=converse(ff)(fft) using function_apply_equality[OF
_ FN] by auto
then have N(fft)=t using left_inverse[OF injj a] by auto
then have t=N(fft) by auto
then have }\existsi\inQ. t=Ni using t(1) by aut
then show t\in{Ni. i\inQ} by simp
qed
moreover
have }\forall\textrm{r}\in{\textrm{Ni}. i\inQ}-B. r=0

```
```

    proof
        fix r
    assume r\in{Ni. i\inQ}-B
    then obtain j where R:j\inQr=Njr\not\inB by auto
    {
        assume AS:j\inrange(ff)
        with R(1) have Nj=converse(ff)j using function_apply_equality[OF
    _ FN] by auto
then have Nj\inB using apply_funtype[OF inj_is_fun[OF bij_is_inj[OF
bij_converse_bij[OF bij]]] AS]
by auto
then have False using R(3,2) by auto
}
then have j\not\inrange(ff) by auto
then show r=0 using function_apply_equality[OF _ FN] R(1,2) by auto
qed
ultimately have {Ni. i\inQ}=B\bigvee{Ni. i\inQ}=B \cup{0} by blast
moreover
have (B \cup{0})-{0}=B-{0} by blast
then have (B \cup{0})-{0} {is a base for}T using base_no_0[of BT] assms(2)
by auto
then have B \cup{0} {is a base for}T using base_no_0[of B \cup{0}T] by auto
ultimately
have {Ni. i\inQ}{is a base for}T using assms(2) by auto
then show thesis by auto
qed

```

\subsection*{58.4 Relation between numerability and compactness}

If the axiom of Q choice holds, then any topology of second type of cardinal \(\operatorname{csucc}(Q)\) is compact of cardinal \(\operatorname{csucc}(Q)\)
theorem compact_of_cardinal_Q:
assumes \{the axiom of\} \(Q\) \{choice holds for subsets\} (Pow(Q))
\(T\{i s\) of second type of cardinal\}csucc \((Q)\)
T\{is a topology\}
shows ((\(~(T)\) is compact of cardinal\}csucc(Q)\{in\}T)
proof-
from assms(1) have CC:Card(Q) and reg: \(\wedge \mathrm{M} N .(\mathrm{M} \lesssim \mathrm{Q} \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{Nt} \neq 0 \wedge \mathrm{Nt} \subseteq \operatorname{Pow}(\mathrm{Q})))\) \(\longrightarrow(\exists f . f: \operatorname{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{Nt}) \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{ft} \in \mathrm{Nt}))\) using
AxiomCardinalChoice_def by auto
from assms(2) obtain \(R\) where \(R \lesssim Q R\{i s\) a base for\}T unfolding IsSecondOfCard_def
using Card_less_csucc_eq_le CC by auto
with base_to_indexed_base obtain \(N\) where base:\{Ni. i \(\in Q\}\{i s\) a base for\}T
by blast
\{
fix M
assume \(A: \bigcup T \subseteq \bigcup\) MM \(\in \operatorname{Pow}(T)\)
let \(\alpha=\lambda U \in M\). \(\{i \in Q . N(i) \subseteq U\}\)
have inj: \(\alpha \in \operatorname{inj}(\mathrm{M}, \operatorname{Pow}(\mathrm{Q}))\) unfolding inj_def
```

    proof
    {
    show ( }\lambda|\inM.{i\inQ.N i \subseteqU}) \inM M Pow(Q) using lam_type[of
    M\lambdaU. {i \in Q . N(i) \subseteqU}%t. Pow(Q)] by auto
{
fix w x
assume AS:w\inMx\inM{i \in Q . N(i) \subseteqw} = {i \in Q . N(i) \subseteq x}
from AS(1,2) A(2) have w\inTx\inT by auto
then have w=Interior(w,T)x=Interior(x,T) using assms(3) topology0.Top_2_L3[of
T]
topology0_def[of T] by auto
then have UN:w=(\bigcup{B\in{N(i). i\inQ}. B\subseteqw})x=(\bigcup{B\in{N(i). i\inQ}.
B\subseteqx})
using interior_set_base_topology assms(3) base by auto
{
fix b
assume b\inw
then have }b\in\bigcup{{B\in{N(i). i\inQ}. B\subseteqw} using UN(1) by aut
then obtain S where S:S\in{N(i). i\inQ} b\inS S\subseteqw by blast
then obtain j where j:j\inQS=N(j) by auto
then have j\in{i \inQ.N(i)\subseteqw} using S(3) by auto
then have N(j)\subseteqxb\inN(j)j\inQ using S(2) AS(3) j by auto
then have b\in(\bigcup{B\in{N(i). i\inQ}. B\subseteqx}) by auto
then have b\inx using UN(2) by auto
}
moreover
{
fix b
assume b\inx
then have }b\in\bigcup{B\in{N(i). i\inQ}. B\subseteqx} using UN(2) by aut
then obtain S where S:S\in{N(i). i\inQ} b\inS S\subseteqx by blast
then obtain j where j:j\inQS=N(j) by auto
then have j\in{i}\inQ.N(i)\subseteqx} using S(3) by aut
then have j\in{i}\inQ.N(i)\subseteqw} using AS(3) by aut
then have N(j)\subseteqwb\inN(j)j\inQ using S(2) j(2) by auto
then have b\in(\bigcup{B\in{N(i). i\inQ}. B\subseteqw}) by auto
then have b\inw using UN(2) by auto
}
ultimately have w=x by auto
}
then show }\forallw\inM.\forallx\inM. (\lambdaU\inM. {i\inQ.N i \subseteqU}) w = ( \lambdaU\inM
{i\inQ.N i\subseteqU}) x \longrightarrow w = x by auto
}
qed
let X=\lambdai\inQ. {\alphaU. U }\in{V\inM.N(i)\subseteqV}
let M={i\inQ. Xi\not=0}
have subMQ:M\subseteqQ by auto
then have ddd:M \lesssimQ using subset_imp_lepoll by auto
then have M }\lesssimQ\foralli\inM. Xi\not=0\foralli\inM. Xi\subseteqPow(Q) by aut

```
then have \(\mathrm{M} \lesssim Q \forall i \in M . \mathrm{Xi} \neq 0 \forall \mathrm{i} \in \mathrm{M}\). \(\mathrm{Xi} \lesssim \operatorname{Pow}(\mathrm{Q})\) using subset_imp_lepoll by auto
then have (\(\exists \mathrm{f} . \mathrm{f}: \mathrm{Pi}(\mathrm{M}, \lambda \mathrm{t} . \mathrm{Xt}) \wedge(\forall \mathrm{t} \in \mathrm{M} . \mathrm{ft} \in \mathrm{Xt}))\) using reg[of MX] by auto
then obtain \(f\) where \(f: f: \operatorname{Pi}(M, \lambda t . X t)(!!t . t \in M \Longrightarrow f t \in X t)\) by auto
\{
fix m
assume \(S: m \in M\)
from \(f(2) S\) obtain \(Y Y\) where \(Y Y:(Y Y \in M)(f m=\alpha Y Y)\) by auto
then have \(Y:(Y Y \in M) \wedge(f m=\alpha Y)\) by auto
moreover
\{
fix \(U\)
assume \(\mathrm{U} \in \mathrm{M} \wedge(\mathrm{fm}=\alpha \mathrm{U})\)
then have \(U=Y Y\) using inj inj_def YY by auto
\}
then have \(\mathrm{r}: \wedge \mathrm{x} . \mathrm{x} \in \mathrm{M} \wedge(\mathrm{fm}=\alpha \mathrm{x}) \Longrightarrow \mathrm{x}=\mathrm{YY}\) by blast
have \(\exists!Y Y\). \(Y Y \in M \wedge f m=\alpha Y Y\) using ex1I[of \(\% \mathrm{Y} . \mathrm{Y} \in \mathrm{M} \wedge \mathrm{fm}=\alpha \mathrm{Y}, \mathrm{OF} \mathrm{Y} \mathrm{r}]\)
by auto
\}
then have ex1YY: \(\forall \mathrm{m} \in \mathrm{M} . \exists!\mathrm{YY} . \mathrm{YY} \in \mathrm{M} \wedge \mathrm{fm}=\alpha \mathrm{YY}\) by auto
let \(Y Y m=\{\langle m\), (THE YY. \(Y Y \in M \wedge f m=\alpha Y Y)\rangle . m \in M\}\)
have aux: \(\wedge \mathrm{m} . \mathrm{m} \in \mathrm{M} \Longrightarrow \mathrm{YYmm}=(\mathrm{THE} Y Y\). YY \(\in \mathrm{M} \wedge \mathrm{fm}=\alpha Y Y\)) unfolding apply_def by auto
have ree: \(\forall \mathrm{m} \in \mathrm{M} .(\mathrm{YYmm}) \in \mathrm{M} \wedge \mathrm{fm}=\alpha\) (YYmm)
proof fix m
assume \(C: m \in M\)
then have \(\exists\) ! YY. \(Y Y \in M \wedge f m=\alpha Y Y\) using ex1YY by auto
then have (THE YY. \(Y Y \in M \wedge f m=\alpha Y Y\)) \(\in M \wedge f m=\alpha\) (THE YY. \(Y Y \in M \wedge f m=\alpha Y Y\))
using the \([\) [of \(\% \mathrm{Y} . \mathrm{Y} \in \mathrm{M} \wedge \mathrm{fm}=\alpha \mathrm{Y}]\) by blast
then show (\(\mathrm{Y} Y \mathrm{~mm}\)) \(\in \mathrm{M} \wedge \mathrm{fm}=\alpha\) (YYmm) apply (simp only: aux[OFC]) done
qed
have \(t t: \bigwedge m . m \in M \Longrightarrow N(m) \subseteq Y Y m\)
proof-
fix m
assume \(D: m \in M\)
then have \(Q Q: m \in Q\) by auto
from \(D\) have \(t:(Y Y m m) \in M \wedge f m=\alpha(Y Y m m)\) using ree by blast
then have \(\mathrm{fm}=\alpha\) (YYmm) by blast
then have \((\alpha(Y Y m m)) \in(\lambda i \in Q .\{\alpha U . U \in\{V \in M . N(i) \subseteq V\}\}) m\) using \(f(2)[0 F\) D]
by auto
then have \((\alpha(Y Y m m)) \in\{\alpha \mathrm{U} . \mathrm{U} \in\{\mathrm{V} \in \mathrm{M} . \mathrm{N}(\mathrm{m}) \subseteq \mathrm{V}\}\}\) using QQ by auto
then obtain \(U\) where \(U \in\{V \in M . N(m) \subseteq V\} \alpha(Y Y m m)=\alpha U\) by auto
then have \(r: U \in \operatorname{MN}(\mathrm{~m}) \subseteq U \alpha(Y Y m m)=\alpha U(Y Y m m) \in M\) using \(t\) by auto
then have YYmm=U using inj_apply_equality[OF inj] by blast
then show \(N(m) \subseteq Y Y m m\) using \(r\) by auto
qed
```

    then have ( }\cup\textrm{m}\in\textrm{M}.N(\textrm{m}))\subseteq(\bigcup\textrm{m}\in\textrm{M}. YYmm
    proof-
        {
            fix s
            assume s\in(\bigcupm\inM.N(m))
            then obtain t where r:t\inMs\inN(t) by auto
            then have s\inYYmt using tt[OF r(1)] by blast
            then have s\in(\bigcupm\inM. YYmm) using r(1) by blast
        }
        then show thesis by blast
    qed
    moreover
    {
        fix x
        assume AT:x\in\bigcupT
        with A obtain U where BB:U\inMU\inTx\inU by auto
        then obtain j where BC:j\inQ N(j)\subseteqUx\inN(j) using point_open_base_neigh[OF
    base,of Ux] by auto
then have Xj\not=0 using }\textrm{BB}(1)\mathrm{ by auto
then have j\inM using BC(1) by auto
then have }x\in(\bigcupm\inM.N(m)) using BC(3) by aut
}
then have }\bigcupT\subseteq(\bigcupm\inM.N(m)) by blas
ultimately have covers:\T\subseteq(\bigcupm\inM. YYmm) using subset_trans[of \bigcupT(\bigcupm\inM.
N(m))(\bigcupm\inM. YYmm)]
by auto
have relation(YYm) unfolding relation_def by auto
moreover
have f:function(YYm) unfolding function_def by auto
moreover
have d:domain(YYm)=M by auto
moreover
have r:range(YYm)=YYmM by auto
ultimately
have fun:YYm:M->YYmM using function_imp_Pi[of YYm] by auto
have YYm\insurj(M,YYmM) using fun_is_surj[OF fun] r by auto
with surj_fun_inv[OF this subMQ Card_is_Ord[OF CC]]
have YYmM \lesssim M by auto
with ddd have Rw:YYmM \lesssimQ using lepoll_trans by blast
{
fix m assume m\inM
then have \langlem,YYmm\rangle\inYYm using function_apply_Pair[OF f] d by blast
then have YYmm\inYYmM by auto}
then have l1:{YYmm. m\inM}\subseteqYYmM by blast
{
fix t assume t\inYYmM
then have }\exists\textrm{x}\in\textrm{M}.\langlex,t\rangle\inYYm unfolding image_def by aut
then obtain r where S:r\inM }\r,t\rangle\inYYm by aut
have YYmr=t using apply_equality[OF S(2) fun] by auto

```
```

            with S(1) have t\in{YYmm. m\inM} by auto
        }
        with l1 have {YYmm. m\inM}=YYmM by blast
        with Rw have {YYmm. m\inM} \lesssimQ by auto
        with covers have {YYmm. m\inM}\inPow(M)^\T\subseteq\bigcup{YYmm. m\inM}^{YYmm. m\inM}
    \preccsucc(Q) using ree
Card_less_csucc_eq_le[OF CC] by blast
then have }\exists\textrm{N}\in\operatorname{Pow}(M).\T\subseteq\bigcupN/N\prec\operatorname{csucc}(Q)by aut
}
then have }\forallM\in\operatorname{Pow}(T).\T\subseteq\bigcupM\longrightarrow(\existsN\in\operatorname{Pow}(M).\T\subseteq\bigcupN^N\prec csucc(Q)
by auto
then show thesis using IsCompactOfCard_def Card_csucc CC Card_is_Ord
by auto
qed

```

In the following proof, we have chosen an infinite cardinal to be able to apply the equation \(Q \times Q \approx Q\). For finite cardinals; both, the assumption and the axiom of choice, are always true.
```

theorem second_imp_compact_imp_Q_choice_PowQ:
assumes }\forall\textrm{T}. (T{is a topology} ^ (T{is of second type of cardinal}csucc(Q))
\longrightarrow ( ( \bigcup T ) \{ i s ~ c o m p a c t ~ o f ~ c a r d i n a l \} c s u c c ( Q ) \{ i n \} T )
and InfCard(Q)
shows {the axiom of} Q {choice holds for subsets} (Pow(Q))
proof
{
fix N M
assume AS:M }\lesssimQ ^ ( \forallt\inM. Nt\not=0^Nt\subseteqPow(Q)
then obtain h where h\ininj(M,Q) using lepoll_def by auto
have discTop:Pow(Q\timesM) {is a topology} using Pow_is_top by auto
{
fix A
assume AS:A\inPow(Q\timesM)
have A=\bigcup{{i}. i\inA} by auto
with AS have }\exists\textrm{T}\in\operatorname{Pow}({{i}. i\inQ\timesM}). A=\T by aut
then have A\in{\bigcupU. U\inPow({{i}. i\inQ }\timesM}\mathrm{ ) } by auto
}
moreover
{
fix A
assume AS:A\in{\U. U\inPow({{i}. i\inQ }\times\mathrm{ M ) }
then have A\inPow (Q }\timesM\mathrm{ M) by auto
}
ultimately
have base:{{x}. x\inQ\timesM} {is a base for} Pow(Q\timesM) unfolding IsAbaseFor_def
by blast
let f={\langlei,{i}\rangle. i\inQ\timesM}
have fff:f\inQ }\timesM->{{i}. i\inQ\timesM} using Pi_def function_def by aut
then have f\ininj(Q\timesM,{{i}. i\inQ \M}) unfolding inj_def using apply_equality

```

\section*{by auto}
then have \(f \in \operatorname{bij}(Q \times M,\{\{i\} . i \in Q \times M\})\) unfolding bij_def surj_def using fff
apply_equality fff by auto
then have \(\mathrm{Q} \times \mathrm{M} \approx\{\{\mathrm{i}\}\). \(\mathrm{i} \in \mathrm{Q} \times \mathrm{M}\}\) using eqpoll_def by auto
then have \(\{\{i\} . i \in Q \times M\} \approx Q \times M\) using eqpoll_sym by auto
then have \(\{\{i\} . i \in Q \times M\} \lesssim Q \times M\) using eqpoll_imp_lepoll by auto
then have \(\{\{i\} . i \in Q \times M\} \lesssim Q \times Q\) using AS prod_lepoll_mono[of QQMQ] lepoll_refl[of Q]
lepoll_trans by blast
then have \(\{\{\mathrm{i}\} . \mathrm{i} \in \mathrm{Q} \times \mathrm{M}\} \lesssim \mathrm{Q}\) using InfCard_square_eqpoll assms(2) lepoll_eq_trans by auto
then have \(\{\{\mathrm{i}\}\). \(\mathrm{i} \in \mathrm{Q} \times \mathrm{M}\} \prec \operatorname{csucc}(\mathrm{Q})\) using Card_less_csucc_eq_le assms (2)
InfCard_is_Card by auto
then have \(\operatorname{Pow}(\mathrm{Q} \times \mathrm{M})\) \{is of second type of cardinal\} \(\operatorname{csucc}(\mathrm{Q})\) using IsSecondOfCard_def base by auto
then have comp: \((\mathbb{Q} \times \mathrm{M})\) \{is compact of cardinal\}csucc(Q)\{in\}Pow(\(\mathrm{Q} \times \mathrm{M}\))
using discTop assms(1) by auto
\{
fix w
assume \(W \in \operatorname{Pow}(Q \times M)\)
then have \(\mathrm{T}: \mathrm{W}\{i \mathrm{is}\) closed in\} \(\operatorname{Pow}(\mathrm{Q} \times \mathrm{M})\) and \((\mathrm{Q} \times \mathrm{M}) \cap \mathrm{W}=\mathrm{W}\) using IsClosed_def
by auto
with compact_closed[OF comp T] have (W \{is compact of cardinal\}csucc(Q) \{in\}Pow(\(\mathrm{Q} \times \mathrm{M}\)))
by auto
\}
then have subCompact: \(\forall \mathrm{W} \in \operatorname{Pow}(\mathrm{Q} \times \mathrm{M}\)). (W \{is compact of cardinal\}csucc(Q)\{in\}Pow(Q×M))
by auto
let \(c u b=\bigcup\{\{(U) \times\{t\} . U \in N t\} . t \in M\}\)
from AS have \((\cup\) cub \() \in \operatorname{Pow}((Q) \times M)\) by auto
with subCompact have Ncomp:((\((\) cub) \{is compact of cardinal\}csucc(Q)\{in\}Pow(Q×M))
by auto
have cond:(cub) \(\in \operatorname{Pow}(\operatorname{Pow}(Q \times M)) \wedge \bigcup\) cub \(\subseteq \bigcup\) cub using AS by auto
have \(\exists \mathrm{S} \in \operatorname{Pow}(\mathrm{cub}) .(U \mathrm{cub}) \subseteq \cup S \wedge S \prec \operatorname{csucc}(\mathrm{Q})\)
proof-
\{
have (\(\left(\begin{array}{l}\text { cub })\end{array}\right.\) is compact of cardinal\}csucc(Q)\{in\}Pow(Q×M)) using Ncomp by auto
then have \(\forall M \in \operatorname{Pow}(\operatorname{Pow}(\mathrm{Q} \times \mathrm{M})) . \cup \mathrm{cub} \subseteq \bigcup \mathrm{M} \longrightarrow(\exists \mathrm{Na} \in \operatorname{Pow}(\mathrm{M}) . \cup \mathrm{cub}\) \(\subseteq \bigcup \mathrm{Na} \wedge \mathrm{Na} \prec \operatorname{csucc}(\mathrm{Q}))\)
unfolding IsCompactOfCard_def by auto
with cond have \(\exists \mathrm{S} \in \operatorname{Pow}(\mathrm{cub}) . \cup \mathrm{cub} \subseteq \cup S \wedge S \prec \operatorname{csucc}(\mathrm{Q})\) by auto \}
then show thesis by auto
qed
then have ttt: \(\exists \mathrm{S} \in \operatorname{Pow}(\mathrm{cub}) .(\cup \mathrm{cub}) \subseteq \cup S \wedge \mathrm{~S} \lesssim \mathrm{Q}\) using Card_less_csucc_eq_le
assms(2) InfCard_is_Card by auto
then obtain \(S\) where S_def:S \(\in \operatorname{Pow}(c u b)(U\) cub \() \subseteq U S S \lesssim Q\) by auto
\{
fix \(t\)
assume \(A A: t \in M N t \neq\{0\}\)
from \(A A\) (1) AS have \(N t \neq 0\) by auto
with \(A A(2)\) obtain \(U\) where \(G: U \in N t\) and notEm: \(U \neq 0\) by blast
then have \(U \times\{t\} \in c u b\) using \(A A\) by auto
then have \(U \times\{t\} \subseteq \bigcup\) cub by auto
with \(G\) notEm AA have \(\exists \mathrm{s}\). \(\langle\mathrm{s}, \mathrm{t}\rangle \in \bigcup\) cub by auto
\}
then have \(\forall t \in \mathrm{M} .(\mathrm{Nt} \neq\{0\}) \longrightarrow(\exists \mathrm{s} .\langle\mathrm{s}, \mathrm{t}\rangle \in \bigcup \mathrm{cub})\) by auto
then have \(A: \forall t \in M .(N t \neq\{0\}) \longrightarrow(\exists s .\langle s, t\rangle \in \bigcup S)\) using \(S_{-} d e f(2)\) by blast
from S_def (1) have \(B: \forall f \in S . \exists t \in M . \exists U \in N t . f=U \times\{t\}\) by blast
from A B have \(\forall \mathrm{t} \in \mathrm{M}\). \((\mathrm{Nt} \neq\{0\}) \longrightarrow(\exists \mathrm{U} \in \mathrm{Nt} . \mathrm{U} \times\{\mathrm{t}\} \in \mathrm{S})\) by blast
then have noEmp: \(\forall \mathrm{t} \in \mathrm{M} .(\mathrm{Nt} \neq\{0\}) \longrightarrow(\mathrm{S} \cap(\{\mathrm{U} \times\{\mathrm{t}\} . \mathrm{U} \in \mathrm{Nt}\}) \neq 0)\) by auto
from S_def(3) obtain \(r\) where r:r:inj(S,Q) using lepoll_def by auto
then have bij2:converse(r):bij(range(r),S) using inj_bij_range bij_converse_bij
by auto
then have surj2:converse(r):surj(range(r),S) using bij_def by auto
let \(R=\lambda t \in M\). \(\{j \in \operatorname{range}(r)\). converse \((r) j \in(\{U \times\{t\} . U \in N t\})\}\)
\{
fix \(t\)
assume AA: \(t \in \operatorname{MNt} \neq\{0\}\)
then have \((S \cap(\{U \times\{t\} . U \in N t\}) \neq 0)\) using noEmp by auto
then obtain \(s\) where \(s s: s \in S s \in\{U \times\{t\}\). \(U \in N t\}\) by blast
then obtain \(j\) where converse \((r) j=s j \in\) range \((r)\) using surj2 unfold-
ing surj_def by blast
then have \(j \in\{j \in \operatorname{range}(r)\). converse \((r) j \in(\{U \times\{t\}\). \(U \in N t\})\}\) using ss
by auto
then have \(\mathrm{Rt} \neq 0\) using beta_if AA by auto
\}
then have nonE: \(\forall \mathrm{t} \in \mathrm{M}\). Nt \(\neq\{0\} \longrightarrow \mathrm{Rt} \neq 0\) by auto
\{
fix \(\mathrm{t} j\)
assume \(t \in M j \in R t\)
then have converse(r) \(j \in\{U \times\{t\}\). \(U \in N t\}\) using beta_if by auto \}
then have pp: \(\forall \mathrm{t} \in \mathrm{M} . \forall \mathrm{j} \in \mathrm{Rt}\). converse (r) \(j \in\{\mathrm{U} \times\{\mathrm{t}\} . \mathrm{U} \in \mathrm{Nt}\}\) by auto
have reg: \(\forall \mathrm{t} U \mathrm{~V} . \mathrm{U} \times\{\mathrm{t}\}=\mathrm{V} \times\{\mathrm{t}\} \longrightarrow \mathrm{U}=\mathrm{V}\)
proof-
\{
fix \(t U V\)
assume \(A A: U \times\{t\}=V \times\{t\}\)
\{
fix \(v\)
assume \(v \in V\)
then have \(\langle v, t\rangle \in \mathrm{V} \times\{\mathrm{t}\}\) by auto
then have \(\langle v, t\rangle \in U \times\{t\}\) using \(A A\) by auto
then have \(\mathrm{v} \in \mathrm{U}\) by auto
\}
```

            then have V\subseteqU by auto
            moreover
            {
                fix u
                assume u\inU
                then have }\langleu,t\rangle\inU \times{t} by aut
                then have }\langleu,t\rangle\inV\times{t} using AA by aut
                then have }u\inV\mathrm{ by auto
        }
            then have U\subseteqV by auto
            ultimately have U=V by auto
        }
        then show thesis by auto
    qed
    let E={\langlet,if Nt={0} then 0 else (THE U. converse(r)( }\mu\textrm{j}.j\inR\textrm{f})=\textrm{U}\times{t})\rangle
    t\inM}
have ff:function(E) unfolding function_def by auto
moreover
{
fix t
assume pm:t\inM
{ assume nonEE:Nt }\not={0
{
fix j
assume j\inRt
with pm(1) have j\inrange(r) using beta_if by auto
from r have r:surj(S,range(r)) using fun_is_surj inj_def by auto
with 〈j\inrange(r)` obtain d where d\inS and rd=j using surj_def
by auto
then have j\inQ using r inj_def by auto
}
then have sub:Rt\subseteqQ by blast
from nonE pm nonEE obtain ee where P:ee\inRt by blast
with sub have ee\inQ by auto
then have Ord(ee) using assms(2) Card_is_Ord Ord_in_Ord InfCard_is_Card
by blast
with P have ( }\mu\textrm{j}.j\inRt)\inRt using LeastI[where i=ee and P=\lambdaj
j\inRt] by auto
with pp pm have converse(r)( }\mu\textrm{j}.j\inR\textrm{R})\in{U\times{t}. U\inNt} by aut
then obtain W where converse(r) ( }\mu\textrm{j}.j\inR\textrm{L})=\textrm{W}\times{t}\mathrm{ and s:W\&Nt by
auto
then have (THE U. converse(r)( }\mu\textrm{j}.j\inR\textrm{f})=\textrm{U}\times{\textrm{t}})=W\mathrm{ using reg by
auto
with s have (THE U. converse(r)( }\mu\textrm{j}.j\inRt)=U\times{t})\inNt by aut
}
then have (if Nt={0} then O else (THE U. converse(r)( }\mu\textrm{j}.j\in\textrm{jt})=\textrm{U}\times{\textrm{t}}))\inN
by auto
}

```
ultimately have thesis1: \(\forall \mathrm{t} \in \mathrm{M}\). Et \(\in \mathrm{Nt}\) using function_apply_equality

\section*{by auto}
\{
fix e
assume \(e \in E\)
then obtain \(m\) where \(m \in M\) and \(e=\langle m, E m\rangle\) using function_apply_equality ff by auto
with thesis1 have \(e \in \operatorname{Sigma}(\mathrm{M}, \lambda \mathrm{t}\). Nt) by auto
\}
then have \(E \in \operatorname{Pow}(\operatorname{Sigma}(M, \lambda t . N t))\) by auto
with ff have \(E \in \operatorname{Pi}(M, \lambda m\). Nm) using Pi_iff by auto
then have \((\exists f . f: \operatorname{Pi}(M, \lambda t . N t) \wedge(\forall t \in M . f t \in N t))\) using thesis1 by auto\}
then show thesis using AxiomCardinalChoice_def assms(2) InfCard_is_Card by auto
qed
The two previous results, state the following equivalence:
theorem Q_choice_Pow_eq_secon_imp_comp:
assumes InfCard (Q)
shows \((\forall T\). (\(T\{i s\) a topology\} \(\wedge\) (\(T\{\) is of second type of cardinal\}csucc \((Q))\))
\(\longrightarrow((\bigcup T)\{i s\) compact of cardinal\}csucc(Q)\{in\}T))
\(\longleftrightarrow(\{\) the axiom of \} \(Q\) \{choice holds for subsets\} (Pow(Q)))
using second_imp_compact_imp_Q_choice_PowQ compact_of_cardinal_Q assms
by auto
In the next result we will prove that if the space \((\kappa, \operatorname{Pow}(\kappa))\), for \(\kappa\) an infinite cardinal, is compact of its successor cardinal; then all topologycal spaces which are of second type of the successor cardinal of \(\kappa\) are also compact of that cardinal.
```

theorem Q_csuccQ_comp_eq_Q_choice_Pow:
assumes InfCard(Q) (Q){is compact of cardinal}csucc(Q){in}Pow(Q)
shows }\forallT\mathrm{ . (T{is a topology} ^(T{is of second type of cardinal}csucc(Q)))
\longrightarrow((UT){is compact of cardinal}csucc(Q){in}T)
proof
fix T
{
assume top:T {is a topology} and sec:T{is of second type of cardinal}csucc(Q)
from assms have Card(csucc(Q)) Card(Q) using InfCard_is_Card Card_is_Ord
Card_csucc by auto
moreover
have \T\subseteq\bigcupT by auto
moreover
{
fix M
assume MT:M\inPow(T) and cover:\T\subseteq\bigcupM
from sec obtain B where B {is a base for} T B\preccsucc(Q) using IsSecondOfCard_def
by auto

```
with 〈Card(Q)〉obtain \(N\) where base:\{Ni. i \(\in Q\}\{\) is a base for\}T using Card_less_csucc_eq_le
base_to_indexed_base by blast
let \(S=\{\langle u,\{i \in Q . N i \subseteq u\}\rangle . u \in M\}\)
have function(S) unfolding function_def by auto
then have \(S: M \rightarrow\) Pow (\(Q\)) using Pi_iff by auto
then have \(S \in \operatorname{inj}(M, \operatorname{Pow}(Q))\) unfolding inj_def proof
\{
fix w x
assume AS: \(w \in M x \in M\{\langle u,\{i \in Q . N \quad i \subseteq u\}\rangle . u \in M\} w=\{\langle u\), \(\{i \in Q . N \quad i \subseteq u\}\rangle . u \in M\} x\)
with \(\langle S: M \rightarrow \operatorname{Pow}(Q)\rangle\) have \(A S S:\{i \in Q . N \quad i \subseteq w\}=\{i \in Q . N \quad i\)
\(\subseteq \mathrm{x}\}\) using apply_equality by auto
from \(A S(1,2)\) MT have \(w \in T x \in T\) by auto
then have \(w=\) Interior \((w, T) x=\) Interior (\(x, T\)) using top topology0.Top_2_L3[of
\(\mathrm{T}]\)
topology0_def[of T] by auto
then have \(U N: w=(\bigcup\{B \in\{N(i) . i \in Q\} . B \subseteq w\}) x=(\bigcup\{B \in\{N(i) . i \in Q\}\). \(B \subseteq x\}\))
using interior_set_base_topology top base by auto
\{
fix b
assume \(b \in w\)
then have \(b \in \bigcup\{B \in\{N(i)\). \(i \in Q\}\). \(B \subseteq w\}\) using \(U N(1)\) by auto
then obtain \(S\) where \(S: S \in\{N(i)\). \(i \in Q\} b \in S S \subseteq w\) by blast
then obtain \(j\) where \(j: j \in Q S=N(j)\) by auto
then have \(j \in\{i \in Q . N(i) \subseteq w\}\) using \(S(3)\) by auto
then have \(N(j) \subseteq x b \in N(j) j \in Q\) using \(S(2)\) ASS \(j\) by auto
then have \(b \in(\bigcup\{B \in\{N(i)\). \(i \in Q\}\). \(B \subseteq x\})\) by auto
then have \(b \in \mathrm{x}\) using \(\mathrm{UN}(2)\) by auto
\}
moreover
\{
fix b
assume \(b \in x\)
then have \(b \in \bigcup\{B \in\{N(i) . i \in Q\}\). \(B \subseteq x\}\) using \(U N(2)\) by auto
then obtain \(S\) where \(S: S \in\{N(i)\). \(i \in Q\} b \in S S \subseteq x\) by blast
then obtain \(j\) where \(j: j \in Q S=N(j)\) by auto
then have \(j \in\{i \in Q . N(i) \subseteq x\}\) using \(S(3)\) by auto
then have \(j \in\{i \in Q . N(i) \subseteq w\}\) using ASS by auto
then have \(N(j) \subseteq w b \in N(j) j \in Q\) using \(S(2) j(2)\) by auto
then have \(b \in(\bigcup\{B \in\{N(i)\). \(i \in Q\}\). \(B \subseteq w\})\) by auto
then have \(b \in w\) using \(U N\) (2) by auto
\}
ultimately have \(\mathrm{w}=\mathrm{x}\) by auto
\}
then show \(\forall w \in M . \forall x \in M .\{\langle u,\{i \in Q . N \quad i \subseteq u\}\rangle . u \in M\} w\)
\(=\{\langle u,\{i \in Q \cdot N \quad i \subseteq u\}\rangle \cdot u \in M\} x \longrightarrow w=x\) by auto
```

qed
then have $S \in \operatorname{bij}(M, r a n g e(S))$ using fun_is_surj unfolding bij_def inj_def surj_def by force
have range ( S ) $\subseteq$ Pow ( Q ) by auto
then have range (S) $\in \operatorname{Pow}(\operatorname{Pow}(Q)$ ) by auto
moreover
have ( $\cup$ (range (S))) \{is closed in\} Pow(Q) $Q \cap(\bigcup$ range $(S))=(\bigcup$ range ( $(S))$ using IsClosed_def by auto
from this(2) compact_closed[0F assms(2) this(1)] have (Urange(S))\{is compact of cardinal\}csucc(Q) \{in\}Pow(Q)
by auto
moreover
have $\cup($ range $(S)) \subseteq \bigcup$ (range $(S))$ by auto
ultimately have $\exists \mathrm{S} \in \operatorname{Pow}($ range $(S))$. ( $\bigcup$ (range ( $S$ ) ) $\subseteq \subseteq S \wedge S \prec \operatorname{csucc}(Q)$
using IsCompactOfCard_def by auto
then obtain SS where SS_def:SS¢range(S) (U(range(S))) $\subseteq \bigcup$ SS SS $\prec$
csucc(Q) by auto
with $\langle S \in \operatorname{bij}(M, r a n g e(S))\rangle$ have con:converse(S) $\in$ bij(range(S), M) using bij_converse_bij by auto
then have r1:restrict(converse(S), SS) $\in$ bij(SS, converse(S)SS) us-
ing restrict_bij bij_def SS_def(1) by auto
then have rr:converse(restrict(converse(S),SS)) $\in$ bij(converse(S)SS,SS)
using bij_converse_bij by auto
\{
fix $x$
assume $x \in \bigcup T$
with cover have $x \in \bigcup M$ by auto
then obtain $R$ where $R \in M x \in R$ by auto
with MT have $R \in T$ x $\in R$ by auto
then have $\exists V \in\{N i . i \in Q\} . V \subseteq R \wedge x \in V$ using point_open_base_neigh base by force
then obtain $j$ where $j \in Q \quad N j \subseteq R$ and $x \_p: x \in N j$ by auto
with $\langle R \in M\rangle\langle S: M \rightarrow \operatorname{Pow}(Q)\rangle\langle S \in \operatorname{bij}(M, r a n g e(S))\rangle$ have $\operatorname{SR} \in$ range $(S) \wedge$
$j \in S R$ using apply_equality
bij_def inj_def by auto
from exI[where $P=\lambda t$. t $\in$ range $(S) \wedge j \in t, 0 F$ this] have $\exists A \in r a n g e(S)$.
$j \in A$ unfolding Bex_def
by auto
then have $j \in(\bigcup$ (range(S))) by auto
then have $j \in \bigcup S S$ using SS_def(2) by blast
then obtain $S R$ where $S R \in S S j \in S R$ by auto
moreover
have converse(restrict(converse(S), SS)) $\in \operatorname{surj}$ (converse(S) SS, SS)
using rr bij_def by auto
ultimately obtain RR where converse(restrict(converse(S), SS))RR=SR
and $\mathrm{p}: \mathrm{RR} \in$ converse (S)SS unfolding surj_def by blast
then have converse(converse(restrict(converse(S), SS))) (converse(restrict(converse (S by auto
moreover

```
have converse（restrict（converse（S），SS））\(\in \operatorname{inj}\)（converse（S）SS，SS）
using rr unfolding bij＿def by auto
moreover
ultimately have \(R R=\) converse（converse（restrict（converse（S），SS）））SR
using left＿inverse［OF＿p］
by force
moreover
with r1 have restrict（converse（S），SS）\(\in S S \rightarrow\) converse（S）SS unfold－
ing bij＿def inj＿def by auto
then have relation（restrict（converse（S），SS））using Pi＿def relation＿def
by auto
then have converse（converse（restrict（converse（S），SS）））＝restrict（converse（S），SS）
using relation＿converse＿converse by auto
ultimately have RR＝restrict（converse（S），SS）SR by auto
with 〈SR \(\in S S\) 〉 have eq：\(R R=\) converse（S）SR unfolding restrict by auto
then have converse（converse（S））RR＝converse（converse（S））（converse（S）SR）
by auto
moreover
with 〈SRESS〉 have SRErange（S）using SS＿def（1）by auto
from con left＿inverse［OF＿this］have converse（converse（S））（converse（S）SR）＝SR
unfolding bij＿def
by auto
ultimately have converse（converse（S））RR＝SR by auto
then have SRR＝SR using relation＿converse＿converse［of S］unfold－
ing relation＿def by auto
moreover
have converse（S）：range（S）\(\rightarrow \mathrm{M}\) using con bij＿def inj＿def by auto
with \(\langle S R \in\) range（ \(S\) ）〉 have converse（S）SR \(\in M\) using apply＿funtype
by auto
with eq have \(R R \in M\) by auto
ultimately have \(S R=\{i \in Q . N i \subseteq R R\}\) using \(\langle S: M \rightarrow P o w(Q)\rangle\) apply＿equality
by auto
then have \(N j \subseteq R R\) using \(\langle j \in S R\rangle\) by auto
with \(x _p\) have \(x \in R R\) by auto
with \(p\) have \(x \in \bigcup\)（converse（S）SS）by auto
\}
then have \(\bigcup T \subseteq \bigcup\)（converse（S）SS）by blast
moreover
\｛
from con have converse（S）SS＝\｛converse（S）R．R \(\in\) SS\} using image_function[of converse（S）SS］

SS＿def（1）unfolding range＿def bij＿def inj＿def Pi＿def by auto have \｛converse（S）R．R \(\in \operatorname{SS}\} \subseteq\{\) converse（S）R．R \(\in\) range（S）\} using SS_def(1)
by auto
moreover
have converse（S）：range（S）\(\rightarrow \mathrm{M}\) using con unfolding bij＿def inj＿def by auto
then have \｛converse（S）R．R \(\in\) range（ \(S\) ）\} \(\subseteq M\) using apply＿funtype by force
```

            ultimately
            have (converse(S)SS)\subseteqM by auto
        }
        then have converse(S)SS\inPow(M) by auto
        moreover
        with rr have converse(S)SS\approxSS using eqpoll_def by auto
        then have converse(S)SS\preccsucc(Q) using SS_def(3) eq_lesspoll_trans
    by auto
ultimately
have \existsN\inPow(M). \T\subseteq\bigcupN ^ N\preccsucc(Q) by auto
}
then have }\forallM\in\operatorname{Pow}(T).\T\subseteq\bigcupM\longrightarrow(\existsN\in\operatorname{Pow}(M).\T\subseteq\bigcupN^N\preccsucc(Q)
by auto
ultimately have (UT){is compact of cardinal}csucc(Q){in}T unfold-
ing IsCompactOfCard_def
by auto
}
then show (T {is a topology}) ^ (T {is of second type of cardinal}csucc(Q))
((UT){is compact of cardinal}csucc(Q) {in}T)
by auto
qed
theorem Q_disc_is_second_card_csuccQ:
assumes InfCard(Q)
shows Pow(Q){is of second type of cardinal}csucc(Q)
proof-
{
fix A
assume AS:A\inPow(Q)
have A=\{{{i}. i\inA} by auto
with AS have }\exists\textrm{T}\in\operatorname{Pow}({{i}. i\inQ}). A=\bigcupT by aut
then have A\in{\U. U\inPow({{i}. i\inQ})} by auto
}
moreover
{
fix A
assume AS:A\in{\U. U\inPow({{i}. i\inQ})}
then have A\inPow(Q) by auto
}
ultimately
have base:{{x}. x\inQ} {is a base for} Pow(Q) unfolding IsAbaseFor_def
by blast
let f={\langlei,{i}\rangle.i\inQ}
have f\inQ->{{x}. x\inQ} unfolding Pi_def function_def by auto
then have f\ininj(Q,{{x}. x\inQ}) unfolding inj_def using apply_equality
by auto
moreover
from <f\inQ->{{x}. x\inQ}> have f\insurj(Q,{{x}. x\inQ}) unfolding surj_def
using apply_equality

```
```

        by auto
    ultimately have f\inbij(Q,{{x}. x\inQ}) unfolding bij_def by auto
    then have Q\approx{{x}. x\inQ} using eqpoll_def by auto
    then have {{x}. x\inQ}\approxQ using eqpoll_sym by auto
    then have {{x}. x\inQ} \Q using eqpoll_imp_lepoll by auto
    then have {{x}. x\inQ}\preccsucc(Q) using Card_less_csucc_eq_le assms InfCard_is_Card
    by auto
with base show thesis using IsSecondOfCard_def by auto
qed

```

This previous results give us another equivalence of the axiom of \(Q\) choice that is apparently weaker (easier to check) to the previous one.
```

theorem Q_disc_comp_csuccQ_eq_Q_choice_csuccQ:
assumes InfCard(Q)
shows (Q{is compact of cardinal}csucc(Q){in}(Pow(Q))) \longleftrightarrow ({the axiom
of}Q{choice holds for subsets}(Pow(Q)))
proof
assume Q{is compact of cardinal}csucc(Q) {in}Pow(Q)
with assms show {the axiom of}Q{choice holds for subsets}(Pow(Q)) us-
ing Q_choice_Pow_eq_secon_imp_comp Q_csuccQ_comp_eq_Q_choice_Pow
by auto
next
assume {the axiom of}Q{choice holds for subsets}(Pow(Q))
with assms show Q{is compact of cardinal}csucc(Q){in}(Pow(Q)) using
Q_disc_is_second_card_csuccQ Q_choice_Pow_eq_secon_imp_comp Pow_is_top[of
Q]
by force
qed

```
end

\section*{59 Topology 5}
theory Topology_ZF_5 imports Topology_ZF_examples Topology_ZF_properties
func1 Topology_ZF_examples_1 Topology_ZF_4
begin

\subsection*{59.1 Some results for separation axioms}

First we will give a global characterization of \(T_{1}\)-spaces; which is interesting because it involves the cardinal \(\mathbb{N}\).
```

lemma (in topology0) T1_cocardinal_coarser:
shows (T {is T T }) \longleftrightarrow (CoFinite (UT))\subseteqT
proof
{
assume AS:T {is T T }
{

```
```

    fix x assume p:x\in\bigcupT
    {
        fix y assume y\in(UT)-{x}
        with AS p obtain U where U\inT y\inU x\not\inU using isT1_def by blast
        then have U\inT y\inU U\subseteq(UT)-{x} by auto
        then have }\exists\textrm{U}\inT.y\inU\wedgeU\subseteq(UT)-{x} by aut
    }
    then have }\forally\in(UT)-{x}.\existsU\inT. y\inU\wedgeU\subseteq(UT)-{x} by aut
    then have \T-{x}\inT using open_neigh_open by auto
    with p have {x} {is closed in}T using IsClosed_def by auto
    }
    then have pointCl:\forallx\in\T. {x} {is closed in} T by auto
    {
    fix A
    assume AS2:A\inFinPow(UT)
    let p={\langlex,{x}\rangle. x\inA}
    have p\inA->{{x}. x\inA} using Pi_def unfolding function_def by auto
    then have p:bij(A,{{x}. x\inA}) unfolding bij_def inj_def surj_def
    using apply_equality
by auto
then have A\approx{{x}. x\inA} unfolding eqpoll_def by auto
with AS2 have Finite({{x}. x\inA}) unfolding FinPow_def using eqpoll_imp_Finite_iff
by auto
then have {{x}. x\inA}\inFinPow({D \in Pow(\T) . D {is closed in} T})
using AS2 pointCl unfolding FinPow_def
by (safe, blast+)
then have ( }\cup{{x}. x\inA}) {is closed in} T using fin_union_cl_is_c
by auto
moreover
have }\bigcup{{x}. x\inA}=A by aut
ultimately have A {is closed in} T by simp
}
then have reg:\forallA\inFinPow(\T). A {is closed in} T by auto
{
fix U
assume AS2:U \in CoCardinal(UT,nat)
then have U\in\operatorname{Pow}(\bigcupT) U=0 \vee ((UT)-U)\precnat using CoCardinal_def by
auto
then have U\inPow(\T) U=0 V Finite(UT-U) using lesspoll_nat_is_Finite
by auto
then have U\in\operatorname{Pow (UT) U\inTV(UT-U) {is closed in} T using empty_open}
topSpaceAssum
reg unfolding FinPow_def by auto
then have U\in\operatorname{Pow (UT) U\inTV (UT-(UT-U)) \inT using IsClosed_def by}
auto
moreover
then have (UT-(UT-U))=U by blast
ultimately have U\inT by auto
}

```
```

        then show (CoFinite (UT))\subseteqT using Cofinite_def by auto
    }
    {
        assume (CoFinite (\T))\subseteqT
        then have AS:CoCardinal(UT,nat) \subseteq T using Cofinite_def by auto
        {
            fix x y
            assume AS2: }\textrm{x}\in\bigcup\textrm{T}y\in\bigcupTx\not=
            have Finite({y}) by auto
            then obtain n where {y}\approxn n\innat using Finite_def by auto
            then have {y}\precnat using n_lesspoll_nat eq_lesspoll_trans by auto
            then have {y} {is closed in} CoCardinal(UT,nat) using closed_sets_cocardinal
                AS2(2) by auto
            then have (\bigcupT)-{y}\inCoCardinal(\T,nat) using union_cocardinal
    IsClosed_def by auto
with AS have (UT)-{y}\inT by auto
moreover
with AS2 (1,3) have }x\in((\bigcupT)-{y}) \wedge y\not\in((UT)-{y}) by aut
ultimately have }\exists\textrm{V}\in\textrm{T}.\textrm{x}\in\textrm{V}\wedge<br>textrm{y}\not\in\textrm{V}\mathrm{ by (safe,auto)
}
then show T {is T T } using isT1_def by auto
}
qed

```

In the previous proof, it is obvious that we don't need to check if ever cofinite set is open. It is enough to check if every singleton is closed.
```

corollary(in topology0) T1_iff_singleton_closed:
shows (T {is T T1}) \longleftrightarrow(\forallx\in\bigcupT. {x}{is closed in}T)
proof
assume AS:T {is T T }
{
fix x assume p:x\in\T
{
fix y assume y\in(UT)-{x}
with AS p obtain U where U\inT y\inU x\not\inU using isT1_def by blast
then have }U\inT y\inU U\subseteq(\bigcupT)-{x} by aut
then have }\exists\textrm{U}\in\textrm{T}.\textrm{y}\in\textrm{U}\wedgeU\subseteq(\cupT)-{x} by aut
}
then have }\forally\in(UT)-{x}.\existsU\inT. y\inU\wedgeU\subseteq(UT)-{x} by aut
then have UT-{x}\inT using open_neigh_open by auto
with p have {x} {is closed in}T using IsClosed_def by auto
}
then show pointCl:\forallx\in\T. {x} {is closed in} T by auto
next
assume pointCl:\forallx\in\T. {x} {is closed in} T
{
fix A
assume AS2:A\inFinPow(UT)
let p={\langlex,{x}\rangle. x\inA}

```
```

    have p\inA->{{x}. x\inA} using Pi_def unfolding function_def by auto
    then have p:bij(A,{{x}. x\inA}) unfolding bij_def inj_def surj_def
    using apply_equality
by auto
then have A\approx{{x}. x\inA} unfolding eqpoll_def by auto
with AS2 have Finite({{x}. x\inA}) unfolding FinPow_def using eqpoll_imp_Finite_iff
by auto
then have {{x}. x\inA}\in\operatorname{FinPow}({D\in\operatorname{Pow}(\bigcupT). D {is closed in} T})
using AS2 pointCl unfolding FinPow_def
by (safe, blast+)
then have ( }\bigcup{{x}. x\inA}) {is closed in} T using fin_union_cl_is_cl
by auto
moreover
have }\bigcup{{x}. x\inA}=A by aut
ultimately have A {is closed in} T by simp
}
then have reg:\forallA\inFinPow(UT). A {is closed in} T by auto
{
fix U
assume AS2:U\inCoCardinal(UT,nat)
then have U\inPow(\T) U=0 \vee ((UT)-U)\precnat using CoCardinal_def by
auto
then have U\in\operatorname{Pow (UT) U=0 V Finite(\T-U) using lesspoll_nat_is_Finite}
by auto
then have U\in\operatorname{Pow (UT) U\inTV(UT-U) {is closed in} T using empty_open}
topSpaceAssum
reg unfolding FinPow_def by auto
then have U\in\operatorname{Pow (UT) U\inT\vee (UT-(UT-U))\inT using IsClosed_def by auto}
moreover
then have (UT-(UT-U))=U by blast
ultimately have U\inT by auto
}
then have (CoFinite (UT))\subseteqT using Cofinite_def by auto
then show T {is }\mp@subsup{T}{1}{}}\mathrm{ using T1_cocardinal_coarser by auto
qed
Secondly, let's show that the CoCardinal X Q topologies for different sets $Q$ are all ordered as the partial order of sets. (The order is linear when considering only cardinals)

```
```

lemma order_cocardinal_top:

```
lemma order_cocardinal_top:
 fixes X
 fixes X
 assumes Q1\lesssimQ2
 assumes Q1\lesssimQ2
 shows CoCardinal(X,Q1) \subseteq CoCardinal(X,Q2)
 shows CoCardinal(X,Q1) \subseteq CoCardinal(X,Q2)
proof
proof
 fix x
 fix x
 assume x \in CoCardinal(X,Q1)
 assume x \in CoCardinal(X,Q1)
 then have }x\in\operatorname{Pow (X) x=0V (X-x)}\precQ1 using CoCardinal_def by aut
 then have }x\in\operatorname{Pow (X) x=0V (X-x)}\precQ1 using CoCardinal_def by aut
 with assms have }x\in\operatorname{Pow}(X) x=0\vee(X-x)\precQ2 using lesspoll_trans2 by aut
 with assms have }x\in\operatorname{Pow}(X) x=0\vee(X-x)\precQ2 using lesspoll_trans2 by aut
 then show }x\inCoCardinal(X,Q2) using CoCardinal_def by aut
```

    then show }x\inCoCardinal(X,Q2) using CoCardinal_def by aut
    ```
qed
corollary cocardinal_is_T1:
fixes X K
assumes InfCard(K)
shows CoCardinal (X,K) \{is \(\left.\mathrm{T}_{1}\right\}\)
proof-
have nat \(\leq K\) using InfCard_def assms by auto
then have nat \(\subseteq K\) using le_imp_subset by auto
then have nat \(\lesssim K K \neq 0\) using subset_imp_lepoll by auto
then have CoCardinal(X,nat) \(\subseteq \operatorname{CoCardinal}(X, K) \cup \operatorname{CoCardinal}(X, K)=X\) us-
ing order_cocardinal_top
union_cocardinal by auto
then show thesis using topology0.T1_cocardinal_coarser topology0_CoCardinal
assms Cofinite_def
by auto
qed
In \(T_{2}\)-spaces, filters and nets have at most one limit point.
```

lemma (in topology0) T2_imp_unique_limit_filter:

```

```

    shows x=y
    proof-
{
assume x}=\textrm{y
from assms(3,4) have x\in\T y\in\bigcupT using FilterConverges_def assms(2)
by auto
with \langlex\not=y\rangle have }\exists\textrm{U}\in\textrm{T}.\exists\textrm{V}\in\textrm{T}.\textrm{x}\in\textrm{U}\wedge\ y\inV ^ U\capV=0 using assms(1) isT2_de
by auto
then obtain U V where }x\inU\quady\inV U\capV=0 U\inT V\inT by aut
then have U }\in{A\in\operatorname{Pow}(\bigcupT). x\in\operatorname{Interior(A,T)} V\in{A\inPow(\T). y\inInterior(A,T)}
using Top_2_L3 by auto
then have U\in\mathfrak{F}V\in\mathscr{F}\mathrm{ using FilterConverges_def assms(2) assms(3,4)}
by auto
then have U\capV\in\mathfrak{F}\mathrm{ using IsFilter_def assms(2) by auto}\mp@code{}\mathrm{ (2)}
with 〈U\capV=0` have 0\in\mathcal{F}\mathrm{ by auto}
then have False using IsFilter_def assms(2) by auto
}
then show thesis by auto
qed
lemma (in topology0) T2_imp_unique_limit_net:
assumes T {is T T } N {is a net on}\bigcupT N }\mp@subsup{->}{N}{}\textrm{x N }\mp@subsup{->}{N}{}\textrm{y
shows x=y
proof-
have (Filter N..(UT)) {is a filter on} (UT) (Filter N..(UT)) >
x (Filter N..(UT)) }\mp@subsup{->}{F}{}\textrm{y
using filter_of_net_is_filter(1) net_conver_filter_of_net_conver assms(2)
assms(3,4) by auto

```
```

    with assms(1) show thesis using T2_imp_unique_limit_filter by auto
    ```
qed

In fact, \(T_{2}\)-spaces are characterized by this property. For this proof we build a filter containing the union of two filters.
```

lemma (in topology0) unique_limit_filter_imp_T2:
assumes }\forall\textrm{x}\in\bigcup\textrm{T}.\forall\textrm{y}\in\bigcup\textrm{T}.\forall\mathfrak{F}.((\mathfrak{F}\mathrm{ {is a filter on}\T) ^({F }\mp@subsup{->}{F}{}\textrm{x}
^(\mathfrak{F}}\mp@subsup{->}{F}{}\textrm{y}))\longrightarrow\textrm{x}=\textrm{y
shows T {is T2}
proof-
{
fix x y
assume }x\in\bigcupT y\in\bigcupT x\not=
{
assume }\forall\textrm{U}\in\textrm{T}.\quad\forall\textrm{V}\in\textrm{T}.\quad(x\inU \wedge y\inV) \longrightarrow U\capV\not=
let Ux={A\inPow(UT). x\inint(A)}
let Uy={A\in\operatorname{Pow}(UT). y\inint(A)}
let FF=Ux \cup Uy \cup{A\capB. \langleA,B\rangle\inUx }\times||y
have sat:FF {satisfies the filter base condition}
proof-
{
fix A B
assume A\inFF B\inFF
{
assume A\inUx
{
assume B\inUx
with \langlex\in\bigcupT\rangle\langleA\inUx\rangle have A\capB\inUx using neigh_filter(1) IsFilter_def
by auto
then have A\capB\inFF by auto
}
moreover
{
assume }B\inU
with \langleA\inUx\rangle have A\capB\inFF by auto
}
moreover
{
assume B\in{A\capB. }\langleA,B\rangle\inUx\timesUy
then obtain AA BB where B=AA\capBB AA\inUx BB\inUy by auto
with \langlex\in\bigcupT\rangle\langleA\inUx\rangle have A\capB=(A\capAA)\capBB A\capAA\inUx using neigh_filter(1)
IsFilter_def by auto
with \langleBB\inUy\rangle have A\capB\in{A\capB. \langleA,B\rangle\inUx }\times\mathrm{ Uy} by auto
then have A\capB\inFF by auto
}
ultimately have A\capB\inFF using \langleB\inFF\rangle by auto
}
moreover
{

```
```

        assume A\inUy
        {
    assume B\inUy
    with }\langle\textrm{y}\in\bigcup\T\rangle\langleA\inUy\rangle have A\capB\inUy using neigh_filter(1) IsFilter_def
    by auto
then have A\capB\inFF by auto
}
moreover
{
assume B\inUx
with <A\inUy〉 have B\capA\inFF by auto
moreover have A\capB=B\capA by auto
ultimately have }\textrm{A}\cap\textrm{B}\in\textrm{FF}\mathrm{ by auto
}
moreover
{
assume B\in{A\capB. }\langle\textrm{A},\textrm{B}\rangle\inUx\timesUy
then obtain AA BB where B=AA\capBB AA\inUx BB\inUy by auto
with }\langle\textrm{y}\in\bigcup<br><br>\langleA\inUy\rangle\mathrm{ have A}A\capB=AA\cap(A\capBB) A\capBB\inUy using neigh_filter(1
IsFilter_def by auto
with \langleAA\inUx\rangle have A\capB\in{A\capB. \langleA,B\rangle\inUx }\times\mathrm{ Uy} by auto
then have A\capB\inFF by auto
}
ultimately have }\textrm{A}\cap\textrm{B}\in\textrm{FF}\mathrm{ using \B}\in\textrm{FF}\rangle\mathrm{ by auto
}
moreover
{
assume A\in{A\capB. }\langle\textrm{A},\textrm{B}\rangle\inUx\timesUy
then obtain AA BB where A=AA\capBB AA\inUx BB\inUy by auto
{
assume B\inUy
with 〈BB\inUy\rangle\langley\in\bigcupT\rangle have B\capBB\inUy using neigh_filter(1)
IsFilter_def by auto
moreover from \langleA=AA\capBB\rangle have A\capB=AA\cap(B\capBB) by auto
ultimately have A\capB\inFF using \langleAA\inUx\rangle}\langle\textrm{B}\cap\textrm{BB}\inU|y\rangle\mathrm{ by auto
}
moreover
{
assume B\inUx
with \langleAA\inUx\rangle \langlex\in\bigcupT\rangle have B\capAA\inUx using neigh_filter(1)
IsFilter_def by auto
moreover from <A=AA\capBB\rangle have }A\capB=(B\capAA)\capBB\mathrm{ by auto
ultimately have A\capB\inFF using \langleB\capAA\inUx\rangle\langleBB\inUy\rangle by auto
}
moreover
{
assume B\in{A\capB. }\langleA,B\rangle\inUx\timesUy
then obtain AA2 BB2 where B=AA2\capBB2 AA2 }\in\mathrm{ Ux BB2 }\inUy\mathrm{ by auto
from \langleB=AA2\capBB2\rangle\langleA=AA\capBB\rangle have A\capB=(AA\capAA2)\cap(BB\capBB2) by

```
moreover
from \(\langle A A \in U x\rangle\langle A A 2 \in U x\rangle\langle x \in \bigcup T\rangle\) have \(A A \cap A A 2 \in U x\) using neigh_filter (1) IsFilter_def by auto
moreover
from \(\langle\mathrm{BB} \in \mathrm{Uy}\rangle\langle\mathrm{BB} 2 \in \mathrm{Uy}\rangle\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle\) have \(\mathrm{BB} \cap \mathrm{BB} 2 \in \mathrm{Uy}\) using neigh_filter(1)
IsFilter_def by auto
ultimately have \(\mathrm{A} \cap \mathrm{B} \in \mathrm{FF}\) by auto
\}
ultimately have \(A \cap B \in F F\) using \(\langle B \in F F\rangle\) by auto
\}
ultimately have \(A \cap B \in F F\) using \(\langle A \in F F\rangle\) by auto
then have \(\exists D \in F F\). \(D \subseteq A \cap B\) unfolding Bex_def by auto
\}
then have \(\forall \mathrm{A} \in \mathrm{FF} . \forall \mathrm{B} \in \mathrm{FF} . \exists \mathrm{D} \in \mathrm{FF} . \mathrm{D} \subseteq \mathrm{A} \cap \mathrm{B}\) by force
moreover
have \(\bigcup T \in U x\) using \(\langle x \in \bigcup T\rangle\) neigh_filter (1) IsFilter_def by auto then have \(\mathrm{FF} \neq 0\) by auto
moreover
\{
assume \(0 \in F F\)
moreover
have \(0 \notin U x\) using \(\langle x \in \bigcup T\rangle\) neigh_filter(1) IsFilter_def by auto moreover
have \(0 \notin U y\) using \(\langle y \in \bigcup T\rangle\) neigh_filter (1) IsFilter_def by auto ultimately have \(0 \in\{A \cap B\). \(\langle A, B\rangle \in U x \times U y\}\) by auto
then obtain \(A B\) where \(0=A \cap B A \in U x B \in U y\) by auto
then have \(x \in \operatorname{int}(A) y \in \operatorname{int}(B)\) by auto
moreover
with \(\langle 0=A \cap B\rangle\) have \(\operatorname{int}(A) \cap \operatorname{int}(B)=0\) using Top_2_L1 by auto moreover
have int \((A) \in\) Tint \((B) \in T\) using Top_2_L2 by auto
ultimately have False using \(\langle\forall U \in T . \forall V \in T . x \in U \wedge y \in V \longrightarrow U \cap V \neq 0\rangle\)
by auto
\}
then have \(0 \notin F F\) by auto
ultimately show thesis using SatisfiesFilterBase_def by auto
qed
moreover
have \(\mathrm{FF} \subseteq \operatorname{Pow}(\bigcup \mathrm{T})\) by auto
ultimately have bas:FF \{is a base filter\} \(\{A \in \operatorname{Pow}(\bigcup T) . \exists D \in F F . D \subseteq A\}\)
\(\bigcup\{A \in \operatorname{Pow}(\bigcup T) . \exists D \in F F . D \subseteq A\}=\bigcup T\)
using base_unique_filter_set2[of FF] by auto
then have fil:\{A \(\operatorname{Pow}(\cup T) . \exists D \in F F . D \subseteq A\}\) \{is a filter on\} \(\cup T\) using basic_filter sat by auto
have \(\forall U \in \operatorname{Pow}(\bigcup T) . x \in \operatorname{int}(U) \longrightarrow(\exists D \in F F\). \(D \subseteq U)\) by auto
then have \(\{A \in \operatorname{Pow}(\bigcup T) . \exists D \in F F . D \subseteq A\} \rightarrow_{F}\) x using convergence_filter_base2[OF fil bas(1) _ \(\langle x \in \bigcup T\rangle\)] by auto
moreover
```

            then have }\forallU\in\operatorname{Pow}(\cupT).y\inint(U) \longrightarrow( (\existsD\inFF. D\subseteqU) by aut
            then have {A\inPow (UT). \existsD\inFF. D\subseteqA} }\mp@subsup{->}{F}{}\mathrm{ y using convergence_filter_base2[OF
    fil bas(1) _ \langley\in\T\rangle] by auto
ultimately have x=y using assms fil \langlex\in\T\rangle\langley\in\T\rangle by blast
with \langlex\not=y\rangle have False by auto
}
then have \existsU\inT. \existsV\inT. x\inU ^ y\inV ^ U\capV=0 by blast
}
then show thesis using isT2_def by auto
qed
lemma (in topology0) unique_limit_net_imp_T2:
assumes }\forall\textrm{x}\in\bigcup\textrm{T}.\forall\textrm{y}\in\bigcup\textrm{T}.\forallN.((N {is a net on}\bigcupT) ^(N 利 x) ^(
->N y)) \longrightarrow x=y
shows T {is T2}
proof-
{
fix x y F
assume x\in\bigcupT y <br>\T{ {is a filter on}\T{F }\mp@subsup{->}{F}{}\textrm{x}\mathfrak{F}\mp@subsup{->}{F}{}\textrm{y
then have (Net(\mathfrak{F})) {is a net on} \T(Net FF) }\mp@subsup{->}{N}{}\textrm{x}(\operatorname{Net \mathfrak{F})}\mp@subsup{->}{N}{}\textrm{y
using filter_conver_net_of_filter_conver net_of_filter_is_net by
auto
with \langlex\in\bigcupT\rangle\langley\in\bigcupT\rangle have x=y using assms by blast
}
then have }\forall\textrm{x}\in\bigcup<br>.\forally\in\bigcupT.\forall\mathfrak{F}.((\mathfrak{F}\mathrm{ {is a filter on}\T) ^({)
^(\mathfrak{F}\mp@subsup{->}{F}{}}\textrm{y}))\longrightarrow\textrm{x}=\textrm{y}\mathrm{ by auto
then show thesis using unique_limit_filter_imp_T2 by auto
qed

```

This results make easy to check if a space is \(T_{2}\).
The topology which comes from a filter as in \(\mathfrak{F}\) \{is a filter on\} \(\cup \mathfrak{F} \Longrightarrow\) (\(\mathfrak{F} \cup\{0\}\)) \{is a topology\} is not \(T_{2}\) generally. We will see in this file later on, that the exceptions are a consequence of the spectrum.
```

corollary filter_T2_imp_card1:
assumes (\mathfrak{F}\cup{0}) {is }\mp@subsup{T}{2}{}}\mathfrak{F}\mathrm{ {is a filter on} \{F x
shows <br>mathfrak{F}={x}
proof-
{
fix y assume y\in\bigcup\mathfrak{F}
then have }\mathfrak{F}\mp@subsup{->}{F}{}\mathrm{ y {in} ({}\mathfrak{F}\cup{0}) using lim_filter_top_of_filter assms(2
by auto
moreover
have }\mathfrak{F}\mp@subsup{->}{F}{}\mathrm{ x {in} ({FU{0}) using lim_filter_top_of_filter assms(2,3)
by auto
moreover
have <br>mathfrak{F}=\(\mathfrak{F}\cup{0}) by auto
ultimately
have y=x using topologyO.T2_imp_unique_limit_filter[OF topologyO_filter[OF

```
```

assms(2)] assms(1)] assms(2)
by auto
}
then have \{\mathfrak{F}\subseteq{x} by auto
with assms(3) show thesis by auto
qed

```

There are more separation axioms that just \(T_{0}, T_{1}\) or \(T_{2}\)
```

definition
IsRegular (_{is regular} 90)
where T{is regular} \equiv\forallA. A{is closed in}T \longrightarrow ( }\forall\textrm{x}\in\bigcup\textrm{T}-\textrm{A}.\exists\textrm{U}\in\textrm{T}.\exists\textrm{V}\in\textrm{T
A\subseteqU^x\inV\wedgeU\capV=0)
definition
isT3 (_{is T T } 90)
where T{is T}\mp@subsup{T}{3}{}}\equiv(T{is T T }) ^(T{is regular}
definition
IsNormal (_{is normal} 90)
where T{is normal} \equiv }\forall\textrm{A}.\textrm{A}\mathrm{ Ais closed in}T }\longrightarrow(\forallB. B{is closed in}
A\capB=0 \longrightarrow
(\existsU\inT. \existsV\inT. A\subseteqU^B\subseteqV^U\capV=0))
definition
isT4 (_{is T44 90)
where T{is T T } \equiv (T{is T T }) ^ (T{is normal})
lemma (in topology0) T4_is_T3:
assumes T{is }\mp@subsup{\textrm{T}}{4}{}}\mathrm{ shows T{is }\mp@subsup{\textrm{T}}{3}{}
proof-
from assms have nor:T{is normal} using isT4_def by auto
from assms have T{is }\mp@subsup{\textrm{T}}{1}{}}\mathrm{ using isT4_def by auto
then have Cofinite ( UT)\subseteqT using T1_cocardinal_coarser by auto
{
fix A
assume AS:A{is closed in}T
{
fix x
assume }x\in<br>T-
have Finite({x}) by auto
then obtain n where {x}\approxn n\innat unfolding Finite_def by auto
then have {x}\lesssimn n\innat using eqpoll_imp_lepoll by auto
then have {x}\precnat using n_lesspoll_nat lesspoll_trans1 by auto
with \langlex\in\T-A\rangle have {x} {is closed in} (Cofinite (UT)) using Cofinite_def
closed_sets_cocardinal by auto
then have \T-{x}\inCofinite(UT) unfolding IsClosed_def using union_cocardinal
Cofinite_def
by auto

```
with 〈Cofinite \((\cup T) \subseteq T\) have \(\cup T-\{x\} \in T\) by auto
with \(\langle x \in \bigcup T-A\rangle\) have \(\{x\}\{\) is closed in\}T \(A \cap\{x\}=0\) using IsClosed＿def
by auto
with nor AS have \(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T} . \mathrm{A} \subseteq \mathrm{U} \wedge\{\mathrm{x}\} \subseteq \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) unfolding IsNormal＿def
by blast
then have \(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T} . \mathrm{A} \subseteq \mathrm{U} \wedge \mathrm{x} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto \}
then have \(\forall x \in \bigcup T-A . \exists U \in T . \exists V \in T . A \subseteq U \wedge x \in V \wedge U \cap V=0\) by auto
\}
then have \(\mathrm{T}\{\mathrm{i}\) s regular\} using IsRegular_def by blast
with 〈T\｛is \(\left.\mathrm{T}_{1}\right\}\) 〉 show thesis using isT3＿def by auto
qed
lemma（in topology0）T3＿is＿T2：
assumes \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{3}\right\}\) shows \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{2}\right\}\)
proof－
from assms have T\｛is regular\} using isT3_def by auto
from assms have \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\) using isT3＿def by auto
then have Cofinite \((\cup T) \subseteq T\) using T1＿cocardinal＿coarser by auto \｛
fix \(x\) y
assume \(x \in \bigcup T y \in \bigcup T x \neq y\)
have Finite（ \(\{x\}\) ）by auto
then obtain \(n\) where \(\{x\} \approx n n \in\) nat unfolding Finite＿def by auto
then have \(\{x\} \lesssim n n \in\) nat using eqpoll＿imp＿lepoll by auto
then have \(\{x\} \prec\) nat using n＿lesspoll＿nat lesspoll＿trans1 by auto
with \(\langle x \in \bigcup T\rangle\) have \(\{x\}\) \｛is closed in\} (Cofinite (\(\bigcup\) T））using Cofinite＿def
closed＿sets＿cocardinal by auto
then have \(\bigcup T-\{x\} \in \operatorname{Cofinite}(\bigcup T)\) unfolding IsClosed＿def using union＿cocardinal Cofinite＿def
by auto
with \(\langle\) Cofinite \((\cup T) \subseteq T\) h have \(\bigcup T-\{x\} \in T\) by auto
with \(\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle\langle x \neq y\rangle\) have \(\{x\}\{\) is closed in\} \(y \in \bigcup T-\{x\}\) using IsClosed＿def
by auto
with \(\langle T\{\) is regular\} have \(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T} .\{\mathrm{x}\} \subseteq \mathrm{U} \wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) unfolding IsRegular＿def by force
then have \(\exists U \in T . \exists V \in T . x \in U \wedge y \in V \wedge U \cap V=0\) by auto
\}
then show thesis using isT2＿def by auto qed

Regularity can be rewritten in terms of existence of certain neighboorhoods．
```

lemma (in topology0) regular_imp_exist_clos_neig:
assumes T{is regular} and U\inT and }x\in
shows }\exists\textrm{V}\in\textrm{T}.\textrm{x}\in\textrm{V}\wedge\wedge\textrm{cl}(\textrm{V})\subseteq
proof-
from assms(2) have (UT-U){is closed in}T using Top_3_L9 by auto more-
over

```
```

    from assms(2,3) have x\in\T by auto moreover
    note assms (1,3) ultimately obtain A B where A\inT and B\inT and A\capB=0
    and (UT-U)\subseteqA and }x\in
unfolding IsRegular_def by blast
from }\langleA\capB=0\rangle\langleB\inT\rangle\mathrm{ have }B\subseteq\bigcupT-A by aut
with \langleA\inT\rangle have cl(B)\subseteq\bigcupT-A using Top_3_L9 Top_3_L13 by auto
moreover from <(UT-U)\subseteqA> assms(3) have \T-A\subseteqU by auto
moreover note \langlex\inB\rangle\langleB\inT
ultimately have }B\inT\wedgex\inB\wedgecl(B)\subseteqU by aut
then show thesis by auto
qed
lemma (in topology0) exist_clos_neig_imp_regular:
assumes }\forallx\in\bigcupT.\forallU\inT. x\inU \longrightarrow( (\existsV\inT. x\inV^ cl(V)\subseteqU
shows T{is regular}
proof-
{
fix F
assume F{is closed in}T
{
fix x assume x\in\T-F
with \&F{is closed in}T> have x\in\T \T-F\inT F\subseteq\T unfolding IsClosed_def
by auto
with assms <x\in\bigcupT-F\rangle have }\exists\textrm{V}\in\textrm{T}.\textrm{x}\in\textrm{V
then obtain V where V\inT }x\inV cl(V)\subseteq\bigcupT-F by aut
from \langlecl(V)\subseteq\bigcupT-F\rangle\langleF\subseteq\bigcupT\rangle have F\subseteq\bigcupT-cl(V) by auto
moreover from \langleV\inT\rangle have \T-(UT-V)=V by auto
then have cl(V)=\T-int(UT-V) using Top_3_L11(2)[of \T-V] by
auto
ultimately have F\subseteqint(UT-V) by auto moreover
have int(UT-V)\subseteq\bigcupT-V using Top_2_L1 by auto
then have V\cap(int(UT-V))=0 by auto moreover
note \langlex\inV`\V\inT\rangle ultimately
have V\inT int(UT-V)\inT F\subseteqint (UT-V) ^ x\inV ^ (int (UT-V)) \capV=0 us-
ing Top_2_L2
by auto
then have \existsU\inT. \existsV\inT. F\subseteqU ^ x\inV ^ U\capV=0 by auto
}
then have }\forallx\in\bigcupT-F.\existsU\inT. \existsV\inT. F\subseteqU ^ x\inV ^U\capV=0 by aut
}
then show thesis using IsRegular_def by blast
qed
lemma (in topology0) regular_eq:
shows T{is regular} \longleftrightarrow(\forallx\in\bigcupT. \forallU\inT. x\inU \longrightarrow (\existsV\inT. x\inV^ cl(V)\subseteqU))
using regular_imp_exist_clos_neig exist_clos_neig_imp_regular by force

```

A Hausdorff space separates compact spaces from points.
theorem (in topology0) T2_compact_point:
```

    assumes T{is T T } A{is compact in}T }\textrm{x}\in\bigcup\\T\textrm{x}\not\in\textrm{A
    shows \existsU\inT. \existsV\inT. A\subseteqU ^ x\inV ^ U\capV=0
    proof-
{
assume A=0
then have }A\subseteq0\wedgex\in\bigcupT\wedge(0\cap(\bigcupT)=0) using assms(3) by aut
then have thesis using empty_open topSpaceAssum unfolding IsATopology_def
by auto
}
moreover
{
assume noEmpty:A}=
let }\textrm{U}={\langleU,V\rangle\inT\timesT. x\inU\U\capV=0
{
fix y assume y\inA
with 〈x\not\inA` assms(4) have x\not=y by auto             moreover from }\langley\inA\rangle\mathrm{ have }x\in\Ty\in\T using assms(2,3) unfoldin IsCompact_def by auto             ultimately obtain U V where }U\inTV\inTU\capV=0x\inUy\inV using assms(1) un folding isT2_def by blast             then have }\exists\langleU,V\rangle\inU.y\inV by aut     }     then have }\forall\textrm{y}\in\textrm{A}.\exists\langle\textrm{U},\textrm{V}\rangle\in\textrm{U}.\textrm{y}\in\textrm{V}\mathrm{ by auto     then have }A\subseteq\bigcup{snd(B). B\inU} by aut     moreover have {snd(B). B\inU}\inPow(T) by auto     ultimately have }\exists\textrm{N}\in\textrm{FinPow}({\operatorname{snd}(B). B\inU}). A\subseteq\bigcupN using assms(2) un folding IsCompact_def by auto     then obtain N where ss:N\inFinPow({snd(B). B\inU}) A\subseteq\bigcupN by auto     with <{snd(B). B\inU}\inPow(T)\ have A\subseteq\bigcupN N\inPow(T) unfolding FinPow_def by auto     then have NN:A\subseteq\bigcupN \bigcupN NT using topSpaceAssum unfolding IsATopology_def by auto     from ss have Finite(N)N\subseteq{snd(B). B\inU} unfolding FinPow_def by auto     then obtain n where n\innat N\approxn unfolding Finite_def by auto     then have N}\\n\mp@code{using eqpoll_imp_lepoll by auto     from noEmpty \langleA\subseteq\bigcupN` have NnoEmpty:N\not=0 by auto
let QQ={\langlen,{fst(B). B\in{A\inU. snd(A)=n}}\rangle. n\inN}
have QQPi:QQ:N->{{fst(B). B\in{A\inU. snd(A)=n}}. n\inN} unfolding Pi_def
function_def domain_def by auto
{
fix n assume n\inN
with «N\subseteq{snd(B). B\inU}` obtain B where n=snd(B) B\inU by auto
then have fst(B)\in{fst(B). B\in{A\inU. snd(A)=n}} by auto
then have {fst(B). B\in{A\inU. snd(A)=n}}\not=0 by auto moreover
from \langlen\inN\rangle have {n,{fst(B). B\in{A\inU. snd(A)=n}}\rangle\inQQ by auto
with QQPi have QQn={fst(B). B\in{A\inU. snd(A)=n}} using apply_equality
by auto
ultimately have QQn}=0\mathrm{ by auto
}

```
then have \(\forall \mathrm{n} \in \mathrm{N} . \mathrm{QQn} \neq 0\) by auto
with 〈n \(\in\) nat \(\langle\mathbb{N} \lesssim \mathrm{n}\rangle\) have \(\exists \mathrm{f} . \mathrm{f} \in \mathrm{Pi}(\mathrm{N}, \lambda \mathrm{t}\) ．QQt）\(\wedge(\forall \mathrm{t} \in \mathrm{N}\) ．ft \(\mathrm{f} \in \mathrm{QQt})\) us－ ing finite＿choice unfolding AxiomCardinalChoiceGen＿def
by auto
then obtain \(f\) where \(f P I: f \in \operatorname{Pi}(N, \lambda t\) ．QQt）（ \(\forall t \in N\) ．\(f t \in Q Q t\) ）by auto
from fPI（1）NnoEmpty have range \((f) \neq 0\) unfolding Pi＿def range＿def domain＿def
converse＿def by（safe，blast）
\｛
fix \(t\) assume \(t \in N\)
then have ft \(\in\) QQt using \(f P I\)（2）by auto
with \(\langle t \in N\rangle\) have \(f t \in \bigcup\)（QQN）QQt \(\subseteq \bigcup\)（QQN）using func＿imagedef QQPi
by auto
\}
then have reg：\(\forall \mathrm{t} \in \mathrm{N} . \mathrm{ft} \in \bigcup\)（QQN）\(\forall \mathrm{t} \in \mathrm{N} . \mathrm{QQt} \subseteq \bigcup\)（QQN）by auto
\｛
fix \(t t\) assume \(t t \in f\)
with \(\mathrm{fPI}(1)\) have \(t t \in \operatorname{Sigma}(N,()(Q Q))\) unfolding Pi＿def by auto
then have \(t t \in(\bigcup x a \in N\) ．\(\bigcup y \in Q Q x a .\{\langle x a, y\rangle\})\) unfolding Sigma＿def by
auto
then obtain \(x a y\) where \(x a \in N \quad y \in Q Q x a \quad t t=\langle x a, y\rangle\) by auto
with \(r e g(2)\) have \(y \in \bigcup\)（QQN）by blast
with \(\langle t t=\langle x a, y\rangle\rangle\langle x a \in N\rangle\) have \(t t \in(\bigcup x a \in N . \bigcup y \in \bigcup(Q Q N) .\{\langle x a, y\rangle\})\) by
auto
then have \(t t \in \mathbb{N} \times(\bigcup(Q Q N))\) unfolding Sigma＿def by auto
\}
then have ffun：f：N \(\rightarrow \bigcup\)（QQN）using \(f P I(1)\) unfolding Pi＿def by auto
then have \(f \in \operatorname{surj}(N, r a n g e(f))\) using fun＿is＿surj by auto
with \(\langle\mathrm{N} \lesssim \mathrm{n}\rangle\langle\mathrm{n} \in\) nat〉 have range（f）\(\lesssim \mathrm{N}\) using surj＿fun＿inv＿2 nat＿into＿Ord
by auto
with \(\langle\mathrm{N} \lesssim \mathrm{n}\rangle\) have range（f）\(\lesssim \mathrm{n}\) using lepoll＿trans by blast
with «n \(\in\) nat〉 have Finite（range（f））using n＿lesspoll＿nat lesspoll＿nat＿is＿Finite
lesspoll＿trans1 by auto
moreover from ffun have rr：range（f）\(\subseteq \bigcup(\) QQN ）unfolding Pi＿def by auto
then have range \((f) \subseteq T\) by auto
ultimately have range（f）\(\in\) FinPow（ \(T\) ）unfolding FinPow＿def by auto
then have \(\bigcap\) range（ \(f\) ）\(\in T\) using fin＿inter＿open＿open 〈range \((f) \neq 0\) 〉 by
auto moreover
\｛
fix \(S\) assume \(S \in\) range（f）
with rr have \(S \in \bigcup\)（QQN）by blast
then have \(\exists B \in(Q Q N) . S \in B\) using Union＿iff by auto
then obtain \(B\) where \(B \in(Q Q N) S \in B\) by auto
then have \(\exists r r \in N\) ．\(\langle r r, B\rangle \in Q Q\) unfolding image＿def by auto
then have \(\exists r r \in N\) ．\(B=\{f s t(B) . B \in\{A \in U\) ．snd \((A)=r r\}\}\) by auto
with \(\langle S \in B\rangle\) obtain \(r r\) where \(\langle S, r r\rangle \in U\) by auto
then have \(x \in S\) by auto
\}
then have \(x \in \bigcap\) range（f）using \(\langle r a n g e(f) \neq 0\rangle\) by auto moreover
```

        {
            fix y assume y\in(UN)\cap(\bigcaprange(f))
            then have reg:(\forallS\inrange(f). y\inS)^(\existst\inN. y\int) by auto
            then obtain t where }t\inN y\int by aut
            then have \langlet, {fst(B). B\in{A\inU. snd(A)=t}}\rangle\inQQ by auto
            then have ft\inrange(f) using apply_rangeI ffun by auto
            with reg have yft:y\inft by auto
            with (t\inN\rangle fPI(2) have ft\inQQt by auto
            with \langlet\inN\rangle have ft\in{fst(B). B\in{A\inU. snd(A)=t}} using apply_equality
    QQPi by auto
then have \langleft,t\rangle\inU by auto
then have ft\capt=0 by auto
with \langley\int> yft have False by auto
}
then have (UN)\cap(\bigcap\mathrm{ range(f))=0 by blast moreover}
note NN
ultimately have thesis by auto
}
ultimately show thesis by auto
qed
A Hausdorff space separates compact spaces from other compact spaces.
theorem (in topology0) T2_compact_compact:
assumes T{is }\mp@subsup{\textrm{T}}{2}{}}\mathrm{ A{is compact in}T B{is compact in}T A }\cap\textrm{B}=
shows \existsU\inT. \existsV\inT. A\subseteqU ^ B\subseteqV ^ U\capV=0
proof-
{
assume B=0
then have A\subseteq\bigcupT^B\subseteq0^((UT)\cap0=0) using assms(2) unfolding IsCompact_def
by auto moreover
have 0\inT using empty_open topSpaceAssum by auto moreover
have \bigcupT\inT using topSpaceAssum unfolding IsATopology_def by auto
ultimately
have thesis by auto
}
moreover
{
assume noEmpty:B}=
let U={\langleU,V\rangle\inT\timesT. A\subseteqU ^U\capV=0}
{
fix y assume y\inB
then have y\in\T using assms(3) unfolding IsCompact_def by auto
with \langley\inB\rangle have \existsU\inT. \existsV\inT. A\subseteqU ^ y\inV ^ U\capV=0 using T2_compact_point
assms(1,2,4) by auto
then have }\exists\langle\textrm{U},\textrm{V}\rangle\in\textrm{U}.\textrm{y}\in\textrm{V}\mathrm{ by auto
}
then have }\forally\inB.\exists\langleU,V\rangle\inU.y\inV by aut
then have }B\subseteq\bigcup{snd(B). B\inU} by aut
moreover have {snd(B). B\inU}\inPow(T) by auto

```
ultimately have \(\exists \mathrm{N} \in \operatorname{FinPow}(\{\operatorname{snd}(B) . B \in U\})\) ．\(B \subseteq \bigcup N\) using assms（3）un－ folding IsCompact＿def by auto
then obtain \(N\) where \(s s: N \in \operatorname{FinPow}(\{\operatorname{snd}(B) . B \in U\}) B \subseteq \bigcup N\) by auto
with \(\langle\{\operatorname{snd}(B) . B \in U\} \in \operatorname{Pow}(T)\rangle\) have \(B \subseteq \bigcup N N \in \operatorname{Pow}(T)\) unfolding FinPow＿def by auto
then have \(N N: B \subseteq \bigcup N \bigcup N \in T\) using topSpaceAssum unfolding IsATopology＿def by auto
from ss have Finite（ \(N\) ）\(N \subseteq\{\) snd（ \(B\) ）．\(B \in U\}\) unfolding FinPow＿def by auto
then obtain \(n\) where \(n \in\) nat \(N \approx n\) unfolding Finite＿def by auto
then have \(\mathrm{N} \lesssim \mathrm{n}\) using eqpoll＿imp＿lepoll by auto
from noEmpty \(\langle B \subseteq \bigcup N\) 〉 have NnoEmpty：\(N \neq 0\) by auto
let \(Q Q=\{\langle n,\{f s t(B) . B \in\{A \in U\) ．snd \((A)=n\}\}\rangle\) ．\(n \in N\}\)
have QQPi：QQ：N \(\rightarrow\{\{f\) st \((B)\) ．\(B \in\{A \in U\) ．snd \((A)=n\}\}\) ．\(n \in N\}\) unfolding Pi＿def function＿def domain＿def by auto
\｛
fix \(n\) assume \(n \in N\)
with \(\langle N \subseteq\{\) snd（ \(B\) ）．\(B \in U\}\) 〉obtain \(B\) where \(n=\) snd（ \(B\) ）\(B \in U\) by auto then have fst \((B) \in\{f s t(B) . B \in\{A \in U\) ．snd \((A)=n\}\}\) by auto then have \(\{f s t(B) . B \in\{A \in U\) ．snd \((A)=n\}\} \neq 0\) by auto moreover from \(\langle n \in N\rangle\) have \(\langle n,\{f s t(B) . B \in\{A \in U\) ．snd \((A)=n\}\}\rangle \in Q Q\) by auto with QQPi have \(Q Q n=\{f s t(B)\) ．\(B \in\{A \in U\) ．snd \((A)=n\}\}\) using apply＿equality by auto ultimately have \(Q Q n \neq 0\) by auto
\}
then have \(\forall \mathrm{n} \in \mathrm{N}\) ． \(\mathrm{QQn} \neq 0\) by auto
with 〈n \(\in\) nat \(\langle\mathrm{N} \lesssim \mathrm{n}\rangle\) have \(\exists \mathrm{f}\) ． \(\mathrm{f} \in \mathrm{Pi}(\mathrm{N}, \lambda \mathrm{t}\) ．QQt）\(\wedge(\forall \mathrm{t} \in \mathrm{N}\) ．ft f QQt）us－
ing finite＿choice unfolding AxiomCardinalChoiceGen＿def
by auto
then obtain \(f\) where \(f P I: f \in \operatorname{Pi}(N, \lambda t\) ．QQt）\((\forall t \in N\) ．\(f t \in Q Q t)\) by auto
from \(\operatorname{fPI}(1)\) NnoEmpty have range \((f) \neq 0\) unfolding Pi＿def range＿def domain＿def
converse＿def by（safe，blast）
\｛
fix \(t\) assume \(t \in N\)
then have \(f t \in Q Q t\) using \(f P I\)（2）by auto
with \(\langle t \in N\rangle\) have \(f t \in \bigcup\)（QQN）QQt \(\subseteq \bigcup\)（QQN）using func＿imagedef QQPi
by auto
\}
then have reg：\(\forall \mathrm{t} \in \mathrm{N} . \mathrm{ft} \in \bigcup\)（QQN）\(\forall \mathrm{t} \in \mathrm{N}\) ．QQt \(\subseteq \bigcup\)（QQN）by auto
\｛
fix \(t t\) assume \(t t \in f\)
with \(f P I(1)\) have \(t t \in \operatorname{Sigma}(N,()(Q Q))\) unfolding Pi＿def by auto
then have \(t t \in(\bigcup x a \in N . \bigcup y \in Q Q x a .\{\langle x a, y\rangle\})\) unfolding Sigma＿def by
auto
then obtain xa \(y\) where \(x a \in N \quad y \in Q Q x a t t=\langle x a, y\rangle\) by auto
with reg（2）have \(y \in \bigcup\)（QQN）by blast
with \(\langle t t=\langle x a, y\rangle\rangle\langle x a \in N\rangle\) have \(t t \in(\bigcup x a \in N . \bigcup y \in \bigcup(Q Q N) .\{\langle x a, y\rangle\})\) by
auto
then have \(t t \in \mathbb{N} \times(\bigcup(Q Q N))\) unfolding Sigma＿def by auto
\}
then have ffun：f：N \(\rightarrow \bigcup\)（QQN）using fPI（1）unfolding Pi＿def by auto
then have \(f \in \operatorname{surj}(N, r a n g e(f))\) using fun＿is＿surj by auto
with \(\langle\mathrm{N} \lesssim \mathrm{n}\rangle\langle\mathrm{n} \in\) nat〉 have range（f）\(\lesssim \mathrm{N}\) using surj＿fun＿inv＿2 nat＿into＿Ord by auto
with \(\langle\mathrm{N} \lesssim \mathrm{n}\rangle\) have range（f）\(\lesssim \mathrm{n}\) using lepoll＿trans by blast
with 〈n \(\in\) nat 〉 have Finite（range（f））using n＿lesspoll＿nat lesspoll＿nat＿is＿Finite lesspoll＿trans1 by auto
moreover from ffun have rr：range（f）\(\subseteq \bigcup\)（QQN）unfolding Pi＿def by auto
then have range（f）\(\subseteq T\) by auto
ultimately have range（f）\(\in\) FinPow（ \(T\) ）unfolding FinPow＿def by auto
then have \(\bigcap\) range（ \(f\) ）\(\in T\) using fin＿inter＿open＿open 〈range \((f) \neq 0\rangle\) by
auto moreover
\｛
fix \(S\) assume \(S \in\) range（f）
with rr have \(S \in \bigcup\)（QQN）by blast
then have \(\exists B \in(Q Q N) . S \in B\) using Union＿iff by auto
then obtain \(B\) where \(B \in(Q Q N) S \in B\) by auto
then have \(\exists r r \in N\) ．\(\langle r r, B\rangle \in Q Q\) unfolding image＿def by auto
then have \(\exists r r \in N\) ．\(B=\{f s t(B) . B \in\{A \in U\) ．snd \((A)=r r\}\}\) by auto
with \(\langle S \in B\rangle\) obtain \(r r\) where \(\langle S, r r\rangle \in U\) by auto
then have \(A \subseteq S\) by auto
\}
then have \(A \subseteq \bigcap\) range（f）using 〈range（f）\(\neq 0\) 〉 by auto moreover
\｛
fix y assume \(y \in(\bigcup N) \cap(\bigcap\) range（f））
then have reg：\((\forall S \in r a n g e(f) . y \in S) \wedge(\exists t \in N . y \in t)\) by auto
then obtain \(t\) where \(t \in N \quad y \in t\) by auto
then have \(\langle t\) ，\(\{f\) st（ \(B\) ）．\(B \in\{A \in U\) ．snd（ \(A=t\}\}\rangle \in Q Q\) by auto
then have fterange（f）using apply＿rangeI ffun by auto
with reg have yft：y \(\in f t\) by auto
with \(\langle t \in N\rangle\) fPI（2）have \(f t \in Q Q t\) by auto
with \(\langle t \in N\rangle\) have \(f t \in\{f s t(B)\) ．\(B \in\{A \in U\) ．snd（A）\(=t\}\}\) using apply＿equality
QQPi by auto
then have \(\langle\mathrm{ft}, \mathrm{t}\rangle \in \mathrm{U}\) by auto
then have \(f t \cap t=0\) by auto
with \(\langle y \in t\rangle\) yft have False by auto
\}
then have（ \(\bigcap\) range \((f)) \cap(\bigcup N)=0\) by blast moreover
note NN
ultimately have thesis by auto
\}
ultimately show thesis by auto
qed
A compact Hausdorff space is normal．
corollary（in topology0）T2＿compact＿is＿normal：
assumes \(\mathrm{T}\left\{\mathrm{is} \mathrm{T}_{2}\right\}(\bigcup \mathrm{T})\) \｛is compact in\}T
shows \(\mathrm{T}\{\) is normal\} unfolding IsNormal_def
proof－
from assms（2）have car＿nat：（UT）\｛is compact of cardinal\}nat\{in\}T using Compact＿is＿card＿nat by auto
\｛
fix A B assume A\｛is closed in\}T B\{is closed in\}TA \(\cap \mathrm{B}=0\)
then have com：\(((\cup T) \cap A)\) is compact of cardinal\}nat\{in\}T (\((\cup T) \cap B)\) iis
compact of cardinal\}nat\{in\}T using compact_closed[OF car_nat]
by auto
from 〈A\｛is closed in\}T〉B\{is closed in\}T〉 have \((\bigcup T) \cap A=A(\bigcup T) \cap B=B\) un－ folding IsClosed＿def by auto
with com have A\｛is compact of cardinal\}nat\{in\}T B\{is compact of cardinal\}nat\{in\}T
by auto
then have A\｛is compact in\}TB\{is compact in\}T using Compact_is_card_nat
by auto
with \(\langle A \cap B=0\rangle\) have \(\exists U \in T . \exists V \in T . A \subseteq U \wedge B \subseteq V \wedge U \cap V=0\) using T2＿compact＿compact
assms（1）by auto
\}
then show \(\forall \mathrm{A} . \mathrm{A}\) \｛is closed in\} \(\mathrm{T} \longrightarrow(\forall \mathrm{B} . \mathrm{B}\) \｛is closed in\} \(\mathrm{T} \wedge \mathrm{A}\) \(\cap B=0 \longrightarrow(\exists U \in T . \exists V \in T . A \subseteq U \wedge B \subseteq V \wedge U \cap V=0))\)
by auto
qed

\section*{59．2 Hereditability}

A topological property is hereditary if whenever a space has it，every sub－ space also has it．
definition IsHer（＿\｛is hereditary\} 90)
where \(P\) \｛is hereditary \(\equiv \forall T\) ．\(T\{\) is a topology \(\} \perp P(T) \longrightarrow(\forall A \in \operatorname{Pow}(\bigcup T)\) ．
P（T\｛restricted to\}A))
lemma subspace＿of＿subspace：
assumes \(A \subseteq B B \subseteq \bigcup T\)
shows \(T\{\) restricted to\}A=(T\{restricted to\}B) \{restricted to\}A
proof
from assms have \(S: \forall S \in T\) ．\(A \cap(B \cap S)=A \cap S\) by auto
then show \(T\) \｛restricted to\} \(A \subseteq T\) \｛restricted to\} B \{restricted to\}
A unfolding RestrictedTo＿def
by auto
from \(S\) show \(T\) \｛restricted to\} \(B\) \｛restricted to\} \(A \subseteq T\) \｛restricted
to\} A unfolding RestrictedTo_def by auto
qed
The separation properties \(T_{0}, T_{1}, T_{2}\) y \(T_{3}\) are hereditary．
theorem regular＿here：
assumes \(T\{i s\) regular\} \(A \in \operatorname{Pow}(\bigcup T\) ）shows（T\｛restricted to\}A) \{is regular\} proof－
\｛
fix C
assume A:C\{is closed in\}(T\{restricted to\}A)
\(\{\) fix y assume \(y \in \bigcup\) (\(T\{\) restricted to\}A) \(y \notin C\)
with A have \((\bigcup\) (\(T\{\) restricted to\}A))-C (T\{restricted to\}A) \(C \subseteq \bigcup\) (\(T\{\) restricted to\}A) \(y \in \bigcup\) (T\{restricted to\}A) \(\notin C\) unfolding IsClosed_def by auto
moreover
with assms(2) have \(\bigcup\) (T\{restricted to\}A)=A unfolding RestrictedTo_def
by auto
ultimately have \(\mathrm{A}-\mathrm{C} \in \mathrm{T}\{\) restricted to\(\} \mathrm{A} \mathrm{y} \in \mathrm{Ay} \notin \mathrm{CC} \in \operatorname{Pow}(\mathrm{A})\) by auto
then obtain \(S\) where \(S \in T\) A \(\cap=A-C y \in A y \notin C\) unfolding RestrictedTo_def
by auto
then have \(y \in A-C A \cap S=A-C\) by auto
with 〈C \(\in \operatorname{Pow}(A)\rangle\) have \(y \in A \cap S C=A-A \cap S\) by auto
then have \(y \in S C=A-S\) by auto
with assms(2) have \(y \in S C \subseteq \bigcup T-S\) by auto
moreover
from \(\langle S \in T\rangle\) have \(\cup T-(\cup T-S)=S\) by auto
moreover
with \(\langle\mathrm{S} \in \mathrm{T}\rangle\) have (\(\bigcup \mathrm{T}-\mathrm{S}\)) \{is closed in\}T using IsClosed_def by auto
ultimately have \(y \in \bigcup T-(\bigcup T-S)(\bigcup T-S)\) is closed in\}T by auto
with assms (1) have \(\forall y \in \bigcup T-(\bigcup T-S) . \exists U \in T . \exists V \in T\). (\(\cup T-S) \subseteq U \wedge y \in V \wedge U \cap V=0\)
unfolding IsRegular_def by auto
with \(\langle\mathrm{y} \in \bigcup \mathrm{T}-(\bigcup \mathrm{T}-\mathrm{S})\rangle\) have \(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T}\). (\(\cup T-S) \subseteq U \wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto
then obtain \(U V\) where \(U \in T V \in T \cup T-S \subseteq U y \in V U \cap V=0\) by auto
then have \(A \cap U \in(T\{\) restricted \(t o\} A) A \cap V \in(T\{r e s t r i c t e d ~ t o\} A) C \subseteq U y \in V(A \cap U) \cap(A \cap V)=0\) unfolding RestrictedTo_def using 〈C \(\subseteq \bigcup T-S\rangle\) by auto
moreover
with \(\langle C \in \operatorname{Pow}(A)\rangle\langle y \in A\rangle\) have \(C \subseteq A \cap U y \in A \cap V\) by auto
ultimately have \(\exists U \in(T\{\) restricted to\} \(A) . \exists V \in(T\{\) restricted to \(\} A) . \quad C \subseteq U \wedge y \in V \wedge U \cap V=0\)

\section*{by auto}
\}
then have \(\forall x \in \bigcup(T\{r e s t r i c t e d ~ t o\} A)-C . \exists U \in(T\{r e s t r i c t e d ~ t o\} A) . \exists V \in(T\{r e s t r i c t e d\) to\}A). \(C \subseteq U \wedge x \in V \wedge U \cap V=0\) by auto
\}
then have \(\forall C\). C\{is closed in\} (T\{restricted to\}A) \(\longrightarrow(\forall x \in \bigcup\) (T\{restricted to\}A)-C. \(\exists \mathrm{U} \in(\mathrm{T}\{\) restricted to\}A). \(\exists \mathrm{V} \in(\mathrm{T}\{\) restricted to\}A). \(\mathrm{C} \subseteq \mathrm{U} \wedge \mathrm{x} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0)\)
by blast
then show thesis using IsRegular_def by auto
qed
corollary here_regular:
shows IsRegular \{is hereditary\} using regular_here IsHer_def by auto
theorem T1_here:
assumes \(T\left\{\right.\) is \(\left.T_{1}\right\} A \in \operatorname{Pow}(\bigcup T)\) shows (T\{restricted to\}A) \{is \(\left.T_{1}\right\}\)
proof-
from assms(2) have un: \(\bigcup\) (T\{restricted to\}A) \(=\) A unfolding RestrictedTo_def by auto
```

    {
    ```
 fix \(\mathrm{x} y\)
 assume \(x \in A y \in A x \neq y\)
 with \(\langle A \in \operatorname{Pow}(\cup T)\rangle\) have \(x \in \bigcup T y \in \bigcup T x \neq y\) by auto
 then have \(\exists \mathrm{U} \in \mathrm{T} . \mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \notin \mathrm{U}\) using assms(1) isT1_def by auto
 then obtain \(U\) where \(U \in T x \in U y \notin U\) by auto
 with \(\langle x \in A\rangle\) have \(A \cap U \in(T\{\) restricted \(t o\} A) x \in A \cap U \quad y \notin A \cap U\) unfolding RestrictedTo_def
by auto
 then have \(\exists \mathrm{U} \in\) (T\{restricted to\}A). \(\mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \notin \mathrm{U}\) by blast
 \}
 with un have \(\forall \mathrm{x} y . \mathrm{x} \in \mathrm{U}\) (T\{restricted to\}A) \(\wedge \mathrm{y} \in \mathrm{U}\) (T\{restricted to\}A)
\(\wedge \mathrm{x} \neq \mathrm{y} \longrightarrow(\exists \mathrm{U} \in(\mathrm{T}\{\) restricted to\(\} \mathrm{A}) . \mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \notin \mathrm{U})\)
 by auto
 then show thesis using isT1_def by auto
qed
corollary here_T1:
 shows isT1 \{is hereditary\} using T1_here IsHer_def by auto
lemma here_and:
 assumes P \{is hereditary\} Q \{is hereditary\}
 shows (\(\lambda \mathrm{T} . \mathrm{P}(\mathrm{T}) \wedge \mathrm{Q}(\mathrm{T})\)) \{is hereditary\} using assms unfolding IsHer_def
by auto
corollary here_T3:
 shows isT3 \{is hereditary\} using here_and [0F here_T1 here_regular]
unfolding IsHer_def isT3_def.
lemma T2_here:
 assumes \(T\left\{i\right.\) is \(\left.T_{2}\right\} A \in \operatorname{Pow}(\bigcup T)\) shows (T\{restricted to\}A) \(\left\{\right.\) is \(\left.T_{2}\right\}\)
proof-
 from assms(2) have un: \(\bigcup\) (T\{restricted to\}A)=A unfolding RestrictedTo_def
by auto
 \{
 fix \(\mathrm{x} y\)
 assume \(x \in A y \in A x \neq y\)
 with \(\langle A \in \operatorname{Pow}(\bigcup T)\rangle\) have \(x \in \bigcup T y \in \bigcup T x \neq y\) by auto
 then have \(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{v} \in \mathrm{T} . \mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) using assms(1) isT2_def by
auto
 then obtain \(U V\) where \(U \in T V \in T x \in U y \in V U \cap V=0\) by auto
 with \(\langle x \in A\rangle y \in A\rangle\) have \(A \cap U \in(T\{r e s t r i c t e d ~ t o\} A) A \cap V \in(T\{\) restricted to \(\} A)\)
\(x \in A \cap U \quad y \in A \cap V(A \cap U) \cap(A \cap V)=0\) unfolding RestrictedTo_def by auto
 then have \(\exists \mathrm{U} \in(\mathrm{T}\{\) restricted to\}A). \(\exists \mathrm{V} \in(\mathrm{T}\{\) restricted to\}A). \(\mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\)
unfolding Bex_def by auto
 \}
 with un have \(\forall x y . x \in \bigcup\) (\(T\) \{restricted to\}A) \(\wedge \mathrm{y} \in \bigcup\) (\(T\) \{restricted to\}A)
\(\wedge \mathrm{x} \neq \mathrm{y} \longrightarrow(\exists \mathrm{U} \in\) (T\{restricted to\}A). \(\exists \mathrm{v} \in\) (T\{restricted to\}A). \(\mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0)\)
 by auto
 then show thesis using isT2_def by auto
```

qed
corollary here_T2:
shows isT2 {is hereditary} using T2_here IsHer_def by auto
lemma TO_here:
assumes T{is To} A\inPow(\T) shows (T{restricted to}A){is T T0}
proof-
from assms(2) have un: \(T{restricted to}A)=A unfolding RestrictedTo_def
by auto
{
fix x y
assume }x\inAy\inAx\not=
with \langleA\in\operatorname{Pow}(\bigcupT)\rangle have }x\in\bigcupTy\in\bigcupTx\not=y by aut
then have \existsU\inT. ( }x\inU\wedgey\not\inU)\vee(y\inU\wedgex\not\inU) using assms(1) isT0_def by
auto
then obtain U where }U\inT (x\inU\wedgey\not\inU)V(y\inU\wedgex\not\inU)\mathrm{ by auto
with \langlex\inA`\langley\inA\rangle have A\capU\in(T{restricted to}A) ( }x\inA\capU\wedgey\not\inA\capU)\vee(y\inA\capU\wedgex\not\inA\capU
unfolding RestrictedTo_def by auto
then have \existsU\in(T{restricted to}A). (x\inU^y\not\inU)\vee(y\inU\wedgex\not\inU) unfolding
Bex_def by auto
}
with un have }\forall\textrm{x y. x}<br>\(T{restricted to}A) ^ y\in\ (T{restricted to}A)
\wedge x\not=y\longrightarrow(\existsU\in(T{restricted to}A). (x\inU\wedge y\not\inU)\vee(y\inU\wedgex\not\inU))
by auto
then show thesis using isT0_def by auto
qed
corollary here_T0:
shows isT0 {is hereditary} using TO_here IsHer_def by auto

```

\subsection*{59.3 Spectrum and anti-properties}

The spectrum of a topological property is a class of sets such that all topologies defined over that set have that property.

The spectrum of a property gives us the list of sets for which the property doesn't give any topological information. Being in the spectrum of a topological property is an invariant in the category of sets and function; mening that equipollent sets are in the same spectra.
```

definition Spec (_ {is in the spectrum of} _ 99)
where Spec(K,P) \equiv \forallT. ((T{is a topology} ^ \T\approxK) \longrightarrowP(T))
lemma equipollent_spect:
assumes A\approxB B {is in the spectrum of} P
shows A {is in the spectrum of} P
proof-
from assms(2) have }\forallT.((T{is a topology} ^ \T\approxB)\longrightarrowP(T)) usin
Spec_def by auto

```
then have \(\forall T\). (\((T\{i s\) a topology \(\} \wedge U T \approx A) \longrightarrow P(T))\) using eqpoll_trans [OF _ assms(1)] by auto
then show thesis using Spec_def by auto
qed
theorem eqpoll_iff_spec:
assumes \(A \approx B\)
shows (\(B\) \{is in the spectrum of\} \(P\)) \(\longleftrightarrow\) (A \{is in the spectrum of \}
P)
proof
assume \(B\) \{is in the spectrum of P
with assms equipollent_spect show \(A\) \{is in the spectrum of\} \(P\) by auto next
assume \(A\) \{is in the spectrum of \(P\)
moreover
from assms have \(B \approx A\) using eqpoll_sym by auto
ultimately show B \{is in the spectrum of \} P using equipollent_spect
by auto
qed
From the previous statement, we see that the spectrum could be formed only by representative of clases of sets. If \(A C\) holds, this means that the spectrum can be taken as a set or class of cardinal numbers.

Here is an example of the spectrum. The proof lies in the indiscrite filter \{A\} that can be build for any set. In this proof, we see that without choice, there is no way to define the sepctrum of a property with cardinals because if a set is not comparable with any ordinal, its cardinal is defined as 0 without the set being empty.
```

theorem T4_spectrum:
shows (A {is in the spectrum of} isT4) \longleftrightarrow \& A \ 1
proof
assume A {is in the spectrum of} isT4
then have reg:\forallT. ((T{is a topology} ^ UT\approxA) \longrightarrow(T {is T4})) us-
ing Spec_def by auto
{
assume A}\not=
then obtain }x\mathrm{ where }x\inA\mathrm{ by auto
then have }x\in\bigcup{A} by aut
moreover
then have {A} {is a filter on}\{A} using IsFilter_def by auto
moreover
then have ({A}\cup{0}) {is a topology} ^ \bigcup({A}\cup{0})=A using top_of_filter
by auto
then have top:({A}\cup{0}) {is a topology} ${A}\cup{0})\approxA using eqpoll_refl
by auto
            then have ({A}\cup{0}) {is T}\mp@subsup{T}{4}{}}\mathrm{ using reg by auto
            then have ({A}\cup{0}) {is T T } using topology0.T3_is_T2 topology0.T4_is_T3
topology0_def top by auto
```
ultimately have \(\bigcup\{A\}=\{x\}$ using filter_T2_imp_card1[of $\{A\} x]$ by auto then have $A=\{x\}$ by auto
then have $A \approx 1$ using singleton_eqpoll_1 by auto
\}
moreover
have $A=0 \longrightarrow A \approx 0$ by auto
ultimately have $A \approx 1 \vee A \approx 0$ by blast
then show $\mathrm{A} \lesssim 1$ using empty_lepollI eqpoll_imp_lepoll eq_lepoll_trans
by auto
next
assume $\mathrm{A} \lesssim 1$
have $A=0 \vee A \neq 0$ by auto
then obtain E where $A=O V E \in A$ by auto
then have $A \approx 0 V E \in A$ by auto
with $\langle A \lesssim 1\rangle$ have $A \approx 0 \vee A=\{E\}$ using lepoll_1_is_sing by auto
then have $A \approx 0 \vee A \approx 1$ using singleton_eqpoll_1 by auto
\{
fix T
assume $A S: T\{$ is a topology $\} \backslash T \approx A$
\{
assume $\mathrm{A} \approx 0$
with AS have $T\{$ is a topology\} and empty: $\bigcup \mathrm{T}=0$ using eqpoll_trans
eqpoll_0_is_0 by auto
then have $\mathrm{T}\left\{\right.$ is T_{2} \} using isT2_def by auto
then have $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{1}\right\}$ using T 2 _is_T1 by auto
moreover
from empty have $T \subseteq\{0\}$ by auto
with AS(1) have $T=\{0\}$ using empty_open by auto
from empty have $\mathrm{rr}: \forall \mathrm{A}$. A\{is closed in\} $\longrightarrow \mathrm{A}=0$ using IsClosed_def
by auto
have $\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T} . \quad 0 \subseteq \mathrm{U} \wedge 0 \subseteq \mathrm{~V} \wedge \mathrm{U} \cap \mathrm{V}=0$ using empty_open AS(1) by auto
with rr have $\forall \mathrm{A}$. A\{is closed in\}T $\longrightarrow(\forall B$. B\{is closed in\}T \wedge
$\mathrm{A} \cap \mathrm{B}=0 \longrightarrow(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T} . \mathrm{A} \subseteq \mathrm{U} \wedge \mathrm{B} \subseteq \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0))$
by blast
then have $\mathrm{T}\{$ is normal\} using IsNormal_def by auto
with 〈 $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{1}\right\}$ 〉 have T \{is T_{4} \} using isT4_def by auto
\}
moreover
\{
assume $\mathrm{A} \approx 1$
with AS have $T\{i s$ a topology\} and NONempty: $\bigcup T \approx 1$ using eqpoll_trans [of
UTA1] by auto
then have $\bigcup \mathrm{T} \lesssim 1$ using eqpoll_imp_lepoll by auto
moreover
\{
assume $\bigcup \mathrm{T}=0$
then have $0 \approx \bigcup T$ by auto
with NONempty have $0 \approx 1$ using eqpoll_trans by blast
then have $0=1$ using eqpoll_0_is_0 eqpoll_sym by auto
```            then have False by auto         }         then have }\bigcupT\not=0\mathrm{ by auto         then obtain R where R\in\bigcupT by blast         ultimately have \T={R} using lepoll_1_is_sing by auto         {             fix x y             assume x{is closed in}Ty{is closed in}T x\capy=0             then have }x\subseteq\bigcupTy\subseteq\bigcupT using IsClosed_def by aut             then have }x=0\veey=0\mathrm{ using {x^y=0`《UT={R}> by force             {                 assume x=0                     then have }x\subseteq0y\subseteq\bigcupT using < \\subseteq\bigcup\ > by aut                     moreover                     have 0\inT\T\inT using AS(1) IsATopology_def empty_open by auto                 ultimately have }\exists\textrm{U}\in\textrm{T}.\exists\textrm{V}\in\textrm{T}.\textrm{x}\subseteq\textrm{U}\wedge\textrm{y}\subseteq\textrm{V}\wedgeU\capV=0 by aut             }             moreover             {                 assume x\not=0                 with {x=0\veey=0 \ have y=0 by auto                 then have }x\subseteq\bigcupTy\subseteq0 using \langlex\subseteq\bigcupT\rangle by aut                 moreover                 have 0\inT\T\inT using AS(1) IsATopology_def empty_open by auto                 ultimately have }\exists\textrm{U}\inT             }             ultimately             have (\existsU\inT. \existsV\inT. x \subseteqU \ y\subseteqV \ U \cap V = 0) by blast         }         then have T{is normal} using IsNormal_def by auto         moreover         {             fix x y             assume }x\in\bigcupTy\in\bigcupTx\not=             with \T={R}` have False by auto             then have }\exists\textrm{U}\in\textrm{T}.\textrm{x}\in\textrm{U}\wedgey\not\inU\mathrm{ by auto         }         then have T{is T1 } using isT1_def by auto         ultimately have T{is }\mp@subsup{\textrm{T}}{4}{}}\mathrm{ using isT4_def by auto     }     ultimately have T{is T4} using 〈A\approx0VA\approx1\rangle by auto     }     then have }\forallT.(T{is a topology} ^ UT = A) \longrightarrow (T{is T4}) by aut     then show A {is in the spectrum of} isT4 using Spec_def by auto qed```

If the topological properties are related, then so are the spectra.

```
lemma P_imp_Q_spec_inv:
 assumes \forallT. T{is a topology} \longrightarrow(Q(T) \longrightarrowP(T)) A {is in the spectrum
```

```
of} Q
 shows A {is in the spectrum of} P
proof-
 from assms(2) have }\forallT.T{is a topology} ^ UT ~ A \longrightarrowQ(T) using Spec_de
by auto
 with assms(1) have }\forallT.T{is a topology} ^ UT \approx A \longrightarrowP(T) by aut
 then show thesis using Spec_def by auto
qed
Since we already now the spectrum of \(T_{4}\); if we now the spectrum of \(T_{0}\), it
should be easier to compute the spectrum of \(T_{1}, T_{2}\) and \(T_{3}\).
theorem T0_spectrum:
shows (A \{is in the spectrum of \} isT0) \(\longleftrightarrow \mathrm{A} \lesssim 1\)
proof
assume A \{is in the spectrum of \} isT0
then have reg: \(\forall \mathrm{T}\). (\(\left(\mathrm{T}\{\right.\) is a topology\} \(\wedge \bigcup \mathrm{T} \approx \mathrm{A}) \longrightarrow\left(T\right.\) is \(\left.\left.\mathrm{T}_{0}\right\}\right)\)) us-
ing Spec_def by auto
\{
assume \(A \neq 0\)
then obtain \(x\) where \(x \in A\) by auto
then have \(x \in \bigcup\{A\}\) by auto
moreover
then have \(\{A\}\) \{is a filter \(o n\} \bigcup\{A\}\) using IsFilter_def by auto moreover
then have \((\{A\} \cup\{0\})\) \{is a topology \(\} \wedge \bigcup(\{A\} \cup\{0\})=A\) using top_of_filter
by auto
then have \((\{A\} \cup\{0\})\) \{is a topology \(\} \wedge \bigcup(\{A\} \cup\{0\}) \approx A\) using eqpoll_refl
by auto
then have \((\{A\} \cup\{0\})\) is \(\left.\mathrm{T}_{0}\right\}\) using reg by auto
\{
fix y
assume \(y \in A x \neq y\)
with \(\left\langle(\{A\} \cup\{0\})\right.\) is \(\left.\left.T_{0}\right\}\right\rangle\) obtain \(U\) where \(U \in(\{A\} \cup\{0\})\) and dis: \((x\)
\(\in U \wedge \mathrm{y} \notin \mathrm{U}) \vee(\mathrm{y} \in \mathrm{U} \wedge \mathrm{x} \notin \mathrm{U})\) using isTO_def by auto then have \(U=A\) by auto with dis \(\langle\mathrm{y} \in \mathrm{A}\rangle\langle\mathrm{x} \in \bigcup\{\mathrm{A}\}\rangle\) have False by auto
\}
then have \(\forall \mathrm{y} \in \mathrm{A} . \mathrm{y}=\mathrm{x}\) by auto
with \(\langle x \in \bigcup\{A\}\) 〉 have \(A=\{x\}\) by blast
then have \(A \approx 1\) using singleton_eqpoll_1 by auto
\}
moreover
have \(A=0 \longrightarrow A \approx 0\) by auto
ultimately have \(A \approx 1 \vee A \approx 0\) by blast
then show \(A \lesssim 1\) using empty_lepollI eqpoll_imp_lepoll eq_lepoll_trans
by auto
next
assume \(\mathrm{A} \lesssim 1\)
\{
```

fix $T$
assume T \{is a topology\}
then have ( $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{4}\right\}$ ) $\longrightarrow\left(\mathrm{T}\left\{\right.\right.$ is $\left.\mathrm{T}_{0}\right\}$ ) using topology0.T4_is_T3 topology0.T3_is_T2
T2_is_T1 T1_is_T0
topology0_def by auto
\}
then have $\forall T$. $T$ \{is a topology\} $\longrightarrow\left(\left(T\left\{i s T_{4}\right\}\right) \longrightarrow\left(T\left\{i s T_{0}\right\}\right)\right.$ ) by auto
then have ( $A$ \{is in the spectrum of \} isT4) $\longrightarrow$ (A \{is in the spectrum of\} isTO)
using P_imp_Q_spec_inv[of $\lambda T$. (T\{is $\left.T_{4}\right\}$ ) $\lambda T$. T\{is $\left.\left.T_{0}\right\}\right]$ by auto
then show (A \{is in the spectrum of \} isT0) using T4_spectrum $\langle\mathrm{A} \lesssim 1$ )
by auto
qed
theorem T1_spectrum:
shows (A \{is in the spectrum of \} isT1) $\longleftrightarrow A \lesssim 1$
proof-
note T2_is_T1 topology0.T3_is_T2 topology0.T4_is_T3
then have (A \{is in the spectrum of \} isT4) $\longrightarrow$ (A \{is in the spectrum of\} isT1)
using P_imp_Q_spec_inv[of isT4isT1] topology0_def by auto
moreover
note T1_is_T0
then have (A \{is in the spectrum of \} isT1) $\longrightarrow$ (A \{is in the spectrum of\}isT0)
using P_imp_Q_spec_inv[of isT1isT0] by auto
moreover
note T0_spectrum T4_spectrum
ultimately show thesis by blast
qed
theorem T2_spectrum:
shows (A \{is in the spectrum of \} isT2) $\longleftrightarrow A \lesssim 1$
proof-
note topology0.T3_is_T2 topology0.T4_is_T3
then have (A \{is in the spectrum of \} isT4) $\longrightarrow$ (A \{is in the spectrum of \} isT2)
using P_imp_Q_spec_inv[of isT4isT2] topology0_def by auto
moreover
note T2_is_T1
then have (A \{is in the spectrum of \} isT2) $\longrightarrow$ (A \{is in the spectrum of\}isT1)
using P_imp_Q_spec_inv[of isT2isT1] by auto
moreover
note T1_spectrum T4_spectrum
ultimately show thesis by blast
qed
theorem T3_spectrum:

```
 shows (A {is in the spectrum of} isT3) \longleftrightarrow A \lesssim 1
proof-
 note topology0.T4_is_T3
 then have (A {is in the spectrum of} isT4) }\longrightarrow\mathrm{ (A {is in the spectrum
of} isT3)
 using P_imp_Q_spec_inv[of isT4isT3] topology0_def by auto
 moreover
 note topology0.T3_is_T2
 then have (A {is in the spectrum of} isT3) }\longrightarrow\mathrm{ (A {is in the spectrum
of}isT2)
 using P_imp_Q_spec_inv[of isT3isT2] topology0_def by auto
 moreover
 note T2_spectrum T4_spectrum
 ultimately show thesis by blast
qed
theorem compact_spectrum:
 shows (A {is in the spectrum of} (}\lambda\textrm{T}.(\bigcupT) {is compact in}T)) \longleftrightarrow \longleftrightarrow
Finite(A)
proof
 assume A {is in the spectrum of} (}\lambda\mathrm{ T. (UT) {is compact in}T)
 then have reg:\forallT. T{is a topology} }\wedge\bigcupT\approxA \longrightarrow((UT) {is compac
in}T) using Spec_def by auto
 have Pow(A){is a topology} ^ \Pow(A)=A using Pow_is_top by auto
 then have Pow(A){is a topology} ^ \ Pow(A)\approxA using eqpoll_refl by
auto
 with reg have A{is compact in}Pow(A) by auto
 moreover
 have {{x}. x\inA}\in\operatorname{Pow (Pow(A)) by auto}
 moreover
 have }\bigcup{{x}. x\inA}=A by aut
 ultimately have }\exists\textrm{N}\in\operatorname{FinPow}({{x}. x\inA}). A\subseteq\bigcupN using IsCompact_def by
auto
 then obtain N where N\inFinPow({{x}. x\inA}) A\subseteq\bigcupN by auto
 then have N\subseteq{{x}. x\inA} Finite(N) A\subseteq\bigcupN using FinPow_def by auto
 {
 fix t
 assume t\in{{x}. x\inA}
 then obtain }x\mathrm{ where }x\inAt={x} by aut
 with \langleA\subseteq\bigcupN` have }x\in\bigcupN by aut
 then obtain B where }B\inNx\inB\mathrm{ by auto
 with {N\subseteq{{x}. x\inA}` have }B={x} by aut
 with \langlet={x}\\langleB\inN\rangle have t\inN by auto
 }
 with <N\subseteq{{x}. x\inA}` have N={{x}. }\textrm{x}\in\textrm{A}}\mathrm{ by auto
 with <Finite(N)\ have Finite({{x}. x\inA}) by auto
 let }B={\langlex,{x}\rangle. x\inA
 have B:A->{{x}. x\inA} unfolding Pi_def function_def by auto
 then have B:bij(A,{{x}. x\inA}) unfolding bij_def inj_def surj_def us-
```

```
ing apply_equality by auto
 then have A\approx{{x}. x\inA} using eqpoll_def by auto
 with <Finite({{x}. x\inA})\ show Finite(A) using eqpoll_imp_Finite_iff
by auto
next
 assume Finite(A)
 {
 fix T assume T{is a topology} \T\approxA
 with <Finite(A)\ have Finite(UT) using eqpoll_imp_Finite_iff by auto
 then have Finite(Pow(UT)) using Finite_Pow by auto
 moreover
 have T\subseteqPow(\T) by auto
 ultimately have Finite(T) using subset_Finite by auto
 {
 fix M
 assume M\inPow(T)\bigcupT\subseteq\bigcupM
 with {Finite(T)\ have Finite(M) using subset_Finite by auto
 with《UT\subseteq\bigcupM` have \existsN\inFinPow(M). \T\subseteq\bigcupN using FinPow_def by auto
 }
 then have (UT){is compact in}T unfolding IsCompact_def by auto
 }
 then show A {is in the spectrum of} (}\lambda\mathrm{ T. (\T) {is compact in}T) us-
ing Spec_def by auto
qed
It is, at least for some people, surprising that the spectrum of some properties cannot be completely determined in \(Z F\).
```

```
theorem compactK_spectrum:
```

theorem compactK_spectrum:
assumes \{the axiom of\}K\{choice holds for subsets\}(Pow(K)) Card(K)
assumes \{the axiom of\}K\{choice holds for subsets\}(Pow(K)) Card(K)
shows (A \{is in the spectrum of\} ( $\lambda \mathrm{T}$. ( ( $\cup \mathrm{T})$ \{is compact of cardinal\}
shows (A \{is in the spectrum of\} ( $\lambda \mathrm{T}$. ( ( $\cup \mathrm{T})$ \{is compact of cardinal\}
csucc (K) \{in\}T)) ) $\longleftrightarrow(A \lesssim K)$
csucc (K) \{in\}T)) ) $\longleftrightarrow(A \lesssim K)$
proof
proof
assume A \{is in the spectrum of \} ( $\lambda$ T. ( ( $\cup T)$ \{is compact of cardinal\}
assume A \{is in the spectrum of \} ( $\lambda$ T. ( ( $\cup T)$ \{is compact of cardinal\}
csucc(K)\{in\}T))
csucc(K)\{in\}T))
then have reg: $\forall \mathrm{T}$. $\mathrm{T}\{$ is a topology\} $\wedge \bigcup \mathrm{T} \approx \mathrm{A} \longrightarrow$ (( $\bigcup \mathrm{T})$ \{is compact of
then have reg: $\forall \mathrm{T}$. $\mathrm{T}\{$ is a topology\} $\wedge \bigcup \mathrm{T} \approx \mathrm{A} \longrightarrow$ (( $\bigcup \mathrm{T})$ \{is compact of
cardinal\} csucc(K)\{in\}T) using Spec_def by auto
cardinal\} csucc(K)\{in\}T) using Spec_def by auto
then have A\{is compact of cardinal\} csucc(K) \{in\} Pow(A) using Pow_is_top[of
then have A\{is compact of cardinal\} csucc(K) \{in\} Pow(A) using Pow_is_top[of
A] by auto
A] by auto
then have $\forall M \in \operatorname{Pow}(\operatorname{Pow}(A)) . A \subseteq \bigcup M \longrightarrow(\exists N \in \operatorname{Pow}(M) . A \subseteq \bigcup N \wedge N \prec \operatorname{csucc}(K))$
then have $\forall M \in \operatorname{Pow}(\operatorname{Pow}(A)) . A \subseteq \bigcup M \longrightarrow(\exists N \in \operatorname{Pow}(M) . A \subseteq \bigcup N \wedge N \prec \operatorname{csucc}(K))$
unfolding IsCompactOfCard_def by auto
unfolding IsCompactOfCard_def by auto
moreover
moreover
have $\{\{x\} . x \in A\} \in \operatorname{Pow}(\operatorname{Pow}(A))$ by auto
have $\{\{x\} . x \in A\} \in \operatorname{Pow}(\operatorname{Pow}(A))$ by auto
moreover
moreover
have $A=\bigcup\{\{x\} . x \in A\}$ by auto
have $A=\bigcup\{\{x\} . x \in A\}$ by auto
ultimately have $\exists \mathrm{N} \in \operatorname{Pow}(\{\{x\} . x \in A\}) . A \subseteq \bigcup N \wedge N \prec \operatorname{csucc}(K)$ by auto
ultimately have $\exists \mathrm{N} \in \operatorname{Pow}(\{\{x\} . x \in A\}) . A \subseteq \bigcup N \wedge N \prec \operatorname{csucc}(K)$ by auto
then obtain $N$ where $N \in \operatorname{Pow}(\{\{x\} . x \in A\}) A \subseteq \bigcup N N \prec \operatorname{csucc}(K)$ by auto
then obtain $N$ where $N \in \operatorname{Pow}(\{\{x\} . x \in A\}) A \subseteq \bigcup N N \prec \operatorname{csucc}(K)$ by auto
then have $N \subseteq\{\{x\}$. $x \in A\} \quad N \prec \operatorname{csucc}(K) A \subseteq \bigcup N$ using FinPow_def by auto
then have $N \subseteq\{\{x\}$. $x \in A\} \quad N \prec \operatorname{csucc}(K) A \subseteq \bigcup N$ using FinPow_def by auto
\{
\{
fix t

```
 fix t
```

```
 assume t\in{{x}. x\inA}
 then obtain }x\mathrm{ where }x\inAt={x} by aut
 with \langleA\subseteq\bigcupN\rangle have }x\in\bigcupN by aut
 then obtain B where B\inNx\inB by auto
 with <N\subseteq{{x}. }x\inA}` have B={x} by aut
 with \langlet={x}`\B\inN\rangle have t\inN by auto
 }
 with <N\subseteq{{x}. x\inA}> have N={{x}. x\inA} by auto
 let }B={\langlex,{x}\rangle. x\inA
 from <N={{x}. x\inA}> have B:A->N unfolding Pi_def function_def by auto
 with {N={{x}. x\inA}` have B:inj(A,N) unfolding inj_def using apply_equality
by auto
 then have A\lesssimN using lepoll_def by auto
 with <N\preccsucc(K) \ have A\preccsucc(K) using lesspoll_trans1 by auto
 then show A\lesssimK using Card_less_csucc_eq_le assms(2) by auto
next
 assume A\lesssimK
 {
 fix T
 assume T{is a topology}\T\approxA
 have Pow(\T){is a topology} using Pow_is_top by auto
 {
 fix B
 assume AS:B\inPow(\T)
 then have {{i}. i\inB}\subseteq{{i} .i\in\bigcupT} by auto
 moreover
 have }B=\{{i}. i\inB} by aut
 ultimately have }\exists\textrm{S}\in\operatorname{Pow}({{i}. i\in\T}). B=\S by aut
 then have B\in{\U. U\inPow({{i}. i\in\bigcupT})} by auto
 }
 moreover
 {
 fix B
 assume AS:B\in{\U. U\inPow({{i}. i\in\T})}
 then have B\in\operatorname{Pow (UT) by auto}
 }
 ultimately
 have base:{{x}. x\in\T} {is a base for}Pow(\T) unfolding IsAbaseFor_def
by auto
 let f={\langlei,{i}\rangle.i\in\T}
 have f:f:\T-> {{x}. x\in\T} using Pi_def function_def by auto
 moreover
 {
 fix w x
 assume as:w\in\bigcupTx\in\bigcupTfw=fx
 with f have fw={w} fx={x} using apply_equality by auto
 with as(3) have w=x by auto
 }
 with f have f:inj(\T,{{x}. x\in\T}) unfolding inj_def by auto
```

```
 moreover
 {
 fix xa
 assume xa\in{{x}. x\in\T}
 then obtain }x\mathrm{ where }x\in\bigcupTxa={x} by aut
 with f have fx=xa using apply_equality by auto
 with \langlex\in\T\rangle have \existsx\in\T. fx=xa by auto
 }
 then have }\forallxa\in{{x}. x\in\T}. \existsx\in\bigcupT. fx=xa by blas
 ultimately have f:bij(\T,{{x}. x\in\bigcupT}) unfolding bij_def surj_def
by auto
 then have \T\approx{{x}. x\in\bigcupT} using eqpoll_def by auto
 then have {{x}. x\in\T}\approx\bigcupT using eqpoll_sym by auto
 with \\bigcupT\approxA> have {{x}. x\in\T}\approxA using eqpoll_trans by blast
 then have {{x}. x\in\bigcupT}\lesssimA using eqpoll_imp_lepoll by auto
 with }\langle\textrm{A}\lesssimK\rangle have {{x}. x\in\T}\lesssimK using lepoll_trans by blast
 then have {{x}. x\in\T}\preccsucc(K) using assms(2) Card_less_csucc_eq_le
by auto
 with base have Pow (UT) {is of second type of cardinal}csucc(K) un-
folding IsSecondOfCard_def by auto
 moreover
 have \ \Pow (UT)=\bigcupT by auto
 with calculation assms(1) \Pow(\T){is a topology}\rangle have (UT) {is
compact of cardinal}csucc(K){in}Pow(UT)
 using compact_of_cardinal_Q[of KPow(\T)] by auto
 moreover
 have T\subseteqPow(\T) by auto
 ultimately have (UT) {is compact of cardinal}csucc(K){in}T using
compact_coarser by auto
 }
 then show A {is in the spectrum of} (}\lambda\textrm{T}
{in}T)) using Spec_def by auto
qed
theorem compactK_spectrum_reverse:
 assumes \forallA. (A {is in the spectrum of} (}\lambda\mathrm{ T. ((UT){is compact of cardinal}
csucc(K){in}T))) \longleftrightarrow(A\lesssimK) InfCard(K)
 shows {the axiom of}K{choice holds for subsets}(Pow(K))
proof-
 have K}\\K using lepoll_refl by auto
 then have K {is in the spectrum of} (}\lambda\textrm{T}.((\cupT){\mathrm{ is compact of cardinal}
csucc(K){in}T)) using assms(1) by auto
 moreover
 have Pow(K){is a topology} using Pow_is_top by auto
 moreover
 have UPow(K)=K by auto
 then have \ \ow(K)\approxK using eqpoll_refl by auto
 ultimately
 have K {is compact of cardinal} csucc(K){in}Pow(K) using Spec_def by
```

```
auto
 then show thesis using Q_disc_comp_csuccQ_eq_Q_choice_csuccQ assms(2)
by auto
qed
```

This last theorem states that if one of the forms of the axiom of choice related to this compactness property fails, then the spectrum will be different. Notice that even for Lindelöf spaces that will happend.

The spectrum gives us the posibility to define what an anti-property means. A space is anti-P if the only subspaces which have the property are the ones in the spectrum of $P$. This concept tries to put together spaces that are completely opposite to spaces where $\mathrm{P}(\mathrm{T})$.

```
definition
 antiProperty (_{is anti-}_ 50)
 where T{is anti-}P \equiv\forallA\inPow(\T). P(T{restricted to}A) \longrightarrow (A {is
in the spectrum of} P)
```


## abbreviation

```
ANTI(P) \equiv \T. (T{is anti-}P)
```

```
ANTI(P) \equiv \T. (T{is anti-}P)
```

A first, very simple, but very useful result is the following: when the properties are related and the spectra are equal, then the anti-properties are related in the oposite direction.

```
theorem (in topology0) eq_spect_rev_imp_anti:
 assumes }\forall\textrm{T}.\textrm{T}{\mathrm{ is a topology} }\longrightarrow\textrm{P}(\textrm{T})\longrightarrow\textrm{Q}(\textrm{T})\forallA.(A{is in the spectrum
of}Q) }\longrightarrow\mathrm{ (A{is in the spectrum of}P)
 and T{is anti-}Q
 shows T{is anti-}P
proof-
 {
 fix A
 assume A\inPow(\T)P(T{restricted to}A)
 with assms(1) have Q(T{restricted to}A) using Top_1_L4 by auto
 with assms(3) <A\inPow(\T) \ have A{is in the spectrum of}Q using antiProperty_def
by auto
 with assms(2) have A{is in the spectrum of}P by auto
 }
 then show thesis using antiProperty_def by auto
qed
```

If a space can be $P(T) \wedge Q(T)$ only in case the underlying set is in the spectrum of $P$; then $Q(T) \longrightarrow \operatorname{ANTI}(P, T)$ when $Q$ is hereditary.
theorem Q_P_imp_Spec:
assumes $\forall T$. ( $(T\{$ is a topology $\} \wedge P(T) \wedge Q(T)) \longrightarrow((U T)\{$ is in the spectrum of \}P) )
and $Q\{i s$ hereditary $\}$
shows $\forall T$. T\{is a topology\} $\longrightarrow(Q(T) \longrightarrow(T\{i s$ anti- $\} P))$

```
proof
 fix T
 {
 assume T{is a topology}
 {
 assume Q(T)
 {
 assume }\neg(T{is anti-}P
 then obtain A where A\inPow (\bigcupT) P(T{restricted to}A) }\neg(A{is i
the spectrum of}P)
 unfolding antiProperty_def by auto
 from }\langleQ(T)\rangle\T{is a topology}\\A\inPow(UT)\rangle assms(2) have Q(T{restricted
to}A)
 unfolding IsHer_def by auto
 moreover
 note <P(T{restricted to}A)> assms(1)
 moreover
 from \T{is a topology} have (T{restricted to}A){is a topology}
using topology0.Top_1_L4
 topology0_def by auto
 moreover
 from <A\inPow(\T)\rangle have \(T{restricted to}A)=A unfolding RestrictedTo_def
by auto
 ultimately have A{is in the spectrum of}P by auto
 with <\neg(A{is in the spectrum of}P)\rangle have False by auto
 }
 then have T{is anti-}P by auto
 }
 then have Q(T) \longrightarrow(T{is anti-}P) by auto
 }
 then show (T {is a topology}) }\longrightarrow(Q(T)\longrightarrow(T{is anti-}P)) by aut
qed
If a topologycal space has an hereditary property, then it has its double-anti property.
theorem (in topology0)her_P_imp_anti2P:
assumes \(\mathrm{P}\{\) is hereditary \(\} \mathrm{P}(\mathrm{T})\)
shows T\{is anti-\}ANTI (P)
proof-
\{
assume \(\neg(T\{i s\) anti-\}ANTI (P))
then have \(\exists \mathrm{A} \in \operatorname{Pow}(\bigcup \mathrm{T})\). ((T\{restricted to\}A) \{is anti-\}P) \(\wedge \neg(A\{i s\) in
the spectrum of \(\}\) ANTI (P))
unfolding antiProperty_def[of _ ANTI(P)] by auto
then obtain \(A\) where \(A_{-}\)def: \(A \in \operatorname{Pow}(\bigcup T) \neg(A\{i s\) in the spectrum of \(\}\) ANTI (P)) (T\{restricted to\}A) \{is anti-\}P
by auto
from \(\langle A \in \operatorname{Pow}(\bigcup T)\rangle\) have tot: \(\bigcup\) (\(T\{\) restricted to\}A)=A unfolding RestrictedTo_def
by auto
```

from A_def have reg: $\forall B \in \operatorname{Pow}(\bigcup$ (T\{restricted to\}A)). P((T\{restricted to\}A) \{restricted to\}B) $\longrightarrow$ (B\{is in the spectrum of $\}$ P)
unfolding antiProperty_def by auto
have $\forall B \in \operatorname{Pow}(A)$. (T\{restricted to\}A)\{restricted to\}B=T\{restricted to\}B using subspace_of_subspace $\langle A \in \operatorname{Pow}(\bigcup T)\rangle$ by auto
then have $\forall B \in \operatorname{Pow}(A) . P(T\{r e s t r i c t e d$ to $B$ ) $\longrightarrow$ ( $B\{i s$ in the spectrum of $\}$ P) using reg tot
by force
moreover
have $\forall B \in \operatorname{Pow}(A)$. $P(T\{r e s t r i c t e d ~ t o\} B)$ using assms $\langle A \in \operatorname{Pow}(\bigcup T)\rangle$ unfolding IsHer_def using topSpaceAssum by blast
ultimately have reg2: $\forall B \in \operatorname{Pow}(A)$. ( $B\{$ is in the spectrum of $\} P$ ) by auto
from $\langle\neg$ (A\{is in the spectrum of \}ANTI(P)) 》 have $\exists$ T. T\{is a topology\}
$\wedge \bigcup T \approx A \wedge \neg$ (T\{is anti-\}P)
unfolding Spec_def by auto
then obtain $S$ where $S\{i s$ a topology $\bigcup S \approx A \neg(S\{i s$ anti- $\} P)$ by auto
from $\langle\neg(S\{i s$ anti-\}P) have $\exists \mathrm{B} \in \operatorname{Pow}(\bigcup S)$. $\mathrm{P}(\mathrm{S}\{$ restricted to\}B) $\wedge \neg(\mathrm{B}\{$ is in the spectrum of $\} P$ ) unfolding antiProperty_def by auto
then obtain $B$ where $B_{-}$def: $\neg(B\{i s$ in the spectrum of $\} P) B \in \operatorname{Pow}(U S)$
by auto
then have $B \lesssim \bigcup S$ using subset_imp_lepoll by auto
with $\bigcup S \approx A$ ) have $B \lesssim A$ using lepoll_eq_trans by auto
then obtain $f$ where $f \in \operatorname{inj}(B, A)$ unfolding lepoll_def by auto
then have $f \in$ bij ( $B$, range(f)) using inj_bij_range by auto
then have $B \approx$ range (f) unfolding eqpoll_def by auto
with B_def(1) have $\neg$ (range (f) \{is in the spectrum of $\}$ P) using eqpoll_iff_spec
by auto
moreover
with $\langle f \in \operatorname{inj}(B, A)\rangle$ have range (f) $\subseteq A$ unfolding inj_def Pi_def by auto
with reg2 have range(f) \{is in the spectrum of\}P by auto
ultimately have False by auto
\}
then show thesis by auto
qed
The anti-properties are always hereditary

```
theorem anti_here:
 shows ANTI(P){is hereditary}
proof-
 {
 fix T
 assume T {is a topology}ANTI(P,T)
 {
 fix A
 assume A\in\operatorname{Pow (UT)}
 then have \(T{restricted to}A)=A unfolding RestrictedTo_def by
auto
 moreover
 {
```

fix B
assume $B \in \operatorname{Pow}(A) P((T\{r e s t r i c t e d ~ t o\} A)\{r e s t r i c t e d ~ t o\} B)$
with $\langle A \in \operatorname{Pow}(\bigcup T)\rangle$ have $B \in \operatorname{Pow}(\bigcup T) P(T\{r e s t r i c t e d$ to\}B) using subspace_of_subspace
by auto
with 〈ANTI $(P, T)$ 〉 have $B\{i s$ in the spectrum of $\} P$ unfolding antiProperty＿def
by auto
\}
ultimately have $\forall B \in \operatorname{Pow}(\bigcup$（ $T\{$ restricted to\} $A)$ ）．（ $P((T\{$ restricted
to\}A) \{restricted to\}B) ) $\longrightarrow(B\{i s$ in the spectrum of $\} P)$
by auto
then have ANTI（P，（T\｛restricted to\}A)) unfolding antiProperty_def

## by auto

\}
then have $\forall A \in \operatorname{Pow}(\bigcup T)$ ． $\operatorname{ANTI}(P,(T\{$ restricted to\} $A))$ by auto
\}
then show thesis using IsHer＿def by auto
qed
corollary（in topology0）anti＿imp＿anti3：
assumes T\｛is anti－\}P
shows T\｛is anti－\}ANTI(ANTI (P))
using anti＿here her＿P＿imp＿anti2P assms by auto
In the article［5］，we can find some results on anti－properties．

```
theorem (in topology0) anti_T0:
 shows (T{is anti-}isT0) \longleftrightarrow T={0,\bigcupT}
proof
 assume T={0,\bigcupT}
 {
 fix A
 assume A\inPow(UT)(T{restricted to}A) {is To}
 {
 fix B
 assume B\inT{restricted to}A
 then obtain S where S\inT and B=A\capS unfolding RestrictedTo_def by
auto
 with 〈T={0,\bigcupT}` have S\in{0,\bigcupT} by auto
 then have S=0\veeS=\bigcupT by auto
 with \langleB=A\capS\\A\inPow (UT) \ have B=0\veeB=A by auto
 }
 moreover
 {
 have 0\in{0,\bigcupT} \T\in{0,\bigcupT} by auto
 with \langleT={0,\bigcupT}` have 0\inT (\bigcupT)\inT by auto
 then have A\cap0\in(T{restricted to}A) A\cap(UT)\in(T{restricted to}A)
using RestrictedTo_def by auto
 moreover
 from \langleA\inPow (\bigcupT) \ have A\cap (\bigcupT)=A by auto
 ultimately have }0\in(T{restricted to}A) A\in(T{restricted to}A) by
```

```
auto
 }
 ultimately have (T{restricted to}A)={0,A} by auto
 with 〈(T{restricted to}A) {is }\mp@subsup{\textrm{T}}{0}{}}\mathrm{ \ have {0,A} {is }\mp@subsup{\textrm{T}}{0}{}}\mathrm{ by auto
 {
 assume A\not=0
 then obtain x where }x\inA\mathrm{ by blast
 {
 fix y
 assume }\textrm{y}\in\textrm{Ax}\not=\textrm{y
 with \{0,A} {is T T }> obtain U where U }\in{0,A} and dis:(x \in U ^
y \not\inU) V (y \inU ^ x & U) using isTO_def by auto
 then have U=A by auto
 with dis }\langley\inA\rangle\langlex\inA\rangle\mathrm{ have False by auto
 }
 then have }\forall\textrm{y}\in\textrm{A}.\textrm{y}=\textrm{x}\mathrm{ by auto
 with \langlex\inA\rangle have A={x} by blast
 then have A\approx1 using singleton_eqpoll_1 by auto
 then have A\lesssim1 using eqpoll_imp_lepoll by auto
 then have A{is in the spectrum of}isT0 using TO_spectrum by auto
 }
 moreover
 {
 assume A=0
 then have A\approx0 by auto
 then have A\lesssim1 using empty_lepollI eq_lepoll_trans by auto
 then have A{is in the spectrum of}isT0 using TO_spectrum by auto
 }
 ultimately have A{is in the spectrum of}isT0 by auto
 }
 then show T{is anti-}isT0 using antiProperty_def by auto
next
 assume T{is anti-}isT0
 then have }\forall\textrm{A}\in\operatorname{Pow}(\cupT).(T{restricted to}A){is T T } \longrightarrow (A{is in th
spectrum of}isT0) using antiProperty_def by auto
 then have reg: }\forall\textrm{A}\in\operatorname{Pow}(\bigcup\textrm{T}).(T{restricted to}A){is To} \longrightarrow (A\lesssim1) us
ing TO_spectrum by auto
 {
 assume }\exists\textrm{A}\in\textrm{T}.\textrm{A}\not=0\wedgeA\not=\bigcup
 then obtain A where A\inTA\not=OA\not=\bigcupT by auto
 then obtain x y where x\inA y\in\bigcupT-A by blast
 with \langleA\inT\rangle have s:{x,y}\inPow(UT) x\not=y by auto
 note s
 moreover
 {
 fix b1 b2
 assume b1\in\ (T{restricted to}{x,y})b2\in\(T{restricted to}{x,y})b1\not=b2
 moreover
```

from $s$ have $\bigcup(T\{$ restricted $\operatorname{to}\}\{x, y\})=\{x, y\}$ unfolding RestrictedTo_def by auto
ultimately have ( $\mathrm{b} 1=\mathrm{x} \wedge \mathrm{b} 2=\mathrm{y}) \vee(\mathrm{b} 1=\mathrm{y} \wedge \mathrm{b} 2=\mathrm{x})$ by auto
with $\langle x \neq y\rangle$ have $(b 1 \in\{x\} \wedge b 2 \notin\{x\}) \vee(b 2 \in\{x\} \wedge b 1 \notin\{x\})$ by auto
moreover
from $\langle y \in \bigcup \mid T-A\rangle\langle x \in A\rangle$ have $\{x\}=\{x, y\} \cap A$ by auto
with $\langle A \in T\rangle$ have $\{x\} \in(T\{$ restricted to $\{x, y\})$ unfolding RestrictedTo_def by auto
ultimately have $\exists \mathrm{U} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\})$. ( $\mathrm{b} 1 \in \mathrm{U} \wedge \mathrm{b} 2 \notin \mathrm{U}$ ) $\vee(\mathrm{b} 2 \in \mathrm{U} \wedge \mathrm{b} 1 \notin \mathrm{U})$

## by auto

\}
then have ( $\mathrm{T}\left\{\right.$ restricted $\operatorname{to\} }\{\mathrm{x}, \mathrm{y}\}$ ) $\left\{\right.$ is $\left.\mathrm{T}_{0}\right\}$ using isTO_def by auto
ultimately have $\{x, y\} \lesssim 1$ using reg by auto
moreover
have $x \in\{x, y\}$ by auto
ultimately have $\{x, y\}=\{x\}$ using lepoll_1_is_sing [of $\{x, y\} x]$ by auto
moreover
have $y \in\{x, y\}$ by auto
ultimately have $\mathrm{y} \in\{\mathrm{x}\}$ by auto
then have $\mathrm{y}=\mathrm{x}$ by auto
with $\langle x \neq \mathrm{y}\rangle$ have False by auto
\}
then have $T \subseteq\{0, \bigcup T\}$ by auto
moreover
from topSpaceAssum have $0 \in T \bigcup T \in T$ using IsATopology_def empty_open by auto
ultimately show $T=\{0, \bigcup T\}$ by auto
qed
lemma indiscrete_spectrum:
shows (A is in the spectrum of $\}(\lambda T . T=\{0, \bigcup T\})) \longleftrightarrow A \lesssim 1$
proof
assume (A \{is in the spectrum of $\}(\lambda T . T=\{0, \bigcup T\})$ )
then have reg: $\forall T$. ( ( $T$ \{is a topology $\wedge \wedge \bigcup T \approx A$ ) $\longrightarrow T=\{0, \bigcup T\}$ ) using
Spec_def by auto
moreover
have $\bigcup \operatorname{Pow}(A)=A$ by auto
then have $\bigcup \operatorname{Pow}(A) \approx A$ by auto
moreover
have Pow (A) \{is a topology\} using Pow_is_top by auto
ultimately have $P: \operatorname{Pow}(A)=\{0, A\}$ by auto
\{
assume $A \neq 0$
then obtain $x$ where $x \in A$ by blast
then have $\{x\} \in \operatorname{Pow}(A)$ by auto
with $P$ have $\{x\}=A$ by auto
then have $A \approx 1$ using singleton_eqpoll_1 by auto
then have $\mathrm{A} \lesssim 1$ using eqpoll_imp_lepoll by auto
\}

```
 moreover
{
 assume A=0
 then have A\approx0 by auto
 then have A\lesssim1 using empty_lepollI eq_lepoll_trans by auto
 }
 ultimately show A}\lesssim1\mathrm{ by auto
next
 assume A\lesssim1
 {
 fix T
 assume T{is a topology}\T\approxA
 {
 assume A=0
 with \ UT\approxA have UT\approx0 by auto
 then have \ T=0 using eqpoll_0_is_0 by auto
 then have T\subseteq{0} by auto
 with 〈T{is a topology}` have T={0} using empty_open by auto
 then have T={0,\T} by auto
 }
 moreover
 {
 assume A\not=0
 then obtain E where E\inA by blast
 with \langleA\lesssim1\rangle have A={E} using lepoll_1_is_sing by auto
 then have A\approx1 using singleton_eqpoll_1 by auto
 with \T T\approxA have NONempty:\T\approx1 using eqpoll_trans by blast
 then have \ \ T\lesssim1 using eqpoll_imp_lepoll by auto
 moreover
 {
 assume \T=0
 then have 0\approx\bigcupT by auto
 with NONempty have 0\approx1 using eqpoll_trans by blast
 then have 0=1 using eqpoll_0_is_0 eqpoll_sym by auto
 then have False by auto
 }
 then have }\bigcupT\not=0\mathrm{ by auto
 then obtain R where R\in\bigcupT by blast
 ultimately have \ }T={R} using lepoll_1_is_sing by aut
 moreover
 have T\subseteqPow(UT) by auto
 ultimately have T\subseteqPow({R}) by auto
 then have T\subseteq{0,{R}} by blast
 moreover
 with 〈T{is a topology}` have 0\inT\T\inT using IsATopology_def by auto
 moreover
 note\UT={R}>
 ultimately have T={0,\T} by auto
 }
```

ultimately have $\mathrm{T}=\{0, \bigcup \mathrm{~T}\}$ by auto
then show $A$ \{is in the spectrum of $\}(\lambda T . T=\{0, \bigcup T\})$ using Spec_def by auto
qed
theorem (in topology0) anti_indiscrete:
shows (T\{is anti-\} $(\lambda T . \mathrm{T}=\{0, \bigcup \mathrm{~T}\})) \longleftrightarrow \mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{0}\right\}$
proof
assume $T\left\{\right.$ is $\left.T_{0}\right\}$
\{
fix A
assume $A \in \operatorname{Pow}(\bigcup T) T\{$ restricted to $\} A=\{0, \bigcup(T\{$ restricted to $\} A)\}$
then have un: $\bigcup(T\{$ restricted to\}A) $=A T\{$ restricted to $A=\{0, A\}$ using
RestrictedTo_def by auto
from $\left\langle T\left\{\right.\right.$ is $\left.\left.T_{0}\right\}\right\rangle\langle A \in \operatorname{Pow}(\cup T)\rangle$ have (T\{restricted to\}A) \{is $\left.T_{0}\right\}$ using T0_here
by auto
\{
assume $A=0$
then have $\mathrm{A} \approx 0$ by auto
then have $A \lesssim 1$ using empty_lepollI eq_lepoll_trans by auto
\}
moreover
\{
assume $A \neq 0$
then obtain $E$ where $E \in A$ by blast \{
fix y
assume $\mathrm{y} \in \mathrm{Ay} \neq \mathrm{E}$
with $\langle E \in A\rangle$ un have $\mathrm{y} \in \bigcup$ ( $T$ \{restricted to\} A$) \mathrm{E} \in \bigcup$ ( $\mathrm{T}\{$ restricted to\}A)
by auto
with 〈(T\{restricted to\}A)\{is $\left.T_{0}\right\} 〉\langle y \neq E$ have $\exists \mathrm{U} \in(T\{$ restricted to\}A).
$(E \in U \wedge y \notin U) \vee(E \notin U \wedge y \in U)$
unfolding isTO_def by blast
then obtain $U$ where $U \in(T\{r e s t r i c t e d ~ t o\} A)(E \in U \wedge y \notin U) \vee(E \notin U \wedge y \in U)$
by auto
with $\langle T\{$ restricted to\} $A=\{0, A\}$ have $U=0 \vee U=A$ by auto
with $\langle(E \in U \wedge y \notin U) \vee(E \notin U \wedge y \in U)\rangle\langle y \in A\rangle\langle E \in A\rangle$ have False by auto
\}
then have $\forall y \in A . y=E$ by auto
with $\langle E \in A\rangle$ have $A=\{E\}$ by blast
then have $A \approx 1$ using singleton_eqpoll_1 by auto
then have $A \lesssim 1$ using eqpoll_imp_lepoll by auto
\}
ultimately have $A \lesssim 1$ by auto
then have $A\{i s$ in the spectrum of $\}(\lambda T . T=\{0, \bigcup T\}$ ) using indiscrete_spectrum by auto
\}
then show $\mathrm{T}\{$ is anti- $\}(\lambda \mathrm{T} . \mathrm{T}=\{0, \bigcup \mathrm{~T}\})$ unfolding antiProperty_def by

## auto

next
assume $\mathrm{T}\{$ is anti- $\}(\lambda \mathrm{T} . \mathrm{T}=\{0, \bigcup \mathrm{~T}\})$
then have $\forall A \in \operatorname{Pow}(\bigcup T) .(T\{r e s t r i c t e d$ to $\} A)=\{0, \bigcup(T\{$ restricted to $\} A)\}$ $\longrightarrow$ (A \{is in the spectrum of $\quad(\lambda T . T=\{0, \bigcup T\})$ ) using antiProperty_def by auto
then have $\forall A \in \operatorname{Pow}(\bigcup T) .(T\{$ restricted to $\} A)=\{0, \bigcup(T\{$ restricted to $\} A)\}$
$\longrightarrow \mathrm{A} \lesssim 1$ using indiscrete_spectrum by auto
moreover
have $\forall A \in \operatorname{Pow}(\bigcup T) . \bigcup(T\{r e s t r i c t e d ~ t o\} A)=A$ unfolding RestrictedTo_def by auto
ultimately have reg: $\forall \mathrm{A} \in \operatorname{Pow}(\bigcup \mathrm{T}) .(\mathrm{T}\{$ restricted to\} A$)=\{0, \mathrm{~A}\} \longrightarrow \mathrm{A} \lesssim 1$
by auto
\{
fix $x$ y
assume $x \in \bigcup T y \in \bigcup T x \neq y$
$\{$
assume $\forall U \in T . \quad(x \in U \wedge y \in U) \vee(x \notin U \wedge y \notin U)$
then have $\mathrm{T}\{$ restricted to $\}\{\mathrm{x}, \mathrm{y}\} \subseteq\{0,\{\mathrm{x}, \mathrm{y}\}\}$ unfolding RestrictedTo_def
by auto
moreover
from $\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle$ have emp: $0 \in T\{x, y\} \cap 0=0$ and tot: $\{x, y\}=\{x, y\} \cap \bigcup T$
$\bigcup T \in T$ using topSpaceAssum empty_open IsATopology_def by auto
from emp have $0 \in T\{$ restricted to\} $\{x, y\}$ unfolding RestrictedTo_def
by auto
moreover
from tot have $\{x, y\} \in T\{r e s t r i c t e d ~ t o\}\{x, y\}$ unfolding RestrictedTo_def
by auto
ultimately have $T\{$ restricted to $\}\{x, y\}=\{0,\{x, y\}\}$ by auto
with reg $\langle\mathrm{x} \in \bigcup \mathrm{T}\rangle\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle$ have $\{\mathrm{x}, \mathrm{y}\} \lesssim 1$ by auto
moreover
have $x \in\{x, y\}$ by auto
ultimately have $\{x, y\}=\{x\}$ using lepoll_1_is_sing[of $\{x, y\} x]$ by auto moreover
have $\mathrm{y} \in\{\mathrm{x}, \mathrm{y}\}$ by auto
ultimately have $y \in\{x\}$ by auto
then have $y=x$ by auto
then have False using $\langle x \neq y\rangle$ by auto

## \}

then have $\exists \mathrm{U} \in \mathrm{T}$. $(x \notin U \vee y \notin U) \wedge(x \in U \vee y \in U)$ by auto
then have $\exists U \in T . \quad(x \in U \wedge y \notin U) \vee(x \notin U \wedge y \in U)$ by auto
\}
then have $\forall x$ y. $x \in \bigcup T \wedge y \in \bigcup T \wedge x \neq y \longrightarrow(\exists \mathrm{U} \in \mathrm{T} . \quad(\mathrm{x} \in \mathrm{U} \wedge \mathrm{y} \notin \mathrm{U}) \vee(\mathrm{y} \in \mathrm{U} \wedge \mathrm{x} \notin \mathrm{U}))$
by auto
then show $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{0}\right\}$ using isTO_def by auto
qed
The conclusion is that being $T_{0}$ is just the opposite to being indiscrete.
Next, let's compute the anti- $T_{i}$ for $i=1,2,3$ or 4 . Surprisingly, they are
all the same. Meaning, that the total negation of $T_{1}$ is enough to negate all of these axioms.

```
theorem anti_T1:
 shows (T{is anti-}isT1) \longleftrightarrow(IsLinOrder(T,{\langleU,V\rangle\inPow(\T)\timesPow(UT).
U\subseteqV}))
proof
 assume T{is anti-}isT1
 let r={\langleU,V\rangle\inPow (UT)\timesPow (UT). U\subseteqV}
 have antisym(r) unfolding antisym_def by auto
 moreover
 have trans(r) unfolding trans_def by auto
 moreover
 {
 fix A B
 assume A\inTB\inT
 {
 assume }\neg(A\subseteqB\veeB\subseteqA
 then have A-B\not=OB-A\not=0 by auto
 then obtain x y where }x\inAx\not\inBy\inBy\not\inA x\not=y by blas
 then have {x,y}\capA={x}{x,y}\capB={y} by auto
 moreover
 from \langleA\inT\rangle\langleB\inT\rangle have {x,y}\capA\inT{restricted to}{x,y}{x,y}\capB\inT{restricted
to}{x,y} unfolding
 RestrictedTo_def by auto
 ultimately have open_set:{x}\inT{restricted to}{x,y}{y}\inT{restricted
to}{x,y} by auto
 have }x\in\bigcupTy\in\bigcupT using \langleA\inT\rangle\langleB\inT\rangle\langlex\inA\rangle\langley\inB\rangle by aut
 then have sub:{x,y}\in\operatorname{Pow}(\cupT) by auto
 then have tot:\(T{restricted to}{x,y})={x,y} unfolding RestrictedTo_def
by auto
 {
 fix s t
 assume s\in\bigcup(T{restricted to}{x,y})t\in\bigcup(T{restricted to}{x,y})s\not=t
 with tot have s\in{x,y}t\in{x,y}s\not=t by auto
 then have (}s=x\wedget=y)\vee(s=y\wedget=x) by aut
 with open_set have }\exists\textrm{U}\in(T{\mathrm{ restricted to}{x,y}). s}\in\inU\wedget\not\inU usin
<x}\not=\textrm{y}\rangle\mathrm{ by auto
 }
 then have (T{restricted to}{x,y}){is T T1 unfolding isT1_def by
auto
 with sub <T{is anti-}isT1` tot have {x,y} {is in the spectrum of}isT1
using antiProperty_def
 by auto
 then have {x,y}\lesssim1 using T1_spectrum by auto
 moreover
 have }x\in{x,y} by aut
 ultimately have {x}={x,y} using lepoll_1_is_sing[of {x,y}x] by auto
 moreover
 have y\in{x,y} by auto
```

```
 ultimately
 have }y\in{x} by aut
 then have x=y by auto
 then have False using \langlex\inA><y\not\inA> by auto
 }
 then have }A\subseteqB\veeB\subseteqA\mathrm{ by auto
 }
 then have r {is total on}T using IsTotal_def by auto
 ultimately
 show IsLinOrder(T,r) using IsLinOrder_def by auto
next
 assume IsLinOrder(T,{\langleU,V\rangle\in\operatorname{Pow (UT) }\times\operatorname{Pow}(\bigcupT). U\subseteqV})
 then have ordTot:\forallS\inT.}\forall\textrm{B}\in\textrm{T}.\textrm{S}\subseteq\textrm{B}\B\subseteqS unfolding IsLinOrder_def IsTotal_def
by auto
 {
 fix A
 assume A\inPow(UT) and T1:(T{restricted to}A) {is T T }
 then have tot: \(T{restricted to}A)=A unfolding RestrictedTo_def by
auto
 {
 fix U V
 assume U\inT{restricted to}AV\inT{restricted to}A
 then obtain AU AV where AU TAV }\inTU=A\capAUV=A\capAV unfolding RestrictedTo_de
by auto
 with ordTot have }U\subseteqV\veeV\subseteqU by aut
 }
 then have ordTotSub: }\forall\textrm{S}\in\textrm{T}{\mathrm{ restricted to}A. }\forall\textrm{B}\in\textrm{T}{\mathrm{ restricted to}A.
S\subseteqB\B\subseteqS by auto
 {
 assume A=0
 then have A\approx0 by auto
 moreover
 have 0\lesssim1 using empty_lepollI by auto
 ultimately have A }\lesssim1\mathrm{ using eq_lepoll_trans by auto
 then have A{is in the spectrum of}isT1 using T1_spectrum by auto
 }
 moreover
 {
 assume A\not=0
 then obtain t where t\inA by blast
 {
 fix y
 assume y\inAy\not=t
 with \langlet\inA> tot T1 obtain U where U\in(T{restricted to}A) y\inUt&U
unfolding isT1_def
 by auto
 from }\langle\textrm{y}\not=\textrm{t}\rangle\mathrm{ have t}\textrm{t}=\textrm{y}\mathrm{ by auto
 with }\langle\textrm{y}\in\textrm{A}\rangle\langlet\inA\rangle\mathrm{ tot T1 obtain V where V V (T{restricted to}A)t
unfolding isT1_def
```

```
 by auto
 with 〈y\inU`\t \not\inU` have }\neg(U\subseteqVVV\subseteqU) by aut
 with ordTotSub <U\in(T{restricted to}A)\\V\in(T{restricted to}A)> have
False by auto
 }
 then have }\forall\textrm{y}\in\textrm{A}.\textrm{y}=\textrm{t}\mathrm{ by auto
 with \langlet\inA\rangle have A={t} by blast
 then have A\approx1 using singleton_eqpoll_1 by auto
 then have A\lesssim1 using eqpoll_imp_lepoll by auto
 then have A{is in the spectrum of}isT1 using T1_spectrum by auto
 }
 ultimately
 have A{is in the spectrum of}isT1 by auto
 }
 then show T{is anti-}isT1 using antiProperty_def by auto
qed
corollary linordtop_here:
```



```
 using anti_T1 anti_here[of isT1] by auto
theorem (in topology0) anti_T4:
 shows (T{is anti-}isT4) \longleftrightarrow(IsLinOrder(T,{\langleU,V\rangle\inPow(UT)\timesPow(UT).
U\subseteqV}))
proof
 assume T{is anti-}isT4
 let r={\langleU,V\rangle\in\operatorname{Pow}(UT)\timesPow(UT). U\subseteqV}
 have antisym(r) unfolding antisym_def by auto
 moreover
 have trans(r) unfolding trans_def by auto
 moreover
 {
 fix A B
 assume }A\inTB\in
 {
 assume }\neg(A\subseteqB\veeB\subseteqA
 then have A-B}\not=0B-A\not=0 by aut
 then obtain }x\mathrm{ y where }x\inAx\not\inBy\inBy\not\inA x\not=y by blas
 then have {x,y}\capA={x}{x,y}\capB={y} by auto
 moreover
 from \langleA\inT\rangle\langleB\inT\rangle have {x,y}\capA\inT{restricted to}{x,y}{x,y}\capB\inT{restricted
to}{x,y} unfolding
 RestrictedTo_def by auto
 ultimately have open_set:{x}\inT{restricted to}{x,y}{y}\inT{restricted
to}{x,y} by auto
 have }x\in\Ty\in\bigcupT using \langleA\inT\rangle\langleB\inT\rangle\langlex\inA\rangle\langley\inB\rangle by aut
 then have sub:{x,y}\in\operatorname{Pow (UT) by auto}
 then have tot: \(T{restricted to}{x,y})={x,y} unfolding RestrictedTo_def
by auto
```


## \{

fix $s t$
assume $s \in \bigcup(T\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) \mathrm{t} \in \bigcup$ ( $\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}$ ) $\mathrm{s} \neq \mathrm{t}$ with tot have $s \in\{x, y\} t \in\{x, y\} s \neq t$ by auto
then have $(s=x \wedge t=y) \vee(s=y \wedge t=x)$ by auto
with open_set have $\exists \mathrm{U} \in(T\{$ restricted to\}\{x,y\}). s $\in U \wedge t \notin U$ using
$\langle\mathrm{x} \neq \mathrm{y}\rangle$ by auto \} then have ( $\mathrm{T}\left\{\right.$ restricted to\}\{x,y\})\{is $\left.\mathrm{T}_{1}\right\}$ unfolding isT1_def by auto

## moreover

## \{

fix s
assume AS:s\{is closed in\}(T\{restricted to\}\{x,y\})
\{
fix $t$
assume AS2:t\{is closed in\}(T\{restricted to\}\{x,y\})s $\cap t=0$
have ( $T\{$ restricted to\}\{x,y\})\{is a topology\} using Top_1_L4 by
auto
with tot have $0 \in(T\{r e s t r i c t e d ~ t o\}\{x, y\})\{x, y\} \in$ ( $T\{$ restricted
to\} $\{x, y\}$ ) using empty_open union_open [where $\mathcal{A}=\mathrm{T}\{$ restricted to\}\{x,y\}] by auto
moreover
note open_set
moreover
have $T\{$ restricted $t o\}\{x, y\} \subseteq \operatorname{Pow}(\bigcup(T\{r e s t r i c t e d ~ t o\}\{x, y\}))$ by
blast
with tot have $T\{$ restricted $\operatorname{to}\}\{x, y\} \subseteq \operatorname{Pow}(\{x, y\})$ by auto
ultimately have $T\{$ restricted to $\{x, y\}=\{0,\{x\},\{y\},\{x, y\}\}$ by blast
moreover have $\{0,\{x\},\{y\},\{x, y\}\}=\operatorname{Pow}(\{x, y\})$ by blast
ultimately have $P: T\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}=\operatorname{Pow}(\{\mathrm{x}, \mathrm{y}\})$ by simp
with tot have $\{A \in \operatorname{Pow}(\{x, y\})$. A\{is closed in\}(T\{restricted to\} $\{x, y\})\}=\{A$
$\in \operatorname{Pow}(\{x, y\}) . A \subseteq\{x, y\} \wedge\{x, y\}-A \in \operatorname{Pow}(\{x, y\})\}$ using IsClosed_def by simp
with $P$ have $S:\{A \in \operatorname{Pow}(\{x, y\})$. A\{is closed $\operatorname{in}\}(T\{$ restricted to\}\{x,y\})\}=T\{restricte to $\}\{x, y\}$ by auto
from AS AS2(1) have $s \in \operatorname{Pow}(\{x, y\}) t \in \operatorname{Pow}(\{x, y\})$ using IsClosed_def tot by auto
moreover
note AS2 (1) AS
ultimately have $s \in\{A \in \operatorname{Pow}(\{x, y\})$. A\{is closed in\}(T\{restricted to\}\{x,y\})\}t $\in\{A \in \operatorname{Pow}(\{x, y\})$. A\{is closed in\}(T\{restricted to\}\{x,y\})\}
by auto
with S AS2(2) have $s \in T\{r e s t r i c t e d ~ t o\}\{x, y\} t \in T\{r e s t r i c t e d ~ t o\}\{x, y\} s \cap t=0$
by auto
then have $\exists \mathrm{U} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) . \exists \mathrm{V} \in(\mathrm{T}\{$ restricted to\}\{x,y\}).
$\mathrm{s} \subseteq \mathrm{U} \wedge \mathrm{t} \subseteq \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0$ by auto
\}
then have $\forall \mathrm{t}$. $\mathrm{t}\{\mathrm{is}$ closed $\operatorname{in}\}(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) \wedge \mathrm{s} \cap \mathrm{t}=0 \longrightarrow$
( $\exists \mathrm{U} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) . \exists \mathrm{V} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) . \mathrm{s} \subseteq \mathrm{U} \wedge \mathrm{t} \subseteq \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0)$
by auto
\}
then have $\forall$ s. s\{is closed in\}(T\{restricted to\}\{x,y\}) $\longrightarrow$ ( $\forall$ t. t\{is closed in\}(T\{restricted to$\}\{\mathrm{x}, \mathrm{y}\}) \wedge \mathrm{s} \cap \mathrm{t}=0 \longrightarrow(\exists \mathrm{U} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\})$. $\exists \mathrm{V} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) . \mathrm{s} \subseteq \mathrm{U} \wedge \mathrm{t} \subseteq \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0)$ )
by auto
then have (T\{restricted to\} $\{\mathrm{x}, \mathrm{y}\}$ ) \{is normal\} using IsNormal_def
by auto
ultimately have (T\{restricted to\}\{x,y\})\{is $\left.\mathrm{T}_{4}\right\}$ using isT4_def by auto
using antiProperty_def
by auto
then have $\{x, y\} \lesssim 1$ using $T 4$ _spectrum by auto

## moreover

 have $x \in\{x, y\}$ by autoultimately have $\{x\}=\{x, y\}$ using lepoll_1_is_sing $[o f(x, y\} x]$ by auto moreover
have $y \in\{x, y\}$ by auto
ultimately
have $y \in\{x\}$ by auto
then have $x=y$ by auto
then have False using $\langle x \in A\rangle\langle y \notin A\rangle$ by auto
\}
then have $A \subseteq B \vee B \subseteq A$ by auto
\}
then have $r$ \{is total on\}T using IsTotal_def by auto
ultimately
show IsLinOrder (T,r) using IsLinOrder_def by auto
next
assume IsLinOrder (T, $\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\mathrm{UT}) \times \operatorname{Pow}(\bigcup \mathrm{T}) . \mathrm{U} \subseteq \mathrm{V}\})$
then have $\mathrm{T}\{$ is anti-\}isT1 using anti_T1 by auto
moreover
have $\forall \mathrm{T} . \mathrm{T}$ is a topology $\longrightarrow\left(\mathrm{T}\left\{\right.\right.$ is $\left.\left.\mathrm{T}_{4}\right\}\right) \longrightarrow\left(\mathrm{T}\right.$ is $\left.\mathrm{T}_{1}\right\}$ ) using topology0.T4_is_T3

```
 topology0.T3_is_T2 T2_is_T1 topology0_def by auto
```

moreover
have $\forall$ A. (A \{is in the spectrum of \} isT1) $\longrightarrow$ (A \{is in the spectrum of\} isT4) using T1_spectrum T4_spectrum by auto
ultimately show T\{is anti-\}isT4 using eq_spect_rev_imp_anti[of isT4isT1]
by auto
qed
theorem (in topology0) anti_T3:
shows (T\{is anti-\}isT3) $\longleftrightarrow$ (IsLinOrder (T,\{ $\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\bigcup T) \times \operatorname{Pow}(\bigcup T)$.
UⓋ\}))
proof

```
 assume T\{is anti-\}isT3
 moreover
 have \(\forall \mathrm{T} . \mathrm{T}\) is a topology\} \(\longrightarrow\left(\mathrm{T}\left\{\right.\right.\) is \(\left.\mathrm{T}_{4}\right\}\)) \(\longrightarrow\) (\(\mathrm{T}\left\{\right.\) is \(\mathrm{T}_{3}\) \}) using topology0.T4_is_T3
 topology0_def by auto
 moreover
 have \(\forall\) A. (A \{is in the spectrum of \} isT3) \(\longrightarrow\) (A \{is in the spectrum
of \} isT4) using T3_spectrum T4_spectrum
 by auto
 ultimately have T\{is anti-\}isT4 using eq_spect_rev_imp_anti[of isT4isT3]
by auto
 then show IsLinOrder \((T,\{\langle U, V\rangle \in \operatorname{Pow}(\bigcup T) \times \operatorname{Pow}(\bigcup T)\). U \(\subseteq V\})\) using anti_T4
by auto
next
 assume IsLinOrder (T, \(\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\mathrm{U} T) \times \operatorname{Pow}(\bigcup \mathrm{T}) . \mathrm{U} \subseteq \mathrm{V}\})\)
 then have \(\mathrm{T}\{\mathrm{is}\) anti-\}isT1 using anti_T1 by auto
 moreover
 have \(\forall \mathrm{T}\). \(\mathrm{T}\left\{\right.\) is a topology\} \(\longrightarrow\) (\(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{3}\right\}\)) \(\longrightarrow\) (\(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\)) using
 topology0.T3_is_T2 T2_is_T1 topology0_def by auto
 moreover
 have \(\forall\) A. (A \{is in the spectrum of \} isT1) \(\longrightarrow\) (A \{is in the spectrum
of\} isT3) using T1_spectrum T3_spectrum
 by auto
 ultimately show T\{is anti-\}isT3 using eq_spect_rev_imp_anti[of isT3isT1]
by auto
qed
theorem (in topology0) anti_T2:
 shows (T\{is anti-\}isT2) \(\longleftrightarrow\) (IsLinOrder \((T,\{\langle U, V\rangle \in \operatorname{Pow}(\cup T) \times \operatorname{Pow}(\cup T)\).
UⓋ\}))
proof
 assume T\{is anti-\}isT2
 moreover
 have \(\forall \mathrm{T} . \mathrm{T}\left\{\right.\) is a topology \(\longrightarrow\left(\mathrm{T}\left\{\mathrm{is} \mathrm{T}_{4}\right\}\right) \longrightarrow\left(\mathrm{T}\left\{\mathrm{is} \mathrm{T}_{2}\right\}\right.\)) using topology0.T4_is_T3
 topology0.T3_is_T2 topology0_def by auto
 moreover
 have \(\forall\) A. (A \{is in the spectrum of \} isT2) \(\longrightarrow\) (A \{is in the spectrum
of \} isT4) using T2_spectrum T4_spectrum
 by auto
 ultimately have T\{is anti-\}isT4 using eq_spect_rev_imp_anti[of isT4isT2]
by auto
 then show IsLinOrder \((T,\{\langle U, V\rangle \in \operatorname{Pow}(\bigcup T) \times \operatorname{Pow}(\bigcup T)\). U®V\}) using anti_T4
by auto
next
 assume IsLinOrder (\(T,\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\bigcup \mathrm{T}) \times \operatorname{Pow}(\bigcup \mathrm{U}) . \mathrm{U} \subseteq \mathrm{V}\})\)
 then have \(\mathrm{T}\{\) is anti-\}isT1 using anti_T1 by auto
 moreover
 have \(\forall \mathrm{T} . \mathrm{T}\left\{\right.\) is a topology \(\longrightarrow\left(\mathrm{T}\left\{\mathrm{is} \mathrm{T}_{2}\right\}\right) \longrightarrow\left(\mathrm{T}\right.\) is \(\left.\mathrm{T}_{1}\right\}\)) using \(\mathrm{T} 2 _\)is_T1
```

```
by auto
 moreover
 have }\forall\textrm{A}.(\textrm{A}{\mathrm{ {is in the spectrum of} isT1) }\longrightarrow\mathrm{ (A {is in the spectrum
of} isT2) using T1_spectrum T2_spectrum
 by auto
 ultimately show T{is anti-}isT2 using eq_spect_rev_imp_anti[of isT2isT1]
by auto
qed
lemma linord_spectrum:
 shows (A{is in the spectrum of}(\lambdaT. IsLinOrder(T,{\langleU,V\rangle\inPow(\T)\timesPow(\T).
U\subseteqV}))) \longleftrightarrow A\lesssim1
proof
 assume A{is in the spectrum of}(\lambdaT. IsLinOrder(T,{\langleU,V\rangle\inPow(\T)\timesPow(\T).
U\subseteqV}))
 then have reg:\forallT. T{is a topology}^ UT\approxA \longrightarrow IsLinOrder(T,{\langleU,V\rangle\inPow(\T)\timesPow(UT).
U\subseteqV})
 using Spec_def by auto
 {
 assume A=0
 moreover
 have 0\lesssim1 using empty_lepollI by auto
 ultimately have A\lesssim1 using eq_lepoll_trans by auto
 }
 moreover
 {
 assume A}=
 then obtain x where x\inA by blast
 moreover
 {
 fix y
 assume y\inA
 have Pow(A) {is a topology} using Pow_is_top by auto
 moreover
 have UPow(A)=A by auto
 then have \ Pow (A) \approxA by auto
 note reg
 ultimately have IsLinOrder(Pow(A),{\langleU,V\rangle\in\operatorname{Pow}(\\operatorname{Pow}(A))\timesPow(\ Pow(A)).
U\subseteqV}) by auto
 then have IsLinOrder (Pow (A),{\langleU,V\rangle\in\operatorname{Pow (A) }\times\operatorname{Pow(A). U\subseteqV}) by auto}
 with }\langlex\inA\rangle\langley\inA\rangle\mathrm{ have {x}}\subseteq{y}\vee{y}\subseteq{x} unfolding IsLinOrder_def IsTotal_de
by auto
 then have x=y by auto
 }
 ultimately have A={x} by blast
 then have A\approx1 using singleton_eqpoll_1 by auto
 then have A\lesssim1 using eqpoll_imp_lepoll by auto
 }
 ultimately show A }\1\mathrm{ by auto
```

```
next
 assume A}\lesssim
 then have ind:A{is in the spectrum of}(}\lambda\textrm{T}.\textrm{T}={0,\bigcup\textrm{T}})\mathrm{ using indiscrete_spectrum
by auto
 {
 fix T
 assume AS:T{is a topology} T={0,\T}
 have trans({\langleU,V\rangle\in\operatorname{Pow}(\bigcupT)\timesPow(\bigcupT). U\subseteqV}) unfolding trans_def by
auto
 moreover
 have antisym({\langleU,V\rangle\inPow(\T)\timesPow(\T). U\subseteqV}) unfolding antisym_def
by auto
 moreover
 have {\langleU,V\rangle\in\operatorname{Pow}(\bigcupT)\timesPow(\T). U\subseteqV}{is total on}T
 proof-
 {
 fix aa b
 assume aa\inTb\inT
 with AS(2) have aa\in{0,\T}b\in{0,\T} by auto
 then have aa=0\veeaa=\bigcupTb=0\veeb=\bigcupT by auto
 then have aa\subseteqb\veeb\subseteqaa by auto
 then have \langleaa, b\rangle\in Collect(Pow(\T) × Pow(UT), split((\subseteq)))
V\langleb, aa\rangle \in Collect(Pow(UT) × Pow(UT), split((\subseteq)))
 using 〈aa\inT`\b\inT> by auto
 }
 then show thesis using IsTotal_def by auto
 qed
 ultimately have IsLinOrder(T,{\langleU,V\rangle\inPow(\T)\timesPow(UT). U\subseteqV}) un-
folding IsLinOrder_def by auto
 }
 then have }\forall\textrm{T}.\textrm{T}{\mathrm{ {is a topology} }\longrightarrow\textrm{T}={0,\bigcup\textrm{T}}\longrightarrow\mathrm{ IsLinOrder(T,
{\langleU,V\rangle\in Pow(UT) x Pow(UT) . U \subseteq V}) by auto
 then show A{is in the spectrum of}(\lambdaT. IsLinOrder(T,{\langleU,V\rangle\inPow(UT)\timesPow(UT).
U\subseteqV}))
 using P_imp_Q_spec_inv[of \lambdaT. T={0,\bigcupT}\lambdaT. IsLinOrder(T,{\langleU,V\rangle\inPow(UT)\timesPow(UT).
U\subseteqV})]
 ind by auto
qed
theorem (in topology0) anti_linord:
 shows (T{is anti-}(}\lambda\textrm{T}.\operatorname{IsLinOrder(T,{\langleU,V\rangle\in\operatorname{Pow (UT)}\times\operatorname{Pow}(\bigcupT).U\subseteqV})))
W{is }\mp@subsup{\textrm{T}}{1}{}
proof
 assume AS:T{is anti-}(\lambdaT. IsLinOrder(T,{\langleU,V\rangle\inPow(UT)\timesPow(UT). U\subseteqV}))
 {
 assume }\neg(\textrm{T}{\mathrm{ is }\mp@subsup{\textrm{T}}{1}{}}
 then obtain x y where }x\in\bigcupTy\in\bigcupTx\not=y\forallU\inT. x\not\inU\veey\inU unfolding isT1_de
by auto
 {
```

assume $\{x\} \in T\{$ restricted to $\}\{x, y\}$
then obtain $U$ where $U \in T\{x\}=\{x, y\} \cap U$ unfolding RestrictedTo_def by auto
moreover
have $x \in\{x\}$ by auto
ultimately have $U \in T x \in U$ by auto
moreover
\{
assume $y \in U$
then have $y \in\{x, y\} \cap U$ by auto
with $\langle\{x\}=\{x, y\} \cap U\rangle$ have $y \in\{x\}$ by auto
with $\langle x \neq y\rangle$ have False by auto
\}
then have $\mathrm{y} \notin \mathrm{U}$ by auto
moreover
note $\langle\forall U \in T . \quad x \notin U \vee y \in U\rangle$
ultimately have False by auto
\}
then have $\{x\} \notin T\{$ restricted $\operatorname{to}\}\{x, y\}$ by auto
moreover
have tot: $\bigcup$ ( $T\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}$ ) $=\{\mathrm{x}, \mathrm{y}\}$ using $\langle\mathrm{x} \in \bigcup \mathrm{T}\rangle\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle$ unfold-
ing RestrictedTo_def by auto
moreover
have $T\{$ restricted $\operatorname{to}\}\{x, y\} \subseteq \operatorname{Pow}(\bigcup(T\{$ restricted to $\}\{x, y\}))$ by auto
ultimately have $T\{$ restricted $\operatorname{to\} }\{x, y\} \subseteq \operatorname{Pow}(\{x, y\})-\{\{x\}\}$ by auto
moreover
have $\operatorname{Pow}(\{x, y\})=\{0,\{x, y\},\{x\},\{y\}\}$ by blast
ultimately have $T\{$ restricted $\operatorname{to\} }\{\mathrm{x}, \mathrm{y}\} \subseteq\{0,\{\mathrm{x}, \mathrm{y}\},\{\mathrm{y}\}\}$ by auto
moreover
have $\operatorname{IsLin} \operatorname{Order}(\{0,\{\mathrm{x}, \mathrm{y}\},\{\mathrm{y}\}\},\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\{\mathrm{x}, \mathrm{y}\}) \times \operatorname{Pow}(\{\mathrm{x}, \mathrm{y}\}) . \mathrm{U} \subseteq \mathrm{V}\})$
proofhave antisym(Collect(Pow(\{x, y\}) $\times \operatorname{Pow}(\{x, y\}), \operatorname{split}((\subseteq))))$ using antisym_def by auto
moreover
have trans (Collect (Pow (\{x, y\}) $\times \operatorname{Pow}(\{x, y\}), \operatorname{split}((\subseteq))))$ us-
ing trans_def by auto
moreover
have Collect (Pow (\{x, y\}) $\times \operatorname{Pow}(\{x, y\}), \operatorname{split}((\subseteq)))$ \{is total on\}
\{0, $\{x, y\},\{y\}\}$ using IsTotal_def by auto
ultimately show IsLinOrder $(\{0,\{x, y\},\{y\}\},\{\langle U, V\rangle \in \operatorname{Pow}(\{x, y\}) \times \operatorname{Pow}(\{x, y\})$.
$\mathrm{U} \subseteq \mathrm{V}\}$ ) using IsLinOrder_def by auto
qed
ultimately have IsLinOrder (T\{restricted to\} $\{x, y\},\{\langle U, V\rangle \in \operatorname{Pow}(\{x, y\}) \times \operatorname{Pow}(\{x, y\})$.
$\mathrm{U} \subseteq \mathrm{V}\}$ ) using ord_linear_subset by auto
with tot have IsLinOrder (T\{restricted to\}\{x,y\},\{〈U,V〉૯Pow(U(T\{restricted to\} $\{x, y\})) \times \operatorname{Pow}(\bigcup(T\{$ restricted to\}\{x,y\})). $U \subseteq V\})$
by auto
then have IsLinOrder (T\{restricted to\}\{x,y\}, Collect(Pow (U) (T \{restricted
to\} $\{x, y\})) \times \operatorname{Pow}(\bigcup(T$ \{restricted to\} $\{x, y\})), \operatorname{split}((\subseteq))))$ by auto moreover
from $\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle$ have $\{x, y\} \in \operatorname{Pow}(\bigcup T)$ by auto moreover note AS ultimately have $\{\mathrm{x}, \mathrm{y}\}\{$ is in the spectrum of $\}(\lambda T$. IsLinOrder $(\mathrm{T},\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\bigcup \mathrm{T}) \times \operatorname{Pow}(\bigcup \mathrm{T})$. $U \subseteq V\})$ ) unfolding antiProperty_def
by simp
then have $\{\mathrm{x}, \mathrm{y}\} \lesssim 1$ using linord_spectrum by auto moreover have $x \in\{x, y\}$ by auto ultimately have $\{x\}=\{x, y\}$ using lepoll_1_is_sing [of $\{x, y\} x]$ by auto moreover
have $y \in\{x, y\}$ by auto ultimately
have $y \in\{x\}$ by auto
then have $x=y$ by auto
then have False using $\langle x \neq y$ 〉 by auto
\}
then show T \{is $\mathrm{T}_{1}$ \} by auto
next
assume T1:T \{is $\left.\mathrm{T}_{1}\right\}$
\{
fix A
assume A_def:A $\operatorname{Pow}(\bigcup T)$ IsLinOrder ( $(T\{$ restricted to $\}$ ) , $\{\langle U, V\rangle \in \operatorname{Pow}(\bigcup$ (T\{restricted to\}A) ) $\times \operatorname{Pow}(U(T\{$ restricted to\}A)). U $\subseteq$ V\})
\{
fix $x$
assume AS1: $\mathrm{x} \in \mathrm{A}$
\{
fix y
assume AS: $y \in A x \neq y$
with AS1 have $\{x, y\} \in \operatorname{Pow}(\cup T)$ using $\langle A \in \operatorname{Pow}(\cup T)\rangle$ by auto
from $\langle x \in A\rangle y \in A\rangle$ have $\{x, y\} \in \operatorname{Pow}(A)$ by auto
from $\langle\{\mathrm{x}, \mathrm{y}\} \in \operatorname{Pow}(\bigcup \mathrm{T})\rangle$ have $\mathrm{T} 11:(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\})\left\{\right.$ is $\left.\mathrm{T}_{1}\right\}$
using T1_here T1 by auto
moreover
have tot: $\bigcup$ ( $\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}$ ) $=\{\mathrm{x}, \mathrm{y}\}$ unfolding RestrictedTo_def
using $\langle\{x, y\} \in \operatorname{Pow}(\bigcup T)\rangle$ by auto
moreover
note AS (2)
ultimately obtain $U$ where $x \in U y \notin U U \in$ ( $T\{$ restricted to $\}\{x, y\}$ ) un-
folding isT1_def by auto
moreover
from $A S(2)$ tot $T 11$ obtain $V$ where $y \in V x \notin V V \in(T\{$ restricted to\} $\{x, y\})$
unfolding isT1_def by auto
ultimately have $x \in U-V y \in V-U U \in(T\{r e s t r i c t e d ~ t o\}\{x, y\}) V \in(T\{r e s t r i c t e d$
to\}\{x,y\}) by auto
then have $\neg(\mathrm{U} \subseteq \mathrm{V} V \mathrm{~V} \subseteq \mathrm{U}) \mathrm{U} \in(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\}) \mathrm{V} \in(\mathrm{T}\{$ restricted
to $\{x, y\}$ ) by auto
then have $\neg(\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\bigcup(\mathrm{T}\{$ restricted to$\}\{\mathrm{x}, \mathrm{y}\})) \times \operatorname{Pow}(\bigcup(\mathrm{T}\{$ restricted to\} $\{\mathrm{x}, \mathrm{y}\})$ ). $\mathrm{U} \subseteq \mathrm{V}\}$ \{is total on\} (T\{restricted to\}\{x,y\}))
unfolding IsTotal_def by auto
then have $\neg$ (IsLinOrder ( $(T\{r e s t r i c t e d ~ t o\}\{x, y\}),\{\langle U, V\rangle \in \operatorname{Pow}(\bigcup$ (T\{restricted
to\} $\{x, y\})) \times \operatorname{Pow}(\bigcup(T\{r e s t r i c t e d ~ t o\}\{x, y\})) . U \subseteq V\}))$
unfolding IsLinOrder_def by auto
moreover
\{
have (T\{restricted to\}A) \{is a topology\} using Top_1_L4 by
auto
moreover
note $A_{-}$def (2) linordtop_here
ultimately have $\forall B \in \operatorname{Pow}(\bigcup$ (T\{restricted to\}A)). IsLinOrder ( $(T\{r e s t r i c t e d$
to\}A) \{restricted to\}B ,\{〈U,V〉ЄPow(U((T\{restricted to\}A)\{restricted to\}B))×Pow(U((T\{restri to\}A)\{restricted to\}B)). U $\subseteq$ V $\}$ )
unfolding IsHer_def by auto
moreover
have tot: $\bigcup$ (T\{restricted to\}A)=A unfolding RestrictedTo_def
using $\langle A \in \operatorname{Pow}(\bigcup T)$ ) by auto
ultimately have $\forall B \in \operatorname{Pow}(A)$. IsLinOrder ( $(T\{r e s t r i c t e d ~ t o\} A)\{r e s t r i c t e d$ to\}B,$\{\langle U, V\rangle \in \operatorname{Pow}(\bigcup((T\{r e s t r i c t e d ~ t o\} A)\{r e s t r i c t e d ~ t o\} B)) \times \operatorname{Pow}(U((T\{r e s t r i c t e d$ to\}A) $\{$ restricted to\}B)). U $\subseteq$ V\}) by auto
moreover
have $\forall B \in \operatorname{Pow}(A)$. ( $T\{r e s t r i c t e d ~ t o\} A)\{r e s t r i c t e d ~ t o\} B=T\{r e s t r i c t e d$ to\}B using subspace_of_subspace $\langle A \in \operatorname{Pow}(\bigcup T)\rangle$ by auto
ultimately
have $\forall B \in \operatorname{Pow}(A)$. IsLinOrder ((T\{restricted to\}B) , $\{\langle\mathrm{U}, \mathrm{V}\rangle \in \operatorname{Pow}(\bigcup$ ((T\{restricted to\}A) \{restricted to\}B) $) \times \operatorname{Pow}(\bigcup((T\{$ restricted to\}A) \{restricted to\}B)).
$\mathrm{U} \subseteq \mathrm{V}\}$ ) by auto
moreover
have $\forall B \in \operatorname{Pow}(A) . \bigcup((T\{r e s t r i c t e d ~ t o\} A)\{r e s t r i c t e d ~ t o\} B)=B$ us-
ing $\langle A \in \operatorname{Pow}(\bigcup T)\rangle$ unfolding RestrictedTo_def by auto
ultimately have $\forall \mathrm{B} \in \operatorname{Pow}(\mathrm{A})$. IsLinOrder ( $(T\{r e s t r i c t e d ~ t o\} B),\{\langle U, V\rangle \in \operatorname{Pow}(\mathrm{B}) \times \operatorname{Pow}(\mathrm{B})$. $\mathrm{U} \subseteq \mathrm{V}\}$ ) by auto
with $\langle\{x, y\} \in \operatorname{Pow}(A)\rangle$ have IsLinOrder ( $(T\{r e s t r i c t e d ~ t o\}\{x, y\})$
$,\{\langle U, V\rangle \in \operatorname{Pow}(\{x, y\}) \times \operatorname{Pow}(\{x, y\}) . U \subseteq V\})$ by auto
\}
ultimately have False using tot by auto
\}
then have $A=\{x\}$ using AS1 by auto
then have $A \approx 1$ using singleton_eqpoll_1 by auto
then have $A \lesssim 1$ using eqpoll_imp_lepoll by auto
then have $A\{i s$ in the spectrum of $\}(\lambda T$. IsLinOrder $(T,\{\langle U, V\rangle \in \operatorname{Pow}(\bigcup T) \times \operatorname{Pow}(\cup T)$.
$\mathrm{U} \subseteq \mathrm{V}\})$ ) using linord_spectrum
by auto
\}
moreover
\{

```
 assume A=0
 then have A}~0\mathrm{ by auto
 moreover
 have 0\lesssim1 using empty_lepollI by auto
 ultimately have A
```



```
U\subseteqV})) using linord_spectrum
 by auto
 }
 ultimately have A{is in the spectrum of}(\lambdaT. IsLinOrder(T,{\langleU,V\rangle\inPow(\T)\timesPow(\T).
U\subseteqV})) by blast
 }
 then show T{is anti-}(}\lambda\textrm{T}\mathrm{ . IsLinOrder(T, {\U,V V | Pow(UT) }\times\mathrm{ Pow(UT)
. U\subseteq V})) unfolding antiProperty_def
 by auto
qed
```

In conclusion, $T_{1}$ is also an anti-property.
Let's define some anti-properties that we'll use in the future.

## definition

IsAntiComp (_\{is anti-compact\})
where $\mathrm{T}\{$ is anti-compact\} $\equiv \mathrm{T}\{$ is anti-\} ( $\lambda \mathrm{T}$. ( $\bigcup$ T) \{is compact in\}T)

## definition

IsAntiLin (_\{is anti-lindeloef \})
where T \{is anti-lindeloef\} $\equiv \mathrm{T}$ \{is anti-\} ( $\lambda \mathrm{T}$. ( ( $\cup \mathrm{T})$ \{is lindeloef in\}T))
Anti-compact spaces are also called pseudo-finite spaces in literature before the concept of anti-property was defined.
end

## 60 Topology 6

theory Topology_ZF_6 imports Topology_ZF_4 Topology_ZF_2 Topology_ZF_1
begin
This theory deals with the relations between continuous functions and convergence of filters. At the end of the file there some results about the building of functions in cartesian products.

### 60.1 Image filter

First of all, we will define the appropriate tools to work with functions and filters together.

We define the image filter as the collections of supersets of of images of sets from a filter.

```
definition
 ImageFilter (_[_].._ 98)
 where \mathfrak{F {is a filter on} X \Longrightarrow f:X }->\textrm{Y}\Longrightarrow\textrm{f}[\mathfrak{F}]..Y \equiv{A\inPow(Y). \existsD\in{f(B)
.B\in\mathfrak{F}}. D\subseteqA}
```

Note that in the previous definition, it is necessary to state $Y$ as the final set because $f$ is also a function to every superset of its range. $X$ can be changed by domain(f) without any change in the definition.

```
lemma base_image_filter:
 assumes }\mathfrak{F}\mathrm{ {is a filter on} X f:X }->\textrm{Y
 shows {fB .B\in\mathfrak{F}} {is a base filter} (f[\mathfrak{F}]..Y) and (f[\mathfrak{F}]..Y) {is a filter
on} Y
proof-
 {
 assume 0 \in{fB .B\in\mathscr{F}}
 then obtain B where }B\in\mathfrak{F}\mathrm{ and f_B: fB=0 by auto
 then have B\inPow(X) using assms(1) IsFilter_def by auto
 then have fB={fb. b\inB} using image_fun assms(2) by auto
 with f_B have {fb. b\inB}=0 by auto
 then have }B=0\mathrm{ by auto
 with 〈B\in\mathfrak{F}\rangle have False using IsFilter_def assms(1) by auto
 }
 then have }0\not\in{fB.B\in\mathfrak{F}}\mathrm{ by auto
 moreover
 from assms(1) obtain S where S\in\mathfrak{F}\mathrm{ using IsFilter_def by auto}
 then have fS\in{fB . B\in\mathfrak{F}} by auto
 then have nA:{fB . B\in\mathscr{F}}\not=0 by auto
 moreover
 {
 fix A B
 assume }A\in{fB.B\in\mathfrak{F}}\mathrm{ and }B\in{fB . B\in\mathfrak{F}
 then obtain AB BB where A=fAB B=fBB AB\in\mathcal{F }BB\in\mathcal{F}\mathrm{ by auto}
 then have A\capB=(fAB)\cap(fBB) by auto
 then have I: f(AB\capBB)\subseteqA\capB by auto
 moreover
 from assms(1) I \langleAB\in\mathfrak{F}\BB\in\mathfrak{F}\rangle\mathrm{ have AB }\BB\in\mathfrak{F}\mathrm{ using IsFilter_def by auto}
 ultimately have }\exists\textrm{D}\in{fB,B\in\mathfrak{F}}.D\subseteqA\capB by aut
 }
 then have }\forallA\in{fB.B\in\mathfrak{F}}.\forallB\in{fB .B\in\mathfrak{F}}.\existsD\in{fB .B\in\mathfrak{F}}.D\subseteqA\capB by aut
 ultimately have sbc:{fB . }\in\in{\mathfrak{F}}\mathrm{ {satisfies the filter base condition}
 using SatisfiesFilterBase_def by auto
 moreover
 {
 fix t
 assume t\in{fB . B\in{F}
 then obtain }B\mathrm{ where }B\in\mathfrak{F}\mathrm{ and im_def:fB=t by auto
```

```
 with assms(1) have B\inPow(X) unfolding IsFilter_def by auto
 with im_def assms(2) have t={fx. x\inB} using image_fun by auto
 with assms(2) <B\inPow(X) \ have t\subseteqY using apply_funtype by auto
 }
 then have nB:{fB . B\in\mathfrak{F}}\subseteqPow(Y) by auto
 ultimately
 have (({fB .B\in\mathfrak{F}} {is a base filter} {A \in Pow(Y). \existsD\in{fB .B\in\mathfrak{F}}. D
\subseteqA})}\wedge(\bigcup{A\in\operatorname{Pow}(Y).\existsD\in{fB .B\in\mathfrak{F}}.D\subseteqA}=Y)) using base_unique_filter_set
 by force
 then have {fB . B\in\mathfrak{F}} {is a base filter} {A \in Pow(Y) . \existsD\in{fB .B\in\mathcal{F}}.
D \subseteqA} by auto
 with assms show {fB .B\in\mathfrak{F}} {is a base filter} (f[{F]..Y) using ImageFilter_def
by auto
 moreover
 note sbc
 moreover
 {
 from nA obtain D where I: D\in{fB . B\in\mathcal{F}} by blast
 moreover from I nB have D\subseteqY by auto
 ultimately have Y }\in{A\in\operatorname{Pow}(Y).\existsD\in{fB .B\in\mathcal{F}}.D\subseteqA} by aut
 }
 then have }\bigcup{A\in\operatorname{Pow}(Y).\existsD\in{fB .B\in\mathfrak{F}}.D\subseteqA}=Y by aut
 ultimately show (f[\mathfrak{F}]..Y) {is a filter on} Y using basic_filter
 ImageFilter_def assms by auto
qed
```


### 60.2 Continuous at a point vs. globally continuous

In this section we show that continuity of a function implies local continuity (at a point) and that local continuity at all points implies (global) continuity.

If a function is continuous, then it is continuous at every point.

```
lemma cont_global_imp_continuous_x:
 assumes }\mathbf{x}\in\bigcup\mp@code{\tau
 shows }\forall\textrm{U}\in\mp@subsup{\tau}{2}{}.\textrm{f}(\textrm{x})\in\textrm{U}\longrightarrow(\exists\textrm{V}\in\mp@subsup{\tau}{1}{}.\textrm{x}\in\textrm{V}\wedge\f(V)\subseteqU
proof-
 {
 fix U
 assume AS:U\in\mp@subsup{\tau}{2}{}}\textrm{f}(\textrm{x})\in\textrm{U
 then have f-(U)\in\tau
 moreover
 from assms(3) have f(f-(U))\subseteqU using function_image_vimage fun_is_fun
 by auto
 moreover
 from assms(3) assms(4) AS(2) have x\inf-(U) using func1_1_L15 by auto
 ultimately have }\exists\textrm{V}\in\mp@subsup{\tau}{1}{}.\textrm{x}\in\textrm{V}\wedge\textrm{fV}\subseteq\textrm{U}\mathrm{ by auto
 }
```

```
 then show \(\forall U \in \tau_{2} . f(x) \in U \longrightarrow\left(\exists V \in \tau_{1} . x \in V \wedge f(V) \subseteq U\right)\) by auto
```

qed

A function that is continuous at every point of its domain is continuous．

```
lemma ccontinuous_all_x_imp_cont_global:
```



```
and
 \tau
 shows IsContinuous(}\tau1,\mp@subsup{\tau}{2}{\prime},\textrm{f}
proof-
 {
 fix U
 assume U\in\tau
 {
 fix x
 assume AS: }x\inf-
 note 〈U\in\tau < \
 moreover
 from assms(2) have f - U\subseteq\bigcup
 with AS have }\textrm{x}\in\bigcup\\mp@code{1
 with assms(1) have }\forall\textrm{U}\in\mp@subsup{\tau}{2}{\prime}. fx\inU\longrightarrow(\existsV\in\mp@subsup{\tau}{1}{}. x\inV ^ fV\subseteqU) by aut
 moreover
 from AS assms(2) have fx\inU using func1_1_L15 by auto
 ultimately have }\exists\textrm{V}\in\mp@subsup{\tau}{1}{}. \textrm{x}\in\textrm{V}\wedge \ fV\subseteqU by aut
 then obtain V where I: V\in\tau⿱㇒⿻二丿⿴囗⿱一一卜
 moreover
 from I have V\subseteq\bigcup
 moreover
 from assms(2) \V\subseteq\bigcup (
 ultimately have V \subseteqf-(U) by blast
 with \langleV\in\tau \ \rangle}\langle\textrm{x}\in\textrm{V}\rangle\mathrm{ have }\exists\textrm{V}\in\mp@subsup{\tau}{1}{}. \textrm{x}\in\textrm{V}\wedge\textrm{V}\subseteq\textrm{f}-(\textrm{U})\mathrm{ by auto
 } hence }\forallx\inf-(U). \existsV\in\mp@subsup{\tau}{1}{}. x\inV ^ V\subseteqf-(U) by aut
 with assms(3) have f-(U) \in
 by auto
 }
 hence }\forall\textrm{U}\in\mp@subsup{\tau}{2}{}.\textrm{f}-\textrm{U}\in\mp@subsup{\tau}{1}{}\mathrm{ by auto
 then show thesis using IsContinuous_def by auto
qed
```


## 60．3 Continuous functions and filters

In this section we consider the relations between filters and continuity．
If the function is continuous then if the filter converges to a point the image filter converges to the image point．

```
lemma (in two_top_spaces0) cont_imp_filter_conver_preserved:
 assumes }\mathfrak{F}\mathrm{ {is a filter on} }\mp@subsup{\textrm{X}}{1}{}\textrm{f}\mathrm{ {is continuous} }\mathfrak{F}\mp@subsup{->}{F}{}\textrm{x}\mathrm{ {in} }\mp@subsup{\tau}{1}{
 shows (f[\mathfrak{F}]..\mp@subsup{X}{2}{})\mp@subsup{->}{F}{}(f(x)){in} \mp@subsup{\tau}{2}{}
```

```
proof -
 from assms(1) assms(3) have }\textrm{x}\in\mp@subsup{\textrm{X}}{1}{
 using topology0.FilterConverges_def topol_cntxs_valid(1) X1_def by
auto
 have topology0(}\mp@subsup{\tau}{2}{}\mathrm{) using topol_cntxs_valid(2) by simp
 moreover from assms(1) have (f[\mathfrak{F}].. X) {is a filter on} (}\\mp@subsup{\tau}{2}{}\mathrm{) and
{fB .B\in\mathfrak{F}} {is a base filter} (f[F]... X)
 using base_image_filter fmapAssum X1_def X2_def by auto
 moreover have }\forall\textrm{U}\in\operatorname{Pow}(\bigcup\mp@subsup{\tau}{2}{}).(fx)\in\operatorname{Interior(U,}\mp@subsup{\tau}{2}{})\longrightarrow(\exists\textrm{D}\in{fB.B\in\mathfrak{F}}
D\subseteqU)
 proof -
 {fix U
 assume U\in\operatorname{Pow}(\mp@subsup{X}{2}{}) (fx)\inInterior(U, \tau 2)
```



```
 using func1_1_L6A fmapAssum func1_1_L15 fmapAssum by auto
 note sub
 moreover
 have Interior(U, }\mp@subsup{\tau}{2}{})\in\mp@subsup{\tau}{2}{}\mathrm{ using topology0.Top_2_L2 topol_cntxs_valid(2)
by auto
 with assms(2) have f-(Interior(U, \tau2)) \in\tau
IsContinuous_def
 by auto
 with xim have x\inInterior(f-(Interior(U,}\mp@subsup{\tau}{2}{\prime})),\mp@subsup{\tau}{1}{}
 using topologyO.Top_2_L3 topol_cntxs_valid(1) by auto
 moreover from assms(1) assms(3) have {U\in\operatorname{Pow}(\mp@subsup{X}{1}{}). x\inInterior(U, }\mp@subsup{\tau}{1}{})}\subseteq\mathfrak{F
 using topology0.FilterConverges_def topol_cntxs_valid(1) X1_def
by auto
 ultimately have f-(Interior (U,
 moreover have f(f-(Interior(U,},\mp@subsup{\tau}{2}{\prime})))\subseteqInterior(U, (,)
 using function_image_vimage fun_is_fun fmapAssum by auto
 then have f(f-(Interior (U, , ~2)))\subseteqU
 using topology0.Top_2_L1 topol_cntxs_valid(2) by auto
 ultimately have }\exists\textrm{D}\in{f(B),B\in\mathfrak{F}}.D\subseteqU by aut
 } thus thesis by auto
 qed
 moreover from fmapAssum (}x\in\mp@subsup{X}{1}{}\mathrm{) have f(x) f X (
 by (rule apply_funtype)
 hence f(x) \in \bigcup \tau < by simp
 ultimately show thesis by (rule topology0.convergence_filter_base2)
```

qed

Continuity in filter at every point of the domain implies global continuity.

```
lemma (in two_top_spaces0) filter_conver_preserved_imp_cont:
 assumes }\forall\textrm{x}\in\bigcup\mp@subsup{\tau}{1}{}.\forall\mathfrak{F}.((\mathfrak{F}\mathrm{ {is a filter on} }\mp@subsup{\textrm{X}}{1}{})\wedge(\mathfrak{F}\mp@subsup{->}{F}{}\textrm{x}{\mathrm{ {in} }\mp@subsup{\tau}{1}{})
\longrightarrow((f[\mathfrak{F}]..\mp@subsup{X}{2}{})}\mp@subsup{->}{F}{}(\textrm{fx}){\textrm{in}}\mp@subsup{\tau}{2}{\prime}
 shows f{is continuous}
```

```
proof-
 {
 fix x
 assume as2: }\textrm{x}\in\bigcup㇒\mp@subsup{\tau}{1}{
 with assms have reg:
 \forallF. ((\mathfrak{F}{is a filter on} }\mp@subsup{\textrm{X}}{1}{})\wedge(\mathfrak{F}\mp@subsup{->}{F}{}\textrm{x}{\textrm{in}}\mp@subsup{\tau}{1}{}))\longrightarrow((f[\mathfrak{F}]..\mp@subsup{X}{2}{}
->F
 by auto
 let Neig = {U \in Pow(U\mp@subsup{\tau}{1}{}) . x \in Interior(U, \tau
 from as2 have NFil: Neig{is a filter on}X (and NCon: Neig }\mp@subsup{->}{F}{
\tau
 using topol_cntxs_valid(1) topology0.neigh_filter by auto
 {
 fix U
 assume U\in\mp@subsup{\tau}{2}{}}\textrm{fx}\in\textrm{U
 then have U\inPow(U\mp@subsup{\tau}{2}{}) fx\inInterior(U,}\mp@subsup{\tau}{2}{})\mathrm{ using topol_cntxs_valid(2)
topology0.Top_2_L3 by auto
 moreover
 from NCon NFil reg have (f[Neig].. X () 和 (fx) {in} }\mp@subsup{\tau}{2}{}\mathrm{ by auto
 moreover have (f[Neig].. X () {is a filter on} X X
 using base_image_filter(2) NFil fmapAssum by auto
 ultimately have U\in(f[Neig] . . X)
 using topology0.FilterConverges_def topol_cntxs_valid(2) unfold-
ing X1_def X2_def
 by auto
 moreover
 from fmapAssum NFil have {fB .B\inNeig} {is a base filter} (f[Neig].. X X)
 using base_image_filter(1) X1_def X2_def by auto
 ultimately have }\exists\textrm{V}\in{f\textrm{fB}.\textrm{B}\inNeig}. V\subseteqU using basic_element_filter
by blast
 then obtain B where B\inNeig fB\subseteqU by auto
 moreover
 have Interior(B, }\mp@subsup{\tau}{1}{})\subseteqB\mathrm{ using topology0.Top_2_L1 topol_cntxs_valid(1)
by auto
 hence fInterior(B, \tau1) \subseteqf(B) by auto
 moreover have Interior(B, }\mp@subsup{\tau}{1}{})\in\mp@subsup{\tau}{1}{
 using topology0.Top_2_L2 topol_cntxs_valid(1) by auto
 ultimately have }\exists\textrm{V}\in\mp@subsup{\tau}{1}{}. \textrm{x}\in\textrm{V}\wedgefV\subseteqU\mathrm{ by force
 }
 hence }\forall\textrm{U}\in\mp@subsup{\tau}{2}{}. fx\inU\longrightarrow(\existsV\in\mp@subsup{\tau}{1}{}. x\inV \ fV\subseteqU) by aut
 }
 hence }\forall\textrm{x}\in\bigcup\\mp@subsup{\tau}{1}{}.\forall\textrm{U}\in\mp@subsup{\tau}{2}{}.\textrm{fx}\in\textrm{U}\longrightarrow(\exists\textrm{V}\in\mp@subsup{\tau}{1}{}. \textrm{x}\in\textrm{V}\wedge\textrm{fV}\subseteq\textrm{U})\mathrm{ by auto
 then show thesis
 using ccontinuous_all_x_imp_cont_global fmapAssum X1_def X2_def isContinuous_def
tau1_is_top
 by auto
qed
```

end

## 61 Topology 7

theory Topology_ZF_7 imports Topology_ZF_5
begin

### 61.1 Connection Properties

Another type of topological properties are the connection properties. These properties establish if the space is formed of several pieces or just one.

A space is connected iff there is no clopen set other that the empty set and the total set.

```
definition IsConnected (_{is connected} 70)
 where T {is connected} \equiv
lemma indiscrete_connected:
 shows {0,X} {is connected}
 unfolding IsConnected_def IsClosed_def by auto
```

The anti-property of connectedness is called total-diconnectedness.

```
definition IsTotDis (_ \{is totally-disconnected\} 70)
 where IsTotDis \(\equiv \operatorname{ANTI}\) (IsConnected)
lemma conn_spectrum:
 shows (A\{is in the spectrum of\}IsConnected) \(\longleftrightarrow A \lesssim 1\)
proof
 assume \(A\{i s\) in the spectrum of \(\}\) IsConnected
 then have \(\forall T\). (\(T\{\) is a topology\} \(\wedge \backslash T \approx A\)) \(\longrightarrow\) (\(T\) \{is connected\}) using
Spec_def by auto
 moreover
 have Pow(A)\{is a topology\} using Pow_is_top by auto
 moreover
 have \(\cup(\operatorname{Pow}(A))=A\) by auto
 then have \(\bigcup(\operatorname{Pow}(A)) \approx A\) by auto
 ultimately have Pow(A) \{is connected\} by auto
 \{
 assume \(A \neq 0\)
 then obtain \(E\) where \(E \in A\) by blast
 then have \(\{E\} \in \operatorname{Pow}(A)\) by auto
 moreover
 have \(A-\{E\} \in \operatorname{Pow}(A)\) by auto
 ultimately have \(\{E\} \in \operatorname{Pow}(A) \wedge\{E\}\{\) is closed in\}Pow \((A)\) unfolding IsClosed_def
by auto
 with 〈Pow(A) \{is connected\}〉 have \{E\}=A unfolding IsConnected_def
by auto
```

```
 then have A\approx1 using singleton_eqpoll_1 by auto
 then have A\lesssim1 using eqpoll_imp_lepoll by auto
 }
 moreover
 {
 assume A=0
 then have A\lesssim1 using empty_lepollI[of 1] by auto
 }
 ultimately show A}\lesssim1 by aut
next
 assume A\lesssim1
 {
 fix T
 assume T{is a topology}\T\approxA
 {
 assume \T=0
 with \T{is a topology}` have T={0} using empty_open by auto
 then have T{is connected} unfolding IsConnected_def by auto
 }
 moreover
 {
 assume \T\not=0
 moreover
 from \langleA\lesssim1\rangle\\bigcupT\approxA\rangle have UT}<1\mathrm{ using eq_lepoll_trans by auto
 ultimately
 obtain E where \T={E} using lepoll_1_is_sing by blast
 moreover
 have T\subseteqPow(UT) by auto
 ultimately have T\subseteqPow({E}) by auto
 then have T\subseteq{0,{E}} by blast
 with <T{is a topology}` have {0}\subseteqT T\subseteq{0,{E}} using empty_open by
auto
 then have T{is connected} unfolding IsConnected_def by auto
 }
 ultimately have T{is connected} by auto
 }
 then show A{is in the spectrum of}IsConnected unfolding Spec_def by
auto
qed
The discrete space is a first example of totally-disconnected space.
```

```
lemma discrete_tot_dis:
```

lemma discrete_tot_dis:
shows Pow(X) {is totally-disconnected}
proof-
{
fix A assume A\inPow(X) and con:(Pow(X){restricted to}A){is connected}
have res:(Pow(X){restricted to}A)=Pow(A) unfolding RestrictedTo_def
using <A\inPow(X)>
by blast

```

\section*{\{}
assume \(\mathrm{A}=0\)
then have \(A \lesssim 1\) using empty_lepollI[of 1] by auto
then have A\{is in the spectrum of\}IsConnected using conn_spectrum
by auto
\}
moreover
\{
assume \(\mathrm{A} \neq 0\)
then obtain \(E\) where \(E \in A\) by blast
then have \(\{E\} \in \operatorname{Pow}(A)\) by auto
moreover
have \(A-\{E\} \in \operatorname{Pow}(A)\) by auto
ultimately have \(\{E\} \in \operatorname{Pow}(A) \wedge\{E\}\{\) is closed in\}Pow \((A)\) unfolding IsClosed_def by auto
with con res have \(\{E\}=A\) unfolding IsConnected_def by auto
then have \(A \approx 1\) using singleton_eqpoll_1 by auto
then have \(A \lesssim 1\) using eqpoll_imp_lepoll by auto
then have \(\mathrm{A}\{i\) is in the spectrum of \(\}\) IsConnected using conn_spectrum

\section*{by auto}
\}
ultimately have A\{is in the spectrum of\}IsConnected by auto
\}
then show thesis unfolding IsTotDis_def antiProperty_def by auto qed

An space is hyperconnected iff every two non-empty open sets meet.
definition IsHConnected (_\{is hyperconnected\}90)
where \(T\{\) is hyperconnected \(\equiv \forall U V . U \in T \wedge V \in T \wedge U \cap V=0 \longrightarrow U=0 V V=0\)
Every hyperconnected space is connected.
```

lemma HConn_imp_Conn:
assumes T{is hyperconnected}
shows T{is connected}
proof-
{
fix U
assume U\inTU {is closed in}T
then have \ T-U\inTU\inT using IsClosed_def by auto
moreover
have ( UT-U)\capU=0 by auto
moreover
note assms
ultimately
have U=OV (UT-U)=0 using IsHConnected_def by auto
with \langleU\inT\rangle have U=OVU=\bigcupT by auto
}
then show thesis using IsConnected_def by auto
qed

```
```

lemma Indiscrete_HConn:
shows {0,X}{is hyperconnected}
unfolding IsHConnected_def by auto

```

A first example of an hyperconnected space but not indiscrete, is the cofinite topology on the natural numbers.
```

lemma Cofinite_nat_HConn:
assumes $\neg(\mathrm{X} \prec$ nat $)$
shows (CoFinite X) \{is hyperconnected\}
proof-
\{
fix $U$ V
assume $U \in($ CoFinite $X) V \in(C o F i n i t e ~ X) U \cap V=0$
then have eq: $(X-U) \prec$ nat $V U=0(X-V) \prec n a t \vee V=0$ unfolding Cofinite_def
CoCardinal_def by auto
from $\langle U \cap V=0\rangle$ have un: $(X-U) \cup(X-V)=X$ by auto
\{
assume AS: ( $\mathrm{X}-\mathrm{U}$ ) $\prec$ nat ( $\mathrm{X}-\mathrm{V}$ ) $\prec$ nat
from un have $\mathrm{X} \prec$ nat using less_less_imp_un_less [OF AS InfCard_nat]
by auto
then have False using assms by auto
\}
with eq(1,2) have $U=0 \vee V=0$ by auto
\}
then show (CoFinite X)\{is hyperconnected\} using IsHConnected_def by
auto
qed
lemma HConn_spectrum:
shows (A\{is in the spectrum of\}IsHConnected) $\longleftrightarrow A \lesssim 1$
proof
assume A\{is in the spectrum of\}IsHConnected
then have $\forall \mathrm{T}$. ( $\mathrm{T}\{$ is a topology\} $\wedge \bigcup \mathrm{T} \approx \mathrm{A}$ ) $\longrightarrow$ ( $\mathrm{T}\{$ is hyperconnected\})
using Spec_def by auto
moreover
have Pow(A) \{is a topology\} using Pow_is_top by auto
moreover
have $\cup(\operatorname{Pow}(A))=A$ by auto
then have $\cup(\operatorname{Pow}(A)) \approx A$ by auto
ultimately
have HC_Pow:Pow(A) \{is hyperconnected\} by auto
\{
assume $A=0$
then have $\mathrm{A} \lesssim 1$ using empty_lepollI by auto
\}
moreover
\{
assume $\mathrm{A} \neq 0$

```
```

        then obtain e where e\inA by blast
        then have {e}\inPow(A) by auto
        moreover
        have A-{e}\inPow(A) by auto
        moreover
        have {e}\cap(A-{e})=0 by auto
        moreover
        note HC_Pow
        ultimately have A-{e}=0 unfolding IsHConnected_def by blast
        with \langlee\inA\rangle have A={e} by auto
        then have A\approx1 using singleton_eqpoll_1 by auto
        then have A\lesssim1 using eqpoll_imp_lepoll by auto
    }
    ultimately show A}\lesssim1\mathrm{ by auto
    next
assume A }\lesssim
{
fix T
assume T{is a topology}\T\approxA
{
assume \T=0
with 〈T{is a topology}` have T={0} using empty_open by auto             then have T{is hyperconnected} unfolding IsHConnected_def by auto         }         moreover         {             assume \T\not=0             moreover             from \langleA\lesssim1\rangle\UT\approxA\rangle have UT}\1\mathrm{ using eq_lepoll_trans by auto             ultimately             obtain E where \bigcupT={E} using lepoll_1_is_sing by blast             moreover             have T\subseteqPow(UT) by auto             ultimately have T\subseteqPow({E}) by auto             then have T\subseteq{0,{E}} by blast             with <T{is a topology}` have {0}\subseteqT T\subseteq{0,{E}} using empty_open by
auto
then have T{is hyperconnected} unfolding IsHConnected_def by auto
}
ultimately have T{is hyperconnected} by auto
}
then show A{is in the spectrum of}IsHConnected unfolding Spec_def by
auto
qed
In the following results we will show that anti-hyperconnectedness is a separation property between $T_{1}$ and $T_{2}$. We will show also that both implications are proper.
First, the closure of a point in every topological space is always hypercon-

```
nected. This is the reason why every anti-hyperconnected space must be \(T_{1}\) : every singleton must be closed.
```

lemma (in topology0)cl_point_imp_HConn:
assumes }x\in\bigcup
shows (T{restricted to}Closure({x},T)){is hyperconnected}
proof-
from assms have sub:Closure({x},T)\subseteq\T using Top_3_L11 by auto
then have tot: U(T{restricted to}Closure({x},T))=Closure({x},T) un-
folding RestrictedTo_def by auto
{
fix A B
assume AS:A\in(T{restricted to}Closure({x},T))B\in(T{restricted to}Closure({x},T))A\capB=0
then have B\subseteq\bigcup((T{restricted to}Closure({x},T)))A\subseteq\bigcup((T{restricted
to}Closure({x},T)))
by auto
with tot have B\subseteqClosure({x},T)A\subseteqClosure({x},T) by auto
from AS (1,2) obtain UA UB where UAUB:UA\inTUB\inTA=UA\capClosure({x},T)B=UB\capClosure({x},T)
unfolding RestrictedTo_def by auto
then have Closure({x},T)-A=Closure({x},T)-(UA\capClosure({x},T)) Closure({x},T)-B=Closure
by auto
then have Closure({x},T)-A=Closure({x},T)-(UA) Closure({x},T)-B=Closure({x},T)-(UB)
by auto
with sub have Closure({x},T)-A=Closure({x},T)\cap(\T-UA) Closure({x},T)-B=Closure({x},T)
by auto
moreover
from UAUB have (UT-UA){is closed in}T(UT-UB){is closed in}T us-
ing Top_3_L9 by auto
moreover
have Closure({x},T){is closed in}T using cl_is_closed assms by auto
ultimately have (Closure({x},T)-A){is closed in}T(Closure({x},T)-B){is
closed in}T
using Top_3_L5(1) by auto
moreover
{
have x\inClosure({x},T) using cl_contains_set assms by auto
moreover
from AS(3) have }x\not\inA\veex\not\inB by aut
ultimately have }x\in(Closure({x},T)-A) \veex\in(Closure({x},T)-B) by aut
}
ultimately have Closure ({x},T)\subseteq(Closure({x},T)-A) \vee Closure({x},T)\subseteq(Closure({x},T)-B)
using Top_3_L13 by auto
then have A\capClosure ({x},T)=0 \vee B\capClosure ({x},T)=0 by auto
with \langleB\subseteqClosure({x},T)<br>langleA\subseteqClosure({x},T)\rangle have A=0\veeB=0 using cl_contains_set
assms by blast
}
then show thesis unfolding IsHConnected_def by auto
qed

```

A consequence is that every totally-disconnected space is \(T_{1}\).
```

lemma (in topology0) tot_dis_imp_T1:
assumes T{is totally-disconnected}
shows T{is T T }
proof-
{
fix x y
assume }\textrm{y}\in\bigcup\Tx\in\bigcupTy\not=\textrm{x
then have (T{restricted to}Closure({x},T)){is hyperconnected} us-
ing cl_point_imp_HConn by auto
then have (T{restricted to}Closure({x},T)){is connected} using HConn_imp_Conn
by auto
moreover
from \langlex\in\bigcupT\rangle have Closure({x},T)\subseteq\bigcupT using Top_3_L11(1) by auto
moreover
note assms
ultimately have Closure({x},T){is in the spectrum of}IsConnected un-
folding IsTotDis_def antiProperty_def
by auto
then have Closure({x},T) \1 using conn_spectrum by auto
moreover
from \langlex\in\T\rangle have x\inClosure({x},T) using cl_contains_set by auto
ultimately have Closure({x},T)={x} using lepoll_1_is_sing[of Closure({x},T)
x] by auto
then have {x}{is closed in}T using Top_3_L8 {x\in\T\rangle by auto
then have \T-{x}\inT unfolding IsClosed_def by auto
moreover
from }\langley\in\bigcupT`\langley\not=x\rangle have y\in\bigcupT-{x}^x\not\in\bigcupT-{x} by aut
ultimately have }\exists\textrm{U}\in\textrm{T}.\textrm{y}\in\textrm{U}\wedgex\not\inU by forc
}
then show thesis unfolding isT1_def by auto
qed

```

In the literature, there exists a class of spaces called sober spaces; where the only non-empty closed hyperconnected subspaces are the closures of points and closures of diferent singletons are different.
definition IsSober (_\{is sober\}90)
where \(T\{\) is sober \(\} \equiv \forall A \in \operatorname{Pow}(\bigcup T)-\{0\}\). (A\{is closed in\}T \(\wedge\) ((T\{restricted to\}A) \{is hyperconnected\})) \(\longrightarrow(\exists x \in \bigcup T . A=C l o s u r e(\{x\}, T) \wedge(\forall y \in \bigcup T . A=C l o s u r e(\{y\}, T)\) \(\longrightarrow y=x\)))

Being sober is weaker than being anti-hyperconnected.
```

theorem (in topology0) anti_HConn_imp_sober:
assumes T\{is anti-\}IsHConnected
shows T\{is sober\}
proof-
\{
fix A assume $A \in \operatorname{Pow}(\bigcup T)-\{0\} A\{i s ~ c l o s e d ~ i n\} T(T\{r e s t r i c t e d ~ t o\} A)\{i s ~$
hyperconnected\}

```
with assms have A\{is in the spectrum of\}IsHConnected unfolding antiProperty_def by auto
then have \(A \lesssim 1\) using HConn_spectrum by auto
moreover
with \(\langle A \in \operatorname{Pow}(\cup T)-\{0\}\rangle\) have \(A \neq 0\) by auto
then obtain \(x\) where \(x \in A\) by auto
ultimately have \(A=\{x\}\) using lepoll_1_is_sing by auto
with \(\langle A\{i s\) closed in\}T〉 have \(\{x\}\{\) is closed in\}T by auto
moreover from \(\langle x \in A\rangle\langle A \in \operatorname{Pow}(\bigcup T)-\{0\}\rangle\) have \(\{x\} \in \operatorname{Pow}(\cup T)\) by auto
ultimately
have Closure \((\{x\}, T)=\{x\}\) unfolding Closure_def ClosedCovers_def by auto
with \(\langle A=\{x\}\) have \(A=C l o s u r e(\{x\}, T)\) by auto
moreover
\{
fix y assume \(y \in \bigcup T A=C l o s u r e(\{y\}, T)\)
then have \(\{y\} \subseteq C l o s u r e(\{y\}, T)\) using cl_contains_set by auto
with \(\langle A=C l o s u r e(\{y\}, T)\rangle\) have \(y \in A\) by auto
with \(\langle A=\{x\}\rangle\) have \(y=x\) by auto
\}
then have \(\forall y \in \bigcup T\). \(A=C l o s u r e(\{y\}, T) \longrightarrow y=x\) by auto
moreover note \(\langle\{x\} \in \operatorname{Pow}(\bigcup T)\))
ultimately have \(\exists x \in \bigcup T\). \(A=C l o s u r e(\{x\}, T) \wedge(\forall y \in \bigcup T\). A=Closure \((\{y\}, T)\)
\(\longrightarrow y=x\)) by auto
\}
then show thesis using IsSober_def by auto qed

Every sober space is \(T_{0}\).
lemma (in topology0) sober_imp_T0:
assumes T\{is sober\}
shows \(\mathrm{T}\left\{\right.\) is \(\mathrm{T}_{0}\) \}
proof-
\{
fix \(\mathrm{x} y\)
assume AS: \(x \in \bigcup T y \in \bigcup T x \neq y \forall U \in T . x \in U \longleftrightarrow y \in U\)
from \(\langle x \in \bigcup T\rangle\) have clx:Closure(\{x\},T) \{is closed in\}T using cl_is_closed
by auto
with \(\langle x \in \bigcup T\rangle\) have (\(\bigcup T\)-Closure \((\{x\}, T)) \in T\) using Top_3_L11(1) unfold-
ing IsClosed_def by auto
moreover
from \(\langle x \in \bigcup T\rangle\) have \(x \in \operatorname{Closure}(\{x\}, T)\) using cl_contains_set by auto
moreover
note AS \((1,4)\)
ultimately have \(\mathrm{y} \notin(\bigcup \mathrm{T}\)-Closure \((\{\mathrm{x}\}, \mathrm{T}))\) by auto
with AS(2) have \(y \in C l o s u r e(\{x\}, T)\) by auto
with clx have ineq1:Closure (\{y\},T) \(\subseteq\) Closure \((\{x\}, T)\) using Top_3_L13
by auto
from \(\langle y \in \bigcup T\rangle\) have cly:Closure(\{y\},T) \{is closed in\}T using cl_is_closed
```

by auto
with \langley\in\bigcupT\rangle have (UT-Closure({y},T))\inT using Top_3_L11(1) unfold-
ing IsClosed_def by auto
moreover
from \y\in\bigcupT` have y\inClosure({y},T) using cl_contains_set by auto
moreover
note AS(2,4)
ultimately have x\not\in(\bigcupT-Closure({y},T)) by auto
with AS(1) have x\inClosure({y},T) by auto
with cly have Closure({x},T)\subseteqClosure({y},T) using Top_3_L13 by auto
with ineq1 have eq:Closure({x},T)=Closure({y},T) by auto
have Closure({x},T)\inPow(\T)-{0} using Top_3_L11(1) {x\in\T\rangle\langlex\inClosure({x},T)\rangle
by auto
moreover note assms clx
ultimately have }\exists\textrm{t}\in\bigcup\textrm{T}.( Closure({x},T) = Closure({t}, T) ^ (\forally\in\bigcupT
Closure({x},T) = Closure({y}, T) \longrightarrow y = t))
unfolding IsSober_def using cl_point_imp_HConn[OF {x\in\T>] by auto
then obtain t where t_def:t\in\TClosure({x},T) = Closure({t}, T) \forally\in\T.
Closure({x},T) = Closure({y}, T) \longrightarrow y = t
by blast
with eq have y=t using < }\textrm{y}\in\bigcup<br>\ by aut
moreover from t_def \langlex\in\T\rangle have x=t by blast
ultimately have y=x by auto
with }\langle\textrm{x}\not=\textrm{y}\rangle\mathrm{ have False by auto
}
then have }\forallx y. x\in\bigcupT^y\in\bigcupT^x\not=y\longrightarrow(\existsU\inT. (x\inU\wedgey\not\inU)\vee(y\inU\wedgex\not\inU)
by auto
then show thesis using isT0_def by auto
qed
Every $T_{2}$ space is anti-hyperconnected.

```
```

theorem (in topology0) T2_imp_anti_HConn:

```
theorem (in topology0) T2_imp_anti_HConn:
 assumes T{is T T2}
 assumes T{is T T2}
 shows T{is anti-}IsHConnected
 shows T{is anti-}IsHConnected
proof-
proof-
 {
 {
 fix TT
 fix TT
 assume TT{is a topology} TT{is hyperconnected}TT{is T T }
 assume TT{is a topology} TT{is hyperconnected}TT{is T T }
 {
 {
 assume \TT=0
 assume \TT=0
 then have \TT }\lesssim1\mathrm{ using empty_lepollI by auto
 then have \TT }\lesssim1\mathrm{ using empty_lepollI by auto
 then have (UTT){is in the spectrum of}IsHConnected using HConn_spectrum
 then have (UTT){is in the spectrum of}IsHConnected using HConn_spectrum
by auto
by auto
 }
 }
 moreover
 moreover
 {
 {
 assume \TT\not=0
 assume \TT\not=0
 then obtain x where }x\in\bigcupTT by blas
 then obtain x where }x\in\bigcupTT by blas
 {
```

            {
    ```
fix y
assume \(\mathrm{y} \in \bigcup \mathrm{TTx} \neq \mathrm{y}\)
with \(\left\langle T T\left\{\right.\right.\) is \(\left.\left.T_{2}\right\}\right\rangle\langle x \in \bigcup T T\rangle\) obtain \(U\) V where \(U \in T T V \in T T x \in U y \in V U \cap V=0\)
unfolding isT2_def by blast
with〈TT\{is hyperconnected\}〉 have False using IsHConnected_def
by auto
\}
with \(\langle x \in \bigcup T T\rangle\) have \(\bigcup T T=\{x\}\) by auto
then have \(\bigcup T T \approx 1\) using singleton_eqpoll_1 by auto
then have \(\bigcup T T \lesssim 1\) using eqpoll_imp_lepoll by auto
then have (\(\bigcup T T)\) is in the spectrum of\}IsHConnected using HConn_spectrum
by auto
\}
ultimately have (\(\bigcup T T)\) is in the spectrum of \}IsHConnected by blast \}
then have \(\forall T\). (\(\mathrm{T}\left\{\right.\) is a topology\}^(T\{is hyperconnected\}) \(\wedge\left(T\left\{\right.\right.\) is \(\left.\left.\left.\mathrm{T}_{2}\right\}\right)\right) \longrightarrow\) (\((\bigcup T)\) \{is in the spectrum of \}IsHConnected))
by auto
moreover
note here_T2
ultimately
have \(\forall T . \quad T\left\{\right.\) is a topology \(\longrightarrow\left(\left(T\left\{i s T_{2}\right\}\right) \longrightarrow(T\{i s\right.\) anti-\}IsHConnected))
using Q_P_imp_Spec[where \(\mathrm{P}=\) IsHConnected and \(\mathrm{Q}=\mathrm{isT2]}\)
by auto
then show thesis using assms topSpaceAssum by auto qed

Every anti-hyperconnected space is \(T_{1}\).
theorem anti_HConn_imp_T1:
assumes T\{is anti-\}IsHConnected
shows \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\)
proof-
\{
fix \(\mathrm{x} y\)
assume \(x \in \bigcup T y \in \bigcup T x \neq y\)
\{
assume \(A S: \forall U \in T . x \notin U \vee y \in U\)
from \(\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle\) have \(\{x, y\} \in \operatorname{Pow}(\bigcup T)\) by auto
then have sub: \((T\{\) restricted \(\operatorname{to}\}\{x, y\}) \subseteq \operatorname{Pow}(\{x, y\})\) using RestrictedTo_def
by auto
\{
fix \(U\) V
assume \(H: U \in T\{\) restricted to \(\{x, y\} V \in(T\{\) restricted to \(\}\{x, y\}) U \cap V=0\)
with AS have \(x \in U \longrightarrow y \in U x \in V \longrightarrow y \in V\) unfolding RestrictedTo_def by
auto
with \(H(1,2)\) sub have \(x \in U \longrightarrow U=\{x, y\} x \in V \longrightarrow V=\{x, y\}\) by auto
with \(H\) sub have \(x \in U \longrightarrow(U=\{x, y\} \wedge V=0) x \in V \longrightarrow(V=\{x, y\} \wedge U=0)\) by auto
then have \((x \in U \vee x \in V) \longrightarrow(U=0 \vee V=0)\) by auto
moreover
```

            from sub H have ( }x\not\inU\wedgex\not\inV)\longrightarrow(U=0\veeV=0) by blas
            ultimately have }\textrm{U}=0\textrm{VV}=0\mathrm{ by auto
        }
        then have (T{restricted to}{x,y}){is hyperconnected} unfolding IsHConnected_def
    by auto
with assms{{x,y}\inPow(UT)\ have {x,y}{is in the spectrum of}IsHConnected
unfolding antiProperty_def
by auto
then have {x,y}\lesssim1 using HConn_spectrum by auto
moreover
have }x\in{x,y} by aut
ultimately have {x,y}={x} using lepoll_1_is_sing[of {x,y}x] by auto
moreover
have }y\in{x,y} by aut
ultimately have }y\in{x} by aut
then have y=x by auto
with \langlex\not=y\rangle have False by auto
}
then have }\exists\textrm{U}\inT
}
then show thesis using isT1_def by auto
qed
There is at least one topological space that is $T_{1}$, but not anti-hyperconnected.
This space is the cofinite topology on the natural numbers.

```
```

lemma Cofinite_not_anti_HConn:

```
lemma Cofinite_not_anti_HConn:
 shows }\neg((CoFinite nat){is anti-}IsHConnected) and (CoFinite nat){i
 shows }\neg((CoFinite nat){is anti-}IsHConnected) and (CoFinite nat){i
T
T
proof-
proof-
 {
 {
 assume (CoFinite nat){is anti-}IsHConnected
 assume (CoFinite nat){is anti-}IsHConnected
 moreover
 moreover
 have U(CoFinite nat)=nat unfolding Cofinite_def using union_cocardinal
 have U(CoFinite nat)=nat unfolding Cofinite_def using union_cocardinal
by auto
by auto
 moreover
 moreover
 have (CoFinite nat){restricted to}nat=(CoFinite nat) using subspace_cocardinal
 have (CoFinite nat){restricted to}nat=(CoFinite nat) using subspace_cocardinal
unfolding Cofinite_def
unfolding Cofinite_def
 by auto
 by auto
 moreover
 moreover
 have }\neg\mathrm{ (nat }<\mathrm{ nat) by auto
 have }\neg\mathrm{ (nat }<\mathrm{ nat) by auto
 then have (CoFinite nat){is hyperconnected} using Cofinite_nat_HConn[of
 then have (CoFinite nat){is hyperconnected} using Cofinite_nat_HConn[of
nat] by auto
nat] by auto
 ultimately have nat{is in the spectrum of}IsHConnected unfolding antiProperty_def
 ultimately have nat{is in the spectrum of}IsHConnected unfolding antiProperty_def
by auto
by auto
 then have nat }\lesssim1\mathrm{ using HConn_spectrum by auto
 then have nat }\lesssim1\mathrm{ using HConn_spectrum by auto
 moreover
 moreover
 have 1\innat by auto
 have 1\innat by auto
 then have 1\precnat using n_lesspoll_nat by auto
 then have 1\precnat using n_lesspoll_nat by auto
 ultimately have nat\precnat using lesspoll_trans1 by auto
```

    ultimately have nat\precnat using lesspoll_trans1 by auto
    ```
```

        then have False by auto
    }
    then show }\neg((\mathrm{ CoFinite nat){is anti-}IsHConnected) by auto
    next
show (CoFinite nat){is T T } using cocardinal_is_T1 InfCard_nat unfold-
ing Cofinite_def by auto
qed

```

The join-topology build from the cofinite topology on the natural numbers, and the excluded set topology on the natural numbers excluding \(\{0,1\}\); is just the union of both.
lemma join_top_cofinite_excluded_set:
shows (joinT \{CoFinite nat, ExcludedSet(nat, \{0,1\})\})=(CoFinite nat) \(\cup\)
ExcludedSet (nat, \(\{0,1\}\))
proof-
have coftop: (CoFinite nat)\{is a topology\} unfolding Cofinite_def us-
ing CoCar_is_topology InfCard_nat by auto
moreover
have ExcludedSet(nat,\{0,1\})\{is a topology\} using excludedset_is_topology
by auto
moreover
have exuni: \(\bigcup\) ExcludedSet(nat, \(\{0,1\}\))=nat using union_excludedset by auto
moreover
have cofuni: \(\bigcup\) (CoFinite nat)=nat using union_cocardinal unfolding Cofinite_def
by auto
ultimately have (joinT \{CoFinite nat, ExcludedSet(nat, \(\{0,1\}\)) \}) = (THE
T. (CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}\)) \{is a subbase for\} T) using joinT_def by auto

\section*{moreover}
have \(\bigcup\) (CoFinite nat) \(\in\) CoFinite nat using CoCar_is_topology [OF InfCard_nat]
unfolding Cofinite_def IsATopology_def by auto
with cofuni have \(n\) :nat \(\in\) CoFinite nat by auto
have \(\mathrm{Pa}:(\) CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}\)) \(\{\) is a subbase for \(\}\{\bigcup \mathrm{A}\).
\(A \in \operatorname{Pow}(\{\bigcap B . B \in \operatorname{FinPow}((\) CoFinite nat) \(\cup E x c l u d e d S e t(n a t,\{0,1\}))\})\}\)
using Top_subbase(2) by auto
have \(\{\cup A . A \in \operatorname{Pow}(\{\bigcap B . B \in \operatorname{FinPow}((\) CoFinite nat \() \cup E x c l u d e d S e t(n a t,\{0,1\}))\})\}=(T H E\)
T. (CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}\)) \{is a subbase for\} \(T\))
using same_subbase_same_top[where \(B=(\) CoFinite nat) \(\cup E x c l u d e d S e t(n a t,\{0,1\})\),
OF _ Pa] the_equality[where \(\mathrm{a}=\{\bigcup \mathrm{A} . \mathrm{A} \in \operatorname{Pow}(\{\bigcap \mathrm{B} . \mathrm{B} \in \mathrm{FinPow}(\) (CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0\)
and \(P=\lambda T\). ((CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\})\)) is a subbase for \(\}\),
OF Pa] by auto
ultimately have equal: (joinT \{CoFinite nat, ExcludedSet (nat, \{0,1\})\})
\(=\{\bigcup A \cdot A \in \operatorname{Pow}(\{\bigcap B \cdot B \in \operatorname{FinPow}((\) CoFinite nat \() \cup \operatorname{ExcludedSet}(\) nat,\(\{0,1\}))\})\}\) by auto
\{
fix \(U\) assume \(U \in\{\bigcup A . A \in \operatorname{Pow}(\{\bigcap B . B \in \operatorname{FinPow}((\operatorname{CoFinite}\) nat \() \cup E x c l u d e d S e t(n a t,\{0,1\}))\})\}\) then obtain \(A U\) where \(U=\bigcup A U\) and base: \(A U \in \operatorname{Pow}(\{\bigcap B . B \in\) FinPow ((CoFinite
nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}\))) \})

\section*{by auto}
have (CoFinite nat) \(\subseteq\) Pow \((\bigcup\) (CoFinite nat)) by auto
moreover
have ExcludedSet (nat, \(\{0,1\}) \subseteq \operatorname{Pow}(\bigcup\) ExcludedSet (nat, \(\{0,1\}\))) by auto
moreover
note cofuni exuni
ultimately have sub: (CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}\)) \(\subseteq\) Pow (nat)
by auto
from base have \(\forall S \in A U . S \in\{\bigcap B . B \in \operatorname{FinPow}((C o F i n i t e ~ n a t) \cup E x c l u d e d S e t(n a t,\{0,1\}))\}\) by blast
then have \(\forall S \in A U . \exists B \in \operatorname{FinPow}((C o F i n i t e ~ n a t) \cup E x c l u d e d S e t(n a t,\{0,1\}))\).
\(\mathrm{S}=\bigcap \mathrm{O}\) by blast
then have eq: \(\forall S \in A U . \exists B \in \operatorname{Pow}((\) CoFinite nat) \(\cup E x c l u d e d S e t(n a t,\{0,1\}))\).
\(S=\bigcap B\) unfolding FinPow_def by blast
\{
fix \(S\) assume \(S \in A U\)
with eq obtain \(B\) where \(B \in \operatorname{Pow}((\) CoFinite nat) \(\cup \operatorname{ExcludedSet(nat,\{ 0,1\}))S} \mathrm{S}=\bigcap \mathrm{B}\)
by auto
with sub have \(B \in \operatorname{Pow}(\operatorname{Pow}(n a t))\) by auto
\{
fix \(x\) assume \(x \in \bigcap B\)
then have \(\forall N \in B . x \in N B \neq 0\) by auto
with 〈BGPow(Pow(nat)) have \(x \in\) nat by blast
\}
with \(\langle S=\bigcap B\rangle\) have \(S \in \operatorname{Pow}\) (nat) by auto
\}
then have \(\forall S \in A U\). \(S \in \operatorname{Pow}\) (nat) by blast
with \(\langle U=\bigcup A U\rangle\) have \(U \in \operatorname{Pow}\) (nat) by auto
\{
assume \(0 \in U \vee 1 \in U\)
with \(\langle U=\bigcup A U\rangle\) obtain \(S\) where \(S \in A U 0 \in S \vee 1 \in S\) by auto
with base obtain BS where \(S=\bigcap B S\) and bsbase: BS \(\in\) FinPow ((CoFinite
nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}\))) by auto
with \(\langle 0 \in S \vee 1 \in S\rangle\) have \(\forall M \in B S .0 \in M \vee 1 \in M\) by auto
then have \(\forall M \in B S\). \(M \notin E x c l u d e d S e t\) (nat, \(\{0,1\}\))-\{nat \(\}\) unfolding ExcludedPoint_def
ExcludedSet_def by auto
moreover
note bsbase \(n\)
ultimately have BS \(\in\) FinPow(CoFinite nat) unfolding FinPow_def by
auto
moreover
from \(\langle 0 \in S \vee 1 \in S\rangle\) have \(S \neq 0\) by auto
with \(\langle S=\bigcap B S\rangle\) have \(B S \neq 0\) by auto
moreover
note coftop
ultimately have \(\bigcap B S \in\) CoFinite nat using topology0.fin_inter_open_open [OF topology0_CoCardinal[OF InfCard_nat]]
unfolding Cofinite_def by auto
with \(\langle S=\bigcap B S\rangle\) have \(S \in\) CoFinite nat by auto
with \(\langle 0 \in S \vee 1 \in S\rangle\) have nat－S \(\prec\) nat unfolding Cofinite＿def CoCardinal＿def by auto
moreover
from \(\langle U=\bigcup A U\rangle\langle S \in A U\rangle\) have \(S \subseteq U\) by auto
then have nat－U®nat－S by auto
then have nat－U \(\lesssim\) nat－S using subset＿imp＿lepoll by auto
ultimately
have nat－U \(\prec\) nat using lesspoll＿trans1 by auto
with 〈U \(\in\) Pow（nat） have \(U \in\) CoFinite nat unfolding Cofinite＿def CoCardinal＿def by auto
with 〈U \(\in \operatorname{Pow}(\) nat \()\rangle\) have \(U \in\)（CoFinite nat）\(\cup\) ExcludedSet（nat，\(\{0,1\}\) ）
by auto
\}
with \(\langle U \in \operatorname{Pow}(\) nat ）〉 have \(U \in(C o F i n i t e ~ n a t) \cup\) ExcludedSet（nat，\(\{0,1\}\) ）un－ folding ExcludedSet＿def by blast
\}
then have \((\{\bigcup \mathrm{A} . \mathrm{A} \in \operatorname{Pow}(\{\bigcap \mathrm{B} . \mathrm{B} \in \operatorname{FinPow}((\operatorname{CoFinite}\) nat）\(\cup \operatorname{ExcludedSet(nat,\{ 0,1\}))\})\})}\) \(\subseteq\)（CoFinite nat）\(\cup\) ExcludedSet（nat，\(\{0,1\}\) ）
by blast
moreover
\｛
fix U
assume \(U \in(\) CoFinite nat）\(\cup\) ExcludedSet（nat，\(\{0,1\}\) ）
then have \(\{U\} \in \operatorname{FinPow}(\)（CoFinite nat）\(\cup\) ExcludedSet（nat，\(\{0,1\})\) ）un－
folding FinPow＿def by auto
then have \(\{U\} \in \operatorname{Pow}(\{\bigcap B . B \in \operatorname{FinPow}((C o F i n i t e ~ n a t) \cup \operatorname{ExcludedSet}(\) nat，\(\{0,1\}))\})\)
by blast
moreover
have \(U=\bigcup\{U\}\) by auto
ultimately have \(U \in\{\bigcup A . A \in \operatorname{Pow}(\{\bigcap B . B \in \operatorname{FinPow}(\)（CoFinite nat）
\(\cup\) ExcludedSet（nat，\(\{0,1\})\) ）\()\}\) by blast \}
then have（CoFinite nat）\(\cup\) ExcludedSet（nat，\(\{0,1\}) \subseteq\{\bigcup \mathrm{A} . \mathrm{A} \in \operatorname{Pow}(\{\bigcap B\)
．\(B \in \operatorname{FinPow}((\) CoFinite nat \() \cup\) ExcludedSet（nat，\(\{0,1\}))\})\}\)
by auto
ultimately have（CoFinite nat）\(\cup \operatorname{ExcludedSet}\)（nat，\(\{0,1\})=\{\bigcup A . A \in \operatorname{Pow}(\{\bigcap B\)
．B \(\in\) FinPow（（CoFinite nat）\(\cup\) ExcludedSet（nat，\｛0，1\}))\})\}
by auto
with equal show thesis by auto
qed
The previous topology in not \(T_{2}\) ，but is anti－hyperconnected．
```

theorem join_Cofinite_ExclPoint_not_T2:
shows
\neg((joinT {CoFinite nat, ExcludedSet(nat,{0,1})}){is T}\mp@subsup{T}{2}{}})\mathrm{ and
(joinT {CoFinite nat,ExcludedSet(nat,{0,1})}){is anti-} IsHConnected
proof
have (CoFinite nat) \subseteq (CoFinite nat) U ExcludedSet(nat,{0,1}) by auto
have }\cup((\mathrm{ CoFinite nat ) U ExcludedSet(nat,{0,1}))=(U(CoFinite nat))U

```
(\(\bigcup\) ExcludedSet(nat, \(\{0,1\}\)))
by auto
moreover
have ...=nat unfolding Cofinite_def using union_cocardinal union_excludedset by auto
ultimately have tot: \(\bigcup((\) CoFinite nat \() \cup \operatorname{ExcludedSet}(\) nat, \(\{0,1\}))=\) nat by auto
\{
assume (joinT \{CoFinite nat, ExcludedSet (nat, \(\{0,1\}\)) \}) \{is \(\left.\mathrm{T}_{2}\right\}\) then have t2: ((CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\})\)) is \(\left.\mathrm{T}_{2}\right\}\) using
join_top_cofinite_excluded_set
by auto
with tot have \(\exists \mathrm{U} \in((\) CoFinite nat \() \cup \operatorname{ExcludedSet}(\) nat, \(\{0,1\}))\). \(\exists \mathrm{V} \in((\) CoFinite
nat) \(\cup\) ExcludedSet (nat, \(\{0,1\})) .0 \in U \wedge 1 \in V \wedge U \cap V=0\) using isT2_def by auto
then obtain \(U V\) where \(U \in\) (CoFinite nat) \(V(0 \notin U \wedge 1 \notin U) V \in\) (CoFinite
nat) \(V(0 \notin \mathrm{~V} \wedge 1 \notin \mathrm{~V}) 0 \in \mathrm{U} 1 \in \mathrm{VU} \cap \mathrm{V}=0\)
unfolding ExcludedSet_def by auto
then have \(U \in\) (CoFinite nat) \(V \in\) (CoFinite nat) by auto
with \(\langle 0 \in U \backslash \backslash 1 \in V\rangle\) have \(U \cap V \neq 0\) using Cofinite_nat_HConn IsHConnected_def
by auto
with 〈U \(\mathrm{U}=0\)) have False by auto
\}
then show \(\neg((\) joinT \(\{\) CoFinite nat,ExcludedSet (nat, \(\{0,1\})\})\left\{\right.\) is \(\left.T_{2}\right\}\)) by auto
\{
fix A assume AS:A \(\operatorname{Pow}(\bigcup\) ((CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}))\))((CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\}))\{\) restricted to\}A) \{is hyperconnected\}
with tot have \(A \in \operatorname{Pow}\) (nat) by auto
then have sub:A nat=A by auto
have ((CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\})\)) \{restricted to \(A=(\) (CoFinite nat) \(\{\) restricted to\}A) \(\cup(E x c l u d e d S e t(n a t,\{0,1\})\{r e s t r i c t e d ~ t o\} A) ~\)
unfolding RestrictedTo_def by auto
also from sub have ...=(CoFinite A) \(\cup \operatorname{ExcludedSet(A,\{ 0,1\})~using~subspace_ excludedset[ofn~}\) subspace_cocardinal[of natnatA] unfolding Cofinite_def
by auto
finally have ((CoFinite nat) \(\cup\) ExcludedSet (nat, \(\{0,1\})\)) \{restricted to\}A=(CoFinite
A) \(\cup\) ExcludedSet (A, \(\{0,1\}\)) by auto
with AS(2) have eq: ((CoFinite A) \(\cup\) ExcludedSet \((A,\{0,1\}))\) \{is hyperconnected\}
by auto
\{
assume \(\{0,1\} \cap A=0\)
then have (CoFinite \(A) \cup \operatorname{ExcludedSet}(A,\{0,1\})=\operatorname{Pow}(A)\) using empty_excludedset[of
\(\{0,1\} A]\) unfolding Cofinite_def CoCardinal_def
by auto
with eq have Pow(A)\{is hyperconnected\} by auto
then have Pow(A) \{is connected\} using HConn_imp_Conn by auto moreover
have Pow(A)\{is anti-\}IsConnected using discrete_tot_dis unfolding IsTotDis_def by auto
moreover
have \(\cup(\operatorname{Pow}(A)) \in \operatorname{Pow}(\bigcup(\operatorname{Pow}(A)))\) by auto
moreover
have \(\operatorname{Pow}(A)\{\) restricted to\} \(\bigcup\) (Pow(A))=Pow(A) unfolding RestrictedTo_def
by blast
ultimately have \((\bigcup\) (Pow \((A)))\) \{is in the spectrum of\}IsConnected unfolding antiProperty_def
by auto
then have \(A\{i s\) in the spectrum of\}IsConnected by auto
then have \(A \lesssim 1\) using conn_spectrum by auto
then have A\{is in the spectrum of\}IsHConnected using HConn_spectrum
by auto
\}
moreover
\{
assume AS: \(\{0,1\} \cap A \neq 0\)
\{
assume \(A=\{0\} \vee A=\{1\}\)
then have \(A \approx 1\) using singleton_eqpoll_1 by auto
then have \(\mathrm{A} \lesssim 1\) using eqpoll_imp_lepoll by auto
then have A\{is in the spectrum of \}IsHConnected using HConn_spectrum
by auto
\}
moreover
\{
assume AS2: \(\neg(A=\{0\} \vee A=\{1\})\)
\{
assume \(\mathrm{AS} 3: \mathrm{A} \subseteq\{0,1\}\)
with AS AS2 have A_def:A=\{0,1\} by blast
then have ExcludedSet \((A,\{0,1\})=\operatorname{ExcludedSet}(A, A)\) by auto
moreover have ExcludedSet \((A, A)=\{0, A\}\) unfolding ExcludedSet_def
by blast
ultimately have ExcludedSet \((A,\{0,1\})=\{0, A\}\) by auto
moreover
have \(0 \in\) (CoFinite A) using empty_open [of CoFinite A]
CoCar_is_topology[OF InfCard_nat, of A] unfolding Cofinite_def
by auto
moreover
have \(\bigcup\) (CoFinite A) =A using union_cocardinal unfolding Cofinite_def
by auto
then have \(A \in\) (CoFinite A) using CoCar_is_topology[OF InfCard_nat, of
A] unfolding Cofinite_def
IsATopology_def by auto
ultimately have (CoFinite A) \(\cup\) ExcludedSet (A, \(\{0,1\}\)) \(=\) (CoFinite
A) by auto
with eq have(CoFinite A) \{is hyperconnected\} by auto
with A_def have hyp: (CoFinite \(\{0,1\}\)) \{is hyperconnected\} by
auto
have \(\{0\} \approx 1\{1\} \approx 1\) using singleton_eqpoll_1 by auto
```

        moreover
        have 1\precnat using n_lesspoll_nat by auto
        ultimately have {0}\precnat{1}\precnat using eq_lesspoll_trans by auto
        moreover
        have {0,1}-{1}={0}{0,1}-{0}={1} by auto
        ultimately have {1}\in(CoFinite {0,1}){0}\in(CoFinite {0,1}) {1}\cap{0}=0
    unfolding Cofinite_def CoCardinal_def
by auto
with hyp have False unfolding IsHConnected_def by auto
}
then obtain t where t\inA t\not=0 t\not=1 by auto
then have {t}\inExcludedSet(A,{0,1}) unfolding ExcludedSet_def
by auto
moreover
{
have {t}\approx1 using singleton_eqpoll_1 by auto
moreover
have 1\precnat using n_lesspoll_nat by auto
ultimately have {t}\precnat using eq_lesspoll_trans by auto
moreover
with \langlet\inA> have A-(A-{t})={t} by auto
ultimately have A-{t}\in(CoFinite A) unfolding Cofinite_def CoCardinal_def
by auto
}
ultimately have {t}\in((CoFinite A) \cupExcludedSet(A,{0,1}))A-{t}\in((CoFinite
A)\cupExcludedSet (A,{0,1}))
{t}\cap(A-{t})=0 by auto
with eq have A-{t}=0 unfolding IsHConnected_def by auto
with \langlet\inA\rangle have A={t} by auto
then have A\approx1 using singleton_eqpoll_1 by auto
then have A\lesssim1 using eqpoll_imp_lepoll by auto
then have A{is in the spectrum of}IsHConnected using HConn_spectrum
by auto
}
ultimately have A{is in the spectrum of}IsHConnected by auto
}
ultimately have A{is in the spectrum of}IsHConnected by auto
}
then have ((CoFinite nat)\cupExcludedSet(nat,{0,1})){is anti-}IsHConnected
unfolding antiProperty_def
by auto
then show (joinT {CoFinite nat, ExcludedSet(nat,{0,1})}){is anti-}IsHConnected
using join_top_cofinite_excluded_set
by auto
qed

```

Let's show that anti-hyperconnected is in fact \(T_{1}\) and sober. The trick of the proof lies in the fact that if a subset is hyperconnected, its closure is so too (the closure of a point is then always hyperconnected because singletons
are in the spectrum); since the closure is closed, we can apply the sober property on it.
```

theorem (in topology0) T1_sober_imp_anti_HConn:
assumes T{is T T } and T{is sober}
shows T{is anti-}IsHConnected
proof-
{
fix A assume AS:A\inPow(UT)(T{restricted to}A){is hyperconnected}
{
assume A=0
then have A}\lesssim1 using empty_lepollI by aut
then have A{is in the spectrum of}IsHConnected using HConn_spectrum
by auto
}
moreover
{
assume A\not=0
then obtain x where x\inA by blast
{
assume }\neg((T{restricted to}Closure(A,T)){is hyperconnected}
then obtain U V where UV_def:U\in(T{restricted to}Closure(A,T))V\in(T{restricted
to}Closure(A,T))
U\capV=OU }\not=0\textrm{V}\not=0\mathrm{ using IsHConnected_def by auto
then obtain UCA VCA where UCA\inTVCA\inTU=UCA\capClosure(A,T)V=VCA\capClosure(A,T)
unfolding RestrictedTo_def by auto
from <A\inPow(\T)\rangle have A\subseteqClosure(A,T) using cl_contains_set by
auto
then have UCA\capA\subseteqUCA\capClosure(A,T)VCA\capA\subseteqVCA\capClosure(A,T) by auto
with 〈U=UCA\capClosure(A,T)\rangle\langleV=VCA\capClosure(A,T)\rangle\langleU\capV=0\rangle have (UCA\capA)\cap(VCA\capA)=0
by auto
moreover
from \langleUCA\inT`\VCA\inT\rangle have UCA\capA\in(T{restricted to}A)VCA\capA\in(T{restricted
to}A)

```
 unfolding RestrictedTo_def by auto
 moreover
 note AS (2)
 ultimately have \(U C A \cap A=O \vee V C A \cap A=0\) using IsHConnected_def by auto
 with \(\langle A \subseteq \operatorname{Closure}(A, T)\rangle\) have \(A \subseteq C l o s u r e(A, T)-U C A \vee A \subseteq C l o s u r e(A, T)-V C A\)
by auto
 moreover
 \{
 have Closure (A,T)-UCA=Closure (A,T) \(\cap(\bigcup T-U C A) C l o s u r e(A, T)-V C A=C l o s u r e(A, T) \cap(\bigcup T-V\)
 using Top_3_L11(1) AS(1) by auto
 moreover
 with \(\langle U C A \in T\rangle\langle V C A \in T\rangle\) have (\(\cup T-U C A)\) is closed in\}T(\(\cup T-V C A)\) is
closed in\}TClosure (A,T) \{is closed in\}T
 using Top_3_L9 cl_is_closed AS(1) by auto
 ultimately have (Closure (A,T)-UCA) \{is closed in\}T(Closure (A,T)-VCA)\{is
closed in\}T
using Top_3_L5(1) by auto
\}
ultimately
have Closure \((A, T) \subseteq C l o s u r e(A, T)-U C A V C l o s u r e(A, T) \subseteq C l o s u r e(A, T)-V C A\)
using Top_3_L13
by auto
then have \(\operatorname{UCA} \cap C l o s u r e(A, T)=0 \vee V C A \cap C l o s u r e(A, T)=0\) by auto
with \(\langle U=U C A \cap C l o s u r e(A, T)\rangle\langle V=V C A \cap C l o s u r e(A, T)\rangle\) have \(U=0 V V=0\) by
auto
with \(\langle\mathrm{U} \neq 0\rangle\langle\mathrm{V} \neq 0\rangle\) have False by auto
\}
then have (T\{restricted to\}Closure(A,T))\{is hyperconnected\} by
moreover
have Closure (A,T) \{is closed in\}T using cl_is_closed AS(1) by auto moreover
from \(\langle x \in A\) 〉 have Closure \((A, T) \neq 0\) using cl_contains_set AS(1) by auto moreover
from AS(1) have Closure (A,T) \(\subseteq \bigcup\) T using Top_3_L11(1) by auto
ultimately have Closure \((A, T) \in \operatorname{Pow}(\bigcup T)-\{0\}\) (\(T\) \{restricted to\} Closure (A, T)) \{is hyperconnected\} Closure(A, T) \{is closed in\} T by auto
moreover note assms(2)
ultimately have \(\exists x \in \bigcup T\). (Closure \((A, T)=C l o s u r e ~(\{x\}, T) \wedge(\forall y \in \bigcup T\).
Closure \((A, T)=\) Closure \((\{y\}, T) \longrightarrow y=x)\)) unfolding IsSober_def
by auto
then obtain \(y\) where \(y \in \bigcup\) TClosure \((A, T)=C l o s u r e(\{y\}, T)\) by auto moreover
\{
fix \(z\) assume \(z \in(\bigcup T)-\{y\}\)
with assms(1) \(\langle y \in \bigcup T\rangle\) obtain \(U\) where \(U \in T \quad z \in U \quad y \notin U\) using isT1_def
by blast
then have \(U \in T \quad z \in U U \subseteq(\bigcup T)-\{y\}\) by auto
then have \(\exists U \in T . z \in U \wedge U \subseteq(U T)-\{y\}\) by auto
\}
then have \(\forall z \in(\bigcup T)-\{y\} . \exists U \in T . z \in U \wedge U \subseteq(\bigcup T)-\{y\}\) by auto
then have \(\bigcup T-\{y\} \in T\) using open_neigh_open by auto
with \(\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle\) have \(\{\mathrm{y}\}\) \{is closed in\}T using IsClosed_def by auto
with \(\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle\) have Closure \((\{y\}, T)=\{y\}\) using Top_3_L8 by auto
with <Closure \((A, T)=\operatorname{Closure}(\{y\}, T)\)) have Closure \((A, T)=\{y\}\) by auto
with \(A S(1)\) have \(A \subseteq\{y\}\) using cl_contains_set[of \(A]\) by auto
with \(\langle A \neq 0\rangle\) have \(A=\{y\}\) by auto
then have \(A \approx 1\) using singleton_eqpoll_1 by auto
then have \(A \lesssim 1\) using eqpoll_imp_lepoll by auto
then have A\{is in the spectrum of\}IsHConnected using HConn_spectrum
by auto
\}
ultimately have A\{is in the spectrum of\}IsHConnected by blast \}
then show thesis using antiProperty_def by auto qed
theorem (in topology0) anti_HConn_iff_T1_sober:
shows (T\{is anti-\}IsHConnected) \(\longleftrightarrow\left(T\{i s ~ s o b e r\} \wedge T\left\{i s ~ T_{1}\right\}\right)\)
using T1_sober_imp_anti_HConn anti_HConn_imp_T1 anti_HConn_imp_sober by auto

A space is ultraconnected iff every two non-empty closed sets meet.
```

definition IsUConnected (_{is ultraconnected}80)
where T{is ultraconnected}\equiv\forallA B. A{is closed in}T^B{is closed in}T}<br>wedgeA\capB=
A=0VB=0

```

Every ultraconnected space is trivially normal.
lemma (in topology0)UConn_imp_normal:
assumes T\{is ultraconnected\}
shows T\{is normal\}
proof\{
fix A B
assume AS:A\{is closed in\}T \(\mathrm{B}\{\mathrm{is}\) closed in\}TA \(\cap \mathrm{B}=0\)
with assms have \(A=0 \vee B=0\) using IsUConnected_def by auto
with \(A S(1,2)\) have \((A \subseteq 0 \wedge B \subseteq \bigcup T) \vee(A \subseteq \bigcup T \wedge B \subseteq 0)\) unfolding IsClosed_def
by auto
moreover
have \(0 \in T\) using empty_open topSpaceAssum by auto
moreover
have \(\bigcup T \in T\) using topSpaceAssum unfolding IsATopology_def by auto
ultimately have \(\exists U \in T . \exists V \in T . A \subseteq U \wedge B \subseteq V \wedge U \cap V=0\) by auto
\}
then show thesis unfolding IsNormal_def by auto
qed
Every ultraconnected space is connected.
lemma UConn_imp_Conn:
assumes T\{is ultraconnected\}
shows T\{is connected\}
proof-
\{
fix U V
assume \(\mathrm{U} \in \mathrm{TU}\) \{is closed in\}T
then have \(\cup T-(\cup T-U)=U\) by auto
with \(\langle U \in T\rangle\) have (\(\cup T-U\)) \{is closed in\} \(T\) unfolding IsClosed_def by auto
with 〈U\{is closed in\}T〉 assms have \(U=0 V \bigcup T-U=0\) unfolding IsUConnected_def
by auto
with \(\langle U \in T\rangle\) have \(U=0 \vee U=\bigcup T\) by auto
\}
then show thesis unfolding IsConnected_def by auto
qed
```

lemma UConn_spectrum:
shows (A{is in the spectrum of}IsUConnected) \longleftrightarrow \& \1
proof
assume A_spec:(A{is in the spectrum of}IsUConnected)
{
assume A=0
then have A\lesssim1 using empty_lepollI by auto
}
moreover
{
assume A}=
from A_spec have }\forallT.(T{is a topology}^\T\approxA) \longrightarrow (T{is ultraconnected}
unfolding Spec_def by auto
moreover
have Pow(A){is a topology} using Pow_is_top by auto
moreover
have }\cup\operatorname{Pow}(A)=A by aut
then have \ Pow (A)\approxA by auto
ultimately have ult:Pow(A){is ultraconnected} by auto
moreover
from \langleA\not=0\rangle obtain b where b\inA by auto
then have {b}{is closed in}Pow(A) unfolding IsClosed_def by auto
{
fix c
assume c\inAc\not=b
then have {c}{is closed in}Pow(A){c}\cap{b}=0 unfolding IsClosed_def
by auto
with ult 〈{b}{is closed in}Pow(A)\ have False using IsUConnected_def
by auto
}
with \b\inA\rangle have A={b} by auto
then have A\approx1 using singleton_eqpoll_1 by auto
then have A\lesssim1 using eqpoll_imp_lepoll by auto
}
ultimately show A }\lesssim1\mathrm{ by auto
next
assume A\lesssim1
{
fix T
assume T{is a topology}\T\approxA
{
assume \ T=0
with \T{is a topology}` have T={0} using empty_open by auto
then have T{is ultraconnected} unfolding IsUConnected_def IsClosed_def
by auto
}
moreover
{

```
```

assume \bigcupT\not=0
moreover
from \langleA\lesssim1\rangle\UT\approxA\rangle have \bigcupT }\lesssim1\mathrm{ using eq_lepoll_trans by auto
ultimately
obtain E where eq:\T={E} using lepoll_1_is_sing by blast
moreover
have T\subseteqPow(UT) by auto
ultimately have T\subseteqPow({E}) by auto
then have T\subseteq{0,{E}} by blast
with {T{is a topology}` have {0}\subseteqT T\subseteq{0,{E}} using empty_open by
auto
then have T{is ultraconnected} unfolding IsUConnected_def IsClosed_def
by (simp only: eq, safe, force)
}
ultimately have T{is ultraconnected} by auto
}
then show A{is in the spectrum of}IsUConnected unfolding Spec_def by
auto
qed
This time, anti-ultraconnected is an old property.

```
```

theorem (in topology0) anti_UConn:

```
theorem (in topology0) anti_UConn:
 shows (T\{is anti-\}IsUConnected) \(\longleftrightarrow T\left\{i s T_{1}\right\}\)
 shows (T\{is anti-\}IsUConnected) \(\longleftrightarrow T\left\{i s T_{1}\right\}\)
proof
proof
 assume \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\)
 assume \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\)
 \{
 \{
 fix TT
 fix TT
 \{
 \{
 assume TT\{is a topology\}TT\{is \(\left.\mathrm{T}_{1}\right\} \mathrm{TT}\{\) is ultraconnected\}
 assume TT\{is a topology\}TT\{is \(\left.\mathrm{T}_{1}\right\} \mathrm{TT}\{\) is ultraconnected\}
 \{
 \{
 assume \(\bigcup\) TT=0
 assume \(\bigcup\) TT=0
 then have \(\bigcup \mathrm{TT} \lesssim 1\) using empty_lepollI by auto
 then have \(\bigcup \mathrm{TT} \lesssim 1\) using empty_lepollI by auto
 then have ((UTT) \{is in the spectrum of\}IsUConnected) using UConn_spectrum
 then have ((UTT) \{is in the spectrum of\}IsUConnected) using UConn_spectrum
by auto
by auto
 \}
 \}
 moreover
 moreover
 \{
 \{
 assume \(\bigcup T T \neq 0\)
 assume \(\bigcup T T \neq 0\)
 then obtain \(t\) where \(t \in \bigcup T T\) by blast
 then obtain \(t\) where \(t \in \bigcup T T\) by blast
 \{
 \{
 fix x
 fix x
 assume \(p: x \in \bigcup T T\)
 assume \(p: x \in \bigcup T T\)
 \{
 \{
 fix y assume \(y \in(U T T)-\{x\}\)
 fix y assume \(y \in(U T T)-\{x\}\)
 with 〈TT\{is \(\left.T_{1}\right\}\) 〉 \(p\) obtain \(U\) where \(U \in T T\) y \(\in U \mathrm{x} \notin \mathrm{U}\) using isT1_def
 with 〈TT\{is \(\left.T_{1}\right\}\) 〉 \(p\) obtain \(U\) where \(U \in T T\) y \(\in U \mathrm{x} \notin \mathrm{U}\) using isT1_def
by blast
by blast
 then have \(U \in T T y \in U U \subseteq(\cup T T)-\{x\}\) by auto
 then have \(U \in T T y \in U U \subseteq(\cup T T)-\{x\}\) by auto
 then have \(\exists U \in T T . y \in U \wedge U \subseteq(\bigcup T T)-\{x\}\) by auto
 then have \(\exists U \in T T . y \in U \wedge U \subseteq(\bigcup T T)-\{x\}\) by auto
 \}
```

        \}
    ```
then have \(\forall y \in(\bigcup T T)-\{x\} . \exists U \in T T . y \in U \wedge U \subseteq(\cup T T)-\{x\}\) by auto
with 〈TT\｛is a topology\}〉 have \(\bigcup T T-\{x\} \in T T\) using topology0．open＿neigh＿open
unfolding topology0＿def by auto
with \(p\) have \(\{x\}\) \｛is closed in\}TT using IsClosed_def by auto
\}
then have reg：\(\forall \mathrm{x} \in \bigcup\) TT．\(\{\mathrm{x}\}\{\) is closed in\}TT by auto
with \(\langle\mathrm{t} \in \bigcup \mathrm{UT}\rangle\) have \(\mathrm{t}_{-} \mathrm{cl}:\{\mathrm{t}\}\{\) is closed in\}TT by auto \｛
fix y
assume \(\mathrm{y} \in \bigcup\) TT
with reg have \｛y\}\{is closed in\}TT by auto
with 〔TT\｛is ultraconnected\}〉 t_cl have y=t unfolding IsUConnected_def
by auto
\}
with \(\langle\mathrm{t} \in \bigcup \mathrm{TT}\rangle\) have \(\bigcup \mathrm{TT}=\{\mathrm{t}\}\) by blast
then have \(\bigcup T T \approx 1\) using singleton＿eqpoll＿1 by auto
then have \(\bigcup T T \lesssim 1\) using eqpoll＿imp＿lepoll by auto
then have（ \(\cup T T)\) is in the spectrum of\}IsUConnected using UConn_spectrum
by auto
\}
ultimately have（ \(\cup T T)\) \｛is in the spectrum of \(\}\) IsUConnected by blast
\}
then have（TT\｛is a topology\}^TT\{is \(\left.\mathrm{T}_{1}\right\} \wedge(\mathrm{TT}\{\) is ultraconnected\})) \(\longrightarrow\) （（ \(\bigcup T T)\) \｛is in the spectrum of \}IsUConnected)
by auto
\}
then have \(\forall T T\) ．（TT\｛is a topology\}^TT\{is \(\left.\mathrm{T}_{1}\right\} \wedge(T T\{i s\) ultraconnected\})) \(\longrightarrow\)
（（ \(\cup T T)\) \｛is in the spectrum of \}IsUConnected)
by auto
moreover
note here＿T1
ultimately have \(\forall T\) ．\(T\left\{\right.\) is a topology \(\longrightarrow\left(\left(T\left\{i s T_{1}\right\}\right) \longrightarrow(T\{i s\right.\) anti－\}IsUConnected) \()\)
using Q＿P＿imp＿Spec［where \(\mathrm{Q}=\) isT1 and \(\mathrm{P}=\) IsUConnected］
by auto
with topSpaceAssum have（ \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\) ）\(\longrightarrow\)（ \(\mathrm{T}\{\) is anti－\}IsUConnected) by auto with \(\left\langle\mathrm{T}\left\{\right.\right.\) is \(\left.\mathrm{T}_{1}\right\}\) 〉 show T is anti－\}IsUConnected by auto
next
assume ASS：T\｛is anti－\}IsUConnected
\｛
fix x y
assume \(x \in \bigcup T y \in \bigcup T x \neq y\)
then have tot：\(\bigcup(T\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\})=\{\mathrm{x}, \mathrm{y}\}\) unfolding RestrictedTo＿def
by auto
\｛
assume AS：\(\forall U \in T . \quad x \in U \longrightarrow y \in U\)
\｛
assume \(\{y\}\{i s\) closed \(\operatorname{in}\}(T\{r e s t r i c t e d ~ t o\}\{x, y\})\)
moreover
from \(\langle x \neq y\rangle\) have \(\{x, y\}-\{y\}=\{x\}\) by auto
ultimately have \(\{x\} \in(T\{r e s t r i c t e d ~ t o\}\{x, y\})\) unfolding IsClosed_def by (simp only:tot)
then obtain \(U\) where \(U \in T\{x\}=\{x, y\} \cap U\) unfolding RestrictedTo_def
by auto
moreover
with \(\langle\mathrm{x} \neq \mathrm{y}\rangle\) have \(\mathrm{y} \notin\{\mathrm{x}\} \quad \mathrm{y} \in\{\mathrm{x}, \mathrm{y}\}\) by (blast+)
with \(\langle\{x\}=\{x, y\} \cap U\rangle\) have \(y \notin U\) by auto
moreover have \(x \in\{x\}\) by auto
with \(\langle\{x\}=\{x, y\} \cap U\rangle\) have \(x \in U\) by auto
ultimately have \(x \in U y \notin U U \in T\) by auto
with AS have False by auto
\}
then have y_no_cl: \(\neg(\{y\}\{i s ~ c l o s e d ~ i n\}(T\{r e s t r i c t e d ~ t o\}\{x, y\}))\) by auto
\{
fix A B
assume \(c l: A\{i s ~ c l o s e d ~ i n\}(T\{r e s t r i c t e d ~ t o\}\{x, y\}) B\{i s ~ c l o s e d ~ i n\}(T\{r e s t r i c t e d ~\) \(\operatorname{to}\}\{x, y\}) A \cap B=0\)
with tot have \(A \subseteq\{x, y\} B \subseteq\{x, y\} A \cap B=0\) unfolding IsClosed_def by
auto
then have \(x \in A \longrightarrow x \notin B y \in A \longrightarrow y \notin B A \subseteq\{x, y\} B \subseteq\{x, y\}\) by auto
\{
assume \(\mathrm{x} \in \mathrm{A}\)
with \(\langle x \in A \longrightarrow x \notin B\rangle\langle B \subseteq\{x, y\}\rangle\) have \(B \subseteq\{y\}\) by auto
then have \(B=0 \vee B=\{y\}\) by auto
with y_no_cl cl(2) have B=0 by auto
\}
moreover
\{
assume \(\mathrm{x} \notin \mathrm{A}\)
with \(\langle A \subseteq\{x, y\}\rangle\) have \(A \subseteq\{y\}\) by auto
then have \(A=0 \vee A=\{y\}\) by auto
with y_no_cl cl(1) have A=0 by auto
\}
ultimately have \(A=0 \vee B=0\) by auto
\}
then have (T\{restricted to\}\{x,y\})\{is ultraconnected\} unfolding IsUConnected_def by auto
with ASS \(\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle\) have \(\{x, y\}\{\) is in the spectrum of \(\}\) IsUConnected
unfolding antiProperty_def
by auto
then have \(\{x, y\} \lesssim 1\) using UConn_spectrum by auto
moreover have \(x \in\{x, y\}\) by auto
ultimately have \(\{x\}=\{x, y\}\) using lepoll_1_is_sing[of \(\{x, y\} x]\) by auto
moreover
have \(y \in\{x, y\}\) by auto
ultimately have \(y \in\{x\}\) by auto
then have \(\mathrm{y}=\mathrm{x}\) by auto
then have False using \(\langle x \neq y\) by auto
```

        }
        then have }\exists\textrm{U}\in\textrm{T}.\textrm{x}\in\textrm{U}\wedge\textrm{y}\not\in\textrm{U}\mathrm{ by auto
    }
    then show T{is }\mp@subsup{\textrm{T}}{1}{}}\mathrm{ unfolding isT1_def by auto
    qed

```

Is is natural that separation axioms and connection axioms are anti-properties of each other; as the concepts of connectedness and separation are opposite.

To end this section, let's try to charaterize anti-sober spaces.
```

lemma sober_spectrum:
shows (A{is in the spectrum of}IsSober) \longleftrightarrow A \1
proof
assume AS:A{is in the spectrum of}IsSober
{
assume A=0
then have A\lesssim1 using empty_lepollI by auto
}
moreover
{
assume A\not=0
note AS
moreover
have top:{0,A}{is a topology} unfolding IsATopology_def by auto
moreover
have }\bigcup{0,A}=A by aut
then have \{0,A}\approxA by auto
ultimately have {0,A}{is sober} using Spec_def by auto
moreover
have {0,A}{is hyperconnected} using Indiscrete_HConn by auto
moreover
have {0,A}{restricted to}A={0,A} unfolding RestrictedTo_def by auto
moreover
have A{is closed in}{0,A} unfolding IsClosed_def by auto
moreover
note (A =0
ultimately have }\exists\textrm{x}\in\textrm{A}.\textrm{A}=Closure({x},{0,A})\wedge (\forally\in\bigcup{0, A}. A = Closure({y}
{0, A}) }\longrightarrow\textrm{y}=\textrm{x})\mathrm{ unfolding IsSober_def by auto
then obtain }x\mathrm{ where }x\inAA=Closure({x},{0,A}) and reg: \forally\inA. A = Closure({y}
{0, A}) \longrightarrow y = x by auto
{
fix y assume y\inA
with top have Closure({y},{0,A}){is closed in}{0,A} using topology0.cl_is_closed
topology0_def by auto
moreover
from (y\inA) top have y\inClosure({y},{0,A}) using topology0.cl_contains_set
topology0_def by auto
ultimately have A-Closure({y},{0,A})\in{0,A}Closure({y},{0,A})\capA\not=0
unfolding IsClosed_def

```
by auto
then have \(A-C l o s u r e(\{y\},\{0, A\})=A \vee A-C l o s u r e(\{y\},\{0, A\})=0\)
by auto
moreover
from \(\langle y \in A\rangle\langle y \in \operatorname{Closure}(\{y\},\{0, A\})\rangle\) have \(y \in A y \notin A-C l o s u r e(\{y\},\{0, A\})\)
by auto
ultimately have \(A-C l o s u r e(\{y\},\{0, A\})=0\) by（cases \(A-C l o s u r e(\{y\},\{0, A\})=A\) ， simp，auto）
moreover
from \(\langle y \in A\rangle\) top have Closure（\｛y\},\{0,A\}) \(\subseteq\) A using topology0＿def topology0．Top＿3＿L11（1）
by blast
then have \(A-(A-C l o s u r e(\{y\},\{0, A\}))=C l o s u r e(\{y\},\{0, A\})\) by auto
ultimately have \(A=C l o s u r e(\{y\},\{0, A\})\) by auto
\}
with reg have \(\forall y \in A . x=y\) by auto
with \(\langle x \in A\rangle\) have \(A=\{x\}\) by blast
then have \(A \approx 1\) using singleton＿eqpoll＿1 by auto
then have \(A \lesssim 1\) using eqpoll＿imp＿lepoll by auto
\}
ultimately show \(\mathrm{A} \lesssim 1\) by auto
next
assume \(\mathrm{A} \lesssim 1\)
\｛
fix \(T\) assume \(T\{i s\) a topology \(\} \backslash T \approx A\) \｛
assume \(\bigcup \mathrm{T}=0\)
then have \(\mathrm{T}\{\mathrm{i}\) is sober\} unfolding IsSober_def by auto \} moreover \｛
assume \(\bigcup T \neq 0\)
then obtain \(x\) where \(x \in \bigcup T\) by blast
moreover
from \(\backslash \mathrm{T} \approx \mathrm{A}\rangle\langle\mathrm{A} \lesssim 1\rangle\) have \(\bigcup \mathrm{T} \lesssim 1\) using eq＿lepoll＿trans by auto
ultimately have \(\cup T=\{x\}\) using lepoll＿1＿is＿sing by auto
moreover
have \(T \subseteq \operatorname{Pow}(\bigcup T)\) by auto
ultimately have \(T \subseteq \operatorname{Pow}(\{x\})\) by auto
then have \(T \subseteq\{0,\{x\}\}\) by blast
moreover
from 〈 \(\mathrm{T}\{\) is a topology\}〉 have \(0 \in \mathrm{~T}\) using empty＿open by auto
moreover
from 〈T\｛is a topology\}〉 have \(\bigcup T \in T\) unfolding IsATopology＿def by
auto
with \(\bigcup T=\{x\}\) ，have \(\{x\} \in T\) by auto
ultimately have T＿def：\(T=\{0,\{x\}\}\) by auto
then have dd： \(\operatorname{Pow}(\bigcup T)-\{0\}=\{\{x\}\}\) by auto
\｛
fix \(B\) assume \(B \in \operatorname{Pow}(\bigcup T)-\{0\}\)
with dd have \(B_{-}\)def：\(B=\{x\}\) by auto
from 〈T\｛is a topology\}〉 have (UT)\{is closed in\}T using topology0_def topology0．Top＿3＿L1 by auto
with \(\bigcup T=\{x\}\) 〉 \(T\{\) is a topology\}〉 have Closure \((\{x\}, T)=\{x\}\) using
topology0．Top＿3＿L8
unfolding topology0＿def by auto
with \(B_{-}\)def have \(B=C l o s u r e(\{x\}, T)\) by auto
moreover
\｛
fix y assume \(y \in \bigcup T\)
with \(\bigcup T=\{x\}\) have \(y=x\) by auto \}
then have \((\forall y \in \bigcup T . B=\operatorname{Closure}(\{y\}, T) \longrightarrow y=x)\) by auto
moreover note \(\langle x \in \bigcup T\rangle\)
ultimately have \((\exists x \in \bigcup T . B=\operatorname{Closure}(\{x\}, T) \wedge(\forall y \in \bigcup T . B=C l o s u r e(\{y\}\), T）\(\longrightarrow \mathrm{y}=\mathrm{x})\) ）
by auto
\}
then have T \｛is sober\} unfolding IsSober_def by auto
\}
ultimately have \(\mathrm{T}\{\mathrm{i}\) s sober\} by blast
\}
then show A \｛is in the spectrum of \(\}\) IsSober unfolding Spec＿def by auto qed
theorem（in topology0）anti＿sober：
shows（ \(\mathrm{T}\{\mathrm{is}\) anti－\}IsSober) \(\longleftrightarrow \mathrm{T}=\{0, \bigcup \mathrm{~T}\}\)
proof
assume \(T=\{0, \bigcup T\}\)
\｛
fix A assume \(A \in \operatorname{Pow}(\bigcup T)(T\{r e s t r i c t e d ~ t o\} A)\{i s ~ s o b e r\}\)
\｛
assume \(\mathrm{A}=0\)
then have \(A \lesssim 1\) using empty＿lepollI by auto
then have \(A\{i s\) in the spectrum of \(\}\) IsSober using sober＿spectrum
by auto
\}
moreover
\｛
assume \(A \neq 0\)
have \(\bigcup T \in\{0, \bigcup T\} 0 \in\{0, \bigcup T\}\) by auto
with \(\langle T=\{0, \bigcup T\}\) 〉 have \((\bigcup T) \in T \quad 0 \in T\) by auto
with \(\langle A \in \operatorname{Pow}(\bigcup T)\) ）have \(\{0, A\} \subseteq(T\{r e s t r i c t e d\) to\}A) unfolding RestrictedTo_def
by auto
moreover
have \(\forall B \in\{0, \bigcup T\} . B=0 \vee B=\bigcup T\) by auto
with \(\langle T=\{0, \bigcup T\}\) have \(\forall B \in T . B=0 \vee B=\bigcup T\) by auto
with \(\langle A \in \operatorname{Pow}(\bigcup T)\rangle\) have \(T\{r e s t r i c t e d ~ t o\} A \subseteq\{0, A\}\) unfolding RestrictedTo＿def
by auto
ultimately have top_def:T\{restricted to\}A=\{0,A\} by auto moreover
have A\{is closed in\}\{0,A\} unfolding IsClosed_def by auto
moreover
have \(\{0, \mathrm{~A}\}\) \{is hyperconnected\} using Indiscrete_HConn by auto
moreover
from \(\langle A \in \operatorname{Pow}(\bigcup T)\rangle\) have (T\{restricted to\}A)\{restricted to\}A=T\{restricted
to\}A using subspace_of_subspace[of AAT]
by auto
moreover
note \(\langle A \neq 0\rangle\langle A \in \operatorname{Pow}(\cup T)\rangle\)
ultimately have \(A \in \operatorname{Pow}(\bigcup\) (T\{restricted to\}A))-\{0\}A\{is closed in\} (T\{restricted to\}A) ((T\{restricted to\}A) \{restricted to\}A) \{is hyperconnected\}
by auto
with «(T\{restricted to\}A)\{is sober\}〉 have \(\exists \mathrm{x} \in \bigcup\) (\(T\) \{restricted to\}A). \(A=C l o s u r e(\{x\}, T\{r e s t r i c t e d ~ t o\} A) \wedge(\forall y \in \bigcup(T\{r e s t r i c t e d ~ t o\} A) . A=C l o s u r e(\{y\}, T\{r e s t r i c t e d\) to\}A) \(\longrightarrow y=x\))
unfolding IsSober_def by auto
with top_def have \(\exists x \in A\). \(A=C l o s u r e(\{x\},\{0, A\}) \wedge(\forall y \in A . A=C l o s u r e(\{y\},\{0, A\})\)
\(\longrightarrow \mathrm{y}=\mathrm{x}\)) by auto
then obtain \(x\) where \(x \in A A=C l o s u r e(\{x\},\{0, A\})\) and \(r e g: \forall y \in A\). \(A=C l o s u r e(\{y\},\{0, A\})\)
\(\longrightarrow y=x\) by auto
\{
fix \(y\) assume \(y \in A\)
from \(\langle\mathrm{A} \neq 0\rangle\) have top:\{0,A\}\{is a topology\} using indiscrete_ptopology[of
A] indiscrete_partition[of A] Ptopology_is_a_topology(1) [of \{A\}A]
by auto
with \(\langle\mathrm{y} \in \mathrm{A}\rangle\) have Closure (\{y\},\{0,A\})\{is closed in\}\{0,A\} using topology0.cl_is_closed topology0_def by auto
moreover
from \(\langle y \in A\rangle\) top have \(y \in C l o s u r e(\{y\},\{0, A\})\) using topology0.cl_contains_set topology0_def by auto
ultimately have \(A-C l o s u r e(\{y\},\{0, A\}) \in\{0, A\} C l o s u r e(\{y\},\{0, A\}) \cap A \neq 0\)
unfolding IsClosed_def
by auto
then have \(A-C l o s u r e(\{y\},\{0, A\})=A \vee A-C l o s u r e(\{y\},\{0, A\})=0\)
by auto
moreover
from \(\langle y \in A\rangle\langle y \in \operatorname{Closure}(\{y\},\{0, A\})\rangle\) have \(y \in A y \notin A-C l o s u r e(\{y\},\{0, A\})\)
by auto
ultimately have \(A-C l o s u r e(\{y\},\{0, A\})=0\) by (cases \(A-C l o s u r e(\{y\},\{0, A\})=A\), simp, auto)
moreover
from \(\langle y \in A\rangle\) top have Closure \((\{y\},\{0, A\}) \subseteq A\) using topology0_def topology0.Top_3_L11(1) by blast
then have \(A-(A-C l o s u r e(\{y\},\{0, A\}))=C l o s u r e(\{y\},\{0, A\})\) by auto
ultimately have \(A=C l o s u r e(\{y\},\{0, A\})\) by auto
\}
with reg \(\langle x \in A\rangle\) have \(A=\{x\}\) by blast
then have \(A \approx 1\) using singleton_eqpoll_1 by auto
then have \(A \lesssim 1\) using eqpoll_imp_lepoll by auto
then have A\{is in the spectrum of\}IsSober using sober_spectrum
by auto
\}
ultimately have A\{is in the spectrum of\}IsSober by auto
\}
then show T is anti-\}IsSober using antiProperty_def by auto
next
assume T\{is anti-\}IsSober
\{
fix A
assume \(A \in T A \neq 0 A \neq \bigcup T\)
then obtain \(x\) y where \(x \in A y \in \bigcup T-A x \neq y b y\) blast
then have \(\{x\}=\{x, y\} \cap A\) by auto
with \(\langle A \in T\rangle\) have \(\{x\} \in T\{r e s t r i c t e d ~ t o\}\{x, y\}\) unfolding RestrictedTo_def
by auto
\{
assume \(\{y\} \in T\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}\)
from \(\langle y \in \bigcup T-A\rangle\langle x \in A\rangle\langle A \in T\rangle\) have \(\bigcup\) (\(T\{\) restricted to \(\}\{x, y\})=\{x, y\}\) un-
folding RestrictedTo_def
by auto
with \(\langle\mathrm{x} \neq \mathrm{y}\rangle\langle\{\mathrm{y}\} \in \mathrm{T}\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}\rangle\langle\{\mathrm{x}\} \in \mathrm{T}\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}\rangle\)
have (\(T\left\{\right.\) restricted to\} \(\{x, y\}\)) \(\left\{\right.\) is \(\left.T_{2}\right\}\)
unfolding isT2_def by auto
then have (\(T\{r e s t r i c t e d ~ t o\}\{x, y\}\)) \{is sober\} using topology0.T2_imp_anti_HConn[of \(\mathrm{T}\{\) restricted to\} \(\{\mathrm{x}, \mathrm{y}\}\)]

Top_1_L4 topology0_def topology0.anti_HConn_iff_T1_sober[of T\{restricted
to\}\{x,y\}] by auto
\}
moreover
\{
assume \(\{y\} \notin T\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}\)
moreover
from \(\langle y \in \bigcup T-A\rangle\langle x \in A\rangle\langle A \in T\rangle\) have \(T\{\) restricted \(\operatorname{to}\}\{x, y\} \subseteq \operatorname{Pow}(\{x, y\})\) un-
folding RestrictedTo_def by auto
then have \(T\{r e s t r i c t e d ~ t o\}\{x, y\} \subseteq\{0,\{x\},\{y\},\{x, y\}\}\) by blast
moreover
note \(\langle\{x\} \in T\{\) restricted to\}\{x,y\} empty_open[OF Top_1_L4[of \(\{x, y\}]\)]
moreover
from \(\langle y \in \bigcup T-A\rangle\langle x \in A\rangle\langle A \in T\rangle\) have tot: \(\bigcup\) (\(T\{\) restricted to \(\}\{x, y\}\)) \(=\{x, y\}\)
unfolding RestrictedTo_def
by auto
from Top_1_L4[of \(\{x, y\}]\) have \(\bigcup(T\{\) restricted to \(\}\{x, y\}) \in T\{\) restricted to\}\{x,y\} unfolding IsATopology_def
by auto
with tot have \(\{x, y\} \in T\{\) restricted to \(\}\{x, y\}\) by auto
ultimately have top_d_def:T\{restricted to\} \(\{x, y\}=\{0,\{x\},\{x, y\}\}\) by
auto
\{
fix \(B\) assume \(B \in \operatorname{Pow}(\{x, y\})-\{0\} B\{i s\) closed \(\operatorname{in}\}(T\{\) restricted \(t o\}\{x, y\}\))
with top_d_def have (\(\bigcup\) (T\{restricted to\}\{x,y\})) \(-B \in\{0,\{x\},\{x, y\}\}\)
unfolding IsClosed_def by simp
moreover have \(B \in\{\{x\},\{y\},\{x, y\}\}\) using \(\langle B \in \operatorname{Pow}(\{x, y\})-\{0\}\rangle\) by blast
moreover note tot
ultimately have \(\{x, y\}-B \in\{0,\{x\},\{x, y\}\}\) by auto
have \(x i n: x \in C l o s u r e(\{x\}, T\{r e s t r i c t e d ~ t o\}\{x, y\})\) using topology0.cl_contains_set[of T\{restricted to\}\{x,y\}\{x\}]

Top_1_L4[of \{x,y\}] unfolding topology0_def[of (T \{restricted
to\} \(\{x, y\})]\) using tot by auto
\{
assume \(\{x\}\{i s\) closed in\}(T\{restricted to\}\{x,y\})
then have \(\{x, y\}-\{x\} \in(T\{r e s t r i c t e d ~ t o\}\{x, y\})\) unfolding IsClosed_def
using tot
by auto
moreover
from \(\langle x \neq y\) 〉 have \(\{x, y\}-\{x\}=\{y\}\) by auto
ultimately have \(\{y\} \in(T\{r e s t r i c t e d ~ t o\}\{x, y\})\) by auto
then have False using \(\langle\{y\} \notin(T\{r e s t r i c t e d ~ t o\}\{x, y\})\rangle\) by auto
\}
then have \(\neg(\{x\}\{i s ~ c l o s e d ~ i n\}(T\{r e s t r i c t e d ~ t o\}\{x, y\}))\) by auto
moreover
from tot have (Closure (\{x\},T\{restricted to\}\{x,y\}))\{is closed in\} (T\{restricted to\}\{x,y\})
using topology0.cl_is_closed unfolding topology0_def using Top_1_L4[of
\(\{x, y\}]\)
tot by auto
ultimately have \(\neg\) (Closure \((\{x\}, T\{\) restricted \(\operatorname{to}\}\{x, y\})=\{x\})\) by
auto
moreover note xin topology0.Top_3_L11(1) [of T\{restricted to\}\{x,y\}\{x\}]
tot
ultimately have \(c l_{-} x: \operatorname{Closure}(\{x\}, T\{r e s t r i c t e d ~ t o\}\{x, y\})=\{x, y\}\)
unfolding topology0_def
using Top_1_L4[of \(\{x, y\}]\) by auto

using tot
top_d_def \(\langle x \neq y\rangle\) by auto
then have cl_y:Closure (\{y\},T\{restricted to\}\{x,y\})=\{y\} using topology0.Top_3_L8[of \(T\{\) restricted to \(\{x, y\}]\)
unfolding topology0_def using Top_1_L4[of \(\{x, y\}]\) tot by auto
\{
assume \(\{x, y\}-B=0\)
with \(\langle B \in \operatorname{Pow}(\{x, y\})-\{0\}\) 〉 have \(B:\{x, y\}=B\) by auto
\{
fix m
assume dis:m \(\in\{x, y\}\) and B_def:B=Closure(\{m\},T\{restricted
to\} \(\{x, y\}\))
```

                        {
                        assume m=y
                            with B_def have B=Closure({y},T{restricted to}{x,y}) by
    auto
with cl_y have B={y} by auto
with B have {x,y}={y} by auto
moreover have }x\in{x,y} by aut
ultimately
have }x\in{y} by aut
with \langlex\not=y\rangle have False by auto
}
with dis have m=x by auto
}
then have ( }\forall\textrm{m}\in{\textrm{x},\textrm{y}}.\textrm{B}=\textrm{Closure}({m},T{restricted to}{x,y})\longrightarrowm=
) by auto
moreover
have B=Closure({x},T{restricted to}{x,y}) using cl_x B by auto
ultimately have }\exists\textrm{t}\in{\textrm{x},\textrm{y}}.\textrm{B}=\textrm{Closure({t},T{restricted to}{x,y})
\wedge(\forallm\in{x,y}. B=Closure({m},T{restricted to}{x,y})\longrightarrowm=t )
by auto
}
moreover
{
assume {x,y}-B\not=0
with {{x,y}-B\in{0,{x},{x,y}}> have or:{x,y}-B={x}\vee{x,y}-B={x,y}
by auto
{
assume {x,y}-B={x}
then have }x\in{x,y}-B by aut
with \langleB\in{{x},{y},{x,y}}\rangle\langlex\not=y\rangle have B:B={y} by blast
{
fix m
assume dis:m\in{x,y} and B_def:B=Closure({m},T{restricted
to}{x,y})
{
assume m=x
with B_def have B=Closure({x},T{restricted to}{x,y})
by auto
with cl_x have }B={x,y} by aut
with B have {x,y}={y} by auto
moreover have }x\in{x,y} by aut
ultimately
have x\in{y} by auto
with {x\not=y\rangle have False by auto
}
with dis have m=y by auto
}
moreover
have B=Closure({y},T{restricted to}{x,y}) using cl_y B by

```
auto
ultimately have \(\exists t \in\{x, y\}\) ．\(B=C l o s u r e(\{t\}, T\{r e s t r i c t e d ~ t o\}\{x, y\})\)
\(\wedge(\forall \mathrm{m} \in\{\mathrm{x}, \mathrm{y}\} . \mathrm{B}=\mathrm{Closure}(\{\mathrm{m}\}, \mathrm{T}\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}) \longrightarrow \mathrm{m}=\mathrm{t})\)
by auto
\}
moreover
\｛
assume \(\{x, y\}-B \neq\{x\}\)
with or have \(\{x, y\}-B=\{x, y\}\) by auto
then have \(x \in\{x, y\}-B y \in\{x, y\}-B\) by auto
with \(\langle B \in\{\{x\},\{y\},\{x, y\}\}\rangle\langle x \neq y\rangle\) have False by auto
\}
ultimately have \(\exists t \in\{x, y\}\) ．\(B=C l o s u r e(\{t\}, T\{\) restricted \(t o\}\{x, y\})\)
\(\wedge(\forall \mathrm{m} \in\{\mathrm{x}, \mathrm{y}\} . \mathrm{B}=\) Closure \((\{\mathrm{m}\}, \mathrm{T}\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}) \longrightarrow \mathrm{m}=\mathrm{t})\)
by auto
\}
ultimately have \(\exists t \in\{x, y\}\) ．\(B=C l o s u r e(\{t\}, T\{r e s t r i c t e d ~ t o\}\{x, y\})\)
\(\wedge(\forall \mathrm{m} \in\{\mathrm{x}, \mathrm{y}\} . \mathrm{B}=\) Closure \((\{\mathrm{m}\}, \mathrm{T}\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}) \longrightarrow \mathrm{m}=\mathrm{t})\)
by auto
\}
then have（ \(\mathrm{T}\{\) restricted to\(\}\{\mathrm{x}, \mathrm{y}\}\) ）\｛is sober\} unfolding IsSober_def using tot by auto
\}
ultimately have（T\｛restricted to\}\{x,y\})\{is sober\} by auto
with 〈T\｛is anti－\}IsSober〉 have \(\{x, y\}\{i s\) in the spectrum of \(\}\) IsSober
unfolding antiProperty＿def
using \(\langle x \in A\rangle\langle A \in T\rangle\langle y \in \bigcup T-A\rangle\) by auto
then have \(\{x, y\} \lesssim 1\) using sober＿spectrum by auto
moreover
have \(x \in\{x, y\}\) by auto
ultimately have \(\{x, y\}=\{x\}\) using lepoll＿1＿is＿sing［of \(\{x, y\} x\) ］by auto
moreover have \(y \in\{x, y\}\) by auto
ultimately have \(y \in\{x\}\) by auto
then have False using \(\langle x \neq y\) 〉 by auto
\}
then have \(T \subseteq\{0, \bigcup T\}\) by auto
with empty＿open［OF topSpaceAssum］topSpaceAssum show \(T=\{0, \bigcup \mathrm{~T}\}\) un－
folding IsATopology＿def
by auto
qed
end

\section*{62 Topology 8}
theory Topology＿ZF＿8 imports Topology＿ZF＿6 EquivClass1
begin

This theory deals with quotient topologies.

\subsection*{62.1 Definition of quotient topology}

Given a surjective function \(f: X \rightarrow Y\) and a topology \(\tau\) in \(X\), it is posible to consider a special topology in \(Y . f\) is called quotient function.
```

definition(in topology0)
QuotientTop ({quotient topology in}_{by}_ 80)
where f\in\operatorname{surj}(\cupT,Y)\Longrightarrow{quotient topology in}Y{by}f\equiv
{U\in\operatorname{Pow(Y). f-U\inT}}

```
abbreviation QuotientTopTop (\{quotient topology in\}_\{by\}_\{from\}_)
 where QuotientTopTop(Y,f,T) \(\equiv\) topology0.QuotientTop(T,Y,f)

The quotient topology is indeed a topology.
```

theorem(in topology0) quotientTop_is_top:
assumes f\insurj(UT,Y)
shows ({quotient topology in} Y {by} f) {is a topology}
proof-
have ({quotient topology in} Y {by} f)={U \in Pow(Y) . f - U \in T} us-
ing QuotientTop_def assms
by auto moreover
{
fix M x B assume M:M }\subseteq{U\in\operatorname{Pow}(Y).f - U \in T
then have }\bigcupM\subseteqY by blast moreover
have A1:f - (\M)=(\y\in(\bigcupM). f-{y}) using vimage_eq_UN by blast
{
fix A assume A\inM
with M have A\inPow(Y) f - A\inT by auto
have f - A=(\y\inA. f-{y}) using vimage_eq_UN by blast
}
then have ( \A\inM. f- A)=(\bigcupA\inM. (\bigcupy\inA. f-{y})) by auto
then have ( \ A\inM. f- A)=(\bigcupy\in\bigcupM. f-{y}) by auto
with A1 have A2:f - (\bigcupM)=\bigcup{f- A. A\inM} by auto
{
fix A assume A\inM
with M have f - A\inT by auto
}
then have }\forallA\inM. f - A\inT by aut
then have {f- A. A\inM}\subseteqT by auto
then have ( }\cup{f-A.A\inM})\inT using topSpaceAssum unfolding IsATopology_def
by auto
with A2 have (f - (\M))\inT by auto
ultimately have }\bigcupM\in{U\in\operatorname{Pow}(Y). f-U\inT} by aut
}
moreover
{
fix U V assume U\in{U\inPow(Y). f-U\inT}V\in{U\inPow(Y). f-U\inT}

```
```

    then have U\inPow(Y)V\inPow(Y)f-U\inTf-V\inT by auto
    then have (f-U)\cap(f-V)\inT using topSpaceAssum unfolding IsATopology_def
    by auto
then have f- (U\capV)\inT using invim_inter_inter_invim assms unfold-
ing surj_def
by auto
with \langleU\inPow(Y)<br>V\inPow(Y)\ have U\capV\in{U\inPow(Y). f-U\inT} by auto
}
ultimately show thesis using IsATopology_def by auto
qed

```

The quotient function is continuous.
```

lemma (in topology0) quotient_func_cont:
assumes f\in\operatorname{surj(UT,Y)}
shows IsContinuous(T,({quotient topology in} Y {by} f),f)
unfolding IsContinuous_def using QuotientTop_def assms by auto

```

One of the important properties of this topology, is that a function from the quotient space is continuous iff the composition with the quotient function is continuous.
```

theorem(in two_top_spaces0) cont_quotient_top:
assumes h\in\operatorname{surj}(\bigcup\mp@subsup{\tau}{1}{},\textrm{Y})\textrm{g}:\textrm{Y}->\bigcup\mp@subsup{\tau}{2}{\prime}\mathrm{ IsContinuous( }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{\prime,g O h)}
shows IsContinuous(({quotient topology in} Y {by} h {from} }\mp@subsup{\tau}{1}{}),\mp@subsup{\tau}{2}{},\textrm{g}
proof-
{
fix U assume U\in\tau
with assms(3) have (g O h)-(U)\in\tau
then have h-(g-(U))\in\tau
then have g-(U)\in({quotient topology in} Y {by} h {from} }\mp@subsup{\tau}{1}{}\mathrm{ ) using
topology0.QuotientTop_def
tau1_is_top assms(1) using func1_1_L3 assms(2) unfolding topology0_def
by auto
}
then show thesis unfolding IsContinuous_def by auto
qed

```
The underlying set of the quotient topology is \(Y\).
lemma(in topology0) total_quo_func:
 assumes \(f \in \operatorname{surj}(\cup T, Y)\)
 shows (\(\cup(\{q u o t i e n t ~ t o p o l o g y ~ i n\} Y\{b y\} f))=Y\)
proof-
 from assms have \(f-Y=\bigcup T\) using func1_1_L4 unfolding surj_def by auto
moreover
 have \(\bigcup T \in T\) using topSpaceAssum unfolding IsATopology_def by auto ul-
timately

assms by auto
 then show thesis using QuotientTop_def assms by auto
qed

\subsection*{62.2 Quotient topologies from equivalence relations}

In this section we will show that the quotient topologies come from an equivalence relation.

First, some lemmas for relations.
```

lemma quotient_proj_fun:
shows {\langleb,r{b}\rangle. b bA}:A->A//r unfolding Pi_def function_def domain_def
unfolding quotient_def by auto
lemma quotient_proj_surj:
shows {\langleb,r{b}\rangle. b\inA}\in\operatorname{surj}(A,A//r)
proof-
{
fix y assume y\inA//r
then obtain yy where A:yy\inA y=r{yy} unfolding quotient_def by auto
then have \langleyy,y\rangle\in{\langleb,r{b}\rangle. b\inA} by auto
then have {\langleb,r{b}\rangle. b\inA}yy=y using apply_equality[OF _ quotient_proj_fun]
by auto
with A(1) have \existsyy\inA. {\langleb,r{b}\rangle. b\inA}yy=y by auto
}
with quotient_proj_fun show thesis unfolding surj_def by auto
qed
lemma preim_equi_proj:
assumes U\subseteqA//r equiv(A,r)
shows {\langleb,r{b}\rangle. b\inA}-U=\U
proof
{
fix y assume y\in\bigcupU
then obtain V where V:y\inVV\inU by auto
with }\langleU\subseteq(A//r)\rangle have y\inA using EquivClass_1_L1 assms(2) by auto more
over
from \langleU\subseteq(A//r)\rangle V have r{y}=V using EquivClass_1_L2 assms(2) by auto
moreover note V(2) ultimately have }\textrm{y}\in{\textrm{x}\in\textrm{A}.\textrm{r}{\textrm{r}
then have }\textrm{y}\in{{\textrm{b},\textrm{r}{\textrm{b}}\rangle.\textrm{b}\inA}-U by aut
}
then show }\U\{{\langleb,r{b}\rangle. b\inA}-U by blast moreover
{
fix y assume y\in{\langleb,r{b}\rangle. b\inA}-U
then have yy:y\in{x\inA. r{x}\inU} by auto
then have r{y}\inU by auto moreover
from yy have y\inr{y} using assms equiv_class_self by auto ultimately
have y\in\bigcupU by auto
}
then show {\langleb,r{b}\rangle. b\inA}-U\subseteq\bigcupU by blast
qed

```

Now we define what a quotient topology from an equivalence relation is:
```

definition(in topology0)
EquivQuo ({quotient by}_ 70)
where equiv (UT,r)\Longrightarrow({quotient by}r)\equiv{quotient topology in}(UT)//r{by}{\langleb,r{b}\rangle.
b\in\T}
abbreviation
EquivQuoTop (_{quotient by}_ 60)
where EquivQuoTop(T,r) \equivtopology0.EquivQuo(T,r)

```
First, another description of the topology (more intuitive):
```

theorem (in topology0) quotient_equiv_rel:
assumes equiv ( $\cup \mathrm{T}, \mathrm{r}$ )
shows (\{quotient by $\} r$ ) $=\{U \in \operatorname{Pow}((\cup T) / / r) . \bigcup U \in T\}$
proof-
have (\{quotient topology in\} $(\bigcup T) / / r\{b y\}\{\langle b, r\{b\}\rangle . b \in \bigcup T\})=\{U \in \operatorname{Pow}((\bigcup T) / / r)$.
$\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-U \in T\}$
using QuotientTop_def quotient_proj_surj by auto moreover
have $\{U \in \operatorname{Pow}((\bigcup T) / / r) .\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-U \in T\}=\{U \in \operatorname{Pow}((\bigcup T) / / r) . \bigcup U \in T\}$
proof
\{
fix $U$ assume $U \in\{U \in \operatorname{Pow}((\bigcup T) / / r)$. $\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-U \in T\}$
then have $U \in\{U \in \operatorname{Pow}((\cup T) / / r)$. $\bigcup U \in T\}$ using preim_equi_proj assms
by auto
\}
then show $\{U \in \operatorname{Pow}((\bigcup T) / / r) .\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-U \in T\} \subseteq\{U \in \operatorname{Pow}((\bigcup T) / / r)$.
$\bigcup U \in T\}$ by auto
\{
fix $U$ assume $U \in\{U \in \operatorname{Pow}((\bigcup T) / / r) . ~ \bigcup U \in T\}$
then have $U \in\{U \in \operatorname{Pow}((\bigcup T) / / r)$. $\{\langle b, r\{b\}\rangle$. $b \in \bigcup T\}-U \in T\}$ using preim_equi_proj
assms by auto
\}
then show $\{U \in \operatorname{Pow}((\bigcup T) / / r) . \bigcup U \in T\} \subseteq\{U \in \operatorname{Pow}((U T) / / r) .\{\langle b, r\{b\}\rangle$.
$\mathrm{b} \in \bigcup \mathrm{T}\}-\mathrm{U} \in \mathrm{T}\}$ by auto
qed
ultimately show thesis using EquivQuo_def assms by auto
qed

```

We apply previous results to this topology.
```

theorem(in topology0) total_quo_equi:
assumes equiv(UT,r)
shows U({quotient by}r)=(UT)//r
using total_quo_func quotient_proj_surj EquivQuo_def assms by auto
theorem(in topology0) equiv_quo_is_top:
assumes equiv(UT,r)
shows ({quotient by}r){is a topology}
using quotientTop_is_top quotient_proj_surj EquivQuo_def assms by auto

```

MAIN RESULT: All quotient topologies arise from an equivalence relation
given by the quotient function \(f: X \rightarrow Y\). This means that any quotient topology is homeomorphic to a topology given by an equivalence relation quotient.
theorem(in topology0) equiv_quotient_top:
assumes \(f \in \operatorname{surj}(\bigcup T, Y)\)
defines \(r \equiv\{\langle x, y\rangle \in \bigcup T \times \bigcup T\). \(f(x)=f(y)\}\)
defines \(g \equiv\{\langle y, f-\{y\}\rangle . y \in Y\}\)
shows equiv (\(\cup T, r\)) and IsAhomeomorphism((\{quotient topology in\}Y\{by\}f), (\{quotient
by\}r), g)
proof-
have ff:f: \(\bigcup T \rightarrow Y\) using assms(1) unfolding surj_def by auto
show B:equiv(UT,r) unfolding equiv_def refl_def sym_def trans_def
unfolding \(r_{-}\)def by auto
have \(\mathrm{gg}: \mathrm{g}: \mathrm{Y} \rightarrow((\bigcup \mathrm{T}) / / \mathrm{r})\)
proof\{
fix \(B\) assume \(B \in g\)
then obtain \(y\) where \(Y: y \in Y B=\langle y, f-\{y\}\rangle\) unfolding g_def by auto
then have \(f-\{y\} \subseteq \bigcup T\) using func1_1_L3 ff by blast
then have eq: \(f-\{y\}=\{x \in \bigcup T .\langle x, y\rangle \in f\}\) using vimage_iff by auto
from \(Y\) obtain \(A\) where \(A 1: A \in \bigcup T f A=y\) using assms(1) unfolding surj_def
by blast
with eq have \(A: A \in f-\{y\}\) using apply_Pair[0F ff] by auto
\{
fix \(t\) assume \(t \in f-\{y\}\)
with A have \(t \in \bigcup T A \in \bigcup T\langle t, y\rangle \in f\langle A, y\rangle \in f\) using eq by auto
then have \(f t=f A\) using apply_equality assms(1) unfolding surj_def
by auto
with \(\langle t \in \bigcup T\rangle\langle A \in \bigcup T\rangle\) have \(\langle A, t\rangle \in r\) using \(r_{\text {_ }}\) def by auto
then have \(t \in r\{A\}\) using image_iff by auto
\}
then have \(f-\{y\} \subseteq r\{A\}\) by auto moreover
\{
fix \(t\) assume \(t \in r\{A\}\)
then have \(\langle A, t\rangle \in r\) using image_iff by auto
then have un:t \(\in \bigcup T A \in \bigcup T\) and eq2:ft=fA unfolding r_def by auto
moreover
from un have \(\langle t, f t\rangle \in f\) using apply_Pair [OF ff] by auto
with eq2 A1 have \(\langle t, y\rangle \in f\) by auto
with un have \(t \in f-\{y\}\) using eq by auto
\}
then have \(r\{A\} \subseteq f-\{y\}\) by auto ultimately
have \(f-\{y\}=r\{A\}\) by auto
then have \(f-\{y\} \in(\bigcup T) / / r\) using A1(1) unfolding quotient_def
by auto
with \(Y\) have \(B \in Y \times(\bigcup T) / / r\) by auto
\}
then have \(\forall A \in g\). \(A \in Y \times(\bigcup T) / / r\) by auto
then have \(g \subseteq(Y \times(\bigcup T) / / r)\) by auto moreover
then show thesis unfolding Pi＿def function＿def domain＿def g＿def
by auto
qed
then have gg2：g：Y \(\rightarrow(\cup(\{q u o t i e n t ~ b y\} r))\) using total＿quo＿equi \(B\) by auto \｛

then have \(s \in \operatorname{Pow}(Y)\) and \(P: f-s \in T\) using QuotientTop＿def topSpaceAssum assms（1）
by auto
have \(f-s=(\bigcup y \in s . f-\{y\})\) using vimage＿eq＿UN by blast moreover
from \(\langle s \in \operatorname{Pow}(Y)\rangle\) have \(\forall y \in s .\langle y, f-\{y\}\rangle \in g\) unfolding g＿def by auto
then have \(\forall y \in s\) ．\(g y=f-\{y\}\) using apply＿equality gg by auto ultimately
have \(f-s=(\bigcup y \in s\) ．gy）by auto
with \(P\) have \((\cup y \in s\) ．gy）\(\in T\) by auto moreover
from \(\langle s \in \operatorname{Pow}(Y)\) 〉 have \(\forall y \in s\) ．\(g y \in(\cup T) / / r\) using apply＿type gg by auto
ultimately have \｛gy． \(\mathrm{y} \in \mathrm{s}\} \in(\{q u o t i e n t ~ b y\} r)\) using quotient＿equiv＿rel

\section*{B by auto}
with 〈s \(\in \operatorname{Pow}(Y)\) 〉 have \(g s \in(\{q u o t i e n t ~ b y\} r)\) using func＿imagedef gg by auto
\}
 by auto
have pr＿fun：\(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\}: \bigcup \mathrm{T} \rightarrow(\bigcup \mathrm{T}) / / \mathrm{r}\) using quotient＿proj＿fun by auto
\｛
fix \(b\) assume \(b: b \in \bigcup T\)
have bY：fb \(\in \mathrm{Y}\) using apply＿funtype ff b by auto
with b have com：（g 0 f）b＝g（fb）using comp＿fun＿apply ff by auto
from bY have \(\mathrm{pg}:\langle\mathrm{fb}, \mathrm{f}-(\{\mathrm{fb}\})\rangle \in \mathrm{g}\) unfolding g＿def by auto
then have \(g(f b)=f-(\{f b\})\) using apply＿equality gg by auto
with com have comeq：\((g) f) b=f-(\{f b\})\) by auto
from \(b\) have \(A: f\{b\}=\{f b\}\{b\} \subseteq \bigcup T\) using func＿imagedef ff by auto
from \(A(2)\) have \(b \in f\)－（f \(\{b\}\) ）using func1＿1＿L9 ff by blast
then have \(b \in f-(\{f b\})\) using \(A(1)\) by auto moreover
from pg have \(f-(\{f b\}) \in(\bigcup T) / / r\) using gg unfolding Pi＿def by auto
ultimately have \(r\{b\}=f-(\{f b\})\) using EquivClass＿1＿L2 B by auto
then have（ \(g \circ f\) ）\(b=r\{b\}\) using comeq by auto moreover
from \(b\) have \(\langle b, r\{b\}\rangle \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}\) by auto
with pr＿fun have \(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} b=r\{b\}\) using apply＿equality by

\section*{auto ultimately}
have（ \(g \circ f\) ）\(b=\{\langle b, r\{b\}\rangle . b \in \bigcup T\} b\) by auto
\}
then have reg：\(\forall \mathrm{b} \in \bigcup \mathrm{T}\) ．（ g 0 f\() \mathrm{b}=\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\} \mathrm{b}\) by auto moreover
have compp：g \(0 f \in \bigcup T \rightarrow(\bigcup T) / / r\) using comp＿fun ff gg by auto
have feq：\((\mathrm{g} 0 \mathrm{f})=\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle\) ． \(\mathrm{b} \in \bigcup \mathrm{U}\}\) using fun＿extension［OF compp pr＿fun］ reg by auto
then have IsContinuous（T，\｛quotient by\}r, (g 0 f ））using quotient＿func＿cont quotient＿proj＿surj

EquivQuo＿def topSpaceAssum B by auto moreover
```

    have (g O f):\T->\bigcup ({quotient by}r) using comp_fun ff gg2 by auto
    ultimately have gcont:IsContinuous({quotient topology in}Y{by}f,{quotient
    by}r,g)
using two_top_spaces0.cont_quotient_top assms(1) gg2 unfolding two_top_spaces0_def
using topSpaceAssum equiv_quo_is_top B by auto
{
fix x y assume T:x\inYy\inYgx=gy
then have f-{x}=f-{y} using apply_equality gg unfolding g_def by
auto
then have f(f-{x})=f(f-{y}) by auto
with T(1,2) have {x}={y} using surj_image_vimage assms(1) by auto
then have x=y by auto
}
with gg2 have g\ininj(Y,\bigcup({quotient by}r)) unfolding inj_def by auto
moreover
have g 0 f\insurj(UT, (UT)//r) using feq quotient_proj_surj by auto
then have g\insurj(Y,(UT)//r) using comp_mem_surjD1 ff gg by auto
then have g\insurj(Y,\bigcup(T{quotient by}r)) using total_quo_equi B by auto
ultimately have g\inbij(U({quotient topology in}Y{by}f), U({quotient
by}r)) unfolding bij_def using total_quo_func assms(1) by auto
with gcont gopen show IsAhomeomorphism(({quotient topology in}Y{by}f),({quotient
by}r),g)
using bij_cont_open_homeo by auto
qed
lemma product_equiv_rel_fun:
shows {\langle\langleb,c\rangle,\langler{b},r{c}\rangle\rangle. \langleb,c\rangle\in\bigcupT\times\bigcupT}:(\bigcupT\times\bigcupT)->((\bigcupT)//r\times(\bigcupT)//r)
proof-
have {\langleb,r{b}\rangle. b\in\T}\in\T->(\bigcupT)//r using quotient_proj_fun by auto
moreover
have }\forallA\in\bigcupT. \langleA,r{A}\rangle\in{\langleb,r{b}\rangle. b\in\T} by aut
ultimately have }\forallA\in\bigcupT. {\langleb,r{b}\rangle. b\in\bigcupT}A=r{A} using apply_equality
by auto
then have IN: {\langle\langleb, c\rangle, r {b}, r {c}\rangle. \b,c\rangle\in\bigcupT > \ T}= {\langle\langlex, y\rangle,
{\langleb,r {b}\rangle. b \in\bigcup\} x, {\langleb,r {b}\rangle. b \in\bigcupT} y\rangle. \x,y\rangle\in\bigcupT x
UT}
by force
then show thesis using prod_fun quotient_proj_fun by auto
qed

```
lemma(in topology0) prod_equiv_rel_surj:
 shows \(\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}: \operatorname{surj}(\bigcup(\operatorname{ProductTopology}(\mathrm{T}, \mathrm{T})),((\bigcup \mathrm{T}) / / r \times(\bigcup \mathrm{T}) / /\)
proof-
 have fun: \(\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}:(\bigcup \mathrm{T} \times \bigcup \mathrm{T}) \rightarrow((\bigcup \mathrm{T}) / / \mathrm{r} \times(\bigcup \mathrm{T}) / / \mathrm{r})\)
using
 product_equiv_rel_fun by auto moreover
 \{
 fix \(M\) assume \(M \in((\bigcup T) / / r \times(\bigcup T) / / r)\)
 then obtain M1 M2 where M:M=〈M1,M2 \(\mathrm{M} 1 \in(\bigcup T) / / r M 2 \in(\bigcup T) / / r\) by auto
then obtain m 1 m 2 where \(\mathrm{m}: \mathrm{m} 1 \in \bigcup \mathrm{Tm} 2 \in \bigcup \mathrm{TM} 1=\mathrm{r}\{\mathrm{m} 1\} \mathrm{M} 2=\mathrm{r}\{\mathrm{m} 2\}\) unfolding quotient_def
by auto
then have \(\mathrm{mm}:\langle\mathrm{m} 1, \mathrm{~m} 2\rangle \in(\bigcup \mathrm{T} \times \bigcup \mathrm{T})\) by auto
then have \(\langle\langle\mathrm{m} 1, \mathrm{~m} 2\rangle,\langle\mathrm{r}\{\mathrm{m} 1\}, \mathrm{r}\{\mathrm{m} 2\}\rangle\rangle \in\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\)
by auto
then have \(\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\langle\mathrm{m} 1, \mathrm{~m} 2\rangle=\langle\mathrm{r}\{\mathrm{m} 1\}, \mathrm{r}\{\mathrm{m} 2\}\rangle\) using apply_equality fun by auto
then have \(\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\langle\mathrm{m} 1, \mathrm{~m} 2\rangle=\mathrm{M}\) using \(\mathrm{M}(1)\) \(m(3,4)\) by auto
then have \(\exists R \in(\bigcup T \times \bigcup T) .\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\} R=M\) using mm by auto
\}
ultimately show thesis unfolding surj_def using Top_1_4_T1(3) topSpaceAssum by auto
qed
lemma(in topology0) product_quo_fun:
assumes equiv (\(\cup \mathrm{T}, \mathrm{r}\))
shows IsContinuous (ProductTopology (T, T) , ProductTopology (\{quotient by\}r, (\{quotient by\}r)), \(\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\})\)
proof-
have \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{T}\}: \bigcup \mathrm{T} \rightarrow(\bigcup \mathrm{T}) / / \mathrm{r}\) using quotient_proj_fun by auto moreover
have \(\forall A \in \bigcup T .\langle A, r\{A\}\rangle \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}\) by auto ultimately
have \(\forall A \in \bigcup T .\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A=r\{A\}\) using apply_equality by auto
then have \(I N:\{\langle\langle b, c\rangle, r\{b\}, r\{c\}\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}=\{\langle\langle x, y\rangle\), \(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} x,\{\langle b, r\{b\}\rangle . b \in \bigcup T\} y\rangle .\langle x, y\rangle \in \bigcup T \times\) UT\}
by force
have cont:IsContinuous(\(T,\{q u o t i e n t ~ b y\} r,\{\langle b, r\{b\}\rangle . b \in \bigcup T\}\)) using quotient_func_cont quotient_proj_surj

EquivQuo_def assms by auto
have tot: \(\bigcup\) (\(T\) \{quotient by\}r) \(=(\bigcup T) / / r\) and top: (\{quotient by\}r) \{is a topology\} using total_quo_equi equiv_quo_is_top assms by auto
then have fun: \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\}: \bigcup \mathrm{T} \rightarrow \bigcup\) (\{quotient by\}r) using quotient_proj_fun by auto
then have two:two_top_spaces0(T,\{quotient by\}r, \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{U}\}\)) unfolding two_top_spaces0_def using topSpaceAssum top by auto
show thesis using two_top_spaces0.product_cont_functions two fun fun cont cont top topSpaceAssum IN by auto
qed
The product of quotient topologies is a quotient topology given that the quotient map is open. This isn't true in general.
theorem(in topology0) prod_quotient:
assumes equiv \((\bigcup T, r) \forall A \in T .\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A \in(\{q u o t i e n t ~ b y\} r)\)
shows (ProductTopology (\{quotient by\}r,\{quotient by\}r)) = (\{quotient
topology \(\operatorname{in}\}(((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}(\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\})\{f r o m\}\) (ProductT

\section*{proof} \{
fix A assume A:A ProductTopology(\{quotient by\}r, \{quotient by\}r)
from assms have IsContinuous (ProductTopology (T,T), ProductTopology (\{quotient
by\}r, (\{quotient by\}r)), \(\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\)) using product_quo_fun by auto
with A have \(\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}-A \in \operatorname{ProductTopology}(T, T)\)
unfolding IsContinuous_def by auto moreover
from A have \(A \subseteq \bigcup\) ProductTopology(T\{quotient by\}r, T\{quotient by\}r)
by auto
then have \(A \subseteq \bigcup\) (T\{quotient by\}r) \(\times \bigcup\) (T\{quotient by\}r) using Top_1_4_T1(3)
equiv_quo_is_top equiv_quo_is_top
using assms by auto
then have \(A \in \operatorname{Pow}(((\bigcup T) / / r) \times((\bigcup T) / / r))\) using total_quo_equi assms
by auto
ultimately have \(A \in(\{q u o t i e n t ~ t o p o l o g y ~ i n\}(((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle\)
\(\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\{\) from\} (ProductTopology (T, T)))
using topology0.QuotientTop_def Top_1_4_T1(1) topSpaceAssum prod_equiv_rel_surj
assms(1) unfolding topology0_def by auto
\}
then show ProductTopology(T\{quotient by\}r, \(T\{q u o t i e n t ~ b y\} r) \subseteq(\{q u o t i e n t ~\)
topology in\} \((((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}\{\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\{f r o m\}\) (ProductTop
by auto

\section*{\{}
fix A assume \(A \in(\{q u o t i e n t ~ t o p o l o g y ~ i n\}(((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle\). \(\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\{\) from\} (ProductTopology (T, T)))
then have \(A: A \subseteq((\bigcup T) / / r) \times((\bigcup T) / / r)\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\)-A \(\in\) ProductTopol using topology0.QuotientTop_def Top_1_4_T1(1) topSpaceAssum prod_equiv_rel_surj
assms(1) unfolding topology0_def by auto
\{
fix CC assume \(C C \in A\)
with \(A(1)\) obtain \(C 1 C 2\) where \(C C: C C=\langle C 1, C 2\rangle C 1 \in((\cup T) / / r) C 2 \in((\cup T) / / r)\)
by auto
then obtain \(c 1 \mathrm{c} 2\) where \(\mathrm{CC} 1: c 1 \in \bigcup \mathrm{Tc} 2 \in \bigcup \mathrm{~T}\) and \(\mathrm{CC} 2: \mathrm{C} 1=\mathrm{r}\{\mathrm{c} 1\} \mathrm{C} 2=\mathrm{r}\{\mathrm{c} 2\}\)
unfolding quotient_def
by auto
then have \(\langle c 1, c 2\rangle \in \bigcup T \times \bigcup T\) by auto
then have \(\langle\langle c 1, c 2\rangle,\langle r\{c 1\}, r\{c 2\}\rangle\rangle \in\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\)
by auto
with CC 2 CC have \(\langle\langle\mathrm{c} 1, \mathrm{c} 2\rangle, \mathrm{CC}\rangle \in\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\)
by auto
with \(\langle C C \in A\rangle\) have \(\langle c 1, c 2\rangle \in\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}-A\)
using vimage_iff by auto
with \(A(2)\) have \(\exists V \mathrm{~W} . \mathrm{V} \in \mathrm{T} \wedge \mathrm{W} \in \mathrm{T} \wedge \mathrm{V} \times \mathrm{W} \subseteq\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle r\{\mathrm{~b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle\).
\(\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}-\mathrm{A} \wedge\langle\mathrm{c} 1, \mathrm{c} 2\rangle \in \mathrm{V} \times \mathrm{W}\)
using prod_top_point_neighb topSpaceAssum by blast
then obtain \(V W\) where \(V W: V \in T W \in T V \times W \subseteq\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}-A c 1 \in V c 2 \in\) by auto
with assms (2) have \(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} V \in(T\{q u o t i e n t ~ b y\} r)\{\langle b, r\{b\}\rangle\).
\(b \in \bigcup T\} W \in(T\{q u o t i e n t ~ b y\} r)\) by auto
then have \(P:\{\langle b, r\{b\}\rangle . b \in \bigcup T\} V \times\{\langle b, r\{b\}\rangle . b \in \bigcup T\} W \in\) ProductTopology (T\{quotient
by\}r,T\{quotient by\}r) using prod_open_open_prod equiv_quo_is_top assms(1) by auto
\{
fix \(S\) assume \(S \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\} V \times\{\langle b, r\{b\}\rangle . b \in \bigcup T\} W\)
then obtain \(s 1 \mathrm{~s} 2\) where \(\mathrm{S}: \mathrm{S}=\langle\mathrm{s} 1, \mathrm{~s} 2\rangle \mathrm{s} 1 \in\{\langle\mathrm{~b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{U}\} \mathrm{V} 2 \in\{\langle\mathrm{~b}, \mathrm{r}\{\mathrm{b}\}\rangle\).
\(\mathrm{b} \in \bigcup \mathrm{U}\} \mathrm{W}\) by blast
then obtain \(t 1\) t2 where \(T:\langle t 1, s 1\rangle \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}\langle t 2, s 2\rangle \in\{\langle b, r\{b\}\rangle\).
\(b \in \bigcup T\} t 1 \in V t 2 \in W\) using image_iff by auto
then have \(\langle\mathrm{t} 1, \mathrm{t} 2\rangle \in \mathrm{V} \times \mathrm{W}\) by auto
with \(\operatorname{VW}(3)\) have \(\langle\mathrm{t} 1, \mathrm{t} 2\rangle \in\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}-\mathrm{A}\)
by auto
then have \(\exists \mathrm{SS} \in \mathrm{A} .\langle\langle\mathrm{t} 1, \mathrm{t} 2\rangle, \mathrm{SS}\rangle \in\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\)
using vimage_iff by auto
then obtain SS where \(\mathrm{SS} \in \mathrm{A}\langle\langle\mathrm{t} 1, \mathrm{t} 2\rangle, \mathrm{SS}\rangle \in\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\)
by auto moreover
from \(T V W(1,2)\) have \(\langle\mathrm{t} 1, \mathrm{t} 2\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\langle\mathrm{s} 1, \mathrm{~s} 2\rangle=\langle\mathrm{r}\{\mathrm{t} 1\}, \mathrm{r}\{\mathrm{t} 2\}\rangle\) by auto
with \(S(1)\) have \(\langle\langle t 1, t 2\rangle, S\rangle \in\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\)
by auto
ultimately have \(S \in A\) using product_equiv_rel_fun unfolding Pi_def
function_def
by auto
\}
then have sub: \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{U}\} \mathrm{V} \times\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\} W \subseteq A\) by blast
have \(\langle\mathrm{c} 1, \mathrm{C} 1\rangle \in\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{T}\}\langle\mathrm{c} 2, \mathrm{C} 2\rangle \in\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\}\) using CC2
CC1
by auto
with \(\langle c 1 \in V\rangle\langle c 2 \in W\rangle\) have \(C 1 \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\} V C 2 \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\} W\)
using image_iff by auto
then have \(C C \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\} V \times\{\langle b, r\{b\}\rangle . b \in \bigcup T\} W\) using \(C C\) by auto
with sub \(P\) have \(\exists 00 \in\) ProductTopology(T\{quotient by\}r,T\{quotient by\}r). CC \(\in 00 \wedge 00 \subseteq A\)
using exI[where \(x=\{\langle b, r\{b\}\rangle . b \in \bigcup T\} V \times\{\langle b, r\{b\}\rangle . b \in \bigcup T\} W\) and \(P=\lambda 00\).
\(00 \in\) ProductTopology (T\{quotient by\}r, T\{quotient by\}r) \(\wedge C C \in O 0 \wedge 00 \subseteq A]\)
by auto
\}
then have \(\forall C \in A . \exists 00 \in\) ProductTopology(T\{quotient by\}r,T\{quotient by\}r). \(\mathrm{C} \in 00 \wedge 00 \subseteq \mathrm{~A}\) by auto
then have \(A \in\) ProductTopology (T\{quotient by\}r,T\{quotient by\}r) using topology0.open_neigh_open
unfolding topology0_def using Top_1_4_T1 equiv_quo_is_top assms
by auto
\}
 \(\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}\{\) from\} (ProductTopology (\(\mathrm{T}, \mathrm{T}\)))) \(\subseteq\) ProductTopology (\(\mathrm{T}\{\) quotient by\}r,T\{quotient by\}r)
by auto
qed
end

\section*{63 Topology 9}
theory Topology_ZF_9
imports Topology_ZF_2 Group_ZF_2 Topology_ZF_7 Topology_ZF_8
begin

\subsection*{63.1 Group of homeomorphisms}

This theory file deals with the fact the set homeomorphisms of a topological space into itself forms a group.

First, we define the set of homeomorphisms.
definition
\(\operatorname{HomeoG}(T) \equiv\{f: \bigcup T \rightarrow \bigcup T\). IsAhomeomorphism(T, \(T, f)\}\)
The homeomorphisms are closed by composition.
lemma (in topology0) homeo_composition:
assumes \(f \in \operatorname{HomeoG}(T) g \in \operatorname{HomeoG}(T)\)
shows Composition \((\bigcup T)\langle f, g\rangle \in\) HomeoG(T)
proof-
from assms have fun: \(f \in \bigcup T \rightarrow \bigcup T g \in \bigcup T \rightarrow \bigcup T\) and homeo:IsAhomeomorphism(\(T, T, f\)) IsAhomeomorphi
unfolding HomeoG_def
by auto
from fun have f \(0 \mathrm{~g} \in \bigcup \mathrm{~T} \rightarrow \bigcup \mathrm{~T}\) using comp_fun by auto moreover
from homeo have bij:f \(\in \operatorname{bij}(\bigcup T, \bigcup T) g \in b i j(\bigcup T, \bigcup T)\) and cont:IsContinuous(\(T, T, f)\) IsContinuou and contconv:

IsContinuous(T,T,converse(f))IsContinuous(T,T,converse(g)) unfolding IsAhomeomorphism_def by auto
from bij have f 0 g bij \((\bigcup T, \bigcup T)\) using comp_bij by auto moreover
from cont have IsContinuous(\(\mathrm{T}, \mathrm{T}, \mathrm{f} \mathrm{O} \mathrm{g}\)) using comp_cont by auto more-
over
have converse (f 0 g)=converse (g) O converse(f) using converse_comp by auto
with contconv have IsContinuous(T,T, converse(f Og)) using comp_cont
by auto ultimately
have f \(0 \mathrm{~g} \in\) HomeoG(T) unfolding HomeoG_def IsAhomeomorphism_def by auto then show thesis using func_ZF_5_L2 fun by auto
qed
The identity function is a homeomorphism.
lemma (in topology0) homeo_id:
shows id \((\cup T) \in\) HomeoG(T)
proof-
have converse(id \((\bigcup T))\) O id \((\bigcup T)=i d(\bigcup T)\) using left_comp_inverse id_bij by auto
then have converse \((i d(\bigcup T))=i d(\bigcup T)\) using right_comp_id by auto
then show thesis unfolding HomeoG_def IsAhomeomorphism_def using id_cont
id_type id_bij
by auto
qed
The homeomorphisms form a monoid and its neutral element is the identity.
theorem (in topology0) homeo_submonoid:
shows IsAmonoid(HomeoG(T), restrict (Composition(UT),HomeoG(T) \(\times\) HomeoG(T)))
TheNeutralElement(HomeoG(T), restrict(Composition(\(\bigcup\) T), HomeoG(T) \(\times \operatorname{HomeoG}(T))\)) \(=i d(\bigcup T)\)
proof-
have cl:HomeoG(T) \{is closed under\} Composition(UT) unfolding IsOpClosed_def
using homeo_composition by auto
moreover have sub:HomeoG(T) \(\subseteq \bigcup T \rightarrow \bigcup T\) unfolding HomeoG_def by auto moreover
have ne:TheNeutralElement (\(\bigcup T \rightarrow \bigcup T\), Composition \((\bigcup T)) \in\) HomeoG(T) us-
ing homeo_id Group_ZF_2_5_L2(2) by auto
ultimately show IsAmonoid (HomeoG(T), restrict (Composition (\(\bigcup\) T) , HomeoG(T) \(\times \operatorname{HomeoG}(T)\))) using Group_ZF_2_5_L2(1)
monoid0.group0_1_T1 unfolding monoidO_def by force
from cl sub ne have TheNeutralElement(HomeoG(T), restrict(Composition(UT),HomeoG(T) \(\times\) Home Composition(\(\cup T)\))
using Group_ZF_2_5_L2(1) group0_1_L6 by blast moreover
have id \((\bigcup T)=\) TheNeutralElement \((\bigcup T \rightarrow \bigcup T\), Composition \((\bigcup T)\)) using Group_ZF_2_5_L2(2)
by auto
ultimately show TheNeutralElement (HomeoG(T), restrict (Composition (\(\cup\) T) , HomeoG (\(T\)) \(\times\) HomeoG (\(T\) by auto
qed
The homeomorphisms form a group, with the composition.
theorem(in topology0) homeo_group:
shows IsAgroup(HomeoG(T), restrict(Composition(\(\bigcup T\)), HomeoG(T) \(\times\) HomeoG(T)))
proof-
\{
fix \(x\) assume AS: \(x \in\) HomeoG(T)
then have surj: \(x \in \operatorname{surj}(\bigcup T, \bigcup T)\) and bij:x \(\in \operatorname{bij}(\bigcup T, \bigcup T)\) unfolding HomeoG_def
IsAhomeomorphism_def bij_def by auto
from bij have converse \((x) \in\) bij \((\bigcup T, \bigcup T)\) using bij_converse_bij by auto
with bij have conx_fun:converse \((x) \in \bigcup T \rightarrow \bigcup T x \in \bigcup T \rightarrow \bigcup T\) unfolding bij_def inj_def by auto
from surj have id:x 0 converse(x)=id(UT) using right_comp_inverse
by auto
from conx_fun have Composition \((\bigcup T)\langle x\), converse \((x)\rangle=x \quad 0\) converse (\(x\))
using func_ZF_5_L2 by auto
with id have Composition \((\bigcup T)\langle x\), converse \((x)\rangle=i d(\bigcup T)\) by auto
moreover have converse(x) \(\in\) HomeoG(T) unfolding HomeoG_def using conx_fun(1)
homeo_inv AS unfolding HomeoG_def
by auto
ultimately have \(\exists \mathrm{M} \in \operatorname{HomeoG}(\mathrm{T})\). Composition \((\bigcup T)\langle\mathrm{x}, \mathrm{M}\rangle=\mathrm{id}(\bigcup \mathrm{U})\) by auto
\}
then have \(\forall x \in \operatorname{Homeog}(T) . \exists M \in \operatorname{HomeoG}(T)\). Composition \((\bigcup T)\langle x, M\rangle=i d(\bigcup T)\) by auto
then show thesis using homeo_submonoid definition_of_group by auto qed

\subsection*{63.2 Examples computed}

As a first example, we show that the group of homeomorphisms of the cocardinal topology is the group of bijective functions.
theorem homeo_cocardinal:
assumes InfCard(Q)
shows HomeoG(CoCardinal (X,Q))=bij(X,X)
proof
from assms have \(\mathrm{n}: \mathrm{Q} \neq 0\) unfolding InfCard_def by auto
then show HomeoG(CoCardinal \((X, Q)) \subseteq\) bij \((X, X)\) unfolding HomeoG_def
IsAhomeomorphism_def
using union_cocardinal by auto
\{
fix \(f\) assume \(a: f \in b i j(X, X)\)
then have converse \((f) \in b i j(X, X)\) using bij_converse_bij by auto
then have cinj:converse \((f) \in \operatorname{inj}(X, X)\) unfolding bij_def by auto
from a have fun: \(f \in X \rightarrow X\) unfolding bij_def inj_def by auto
then have two:two_top_spaces0((CoCardinal(X,Q)), (CoCardinal(X,Q)),f)
unfolding two_top_spaces0_def
using union_cocardinal assms n CoCar_is_topology by auto
\{
fix \(N\) assume \(N\{i s\) closed in\}(CoCardinal \((X, Q)\))
then have \(N _d e f: N=X \vee(N \in \operatorname{Pow}(X) \wedge N \prec Q)\) using closed_sets_cocardinal
\(n\) by auto
then have restrict (converse(f), \(N\)) \(\in\) bij(\(N\), converse(f)N) using cinj
restrict_bij by auto
then have \(N \approx f-N\) unfolding vimage_def eqpoll_def by auto
then have \(f-N \approx N\) using eqpoll_sym by auto
with N_def have \(N=X \vee(f-N \prec Q \wedge N \in \operatorname{Pow}(X))\) using eq_lesspoll_trans
by auto
with fun have \(f-N=X \vee(f-N \prec Q \wedge(f-N) \in \operatorname{Pow}(X))\) using func1_1_L3
func1_1_L4 by auto
then have \(f-\mathrm{N}\) \{is closed in\}(CoCardinal(X,Q)) using closed_sets_cocardinal
\(n\) by auto
\}
then have \(\forall N\). N\{is closed in\} (CoCardinal \((X, Q)) \longrightarrow f-N\) \{is closed in\} (CoCardinal (X,Q)) by auto
 ing two_top_spaces0.Top_ZF_2_1_L4
```

        two_top_spaces0.Top_ZF_2_1_L3 two_top_spaces0.Top_ZF_2_1_L2 two
    by auto
}
then have }\forallf\in\operatorname{bij}(\textrm{X},\textrm{X}). IsContinuous((CoCardinal(X,Q)),(CoCardinal(X,Q)),f
by auto
then have }\forall\textrm{f}\in\textrm{bij}(\textrm{X},\textrm{X}). IsContinuous((CoCardinal(X,Q)),(CoCardinal(X,Q)),f
^ IsContinuous((CoCardinal(X,Q)),(CoCardinal(X,Q)),converse(f))
using bij_converse_bij by auto
then have }\forallf\in\textrm{bij}(\textrm{X},\textrm{X}). IsAhomeomorphism((CoCardinal(X,Q)),(CoCardinal(X,Q)),f
unfolding IsAhomeomorphism_def
using n union_cocardinal by auto
then show bij(X,X)\subseteqHomeoG((CoCardinal(X,Q))) unfolding HomeoG_def bij_def
inj_def using n union_cocardinal
by auto
qed

```

The group of homeomorphism of the excluded set is a direct product of the bijections on \(X \backslash T\) and the bijections on \(X \cap T\).
theorem homeo_excluded:
```

    shows HomeoG(ExcludedSet(X,T))={f\inbij(X,X). f(X-T)=(X-T)}
    ```
proof
 have sub1: \(\mathrm{X}-\mathrm{T} \subseteq \mathrm{X}\) by auto
 \{
 fix \(g\) assume \(g \in\) HomeoG(ExcludedSet (\(\mathrm{X}, \mathrm{T}\)))
 then have fun: \(\mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}\) and bij:g \(\in \mathrm{bij}(\mathrm{X}, \mathrm{X})\) and hom:IsAhomeomorphism((ExcludedSet(X,T)),(
unfolding HomeoG_def
 using union_excludedset unfolding IsAhomeomorphism_def by auto
 \{
 assume \(\mathrm{A}: \mathrm{g}(\mathrm{X}-\mathrm{T})=\mathrm{X}\) and \(\mathrm{B}: \mathrm{X} \cap \mathrm{T} \neq 0\)
 have rfun:restrict \((\mathrm{g}, \mathrm{X}-\mathrm{T}): \mathrm{X}-\mathrm{T} \rightarrow \mathrm{X}\) using fun restrict_fun sub1 by
auto moreover
 from \(A\) fun have \{gaa. aa \(\in \mathrm{X}-\mathrm{T}\}=\mathrm{X}\) using func_imagedef sub1 by auto
 then have \(\forall x \in X . x \in\{g a a . ~ a a \in X-T\}\) by auto
 then have \(\forall x \in X . \exists a a \in X-T . x=g a a\) by auto
 then have \(\forall x \in X . \exists a a \in X-T . x=r e s t r i c t(g, X-T)\) aa by auto
 with A have surj:restrict \((\mathrm{g}, \mathrm{X}-\mathrm{T}) \in \operatorname{surj}(\mathrm{X}-\mathrm{T}, \mathrm{X})\) using rfun unfold-
ing surj_def by auto
 from \(B\) obtain \(d\) where \(d \in X d \in T\) by auto
 with bij have gd \(\in\) X using apply_funtype unfolding bij_def inj_def
by auto
 then obtain \(s\) where restrict \((\mathrm{g}, \mathrm{X}-\mathrm{T}) \mathrm{s}=\mathrm{gds} \in \mathrm{X}-\mathrm{T}\) using surj unfold-
ing surj_def by blast
 then have gs=gd by auto
 with \(\langle\mathrm{d} \in \mathrm{X}\rangle\langle\mathrm{s} \in \mathrm{X}-\mathrm{T}\rangle\) have \(\mathrm{s}=\mathrm{d}\) using bij unfolding bij_def inj_def by
auto
 then have False using \(\langle s \in X-T\rangle\langle d \in T\rangle\) by auto
 \}
 then have \(\mathrm{g}(\mathrm{X}-\mathrm{T})=\mathrm{X} \longrightarrow \mathrm{X} \cap \mathrm{T}=0\) by auto
 then have reg: \(g(X-T)=X \longrightarrow X-T=X\) by auto
then have \(g(X-T)=X \longrightarrow g(X-T)=X-T\) by auto
then have \(g(X-T)=X \longrightarrow g \in\{f \in \operatorname{bij}(X, X) . f(X-T)=(X-T)\}\) using bij by auto moreover
\{
fix gg
assume \(\mathrm{A}: \mathrm{gg}(\mathrm{X}-\mathrm{T}) \neq \mathrm{X}\) and hom2:IsAhomeomorphism((ExcludedSet \((\mathrm{X}, \mathrm{T})),(\operatorname{ExcludedSet}(\mathrm{X}, \mathrm{T}))\),
from hom2 have fun: \(g g \in X \rightarrow X\) and \(\operatorname{bij}: \operatorname{gg} \in \operatorname{bij}(X, X)\) unfolding IsAhomeomorphism_def
bij_def inj_def using union_excludedset by auto
have sub: \(X-T \subseteq \bigcup\) (ExcludedSet \((X, T)\)) using union_excludedset by auto
with hom2 have gg(Interior (X-T, (ExcludedSet \((X, T)))\)) Interior \((\operatorname{gg}(X-T),(E x c l u d e d S e t(X, T\) using int_top_invariant by auto moreover
from sub1 have \(\operatorname{Interior}(X-T,(E x c l u d e d S e t(X, T)))=X-T\) using interior_set_excludedset by auto
ultimately have \(\operatorname{gg}(X-T)=\) Interior \((\operatorname{gg}(X-T),(\operatorname{ExcludedSet}(X, T)))\) by
auto moreover
have ss: \(\mathrm{gg}(\mathrm{X}-\mathrm{T}) \subseteq \mathrm{X}\) using fun func1_1_L6(2) by auto
then have Interior \((\operatorname{gg}(X-T),(E x c l u d e d S e t(X, T)))=(\operatorname{gg}(X-T))-T\) us-
ing interior_set_excludedset A
by auto
ultimately have eq: \(\mathrm{gg}(\mathrm{X}-\mathrm{T})=(\mathrm{gg}(\mathrm{X}-\mathrm{T}))-\mathrm{T}\) by auto
\{
assume \((\operatorname{gg}(X-T)) \cap T \neq 0\)
then obtain \(t\) where \(t \in T\) and \(i m: t \in g g(X-T)\) by blast
then have \(\mathrm{t} \notin(\mathrm{gg}(\mathrm{X}-\mathrm{T}))-\mathrm{T}\) by auto
then have False using eq im by auto
\}
then have \((\mathrm{gg}(\mathrm{X}-\mathrm{T})) \cap \mathrm{T}=0\) by auto
then have \(\mathrm{gg}(\mathrm{X}-\mathrm{T}) \subseteq \mathrm{X}-\mathrm{T}\) using ss by blast
\}
then have \(\forall \operatorname{gg} . \operatorname{gg}(X-T) \neq \mathrm{X} \wedge\) IsAhomeomorphism(ExcludedSet \((X, T), \operatorname{ExcludedSet}(X, T), g g) \longrightarrow\) \(\mathrm{gg}(\mathrm{X}-\mathrm{T}) \subseteq \mathrm{X}-\mathrm{T}\) by auto moreover
from bij have conbij:converse(g) \(\in\) bij(\(\mathrm{X}, \mathrm{X}\)) using bij_converse_bij
by auto
then have confun:converse \((\mathrm{g}) \in \mathrm{X} \rightarrow \mathrm{X}\) unfolding bij_def inj_def by auto
\{
assume \(A\) :converse \((g)(X-T)=X\) and \(B: X \cap T \neq 0\)
have rfun:restrict(converse (g), X-T):X-T \(\rightarrow \mathrm{X}\) using confun restrict_fun
sub1 by auto moreover
from A confun have \{converse(g) aa. aa \(\in \mathrm{X}-\mathrm{T}\}=\mathrm{X}\) using func_imagedef
sub1 by auto
then have \(\forall x \in X . x \in\{\) converse (g)aa. aa \(\in X-T\}\) by auto
then have \(\forall x \in X . \exists a a \in X-T\). \(x=c o n v e r s e(g)\) aa by auto
then have \(\forall x \in X\). \(\exists a a \in X-T . x=r e s t r i c t(c o n v e r s e(g), X-T)\) aa by auto
with A have surj:restrict (converse(g),X-T) \(\in \operatorname{surj}(X-T, X)\) using rfun
unfolding surj_def by auto
from \(B\) obtain \(d\) where \(d \in X d \in T\) by auto
with conbij have converse (g)d X using apply_funtype unfolding bij_def
inj_def by auto
then obtain \(s\) where restrict(converse \((\mathrm{g}), \mathrm{X}-\mathrm{T}) \mathrm{s}=\) converse \((\mathrm{g}) \mathrm{ds} \in \mathrm{X}-\mathrm{T}\)
using surj unfolding surj_def by blast
then have converse (g) \(s=\) converse (g)d by auto
with \(\langle\mathrm{d} \in \mathrm{X}\rangle\langle\mathrm{s} \in \mathrm{X}-\mathrm{T}\rangle\) have \(\mathrm{s}=\mathrm{d}\) using conbij unfolding bij_def inj_def
by auto
then have False using \(\langle s \in X-T\rangle\langle d \in T\rangle\) by auto
\}
then have converse \((\mathrm{g})(\mathrm{X}-\mathrm{T})=\mathrm{X} \longrightarrow \mathrm{X} \cap \mathrm{T}=0\) by auto
then have converse \((\mathrm{g})(\mathrm{X}-\mathrm{T})=\mathrm{X} \longrightarrow \mathrm{X}-\mathrm{T}=\mathrm{X}\) by auto
then have converse \((\mathrm{g})(\mathrm{X}-\mathrm{T})=\mathrm{X} \longrightarrow \mathrm{g}-(\mathrm{X}-\mathrm{T})=(\mathrm{X}-\mathrm{T})\) unfolding vimage_def
by auto
then have \(G:\) converse \((\mathrm{g})(\mathrm{X}-\mathrm{T})=\mathrm{X} \longrightarrow \mathrm{g}(\mathrm{g}-(\mathrm{X}-\mathrm{T}))=\mathrm{g}(\mathrm{X}-\mathrm{T})\) by auto
have \(G G: g(g-(X-T))=(X-T)\) using sub1 surj_image_vimage bij unfolding bij_def by auto
with \(G\) have converse \((\mathrm{g})(\mathrm{X}-\mathrm{T})=\mathrm{X} \longrightarrow \mathrm{g}(\mathrm{X}-\mathrm{T})=\mathrm{X}-\mathrm{T}\) by auto
then have converse \((g)(X-T)=X \longrightarrow g \in\{f \in \operatorname{bij}(X, X)\). \(f(X-T)=(X-T)\}\) using bij by auto moreover
from hom have IsAhomeomorphism(ExcludedSet(X,T), ExcludedSet(X,T), converse(g)) using homeo_inv by auto
moreover note hom ultimately have \(\mathrm{g} \in\{\mathrm{f} \in \mathrm{bij}(\mathrm{X}, \mathrm{X}) . \mathrm{f}(\mathrm{X}-\mathrm{T})=(\mathrm{X}-\mathrm{T})\} \vee\) (\(\mathrm{g}(\mathrm{X}-\mathrm{T}) \subseteq \mathrm{X}-\mathrm{T} \wedge\) converse \((\mathrm{g})(\mathrm{X}-\mathrm{T}) \subseteq \mathrm{X}-\mathrm{T})\)
by force
then have \(g \in\{f \in \operatorname{bij}(X, X) . f(X-T)=(X-T)\} \vee(g(X-T) \subseteq X-T \wedge g-(X-T) \subseteq X-T)\)
unfolding vimage_def by auto moreover
have \(g-(X-T) \subseteq X-T \longrightarrow g(g-(X-T)) \subseteq g(X-T)\) using func1_1_L8 by auto
with \(G G\) have \(g-(X-T) \subseteq X-T \longrightarrow(X-T) \subseteq g(X-T)\) by force
ultimately have \(g \in\{f \in \operatorname{bij}(X, X) . f(X-T)=(X-T)\} \vee(g(X-T) \subseteq X-T \wedge(X-T) \subseteq g(X-T))\)
by auto
then have \(\mathrm{g} \in\{\mathrm{f} \in \mathrm{bij}(\mathrm{X}, \mathrm{X}) . \mathrm{f}(\mathrm{X}-\mathrm{T})=(\mathrm{X}-\mathrm{T})\}\) using bij by auto \}
then show HomeoG \((\operatorname{ExcludedSet}(X, T)) \subseteq\{f \in \operatorname{bij}(X, X) . f(X-T)=(X-T)\}\) by auto \{
fix \(g\) assume as: \(g \in b i j(X, X) g(X-T)=X-T\)
then have inj:g \(\operatorname{inj}(X, X)\) and \(\operatorname{im}: g-(g(X-T))=g-(X-T)\) unfolding bij_def by auto
from inj have \(g-(g(X-T))=X-T\) using inj_vimage_image sub1 by force
with im have as_3: \(\mathrm{g}-(\mathrm{X}-\mathrm{T})=\mathrm{X}-\mathrm{T}\) by auto
\{
fix A
assume \(A \in(E x c l u d e d S e t(X, T))\)
then have \(A=X \vee A \cap T=0 A \subseteq X\) unfolding ExcludedSet_def by auto
then have \(A \subseteq X-T \vee A=X\) by auto moreover
\{
assume \(A=X\)
with as(1) have gA=X using surj_range_image_domain unfolding bij_def
by auto
\}
moreover
\{
assume \(A \subseteq X-T\)
```

                then have gA\subseteqg(X-T) using func1_1_L8 by auto
                then have gA\subseteq(X-T) using as(2) by auto
            }
            ultimately have gA\subseteq(X-T) \vee gA=X by auto
            then have gA\in(ExcludedSet(X,T)) unfolding ExcludedSet_def by auto
    }
    then have }\forallA\in(ExcludedSet(X,T)). gA\in(ExcludedSet(X,T)) by auto more-
    over
{
fix A assume A\in(ExcludedSet(X,T))
then have A=X\veeA\capT=O A\subseteqX unfolding ExcludedSet_def by auto
then have }A\subseteqX-T\veeA=X by auto moreover
{
assume A=X
with as(1) have g-A=X using func1_1_L4 unfolding bij_def inj_def
by auto
}
moreover
{
assume A\subseteqX-T
then have g-A\subseteqg-(X-T) using func1_1_L8 by auto
then have g-A\subseteq(X-T) using as_3 by auto
}
ultimately have g-A\subseteq(X-T) V g-A=X by auto
then have g-A\in(ExcludedSet(X,T)) unfolding ExcludedSet_def by auto
}
then have IsContinuous(ExcludedSet(X,T),ExcludedSet(X,T),g) unfold-
ing IsContinuous_def by auto moreover
note as(1) ultimately have IsAhomeomorphism(ExcludedSet(X,T),ExcludedSet(X,T),g)
using union_excludedset bij_cont_open_homeo by auto
with as(1) have g\inHomeoG(ExcludedSet(X,T)) unfolding bij_def inj_def
HomeoG_def using union_excludedset by auto
}
then show {f \in bij(X,X) . f (X - T) = X - T} \subseteq HomeoG(ExcludedSet(X,T))
by auto
qed
We now give some lemmas that will help us compute HomeoG(IncludedSet (X,T)).
lemma cont_in_cont_ex:
assumes IsContinuous(IncludedSet(X,T),IncludedSet(X,T),f) f:X }->\textrm{X}T\subseteq
shows IsContinuous(ExcludedSet(X,T),ExcludedSet(X,T),f)
proof-
from assms(2,3) have two:two_top_spaces0(IncludedSet(X,T),IncludedSet(X,T),f)
using union_includedset includedset_is_topology
unfolding two_top_spaces0_def by auto
{
fix A assume A\in(ExcludedSet(X,T))
then have A\capT=0 \vee A=XA\subseteqX unfolding ExcludedSet_def by auto

```
then have A\{is closed in\} (IncludedSet(X,T)) using closed_sets_includedset assms by auto
then have f-A\{is closed in\}(IncludedSet (X,T)) using two_top_spaces0.TopZF_2_1_L1 assms (1)
two assms includedset_is_topology by auto
then have \((f-A) \cap T=0 \vee f-A=X f-A \subseteq X\) using closed_sets_includedset assms \((1,3)\)
by auto
then have \(\mathrm{f}-\mathrm{A} \in(\operatorname{ExcludedSet}(\mathrm{X}, \mathrm{T}))\) unfolding ExcludedSet_def by auto \}
then show IsContinuous(ExcludedSet (X,T),ExcludedSet (X,T),f) unfolding IsContinuous_def by auto
qed
lemma cont_ex_cont_in:
assumes IsContinuous(ExcludedSet(X,T), ExcludedSet(X,T),f) \(f: X \rightarrow X \quad T \subseteq X\)
shows IsContinuous(IncludedSet (X,T), IncludedSet(X,T),f)
proof-
from assms(2) have two:two_top_spaces0(ExcludedSet(X,T), ExcludedSet(X,T),f)
using union_excludedset excludedset_is_topology
unfolding two_top_spaces0_def by auto
\{
fix A assume \(A \in(\operatorname{IncludedSet}(X, T))\)
then have \(T \subseteq A \vee A=0 A \subseteq X\) unfolding IncludedSet_def by auto
then have A\{is closed in\}(ExcludedSet(X,T)) using closed_sets_excludedset
assms by auto
then have f-A\{is closed in\}(ExcludedSet(X,T)) using two_top_spaces0.TopZF_2_1_L1 assms(1)
two assms excludedset_is_topology by auto
then have \(T \subseteq(f-A) \vee f-A=0 f-A \subseteq X\) using closed_sets_excludedset assms \((1,3)\)
by auto
then have \(\mathrm{f}-\mathrm{A} \in(\operatorname{IncludedSet}(\mathrm{X}, \mathrm{T})\)) unfolding IncludedSet_def by auto \}
then show IsContinuous(IncludedSet(X,T),IncludedSet(X,T),f) unfolding IsContinuous_def by auto qed

The previous lemmas imply that the group of homeomorphisms of the included set topology is the same as the one of the excluded set topology.
```

lemma homeo_included:
assumes $T \subseteq X$
shows HomeoG(IncludedSet $(X, T))=\{f \in \operatorname{bij}(X, X) . f(X-T)=X-T\}$
proof-
\{
fix $f$ assume $f \in$ HomeoG(IncludedSet (X,T))
then have hom:IsAhomeomorphism(IncludedSet $(X, T), \operatorname{IncludedSet}(X, T), f)$
and fun: $f \in X \rightarrow X$ and
bij:f $\in$ bij( $X, X$ ) unfolding HomeoG_def IsAhomeomorphism_def using union_includedset
assms by auto
then have cont:IsContinuous(IncludedSet(X,T),IncludedSet (X,T),f)

```
unfolding IsAhomeomorphism_def by auto
then have IsContinuous(ExcludedSet(X,T), ExcludedSet(X,T),f) using cont_in_cont_ex fun assms by auto moreover
\{
from hom have cont1:IsContinuous(IncludedSet(X,T), IncludedSet(X,T), converse(f)) unfolding IsAhomeomorphism_def by auto moreover
have converse(f): \(X \rightarrow X\) using bij_converse_bij bij unfolding bij_def
inj_def by auto moreover
note assms ultimately
have IsContinuous(ExcludedSet(X,T), ExcludedSet(X,T), converse(f))
using cont_in_cont_ex assms by auto
\}
then have IsContinuous (ExcludedSet \((X, T)\), ExcludedSet \((X, T)\), converse (f))
by auto
moreover note bij ultimately
have IsAhomeomorphism(ExcludedSet (X,T), ExcludedSet(X,T),f) unfolding IsAhomeomorphism_def
using union_excludedset by auto
with fun have \(f \in\) HomeoG(ExcludedSet \((X, T)\)) unfolding HomeoG_def using union_excludedset by auto
\}
then have HomeoG(IncludedSet \((X, T)) \subseteq H o m e o G(E x c l u d e d S e t(X, T))\) by auto moreover
\{
fix \(f\) assume \(f \in\) HomeoG(ExcludedSet (\(\mathrm{X}, \mathrm{T}\)))
then have hom:IsAhomeomorphism(ExcludedSet (X,T), ExcludedSet (X,T),f)
and fun: \(f \in X \rightarrow X\) and
bij:f \(\in\) bij \((X, X)\) unfolding HomeoG_def IsAhomeomorphism_def using union_excludedset assms by auto
then have cont:IsContinuous(ExcludedSet (\(\mathrm{X}, \mathrm{T}\)), ExcludedSet (\(\mathrm{X}, \mathrm{T}\)) , f)
unfolding IsAhomeomorphism_def by auto
then have IsContinuous(IncludedSet (X,T), IncludedSet (X,T),f) using
cont_ex_cont_in fun assms by auto moreover
\{
from hom have cont1:IsContinuous(ExcludedSet(X,T), ExcludedSet(X,T), converse(f)) unfolding IsAhomeomorphism_def by auto moreover
have converse(f): \(X \rightarrow X\) using bij_converse_bij bij unfolding bij_def
inj_def by auto moreover
note assms ultimately
have IsContinuous (IncludedSet (\(\mathrm{X}, \mathrm{T}\)), IncludedSet (\(\mathrm{X}, \mathrm{T}\)), converse (f))
using cont_ex_cont_in assms by auto
\}
then have IsContinuous(IncludedSet (X,T), IncludedSet (X,T), converse(f))
by auto
moreover note bij ultimately
have IsAhomeomorphism(IncludedSet (X,T), IncludedSet(X,T),f) unfold-
ing IsAhomeomorphism_def
using union_includedset assms by auto
with fun have \(f \in\) HomeoG(IncludedSet (X,T)) unfolding HomeoG_def us-
ing union_includedset assms by auto
\}
then have \(\operatorname{HomeoG}(\operatorname{ExcludedSet}(X, T)) \subseteq \operatorname{HomeoG}(\operatorname{IncludedSet}(X, T))\) by auto ultimately
show thesis using homeo_excluded by auto
qed
Finally, let's compute part of the group of homeomorphisms of an order topology.
lemma homeo_order:
assumes IsLinOrder \((X, r) \exists x\) y. \(x \neq y \wedge x \in X \wedge y \in X\)
shows ord_iso (\(\mathrm{X}, \mathrm{r}, \mathrm{X}, \mathrm{r}\)) \(\subseteq\) HomeoG (OrdTopology X r)
proof
fix f assume feord_iso(X,r,X,r)
then have bij:f \(\in\) bij \((X, X)\) and ord \(: \forall x \in X . \forall y \in X .\langle x, y\rangle \in r \longleftrightarrow\langle f \quad x\),
\(\mathrm{f} \quad \mathrm{y}\rangle \in \mathrm{r}\)
unfolding ord_iso_def by auto
have twoSpac:two_top_spaces0(OrdTopology X r,OrdTopology X r,f) un-
folding two_top_spaces0_def
using bij unfolding bij_def inj_def using union_ordtopology[OF assms]
Ordtopology_is_a_topology(1) [OF assms(1)]
by auto
\{
fix \(c\) d assume \(A: c \in X d \in X\)
\{
fix \(x\) assume \(A A: x \in X x \neq c x \neq d\langle c, x\rangle \in r\langle x, d\rangle \in r\)
then have \(\langle f c, f x\rangle \in r\langle f x, f d\rangle \in r\) using \(A(2,1)\) ord by auto moreover \{
assume \(f x=f c \vee f x=f d\)
then have \(\mathrm{x}=\mathrm{c} \vee \mathrm{x}=\mathrm{d}\) using bij unfolding bij_def inj_def using \(\mathrm{A}(2,1)\)
AA(1) by auto
then have False using \(\operatorname{AA}(2,3)\) by auto \}
then have \(f x \neq f c f x \neq f d\) by auto moreover
have fx \(x\) X using bij unfolding bij_def inj_def using apply_type
AA(1) by auto
ultimately have \(f x \in\) IntervalX(X,r,fc,fd) unfolding IntervalX_def
Interval_def by auto \}
then have \(\{f x . x \in \operatorname{IntervalX}(X, r, c, d)\} \subseteq\) IntervalX(X,r,fc,fd) unfold-
ing IntervalX_def Interval_def by auto moreover
\{
fix y assume \(y \in \operatorname{Interval} X(X, r, f c, f d)\)
then have \(y: y \in X y \neq f c y \neq f d\langle f c, y\rangle \in r\langle y, f d\rangle \in r\) unfolding IntervalX_def Interval_def by auto
then obtain \(s\) where \(s: s \in X y=f s\) using bij unfolding bij_def surj_def by auto
\{
```

            assume s=c\s=d
            then have fs=fc\veefs=fd by auto
            then have False using }s(2) y(2,3) by aut
        }
        then have s}\not=cs\not=d by auto moreover
        have }\langlec,s\rangle\inr\langles,d\rangle\inr using y(4,5) s ord A(2,1) by auto moreover
        note s(1) ultimately have s\inIntervalX(X,r,c,d) unfolding IntervalX_def
    Interval_def by auto
then have }y\in{fx. x\inIntervalX(X,r,c,d)} using s(2) by aut
}
ultimately have {fx. x\inIntervalX(X,r,c,d)}=IntervalX(X,r,fc,fd) by
auto moreover
have IntervalX(X,r,c,d)\subseteqX unfolding IntervalX_def by auto more-
over
have f:X }->\textrm{X}\mathrm{ using bij unfolding bij_def surj_def by auto ultimately
have fIntervalX(X,r,c,d)=IntervalX(X,r,fc,fd) using func_imagedef
by auto
}
then have inter: }\forall\textrm{c}\in\textrm{X}.\forall\textrm{d}\in\textrm{X}. fIntervalX(X,r,c,d)=IntervalX(X,r,fc,fd
ffc\inX ^ fd\inX using bij
unfolding bij_def inj_def by auto
{
fix c assume A:c\inX
{
fix }x\mathrm{ assume AA: }x\inXx\not=c\langlec,x\rangle\in
then have }\langlefc,fx\rangle\inr using A ord by auto moreover
{
assume fx=fc
then have x=c using bij unfolding bij_def inj_def using A AA(1)
by auto
then have False using AA(2) by auto
}
then have fx}\not=\textrm{fc}\mathrm{ by auto moreover
have fx\inX using bij unfolding bij_def inj_def using apply_type
AA(1) by auto
ultimately have fx\inRightRayX(X,r,fc) unfolding RightRayX_def by
auto
}
then have {fx. x\inRightRayX(X,r,c)}\subseteqRightRayX(X,r,fc) unfolding RightRayX_def
by auto
moreover
{
fix y assume y\inRightRayX(X,r,fc)
then have y:y\inXy\not=fc\langlefc,y\rangle\inr unfolding RightRayX_def by auto
then obtain s where s:s\inXy=fs using bij unfolding bij_def surj_def
by auto
{
assume s=c
then have fs=fc by auto

```
then have False using \(s(2) y(2)\) by auto \} then have \(s \neq c\) by auto moreover have \(\langle c, s\rangle \in r\) using \(y(3)\) s ord A by auto moreover note \(s(1)\) ultimately have \(s \in \operatorname{RightRayX}(X, r, c)\) unfolding RightRayX_def by auto then have \(y \in\{f x . x \in \operatorname{RightRay} X(X, r, c)\}\) using \(s(2)\) by auto \}
ultimately have \(\{f x . \operatorname{x} \in \operatorname{RightRayX}(X, r, c)\}=\operatorname{RightRay} X(X, r, f c)\) by auto moreover
have RightRayX(X,r,c) \(\subseteq X\) unfolding RightRayX_def by auto moreover have \(f: X \rightarrow X\) using bij unfolding bij_def surj_def by auto ultimately have fRightRayX(X,r,c)=RightRayX(X,r,fc) using func_imagedef by auto \}
then have rray: \(\forall c \in X\). fRightRay \(X(X, r, c)=\operatorname{RightRay} X(X, r, f c) \wedge f c \in X\) using bij unfolding bij_def inj_def by auto
\{
fix \(c\) assume \(A: c \in X\) \{
fix \(x\) assume \(A A: x \in X x \neq c\langle x, c\rangle \in r\)
then have \(\langle f x, f c\rangle \in r\) using \(A\) ord by auto moreover
\{
assume fx=fc
then have \(x=c\) using bij unfolding bij_def inj_def using A AA(1)
by auto
then have False using AA(2) by auto
\}
then have \(f x \neq f c\) by auto moreover
have \(f x \in X\) using bij unfolding bij_def inj_def using apply_type
AA(1) by auto
ultimately have \(f x \in \operatorname{LeftRayX}(X, r, f c)\) unfolding LeftRayX_def by auto
\}
then have \(\{f x . x \in \operatorname{LeftRayX}(X, r, c)\} \subseteq \operatorname{LeftRayX}(X, r, f c)\) unfolding LeftRayX_def
by auto
moreover
\{
fix y assume \(y \in \operatorname{LeftRay} X(X, r, f c)\)
then have \(y: y \in X y \neq f c\langle y, f c\rangle \in r\) unfolding LeftRayX_def by auto
then obtain \(s\) where \(s: s \in X y=f s\) using bij unfolding bij_def surj_def
by auto
\{
assume \(\mathrm{s}=\mathrm{c}\)
then have \(\mathrm{fs}=\mathrm{fc}\) by auto
then have False using \(s(2) y(2)\) by auto
\}
then have \(s \neq c\) by auto moreover
have \(\langle s, c\rangle \in r\) using \(y(3)\) s ord A by auto moreover
note \(s(1)\) ultimately have \(s \in \operatorname{LeftRayX}(X, r, c)\) unfolding LeftRayX_def
by auto
then have \(y \in\{f x . x \in \operatorname{LeftRay} X(X, r, c)\}\) using \(s(2)\) by auto \} ultimately have \(\{f x . x \in \operatorname{LeftRayX}(X, r, c)\}=\operatorname{LeftRayX}(X, r, f c)\) by auto moreover
have LeftRay \((X, r, c) \subseteq X\) unfolding LeftRayX_def by auto moreover have \(f: X \rightarrow X\) using bij unfolding bij_def surj_def by auto ultimately have fLeftRayX(X,r,c)=LeftRayX(X,r,fc) using func_imagedef by auto \}
then have lray: \(\forall c \in X\). fLeftRayX \((X, r, c)=\operatorname{LeftRayX}(X, r, f c) \wedge f c \in X\) using bij
unfolding bij_def inj_def by auto
have \(\mathrm{r} 1: \forall \mathrm{U} \in\{\) IntervalX \((\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}) .\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\} \cup\{\operatorname{LeftRayX}(\mathrm{X}, \mathrm{r}\), b) . \(\mathrm{b} \in \mathrm{X}\} \cup\)
\(\{\operatorname{RightRayX}(X, r, b) . b \in X\} . f U \in(\{\) IntervalX(X, \(, b, c) .\langle b, c\rangle \in\) \(\mathrm{X} \times \mathrm{X}\} \cup\{\operatorname{LeftRayX}(\mathrm{X}, \mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\} \cup\)
\(\{\) RightRayX (X, r, b) . b \(\in X\}\)) apply safe prefer 3 using rray apply
blast prefer 2 using lray apply blast
using inter apply auto
proof-
fix xa y assume \(x a \in X y \in X\)
then have fxa \(\in \mathrm{Xf} y \in \mathrm{X}\) using bij unfolding bij_def inj_def by auto
then show \(\exists x \in X . \exists y a \in X\). IntervalX \(X, r, f\) xa, \(f y)=\) IntervalX (X, \(r, x, y a)\) by auto
qed
have r2:\{IntervalX (X, r, b, c) . \(\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\} \cup\{\operatorname{LeftRay}(\mathrm{X}, \mathrm{r}, \mathrm{b})\) \(\mathrm{b} \in \mathrm{X}\} \cup\{\operatorname{RightRayX}(\mathrm{X}, \mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\} \subseteq\) (OrdTopology X r)
using base_sets_open[OF Ordtopology_is_a_topology(2) [OF assms(1)]]
by blast
\{
fix \(U\) assume \(U \in\{\operatorname{IntervalX}(X, r, b, c) .\langle b, c\rangle \in X \times X\} \cup\{\operatorname{LeftRayX}(X\), \(\mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\} \cup\{\operatorname{RightRayX}(\mathrm{X}, \mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\}\)
with r1 have \(f U \in\{\) IntervalX \((X, r, b, c) .\langle b, c\rangle \in X \times X\} \cup\{\operatorname{LeftRayX}(X\), \(\mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\} \cup\{\operatorname{RightRayX}(\mathrm{X}, \mathrm{r}, \mathrm{b}) \cdot \mathrm{b} \in \mathrm{X}\}\)
by auto
with r2 have \(f U \in(\) OrdTopology \(X\) r) by blast
\}
then have \(\forall U \in\{\) IntervalX \((X, r, b, c) .\langle b, c\rangle \in X \times X\} \cup\{\operatorname{LeftRayX}(X\), \(\mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\} \cup\)
\{RightRayX(X, r, b) . b \(\in X\}\). fU (OrdTopology X r) by blast
then have \(f\) _open \(: \forall U \in\) (OrdTopology X r). fU \(\in\) (OrdTopology X r) using two_top_spaces0.base_ twoSpac Ordtopology_is_a_topology(2)[0F assms(1)]]
by auto
\{
fix c d assume A: \(c \in X d \in X\)
then obtain \(c c\) dd where pre:fcc=cfdd=dcc \(\in X d d \in X\) using bij unfold-
ing bij_def surj_def by blast
with inter have \(f\) IntervalX(X, r, cc, dd) = IntervalX(X, r, c,
d) by auto
then have \(f-(f \operatorname{IntervalX}(X, r, c c, d d))=f-(\operatorname{IntervalX}(X, r, \quad c, d))\) by auto
moreover
have IntervalX(X, r, cc, dd) \(\subseteq\) X unfolding IntervalX_def by auto moreover
have \(f \in \operatorname{inj}(X, X)\) using bij unfolding bij_def by auto ultimately
have IntervalX (X, r, cc, dd) \(=\mathrm{f}\)-IntervalX (X, r, c, d) using inj_vimage_image by auto
moreover
from pre(3,4) have IntervalX(X, r, cc, dd) \(\in\{\) IntervalX \((X, r, e 1, e 2)\).
\(\langle\mathrm{e} 1, \mathrm{e} 2\rangle \in \mathrm{X} \times \mathrm{X}\}\) by auto
ultimately have f-IntervalX (X, r, c, d) \(\in\) (OrdTopology X r) using base_sets_open[OF Ordtopology_is_a_topology(2) [OF assms(1)]] by auto
\}
then have inter: \(\forall c \in X . \forall d \in X\). f-IntervalX \((X, r, c, d) \in(O r d T o p o l o g y\) X r) by auto
\{
fix \(c\) assume \(A: c \in X\)
then obtain cc where pre:fcc=ccceX using bij unfolding bij_def surj_def
by blast
with rray have \(f\) RightRayX(X, r, cc) \(=\operatorname{RightRayX(X,~r,~c)~by~auto~}\)
then have \(f-(f \operatorname{RightRay} X(X, r, c c))=f-(\operatorname{RightRayX}(X, r, c))\) by auto
moreover
have RightRayX(X, r, cc) \(\subseteq\) X unfolding RightRayX_def by auto moreover
have \(f \in \operatorname{inj}(X, X)\) using bij unfolding bij_def by auto ultimately
have RightRayX(X, r, cc)=f-RightRayX(X, r, c) using inj_vimage_image
by auto
moreover
from pre(2) have RightRayX(X, r, cc) \(\in\{\operatorname{RightRayX}(X, r, e 2)\). \(e 2 \in X\}\) by auto
ultimately have f-RightRayX (X, r, c) \(\in\) (OrdTopology X r) using base_sets_open[0F Ordtopology_is_a_topology(2)[0F assms(1)]] by
auto
\}
then have rray: \(\forall c \in X\). f-RightRayX(X, r, c) \(\in(\) OrdTopology \(X ~ r) ~ b y ~ a u t o ~\) \{
fix \(c\) assume \(A: c \in X\)
then obtain cc where pre:fcc=cccex using bij unfolding bij_def surj_def
by blast
with lray have \(f\) LeftRayX \((X, r, c c)=\operatorname{LeftRayX}(X, r, c)\) by auto
then have \(f-(f \operatorname{LeftRayX}(X, r, c c))=f-(\operatorname{LeftRayX}(X, r, c))\) by auto
moreover
have LeftRayX \((X, r, c c) \subseteq X\) unfolding LeftRayX_def by auto moreover
have \(f \in \operatorname{inj}(X, X)\) using bij unfolding bij_def by auto ultimately
have LeftRayX(X, r, cc)=f-LeftRayX(X, r, c) using inj_vimage_image
```

by auto
moreover
from pre(2) have LeftRayX(X, r, cc)\in{LeftRayX(X,r,e2). e2\inX} by
auto
ultimately have f-LeftRayX(X, r, c)\in(OrdTopology X r) using
base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]] by
auto
}
then have lray: }\forall\textrm{c}\in\textrm{X}.\textrm{f}-\mathrm{ LeftRayX(X, r, c) }\in(OrdTopology X r) by auto
{
fix U assume U\in{IntervalX(X, r, b, c) . \langleb,c\rangle \in X > X} U {LeftRayX(X,
r, b) . b \in X} U {RightRayX(X, r, b) . b \in X}
with lray inter rray have f-UE(OrdTopology X r) by auto
}
then have }\forall\textrm{U}\in{\mathrm{ IntervalX(X, r, b, c) . \b,c> G X X X} U {LeftRayX(X,
r, b) . b \in X} \cup {RightRayX(X, r, b) . b \in X}
f-U\in(OrdTopology X r) by blast
then have fcont:IsContinuous(OrdTopology X r,OrdTopology X r,f) us-
ing two_top_spaces0.Top_ZF_2_1_L5[OF twoSpac
Ordtopology_is_a_topology(2)[OF assms(1)]] by auto
from fcont f_open bij have IsAhomeomorphism(OrdTopology X r,OrdTopology
X r,f) using bij_cont_open_homeo
union_ordtopology[OF assms] by auto
then show f\inHomeoG(OrdTopology X r) unfolding HomeoG_def using bij
union_ordtopology[OF assms]
unfolding bij_def inj_def by auto
qed

```

This last example shows that order isomorphic sets give homeomorphic topological spaces.

\subsection*{63.3 Properties preserved by functions}

The continuous image of a connected space is connected.
```

theorem (in two_top_spaces0) cont_image_conn:
assumes IsContinuous $\left(\tau_{1}, \tau_{2}, \mathrm{f}\right) \mathrm{f} \in \operatorname{surj}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \tau_{1}\{$ is connected $\}$
shows $\tau_{2}\{$ is connected $\}$
proof-
\{
fix $U$
assume Uop:U $\in \tau_{2}$ and Ucl:U\{is closed in\} $\tau_{2}$
from Uop assms(1) have $f-U \in \tau_{1}$ unfolding IsContinuous_def by auto
moreover
from Ucl assms(1) have f-U\{is closed in\} $\tau_{1}$ using TopZF_2_1_L1 by
auto ultimately
have disj:f-U=0 $\vee \mathrm{f}-\mathrm{U}=\bigcup \tau_{1}$ using assms(3) unfolding IsConnected_def
by auto moreover
\{

```
```

    assume as:f-U\not=0
    then have U\not=0 using func1_1_L13 by auto
    from as disj have f-U=\bigcup 
    then have f(f-U)=f (\bigcup\mp@subsup{\tau}{1}{}) by auto moreover
    have U\subseteq\bigcup\mp@subsup{\tau}{2}{}\mathrm{ using Uop by blast ultimately}
    have U=f(\bigcup\mp@subsup{\tau}{1}{}) using surj_image_vimage assms(2) Uop by force
    then have }\bigcup\mp@subsup{\tau}{2}{}=U\mathrm{ using surj_range_image_domain assms(2) by auto
    }
    moreover
    {
    assume as: U\not=0
    from Uop have s:U\subseteq\bigcup\mp@subsup{\tau}{2}{}}\mathrm{ by auto
    with as obtain u where uU:u\inU by auto
    with s have u\in\bigcup \tau
    with assms(2) obtain w where fw=uw\in\bigcup \mp@subsup{\tau}{1}{} unfolding surj_def X1_def
    X2_def by blast
with uU have w\inf-U using func1_1_L15 assms(2) unfolding surj_def
by auto
then have f-U\not=0 by auto
}
ultimately have }\textrm{U}=0\vee\textrm{V}=\bigcup<br>mp@subsup{\tau}{2}{}\mathrm{ by auto
}
then show thesis unfolding IsConnected_def by auto
qed
Every continuous function from a space which has some property P and a space which has the property anti ( $P$ ), given that this property is preserved by continuous functions, if follows that the range of the function is in the spectrum. Applied to connectedness, it follows that continuous functions from a connected space to a totally-disconnected one are constant.

```
```

corollary (in two_top_spaces0) cont_conn_tot_disc:

```
corollary (in two_top_spaces0) cont_conn_tot_disc:
 assumes IsContinuous \(\left(\tau_{1}, \tau_{2}, f\right) \tau_{1}\{\) is connected \(\} \tau_{2}\{\) is totally-disconnected \(\}\)
 assumes IsContinuous \(\left(\tau_{1}, \tau_{2}, f\right) \tau_{1}\{\) is connected \(\} \tau_{2}\{\) is totally-disconnected \(\}\)
\(\mathrm{f}: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2} \quad \mathrm{X}_{1} \neq 0\)
\(\mathrm{f}: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2} \quad \mathrm{X}_{1} \neq 0\)
 shows \(\exists \mathrm{q} \in \mathrm{X}_{2} . \quad \forall \mathrm{w} \in \mathrm{X}_{1} . \mathrm{f}(\mathrm{w})=\mathrm{q}\)
 shows \(\exists \mathrm{q} \in \mathrm{X}_{2} . \quad \forall \mathrm{w} \in \mathrm{X}_{1} . \mathrm{f}(\mathrm{w})=\mathrm{q}\)
proof-
proof-
 from assms (4) have surj:f \(\operatorname{lisur}^{\left(X_{1}, r a n g e(f)\right) ~ u s i n g ~ f u n _i s _s u r j ~ b y ~ a u t o ~}\)
 from assms (4) have surj:f \(\operatorname{lisur}^{\left(X_{1}, r a n g e(f)\right) ~ u s i n g ~ f u n _i s _s u r j ~ b y ~ a u t o ~}\)
 have sub:range (f) \(\subseteq X_{2}\) using func1_1_L5B assms (4) by auto
 have sub:range (f) \(\subseteq X_{2}\) using func1_1_L5B assms (4) by auto
 from assms (1) have cont:IsContinuous (\(\tau_{1}, \tau_{2}\{r e s t r i c t e d\) to\}range (f), f)
 from assms (1) have cont:IsContinuous (\(\tau_{1}, \tau_{2}\{r e s t r i c t e d\) to\}range (f), f)
using restr_image_cont range_image_domain
using restr_image_cont range_image_domain
 assms (4) by auto
 assms (4) by auto
 have union: \(\bigcup\left(\tau_{2}\{\right.\) restricted to\}range \((f))=r a n g e(f)\) unfolding RestrictedTo_def
 have union: \(\bigcup\left(\tau_{2}\{\right.\) restricted to\}range \((f))=r a n g e(f)\) unfolding RestrictedTo_def
using sub by auto
using sub by auto
 then have two_top_spaces \(0\left(\tau_{1}, \tau_{2}\{\right.\) restricted to\}range(f),f) unfolding
 then have two_top_spaces \(0\left(\tau_{1}, \tau_{2}\{\right.\) restricted to\}range(f),f) unfolding
two_top_spaces0_def
two_top_spaces0_def
 using surj unfolding surj_def using tau1_is_top topology0.Top_1_L4
 using surj unfolding surj_def using tau1_is_top topology0.Top_1_L4
unfolding topology0_def using tau2_is_top
unfolding topology0_def using tau2_is_top
 by auto
 by auto
 then have conn: (\(\left.\tau_{2}\{r e s t r i c t e d ~ t o\} r a n g e(f)\right)\{i s ~ c o n n e c t e d\}\) using two_top_spaces0.cont_image
 then have conn: (\(\left.\tau_{2}\{r e s t r i c t e d ~ t o\} r a n g e(f)\right)\{i s ~ c o n n e c t e d\}\) using two_top_spaces0.cont_image
surj assms(2) cont
```

surj assms(2) cont

```
union by auto
then have range(f)\{is in the spectrum of \}IsConnected using assms(3)
sub unfolding IsTotDis_def antiProperty_def
using union by auto
then have range (f) \(\lesssim 1\) using conn_spectrum by auto moreover
from assms(5) have \(f \mathrm{X}_{1} \neq 0\) using func1_1_L15A assms(4) by auto
then have range (f) \(\neq 0\) using range_image_domain assms (4) by auto
ultimately obtain \(q\) where uniq: range (f)=\{q\} using lepoll_1_is_sing
by blast
\{
fix \(w\) assume \(w \in X_{1}\)
then have \(f w \in\) range (f) using func1_1_L5A(2) assms (4) by auto
with uniq have \(f w=q\) by auto
\}
then have \(\forall w \in X_{1}\). \(f w=q\) by auto
then show thesis using uniq sub by auto
qed
The continuous image of a compact space is compact.
theorem (in two_top_spaces0) cont_image_com:
assumes IsContinuous \(\left(\tau_{1}, \tau_{2}, \mathrm{f}\right) \mathrm{f} \in \operatorname{surj}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{X}_{1}\{\) is compact of cardinal \(\} \mathrm{K}\{\operatorname{in}\} \tau_{1}\)
shows \(X_{2}\{\) is compact of cardinal \(\} K\{i n\} \tau_{2}\)
proof-
have \(\mathrm{X}_{2} \subseteq \bigcup \tau_{2}\) by auto moreover
\{
fix \(U\) assume as: \(X_{2} \subseteq \bigcup U U \subseteq \tau_{2}\)
then have \(P:\{\mathrm{f}-\mathrm{V} . \mathrm{V} \in \mathrm{U}\} \subseteq \tau_{1}\) using assms (1) unfolding IsContinuous_def
by auto
from as(1) have \(f-X_{2} \subseteq f-(\bigcup U)\) by blast
then have \(f-X_{2} \subseteq\) converse(f) (\(\bigcup U\)) unfolding vimage_def by auto more-
over
have converse(f) \((\bigcup U)=(\bigcup V \in U\). converse(f)V) using image_UN by force
ultimately
have \(f-X_{2} \subseteq(\bigcup V \in U\). converse(f)V) by auto
then have \(f-X_{2} \subseteq(\bigcup V \in U\). \(f-V)\) unfolding vimage_def by auto
then have \(X_{1} \subseteq(\bigcup V \in U\). f-V) using func1_1_L4 assms(2) unfolding surj_def
by force
then have \(X_{1} \subseteq \bigcup\{f-V . V \in U\}\) by auto
with \(P\) assms (3) have \(\exists \mathrm{N} \in \operatorname{Pow}(\{f-V . V \in U\}) . X_{1} \subseteq \cup N \wedge N \prec K\) unfold-
ing IsCompactOfCard_def by auto
then obtain \(N\) where \(N \in \operatorname{Pow}(\{f-V . V \in U\}) X_{1} \subseteq \bigcup N N \prec K\) by auto
then have fin:N \(\prec K\) and sub:N〇\{f-V. \(V \in U\}\) and cov: \(X_{1} \subseteq \bigcup N\) unfold-
ing FinPow_def by auto
from sub have \(\{f R . R \in N\} \subseteq\{f(f-V)\). \(V \in U\}\) by auto moreover
have \(\forall \mathrm{V} \in \mathrm{U} . \mathrm{V} \subseteq \bigcup \tau_{2}\) using as (2) by auto ultimately
have \(\{f R . R \in N\} \subseteq U\) using surj_image_vimage assms(2) by auto moreover
let \(F N=\{\langle R, f R\rangle . R \in N\}\)
have \(F N: F N: N \rightarrow\{f R\). R \(\in N\}\) unfolding Pi_def function_def domain_def by
auto
\{
fix \(S\) assume \(S \in\{f R\). \(R \in N\}\)
then obtain \(R\) where \(R_{-}\)def: \(R \in N f R=S\) by auto
then have \(\langle R, f R\rangle \in F N\) by auto
then have \(F N R=f R\) using \(F N\) apply_equality by auto
then have \(\exists R \in N\). FNR=S using R_def by auto
\}
then have surj:FN \(\operatorname{surj}(N,\{f R . R \in N\})\) unfolding surj_def using FN by force
from fin have \(N: N \lesssim K\) Ord(K) using assms(3) lesspoll_imp_lepoll unfolding IsCompactOfCard_def
using Card_is_Ord by auto
then have \(\{f R . R \in N\} \lesssim N\) using surj_fun_inv_2 surj by auto
then have \(\{f R . R \in N\} \prec K\) using fin lesspoll_trans1 by blast
moreover
have \(\bigcup\{f R . R \in N\}=f(\bigcup N)\) using image_UN by auto
then have \(f X_{1} \subseteq \bigcup\{f R\). R \(\in \mathbb{N}\}\) using cov by blast
then have \(X_{2} \subseteq \bigcup\{f R . R \in N\}\) using assms(2) surj_range_image_domain by auto
ultimately have \(\exists \mathrm{NN} \in \operatorname{Pow}(\mathrm{U}) . \mathrm{X}_{2} \subseteq \bigcup \mathrm{NN} \wedge \mathrm{NN} \prec \mathrm{K}\) by auto
\}
then have \(\forall \mathrm{U} \in \operatorname{Pow}\left(\tau_{2}\right) . \mathrm{X}_{2} \subseteq \bigcup \mathrm{U} \longrightarrow\left(\exists \mathrm{NN} \in \operatorname{Pow}(\mathrm{U}) . \mathrm{X}_{2} \subseteq \bigcup \mathrm{NN} \wedge \mathrm{NN} \prec \mathrm{K}\right)\) by auto
ultimately show thesis using assms(3) unfolding IsCompactOfCard_def by auto
qed
As it happends to connected spaces, a continuous function from a compact space to an anti-compact space has finite range.
```

corollary (in two_top_spaces0) cont_comp_anti_comp:
assumes IsContinuous ( $\left.\tau_{1}, \tau_{2}, \mathrm{f}\right) \mathrm{X}_{1}\{$ is compact $\operatorname{in}\} \tau_{1} \tau_{2}\{\mathrm{is}$ anti-compact $\}$
$\mathrm{f}: \mathrm{X}_{1} \rightarrow \mathrm{X}_{2} \quad \mathrm{X}_{1} \neq 0$
shows Finite(range(f)) and range (f) $\neq 0$
proof-
from assms(4) have surj:f $\in \operatorname{surj}\left(X_{1}, r a n g e(f)\right)$ using fun_is_surj by auto
have sub:range (f) $\subseteq X_{2}$ using func1_1_L5B assms(4) by auto
from assms(1) have cont:IsContinuous( $\tau_{1}, \tau_{2}\{$ restricted to\}range(f),f)
using restr_image_cont range_image_domain
assms(4) by auto
have union $\bigcup \bigcup\left(\tau_{2}\{\right.$ restricted to\}range(f))=range(f) unfolding RestrictedTo_def
using sub by auto
then have two_top_spaces0 ( $\left.\tau_{1}, \tau_{2}\{r e s t r i c t e d ~ t o\} r a n g e(f), f\right)$ unfolding
two_top_spaces0_def
using surj unfolding surj_def using tau1_is_top topology0.Top_1_L4
unfolding topology0_def using tau2_is_top
by auto
then have range(f)\{is compact in\}( $\left.\tau_{2}\{r e s t r i c t e d ~ t o\} r a n g e(f)\right) ~ u s i n g ~ s u r j ~$
two_top_spaces0.cont_image_com cont union

```
assms(2) Compact_is_card_nat by force
then have range(f)\{is in the spectrum of (\(\lambda \mathrm{T}\). (\(\cup T\)) \{is compact in\}T)
using assms (3) sub unfolding IsAntiComp_def antiProperty_def using union by auto
then show Finite(range(f)) using compact_spectrum by auto moreover
from assms (5) have \(f \mathrm{X}_{1} \neq 0\) using func1_1_L15A assms (4) by auto
then show range (f) \(\neq 0\) using range_image_domain assms(4) by auto qed

As a consequence, it follows that quotient topological spaces of compact (connected) spaces are compact (connected).
corollary (in topology0) compQuot:
assumes (\(\cup T)\) \{is compact in\} T equiv \((\bigcup \mathrm{T}, \mathrm{r})\)
shows (\(\bigcup \mathrm{T}) / / \mathrm{r}\) is compact in\}(\{quotient by\}r)
proof-
have \(\operatorname{surj}:\{\langle b, r\{b\}\rangle . b \in \bigcup T\} \in \operatorname{surj}(\bigcup T,(\bigcup T) / / r)\) using quotient_proj_surj by auto
moreover have tot: \(\bigcup\) (\{quotient by\}r) \(=(\bigcup \mathrm{U}) / / \mathrm{r}\) using total_quo_equi assms(2) by auto
ultimately have cont:IsContinuous(T,\{quotient by\}r, \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\}\)) using quotient_func_cont

EquivQuo_def assms(2) by auto
from surj tot have two_top_spaces0(T,\{quotient by\}r, \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{T}\}\)) unfolding two_top_spaces0_def
using topSpaceAssum equiv_quo_is_top assms(2) unfolding surj_def by auto
with surj cont tot assms(1) show thesis using two_top_spaces0.cont_image_com Compact_is_card_nat by force
qed
corollary (in topology0) ConnQuot:
assumes \(\mathrm{T}\{\mathrm{is}\) connected\} equiv (\(\cup \mathrm{T}, \mathrm{r}\))
shows (\{quotient by\}r)\{is connected\}
proof-
have surj: \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{T}\} \in \operatorname{surj}(\bigcup \mathrm{T},(\bigcup \mathrm{T}) / / \mathrm{r})\) using quotient_proj_surj
by auto
moreover have tot: \(\bigcup\) (\{quotient by\}r)=(\(\bigcup\) T)//r using total_quo_equi
assms(2) by auto
ultimately have cont:IsContinuous(\(T\), \{quotient by \(\},\{\langle b, r\{b\}\rangle . b \in \bigcup T\}\)) using quotient_func_cont

EquivQuo_def assms(2) by auto
from surj tot have two_top_spaces0(T,\{quotient by\}r, \(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{U}\}\))
unfolding two_top_spaces0_def
using topSpaceAssum equiv_quo_is_top assms(2) unfolding surj_def by auto
with surj cont tot assms(1) show thesis using two_top_spaces0.cont_image_conn by force
qed
end

\section*{64 Topology 10}
```

theory Topology_ZF_10
imports Topology_ZF_7
begin

```

This file deals with properties of product spaces. We only consider product of two spaces, and most of this proofs, can be used to prove the results in product of a finite number of spaces.

\subsection*{64.1 Closure and closed sets in product space}

The closure of a product, is the product of the closures.
```

lemma cl_product:
assumes T{is a topology} S{is a topology} A\subseteq\T B\subseteq\S
shows Closure(A }\times\mathrm{ B, ProductTopology(T,S))=Closure(A,T) }\times\mathrm{ Closure(B,S)
proof
have A }\timesB\subseteq\bigcupT\times\bigcupS\mathrm{ using assms (3,4) by auto
then have sub:A }\times\textrm{B}\subseteq\bigcup\mathrm{ ProductTopology(T,S) using Top_1_4_T1(3) assms(1,2)
by auto
have top:ProductTopology(T,S){is a topology} using Top_1_4_T1(1) assms(1,2)
by auto
{
fix x assume asx:x\inClosure(A }\times\mathrm{ B,ProductTopology(T,S))
then have reg: }\forall\textrm{U}\in\mathrm{ ProductTopology(T,S). x }\inU\longrightarrowU\U\cap(A\timesB)\not=0 usin
topology0.cl_inter_neigh
sub top unfolding topology0_def by blast
from asx have x\in\ ProductTopology(T,S) using topology0.Top_3_L11(1)
top unfolding topology0_def
using sub by blast
then have xSigma: }x\in\T\times\S using Top_1_4_T1(3) assms(1,2) by aut
then have \langlefst(x),snd(x)\rangle\in\bigcupT\times\bigcupS using Pair_fst_snd_eq by auto
then have xT:fst (x)\in\bigcupT and xS:snd (x)\in\bigcupS by auto
{
fix U V assume as:U\inT fst(x)\inU
have \S\inS using assms(2) unfolding IsATopology_def by auto
with as have U\times(US)\inProductCollection(T,S) unfolding ProductCollection_def
by auto
then have P:U\times(US)\inProductTopology(T,S) using Top_1_4_T1(2) assms(1,2)
base_sets_open by blast
with xS as(2) have <fst(x),snd(x)\rangle\inU\times(US) by auto
then have x\inU\times(US) using Pair_fst_snd_eq xSigma by auto
with P reg have U\times(US)\capA\timesB\not=0 by auto
then have noEm:U\capA\not=0 by auto
}
then have }\forallU\inT. fst(x)\inU\longrightarrowU\capA\not=0 by auto moreover

```

\section*{\{}
fix \(U V\) assume as: \(U \in S\) snd \((x) \in U\)
have \(\bigcup T \in T\) using assms(1) unfolding IsATopology_def by auto
with as have (\(\bigcup T) \times U \in\) ProductCollection(T,S) unfolding ProductCollection_def by auto
then have \(P:(\bigcup T) \times U \in \operatorname{ProductTopology}(T, S)\) using Top_1_4_T1(2) assms \((1,2)\)
base_sets_open by blast
with \(x T\) as (2) have \(\langle f s t(x), \operatorname{snd}(x)\rangle \in(U T) \times U\) by auto
then have \(x \in(\bigcup T) \times U\) using Pair_fst_snd_eq xSigma by auto
with \(P\) reg have \((\cup T) \times U \cap A \times B \neq 0\) by auto
then have noEm: \(U \cap B \neq 0\) by auto
\}
then have \(\forall U \in S\). snd \((x) \in U \longrightarrow U \cap B \neq 0\) by auto
ultimately have fst \((x) \in \operatorname{Closure}(A, T)\) snd \((x) \in \operatorname{Closure}(B, S)\) using
topology0.inter_neigh_cl assms \((3,4)\) unfolding topology0_def
using assms \((1,2) \mathrm{xT} \mathrm{xS}\) by auto
then have \(\langle f s t(x)\), snd \((x)\rangle \in \operatorname{Closure}(A, T) \times C l o s u r e(B, S)\) by auto
with \(x\) Sigma have \(x \in C l o s u r e(A, T) \times C l o s u r e(B, S)\) by auto
\}
then show Closure \((A \times B, \operatorname{ProductTopology}(T, S)) \subseteq C l o s u r e(A, T) \times C l o s u r e(B, S)\)
by auto
\{
fix \(x\) assume \(x: x \in C l o s u r e(A, T) \times C l o s u r e(B, S)\)
then have \(x c l: f s t(x) \in \operatorname{Closure}(A, T)\) snd \((x) \in \operatorname{Closure}(B, S)\) by auto
from \(x c l(1)\) have regT: \(\forall U \in T\). fst \((x) \in U \longrightarrow U \cap A \neq 0\) using topology0.cl_inter_neigh
unfolding topology0_def using assms \((1,3)\) by blast
from xcl(2) have regS: \(\forall U \in S\). snd \((x) \in U \longrightarrow U \cap B \neq 0\) using topology0.cl_inter_neigh unfolding topology0_def using assms \((2,4)\) by blast
from \(x\) assms \((3,4)\) have \(x \in \bigcup T \times \bigcup S\) using topology0.Top_3_L11(1) un-
folding topology0_def
using assms \((1,2)\) by blast
then have xtot: \(x \in \bigcup\) ProductTopology(T,S) using Top_1_4_T1(3) assms (1,2)
by auto
\{
fix PO assume as: \(\mathrm{PO} \in \operatorname{ProductTopology(T,S)} \mathrm{x} \in \mathrm{PO}\)
then obtain \(P O B\) where base: \(P O B \in\) ProductCollection(\(T, S\)) \(x \in P O B P O B \subseteq P O\)
using point_open_base_neigh
Top_1_4_T1(2) assms (1,2) base_sets_open by blast
then obtain VT VS where V:VT \(\in T\) VS \(\in S ~ x \in V T \times V S P O B=V T \times V S\) unfold-
ing ProductCollection_def
by auto
from \(V(3)\) have \(x: f s t(x) \in V T\) snd \((x) \in V S\) by auto
from \(V(1)\) regT \(x(1)\) have \(V T \cap A \neq 0\) by auto moreover
from \(V(2)\) regS \(x(2)\) have \(V S \cap B \neq 0\) by auto ultimately
have \(V T \times V S \cap A \times B \neq 0\) by auto
with \(\mathrm{V}(4)\) base (3) have \(\mathrm{PO} \cap \mathrm{A} \times \mathrm{B} \neq 0\) by blast
\}
then have \(\forall P \in \operatorname{ProductTopology}(T, S) . x \in P \longrightarrow P \cap A \times B \neq 0\) by auto
then have \(x \in C l o s u r e(A \times B, P r o d u c t T o p o l o g y(T, S))\) using topology0.inter_neigh_cl
```

        unfolding topology0_def using top sub xtot by auto
    }
    then show Closure(A,T) }\times\mathrm{ Closure ( }B,S)\subseteqClosure(A\timesB,ProductTopology (T,S))
    by auto
qed

```

The product of closed sets, is closed in the product topology.
corollary closed_product:
assumes T\{is a topology\} S\{is a topology\} A\{is closed in\}TB\{is closed in\}s
shows (\(A \times B\)) \{is closed in\}ProductTopology(T,S)
proof-
from assms \((3,4)\) have sub: \(A \subseteq \bigcup T B \subseteq \bigcup S\) unfolding IsClosed_def by auto
then have \(A \times B \subseteq \bigcup T \times \bigcup S\) by auto
then have sub1: \(\mathrm{A} \times \mathrm{B} \subseteq \bigcup\) ProductTopology (T,S) using Top_1_4_T1(3) assms \((1,2)\)
by auto
from sub assms have Closure (A,T)=AClosure (B,S)=B using topology0.Top_3_L8
unfolding topologyO_def by auto
then have Closure (\(\mathrm{A} \times \mathrm{B}\), ProductTopology (\(\mathrm{T}, \mathrm{S}\))) \(=\mathrm{A} \times \mathrm{B}\) using cl _product assms \((1,2)\) sub by auto
then show thesis using topology0.Top_3_L8 unfolding topology0_def using sub1 Top_1_4_T1(1) assms \((1,2)\) by auto
qed

\subsection*{64.2 Separation properties in product space}

The product of \(T_{0}\) spaces is \(T_{0}\).
theorem T0_product:
assumes T\{is a topology\}S\{is a topology\}T\{is \(\left.\mathrm{T}_{0}\right\} \mathrm{S}\left\{\right.\) is \(\left.\mathrm{T}_{0}\right\}\)
shows ProductTopology (T,S) \{is \(\left.\mathrm{T}_{0}\right\}\)
proof-
\{
fix \(x\) y assume \(x \in \bigcup\) ProductTopology(T,S) \(y \in \bigcup\) ProductTopology (T, \(S\)) \(x \neq y\)
then have tot: \(x \in \bigcup T \times \bigcup S y \in \bigcup T \times \bigcup S x \neq y\) using Top_1_4_T1(3) assms (1,2)
by auto
then have \(\langle f s t(x), \operatorname{snd}(x)\rangle \in \bigcup T \times \bigcup S\langle f s t(y), \operatorname{snd}(y)\rangle \in \bigcup T \times \bigcup S\) and disj:fst \((x) \neq f s t(y) \vee \operatorname{snd}(x\)
using Pair_fst_snd_eq by auto
then have \(T: f s t(x) \in \bigcup T f s t(y) \in \bigcup T\) and \(S: s n d(y) \in \bigcup S s n d(x) \in \bigcup S\) and
\(\mathrm{p}: \mathrm{fst}(\mathrm{x}) \neq \mathrm{fst}(\mathrm{y}) \vee \operatorname{snd}(\mathrm{x}) \neq\) snd \((\mathrm{y})\)
by auto
\{
assume fst (x) \(\neq \mathrm{fst}\) (y)
with \(T\) assms (3) have \((\exists \mathrm{U} \in \mathrm{T}\). (fst \((x) \in U \wedge f s t(y) \notin U) \vee(f s t(y) \in U \wedge f s t(x) \notin U))\) unfolding
isTO_def by auto
then obtain \(U\) where \(U \in T(f s t(x) \in U \wedge f s t(y) \notin U) \vee(f s t(y) \in U \wedge f s t(x) \notin U)\)
by auto
with \(S\) have \((\langle f s t(x), \operatorname{snd}(x)\rangle \in U \times(\bigcup S) \wedge\langle f s t(y)\), snd \((y)\rangle \notin U \times(\bigcup S)) \vee(\langle\) fst \((y)\), snd \((y)\rangle \in U \times\) \(\wedge\langle\mathrm{fst}(\mathrm{x}), \operatorname{snd}(\mathrm{x})\rangle \notin \mathrm{U} \times(\bigcup \mathrm{S}))\)
by auto
then have \((x \in U \times(\bigcup S) \wedge y \notin U \times(\bigcup S)) \vee(y \in U \times(\bigcup S) \wedge x \notin U \times(\bigcup S))\) using Pair_fst_snd_eq tot \((1,2)\) by auto
moreover have \((\cup S) \in S\) using assms(2) unfolding IsATopology_def by auto
with \(\langle U \in T\rangle\) have \(U \times(\cup S) \in\) ProductTopology(T,S) using prod_open_open_prod assms \((1,2)\) by auto
ultimately
have \(\exists V \in \operatorname{ProductTopology}(T, S) .(x \in V \wedge y \notin V) \vee(y \in V \wedge x \notin V)\) proof qed
\} moreover
\{
assume \(\operatorname{snd}(x) \neq\) snd (\(y\))
with \(S\) assms (4) have \((\exists \mathrm{U} \in \mathrm{S}\). (\(\operatorname{snd}(\mathrm{x}) \in \mathrm{U} \wedge\) snd \((\mathrm{y}) \notin \mathrm{U}) \vee(\operatorname{snd}(\mathrm{y}) \in \mathrm{U} \wedge\) snd \((\mathrm{x}) \notin \mathrm{U}))\)
unfolding
isTO_def by auto
then obtain \(U\) where \(U \in S(\operatorname{snd}(x) \in U \wedge \operatorname{snd}(y) \notin U) \vee(\operatorname{snd}(y) \in U \wedge \operatorname{snd}(x) \notin U)\)
by auto
with \(T\) have \((\langle f s t(x)\), snd \((x)\rangle \in(\bigcup T) \times U \wedge\langle f s t(y)\), snd \((y)\rangle \notin(\bigcup T) \times U) \vee(\langle\) fst \((y)\), snd \((y)\rangle \in(U\) \(\wedge\langle f s t(x), \operatorname{snd}(x)\rangle \notin(\bigcup T) \times U)\)
by auto
then have \((x \in(\cup T) \times U \wedge y \notin(\bigcup T) \times U) \vee(y \in(\bigcup T) \times U \wedge x \notin(\cup T) \times U)\) using Pair_fst_snd_eq tot \((1,2)\) by auto
moreover have \((\bigcup T) \in T\) using assms(1) unfolding IsATopology_def by auto
with \(\langle U \in S\rangle\) have \((U T) \times U \in\) ProductTopology (\(T, S\)) using prod_open_open_prod
assms \((1,2)\) by auto
ultimately
have \(\exists V \in \operatorname{ProductTopology}(T, S) .(x \in V \wedge y \notin V) \vee(y \in V \wedge x \notin V)\) proof qed
\}moreover
note disj
ultimately have \(\exists V \in \operatorname{ProductTopology}(T, S) .(x \in V \wedge y \notin V) \vee(y \in V \wedge x \notin V)\)

\section*{by auto}
\}
then show thesis unfolding isT0_def by auto
qed
The product of \(T_{1}\) spaces is \(T_{1}\).
theorem T1_product:
assumes T\{is a topology\}S\{is a topology\}T\{is \(\left.\mathrm{T}_{1}\right\}\) S\{is \(\left.\mathrm{T}_{1}\right\}\)
shows ProductTopology (\(\mathrm{T}, \mathrm{S}\)) \{is \(\left.\mathrm{T}_{1}\right\}\)
proof-
\{
fix \(x\) y assume \(x \in \bigcup\) ProductTopology (\(\mathrm{T}, \mathrm{S}\)) \(\mathrm{y} \in \bigcup\) ProductTopology (\(\mathrm{T}, \mathrm{S}\)) \(\mathrm{x} \neq \mathrm{y}\)
then have tot: \(x \in \bigcup T \times \bigcup S y \in \bigcup T \times \bigcup S x \neq y\) using Top_1_4_T1(3) assms (1,2)
by auto
then have \(\langle f \operatorname{st}(x), \operatorname{snd}(x)\rangle \in \bigcup T \times \bigcup S\langle f s t(y), \operatorname{snd}(y)\rangle \in \bigcup T \times \bigcup S\) and disj:fst \((x) \neq f s t(y) \vee \operatorname{snd}(x\)
using Pair_fst_snd_eq by auto
then have \(T:\) fst \((x) \in \bigcup T f s t(y) \in \bigcup T\) and \(S: \operatorname{snd}(y) \in \bigcup S \sin (x) \in \bigcup S\) and \(\mathrm{p}: \mathrm{fst}(\mathrm{x}) \neq \mathrm{fst}(\mathrm{y}) \vee \operatorname{snd}(\mathrm{x}) \neq \operatorname{snd}(\mathrm{y})\)
by auto
\{
assume \(\mathrm{fst}(\mathrm{x}) \neq \mathrm{fst}(\mathrm{y})\)
with \(T\) assms (3) have (\(\exists \mathrm{U} \in \mathrm{T}\). (fst \((x) \in U \wedge f s t(y) \notin U)\)) unfolding isT1_def by auto
then obtain \(U\) where \(U \in T\) (fst \((x) \in U \wedge f s t(y) \notin U\)) by auto
with \(S\) have \((\langle f s t(x)\), snd \((x)\rangle \in U \times(\bigcup S) \wedge\langle f s t(y), \operatorname{snd}(y)\rangle \notin U \times(\cup S))\) by auto
then have \((x \in U \times(\bigcup S) \wedge y \notin U \times(\bigcup S))\) using Pair_fst_snd_eq tot (1,2)
by auto
moreover have (\(\bigcup S) \in S\) using assms(2) unfolding IsATopology_def by auto
with \(\langle U \in T\rangle\) have \(U \times(\bigcup S) \in\) ProductTopology (T,S) using prod_open_open_prod assms \((1,2)\) by auto
ultimately
have \(\exists \mathrm{V} \in \operatorname{ProductTopology}(\mathrm{T}, \mathrm{S}) .(\mathrm{x} \in \mathrm{V} \wedge \mathrm{y} \notin \mathrm{V})\) proof qed
\} moreover
\{
assume \(\operatorname{snd}(x) \neq\) snd (\(y\))
with \(S\) assms (4) have \((\exists \mathrm{U} \in \mathrm{S}\). (\(\operatorname{snd}(\mathrm{x}) \in \mathrm{U} \wedge\) snd \((\mathrm{y}) \notin \mathrm{U})\)) unfolding isT1_def by auto
then obtain \(U\) where \(U \in S(\operatorname{snd}(x) \in U \wedge\) snd \((y) \notin U)\) by auto
with \(T\) have \((\langle f s t(x), \operatorname{snd}(x)\rangle \in(\bigcup T) \times U \wedge\langle f s t(y), \operatorname{snd}(y)\rangle \notin(\bigcup T) \times U)\) by auto
then have \((x \in(\bigcup T) \times U \wedge y \notin(\bigcup T) \times U)\) using Pair_fst_snd_eq tot (1,2)
by auto
moreover have \((\bigcup T) \in T\) using assms(1) unfolding IsATopology_def by auto
with \(\langle\mathrm{U} \in \mathrm{S}\rangle\) have (\(\cup T) \times \mathrm{U} \in\) ProductTopology (T,S) using prod_open_open_prod assms \((1,2)\) by auto
ultimately
have \(\exists V \in \operatorname{ProductTopology}(T, S) .(x \in V \wedge y \notin V)\) proof qed
\}moreover
note disj
ultimately have \(\exists \mathrm{V} \in \operatorname{ProductTopology}(\mathrm{T}, \mathrm{S}) .(\mathrm{x} \in \mathrm{V} \wedge \mathrm{y} \notin \mathrm{V})\) by auto
\}
then show thesis unfolding isT1_def by auto qed

The product of \(T_{2}\) spaces is \(T_{2}\).
theorem T2_product:
assumes \(\mathrm{T}\left\{\right.\) is a topology\}S\{is a topology\}T\{is \(\left.\mathrm{T}_{2}\right\}\) S\{is \(\left.\mathrm{T}_{2}\right\}\)
shows ProductTopology (T,S) \{is \(\left.\mathrm{T}_{2}\right\}\)
proof-
\{
fix \(x\) y assume \(x \in \bigcup \operatorname{ProductTopology(T,S)y\in \bigcup ProductTopology(T,S)} x \neq y\)
then have tot: \(x \in \bigcup T \times \bigcup S y \in \bigcup T \times \bigcup S x \neq y\) using Top_1_4_T1(3) assms (1,2)
by auto
then have \(\langle f \operatorname{st}(x), \operatorname{snd}(x)\rangle \in \bigcup T \times \bigcup S\langle f s t(y)\), snd \((y)\rangle \in \bigcup T \times \bigcup S\) and disj:fst \((x) \neq f s t(y) \vee \operatorname{snd}(x)\)
using Pair_fst_snd_eq by auto
then have \(T: f s t(x) \in \bigcup T f s t(y) \in \bigcup T\) and \(S:\) snd \((y) \in \bigcup S s n d(x) \in \bigcup S\) and \(\mathrm{p}: \mathrm{fst}(\mathrm{x}) \neq \mathrm{fst}(\mathrm{y}) \vee \operatorname{snd}(\mathrm{x}) \neq \operatorname{snd}(\mathrm{y})\)
by auto
\{
assume fst (x) \(\neq \mathrm{fst}\) (y)
with \(T\) assms (3) have (\(\exists \mathrm{U} \in \mathrm{T} . \exists \mathrm{V} \in \mathrm{T}\). (fst \((\mathrm{x}) \in \mathrm{U} \wedge \mathrm{fst}(\mathrm{y}) \in \mathrm{V}) \wedge \mathrm{U} \cap \mathrm{V}=0\))

\section*{unfolding}
isT2_def by auto
then obtain \(U V\) where \(U \in T V \in T\) fst \((x) \in U\) fst \((y) \in V U \cap V=0\) by auto with \(S\) have \(\langle f s t(x)\), snd \((x)\rangle \in U \times(U S)\langle f s t(y)\), snd \((y)\rangle \in V \times(U S)\) and disjoint: \((U \times \bigcup S) \cap(V \times \bigcup S)=0\) by auto
then have \(x \in U \times(\bigcup S) y \in V \times(\bigcup S)\) using Pair_fst_snd_eq tot \((1,2)\) by
auto
moreover have (\(\cup S) \in S\) using assms(2) unfolding IsATopology_def by auto
with \(\langle U \in T\rangle\langle V \in T\rangle\) have \(P: U \times(U S) \in \operatorname{ProductTopology(T,S)} \mathrm{V} \times(U S) \in \operatorname{ProductTopology(T,S)}\)
using prod_open_open_prod assms \((1,2)\) by auto
note disjoint ultimately
have \(x \in U \times(\bigcup S) \wedge y \in V \times(\bigcup S) \wedge(U \times(U S)) \cap(V \times(U S))=0\) by auto
with \(P(2)\) have \(\exists U U \in\) ProductTopology (T,S). \((x \in U \times(U S) \wedge y \in U U \wedge\) \((U \times(U S)) \cap U U=0)\)
using exI[where \(\mathrm{x}=\mathrm{V} \times(\bigcup \mathrm{S})\) and \(\mathrm{P}=\lambda \mathrm{t}\). t \(\in \operatorname{ProductTopology}(\mathrm{T}, \mathrm{S}) \wedge\)
\((x \in U \times(\cup S) \wedge y \in t \wedge(U \times(U S)) \cap t=0)]\) by auto
with \(P(1)\) have \(\exists V V \in\) ProductTopology (T,S). \(\exists U U \in\) ProductTopology (T,S). \((x \in V V \wedge y \in U U \wedge V V \cap U U=0)\)
using exI[where \(x=U \times(\bigcup S)\) and \(P=\lambda t . t \in \operatorname{ProductTopology}(T, S) \wedge\) (\(\exists \mathrm{UU} \in \operatorname{ProductTopology}(\mathrm{T}, \mathrm{S}) .(\mathrm{x} \in \mathrm{t} \wedge \mathrm{y} \in \mathrm{UU} \wedge(\mathrm{t}) \cap \mathrm{UU}=0))]\) by auto
\} moreover
\{
assume snd \((x) \neq\) snd (\(y\))
with \(S\) assms (4) have (\(\exists \mathrm{U} \in \mathrm{S} . \exists \mathrm{V} \in \mathrm{S}\). (\(\operatorname{snd}(\mathrm{x}) \in \mathrm{U} \wedge\) snd \((\mathrm{y}) \in \mathrm{V}) \wedge \mathrm{U} \cap \mathrm{V}=0)\) unfolding
isT2_def by auto
then obtain \(U V\) where \(U \in S V \in S\) snd \((x) \in U\) snd \((y) \in V U \cap V=0\) by auto
with \(T\) have \(\langle f \operatorname{st}(x), \operatorname{snd}(x)\rangle \in(\bigcup T) \times U\langle\) fst \((y), \operatorname{snd}(y)\rangle \in(\cup T) \times V\) and disjoint: \(((\bigcup T) \times U) \cap((\bigcup T) \times V)=0\) by auto
then have \(x \in(\bigcup T) \times U y \in(\bigcup T) \times V\) using Pair_fst_snd_eq tot \((1,2)\) by
auto
moreover have \((\cup T) \in T\) using assms(1) unfolding IsATopology_def by auto
with \(\langle U \in S\rangle\langle V \in S\rangle\) have \(P:(\bigcup T) \times U \in \operatorname{ProductTopology}(T, S) \quad(\bigcup T) \times V \in \operatorname{ProductTopology}(T, S)\) using prod_open_open_prod assms \((1,2)\) by auto
note disjoint ultimately
have \(x \in(\bigcup T) \times U \wedge y \in(\bigcup T) \times V \wedge((\bigcup T) \times U) \cap((\bigcup T) \times V)=0\) by auto
with \(P(2)\) have \(\exists U U \in\) ProductTopology（T，S）．\((x \in(\cup T) \times U \wedge y \in U U \wedge\)
\(((\bigcup T) \times U) \cap U U=0)\)
using exI［where \(\mathrm{x}=(\bigcup \mathrm{T}) \times \mathrm{V}\) and \(\mathrm{P}=\lambda \mathrm{t}\) ．t \(\in \operatorname{ProductTopology(T,S)} \wedge\)
\((x \in(\bigcup T) \times U \wedge y \in t \wedge((\bigcup T) \times U) \cap t=0)]\) by auto
with \(P(1)\) have \(\exists V V \in \operatorname{ProductTopology(T,S).~\exists UU\in \operatorname {ProductTopology}(T,S).}\) \((x \in V V \wedge y \in U U \wedge V V \cap U=0)\)
using exI［where \(x=(\bigcup T) \times U\) and \(P=\lambda t\) ．t \(\in \operatorname{ProductTopology(T,S)~} \wedge\) （ \(\exists \mathrm{UU} \in \operatorname{ProductTopology}(\mathrm{T}, \mathrm{S}) .(\mathrm{x} \in \mathrm{t} \wedge \mathrm{y} \in \mathrm{UU} \wedge(\mathrm{t}) \cap \mathrm{UU}=0))]\) by auto
\} moreover
note disj
ultimately have \(\exists V V \in\) ProductTopology（T，S）．ヨUU \(\in\) ProductTopology（T， S）．\(x \in V V \wedge y \in U U \wedge V V \cap U U=0\) by auto \}
then show thesis unfolding isT2＿def by auto
qed
The product of regular spaces is regular．

\section*{theorem regular＿product：}
assumes T\｛is a topology\} S\{is a topology\} T\{is regular\} \(\mathrm{S}\{\mathrm{is}\) regular\}
shows ProductTopology（T，S）\｛is regular\}
proof－
\｛
fix \(x\) U assume \(x \in \bigcup\) ProductTopology（T，S）U \(\in\) ProductTopology（T，S）\(x \in U\)
then obtain \(V\) W where \(V W: V \in T W \in S ~ V \times W \subseteq U\) and \(x: x \in V \times W\) using prod＿top＿point＿neighb
```

                assms(1,2) by blast
    ```
then have \(p: f s t(x) \in \operatorname{Vsnd}(x) \in W\) by auto
from \(p(1)\langle V \in T\rangle\) obtain \(V V\) where \(V V: f s t(x) \in V V\) Closure（ \(V V, T) \subseteq V V V \in T\)
using
assms \((1,3)\) topology0．regular＿imp＿exist＿clos＿neig unfolding topology0＿def by force moreover
from \(p(2)\langle W \in S\rangle\) obtain \(W W\) where \(W W: s n d(x) \in W W\) Closure \((W W, S) \subseteq W W W \in S\) using
assms \((2,4)\) topology0．regular＿imp＿exist＿clos＿neig unfolding topology0＿def by force ultimately
have \(x \in V V \times W W\) using \(x\) by auto
moreover from 〈Closure \((V V, T) \subseteq V\) 〉 \(\langle\) Closure \((W W, S) \subseteq W\rangle\) have Closure（VV，\(T\) ）\(\times C l o s u r e(W W, S)\) \(\subseteq \mathrm{V} \times \mathrm{W}\)
by auto
moreover from \(V V(3)\) WW（3）have \(V V \subseteq \bigcup T W W \subseteq \bigcup S\) by auto
ultimately have \(x \in V V \times W W\) Closure（VV \(\times W W\) ，ProductTopology（T，S））\(\subseteq \mathrm{V} \times \mathrm{W}\)
using cl＿product assms \((1,2)\)
by auto
moreover have \(\mathrm{VV} \times W W \in \operatorname{ProductTopology}(T, S)\) using prod＿open＿open＿prod assms \((1,2)\)

VV（3）WW（3）by auto
ultimately have \(\exists \mathrm{Z} \in \operatorname{ProductTopology(T,S).~} x \in Z \wedge\) Closure（Z，ProductTopology（T，S））\(\subseteq V \times W\)

\section*{by auto}
with VW(3) have \(\exists \mathrm{Z} \in \operatorname{ProductTopology(T,S).~} x \in Z \wedge\) Closure (Z, ProductTopology (T,S)) \(\subseteq U\) by auto \}
then have \(\forall x \in \bigcup\) ProductTopology (T,S). \(\forall U \in \operatorname{ProductTopology(T,S).x\in U~} \longrightarrow\)
(\(\exists \mathrm{Z} \in \operatorname{ProductTopology}(\mathrm{T}, \mathrm{S}) . \mathrm{x} \in \mathrm{Z} \wedge\) Closure (Z, ProductTopology (\(T, S\))) \(\subseteq U\))
by auto
then show thesis using topology0.exist_clos_neig_imp_regular unfolding topologyO_def using assms \((1,2)\) Top_1_4_T1(1) by auto
qed

\subsection*{64.3 Connection properties in product space}

First, we prove that the projection functions are open.
lemma projection_open:
assumes \(T\) is a topology\}S\{is a topology\}B \(\in \operatorname{ProductTopology(T,S)~}\)
shows \(\{y \in \bigcup T . \exists x \in \bigcup S .\langle y, x\rangle \in B\} \in T\)

\section*{proof-}
\{
fix \(z\) assume \(z \in\{y \in \bigcup T . \exists x \in \bigcup S .\langle y, x\rangle \in B\}\)
then obtain \(x\) where \(x: x \in \bigcup S\) and \(z: z \in \bigcup T\) and \(p:\langle z, x\rangle \in B\) by auto
then have \(z \in\{y \in \bigcup T .\langle y, x\rangle \in B\}\{y \in \bigcup T .\langle y, x\rangle \in B\} \subseteq\{y \in \bigcup T . \exists x \in \bigcup S .\langle y, x\rangle \in B\}\)
by auto moreover
from \(x\) have \(\{y \in \bigcup T .\langle y, x\rangle \in B\} \in T\) using prod_sec_open2 assms by auto
ultimately have \(\exists \mathrm{V} \in \mathrm{T} . \mathrm{z} \in \mathrm{V} \wedge \mathrm{V} \subseteq\{\mathrm{y} \in \bigcup \mathrm{T} . \exists \mathrm{x} \in \bigcup \mathrm{S} .\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{B}\}\) unfolding
Bex_def by auto
\}
then show \(\{y \in \bigcup T . \exists x \in \bigcup S .\langle y, x\rangle \in B\} \in T\) using topology0.open_neigh_open
unfolding topology0_def
using assms(1) by blast
qed
lemma projection_open2:
assumes \(T\{i s\) a topology\}S\{is a topology\}B \(\in\) ProductTopology (\(T, S\))
shows \(\{y \in \bigcup S . \exists x \in \bigcup T .\langle x, y\rangle \in B\} \in S\)
proof-
\{
fix \(z\) assume \(z \in\{y \in \bigcup S . \exists x \in \bigcup T .\langle x, y\rangle \in B\}\)
then obtain \(x\) where \(x: x \in \bigcup T\) and \(z: z \in \bigcup S\) and \(p:\langle x, z\rangle \in B\) by auto
then have \(z \in\{y \in \bigcup S .\langle x, y\rangle \in B\} \quad\{y \in \bigcup S .\langle x, y\rangle \in B\} \subseteq\{y \in \bigcup S . \exists x \in \bigcup T .\langle x, y\rangle \in B\}\)
by auto moreover
from \(x\) have \(\{y \in \bigcup S .\langle x, y\rangle \in B\} \in S\) using prod_sec_open1 assms by auto
ultimately have \(\exists V \in S . z \in V \wedge V \subseteq\{y \in \bigcup S\). \(\exists x \in \bigcup T .\langle x, y\rangle \in B\}\) unfolding
Bex_def by auto
\}
then show \(\{y \in \bigcup S . \exists x \in \bigcup T .\langle x, y\rangle \in B\} \in S\) using topology0.open_neigh_open
unfolding topology0_def
using assms(2) by blast
qed
The product of connected spaces is connected.
theorem compact_product:
assumes T\{is a topology\}S\{is a topology\}T\{is connected\}S\{is connected\}
shows ProductTopology(T,S) \{is connected\}
proof-
\{
fix U assume U:U \(\operatorname{ProductTopology(T,S)~U\{ is~closed~in\} ProductTopology(T,S)~}\)
then have P:U \(\in\) ProductTopology (\(T, S\)) UProductTopology (\(T, S\))-U \(\in\) ProductTopology (\(T, S\))
unfolding IsClosed_def by auto
\{
fix \(s\) assume \(s: s \in \bigcup S\)
with \(P(1)\) have \(p:\{x \in \bigcup T .\langle x, s\rangle \in U\} \in T\) using prod_sec_open2 assms \((1,2)\)
by auto
from s \(P(2)\) have oop:\{y \(\in \bigcup T .\langle y, s\rangle \in(\bigcup\) ProductTopology (T, S) \(-U)\} \in T\)
using prod_sec_open2
assms \((1,2)\) by blast
then have \(\bigcup T-(\bigcup T-\{y \in \bigcup T .\langle y, s\rangle \in(\bigcup \operatorname{ProductTopology}(T, S)-U)\})=\{y \in \bigcup T\).
\(\langle y, s\rangle \in(\bigcup\) ProductTopology (T,S)-U) \} by auto
with oop have cl: (\(\bigcup T-\{y \in \bigcup T\). \(\langle y, s\rangle \in(\bigcup\) ProductTopology (\(T, S\))-U)\})
\{is closed in\}T unfolding IsClosed_def by auto
\{
fix t assume \(t \in \bigcup T-\{y \in \bigcup T .\langle y, s\rangle \in(\bigcup\) ProductTopology \((T, S)-U)\}\)
then have \(t t: t \in \bigcup T t \notin\{y \in \bigcup T\). \(\langle y, s\rangle \in(\bigcup\) ProductTopology \((T, S)-U)\}\)
by auto
then have \(\langle t, s\rangle \notin(\bigcup\) ProductTopology (T,S)-U) by auto
then have \(\langle\mathrm{t}, \mathrm{s}\rangle \in \mathrm{U} \vee\langle\mathrm{t}, \mathrm{s}\rangle \notin \bigcup\) ProductTopology \((\mathrm{T}, \mathrm{S})\) by auto
then have \(\langle t, s\rangle \in U \vee\langle t, s\rangle \notin \bigcup T \times \bigcup S\) using Top_1_4_T1(3) assms \((1,2)\)
by auto
with \(t t(1)\) s have \(\langle t, s\rangle \in U\) by auto
with \(t t(1)\) have \(t \in\{x \in \bigcup T .\langle x, s\rangle \in U\}\) by auto
\} moreover
\{
fix \(t\) assume \(t \in\{x \in \bigcup T .\langle x, s\rangle \in U\}\)
then have \(t t: t \in \bigcup T\langle t, s\rangle \in U\) by auto
then have \(\langle t, s\rangle \notin \bigcup\) ProductTopology (T,S)-U by auto
then have \(\mathrm{t} \notin\{\mathrm{y} \in \bigcup \mathrm{T} .\langle\mathrm{y}, \mathrm{s}\rangle \in(\bigcup\) ProductTopology \((\mathrm{T}, \mathrm{S})-\mathrm{U})\}\) by auto
with \(\mathrm{tt}(1)\) have \(\mathrm{t} \in \bigcup \mathrm{T}-\{\mathrm{y} \in \bigcup \mathrm{T} .\langle\mathrm{y}, \mathrm{s}\rangle \in(\bigcup\) ProductTopology \((\mathrm{T}, \mathrm{S})-\mathrm{U})\}\)
by auto
\}
ultimately have \(\{x \in \bigcup T .\langle x, s\rangle \in U\}=\bigcup T-\{y \in \bigcup T .\langle y, s\rangle \in(\bigcup\) ProductTopology \((T, S)-U)\}\)
by blast
with cl have \(\{x \in \bigcup T\). \(\langle x, s\rangle \in U\}\{\) is closed in\}T by auto
with \(p\) assms (3) have \(\{x \in \bigcup T .\langle x, s\rangle \in U\}=0 \vee\{x \in \bigcup T .\langle x, s\rangle \in U\}=\bigcup T\)
unfolding IsConnected_def
by auto moreover
\{
assume \(\{x \in \bigcup T .\langle x, s\rangle \in U\}=0\)
```

            then have }\forallx\in\bigcupT. \langlex,s\rangle\not\inU by aut
        }
        moreover
        {
            assume AA:{x\in\bigcupT. \langlex,s\rangle\inU}=\bigcupT
            {
            fix x assume }x\in\bigcup
            with AA have }x\in{x\in\bigcupT. \langlex,s\rangle\inU} by aut
            then have }\langlex,s\rangle\inU by aut
        }
        then have }\forallx\in\bigcupT. \langlex,s\rangle\inU by aut
    }
    ultimately have ( }\forall\textrm{x}\in\bigcup\textrm{\}.\langle\textrm{x},\textrm{s}\rangle\not\in\textrm{U})\vee(\forall\textrm{x}\in\bigcup\textrm{T}.\langlex,s\rangle\inU) by blas
    }
    then have reg: }\forall\textrm{s}\in\bigcup\S.(\forallx\in\bigcupT. \langlex,s\rangle\not\inU)\vee(\forallx\in\bigcupT. \langlex,s\rangle\inU) by aut
    {
        fix q assume qU:q\in\T T { snd(qq). qq\inU}
        then obtain t u where t:t\in\bigcupT u\inU q=\langlet, snd (u)\rangle by auto
        with U(1) have u\in\ ProductTopology(T,S) by auto
        then have u\in\bigcupT\times\bigcupS using Top_1_4_T1(3) assms(1,2) by auto more-
    over
then have uu:u=\langlefst(u),snd(u)\rangle using Pair_fst_snd_eq by auto ul-
timately
have fu:fst(u)\in\bigcupTsnd(u)\in\bigcupS by (safe,auto)
with reg have ( }\forall\textrm{tt}\in\bigcup\.\langlett,\operatorname{snd}(u)\rangle\not\inU)\vee(\foralltt\in\bigcupT. \langlett, snd (u)\rangle\inU
by auto
with }\langleu\inU\rangle\mathrm{ uu fu(1) have }\foralltt\in\bigcupT. \langlett, snd(u)\rangle\inU by forc
with }t(1,3) have q\inU by aut
}
then have U1:UT\times{snd(qq). qq\inU}\subseteqU by auto
{
fix t assume t:t\in\T
with P(1) have p:{x\in\bigcupS. \langlet,x\rangle\inU}\inS using prod_sec_open1 assms(1,2)
by auto
from t P(2) have oop:{x\in\S. \langlet, x\rangle\in(\bigcupProductTopology(T,S)-U)}\inS
using prod_sec_open1
assms(1,2) by blast
then have \S-(\bigcupS-{x\in\S. \langlet,x\rangle\in(\bigcupProductTopology(T,S)-U)})={y\in\bigcupS.
\langlet,y\rangle\in(UProductTopology(T,S)-U)} by auto
with oop have cl:(\bigcupS-{y\in\S. \langlet,y\rangle\in(\bigcupProductTopology(T,S)-U)})
{is closed in}S unfolding IsClosed_def by auto
{
fix s assume s\in\S-{y\in\S. \langlet,y\rangle\in(\bigcupProductTopology(T,S)-U)}
then have tt:s\in\bigcupS s\not\in{y\in\bigcupS.\langlet,y\rangle\in(\bigcupProductTopology(T,S)-U)}
by auto
then have }\langle\textrm{t},\textrm{s}\rangle\not\in(\bigcup\mathrm{ ProductTopology(T,S)-U) by auto
then have }\langle\textrm{t},\textrm{s}\rangle\in\textrm{U}\vee\langle\langlet,s\rangle\not\in\bigcup\mathrm{ ProductTopology(T,S) by auto
then have }\langlet,s\rangle\inU\vee\langlet,s\rangle\not\in\bigcupT\times\bigcupS using Top_1_4_T1(3) assms(1,2
by auto

```
```

            with tt(1) t have }\langlet,s\rangle\inU by aut
            with tt(1) have s\in{x\in\S. \langlet,x\rangle\inU} by auto
    } moreover
    {
            fix s assume s\in{x\in\S. \langlet,x\rangle\inU}
            then have tt:s\in\S <t,s\rangle\inU by auto
            then have }\langlet,s\rangle\not\in\bigcup\mathrm{ ProductTopology(T,S)-U by auto
            then have s}\not\in{y\in\bigcupS.\langlet,y\rangle\in(\bigcupProductTopology(T,S)-U)} by aut
            with tt(1) have s\in\S-{y\in\S. \langlet,y\rangle\in(\bigcupProductTopology(T,S)-U)}
    by auto
}
ultimately have {x\in\S. \langlet,x\rangle\inU}=\bigcupS-{y\in\bigcupS. \langlet,y\rangle\in(\bigcupProductTopology(T,S)-U)}
by blast
with cl have {x\in\S. \langlet,x\rangle\inU}{is closed in}S by auto
with p assms(4) have {x\in\S. \langlet,x\rangle\inU}=0 V {x\in\bigcupS. \langlet,x\rangle\inU}=<br>S
unfolding IsConnected_def
by auto moreover
{
assume {x\in\bigcupS. }\langlet,x\rangle\inU}=
then have }\forallx\in\bigcupS.\langlet,x\rangle\not\inU by aut
}
moreover
{
assume AA:{x\in\S. \langlet,x\rangle\inU}=\bigcupS
{
fix x assume }x\in\bigcup
with AA have }x\in{x\in\bigcupS. \langlet,x\rangle\inU} by aut
then have }\langlet,x\rangle\inU by aut
}
then have }\forallx\in\bigcupS. \langlet,x\rangle\inU by aut
}
ultimately have ( }\forall\textrm{x}\in\bigcup\S.\langlet,x\rangle\not\inU)\vee(\forall\textrm{x}\in\bigcup\textrm{S}.\langle\textrm{t},\textrm{x}\rangle\in\textrm{U})\mathrm{ by blast
}
then have reg:\foralls\in\bigcupT. ( }\forall\textrm{x}\in\bigcup<br>S.\langles,x\rangle\not\inU) V(\forallx\in\bigcupS.\langles,x\rangle\inU) by aut
{
fix q assume qU:q\in{fst(qq). qq\inU} }\times<br>
then obtain qq s where t:q=\langlefst(qq),s\rangle qq\inU s\in\S by auto
with U(1) have qq\in\ ProductTopology(T,S) by auto
then have qq\in\T\times\bigcupS using Top_1_4_T1(3) assms(1,2) by auto more-
over
then have qq:qq=\langlefst(qq),snd(qq)\rangle using Pair_fst_snd_eq by auto
ultimately
have fq:fst(qq) \in<br>snd(qq) \in\S by (safe,auto)
from fq(1) reg have ( }\forall\textrm{tt}\in\bigcup\S.\langlefst(qq),tt\rangle\not\inU)V(\foralltt\in\bigcupS. \langlefst(qq),tt\rangle\inU
by auto moreover
with \langleqq\inU\rangle qq fq(2) have }\foralltt\in\bigcupS. \langlefst(qq),tt\rangle\inU by forc
with }t(1,3) have q\inU by aut
}
then have U2:{fst(qq). qq\inU} }\times\S\subseteqU by blas

```
```

    {
        assume U\not=0
        then obtain u where u:u\inU by auto
        {
            fix aa assume aa\in\T\times\bigcupS
            then obtain t s where t\in\Ts\in\Saa=\langlet,s\rangle by auto
            with u have <t,snd(u)\rangle\in\bigcup\T\times{snd(qq). qq\inU} by auto
            with U1 have }\langlet,\operatorname{snd}(u)\rangle\inU by aut
            moreover have t=fst(\langlet,snd(u)\rangle) by auto moreover note <s\in\S\rangle
    ultimately
have }\langlet,s\rangle\in{fst(qq). qq\inU}\times\bigcupS by blas
with U2 have \langlet,s\rangle\inU by auto
with }\langle\textrm{aa}=\langle\textrm{t},\textrm{s}\rangle\rangle\mathrm{ have aa}\in\textrm{U}\mathrm{ by auto
}
then have \T\times\bigcupS\subseteqU by auto moreover
with U(1) have U\subseteq\ProductTopology(T,S) by auto ultimately
have \T\times\bigcupS=U using Top_1_4_T1(3) assms(1,2) by auto
}
then have (U=0)\vee(U=\bigcupT\times\bigcupS) by auto
}
then show thesis unfolding IsConnected_def using Top_1_4_T1(3) assms(1,2)
by auto
qed
end

```

\section*{65 Topology 11}
theory Topology_ZF_11 imports Topology_ZF_7 Finite_ZF_1
begin
This file deals with order topologies. The order topology is already defined in Topology_ZF_examples_1.thy.

\subsection*{65.1 Order topologies}

We will assume most of the time that the ordered set has more than one point. It is natural to think that the topological properties can be translated to properties of the order; since every order rises one and only one topology in a set.

\subsection*{65.2 Separation properties}

Order topologies have a lot of separation properties.
Every order topology is Hausdorff.

\section*{theorem order_top_T2:}
assumes IsLinOrder (\(X, r\)) \(\exists x\) y. \(x \neq y \wedge x \in X \wedge y \in X\)
shows (OrdTopology \(X\) r) \{is \(\left.T_{2}\right\}\)
proof-
\{
fix \(x\) y assume A1: \(x \in \bigcup\) (OrdTopology X r) \(y \in \bigcup\) (OrdTopology X r) \(x \neq y\)
then have AS: \(x \in X y \in X x \neq y\) using union_ordtopology[OF assms(1) assms(2)]
by auto

assume \(A 2: \exists \mathrm{z} \in \mathrm{X}-\{\mathrm{x}, \mathrm{y}\} . \quad(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{x}, \mathrm{z}\rangle \in \mathrm{r} \wedge\langle\mathrm{z}, \mathrm{y}\rangle \in \mathrm{r}) \wedge(\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{r} \longrightarrow\langle\mathrm{y}, \mathrm{z}\rangle \in \mathrm{r} \wedge\langle\mathrm{z}, \mathrm{x}\rangle \in \mathrm{r})\)
from AS (1,2) assms(1) have \(\langle x, y\rangle \in r \vee\langle y, x\rangle \in r\) unfolding IsLinOrder_def
IsTotal_def by auto moreover
\{
assume \(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{r}\)
with AS A2 obtain \(z\) where \(z:\langle x, z\rangle \in r\langle z, y\rangle \in r z \in X z \neq x z \neq y\) by auto
with AS \((1,2)\) have \(x \in \operatorname{LeftRayX}(X, r, z) y \in \operatorname{RightRayX}(X, r, z)\) unfold-
ing LeftRayX_def RightRayX_def
by auto moreover
have LeftRayX(X,r,z) \(\cap \operatorname{RightRayX}(X, r, z)=0\) using inter_lray_rray[OF
\(z(3) z(3)\) assms (1)]
unfolding IntervalX_def using Order_ZF_2_L4[OF total_is_refl
_ \(z(3)]\) assms(1) unfolding IsLinOrder_def
by auto moreover
have LeftRayX \((X, r, z) \in(O r d T o p o l o g y ~ X ~ r) R i g h t R a y X(X, r, z) \in(O r d T o p o l o g y ~\)
X r)
using \(z(3)\) base_sets_open [OF Ordtopology_is_a_topology (2) [OF
assms(1)]] by auto
ultimately have \(\exists \mathrm{U} \in(\) OrdTopology X r). \(\exists \mathrm{V} \in(\) OrdTopology X r). \(\mathrm{x} \in \mathrm{U}\)
\(\wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto
\}
moreover
\{
assume \(\langle y, x\rangle \in r\)
with AS A2 obtain \(z\) where \(z:\langle y, z\rangle \in r\langle z, x\rangle \in r z \in X z \neq x z \neq y\) by auto
with \(\operatorname{AS}(1,2)\) have \(y \in \operatorname{LeftRayX}(X, r, z) x \in \operatorname{RightRayX}(X, r, z)\) unfold-
ing LeftRayX_def RightRayX_def
by auto moreover
have LeftRayX(X,r,z) \(\cap\) RightRayX \((X, r, z)=0\) using inter_lray_rray[OF \(z(3) z(3)\) assms(1)]
unfolding IntervalX_def using Order_ZF_2_L4[OF total_is_refl
_ \(z(3)]\) assms(1) unfolding IsLinOrder_def
by auto moreover
have LeftRayX(X,r,z) \((\) OrdTopology X r)RightRayX \((X, r, z) \in(O r d T o p o l o g y\)
X r)
```

                    using z(3) base_sets_open[OF Ordtopology_is_a_topology(2)[0F
    ```
assms(1)]] by auto
 \(\wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto
\}
ultimately have \(\exists \mathrm{U} \in(\) OrdTopology X r). \(\exists \mathrm{V} \in(\) OrdTopology X r). \(\mathrm{x} \in \mathrm{U}\)
```

^ y\inV ^ U\capV=O by auto
}
moreover
{
assume A2:\forallz\inX - {x, y}. (\langlex, y\rangle\in r ^ (\langlex, z\rangle\not\in r V \langlez, y\rangle\not\in r))
V (\langley, x\rangle\inr ^ ( <y, z\rangle\not\inr v <z, x\rangle\not\in r))
from AS(1,2) assms(1) have disj:\langlex,y\rangle\inrV\langley,x\rangle\inr unfolding IsLinOrder_def
IsTotal_def by auto moreover
{
assume TT: }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r
with AS assms(1) have T:\langley,x\rangle\not\inr unfolding IsLinOrder_def antisym_def
by auto
from TT AS(1-3) have x\inLeftRayX(X,r,y) y\inRightRayX(X,r,x) un-
folding LeftRayX_def RightRayX_def
by auto moreover
{
fix z assume z\inLeftRayX(X,r,y)\capRightRayX(X,r,x)
then have }\langle\textrm{z},\textrm{y}\rangle\in\textrm{r}\langle\textrm{x},\textrm{z}\rangle\in\textrm{rz}\in\textrm{X}-{\textrm{x},\textrm{y}
by auto
with A2 T have False by auto
}
then have LeftRayX(X,r,y)\capRightRayX(X,r,x)=0 by auto moreover
have LeftRayX(X,r,y)\in(OrdTopology X r)RightRayX(X,r,x)\in(OrdTopology
X r)
using base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]]
AS by auto
ultimately have \existsU\in(OrdTopology X r). \existsV\in(OrdTopology X r). x\inU
^ y\inV ^ U\capV=0 by auto
}
moreover
{
assume TT: }\langle\textrm{y},\textrm{x}\rangle\in\textrm{r
with AS assms(1) have T:\langlex,y\rangle\not\inr unfolding IsLinOrder_def antisym_def
by auto
from TT AS(1-3) have y\inLeftRayX(X,r,x)x\inRightRayX(X,r,y) un-
folding LeftRayX_def RightRayX_def
by auto moreover
{
fix z assume z\inLeftRayX(X,r,x) \capRightRayX(X,r,y)
then have }\langle\textrm{z},\textrm{x}\rangle\in\textrm{r}\langle\textrm{y},\textrm{z}\rangle\in\textrm{rz}\in\textrm{X}-{\textrm{x},\textrm{y}
by auto
with A2 T have False by auto
}
then have LeftRayX(X,r,x) \capRightRayX(X,r,y)=0 by auto moreover
have LeftRayX(X,r,x)\in(OrdTopology X r)RightRayX(X,r,y)\in(OrdTopology
X r)
using base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]]
AS by auto

```
ultimately have \(\exists \mathrm{U} \in(\) OrdTopology \(X\) r). \(\exists \mathrm{V} \in(\) OrdTopology \(X\) r). \(\mathrm{x} \in \mathrm{U}\)
\(\wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto
\}
ultimately have \(\exists \mathrm{U} \in(\) OrdTopology \(X\) r). \(\exists \mathrm{V} \in(\) OrdTopology X r). \(\mathrm{x} \in \mathrm{U}\)
\(\wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto \}
ultimately have \(\exists \mathrm{U} \in\) (OrdTopology X r). \(\exists \mathrm{V} \in\) (OrdTopology X r). \(\mathrm{x} \in \mathrm{U}\)
\(\wedge \mathrm{y} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0\) by auto
\}
then show thesis unfolding isT2_def by auto qed

Every order topology is \(T_{4}\), but the proof needs lots of machinery. At the end of the file, we will prove that every order topology is normal; sooner or later.

\subsection*{65.3 Connectedness properties}

Connectedness is related to two properties of orders: completeness and density

Some order-dense properties:
```

definition
IsDenseSub (_ {is dense in}_{with respect to}_) where
A {is dense in}X{with respect to}r \equiv
\forallx\inX. }\forall\textrm{y}\in\textrm{X}.\langlex,y\rangle\in\textrm{r}\wedge x\not=y \longrightarrow(\existsz\inA-{x,y}. \langlex,z\rangle\inr^\langlez,y\rangle\inr

```
```

definition
IsDenseUnp (_ {is not-properly dense in}_{with respect to}_) where
A {is not-properly dense in}X{with respect to}r \equiv
\forallx\inX. \forally\inX. \langlex,y\rangle\inr ^ x\not=y \longrightarrow (\existsz\inA. \langlex,z\rangle\inr^\langlez,y\rangle\inr)
definition
IsWeaklyDenseSub (_ {is weakly dense in}_{with respect to}_) where
A {is weakly dense in}X{with respect to}r \equiv
\forallx\inX.}\forall\textrm{y}\in\textrm{X}.\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\wedge<br>textrm{x}\not=\textrm{y}\longrightarrow\longrightarrow((\exists\textrm{z}\in\textrm{A}-{\textrm{x},\textrm{y}}.{\textrm{x},\textrm{z}\rangle\in\textrm{r}\wedge\langle\textrm{z},\textrm{y}\rangle\in\textrm{r})\vee\mathrm{ IntervalX (X,r,x,y)=0)
definition
IsDense (_ {is dense with respect to}_) where
X {is dense with respect to}r \equiv
\forallx\inX. }\forall\textrm{y}\in\textrm{X}.\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\wedge\textrm{x}\not=\textrm{y}->\longrightarrow(\exists\textrm{z}\in\textrm{X}-{\textrm{x},\textrm{y}}.\langle\textrm{x},\textrm{z}\rangle\in\textrm{r}\wedge\langle\textrm{z},\textrm{y}\rangle\in\textrm{r}
lemma dense_sub:
shows (X {is dense with respect to}r) \longleftrightarrow(X {is dense in}X{with respect
to}r)
unfolding IsDenseSub_def IsDense_def by auto
lemma not_prop_dense_sub:

```
shows (A \{is dense in\}X\{with respect to\}r) \(\longrightarrow\) (A \{is not-properly dense in\}X\{with respect to\}r)
unfolding IsDenseSub_def IsDenseUnp_def by auto
In densely ordered sets, intervals are infinite.
theorem dense_order_inf_intervals:
assumes IsLinOrder (\(\mathrm{X}, \mathrm{r}\)) IntervalX(X, r, b, \() \neq 0 \mathrm{~b} \in \mathrm{Xc} \in \mathrm{X} X\{i\) dense with
respect to\}r
shows \(\neg\) Finite(IntervalX(X, r, b, c))
proof
assume fin:Finite(IntervalX(X, r, b, c))
have sub:IntervalX (X, \(r, b, c) \subseteq X\) unfolding IntervalX_def by auto
have p:Minimum(r,IntervalX (X, r, b, c)) \(\in \operatorname{IntervalX}(X, r, b, c)\) using
Finite_ZF_1_T2(2) [OF assms(1) Finite_Fin[0F fin sub] assms(2)]
by auto
then have \(\langle\mathrm{b}, \operatorname{Minimum}(r, \operatorname{IntervalX}(X, r, b, c))\rangle \in r b \neq \operatorname{Minimum}(r\), IntervalX (X, r, b, c))
unfolding IntervalX_def using Order_ZF_2_L1 by auto
with assms (3,5) sub \(p\) obtain \(z 1\) where \(z 1: z 1 \in X z 1 \neq b z 1 \neq \operatorname{Minimum}(r, I n t e r v a l X(X\),
\(\mathrm{r}, \mathrm{b}, \mathrm{c}))\langle\mathrm{b}, \mathrm{z} 1\rangle \in \mathrm{r}\langle\mathrm{z} 1\), Minimum (r, IntervalX \((\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}))\rangle \in \mathrm{r}\)
unfolding IsDense_def by blast
from \(p\) have \(B:\langle\operatorname{Minimum}(r, \operatorname{IntervalX}(X, r, b, c)), c\rangle \in r\) unfolding IntervalX_def
using Order_ZF_2_L1 by auto moreover
have trans(r) using assms(1) unfolding IsLinOrder_def by auto more-
over
note \(\mathrm{z} 1(5)\) ultimately have \(\mathrm{z} 1 \mathrm{a}:\langle\mathrm{z} 1, \mathrm{c}\rangle \in \mathrm{r}\) unfolding trans_def by fast
\{
assume \(\mathrm{z} 1=\mathrm{c}\)
with \(B\) have \(\langle\operatorname{Minimum}(r\), IntervalX \((X, r, b, c)), z 1\rangle \in r\) by auto
with \(z 1(5)\) have \(z 1=\) Minimum(\(r\), IntervalX(X, \(r, b, c)\)) using assms(1)
unfolding IsLinOrder_def antisym_def by auto
then have False using \(z 1\) (3) by auto
\}
then have \(z 1 \neq c\) by auto
with \(z 1(1,2,4)\) z1a have \(z 1 \in \operatorname{IntervalX}(X, r, b, c)\) unfolding IntervalX_def
using Order_ZF_2_L1 by auto
then have \(\langle\operatorname{Minimum}(r\), IntervalX (X, r, b, c)), \(z 1\rangle \in r\) using Finite_ZF_1_T2(4) [OF assms(1) Finite_Fin[0F fin sub] assms(2)] by auto
with \(z 1\) (5) have \(z 1=\operatorname{Minimum}(r\), IntervalX(X, \(r, b, c)\)) using assms(1)
unfolding IsLinOrder_def antisym_def by auto
with \(\mathrm{z1}\) (3) show False by auto
qed
Left rays are infinite.
theorem dense_order_inf_lrays:
assumes \(\operatorname{IsLinOrder}(X, r) \operatorname{LeftRay} X(X, r, c) \neq 0 c \in X \quad X\{\) is dense with respect
to\}r
shows \(\neg\) Finite (LeftRayX \((X, r, c)\))
proof-
from assms (2) obtain \(b\) where \(b \in X\langle b, c\rangle \in r b \neq c\) unfolding LeftRayX_def by auto
with assms (3) obtain \(z\) where \(z \in X-\{b, c\}\langle b, z\rangle \in r\langle z, c\rangle \in r\) using assms (4) unfolding IsDense_def by auto
then have IntervalX (X, r, b, c) \(\neq 0\) unfolding IntervalX_def using Order_ZF_2_L1 by auto
then have nFIN: \(\neg\) Finite (IntervalX (X, r, b, c)) using dense_order_inf_intervals [OF assms(1) _ _ assms (3,4)]
(b \(\in \mathrm{X}\rangle\) by auto
\{
fix \(d\) assume \(d \in\) IntervalX (\(\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}\))
then have \(\langle b, d\rangle \in r\langle d, c\rangle \in r d \in X d \neq b d \neq c\) unfolding IntervalX_def using Order_ZF_2_L1
by auto
then have d \(\in \operatorname{LeftRay} X(X, r, c)\) unfolding LeftRayX_def by auto
\}
then have IntervalX (X, r, b, c) \(\subseteq\) LeftRay \(X(X, r, c)\) by auto
with nFIN show thesis using subset_Finite by auto
qed
Right rays are infinite.
theorem dense_order_inf_rrays:
assumes IsLinOrder \((X, r)\) RightRay \(X(X, r, b) \neq 0 b \in X \quad X\{i s\) dense with respect
to\}r
shows \(\neg\) Finite (RightRay \(X(X, r, b)\))
proof-
from assms(2) obtain \(c\) where \(c \in X\langle b, c\rangle \in r b \neq c\) unfolding RightRay \(X\) _def

\section*{by auto}
with assms (3) obtain \(z\) where \(z \in X-\{b, c\}\langle b, z\rangle \in r\langle z, c\rangle \in r\) using assms (4)
unfolding IsDense_def by auto
then have IntervalX (X, r, b, c) \(\neq 0\) unfolding IntervalX_def using Order_ZF_2_L1
by auto
then have nFIN: \(\neg\) Finite (IntervalX (X, r, b, c)) using dense_order_inf_intervals [OF assms(1) _ assms(3) _ assms(4)]
(c \(\in \mathrm{X}\) 〉 by auto
\{
fix d assume \(d \in\) IntervalX \((X, r, b, c)\)
then have \(\langle\mathrm{b}, \mathrm{d}\rangle \in \mathrm{r}\langle\mathrm{d}, \mathrm{c}\rangle \in \mathrm{rd} \in \mathrm{Xd} \neq \mathrm{bd} \neq \mathrm{c}\) unfolding IntervalX_def using Order_ZF_2_L1
by auto
then have \(d \in \operatorname{RightRay} X(X, r, b)\) unfolding RightRayX_def by auto
\}
then have IntervalX \((X, r, b, c) \subseteq \operatorname{RightRayX}(X, r, b)\) by auto
with nFIN show thesis using subset_Finite by auto
qed
The whole space in a densely ordered set is infinite.
```

corollary dense_order_infinite:
assumes IsLinOrder(X,r) X{is dense with respect to}r
\existsx y. x\not=y^x\inX^y\inX
shows }\neg\mathrm{ (X}\prec\mathrm{ nat)

```
```

proof-
from assms(3) obtain b c where B:b\inXc\inXb}=c\mathrm{ by auto
{
assume \langleb, c\rangle\not\inr
with assms(1) have \langlec,b\rangle\inr unfolding IsLinOrder_def IsTotal_def us-
ing \langleb\inX`\langlec\inX\rangle by auto         with assms(2) B obtain z where z z X - {b,c} <c,z\rangle\inr <z,b\rangle\inr unfolding IsDense_def by auto         then have IntervalX(X,r,c,b)\not=0 unfolding IntervalX_def using Order_ZF_2_L1 by auto         then have \neg(Finite(IntervalX(X,r,c,b))) using dense_order_inf_intervals[OF assms(1) _ \langlec\inX\\langleb\inX\rangle assms(2)]             by auto moreover         have IntervalX(X,r,c,b)\subseteqX unfolding IntervalX_def by auto         ultimately have \neg(Finite(X)) using subset_Finite by auto         then have }\neg\mathrm{ (X}\prec\mathrm{ nat) using lesspoll_nat_is_Finite by auto     }     moreover     {         assume \langleb, c\rangle\inr         with assms(2) B obtain z where z\inX-{b,c} {b,z\rangle\inr {z,c\rangle\inr unfolding IsDense_def by auto             then have IntervalX(X,r,b,c)\not=0 unfolding IntervalX_def using Order_ZF_2_L1 by auto             then have }\neg\mathrm{ (Finite(IntervalX(X,r,b,c))) using dense_order_inf_intervals[OF assms(1) _ \langleb\inX`<c\inX\rangle assms(2)]
by auto moreover
have IntervalX(X,r,b,c)\subseteqX unfolding IntervalX_def by auto
ultimately have }\neg\mathrm{ (Finite(X)) using subset_Finite by auto
then have }\neg\mathrm{ (X}\prec\mathrm{ nat) using lesspoll_nat_is_Finite by auto
}
ultimately show thesis by auto
qed

```

If an order topology is connected, then the order is complete. It is equivalent to assume that \(r \subseteq X \times X\) or prove that \(r \cap X \times X\) is complete.
theorem conn_imp_complete:
assumes IsLinOrder (X,r) \(\exists \mathrm{x}\) y. \(\mathrm{x} \neq \mathrm{y} \wedge \mathrm{x} \in \mathrm{X} \wedge \mathrm{y} \in \mathrm{X} \quad \mathrm{r} \subseteq \mathrm{X} \times \mathrm{X}\)
(OrdTopology X r) \{is connected\}
shows \(r\) \{is complete \(\}\)
proof-
\{
assume \(\neg(r\{i s\) complete\})
then obtain \(A\) where \(A: A \neq 0 I s B o u n d e d A b o v e(A, r) \neg(H a s A m i n i m u m(r, \bigcap b \in A\).
\(r\) \{b\})) unfolding
IsComplete_def by auto
from \(A(3)\) have \(r 1: \forall m \in \bigcap b \in A . r \quad\{b\} . \exists x \in \bigcap b \in A . r \quad\{b\} .\langle m, x\rangle \notin r\) un-
folding HasAminimum_def by force
from \(A(1,2)\) obtain \(b\) where \(r 2: \forall x \in A .\langle x, b\rangle \in r\) unfolding IsBoundedAbove_def by auto
with assms(3) \(A(1)\) have \(A \subseteq X b \in X\) by auto
with assms (3) have \(r 3: \forall c \in A . r \quad\{c\} \subseteq X\) using image_iff by auto
from \(r 2\) have \(\forall x \in A\). \(b \in r\{x\}\) using image_iff by auto
then have noE: \(b \in(\bigcap b \in A . r\{b\})\) using \(A(1)\) by auto
\{
fix \(x\) assume \(x \in(\bigcap b \in A\). \(r\{b\})\)
then have \(\forall c \in A . x \in r\{c\}\) by auto
with \(A(1)\) obtain \(c\) where \(c \in A x \in r\{c\}\) by auto
with \(r 3\) have \(x \in X\) by auto
\}
then have sub: \((\bigcap \mathrm{b} \in \mathrm{A} . \mathrm{r}\{\mathrm{b}\}) \subseteq \mathrm{X}\) by auto
\{
fix \(x\) assume \(x: x \in(\bigcap b \in A\). \(r\{b\})\)
with \(r 1\) have \(\exists z \in \bigcap b \in A . r \quad\{b\} .\langle x, z\rangle \notin r\) by auto
then obtain \(z\) where \(z: z \in(\bigcap b \in A . r\{b\})\langle x, z\rangle \notin r\) by auto
from \(x z(1)\) sub have \(x \in X z \in X\) by auto
with \(z(2)\) have \(\langle z, x\rangle \in r\) using assms(1) unfolding IsLinOrder_def IsTotal_def
by auto
then have \(\mathrm{xx}: \mathrm{x} \in \operatorname{RightRay} X(\mathrm{X}, \mathrm{r}, \mathrm{z})\) unfolding RightRayX_def using \(\langle\mathrm{x} \in \mathrm{X}\rangle\langle\langle\mathrm{x}, \mathrm{z}\rangle \notin \mathrm{r}\rangle\)
assms(1) unfolding IsLinOrder_def using total_is_refl unfold-
ing refl_def by auto
\{
fix \(m\) assume \(m \in \operatorname{RightRay} X(X, r, z)\)
then have \(m: m \in X-\{z\}\langle z, m\rangle \in r\) unfolding RightRayX_def by auto \{
fix c assume \(c \in A\)
with \(z(1)\) have \(\langle c, z\rangle \in r\) using image_iff by auto
with \(m(2)\) have \(\langle c, m\rangle \in r\) using assms(1) unfolding IsLinOrder_def
trans_def by fast
then have \(m \in r\{c\}\) using image_iff by auto
\}
with \(A(1)\) have \(m \in(\bigcap b \in A . r\{b\})\) by auto
\}
then have sub1:RightRayX \((X, r, z) \subseteq(\bigcap b \in A . r \quad\{b\})\) by auto
have RightRayX (\(X, r, z\)) \(\in\) (OrdTopology \(X\) r) using
base_sets_open[OF Ordtopology_is_a_topology(2) [0F assms(1)]] 〈z \(\in X\) X
by auto
with sub1 \(x x\) have \(\exists U \in(\) OrdTopology \(X r) . x \in U \wedge U \subseteq(\bigcap b \in A . r \quad\{b\})\)
by auto
\}
then have \((\bigcap b \in A . r \quad\{b\}) \in(O r d T o p o l o g y ~ X ~ r) ~ u s i n g ~ t o p o l o g y o . o p e n _n e i g h _o p e n[0 F ~\) topology0_ordtopology[0F assms(1)]]
by auto moreover
\{
fix \(x\) assume \(x \in X-(\bigcap b \in A\). \(r \quad\{b\})\)
then have \(x \in X x \notin(\bigcap b \in A . r \quad\{b\})\) by auto
with \(A(1)\) obtain \(b\) where \(x \notin r\{b\} b \in A\) by auto
then have \(\langle\mathrm{b}, \mathrm{x}\rangle \notin \mathrm{r}\) using image_iff by auto
with \(\langle\mathrm{A} \subseteq \mathrm{X}\rangle\langle\mathrm{b} \in \mathrm{A}\rangle\langle\mathrm{x} \in \mathrm{X}\rangle\) have \(\langle\mathrm{x}, \mathrm{b}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def IsTotal_def by auto
then have \(x: x \in \operatorname{LeftRay} X(X, r, b)\) unfolding LeftRayX_def using \(\langle x \in X\rangle\) \(\langle\langle\mathrm{b}, \mathrm{x}\rangle \notin \mathrm{r}\rangle\)
assms(1) unfolding IsLinOrder_def using total_is_refl unfold-
ing refl_def by auto
\{
fix y assume \(y \in \operatorname{LeftRayX}(X, r, b) \cap(\bigcap b \in A . r \quad\{b\})\)
then have \(y \in X-\{b\}\langle y, b\rangle \in r \forall c \in A . y \in r\{c\}\) unfolding LeftRayX_def by
auto
then have \(\mathrm{y} \in \mathrm{X}\langle\mathrm{y}, \mathrm{b}\rangle \in \mathrm{r} \forall \mathrm{c} \in \mathrm{A} .\langle\mathrm{c}, \mathrm{y}\rangle \in \mathrm{r}\) using image_iff by auto
with \(\langle b \in A\rangle\) have \(y=b\) using assms(1) unfolding IsLinOrder_def antisym_def
by auto
then have False using \(\langle y \in X-\{b\}\rangle\) by auto
\}
then have sub1:LeftRay \((X, r, b) \subseteq X-(\bigcap b \in A . r(b\})\) unfolding LeftRayX_def by auto

base_sets_open[OF Ordtopology_is_a_topology (2) [OF assms(1)]] 〈b \(\in A\rangle\langle A \subseteq X\rangle\)
by blast
with sub1 \(x x\) have \(\exists U \in(0 r d T o p o l o g y ~ X r) . ~ x \in U \wedge U \subseteq X-(\bigcap b \in A . r \quad\{b\})\)
by auto
\}
then have \(\mathrm{X}-(\bigcap \mathrm{b} \in \mathrm{A} . \mathrm{r}\{\mathrm{b}\}) \in(\) OrdTopology X r) using topology0.open_neigh_open[0F topology0_ordtopology[0F assms(1)]]
by auto
then have \(\bigcup\) (OrdTopology \(X r)-(\bigcap b \in A . r \quad\{b\}) \in(\) OrdTopology X r) using union_ordtopology[0F assms (1,2)] by auto
then have (\(\bigcap \mathrm{b} \in \mathrm{A}\). \(\mathrm{r}\{\mathrm{b}\}\)) \{is closed in\}(OrdTopology X r) unfolding IsClosed_def using union_ordtopology [0F assms(1,2)]
sub by auto
moreover note assms(4) ultimately
have \((\bigcap b \in A . r \quad\{b\})=0 \vee(\bigcap b \in A . r \quad\{b\})=X\) using union_ordtopology [OF assms \((1,2)\)] unfolding IsConnected_def
by auto
then have \(\mathrm{e} 1:(\bigcap \mathrm{b} \in \mathrm{A} . \mathrm{r}\{\mathrm{b}\})=\mathrm{X}\) using noE by auto
then have \(\forall \mathrm{x} \in \mathrm{X} . \forall \mathrm{b} \in \mathrm{A} . \mathrm{x} \in \mathrm{r}\{\mathrm{b}\}\) by auto
then have \(\mathrm{r} 4: \forall \mathrm{x} \in \mathrm{X} . \forall \mathrm{b} \in \mathrm{A} .\langle\mathrm{b}, \mathrm{x}\rangle \in \mathrm{r}\) using image_iff by auto
\{
fix a1 a2 assume aA:a1 \(\in \operatorname{Aa} 2 \in \mathrm{Aa} 1 \neq \mathrm{a} 2\)
with \(\langle A \subseteq X\rangle\) have \(a X: a 1 \in X a 2 \in X\) by auto
with \(r 4 a A(1,2)\) have \(\langle a 1, a 2\rangle \in r\langle a 2, a 1\rangle \in r\) by auto
then have a1=a2 using assms(1) unfolding IsLinOrder_def antisym_def
by auto
with \(\mathrm{aA}(3)\) have False by auto
\}
moreover
from \(A(1)\) obtain \(t\) where \(t \in A\) by auto
ultimately have \(A=\{t\}\) by auto
with \(r 4\) have \(\forall x \in X\). \(\langle t, x\rangle \in r t \in X\) using \(\langle A \subseteq X\rangle\) by auto
then have HasAminimum (\(r, X\)) unfolding HasAminimum_def by auto
with e1 have HasAminimum (\(r, \bigcap b \in A . r(b\})\) by auto
with A(3) have False by auto
\}
then show thesis by auto
qed
If an order topology is connected, then the order is dense.
theorem conn_imp_dense:
assumes IsLin0rder (X,r) \(\exists \mathrm{x}\) y. \(\mathrm{x} \neq \mathrm{y} \wedge \mathrm{x} \in \mathrm{X} \wedge \mathrm{y} \in \mathrm{X}\)
(OrdTopology X r)\{is connected\}
shows \(X\) \{is dense with respect to\}r
proof-
\{
assume \(\neg\) (X \{is dense with respect to\}r)
then have \(\exists \mathrm{x} 1 \in \mathrm{X} . \exists \mathrm{x} 2 \in \mathrm{X} .\langle\mathrm{x} 1, \mathrm{x} 2\rangle \in \mathrm{r} \wedge \mathrm{x} 1 \neq \mathrm{x} 2 \wedge(\forall \mathrm{z} \in \mathrm{X}-\{\mathrm{x} 1, \mathrm{x} 2\} .\langle\mathrm{x} 1, \mathrm{z}\rangle \notin \mathrm{r} \vee\langle\mathrm{z}, \mathrm{x} 2\rangle \notin \mathrm{r})\)
unfolding IsDense_def by auto
then obtain x 1 x 2 where \(\mathrm{x}: \mathrm{x} 1 \in \mathrm{Xx} 2 \in \mathrm{X}\langle\mathrm{x} 1, \mathrm{x} 2\rangle \in \mathrm{rx} 1 \neq \mathrm{x} 2(\forall \mathrm{z} \in \mathrm{X}-\{\mathrm{x} 1, \mathrm{x} 2\} .\langle\mathrm{x} 1, \mathrm{z}\rangle \notin \mathrm{r} \vee\langle\mathrm{z}, \mathrm{x} 2\rangle \notin \mathrm{r})\)
by auto
from \(x(1,2)\) have P:LeftRayX(X,r,x2) \((\) OrdTopology X r)RightRayX \((X, r, x 1) \in\) (OrdTopology X r)
using base_sets_open[0F Ordtopology_is_a_topology(2)[0F assms(1)]]
by auto
\{
fix \(x\) assume \(x \in X\)-LeftRay \(X(X, r, x 2)\)
then have \(x \in X \quad x \notin \operatorname{LeftRay} X(X, r, x 2)\) by auto
then have \(\langle\mathrm{x}, \mathrm{x} 2\rangle \notin \mathrm{r} \vee \mathrm{x}=\mathrm{x} 2\) unfolding LeftRay \(X\) _def by auto
then have \(\langle x 2, x\rangle \in r \vee x=x 2\) using assms (1) \(\langle x \in X\rangle\langle x 2 \in X\rangle\) unfolding IsLinOrder_def
IsTotal_def by auto
then have \(\mathrm{s}:\langle\mathrm{x} 2, \mathrm{x}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def using total_is_refl \(\langle x 2 \in \mathrm{X}\))
unfolding refl_def by auto
with \(\mathrm{x}(3)\) have \(\langle\mathrm{x} 1, \mathrm{x}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def
trans_def by fast
then have \(x=x 1 \vee x \in \operatorname{RightRay} X(X, r, x 1)\) unfolding RightRayX_def using \(\langle x \in X\rangle\) by auto
with \(s\) have \(\langle x 2, x 1\rangle \in r \vee x \in \operatorname{RightRay} X(X, r, x 1)\) by auto
with \(x(3)\) have \(x 1=x 2 \vee x \in R i g h t R a y X(X, r, x 1)\) using assms(1) unfold-
ing IsLinOrder_def
antisym_def by auto
with \(x(4)\) have \(x \in \operatorname{RightRayX}(X, r, x 1)\) by auto
\}
then have \(X\)-LeftRay \(X(X, r, x 2) \subseteq \operatorname{RightRay} X(X, r, x 1)\) by auto moreover \{
fix \(x\) assume \(x \in \operatorname{RightRay} X(X, r, x 1)\)
then have \(\mathrm{xr}: \mathrm{x} \in \mathrm{X}-\{\mathrm{x} 1\}\langle\mathrm{x} 1, \mathrm{x}\rangle \in \mathrm{r}\) unfolding RightRayX_def by auto \{
```

                assume x\inLeftRayX(X,r,x2)
                    then have xl:x\inX-{x2}\langlex,x2\rangle\inr unfolding LeftRayX_def by auto
            from xl xr x(5) have False by auto
        }
        with xr(1) have x\inX-LeftRayX(X,r,x2) by auto
    }
    ultimately have RightRayX(X,r,x1)=X-LeftRayX(X,r,x2) by auto
    then have LeftRayX(X,r,x2){is closed in}(OrdTopology X r) using P(2)
    union_ordtopology[
OF assms(1,2)] unfolding IsClosed_def LeftRayX_def by auto
with P(1) have LeftRayX(X,r,x2)=OVLeftRayX(X,r,x2)=X using union_ordtopology[
OF assms(1,2)] assms(3) unfolding IsConnected_def by auto
with x(1,3,4) have LeftRayX(X,r,x2)=X unfolding LeftRayX_def by auto
then have x2\inLeftRayX(X,r,x2) using x(2) by auto
then have False unfolding LeftRayX_def by auto
}
then show thesis by auto
qed

```

Actually a connected order topology is one that comes from a dense and complete order.

First a lemma. In a complete ordered set, every non-empty set bounded from below has a maximum lower bound.
```

lemma complete_order_bounded_below:
assumes r{is complete} IsBoundedBelow(A,r) A\not=0 r\subseteqX X X
shows HasAmaximum(r,\bigcapc\inA. r-{c})
proof-
let M=\bigcapc\inA. r-{c}
from assms(3) obtain t where A:t\inA by auto
{
fix m assume m\inM
with A have m\inr-{t} by auto
then have }\langle\textrm{m},\textrm{t}\rangle\in\textrm{r}\mathrm{ by auto
}
then have ( }\forall\textrm{x}\in\bigcap{\textrm{c}\in\textrm{A}. r - {c}. \langlex, t\rangle\in r) by aut
then have IsBoundedAbove(M,r) unfolding IsBoundedAbove_def by auto
moreover
from assms(2,3) obtain l where }\forallx\inA.\langle1, x\rangle\inr unfolding IsBoundedBelow_de
by auto
then have }\forallx\inA.l\inr-{x} using vimage_iff by aut
with assms(3) have l\inM by auto
then have M\not=0 by auto moreover note assms(1)
ultimately have HasAminimum(r,\bigcapc\inM. r {c}) unfolding IsComplete_def
by auto
then obtain rr where rr:rr\in(\bigcapc\inM. r {c}) \foralls\in(\bigcapc\inM. r {c}). \langlerr,s\rangle\inr
unfolding HasAminimum_def
by auto
{

```
```

    fix aa assume A:aa\inA
    {
        fix c assume M:c\inM
        with A have \langlec,aa\rangle\inr by auto
        then have aa\inr{c} by auto
    }
    then have aa\in(\bigcapc\inM. r {c}) using rr(1) by auto
    }
    then have A\subseteq(\bigcapc\inM. r {c}) by auto
    with rr(2) have }\forall\textrm{s}\in\textrm{A}.\langlerr,s\rangle\inr by aut
    then have rr\inM using assms(3) by auto
    moreover
    {
        fix m assume m\inM
        then have rr\inr{m} using rr(1) by auto
        then have \langlem,rr\rangle\inr by auto
    }
    then have }\forall\textrm{m}\in\textrm{M}.\langle\textrm{m},\textrm{rr}\rangle\in\textrm{r}\mathrm{ by auto
    ultimately show thesis unfolding HasAmaximum_def by auto
    qed
theorem comp_dense_imp_conn:
assumes IsLinOrder(X,r) \existsx y. x\not=y^x\inX^y\inX r\subseteqX X X
X {is dense with respect to}r r{is complete}
shows (OrdTopology X r){is connected}
proof-
{
assume \neg((OrdTopology X r){is connected})
then obtain U where U:U\not=OU\not=XU\in(OrdTopology X r)U{is closed in}(OrdTopology
X r)
unfolding IsConnected_def using union_ordtopology[OF assms(1,2)]
by auto
from U(4) have A:X-U\in(OrdTopology X r)U\subseteqX unfolding IsClosed_def
using union_ordtopology[OF assms(1,2)] by auto
from U(1) obtain }u\mathrm{ where }u\inU\mathrm{ by auto
from A(2) U(1,2) have X-U\not=0 by auto
then obtain v where v\inX-U by auto
with }\langleu\inU\rangle\langleU\subseteqX\rangle\mathrm{ have }\langleu,v\rangle\inr<br>langlev,u\rangle\inr using assms(1) unfolding IsLinOrder_def
IsTotal_def
by auto
{
assume }\langle\textrm{u},\textrm{v}\rangle\in\textrm{r
have LeftRayX(X,r,v)\in(OrdTopology X r) using base_sets_open[OF
Ordtopology_is_a_topology(2)[OF assms(1)]]
\v\inX-U` by auto
then have U\capLeftRayX(X,r,v)\in(OrdTopology X r) using U(3) using
Ordtopology_is_a_topology(1)
[OF assms(1)] unfolding IsATopology_def by auto
{

```
fix \(b\) assume \(b \in(U) \cap \operatorname{LeftRay} X(X, r, v)\)
then have \(\langle\mathrm{b}, \mathrm{v}\rangle \in \mathrm{r}\) unfolding LeftRayX_def by auto
\}
then have bound:IsBoundedAbove(UคLeftRayX(X,r,v),r) unfolding IsBoundedAbove_def by auto moreover
with \(\langle\langle u, v\rangle \in r\rangle\langle u \in U\rangle\langle U \subseteq X\rangle\langle v \in X-U\rangle\) have \(n E: U \cap L e f t R a y X(X, r, v) \neq 0\) unfolding LeftRayX_def by auto
ultimately have \(\operatorname{Hmin}: \operatorname{HasAminimum}(r, \cap c \in U \cap \operatorname{LeftRayX}(X, r, v)\). \(r\{c\})\)
using assms(5) unfolding IsComplete_def
by auto
let min=Supremum (r,U@LeftRayX \((X, r, v))\)
\{
fix \(c\) assume \(c \in U \cap \operatorname{LeftRay} X(X, r, v)\)
then have \(\langle c, v\rangle \in r\) unfolding LeftRayX_def by auto
\}
then have a1: \(\langle\min , \mathrm{v}\rangle \in \mathrm{r}\) using Order_ZF_5_L3[OF _ nE Hmin] assms(1)
unfolding IsLinOrder_def
by auto
\{
assume ass:min \(\in U\)
then obtain \(V\) where \(V: m i n \in V V \subseteq U\)
\(\mathrm{V} \in\{\operatorname{Interval} X(\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}) .\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\} \cup\{\operatorname{LeftRay} X(\mathrm{X}, \mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\} \cup\{\operatorname{RightRay} X(\mathrm{X}, \mathrm{r}, \mathrm{b})\).
\(\mathrm{b} \in \mathrm{X}\}\) using point_open_base_neigh
[OF Ordtopology_is_a_topology(2) [OF assms(1)] \(\langle U \in\) (OrdTopology
X r) (ass] by blast
\{
assume \(\mathrm{V} \in\{\operatorname{RightRayX}(\mathrm{X}, \mathrm{r}, \mathrm{b}) . \mathrm{b} \in \mathrm{X}\}\)
then obtain \(b\) where \(b: b \in X \quad V=\operatorname{RightRay} X(X, r, b)\) by auto
note a1 moreover
from \(\mathrm{V}(1) \mathrm{b}(2)\) have \(\mathrm{a} 2:\langle\mathrm{b}, \min \rangle \in \mathrm{rmin} \neq \mathrm{b}\) unfolding RightRayX_def
by auto
ultimately have \(\langle\mathrm{b}, \mathrm{v}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def
trans_def by blast moreover
\{
assume \(b=v\)
with a1 a2(1) have \(b=m i n\) using assms(1) unfolding IsLinOrder_def
antisym_def by auto
with a2(2) have False by auto
\}
ultimately have False using \(\mathrm{V}(2) \mathrm{b}(2)\) unfolding RightRayX_def
using \(\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) by auto
\}
moreover
\{
assume \(\mathrm{V} \in\{\) LeftRay \(X(X, r, b)\). \(b \in X\}\)
then obtain \(b\) where \(b: V=\operatorname{LeftRay} X(X, r, b) b \in X\) by auto
\{
assume \(\langle v, b\rangle \in r\)
then have \(\mathrm{b}=\mathrm{v} \vee \mathrm{v} \in \operatorname{LeftRay} X(\mathrm{X}, \mathrm{r}, \mathrm{b})\) unfolding LeftRayX_def us-
ing \(\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) by auto
then have \(\mathrm{b}=\mathrm{v}\) using \(\mathrm{b}(1) \mathrm{V}(2)\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) by auto
\}
then have \(\mathrm{bv}:\langle\mathrm{b}, \mathrm{v}\rangle \in \mathrm{r}\) using assms（1）unfolding IsLinOrder＿def IsTotal＿def using b（2）

〈 \(\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) by auto
from \(\mathrm{b}(1) \mathrm{V}(1)\) have \(\langle\min , \mathrm{b}\rangle \in \mathrm{rmin} \neq \mathrm{b}\) unfolding LeftRayX＿def by
auto
with assms（4）obtain \(z\) where \(z:\langle\min , z\rangle \in r\langle z, b\rangle \in r z \in X-\{b, \min \}\)
unfolding IsDense＿def
using \(\mathrm{b}(2) \mathrm{V}(1,2)\langle\mathrm{U} \subseteq \mathrm{X}\rangle\) by blast
then have rayb： \(\mathrm{z} \in \operatorname{LeftRayX}(\mathrm{X}, \mathrm{r}, \mathrm{b})\) unfolding LeftRayX＿def by
auto
from \(z(2)\) bv have \(\langle z, v\rangle \in r\) using assms（1）unfolding IsLinOrder＿def
trans＿def by fast
moreover
\｛
assume \(\mathrm{z}=\mathrm{v}\)
with bv have \(\langle\mathrm{b}, \mathrm{z}\rangle \in \mathrm{r}\) by auto
with \(\mathrm{z}(2)\) have \(\mathrm{b}=\mathrm{z}\) using assms（1）unfolding IsLinOrder＿def
antisym＿def by auto
then have False using \(z(3)\) by auto
\}
ultimately have \(z \in \operatorname{LeftRay} X(X, r, v)\) unfolding LeftRayX＿def us－
ing \(z(3)\) by auto
with rayb have \(z \in U \cap \operatorname{LeftRayX}(X, r, v)\) using \(V(2) b(1)\) by auto
then have min \(\in r\{z\}\) using Order＿ZF＿4＿L4（1）［OF＿Hmin］assms（1）
unfolding Supremum＿def IsLinOrder＿def
by auto
then have \(\langle z, \min \rangle \in r\) by auto
with \(z(1,3)\) have False using assms（1）unfolding IsLinOrder＿def
antisym＿def by auto
\}
moreover
\｛
assume \(\mathrm{V} \in\{\) Interval \(\mathrm{X}(\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c})\) ．\(\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\}\)
then obtain \(b c\) where \(b: V=\) Interval \(X(X, r, b, c) b \in X c \in X\) by auto
from \(\mathrm{b} V(1)\) have \(\mathrm{m}:\langle\min , \mathrm{c}\rangle \in \mathrm{r}\langle\mathrm{b}, \min \rangle \in \mathrm{rmin} \neq \mathrm{b} \min \neq \mathrm{c}\) unfolding
IntervalX＿def Interval＿def by auto
\｛
assume \(\mathrm{A}:\langle\mathrm{c}, \mathrm{v}\rangle \in \mathrm{r}\)
from \(m\) obtain \(z\) where \(z:\langle z, c\rangle \in r\langle\min , z\rangle \in r z \in X-\{c, m i n\}\) us－
ing assms（4）unfolding IsDense＿def
using \(\mathrm{b}(3) \mathrm{V}(1,2)\) 〈 \(\mathrm{U} \subseteq \mathrm{X}\) 〉 by blast
from \(z(2)\) have \(\langle b, z\rangle \in r\) using \(m(2)\) assms（1）unfolding IsLinOrder＿def
trans＿def
by fast
with \(z(1)\) have \(z \in \operatorname{IntervalX}(X, r, b, c) \vee z=b\) using \(z(3)\) unfold－
ing IntervalX＿def

Interval_def by auto
then have \(z \in \operatorname{IntervalX}(X, r, b, c)\) using \(m(2) z(2,3)\) using assms(1) unfolding IsLinOrder_def
antisym_def by auto
with \(b(1) \mathrm{V}(2)\) have \(\mathrm{z} \in \mathrm{U}\) by auto moreover
from A \(z(1)\) have \(\langle z, v\rangle \in r\) using assms(1) unfolding IsLinOrder_def
trans_def by fast
moreover have \(\mathrm{z} \neq \mathrm{v}\) using \(\mathrm{A}(1,3)\) assms(1) unfolding IsLinOrder_def
antisym_def by auto
ultimately have \(z \in U \cap L e f t R a y X(X, r, v)\) unfolding LeftRayX_def
using \(z(3)\) by auto
then have min \(\in \mathrm{r}\{\mathrm{z}\}\) using Order_ZF_4_L4(1) [OF _ Hmin] assms(1)
unfolding Supremum_def IsLinOrder_def
by auto
then have \(\langle z, \min \rangle \in r\) by auto
with \(\mathrm{z}(2,3)\) have False using assms(1) unfolding IsLinOrder_def
antisym_def by auto
\}
then have \(\mathrm{vc}:\langle\mathrm{v}, \mathrm{c}\rangle \in \mathrm{rv} \neq \mathrm{c}\) using assms(1) unfolding IsLinOrder_def IsTotal_def using \(\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\)
b(3) by auto
\{
assume min=v
with \(\mathrm{V}(2,1)\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) have False by auto
\}
then have \(\min \neq \mathrm{v}\) by auto
with a1 obtain \(z\) where \(z:\langle\min , z\rangle \in r\langle z, v\rangle \in r z \in X-\{\min , v\}\) using
assms(4) unfolding IsDense_def
using \(V(1,2)\langle U \subseteq X\rangle\langle v \in X-U\rangle\) by blast
from \(z(2) \mathrm{vc}(1)\) have \(\mathrm{zc}:\langle\mathrm{z}, \mathrm{c}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def trans_def
by fast moreover
from \(m(2) z(1)\) have \(\langle b, z\rangle \in r\) using assms(1) unfolding IsLinOrder_def
trans_def
by fast ultimately
have \(z \in \operatorname{Interval}(r, b, c)\) using Order_ZF_2_L1B by auto moreover \{
assume \(\mathrm{z}=\mathrm{c}\)
then have False using \(z(2)\) vc using assms(1) unfolding IsLinOrder_def
antisym_def
by fast
\}
then have \(z \neq c\) by auto moreover
\{
assume \(\mathrm{z}=\mathrm{b}\)
then have \(z=\) min using \(m(2) z(1)\) using assms(1) unfolding
IsLinOrder_def
antisym_def by auto
with \(z(3)\) have False by auto
```

    }
    then have z\not=b by auto moreover
    have }z\inX using z(3) by auto ultimatel
    have z\inIntervalX(X,r,b,c) unfolding IntervalX_def by auto
    then have }z\inV\mathrm{ using b(1) by auto
    then have z\inU using V(2) by auto moreover
    from z(2,3) have z\inLeftRayX(X,r,v) unfolding LeftRayX_def by
    auto ultimately
have z\inU\capLeftRayX(X,r,v) by auto
then have min\inr{z} using Order_ZF_4_L4(1)[OF _ Hmin] assms(1)
unfolding Supremum_def IsLinOrder_def
by auto
then have }\langlez,\operatorname{min}\rangle\inr by aut
with z(1,3) have False using assms(1) unfolding IsLinOrder_def
antisym_def by auto
}
ultimately have False using V (3) by auto
}
then have ass:min\inX-U using a1 assms(3) by auto
then obtain V where V:min }\in\textrm{VV}\subseteqX-
V\in{IntervalX(X,r,b,c). \langleb,c\rangle\inX X X}\cup{LeftRayX(X,r,b). b\inX}\cup{RightRayX(X,r,b).
b}\in\textrm{X}} using point_open_base_neigh
[OF Ordtopology_is_a_topology(2)[OF assms(1)] \X-U\in(OrdTopology
X r) ass] by blast
{
assume V\in{IntervalX(X,r,b,c). \langleb, c\rangle\inX X X}
then obtain b c where b:V=IntervalX (X,r,b,c) b\inXc\inX by auto
from b V (1) have m:\langlemin, c\rangle\inr }\langle\textrm{b},\textrm{min}\rangle\in\textrm{rmin}\not=\textrm{b}\operatorname{min}\not=\textrm{c}\mathrm{ unfolding IntervalX_def
Interval_def by auto
{
fix x assume A:x\inU\capLeftRayX(X,r,v)
then have }\langlex,v\rangle\inrx\inU unfolding LeftRayX_def by aut
then have }x\not\inV\mathrm{ using V(2) by auto
then have x}\not\in\operatorname{Interval(r, b, c) \cap X\veex=b\veex=c using b(1) unfold-
ing IntervalX_def by auto
then have ( }\langle\textrm{b},\textrm{x}\rangle\not\in\textrm{r}\vee\langle\textrm{x},\textrm{c}\rangle\not\in\textrm{r})\vee\textrm{x}=\textrm{b}\vee\textrm{x}=\textrm{cx}\in\textrm{X}\mathrm{ using Order_ZF_2_L1B
<x\inU`\U\subseteqX` by auto
then have (\langlex, b\rangle\inr\vee\langlec,x\rangle\inr) \veex=b\veex=c using assms(1) unfold-
ing IsLinOrder_def IsTotal_def
using b(2,3) by auto
then have (\langlex,b\rangle\inr\vee\langlec,x\rangle\inr) using assms(1) unfolding IsLinOrder_def
using total_is_refl
unfolding refl_def using b (2,3) by auto moreover
from A have \langlex,min\rangle\inr using Order_ZF_4_L4(1)[OF _ Hmin] assms(1)
unfolding Supremum_def IsLinOrder_def
by auto
ultimately have ( }\langle\textrm{x},\textrm{b}\rangle\in\textrm{r}V\langle\textrm{c},\textrm{min}\rangle\in\textrm{r})\mathrm{ using assms(1) unfolding
IsLinOrder_def trans_def
by fast

```
with \(m(1)\) have (\(\langle x, b\rangle \in r \vee c=m i n\)) using assms(1) unfolding IsLinOrder_def antisym_def by auto
with \(m(4)\) have \(\langle x, b\rangle \in r\) by auto
\}
then have \(\langle\min , \mathrm{b}\rangle \in \mathrm{r}\) using Order_ZF_5_L3[OF _ nE Hmin] assms(1)
unfolding IsLinOrder_def by auto
with \(m(2,3)\) have False using assms(1) unfolding IsLinOrder_def antisym_def by auto
\}
moreover
\{
assume \(\mathrm{V} \in\{\operatorname{RightRay} X(\mathrm{X}, \mathrm{r}, \mathrm{b})\). \(\mathrm{b} \in \mathrm{X}\}\)
then obtain \(b\) where \(b: V=R i g h t R a y X(X, r, b) b \in X\) by auto
from \(\mathrm{b} V(1)\) have \(\mathrm{m}:\langle\mathrm{b}, \min \rangle \in \mathrm{rmin} \neq \mathrm{b}\) unfolding RightRayX_def by
auto
\{
fix \(x\) assume \(A: x \in U \cap \operatorname{LeftRay} X(X, r, v)\)
then have \(\langle x, v\rangle \in r x \in U\) unfolding LeftRayX_def by auto
then have \(x \notin V\) using \(V(2)\) by auto
then have \(x \notin \operatorname{RightRayX}(X, r, b)\) using \(b(1)\) by auto
then have \((\langle b, x\rangle \notin r \vee x=b) x \in X\) unfolding RightRay \(X\) _def using \(\langle x \in U\rangle\langle U \subseteq X\rangle\)
by auto
then have \(\langle\mathrm{x}, \mathrm{b}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def using total_is_refl unfolding
refl_def unfolding IsTotal_def using b(2) by auto
\}
then have \(\langle\min , \mathrm{b}\rangle \in \mathrm{r}\) using Order_ZF_5_L3[OF _ nE Hmin] assms(1)
unfolding IsLinOrder_def by auto
with \(m(2,1)\) have False using assms(1) unfolding IsLinOrder_def
antisym_def by auto
\} moreover
\{
assume \(V \in\{\) LeftRay \(X(X, r, b)\). \(b \in X\}\)
then obtain \(b\) where \(b: V=L e f t R a y X(X, r, b) b \in X\) by auto
from \(\mathrm{b} V(1)\) have \(\mathrm{m}:\langle\min , \mathrm{b}\rangle \in \operatorname{rmin} \neq \mathrm{b}\) unfolding LeftRayX_def by auto \{
fix \(x\) assume \(A: x \in U \cap \operatorname{LeftRayX}(X, r, v)\)
then have \(\langle x, v\rangle \in r x \in U\) unfolding LeftRayX_def by auto
then have \(x \notin V\) using \(V(2)\) by auto
then have \(x \notin\) LeftRayX (\(\mathrm{X}, \mathrm{r}, \mathrm{b}\)) using b (1) by auto
then have \((\langle\mathrm{x}, \mathrm{b}\rangle \notin \mathrm{r} \vee \mathrm{x}=\mathrm{b}) \mathrm{x} \in \mathrm{X}\) unfolding LeftRayX_def using \(\langle\mathrm{x} \in \mathrm{U}\rangle\langle\mathrm{U} \subseteq \mathrm{X}\rangle\)
by auto
then have \(\langle\mathrm{b}, \mathrm{x}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def us-
ing total_is_refl unfolding
refl_def unfolding IsTotal_def using \(\mathrm{b}(2)\) by auto
with \(m(1)\) have \(\langle\min , x\rangle \in r\) using assms(1) unfolding IsLinOrder_def
trans_def by fast
moreover
from bound A have \(\exists \mathrm{g} . \forall \mathrm{y} \in \mathrm{U} \cap \operatorname{LeftRayX}(\mathrm{X}, \mathrm{r}, \mathrm{v}) .\langle\mathrm{y}, \mathrm{g}\rangle \in \mathrm{r}\) using
unfolding IsBoundedAbove＿def by auto
then obtain \(g\) where \(g: \forall y \in U \cap L e f t \operatorname{Ray} X(X, r, v) .\langle y, g\rangle \in r\) by auto with \(n E\) obtain \(t\) where \(t \in U \cap L e f t R a y X(X, r, v)\) by auto
with g have \(\langle\mathrm{t}, \mathrm{g}\rangle \in \mathrm{r}\) by auto
with assms（3）have \(g \in X\) by auto
with \(g\) have boundX：\(\exists \mathrm{g} \in \mathrm{X} . \forall \mathrm{y} \in \mathrm{U} \cap \operatorname{LeftRayX}(\mathrm{X}, \mathrm{r}, \mathrm{v}) .\langle\mathrm{y}, \mathrm{g}\rangle \in \mathrm{r}\) by
auto
have \(\langle x, \min \rangle \in r\) using Order＿ZF＿5＿L7（2）［OF assms（3）＿assms（5）
＿nE boundX］
assms（1）〈U \(\subseteq\) X〉A unfolding LeftRayX＿def IsLinOrder＿def by auto
ultimately have \(x=m i n\) using assms（1）unfolding IsLinOrder＿def
antisym＿def by auto
\}
then have \(U \cap L e f t R a y X(X, r, v) \subseteq\{\min \}\) by auto moreover
\｛
assume min \(\in U \cap \operatorname{LeftRay} X(X, r, v)\)
then have min \(\in U\) by auto
then have False using \(V(1,2)\) by auto
\}
ultimately have False using \(n E\) by auto

\section*{\}}
moreover note \(\mathrm{V}(3)\)
ultimately have False by auto
\}
with assms（1）have \(\langle v, u\rangle \in r\) unfolding IsLinOrder＿def IsTotal＿def us－ ing \(\langle u \in U \backslash(U \subseteq X\rangle\)

〈 \(\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) by auto
have RightRayX（X，r，v）（OrdTopology X r）using base＿sets＿open［OF Ordtopology＿is＿a＿topol assms（1）］］

〈 \(\mathrm{v} \in \mathrm{X}-\mathrm{U}\) 〉 by auto
then have U RightRayX（X，r，v）（OrdTopology X r）using U（3）using Ordtopology＿is＿a＿topol ［OF assms（1）］unfolding IsATopology＿def by auto
\｛
fix \(b\) assume \(b \in(U) \cap \operatorname{RightRay} X(X, r, v)\)
then have \(\langle v, b\rangle \in r\) unfolding RightRayX＿def by auto
\}
then have bound：IsBoundedBelow（U＠RightRayX（X，r，v），r）unfolding IsBoundedBelow＿def by auto
with \(\langle\langle\mathrm{v}, \mathrm{u}\rangle \in \mathrm{r}\rangle\langle\mathrm{u} \in \mathrm{U}\rangle\langle\mathrm{U} \subseteq \mathrm{X}\rangle\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) have \(\mathrm{nE}: \mathrm{U} \cap \operatorname{RightRay} \mathrm{X}(\mathrm{X}, \mathrm{r}, \mathrm{v}) \neq 0\) unfold－
ing RightRayX＿def by auto
have Hmax：HasAmaximum（r，\(\bigcap c \in U \cap R i g h t R a y X(X, r, v) . r-\{c\})\) using complete＿order＿bounded＿be
assms（5）bound nE assms（3）］．
let \(\max =\operatorname{Infimum}(r, U \cap \operatorname{RightRayX}(X, r, v))\)
\｛
fix \(c\) assume \(c \in U \cap \operatorname{RightRay} X(X, r, v)\) then have \(\langle v, c\rangle \in r\) unfolding RightRayX＿def by auto
\}
then have a1: \(\langle\mathrm{v}, \max \rangle \in \mathrm{r}\) using Order_ZF_5_L4[OF _ nE Hmax] assms (1)
unfolding IsLinOrder_def
by auto
\{
assume ass:max \(\in U\)
then obtain \(V\) where \(V: \max \in V V \subseteq U\)
\(\mathrm{V} \in\{\) Interval \(X(X, r, b, c) .\langle b, c\rangle \in X \times X\} \cup\{\operatorname{LeftRay} X(X, r, b) . b \in X\} \cup\{\operatorname{RightRay} X(X, r, b)\).
\(\mathrm{b} \in \mathrm{X}\}\) using point_open_base_neigh
[OF Ordtopology_is_a_topology(2) [OF assms(1)] 〈U (OrdTopology
X r)) ass] by blast
\{
assume \(\mathrm{V} \in\{\operatorname{RightRay} X(\mathrm{X}, \mathrm{r}, \mathrm{b})\). \(\mathrm{b} \in \mathrm{X}\}\)
then obtain \(b\) where \(b: b \in X \quad V=\operatorname{RightRay} X(X, r, b)\) by auto
from \(V(1) \quad b(2)\) have \(a 2:\langle b, \max \rangle \in \operatorname{rmax} \neq \mathrm{b}\) unfolding RightRayX_def
by auto
\{
assume \(\langle\mathrm{b}, \mathrm{v}\rangle \in \mathrm{r}\)
then have \(b=v \vee v \in \operatorname{RightRayX}(X, r, b)\) unfolding RightRayX_def us-
ing \(\langle v \in X-U\rangle\) by auto
then have \(b=v\) using \(b(2) V(2)\langle v \in X-U\rangle\) by auto
\}
then have \(\mathrm{bv}:\langle\mathrm{v}, \mathrm{b}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def IsTotal_def using \(b(1)\)
\(\langle\mathrm{v} \in \mathrm{X}-\mathrm{U}\rangle\) by auto
from a 2 assms (4) obtain z where \(\mathrm{z}:\langle\mathrm{b}, \mathrm{z}\rangle \in \mathrm{r}\langle\mathrm{z}, \max \rangle \in \mathrm{r} \mathrm{z} \in \mathrm{X}-\{\mathrm{b}, \max \}\)
unfolding IsDense_def
using \(\mathrm{b}(1) \mathrm{V}(1,2)\langle\mathrm{U} \subseteq \mathrm{X}\rangle\) by blast
then have rayb: \(z \in \operatorname{RightRay} X(X, r, b)\) unfolding RightRayX_def by
auto
from \(z(1)\) bv have \(\langle v, z\rangle \in r\) using assms(1) unfolding IsLinOrder_def trans_def by fast moreover
\{
assume \(\mathrm{z}=\mathrm{v}\)
with bv have \(\langle\mathrm{z}, \mathrm{b}\rangle \in \mathrm{r}\) by auto
with z (1) have \(\mathrm{b}=\mathrm{z}\) using assms(1) unfolding IsLinOrder_def
antisym_def by auto
then have False using \(z(3)\) by auto
\}
ultimately have \(z \in \operatorname{RightRayX}(X, r, v)\) unfolding RightRayX_def using \(z(3)\) by auto
with rayb have \(z \in U \cap \operatorname{RightRay} X(X, r, v)\) using \(V(2) b(2)\) by auto
then have \(\max \in \mathrm{r}-\{\mathrm{z}\}\) using Order_ZF_4_L3(1) [OF _ Hmax] assms(1)
unfolding Infimum_def IsLinOrder_def
by auto
then have \(\langle\max , z\rangle \in r\) by auto
with \(\mathrm{z}(2,3)\) have False using assms(1) unfolding IsLinOrder_def antisym_def by auto
\}
moreover

\section*{\{}
assume \(V \in\{\operatorname{LeftRay} X(X, r, b) . b \in X\}\)
then obtain \(b\) where \(b: V=\operatorname{LeftRay} X(X, r, b) b \in X\) by auto
note a1 moreover
from \(\mathrm{V}(1) \mathrm{b}(1)\) have \(\mathrm{a} 2:\langle\max , \mathrm{b}\rangle \in \mathrm{rmax} \neq \mathrm{b}\) unfolding LeftRayX_def by auto
ultimately have \(\langle\mathrm{v}, \mathrm{b}\rangle \in \mathrm{r}\) using assms (1) unfolding IsLinOrder_def trans_def by blast moreover
\{
assume \(b=v\)
with a1 a2(1) have \(\mathrm{b}=\) max using assms(1) unfolding IsLinOrder_def
antisym_def by auto
with a2(2) have False by auto
\}
ultimately have False using \(\mathrm{V}(2) \mathrm{b}(1)\) unfolding LeftRayX_def using \(\langle v \in X-U\) by auto
\}
moreover
\{
assume \(\mathrm{V} \in\{\) Interval \(\mathrm{X}(\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}) .\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\}\)
then obtain \(b c\) where \(b: V=\) Interval \(X(X, r, b, c) b \in X c \in X\) by auto
from \(b V(1)\) have \(m:\langle\max , c\rangle \in r\langle b, \max \rangle \in r \max \neq \mathrm{b} \max \neq \mathrm{c}\) unfolding IntervalX_def
Interval_def by auto
\{
assume \(A:\langle v, b\rangle \in r\)
from \(m\) obtain \(z\) where \(z:\langle z, \max \rangle \in r\langle b, z\rangle \in r z \in X-\{b, \max \}\) using
assms(4) unfolding IsDense_def
using \(\mathrm{b}(2) \mathrm{V}(1,2)\) (\(\mathrm{U} \subseteq \mathrm{X}\rangle\) by blast
from \(z(1)\) have \(\langle z, c\rangle \in r\) using \(m(1)\) assms(1) unfolding IsLinOrder_def
trans_def
by fast
with \(z(2)\) have \(z \in \operatorname{IntervalX}(X, r, b, c) \vee z=c\) using \(z(3)\) unfold-
ing IntervalX_def
Interval_def by auto
then have \(z \in\) IntervalX (X, \(r, b, c\)) using \(m(1) z(1,3)\) using assms(1)
unfolding IsLinOrder_def
antisym_def by auto
with \(b(1) \mathrm{V}(2)\) have \(\mathrm{z} \in \mathrm{U}\) by auto moreover
from \(A \quad z(2)\) have \(\langle v, z\rangle \in r\) using assms(1) unfolding IsLinOrder_def
trans_def by fast
moreover have \(\mathrm{z} \neq \mathrm{v}\) using \(\mathrm{A}(2,3)\) assms(1) unfolding IsLinOrder_def
antisym_def by auto
ultimately have \(z \in U \cap R i g h t R a y X(X, r, v)\) unfolding RightRayX_def
using \(z(3)\) by auto
then have max \(\in \mathrm{r}-\{\mathrm{z}\}\) using Order_ZF_4_L3(1) [OF _ Hmax] assms(1)
unfolding Infimum_def IsLinOrder_def
by auto
then have \(\langle\max , z\rangle \in r\) by auto
with \(z(1,3)\) have False using assms(1) unfolding IsLinOrder_def
```

antisym_def by auto
}
then have vc:\langleb,v\rangle\inrv\not=b using assms(1) unfolding IsLinOrder_def
IsTotal_def using <v\inX-U\rangle
b(2) by auto
{
assume max=v
with V(2,1) \langlev\inX-U` have False by auto
}
then have v}\not=\mathrm{ max by auto moreover
note a1 moreover
have max\inX using V (1,2) \langleU\subseteqX\rangle by auto
moreover have v\inX using \langlev\inX-U\rangle by auto
ultimately obtain z where z: {v,z\rangle\inr {z,max\rangle\inrz\inX-{v,max} using
assms(4) unfolding IsDense_def
by auto
from z(1) vc(1) have zc:\langleb,z\rangle\inr using assms(1) unfolding IsLinOrder_def
trans_def
by fast moreover
from m(1) z(2) have }\langle\textrm{z},\textrm{c}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
trans_def
by fast ultimately
have z\inInterval(r,b,c) using Order_ZF_2_L1B by auto moreover
{
assume z=b
then have False using z(1) vc using assms(1) unfolding IsLinOrder_def
antisym_def
by fast
}
then have z\not=b by auto moreover
{
assume z=c
then have z=max using m(1) z(2) using assms(1) unfolding IsLinOrder_def
antisym_def by auto
with z(3) have False by auto
}
then have z\not=c by auto moreover
have z\inX using z(3) by auto ultimately
have z\inIntervalX(X,r,b,c) unfolding IntervalX_def by auto
then have }z\inV\mathrm{ using }b(1) by aut
then have z\inU using V(2) by auto moreover
from z(1,3) have z\inRightRayX(X,r,v) unfolding RightRayX_def by
auto ultimately
have z\inU\capRightRayX(X,r,v) by auto
then have max\inr-{z} using Order_ZF_4_L3(1)[OF _ Hmax] assms(1)
unfolding Infimum_def IsLinOrder_def
by auto
then have \langlemax,z\rangle\inr by auto
with z(2,3) have False using assms(1) unfolding IsLinOrder_def

```
```

antisym_def by auto
}
ultimately have False using V(3) by auto
}
then have ass:max\inX-U using a1 assms(3) by auto
then obtain V where V:max\inVV\subseteqX-U
V\in{IntervalX(X,r,b,c). \b, c\rangle\inX XX}\cup{LeftRayX(X,r,b). b\inX}\cup{RightRayX(X,r,b).
b}\in\textrm{X}} using point_open_base_neigh
[OF Ordtopology_is_a_topology(2)[OF assms(1)] \X-U\in(OrdTopology
X r)> ass] by blast
{
assume V \in{IntervalX(X,r,b,c). \langleb, c\rangle\inX X X}
then obtain b c where b:V=IntervalX (X,r,b,c) b\inXc\inX by auto
from b V (1) have m: {max, c\rangle\inr \b, max }\rangle\inrmax\not=b max\not=c unfolding IntervalX_def
Interval_def by auto
{
fix x assume A:x\inU\capRightRayX(X,r,v)
then have }\langlev,x\rangle\inrx\inU unfolding RightRayX_def by aut
then have }x\not\inV\mathrm{ using V(2) by auto
then have x\not\inInterval(r, b, c) \cap X\veex=b\veex=c using b(1) unfold-
ing IntervalX_def by auto
then have ( \langleb,x\rangle\not\inrV\langlex,c\rangle\not\inr)\veex=b\veex=cx\inX using Order_ZF_2_L1B \langlex\inU<br>U\subseteqX\rangle
by auto
then have (\langlex,b\rangle\inr\vee\langlec,x\rangle\inr) \veex=b\veex=c using assms(1) unfolding
IsLinOrder_def IsTotal_def
using b (2,3) by auto
then have (\langlex,b\rangle\inr\vee\langlec,x\rangle\inr) using assms(1) unfolding IsLinOrder_def
using total_is_refl
unfolding refl_def using b}(2,3) by auto moreover
from A have \langlemax,x\rangle\inr using Order_ZF_4_L3(1) [OF _ Hmax] assms(1)
unfolding Infimum_def IsLinOrder_def
by auto
ultimately have (\langlemax,b\rangle\inr\vee\langlec,x\rangle\inr) using assms(1) unfolding IsLinOrder_def
trans_def
by fast
with m(2) have (max=b\vee }<br>textrm{c},\textrm{x}\rangle\in\textrm{r})\mathrm{ ) using assms(1) unfolding IsLinOrder_def
antisym_def by auto
with m(3) have }\langlec,x\rangle\inr by aut
}
then have \langlec,max\rangle\inr using Order_ZF_5_L4[OF _ nE Hmax] assms(1) un-
folding IsLinOrder_def by auto
with m(1,4) have False using assms(1) unfolding IsLinOrder_def
antisym_def by auto
}
moreover
{
assume V\in{RightRayX(X,r,b). b\inX}
then obtain b where b:V=RightRayX(X,r,b) b\inX by auto
from b V (1) have m: {b,max }\rangle\inrmax\not=b unfolding RightRayX_def by aut

```
```

    {
    fix x assume A:x\inU\capRightRayX(X,r,v)
    then have }\langlev,x\rangle\inrx\inU unfolding RightRayX_def by aut
    then have }x\not\inV\mathrm{ using V(2) by auto
    then have x\not\inRightRayX(X,r, b) using b(1) by auto
    then have ( }\langle\textrm{b},\textrm{x}\rangle\not\in\textrm{r}\vee\textrm{x}=\textrm{b})\textrm{x}\in\textrm{X}\mathrm{ unfolding RightRayX_def using \ }\textrm{x}\in\textrm{U}\rangle\langleU\subseteqX
    by auto
then have \langlex,b\rangle\inr using assms(1) unfolding IsLinOrder_def us-
ing total_is_refl unfolding
refl_def unfolding IsTotal_def using b(2) by auto moreover
from A have \langlemax,x\rangle\inr using Order_ZF_4_L3(1) [OF _ Hmax] assms(1)
unfolding Infimum_def IsLinOrder_def
by auto ultimately
have \langlemax,b\rangle\inr using assms(1) unfolding IsLinOrder_def trans_def
by fast
with m have False using assms(1) unfolding IsLinOrder_def antisym_def
by auto
}
then have False using nE by auto
} moreover
{
assume V }\in{\mathrm{ LeftRayX(X,r,b). b C X }
then obtain b where b:V=LeftRayX(X,r,b) b\inX by auto
from b V (1) have m:\langlemax,b\rangle\inrmax }=\textrm{b}\mathrm{ ( unfolding LeftRayX_def by auto
{
fix x assume A:x\inU\capRightRayX(X,r,v)
then have }\langle\textrm{v},\textrm{x}\rangle\in\textrm{rx}\in\textrm{U}\mathrm{ unfolding RightRayX_def by auto
then have }\textrm{x}\not\in\textrm{V}\mathrm{ using V(2) by auto
then have x\not\inLeftRayX(X,r, b) using b(1) by auto
then have (\langlex,b\rangle\not\inr\veev=b) x\inX unfolding LeftRayX_def using \langlex\inU`U\subseteqX`
by auto
then have }\langle\textrm{b},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def us-
ing total_is_refl unfolding
refl_def unfolding IsTotal_def using b(2) by auto
then have b\inr-{x} by auto
}
with nE have b\in(\bigcapc\inU\capRightRayX(X,r,v). r-{c}) by auto
then have \langleb,max\rangle\inr unfolding Infimum_def using Order_ZF_4_L3(2) [OF
_ Hmax] assms(1)
unfolding IsLinOrder_def by auto
with m have False using assms(1) unfolding IsLinOrder_def antisym_def
by auto
}
moreover note V (3)
ultimately have False by auto
}
then show thesis by auto
qed

```

\subsection*{65.4 Numerability axioms}

A \(\kappa\)-separable order topology is in relation with order density.
If an order topology has a subset \(A\) which is topologically dense, then that subset is weakly order-dense in \(X\).
```

lemma dense_top_imp_Wdense_ord:
assumes IsLinOrder(X,r) Closure(A,OrdTopology X r)=X A\subseteqX \existsx y. x f=
y }\wedge\textrm{x}\in\textrm{X}\wedge \ y \in X
shows A{is weakly dense in}X{with respect to}r
proof-
{
fix r1 r2 assume r1\inXr2\in\operatorname{Xr}1\not=r2 \langler1,r2\rangle\inr
then have IntervalX(X,r,r1,r2)\in{IntervalX(X, r, b, c). \b,c\rangle\inX
X X} \cup {LeftRayX(X, r, b) . b \in X} \cup
{RightRayX(X, r, b) . b \in X} by auto
then have P:IntervalX(X,r,r1,r2)\in(OrdTopology X r) using base_sets_open[OF
Ordtopology_is_a_topology(2) [OF assms(1)]]
by auto
have IntervalX(X,r,r1,r2)\subseteqX unfolding IntervalX_def by auto
then have int:Closure(A,OrdTopology X r)\capIntervalX(X,r,r1,r2)=IntervalX(X,r,r1,r2)
using assms(2) by auto
{
assume IntervalX(X,r,r1,r2)}\not=
then have A\cap(IntervalX(X,r,r1,r2))\not=0 using topology0.cl_inter_neigh[OF
topology0_ordtopology[OF assms(1)] _ P , of A]
using assms(3) union_ordtopology[OF assms(1,4)] int by auto
}
then have ( }\exists\textrm{z}\in\textrm{A}-{r1,r2}.\langler1,z\rangle\inr\wedge\langlez,r2\rangle\inr)\veeIntervalX(X,r,r1,r2)=
unfolding IntervalX_def
Interval_def by auto
}
then show thesis unfolding IsWeaklyDenseSub_def by auto
qed

```

Conversely, a weakly order-dense set is topologically dense if it is also considered that: if there is a maximum or a minimum elements whose singletons are open, this points have to be in \(A\). In conclusion, weakly order-density is a property closed to topological density.

Another way to see this: Consider a weakly order-dense set \(A\) :
- If \(X\) has a maximum and a minimum and \(\{\min , \max \}\) is open: \(A\) is topologically dense in \(X \backslash\{\min , \max \}\), where \(\min\) is the minimum in \(X\) and max is the maximum in \(X\).
- If \(X\) has a maximum, \(\{\max \}\) is open and \(X\) has no minimum or \(\{\min \}\) isn't open: \(A\) is topologically dense in \(X \backslash\{\max \}\), where \(\max\) is the maximum in \(X\).
- If \(X\) has a minimum, \(\{\min \}\) is open and \(X\) has no maximum or \(\{\max \}\) isn't open \(A\) is topologically dense in \(X \backslash\{\min \}\), where \(\min\) is the minimum in \(X\).
- If \(X\) has no minimum or maximum, or \(\{\min , \max \}\) has no proper open sets: \(A\) is topologically dense in \(X\).
lemma Wdense_ord_imp_dense_top:
assumes IsLinOrder (X,r) A\{is weakly dense in\}X\{with respect to\}r \(A \subseteq X\)
\(\exists \mathrm{x} y . \mathrm{x} \neq \mathrm{y} \wedge \mathrm{x} \in \mathrm{X} \wedge \mathrm{y} \in \mathrm{X}\)
HasAminimum \((r, X) \longrightarrow\{\) Minimum \((r, X)\} \in\) (OrdTopology \(X r) \longrightarrow \operatorname{Minimum}(r, X) \in A\)
\(\operatorname{HasAmaximum}(r, X) \longrightarrow\{\operatorname{Maximum}(r, X)\} \in\) (OrdTopology X \(r\)) \(\longrightarrow \operatorname{Maximum}(r, X) \in A\)
shows Closure(A,OrdTopology X \(r\)) \(=\mathrm{X}\)
proof-
fix x assume \(\mathrm{x} \in \mathrm{X}\)
\{
fix \(U\) assume ass: \(x \in U U \in(O r d T o p o l o g y ~ X ~ r) ~\)
then have \(\exists \mathrm{V} \in\{\) IntervalX \((\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}) .\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\} \cup\{\operatorname{LeftRayX}(\mathrm{X}\),
\(r, b) . b \in X\} \cup\{R i g h t R a y X(X, r, b) . b \in X\} . V \subseteq U \wedge x \in V\)
using point_open_base_neigh[OF Ordtopology_is_a_topology(2) [OF assms(1)]]
by auto
then obtain V where \(\mathrm{V}: \mathrm{V} \in\{\operatorname{IntervalX}(\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}) .\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\} \cup\)
\(\{\operatorname{LeftRayX}(X, r, b) . b \in X\} \cup\{\operatorname{RightRayX}(X, r, b) . b \in X\} V \subseteq U x \in V\) by blast
note \(V(1)\) moreover
\{
assume \(\mathrm{V} \in\{\) Interval \(\mathrm{X}(\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}\)) . \(\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\}\)
then obtain \(b c\) where \(b: b \in X c \in X V=\) Interval \(X(X, r, b, c)\) by auto
with \(\mathrm{V}(3)\) have \(\mathrm{x}:\langle\mathrm{b}, \mathrm{x}\rangle \in \mathrm{r}\langle\mathrm{x}, \mathrm{c}\rangle \in \mathrm{r} \mathrm{x} \neq \mathrm{b} \mathrm{x} \neq \mathrm{c}\) unfolding IntervalX_def
Interval_def by auto
then have \(\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{r}\) using assms(1) unfolding IsLinOrder_def trans_def
by fast
moreover from \(\mathrm{x}(1-3)\) have \(\mathrm{b} \neq \mathrm{c}\) using assms(1) unfolding IsLinOrder_def antisym_def by fast
moreover note assms (2) b V(3)
ultimately have \(\exists \mathrm{z} \in \mathrm{A}-\{\mathrm{b}, \mathrm{c}\} .\langle\mathrm{b}, \mathrm{z}\rangle \in \mathrm{r} \wedge\langle\mathrm{z}, \mathrm{c}\rangle \in \mathrm{r}\) unfolding IsWeaklyDenseSub_def by auto
then obtain \(z\) where \(z \in A z \neq b z \neq c\langle b, z\rangle \in r\langle z, c\rangle \in r\) by auto
with assms (3) have \(z \in A z \in \operatorname{IntervalX}(X, r, b, c)\) unfolding IntervalX_def
Interval_def by auto
then have \(A \cap U \neq 0\) using \(V(2) b(3)\) by auto
\}
moreover
\{
assume \(\mathrm{V} \in\{\) RightRay \(X(X, r, b) . b \in X\}\)
then obtain \(b\) where \(b: b \in X V=R i g h t R a y X(X, r, b)\) by auto
with \(\mathrm{V}(3)\) have \(\mathrm{x}:\langle\mathrm{b}, \mathrm{x}\rangle \in \mathrm{r} \mathrm{b} \neq \mathrm{x}\) unfolding RightRayX_def by auto more-
over
```

    note b(1) moreover
    have U\subseteq\bigcup (OrdTopology X r) using ass(2) by auto
    then have U\subseteqX using union_ordtopology[OF assms(1,4)] by auto
    then have x\inX using ass(1) by auto moreover
    note assms(2) ultimately
    have disj:(\existsz\inA-{b,x}. \langleb,z\rangle\inr^\langlez,x\rangle\inr)\vee IntervalX(X, r, b, x)
    = 0 unfolding IsWeaklyDenseSub_def by auto
{
assume B:IntervalX(X, r, b, x) = 0
{
assume \existsy\inX. \langlex,y\rangle\inr ^ x\not=y
then obtain y where y:y\inX
with x have x\inIntervalX(X,r,b,y) unfolding IntervalX_def Interval_def
using < }\textrm{x}\in\textrm{X}\rangle\mathrm{ by auto moreover
have }\langle\textrm{b},\textrm{y}\rangle\in\textrm{r}\mathrm{ using y(2) x(1) assms(1) unfolding IsLinOrder_def
trans_def by fast
moreover have b}=\textrm{y}\mathrm{ using y(2,3) x(1) assms(1) unfolding IsLinOrder_def
antisym_def by fast
ultimately
have ( }\exists\textrm{z}\in\textrm{A}-{\textrm{b},\textrm{y}}.\langle\textrm{b},\textrm{z}\rangle\in\textrm{r}\wedge\langlez,y\rangle\in\textrm{r}) using assms(2) unfolding
IsWeaklyDenseSub_def
using y(1) b(1) by auto
then obtain z where z\inA\langleb,z\rangle\inrb\not=z by auto
then have z\inA\capV using b(2) unfolding RightRayX_def using assms(3)
by auto
then have z\inA\capU using V(2) by auto
then have A\capU\not=0 by auto
}
moreover
{
assume R:\forally\inX. \langlex,y\rangle\inr\longrightarrowx=y
{
fix y assume y\inRightRayX(X,r,b)
then have y: }|\textrm{b},\textrm{y}\rangle\in\textrm{r}y\in\textrm{X}-{\textrm{b}} unfolding RightRayX_def by aut
{
assume A:y\not=x
then have \langlex,y\rangle\not\inr using R y (2) by auto
then have }\langle\textrm{y},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
IsTotal_def
using \langlex\inX\rangle y(2) by auto
with A y have y\inIntervalX(X,r,b,x) unfolding IntervalX_def
Interval_def
by auto
then have False using B by auto
}
then have y=x by auto
}
then have RightRayX(X,r,b)={x} using V(3) b(2) by blast
moreover

```
```

    {
        fix t assume T:t\inX
        {
        assume t=x
        then have }\langle\textrm{t},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
                using Order_ZF_1_L1 T by auto
    }
    moreover
    {
        assume t\not=x
        then have }\langlex,t\rangle\not\inr using R T by aut
        then have }\langle\textrm{t},\textrm{x}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
    IsTotal_def
using T < }\textrm{x}\in\textrm{X}\rangle\mathrm{ by auto
}
ultimately have }\langle\textrm{t},\textrm{x}\rangle\in\textrm{r}\mathrm{ by auto
}
with 〈x\inX` have HM:HasAmaximum(r,X) unfolding HasAmaximum_def
by auto
then have Maximum(r,X)\inX\forallt\inX. \langlet,Maximum(r,X)\rangle\inr using Order_ZF_4_L3
assms(1) unfolding IsLinOrder_def
by auto
with R {x\inX\rangle have xm:x=Maximum(r,X) by auto
moreover note b(2)
ultimately have V={Maximum(r,X)} by auto
then have {Maximum(r,X)}\in(OrdTopology X r) using base_sets_open[OF
Ordtopology_is_a_topology(2)[OF assms(1)]]
V(1) by auto
with HM have Maximum(r,X)\inA using assms(6) by auto
with xm have }x\inA by aut
with V (2,3) have A\capU\not=0 by auto
}
ultimately have A\capU\not=0 by auto
}
moreover
{
assume IntervalX(X, r, b, x) }=
with disj have \existsz\inA-{b,x}. \langleb,z\rangle\inr^\langlez,x\rangle\inr by auto
then obtain z where z\inAz\not=b\langleb,z\rangle\inr by auto
then have z\inAz\inRightRayX(X,r,b) unfolding RightRayX_def using
assms(3) by auto
then have z\inA\capU using V(2) b(2) by auto
then have A\capU\not=0 by auto
}
ultimately have A\capU\not=0 by auto
}
moreover
{
assume V\in{LeftRayX(X, r, b) . b \in X}

```
```

    then obtain b where b:b\inXV=LeftRayX(X, r, b) by auto
    with V(3) have x:\langlex,b\rangle\inr b}=\textrm{x}\mathrm{ unfolding LeftRayX_def by auto more-
    over
note b(1) moreover
have U\subseteq\bigcup(OrdTopology X r) using ass(2) by auto
then have U\subseteqX using union_ordtopology[0F assms (1,4)] by auto
then have }x\inX\mathrm{ using ass(1) by auto moreover
note assms(2) ultimately
have disj:(\existsz\inA-{b,x}. \langlex,z\rangle\inr^\langlez,b\rangle\inr)\vee IntervalX(X, r, x, b)
= 0 unfolding IsWeaklyDenseSub_def by auto
{
assume B:IntervalX(X, r, x, b) = 0
{
assume }\exists\textrm{y}\in\textrm{X}.\langley,x\rangle\inr\wedgex\not=
then obtain y where y:y\inX y,x\rangle\inr x\not=y by auto
with x have x\inIntervalX(X,r,y,b) unfolding IntervalX_def Interval_def
using { }\textrm{x}\in\textrm{X}\rangle\mathrm{ by auto moreover
have }\langley,b\rangle\inr using y(2) x(1) assms(1) unfolding IsLinOrder_def
trans_def by fast
moreover have b}=\textrm{y}\mathrm{ using y(2,3) x(1) assms(1) unfolding IsLinOrder_def
antisym_def by fast
ultimately
have ( \existsz\inA-{b,y}. \langley,z\rangle\inr^\z,b\rangle\inr) using assms(2) unfolding
IsWeaklyDenseSub_def
using y(1) b(1) by auto
then obtain z where z\inA\langlez,b\rangle\inrb\not=z by auto
then have z\inA\capV using b(2) unfolding LeftRayX_def using assms(3)
by auto
then have z\inA\capU using V (2) by auto
then have A\capU\not=0 by auto
}
moreover
{
assume R:\forally\inX. \langley,x\rangle\inr\longrightarrowx=y
{
fix y assume y\inLeftRayX(X,r,b)
then have y:{y,b\rangle\inr y\inX-{b} unfolding LeftRayX_def by auto
{
assume A:y\not=x
then have }\langle\textrm{y},\textrm{x}\rangle\not\in\textrm{r}\mathrm{ using R y(2) by auto
then have }\langle\textrm{x},\textrm{y}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
IsTotal_def
using \langlex\inX\rangle y(2) by auto
with A y have y\inIntervalX(X,r,x,b) unfolding IntervalX_def
Interval_def
by auto
then have False using B by auto
}
then have y=x by auto

```
```

    }
    then have LeftRayX(X,r,b)={x} using V(3) b(2) by blast
    moreover
    {
        fix t assume T:t\inX
        {
            assume t=x
            then have }\langle\textrm{x},\textrm{t}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
                using Order_ZF_1_L1 T by auto
        }
        moreover
        {
            assume t\not=x
            then have }\langlet,x\rangle\not\inr using R T by aut
            then have }\langle\textrm{x},\textrm{t}\rangle\in\textrm{r}\mathrm{ using assms(1) unfolding IsLinOrder_def
    IsTotal_def
using T {x\inX\rangle by auto
}
ultimately have }\langle\textrm{x},\textrm{t}\rangle\in\textrm{r}\mathrm{ by auto
}
with {x\inX` have HM:HasAminimum(r,X) unfolding HasAminimum_def
by auto
then have Minimum(r,X)\inX\forallt\inX. \langleMinimum(r,X),t\rangle\inr using Order_ZF_4_L4
assms(1) unfolding IsLinOrder_def
by auto
with R <x\inX> have xm:x=Minimum(r,X) by auto
moreover note b(2)
ultimately have V={Minimum(r,X)} by auto
then have {Minimum(r,X)}\in(OrdTopology X r) using base_sets_open[OF
Ordtopology_is_a_topology(2) [0F assms(1)]]
V(1) by auto
with HM have Minimum(r,X)\inA using assms(5) by auto
with xm have }x\inA\mathrm{ by auto
with V(2,3) have A\capU\not=0 by auto
}
ultimately have A\capU\not=0 by auto
}
moreover
{
assume IntervalX(X, r, x, b) }\not=
with disj have }\exists\textrm{z}\in\textrm{A}-{\textrm{b},\textrm{x}}.\langle\textrm{x},\textrm{z}\rangle\in\textrm{r}\wedge\langlez,b\rangle\in\textrm{r}\mathrm{ by auto
then obtain z where z\inAz\not=b\langlez,b\rangle\inr by auto
then have z }\in\mathrm{ Az LeftRayX(X,r,b) unfolding LeftRayX_def using assms(3)
by auto
then have z\inA\capU using V(2) b(2) by auto
then have A\capU\not=0 by auto
}
ultimately have A\capU\not=0 by auto
}

```
ultimately have \(A \cap U \neq 0\) by auto
\}
then have \(\forall U \in(\) OrdTopology \(X r) . x \in U \longrightarrow U \cap A \neq 0\) by auto
moreover note \(\langle x \in X\rangle\) moreover
note assms(3) topology0.inter_neigh_cl[OF topology0_ordtopology[0F assms(1)]]
union_ordtopology[0F assms (1,4)] ultimately have \(x \in C l o s u r e(A, O r d T o p o l o g y ~\)
X r)
by auto
\}
then have \(X \subseteq\) Closure (A,OrdTopology X r) by auto
with topology0.Top_3_L11(1)[0F topology0_ordtopology[0F assms(1)]]
assms (3) union_ordtopology [0F assms (1,4)] show thesis by auto
qed
The conclusion is that an order topology is \(\kappa\)-separable iff there is a set \(A\) with cardinality strictly less than \(\kappa\) which is weakly-dense in \(X\).
theorem separable_imp_wdense:
assumes (OrdTopology \(X\) r) \{is separable of cardinal\} \(\exists \mathrm{x} y . \mathrm{x} \neq \mathrm{y} \wedge\)
\(\mathrm{x} \in \mathrm{X} \wedge \mathrm{y} \in \mathrm{X}\) IsLinOrder (X,r)
shows \(\exists \mathrm{A} \in \operatorname{Pow}(\mathrm{X}) . \mathrm{A} \prec Q \wedge\) (A\{is weakly dense in\}X\{with respect to\}r)
proof-
from assms obtain \(U\) where \(U \in \operatorname{Pow}(U\) (OrdTopology X r)) Closure(U,OrdTopology X r) \(=\bigcup\) (OrdTopology X r) \(U \prec\) Q
unfolding IsSeparableOfCard_def by auto
then have \(U \in \operatorname{Pow}(X)\) Closure (U, OrdTopology \(X \quad r\)) \(=\mathrm{X}\) U \(\prec Q\) using union_ordtopology [OF assms (3,2)]
by auto
with dense_top_imp_Wdense_ord [OF assms(3) _ _ assms(2)] show thesis

\section*{by auto}
qed
theorem wdense_imp_separable:
assumes \(\exists \mathrm{x} y . \mathrm{x} \neq \mathrm{y} \wedge \mathrm{x} \in \mathrm{X} \wedge \mathrm{y} \in \mathrm{X}\) (A\{is weakly dense in\}X\{with
respect to\}r)
IsLinOrder (X,r) \(\mathrm{A} \prec \mathrm{Q} \operatorname{InfCard}(\mathrm{Q}) \mathrm{A} \subseteq \mathrm{X}\)
shows (OrdTopology \(X\) r)\{is separable of cardinal\}Q
proof-
\{
assume \(\operatorname{Hmin}: \operatorname{HasAmaximum}(r, X)\)
then have MaxX:Maximum(r,X) \(\in \mathrm{X}\) using Order_ZF_4_L3(1) assms(3) un-
folding IsLinOrder_def
by auto
\{
assume HMax: \(\operatorname{HasAminimum~(~} \mathrm{r}, \mathrm{X}\))
then have MinX:Minimum (\(r, X\)) \(\in \mathrm{X}\) using Order_ZF_4_L4(1) assms(3) un-
folding IsLinOrder_def
by auto
let \(A=A \cup\{\operatorname{Maximum}(r, X), \operatorname{Minimum}(r, X)\}\)
```

    have Finite({Maximum(r,X),Minimum(r,X)}) by auto
    then have {Maximum(r,X),Minimum(r,X)}\precnat using n_lesspoll_nat
        unfolding Finite_def using eq_lesspoll_trans by auto
    moreover
    from assms(5) have nat\precQ\veenat=Q unfolding InfCard_def
        using lt_Card_imp_lesspoll[of Qnat] unfolding lt_def succ_def
        using Card_is_Ord[of Q] by auto
    ultimately have {Maximum(r,X),Minimum(r,X)}\precQ using lesspoll_trans
    by auto
with assms(4,5) have C:A\precQ using less_less_imp_un_less
by auto
have WeakDense:A{is weakly dense in}X{with respect to}r using assms(2)
unfolding
IsWeaklyDenseSub_def by auto
from MaxX MinX assms(6) have S:A\subseteqX by auto
then have Closure(A,OrdTopology X r)=X using Wdense_ord_imp_dense_top
[OF assms(3) WeakDense _ assms(1)] by auto
then have thesis unfolding IsSeparableOfCard_def using union_ordtopology[OF
assms(3,1)]
S C by auto
}
moreover
{
assume nmin: }\neg\mathrm{ HasAminimum(r, X)
let A=A \cup{Maximum(r,X)}
have Finite({Maximum(r,X)}) by auto
then have {Maximum(r,X)}\precnat using n_lesspoll_nat
unfolding Finite_def using eq_lesspoll_trans by auto
moreover
from assms(5) have nat }\precQ\veenat=Q unfolding InfCard_def
using lt_Card_imp_lesspoll[of Qnat] unfolding lt_def succ_def
using Card_is_Ord[of Q] by auto
ultimately have {Maximum(r,X)}\precQ using lesspoll_trans by auto
with assms(4,5) have C:A\precQ using less_less_imp_un_less
by auto
have WeakDense:A{is weakly dense in}X{with respect to}r using assms(2)
unfolding
IsWeaklyDenseSub_def by auto
from MaxX assms(6) have S:A\subseteqX by auto
then have Closure(A,OrdTopology X r)=X using Wdense_ord_imp_dense_top
[OF assms(3) WeakDense _ assms(1)] nmin by auto
then have thesis unfolding IsSeparableOfCard_def using union_ordtopology[OF
assms(3,1)]
S C by auto
}
ultimately have thesis by auto
}
moreover
{

```
```

    assume nmax:\negHasAmaximum(r,X)
    ```
 \{
 assume HMin:HasAminimum (\(r, X\))
 then have MinX:Minimum (\(r, X\)) \(\in \mathrm{X}\) using Order_ZF_4_L4(1) assms(3) un-
folding IsLinOrder_def
 by auto
 let \(A=A \cup\{\operatorname{Minimum}(r, X)\}\)
 have Finite(\{Minimum \((r, X)\})\) by auto
 then have \(\{\operatorname{Minimum}(r, X)\} \prec\) nat using n_lesspoll_nat
 unfolding Finite_def using eq_lesspoll_trans by auto
 moreover
 from assms (5) have nat \(\prec Q \vee\) nat=Q unfolding InfCard_def
 using lt_Card_imp_lesspoll[of Qnat] unfolding lt_def succ_def
 using Card_is_Ord[of Q] by auto
 ultimately have \(\{\operatorname{Minimum}(r, X)\} \prec Q\) using lesspoll_trans by auto
 with assms \((4,5)\) have \(C: A \prec Q\) using less_less_imp_un_less
 by auto
 have WeakDense:A\{is weakly dense in\}X\{with respect to\}r using assms(2)
unfolding
 IsWeaklyDenseSub_def by auto
 from MinX assms(6) have \(S: A \subseteq X\) by auto
 then have Closure (A, OrdTopology X r)=X using Wdense_ord_imp_dense_top
 [OF assms(3) WeakDense _ assms(1)] nmax by auto
 then have thesis unfolding IsSeparableOfCard_def using union_ordtopology [OF
\(\operatorname{assms}(3,1)]\)
 S C by auto
 \}
 moreover
 \{
 assume \(\mathrm{nmin}: \neg\) HasAminimum (\(\mathrm{r}, \mathrm{X}\))
 let \(A=A\)
 from assms \((4,5)\) have \(C: A \prec Q\) by auto
 have WeakDense:A\{is weakly dense in\}X\{with respect to\}r using assms(2)
unfolding
 IsWeaklyDenseSub_def by auto
 from assms (6) have \(S: A \subseteq X\) by auto
 then have Closure (A,OrdTopology X r)=X using Wdense_ord_imp_dense_top
 [OF assms(3) WeakDense _ assms(1)] nmin nmax by auto
 then have thesis unfolding IsSeparableOfCard_def using union_ordtopology [0F
\(\operatorname{assms}(3,1)]\)
 S C by auto
 \}
 ultimately have thesis by auto
 \}
 ultimately show thesis by auto
qed
end

\section*{66 Uniform spaces}
```

theory UniformSpace_ZF imports Topology_ZF_4a
begin

```

This theory defines uniform spaces and proves their basic properties.

\subsection*{66.1 Definition and motivation}

Just like a topological space constitutes the minimal setting in which one can speak of continuous functions, the notion of uniform spaces (commonly attributed to André Weil) captures the minimal setting in which one can speak of uniformly continuous functions. In some sense this is a generalization of the notion of metric (or metrizable) spaces and topological groups.

There are several definitions of uniform spaces. The fact that these definitions are equivalent is far from obvious (some people call such phenomenon cryptomorphism). We will use the definition of the uniform structure (or "uniformity") based on entourages. This was the original definition by Weil and it seems to be the most commonly used. A uniformity consists of entourages that are binary relations between points of space \(X\) that satisfy a certain collection of conditions, specified below.
```

definition
IsUniformity (_ {is a uniformity on} _ 90) where
\Phi {is a uniformity on} X \equiv( }\Phi\mathrm{ {is a filter on} (X X X))

```


If \(\Phi\) is a uniformity on \(X\), then the every element \(V\) of \(\Phi\) is a certain relation on \(X\) (a subset of \(X \times X\) and is called an "entourage". For an \(x \in X\) we call \(V\{x\}\) a neighborhood of \(x\). The first useful fact we will show is that neighborhoods are non-empty.
```

lemma neigh_not_empty:
assumes $\Phi$ \{is a uniformity on\} $\mathrm{X} \mathrm{V} \in \Phi$ and $\mathrm{x} \in \mathrm{X}$
shows $\mathrm{V}\{\mathrm{x}\} \neq 0$ and $\mathrm{x} \in \mathrm{V}\{\mathrm{x}\}$
proof -
from assms $(1,2)$ have $i d(X) \subseteq V$ using IsUniformity_def IsFilter_def
by auto
with $\langle x \in X$ s show $x \in V\{x\}$ and $V\{x\} \neq 0$ by auto
qed

```

Uniformity \(\Phi\) defines a natural topology on its space \(X\) via the neighborhood system that assigns the collection \(\{V(\{x\}): V \in \Phi\}\) to every point \(x \in X\). In the next lemma we show that if we define a function this way the values of that function are what they should be. This is only a technical fact which is useful to shorten the remaining proofs, usually treated as obvious in standard mathematics.
```

lemma neigh_filt_fun:
assumes }\Phi\mathrm{ {is a uniformity on} X
defines }\mathcal{M}\equiv{\langle\textrm{x},{\textrm{V}{\textrm{x}}.\textrm{V}\in\Phi}}.\textrm{x}\in\textrm{X}
shows \mathcal{M :X }->\operatorname{Pow(Pow(X)) and }\forall\textrm{x}\in\textrm{X}.\mathcal{M}(\textrm{x})={\{\textrm{X}}.\textrm{V}\in\Phi}
proof -
from assms have }\forall\textrm{x}\in\textrm{X}.{\mp@code{V{x}.V\in\Phi} \in Pow(Pow(X))
using IsUniformity_def IsFilter_def image_subset by auto
with assms show \mathcal{M :X }->\mathrm{ Pow(Pow(X)) using ZF_fun_from_total by simp}
with assms show }\forall\textrm{x}\in\textrm{X}.\mathcal{M}(\textrm{x})={\mp@code{V{x}.V\in\Phi} using ZF_fun_from_tot_val
by simp
qed

```

In the next lemma we show that the collection defined in lemma neigh_filt_fun is a filter on \(X\). The proof is kind of long, but it just checks that all filter conditions hold.
```

lemma filter_from_uniformity:
assumes }\Phi\mathrm{ {is a uniformity on} X and x x X
defines }\mathcal{M}\equiv{\langle\textrm{x},{\textrm{V}{\textrm{x}}.\textrm{V}\in\Phi}}.\textrm{x}\in\textrm{X}
shows \mathcal{M(x) {is a filter on} X}
proof -
from assms have PhiFilter: }\Phi\mathrm{ {is a filter on} (X }\times\textrm{X}\mathrm{ ) and
M:X XPow(Pow(X)) and \mathcal{M(x) = {V{x}.V }\in\Phi}
using IsUniformity_def neigh_filt_fun by auto
have 0}\not\in\mathcal{M}(\textrm{x}
proof -
from assms {x\inX` have 0 }\not\in{V{x}.V\in\Phi} using neigh_not_empty by blas
with }\langle\mathcal{M}(\textrm{x})={\textrm{V}{\textrm{x}}.\textrm{V}\in\Phi}\rangle\mathrm{ show 0 }\not=\mathcal{M}(\textrm{x})\mathrm{ by simp
qed
moreover have x }\in\mathcal{M}(\textrm{x}
proof -
note <M (x) = {V{x}.V }\in\Phi
moreover from assms have X XX X \Phi unfolding IsUniformity_def IsFilter_def
by blast
hence (X }\times\textrm{X}){\textrm{x}}\in{\textrm{V}{\textrm{x}}.\textrm{V}\in\Phi}\mathrm{ by auto
moreover from {x\inX have ( }X\timesX){x}=X by aut
ultimately show }X\in\mathcal{M}(x)\mathrm{ by simp
qed
moreover from \langle\mathcal{M}:X->Pow(Pow(X))\rangle\langlex\inX\rangle have \mathcal{M (x) \subseteq Pow(X) using apply_funtype}\mp@code{X (X)}
by blast
moreover have LargerIn: }\forall\textrm{B}\in\mathcal{M}(\textrm{x}).\forall\textrm{C}\in\operatorname{Pow}(\textrm{X}).\textrm{B}\subseteq\textrm{C}\longrightarrow\textrm{C}\in\mathcal{M}(\textrm{x}
proof -
{ fix B assume B \in M (x)
fix C assume C }\in\operatorname{Pow(X) and B\subseteqC
from }\langle\mathcal{M}(\textrm{x})={V{\textrm{x}}.\textrm{V}\in\Phi}\rangle\langleB\in\mathcal{M}(\textrm{x})\rangle\mathrm{ obtain U where
U\in\Phi and B = U{x} by auto
let V = U U C }\times\textrm{C
from assms \langleU\in\Phi\rangle\langleC\in Pow(X)\rangle have V \in Pow(X X X) and U\subseteqV

```
using IsUniformity_def IsFilter_def by auto
with \(\langle U \in \Phi\rangle\) PhiFilter have \(\mathrm{V} \in \Phi\) using IsFilter_def by simp
moreover from assms \(\langle U \in \Phi\rangle\langle x \in X\rangle\langle B=U\{x\}\rangle\langle B \subseteq C\rangle\) have \(C=V\{x\}\)
using neigh_not_empty image_greater_rel by simp
ultimately have \(C \in\{V\{x\} . V \in \Phi\}\) by auto
with \(\langle\mathcal{M}(x)=\{V\{x\} . V \in \Phi\}\rangle\) have \(C \in \mathcal{M}(x)\) by simp
\} thus thesis by blast
qed
moreover have \(\forall \mathrm{A} \in \mathcal{M}(\mathrm{x}) . \forall \mathrm{B} \in \mathcal{M}(\mathrm{x}) . \mathrm{A} \cap \mathrm{B} \in \mathcal{M}(\mathrm{x})\)
proof -
\{ fix \(A B\) assume \(A \in \mathcal{M}(x)\) and \(B \in \mathcal{M}(x)\)
with \(\langle\mathcal{M}(\mathrm{x})=\{\mathrm{V}\{\mathrm{x}\} . \mathrm{V} \in \Phi\}\rangle\) obtain \(\mathrm{V}_{A} \mathrm{~V}_{B}\) where
\(\mathrm{A}=\mathrm{V}_{A}\{\mathrm{x}\} \mathrm{B}=\mathrm{V}_{B}\{\mathrm{x}\}\) and \(\mathrm{V}_{A} \in \Phi \mathrm{~V}_{B} \in \Phi\)
by auto
let \(\mathrm{C}=\mathrm{V}_{A}\{\mathrm{x}\} \cap \mathrm{V}_{B}\{\mathrm{x}\}\)
from assms \(\left\langle\mathrm{V}_{A} \in \Phi\right\rangle\left\langle\mathrm{V}_{B} \in \Phi\right\rangle\) have \(\mathrm{V}_{A} \cap \mathrm{~V}_{B} \in \Phi\) using IsUniformity_def
IsFilter_def
by simp
with \(\langle\mathcal{M}(\mathrm{x})=\{\mathrm{V}\{\mathrm{x}\} . \mathrm{V} \in \Phi\}\rangle\) have \(\left(\mathrm{V}_{A} \cap \mathrm{~V}_{B}\right)\{\mathrm{x}\} \in \mathcal{M}(\mathrm{x})\) by auto
moreover from PhiFilter \(\left\langle\mathrm{V}_{A} \in \Phi\right\rangle\left\langle\mathrm{V}_{B} \in \Phi\right\rangle\) have \(\mathrm{C} \in \operatorname{Pow}(\mathrm{X})\) unfold-
ing IsFilter_def
by auto
moreover have \(\left(\mathrm{V}_{A} \cap \mathrm{~V}_{B}\right)\{\mathrm{x}\} \subseteq \mathrm{C}\) using image_Int_subset_left by simp
moreover note LargerIn
ultimately have \(C \in \mathcal{M}\) (x) by simp
with \(\left\langle\mathrm{A}=\mathrm{V}_{A}\{\mathrm{x}\}\right\rangle\left\langle\mathrm{B}=\mathrm{V}_{B}\{\mathrm{x}\}\right\rangle\) have \(\mathrm{A} \cap \mathrm{B} \in \mathcal{M}(\mathrm{x})\) by blast
\(\}\) thus thesis by simp
qed
ultimately show thesis unfolding IsFilter_def by simp
qed
The function defined in the premises of lemma neigh_filt_fun (or filter_from_uniformity) is a neighborhood system. The proof uses the existence of the "half-thesize" neighborhood condition \((\exists \mathrm{V} \in \Phi . \mathrm{V} \mathrm{O} \mathrm{V} \subseteq \mathrm{U})\) of the uniformity definition, but not the converse (U) \(\in \Phi\) part.
theorem neigh_from_uniformity:
assumes \(\Phi\) \{is a uniformity on\} X
shows \(\{\langle\mathrm{x},\{\mathrm{V}\{\mathrm{x}\} . \mathrm{V} \in \Phi\}\rangle . \mathrm{x} \in \mathrm{X}\}\) \{is a neighborhood system on\} X
proof -
let \(\mathcal{M}=\{\langle\mathrm{x},\{\mathrm{V}\{\mathrm{x}\} . \mathrm{V} \in \Phi\}\rangle . \mathrm{x} \in \mathrm{X}\}\)
from assms have \(\mathcal{M}: X \rightarrow \operatorname{Pow}(\operatorname{Pow}(X))\) and Mval: \(\forall x \in X . \mathcal{M}(x)=\{V\{x\} . V \in \Phi\}\) using IsUniformity_def neigh_filt_fun by auto
moreover from assms have \(\forall x \in X\). (\(\mathcal{M}(x)\) \{is a filter on\} X) using filter_from_uniformity by simp
moreover
\{ fix \(x\) assume \(x \in X\) have \(\forall N \in \mathcal{M}(x) . x \in N \wedge(\exists U \in \mathcal{M}(x) . \forall y \in U .(N \in \mathcal{M}(y)))\) proof -
\{ fix \(N\) assume \(N \in \mathcal{M}(x)\)
```

        have }x\inN\mathrm{ and }\exists\textrm{U}\in\mathcal{M}(\textrm{x}).\forall\textrm{y}\in\textrm{U}.(N\in\mathcal{M}(\textrm{y})
        proof -
            from \langle\mathcal{M :X XPow(Pow(X))\rangle Mval {x\inX\rangle\langleN}\in\mathcal{M}(\textrm{x})\rangle
            obtain U where U\in\Phi and N = U{x} by auto
            with assms { }\textrm{x}\in\textrm{X}\rangle\mathrm{ show }\textrm{x}\in\textrm{N}\mathrm{ using neigh_not_empty by simp
            from assms \langleU\in\Phi\rangle obtain V where V\in\Phi and V O V \subseteq U
                unfolding IsUniformity_def by auto
            let W = V{x}
            from \langleV\in\Phi\rangle Mval }\langle\textrm{x}\in\textrm{X}\rangle\mathrm{ have W }\textrm{W}\in\mathcal{M}(\textrm{x})\mathrm{ by auto
            moreover have }\forally\inW. N \in\mathcal{M}(y
            proof -
                { fix y assume y\inW
                    with \langle\mathcal{M}:X->Pow(\operatorname{Pow}(\textrm{X}))\rangle\langlex\in\textrm{X}\rangle\langle\textrm{W}\in\mathcal{M}(\textrm{x})\rangle\mathrm{ have }\textrm{y}\in\textrm{X}
                    using apply_funtype by blast
                    with assms have }\mathcal{M}(y) {is a filter on} X using filter_from_uniformity
                    by simp
                    moreover from assms }\langle\textrm{y}\in\textrm{X}\rangle\langle\textrm{V}\in\Phi\rangle\mathrm{ have V{y} }\in\mathcal{M}(\textrm{y}
                    using neigh_filt_fun by auto
                moreover from \langle\mathcal{M}:X->Pow(Pow(X))\rangle\langlex\inX\rangle\langleN \in\mathcal{M}(\textrm{x})\rangle\mathrm{ have}
    N}\in\operatorname{Pow(X)
using apply_funtype by blast
moreover from <V O V \subseteq U < \y\inW\rangle have
V{y} \subseteq (V O V){x} and (V O V) {x} \subseteq U{x}
by auto
with <N = U{x}> have V{y} \subseteq N by blast
ultimately have N }\in\mathcal{M}(y)\mathrm{ unfolding IsFilter_def by simp
} thus thesis by simp
qed
ultimately show }\exists\textrm{U}\in\mathcal{M}(\textrm{x}).\forall\textrm{y}\in\textrm{U}.(N\in\mathcal{M}(\textrm{y}))\mathrm{ by auto
qed
} thus thesis by simp
qed
}
ultimately show thesis unfolding IsNeighSystem_def by simp
qed

```

When we have a uniformity \(\Phi\) on \(X\) we can define a topology on \(X\) in a (relatively) natural way. We will call that topology the UniformTopology (\(\Phi\)). The definition may be a bit cryptic but it just combines the construction of a neighborhood system from uniformity as in the assumptions of lemma filter_from_uniformity and the construction of topology from a neighborhood system from theorem topology_from_neighs. We could probably reformulate the definition to skip the \(X\) parameter because if \(\Phi\) is a uniformity on \(X\) then \(X\) can be recovered from (is determined by) \(\Phi\).

\section*{definition}

UniformTopology \((\Phi, X) \equiv\{U \in \operatorname{Pow}(X) . \forall x \in U . U \in\{\langle t,\{V\{t\} . V \in \Phi\}\rangle . t \in X\}(x)\}\)
The collection of sets constructed in the UniformTopology definition is indeed a topology on \(X\).
```

theorem uniform_top_is_top:
assumes \Phi {is a uniformity on} X
shows
UniformTopology( }\Phi,\textrm{X})\mathrm{ {is a topology} and \ UniformTopology( }\Phi,\textrm{X})
X
using assms neigh_from_uniformity UniformTopology_def topology_from_neighs
by auto
end

```

\section*{67 Topological groups - introduction}
theory TopologicalGroup_ZF imports Topology_ZF_3 Group_ZF_1 Semigroup_ZF
begin
This theory is about the first subject of algebraic topology: topological groups.

\subsection*{67.1 Topological group: definition and notation}

Topological group is a group that is a topological space at the same time. This means that a topological group is a triple of sets, say \((G, f, T)\) such that \(T\) is a topology on \(G, f\) is a group operation on \(G\) and both \(f\) and the operation of taking inverse in \(G\) are continuous. Since IsarMathLib defines topology without using the carrier, (see Topology_ZF), in our setup we just use \(\bigcup T\) instead of \(G\) and say that the pair of sets \((\bigcup T, f)\) is a group. This way our definition of being a topological group is a statement about two sets: the topology \(T\) and the group operation \(f\) on \(G=\bigcup T\). Since the domain of the group operation is \(G \times G\), the pair of topologies in which \(f\) is supposed to be continuous is \(T\) and the product topology on \(G \times G\) (which we will call \(\tau\) below).

This way we arrive at the following definition of a predicate that states that pair of sets is a topological group.
```

definition
IsAtopologicalGroup(T,f) \equiv (T {is a topology}) ^ IsAgroup(UT,f) ^
IsContinuous(ProductTopology(T,T),T,f) ^
IsContinuous(T,T,GroupInv(UT,f))

```

We will inherit notation from the topology0 locale. That locale assumes that \(T\) is a topology. For convenience we will denote \(G=\bigcup T\) and \(\tau\) to be the product topology on \(G \times G\). To that we add some notation specific to groups. We will use additive notation for the group operation, even though we don't assume that the group is abelian. The notation \(g+A\) will mean the left translation of the set \(A\) by element \(g\), i.e. \(g+A=\{g+a \mid a \in A\}\). The
group operation \(G\) induces a natural operation on the subsets of \(G\) defined as \(\langle A, B\rangle \mapsto\{x+y \mid x \in A, y \in B\}\). Such operation has been considered in func_ZF and called \(f\) "lifted to subsets of" \(G\). We will denote the value of such operation on sets \(A, B\) as \(A+B\). The set of neigboorhoods of zero (denoted \(\mathcal{N}_{0}\)) is the collection of (not necessarily open) sets whose interior contains the neutral element of the group.
```

locale topgroup = topology0 +
fixes G
defines G_def [simp]: G \equiv UT
fixes prodtop ( }\tau\mathrm{ )
defines prodtop_def [simp]: \tau \equiv ProductTopology(T,T)
fixes f
assumes Ggroup: IsAgroup(G,f)
assumes fcon: IsContinuous(\tau,T,f)
assumes inv_cont: IsContinuous(T,T,GroupInv(G,f))
fixes grop (infixl + 90)
defines grop_def [simp]: x+y \equivf\x,y\rangle
fixes grinv (- _ 89)
defines grinv_def [simp]: (-x) \equiv GroupInv(G,f)(x)
fixes grsub (infixl - 90)
defines grsub_def [simp]: x-y \equiv x+(-y)
fixes setinv (- _ 72)
defines setninv_def [simp]: -A \equiv GroupInv(G,f)(A)
fixes ltrans (infix + 73)
defines ltrans_def [simp]: x + A \equiv LeftTranslation(G,f,x)(A)
fixes rtrans (infix + 73)
defines rtrans_def [simp]: A + x \equiv RightTranslation(G,f,x)(A)
fixes setadd (infixl + 71)
defines setadd_def [simp]: A B }\equiv\mathrm{ (f {lifted to subsets of} G) }\langleA,B
fixes gzero (0)
defines gzero_def [simp]: 0 \equiv TheNeutralElement(G,f)
fixes zerohoods (N}\mp@subsup{\mathcal{N}}{0}{
defines zerohoods_def [simp]: \mathcal{N}

```
```

fixes listsum ( $\sum_{\text {_ }}$ 70)
defines listsum_def [simp]: $\sum \mathrm{k} \equiv$ Fold1(f,k)

```

The first lemma states that we indeeed talk about topological group in the context of topgroup locale
```

lemma (in topgroup) topGroup: shows IsAtopologicalGroup(T,f)
using topSpaceAssum Ggroup fcon inv_cont IsAtopologicalGroup_def
by simp

```

If a pair of sets \((T, f)\) forms a topological group, then all theorems proven in the topgroup context are valid as applied to \((T, f)\).
```

lemma topGroupLocale: assumes IsAtopologicalGroup(T,f)
shows topgroup(T,f)
using assms IsAtopologicalGroup_def topgroup_def
topgroup_axioms.intro topology0_def by simp

```

We can use the group0 locale in the context of topgroup.
```

lemma (in topgroup) group0_valid_in_tgroup: shows group0(G,f)
using Ggroup group0_def by simp

```

We can use semigro locale in the context of topgroup.
lemma (in topgroup) semigr0_valid_in_tgroup: shows semigr0(G,f) using Ggroup IsAgroup_def IsAmonoid_def semigrO_def by simp

We can use the prod_top_spaces0 locale in the context of topgroup.
lemma (in topgroup) prod_top_spaces0_valid: shows prod_top_spaces0(T,T,T) using topSpaceAssum prod_top_spacesO_def by simp

Negative of a group element is in group.
lemma (in topgroup) neg_in_tgroup: assumes \(g \in G\) shows (-g) \(\in \mathrm{G}\) proof -
from assms have GroupInv(G,f)(g) \(\in G\)
using group0_valid_in_tgroup group0.inverse_in_group by blast
thus thesis by simp
qed
Zero is in the group.
lemma (in topgroup) zero_in_tgroup: shows \(0 \in G\)
proof -
have TheNeutralElement (G,f) \(\in G\)
using group0_valid_in_tgroup group0.group0_2_L2 by blast
then show \(0 \in G\) by simp
qed
Of course the product topology is a topology (on \(G \times G\)).
lemma (in topgroup) prod_top_on_G:
shows \(\tau\) \{is a topology\} and \(\bigcup \tau=G \times G\)
using topSpaceAssum Top_1_4_T1 by auto
Let's recall that \(f\) is a binary operation on \(G\) in this context.
lemma (in topgroup) topgroup_f_binop: shows \(f: G \times G \rightarrow G\)
using Ggroup group0_def group0.group_oper_assocA by simp
A subgroup of a topological group is a topological group with relative topology and restricted operation. Relative topology is the same as T \{restricted to\} H which is defined to be \(\{V \cap H: V \in T\}\) in ZF1 theory.
lemma (in topgroup) top_subgroup: assumes A1: IsAsubgroup (H,f)
shows IsAtopologicalGroup(\(T\) \{restricted to\} H,restrict \((f, H \times H)\))
proof -
let \(\tau_{0}=\mathrm{T}\) \{restricted to\} H
let \(\mathrm{f}_{H}=\) restrict \((\mathrm{f}, \mathrm{H} \times \mathrm{H})\)
have \(\bigcup \tau_{0}=G \cap H\) using union_restrict by simp
also from A1 have \(\ldots=H\)
using group0_valid_in_tgroup group0.group0_3_L2 by blast
finally have \(\bigcup \tau_{0}=\mathrm{H}\) by simp
have \(\tau_{0}\) \{is a topology\} using Top_1_L4 by simp
moreover from A1 \(\left.\bigcup \tau_{0}=\mathrm{H}\right\rangle\) have \(\operatorname{IsAgroup}\left(\bigcup \tau_{0}, \mathrm{f}_{H}\right)\)
using IsAsubgroup_def by simp
moreover have IsContinuous (ProductTopology \(\left.\left(\tau_{0}, \tau_{0}\right), \tau_{0}, \mathrm{f}_{H}\right)\)
proof -
have two_top_spaces 0 (\(\tau, \mathrm{T}, \mathrm{f}\))
using topSpaceAssum prod_top_on_G topgroup_f_binop prod_top_on_G
two_top_spaces0_def by simp
moreover
from A1 have \(H \subseteq G\) using group0_valid_in_tgroup group0.group0_3_L2 by simp
then have \(H \times H \subseteq \bigcup \tau\) using prod_top_on_G by auto
moreover have IsContinuous (\(\tau, \mathrm{T}, \mathrm{f}\)) using fcon by simp
ultimately have
IsContinuous (\(\tau\) \{restricted to\} \(\mathrm{H} \times \mathrm{H}, \mathrm{T}\) \{restricted to\} \(\mathrm{f}_{H}(\mathrm{H} \times \mathrm{H}), \mathrm{f}_{H}\))
using two_top_spaces0.restr_restr_image_cont by simp
moreover have
ProductTopology \(\left(\tau_{0}, \tau_{0}\right)=\tau\) \{restricted to\} \(\mathrm{H} \times \mathrm{H}\) using topSpaceAssum
prod_top_restr_comm by simp
moreover from A1 have \(\mathrm{f}_{H}(\mathrm{H} \times \mathrm{H})=\mathrm{H}\) using image_subgr_op by simp
ultimately show thesis by simp
qed
moreover have IsContinuous \(\left(\tau_{0}, \tau_{0}, \operatorname{GroupInv}\left(\bigcup \tau_{0}, \mathrm{f}_{H}\right)\right.\))
proof -
let \(g=\operatorname{restrict}(\operatorname{GroupInv}(G, f), H)\)
have \(\operatorname{GroupInv}(G, f): G \rightarrow G\)
using Ggroup group0_2_T2 by simp
```

    then have two_top_spaces0(T,T,GroupInv(G,f))
        using topSpaceAssum two_top_spaces0_def by simp
    moreover from A1 have H}\subseteq\bigcup\
        using group0_valid_in_tgroup group0.group0_3_L2
        by simp
    ultimately have
        IsContinuous( }\mp@subsup{\tau}{0}{},\textrm{T}{\mathrm{ {restricted to} g(H),g)
        using inv_cont two_top_spaces0.restr_restr_image_cont
        by simp
    moreover from A1 have g(H) = H
    using group0_valid_in_tgroup group0.restr_inv_onto
    by simp
    moreover
    from A1 have GroupInv(H, f}\mp@subsup{f}{H}{})=
            using group0_valid_in_tgroup group0.group0_3_T1
            by simp
        with \bigcup \ \mp@subsup{\tau}{0}{}=\textrm{H}\rangle\mathrm{ have g = GroupInv (U }\0,\mp@subsup{\textrm{f}}{H}{})\mathrm{ by simp}
        ultimately show thesis by simp
    qed
    ultimately show thesis unfolding IsAtopologicalGroup_def by simp
    qed

```

\subsection*{67.2 Interval arithmetic, translations and inverse of set}

In this section we list some properties of operations of translating a set and reflecting it around the neutral element of the group. Many of the results are proven in other theories, here we just collect them and rewrite in notation specific to the topgroup context.

Different ways of looking at adding sets.
```

lemma (in topgroup) interval_add: assumes }A\subseteqG B\subseteqG show
A+B\subseteqG and A+B = f(A\timesB) A+B = (\x\inA. x+B)
proof -
from assms show A+B\subseteqG and A+B = f(A\timesB)
using topgroup_f_binop lift_subsets_explained by auto
from assms show A+B = ( \ x AA. x+B)
using group0_valid_in_tgroup group0.image_ltrans_union by simp
qed

```

Right and left translations are continuous.
```

lemma (in topgroup) trans_cont: assumes g\inG shows
IsContinuous(T,T,RightTranslation(G,f,g)) and
IsContinuous(T,T,LeftTranslation(G,f,g))
using assms group0_valid_in_tgroup group0.trans_eq_section
topgroup_f_binop fcon prod_top_spaces0_valid
prod_top_spaces0.fix_1st_var_cont prod_top_spaces0.fix_2nd_var_cont
by auto

```

Left and right translations of an open set are open.
```

lemma (in topgroup) open_tr_open: assumes g\inG and V\inT
shows g+V \in T and V V g \in T
using assms neg_in_tgroup trans_cont IsContinuous_def
group0_valid_in_tgroup groupO.trans_image_vimage by auto

```

Right and left translations are homeomorphisms.
```

lemma (in topgroup) tr_homeo: assumes g\inG shows
IsAhomeomorphism(T,T,RightTranslation(G,f,g)) and
IsAhomeomorphism(T,T,LeftTranslation(G,f,g))
using assms group0_valid_in_tgroup group0.trans_bij trans_cont open_tr_open
bij_cont_open_homeo by auto

```

Translations preserve interior.
```

lemma (in topgroup) trans_interior: assumes A1: g\inG and A2: A\subseteqG
shows g + int(A) = int(g+A)
proof -
from assms have A \subseteq UT and IsAhomeomorphism(T,T,LeftTranslation(G,f,g))
using tr_homeo
by auto
then show thesis using int_top_invariant by simp
qed

```

Inverse of an open set is open.
```

lemma (in topgroup) open_inv_open: assumes V\inT shows (-V) \in T
using assms group0_valid_in_tgroup group0.inv_image_vimage
inv_cont IsContinuous_def by simp

```

Inverse is a homeomorphism.
lemma (in topgroup) inv_homeo: shows IsAhomeomorphism(T,T,GroupInv(G,f)) using groupO_valid_in_tgroup groupO.group_inv_bij inv_cont open_inv_open bij_cont_open_homeo by simp

Taking negative preserves interior.
```

lemma (in topgroup) int_inv_inv_int: assumes A \subseteq G
shows int(-A) = - (int(A))
using assms inv_homeo int_top_invariant by simp

```

\subsection*{67.3 Neighborhoods of zero}

Zero neighborhoods are (not necessarily open) sets whose interior contains the neutral element of the group. In the topgroup locale the collection of neighboorhoods of zero is denoted \(\mathcal{N}_{0}\).

The whole space is a neighborhood of zero.
lemma (in topgroup) zneigh_not_empty: shows \(G \in \mathcal{N}_{0}\) using topSpaceAssum IsATopology_def Top_2_L3 zero_in_tgroup by simp

Any element belongs to the interior of any neighboorhood of zero translated by that element.
```

lemma (in topgroup) elem_in_int_trans:
assumes A1: g\inG and A2: H}\in\mp@subsup{\mathcal{N}}{0}{
shows g G int(g+H)
proof -
from A2 have 0 \in int(H) and int(H) \subseteqG using Top_2_L2 by auto
with A1 have g G g + int(H)
using groupO_valid_in_tgroup group0.neut_trans_elem by simp
with assms show thesis using trans_interior by simp
qed

```

Negative of a neighborhood of zero is a neighborhood of zero.
lemma (in topgroup) neg_neigh_neigh: assumes \(H \in \mathcal{N}_{0}\)
 shows \((-H) \in \mathcal{N}_{0}\)
proof -
 from assms have int \((H) \subseteq G\) and \(0 \in \operatorname{int}(H)\) using Top_2_L1 by auto
 with assms have \(0 \in \operatorname{int}(-H)\) using group0_valid_in_tgroup group0.neut_inv_neut
 int_inv_inv_int by simp
 moreover
 have \(\operatorname{GroupInv}(\mathrm{G}, \mathrm{f}): \mathrm{G} \rightarrow \mathrm{G}\) using Ggroup group0_2_T2 by simp
 then have \((-H) \subseteq G\) using func1_1_L6 by simp
 ultimately show thesis by simp
qed

Translating an open set by a negative of a point that belongs to it makes it a neighboorhood of zero.
```

lemma (in topgroup) open_trans_neigh: assumes A1: U\inT and g\inU
shows (-g)+U \in \mathcal{N}
proof -
let H = (-g)+U
from assms have g\inG by auto
then have (-g) \inG using neg_in_tgroup by simp
with A1 have H\inT using open_tr_open by simp
hence H}\subseteqG\mathrm{ by auto
moreover have 0 \in int(H)
proof -
from assms have U\subseteqG and g\inU by auto
with }\langle\textrm{H}\in\textrm{T}\rangle\mathrm{ show 0 }\in\operatorname{int}(H
using group0_valid_in_tgroup groupO.elem_trans_neut Top_2_L3
by auto
qed
ultimately show thesis by simp
qed

```

\subsection*{67.4 Closure in topological groups}

This section is devoted to a characterization of closure in topological groups.

Closure of a set is contained in the sum of the set and any neighboorhood of zero.
```

lemma (in topgroup) cl_contains_zneigh:
assumes A1: $A \subseteq G$ and $A 2: H \in \mathcal{N}_{0}$
shows cl(A) $\subseteq A+H$
proof
fix $x$ assume $x \in c l(A)$
from A1 have $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{G}$ using Top_3_L11 by simp
with $\langle x \in c l(A)\rangle$ have $x \in G$ by auto
have int $(H) \subseteq G$ using Top_2_L2 by auto
let $\mathrm{V}=\operatorname{int}(\mathrm{x}+(-\mathrm{H}))$
have $\mathrm{V}=\mathrm{x}+(-\operatorname{int}(\mathrm{H}))$
proof -
from $\mathrm{A} 2\langle\mathrm{x} \in \mathrm{G}\rangle$ have $\mathrm{V}=\mathrm{x}+\operatorname{int}(-\mathrm{H})$
using neg_neigh_neigh trans_interior by simp
with A2 show thesis using int_inv_inv_int by simp
qed
have $\mathrm{A} \cap \mathrm{V} \neq 0$
proof -
from $A 2\langle x \in G\rangle\langle x \in c l(A)\rangle$ have $V \in T$ and $x \in \operatorname{cl}(A) \cap V$
using neg_neigh_neigh elem_in_int_trans Top_2_L2 by auto
with A1 show $A \cap V \neq 0$ using cl_inter_neigh by simp
qed
then obtain $y$ where $y \in A$ and $y \in V$ by auto
with $\langle V=x+(-\operatorname{int}(H))\rangle\langle\operatorname{int}(H) \subseteq G\rangle\langle x \in G\rangle$ have $x \in y+i n t(H)$
using group0_valid_in_tgroup group0.ltrans_inv_in by simp
with $\langle y \in A\rangle$ have $x \in(\bigcup y \in A . y+H)$ using Top_2_L1 func1_1_L8 by auto
with assms show $\mathrm{x} \in \mathrm{A}+\mathrm{H}$ using interval_add by simp
qed

```

The next theorem provides a characterization of closure in topological groups in terms of neighborhoods of zero.
theorem (in topgroup) cl_topgroup:
assumes \(A \subseteq G\) shows \(c l(A)=\left(\bigcap H \in \mathcal{N}_{0} \cdot A+H\right)\)
proof
from assms show \(\mathrm{cl}(\mathrm{A}) \subseteq\left(\bigcap H \in \mathcal{N}_{0} . A+H\right)\)
using zneigh_not_empty cl_contains_zneigh by auto
next
\(\left\{\right.\) fix \(x\) assume \(x \in\left(\bigcap H \in \mathcal{N}_{0} . A+H\right)\)
then have \(x \in A+G\) using zneigh_not_empty by auto with assms have \(x \in G\) using interval_add by blast have \(\forall U \in T . x \in U \longrightarrow U \cap A \neq 0\) proof -
\{ fix \(U\) assume \(U \in T\) and \(x \in U\)
let \(H=-((-x)+U)\)
from \(\langle\mathrm{U} \in \mathrm{T}\rangle\) and \(\langle\mathrm{x} \in \mathrm{U}\rangle\) have \((-\mathrm{x})+\mathrm{U} \subseteq \mathrm{G}\) and \(\mathrm{H} \in \mathcal{N}_{0}\)
using open_trans_neigh neg_neigh_neigh by auto with \(\left\langle x \in\left(\bigcap H \in \mathcal{N}_{0} . A+H\right)\right\rangle\) have \(x \in A+H\) by auto with assms \(\left\langle\mathrm{H} \in \mathcal{N}_{0}\right\rangle\) obtain y where \(\mathrm{y} \in \mathrm{A}\) and \(\mathrm{x} \in \mathrm{y}+\mathrm{H}\)
```

                using interval_add by auto
                have }\textrm{y}\in\textrm{U
                proof -
                    from assms }\langley\inA\rangle\mathrm{ have }y\inG\mathrm{ by auto
                    with \langle(-x)+U\subseteqG\rangle and \langlex\in y+H\rangle have y }\in\textrm{x}+((-\textrm{x})+\textrm{U}
                            using group0_valid_in_tgroup group0.ltrans_inv_in by simp
                    with \langleU\inT\rangle\langlex\inG\rangle show }\textrm{y}\in\textrm{U
                        using neg_in_tgroup group0_valid_in_tgroup group0.trans_comp_image
                        group0.group0_2_L6 group0.trans_neutral image_id_same
                    by auto
                qed
                with }\langle\textrm{y}\in\textrm{A}\rangle\mathrm{ have UQA #= 0 by auto
            } thus thesis by simp
        qed
        with assms {x\inG` have x }\in\mathrm{ cl(A) using inter_neigh_cl by simp
    ```

```

qed

```

\subsection*{67.5 Sums of sequences of elements and subsets}

In this section we consider properties of the function \(G^{n} \rightarrow G, x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\) \(\sum_{i=0}^{n-1} x_{i}\). We will model the cartesian product \(G^{n}\) by the space of sequences \(n \rightarrow G\), where \(n=\{0,1, \ldots, n-1\}\) is a natural number. This space is equipped with a natural product topology defined in Topology_ZF_3.

Let's recall first that the sum of elements of a group is an element of the group.
```

lemma (in topgroup) sum_list_in_group:
assumes n }\in\mathrm{ nat and x: 亚c(n) }->\textrm{G
shows ( }\sum\textrm{x})\in\textrm{G
proof -
from assms have semigrO(G,f) and n \in nat x: succ(n)->G
using semigr0_valid_in_tgroup by auto
then have Fold1(f,x) \inG by (rule semigr0.prod_type)
thus ( }\sum\textrm{x})\in\textrm{G}\mathrm{ by simp
qed

```

In this context \(\mathrm{x}+\mathrm{y}\) is the same as the value of the group operation on the elements \(x\) and \(y\). Normally we shouldn't need to state this a s separate lemma.
lemma (in topgroup) grop_def1: shows \(f(x, y\rangle=x+y\) by simp
Another theorem from Semigroup_ZF theory that is useful to have in the additive notation.
```

lemma (in topgroup) shorter_set_add:
assumes n \in nat and x: succ(\operatorname{succ}(n))->G
shows (\sumx) = (\sum\operatorname{Init}(x)) + (x(\operatorname{succ}(n)))
proof -

```
```

    from assms have semigr0(G,f) and n \in nat x: succ(\operatorname{succ}(n))}->\textrm{G
        using semigrO_valid_in_tgroup by auto
    then have Fold1(f,x)=f\langleFold1(f,Init(x)),x(\operatorname{succ}(n))\rangle
        by (rule semigr0.shorter_seq)
    thus thesis by simp
    qed

```

Sum is a continuous function in the product topology.
```

theorem (in topgroup) sum_continuous: assumes $n \in$ nat
shows IsContinuous (SeqProductTopology $\left.(\operatorname{succ}(n), T), T,\left\{\left\langle x, \sum x\right\rangle \cdot x \in \operatorname{succ}(n) \rightarrow G\right\}\right)$
proof -
note $\langle\mathrm{n} \in$ nat〉
moreover have IsContinuous(SeqProductTopology(succ (0), $T$ ), $T,\left\{\left\langle x, \sum \mathrm{x}\right\rangle . \mathrm{x} \in \operatorname{succ}(0) \rightarrow G\right\}$ )
proof -
have $\left\{\left\langle x, \sum x\right\rangle . x \in \operatorname{succ}(0) \rightarrow G\right\}=\{\langle x, x(0)\rangle . x \in 1 \rightarrow G\}$
using semigr0_valid_in_tgroup semigr0.prod_of_1elem by simp
moreover have
IsAhomeomorphism(SeqProductTopology (1, T) , $\mathrm{T},\{\langle\mathrm{x}, \mathrm{x}(0)\rangle . \mathrm{x} \in 1 \rightarrow \bigcup \mathrm{~T}\}$ )
using topSpaceAssum singleton_prod_top1
by simp
ultimately show thesis using IsAhomeomorphism_def by simp
qed
moreover have $\forall k \in$ nat.
IsContinuous (SeqProductTopology (succ (k), T), T, $\left\{\left\langle\mathrm{x}, \sum \mathrm{x}\right\rangle . \mathrm{x} \in \operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{G}\right\}$ )
$\longrightarrow$
IsContinuous (SeqProductTopology (succ (succ (k)), T), T, $\left.\left\{\left\langle x, \sum \mathrm{x}\right\rangle . \mathrm{x} \in \operatorname{succ}(\operatorname{succ}(\mathrm{k})) \rightarrow G\right\}\right)$
proof -
\{ fix $k$ assume $k \in$ nat
let $s=\left\{\left\langle x, \sum x\right\rangle . x \in \operatorname{succ}(k) \rightarrow G\right\}$
let $g=\{\langle p,\langle s(f s t(p)), \operatorname{snd}(p)\rangle\rangle . p \in(\operatorname{succ}(k) \rightarrow G) \times G\}$
let $h=\{\langle x,\langle\operatorname{Init}(x), x(\operatorname{succ}(k))\rangle\rangle . x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\}$
let $\varphi=$ SeqProductTopology (succ (k), T)
let $\psi=$ SeqProductTopology (succ (succ (k)), T)
assume IsContinuous ( $\varphi, \mathrm{T}, \mathrm{s}$ )
from $\langle k \in$ nat have $s:(\operatorname{succ}(k) \rightarrow G) \rightarrow G$
using sum_list_in_group ZF_fun_from_total by simp
have $h:(\operatorname{succ}(\operatorname{succ}(k)) \rightarrow G) \rightarrow(\operatorname{succ}(k) \rightarrow G) \times G$
proof -
$\{$ fix $x$ assume $x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G$
with $\langle k \in$ nat have $\operatorname{Init}(x) \in(\operatorname{succ}(k) \rightarrow G)$
using init_props by simp
with $\langle k \in \operatorname{nat}\rangle\langle\mathrm{x}: \operatorname{succ}(\operatorname{succ}(\mathrm{k})) \rightarrow \mathrm{G}\rangle$
have $\langle\operatorname{Init}(x), x(\operatorname{succ}(k))\rangle \in(\operatorname{succ}(k) \rightarrow G) \times G$ using apply_funtype
by blast
\} then show thesis using $Z F$ _fun_from_total by simp
qed
moreover have $\mathrm{g}:((\operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{G}) \times \mathrm{G}) \rightarrow(\mathrm{G} \times \mathrm{G})$
proof -
$\{$ fix $p$ assume $p \in(\operatorname{succ}(k) \rightarrow G) \times G$

```
hence \(\mathrm{fst}(\mathrm{p}): \operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{G}\) and \(\operatorname{snd}(\mathrm{p}) \in \mathrm{G}\) by auto with \(\langle\mathrm{s}:(\operatorname{succ}(k) \rightarrow G) \rightarrow G\rangle\) have \(\langle s(f s t(p))\) ，snd \((p)\rangle \in G \times G\) using apply＿funtype by blast
\} then show \(g:((\operatorname{succ}(k) \rightarrow G) \times G) \rightarrow(G \times G)\) using ZF＿fun＿from＿total by simp
qed
moreover have \(f: G \times G \rightarrow G\) using topgroup＿f＿binop by simp
ultimately have \(f 0 \mathrm{~g} 0 \mathrm{~h}:(\operatorname{succ}(\operatorname{succ}(\mathrm{k})) \rightarrow G) \rightarrow G\) using comp＿fun by blast
from \(\langle\mathrm{k} \in\) nat have IsContinuous（ \(\psi\) ， \(\operatorname{ProductTopology~}(\varphi, T), \mathrm{h}\) ）
using topSpaceAssum finite＿top＿prod＿homeo IsAhomeomorphism＿def by simp
moreover have IsContinuous（ProductTopology \((\varphi, \mathrm{T}), \tau, \mathrm{g})\)
proof－
from topSpaceAssum have
T \｛is a topology\} \(\varphi\) \｛is a topology\} \(\bigcup \varphi=\operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{G}\) using seq＿prod＿top＿is＿top by auto
moreover from \(\langle\bigcup \varphi=\operatorname{succ}(k) \rightarrow G\rangle\langle s:(\operatorname{succ}(k) \rightarrow G) \rightarrow G\rangle\) have \(s: \bigcup \varphi \rightarrow \bigcup \mathrm{T}\) by simp
moreover note 〈IsContinuous（ \(\varphi, \mathrm{T}, \mathrm{s}\) ）〉
moreover from \(\bigcup \varphi=\operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{G}\rangle\) have \(\mathrm{g}=\{\langle\mathrm{p},\langle\mathrm{s}(\mathrm{fst}(\mathrm{p}))\), snd \((\mathrm{p})\rangle\rangle . \mathrm{p} \in \bigcup \varphi \times \bigcup \mathrm{T}\}\) by simp
ultimately have IsContinuous（ProductTopology（ \(\varphi, \mathrm{T}\) ），ProductTopology（ \(\mathrm{T}, \mathrm{T}\) ），g） using cart＿prod＿cont1 by blast
thus thesis by simp
qed
moreover have IsContinuous（ \(\tau, \mathrm{T}, \mathrm{f}\) ）using fcon by simp
moreover have \(\left\{\left\langle x, \sum x\right\rangle . x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\right\}=f 0 g 0 h\)
proof－
let \(d=\left\{\left\langle x, \sum x\right\rangle . x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\right\}\)
from 〈k nat〉 have \(\forall x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\) ．（ \(\sum \mathrm{x}\) ）\(\in G\) using sum＿list＿in＿group by blast
then have \(d:(\operatorname{succ}(\operatorname{succ}(k)) \rightarrow G) \rightarrow G\)
using sum＿list＿in＿group ZF＿fun＿from＿total by simp
moreover note \(\langle f 0 \mathrm{~g} \mathrm{Oh}:(\operatorname{succ}(\operatorname{succ}(\mathrm{k})) \rightarrow \mathrm{G}) \rightarrow \mathrm{G}\rangle\)
moreover have \(\forall x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G . d(x)=(f 0 g 0 h)(x)\)
proof
fix \(x\) assume \(x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\)
then have \(\mathrm{I}: \mathrm{h}(\mathrm{x})=\langle\operatorname{Init}(\mathrm{x}), \mathrm{x}(\operatorname{succ}(\mathrm{k}))\rangle\)
using ZF ＿fun＿from＿tot＿val1 by simp
moreover from \(\langle k \in\) nat \(\rangle\langle x \in \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\rangle\) have \(\operatorname{Init}(\mathrm{x}): \operatorname{succ}(\mathrm{k}) \rightarrow \mathrm{G}\) using init＿props by simp
moreover from \(\langle k \in\) nat \(\rangle(x: \operatorname{succ}(\operatorname{succ}(k)) \rightarrow G\rangle\)
have II：\(x(\operatorname{succ}(k)) \in G\) using apply＿funtype by blast
ultimately have \(h(x) \in(\operatorname{succ}(k) \rightarrow G) \times G\) by simp
then have \(g(h(x))=\langle s(f s t(h(x))), \operatorname{snd}(h(x))\rangle\)
```

                                using ZF_fun_from_tot_val1 by simp
    with I have g(h(x)) = \langles(Init (x)),x(\operatorname{succ}(k))\rangle
        by simp
    with <Init(x): succ(k)->G\rangle have g(h(x)) = < | Init(x), x(\operatorname{succ}(k))\rangle
    using ZF_fun_from_tot_val1 by simp
    with <k \in nat\rangle\langlex: succ(succ(k)) }->\textrm{G}
    have f(g(h(x))) = (\sum x)
    using shorter_set_add by simp
    with }\langlex\in\operatorname{succ}(\operatorname{succ}(k))->G\rangle have f(g(h(x)))=d(x
    using ZF_fun_from_tot_val1 by simp
    moreover from
    h : ( }\operatorname{succ}(\operatorname{succ}(k))->G)->(\operatorname{succ}(k)->G)\timesG
    g: ((\operatorname{succ}(\textrm{k})->G)\timesG)->(G\timesG)\rangle
    |f:(G\timesG)->G\rangle\langlex\in\operatorname{succ}(\operatorname{succ}(\textrm{k}))->G\rangle
    have (f 0 g O h) (x) = f(g(h(x))) by (rule func1_1_L18)
    ultimately show d(x) = (f O g O h)(x) by simp
    qed
ultimately show {\langlex, \sumx\rangle.x\in\operatorname{succ}(\operatorname{succ}(k))->G}=f O g O h
using func_eq by simp
qed
moreover note <IsContinuous(\tau,T,f)\rangle
ultimately have IsContinuous( }\psi,\textrm{T},{\langle\textrm{x},\sum\textrm{x}\rangle.\textrm{x}\in\operatorname{succ}(\operatorname{succ}(k))->G}
using comp_cont3 by simp
} thus thesis by simp
qed
ultimately show thesis by (rule ind_on_nat)
qed
end

```

\section*{68 Properties in topology 2}
theory Topology_ZF_properties_2 imports Topology_ZF_7 Topology_ZF_1b Finite_ZF_1 Topology_ZF_11

\section*{begin}

\subsection*{68.1 Local properties.}

This theory file deals with local topological properties; and applies local compactness to the one point compactification.

We will say that a topological space is locally @term"P" iff every point has a neighbourhood basis of subsets that have the property @term"P" as subspaces.
```

definition
IsLocally (_{is locally}_ 90)
where T{is a topology} \Longrightarrow T{is locally}P \equiv( }\forall\textrm{x}\in\bigcup\textrm{T}.\forall\textrm{b}\in\textrm{T}.\textrm{x}\in\textrm{b}
(\existsc\in\operatorname{Pow(b). x\inInterior(c,T) ^ P(c,T)))}

```

\subsection*{68.2 First examples}

Our first examples deal with the locally finite property. Finiteness is a property of sets, and hence it is preserved by homeomorphisms; which are in particular bijective.

The discrete topology is locally finite.
```

lemma discrete_locally_finite:
shows Pow(A){is locally}(\lambdaA.( }\lambda\mathrm{ B. Finite(A)))
proof-
have }\forall\textrm{b}\in\operatorname{Pow}(\textrm{A}).\(\operatorname{Pow}(\textrm{A}){restricted to}b)=b unfolding RestrictedTo_def
by blast
then have }\forall\textrm{b}\in{{\textrm{x}}.\textrm{x}\in\textrm{A}}\mathrm{ . Finite(b) by auto moreover
have reg: }\forall\textrm{S}\in\operatorname{Pow}(\textrm{A}). Interior(S,Pow(A))=S unfolding Interior_def by
auto
{
fix x b assume x\in\bigcup Pow(A) b\inPow(A) x\inb
then have {x}\subseteqb x\inInterior({x},Pow(A)) Finite({x}) using reg by
auto
then have \existsc\in\operatorname{Pow(b). x\inInterior(c,Pow(A))^Finite(c) by blast}
}
then have }\forall\textrm{x}\in\bigcup<br>Pow(A). \forallb\in\operatorname{Pow}(A). x\inb \longrightarrow (\existsc\in\operatorname{Pow}(b). x\inInterior(c,Pow(A)
\wedge ~ F i n i t e ( c ) ) ~ b y ~ a u t o
then show thesis using IsLocally_def[OF Pow_is_top] by auto
qed

```

The included set topology is locally finite when the set is finite.
```

lemma included_finite_locally_finite:
assumes Finite(A) and A\subseteqX
shows (IncludedSet(X,A)){is locally}( }\lambda\textrm{A}.(\lambda\textrm{B}. Finite(A))
proof-
have }\forall\textrm{b}\in\operatorname{Pow}(\textrm{X}). b\capA\subseteqb by auto moreover
note assms(1)
ultimately have rr:}\forall\textrm{b}\in{A\cup{x}. x\inX}. Finite(b) by forc
{
fix x b assume x\in\ (IncludedSet(X,A)) b\in(IncludedSet(X,A)) x\inb
then have }A\cup{x}\subseteqb A\cup{x}\in{A\cup{x}. x\inX} and sub: b\subseteqX unfolding IncludedSet_def
by auto
moreover have A U{x}\subseteqX using assms(2) sub {x\inb\rangle by auto
then have x\inInterior(A\cup{x},IncludedSet(X,A)) using interior_set_includedset[of
A\cup{x}XA] by auto
ultimately have }\exists\textrm{c}\in\operatorname{Pow(b). x\inInterior(c,IncludedSet(X,A))^ Finite(c)
using rr by blast
}
then have }\forall\textrm{x}\in\bigcup<br>(IncludedSet(X,A)). \forallb\in(IncludedSet(X,A)). x\inb \longrightarrow
( }\exists\textrm{c}\in\operatorname{Pow(b). x\inInterior(c,IncludedSet(X,A))^ Finite(c)) by auto
then show thesis using IsLocally_def includedset_is_topology by auto
qed

```

\subsection*{68.3 Local compactness}
```

definition
IsLocallyComp (_{is locally-compact} 70)
where T{is locally-compact}\equivT{is locally}(\lambdaB. \lambdaT. B{is compact in}T)

```

We center ourselves in local compactness, because it is a very important tool in topological groups and compactifications.

If a subset is compact of some cardinal for a topological space, it is compact of the same cardinal in the subspace topology.
```

lemma compact_imp_compact_subspace:
assumes A{is compact of cardinal}K{in}T A\subseteqB
shows A{is compact of cardinal}K{in}(T{restricted to}B) unfolding IsCompactOfCard_def
proof
from assms show C:Card(K) unfolding IsCompactOfCard_def by auto
from assms have A\subseteq\bigcupT unfolding IsCompactOfCard_def by auto
then have AA:A\subseteq\bigcup (T{restricted to}B) using assms(2) unfolding RestrictedTo_def
by auto moreover
{
fix M assume M\inPow(T{restricted to}B) A\subseteq\M
let M={S\inT. B\capS\inM}
from \M\inPow(T{restricted to}B)> have \M\subseteq\M unfolding RestrictedTo_def
by auto
with \langleA\subseteq\bigcupM\rangle have A\subseteq\bigcup MM PPow(T) by auto
with assms have }\exists\textrm{N}\in\operatorname{Pow(M). A\subseteq\bigcupN}\N\K unfolding IsCompactOfCard_de
by auto
then obtain N where N\inPow(M) A\subseteq\bigcupN N\precK by auto
then have N{restricted to}B\subseteqM unfolding RestrictedTo_def FinPow_def
by auto
moreover
let f={\langle\mathfrak{B},B\cap\mathfrak{B}\rangle. \mathfrak{B}\inN}

```
 have \(f: N \rightarrow\) (N\{restricted to\}B) unfolding Pi_def function_def domain_def
RestrictedTo_def by auto
 then have \(f \in \operatorname{surj}(N, N\{r e s t r i c t e d ~ t o\} B)\) unfolding surj_def RestrictedTo_def
using apply_equality
 by auto
 from \(\langle\mathrm{N} \prec \mathrm{K}\rangle\) have \(\mathrm{N} \lesssim \mathrm{K}\) unfolding lesspoll_def by auto
 with \(\langle f \in \operatorname{surj}(N, N\{\) restricted to\}B) 〉have \(N\{\) restricted to\} \(B<N\) using
surj_fun_inv_2 Card_is_Ord C by auto
 with \(\langle N \prec K\rangle\) have \(N\{r e s t r i c t e d ~ t o\} B \prec K\) using lesspoll_trans1 by auto
 moreover from \(\langle A \subseteq \bigcup N\rangle\) have \(A \subseteq \bigcup\) (\(N\{\) restricted to\}B) using assms (2)
unfolding RestrictedTo_def by auto
 ultimately have \(\exists \mathrm{N} \in \operatorname{Pow}(\mathrm{M})\). \(A \subseteq \bigcup \mathrm{~N} \wedge \mathrm{~N} \prec \mathrm{~K}\) by auto
 \}
 with \(A A\) show \(A \subseteq \bigcup(T\) \{restricted to\} \(B) \wedge(\forall M \in \operatorname{Pow}(T\) \{restricted to\}
B). \(A \subseteq \bigcup M \longrightarrow(\exists N \in \operatorname{Pow}(M) . A \subseteq \bigcup N \wedge N \prec K)\)) by auto
qed

The converse of the previous result is not always true. For compactness, it
holds because the axiom of finite choice always holds.
lemma compact_subspace_imp_compact:
assumes \(A\{i s\) compact in\}(T\{restricted to\}B) \(A \subseteq B\)
shows A\{is compact in\}T unfolding IsCompact_def
proof
from assms show \(A \subseteq \bigcup T\) unfolding IsCompact_def RestrictedTo_def by auto
next
\{
fix \(M\) assume \(M \in \operatorname{Pow}(T) A \subseteq \bigcup M\)
let \(M=M\{\) restricted to\}B
from \(\langle M \in \operatorname{Pow}(T)\rangle\) have \(M \in \operatorname{Pow}(T\{r e s t r i c t e d ~ t o\} B)\) unfolding RestrictedTo_def
by auto
from \(\langle A \subseteq \bigcup M\) have \(A \subseteq \bigcup M\) unfolding RestrictedTo_def using assms(2)
by auto
with assms \(\langle M \in \operatorname{Pow}(T\{r e s t r i c t e d ~ t o\} B)\)) obtain \(N\) where \(N \in\) FinPow(\(M\))
\(A \subseteq \bigcup N\) unfolding IsCompact_def by blast
from \(\langle\mathbb{N} \in \operatorname{FinPow}(\mathrm{M})\rangle\) have \(\mathrm{N} \prec\) nat unfolding FinPow_def Finite_def using n_lesspoll_nat eq_lesspoll_trans
by auto
then have Finite(N) using lesspoll_nat_is_Finite by auto
then obtain n where \(\mathrm{n} \in\) nat \(\mathrm{N} \approx \mathrm{n}\) unfolding Finite_def by auto
then have \(\mathrm{N} \lesssim \mathrm{n}\) using eqpoll_imp_lepoll by auto
moreover
\{
fix \(B B\) assume \(B B \in N\)
with \(\langle N \in \operatorname{FinPow}(M)\)) have \(B B \in M\) unfolding FinPow_def by auto
then obtain \(S\) where \(S \in M\) and \(B B=B \cap S\) unfolding RestrictedTo_def by auto
then have \(S \in\{S \in M\). \(B \cap S=B B\}\) by auto
then obtain \(\{S \in M . B \cap S=B B\} \neq 0\) by auto
\}
then have \(\forall B B \in N\). \(((\lambda W \in N .\{S \in M . B \cap S=W\}) B B) \neq 0\) by auto moreover
from «n \(\in\) nat have \((N \lesssim \mathrm{n} \wedge(\forall \mathrm{t} \in \mathrm{N} .(\lambda W \in \mathrm{~N} .\{\mathrm{S} \in \mathrm{M} . \mathrm{B} \cap \mathrm{S}=\mathrm{W}\}) \mathrm{t} \neq 0)\)
\(\longrightarrow(\exists f . f \in \operatorname{Pi}(N, \lambda t .(\lambda W \in N .\{S \in M . B \cap S=W\}) \quad t) \wedge(\forall t \in N . f \quad t \in(\lambda W \in N\).
\(\{S \in M . B \cap S=W\})\) t))) using finite_choice unfolding AxiomCardinalChoiceGen_def
by blast
ultimately
obtain \(f\) where \(A A: f \in \operatorname{Pi}(N, \lambda t .(\lambda W \in N .\{S \in M . B \cap S=W\}) t) \forall t \in N . f t \in(\lambda W \in N\). \(\{S \in M\). \(B \cap S=W\}\)) \(t\) by blast
from \(A A(2)\) have ss: \(\forall t \in N\). ft \(\in\{S \in M\). \(B \cap S=t\}\) using beta_if by auto
then have \(\{f t . t \in N\} \subseteq M\) by auto
\{
fix \(t\) assume \(t \in N\)
with ss have \(f t \in\{S \in M\). \(B \cap S \in N\}\) by auto
\}
with \(A A(1)\) have \(F F: f: N \rightarrow\{S \in M\). \(B \cap S \in N\}\) unfolding Pi_def Sigma_def using beta_if by auto moreover
\{
fix aa bb assume \(A A A: a a \in N\) bb \(\in N\) faa \(=f b b\)
from \(A A A(1)\) ss have \(B \cap\) (faa) =aa by auto
with \(A A A(3)\) have \(B \cap(f b b)=a a\) by auto
with ss AAA(2) have aa=bb by auto
\}
ultimately have \(f \in \operatorname{inj}(N,\{S \in M . B \cap S \in N\})\) unfolding inj_def by auto
then have \(f \in b i j(N, r a n g e(f))\) using inj_bij_range by auto
then have \(f \in b i j(N, f N)\) using range_image_domain \(F F\) by auto
then have \(\left.f \in \operatorname{bij}^{(N,\{f t .} \mathrm{t} \in \mathrm{N}\right\}\)) using func_imagedef FF by auto
then have \(N \approx\{f t . t \in N\}\) unfolding eqpoll_def by auto
with \(\langle N \approx n\rangle\) have \(\{f t . t \in N\} \approx n\) using eqpoll_sym eqpoll_trans by blast
with «n \(\in\) nat〉 have Finite (\{ft. \(\mathrm{t} \in \mathrm{N}\}\)) unfolding Finite_def by auto
with ss have \(\{f t . \operatorname{t} \in \mathrm{N}\} \in \mathrm{FinPow}(\mathrm{M})\) unfolding FinPow_def by auto moreover
\{
fix aa assume aa \(\in A\)
with \(\langle\mathrm{A} \subseteq \bigcup \mathrm{N}\rangle\) obtain b where \(\mathrm{b} \in \mathrm{N}\) and \(\mathrm{aa} \in \mathrm{b}\) by auto
with ss have \(B \cap(f b)=b\) by auto
with \(\langle a \mathrm{a} \in \mathrm{b}\rangle\) have \(a \mathrm{a} \in \mathrm{B} \cap(\mathrm{fb})\) by auto
then have \(a a \in f b\) by auto
with \(\langle b \in N\rangle\) have aa \(\in \bigcup\{f t . t \in N\}\) by auto
\}
then have \(A \subseteq \bigcup\{f t . t \in N\}\) by auto ultimately
have \(\exists R \in \operatorname{FinPow}(M) . A \subseteq \bigcup R\) by auto
\}
then show \(\forall M \in \operatorname{Pow}(T) . A \subseteq \bigcup M \longrightarrow(\exists N \in \operatorname{FinPow}(M) . A \subseteq \bigcup N)\) by auto qed

If the axiom of choice holds for some cardinal, then we can drop the compact sets of that cardial are compact of the same cardinal as subspaces of every superspace.
lemma Kcompact_subspace_imp_Kcompact:
assumes A\{is compact of cardinal\}Q\{in\}(T\{restricted to\}B) \(A \subseteq B\) (\{the
axiom of\} Q \{choice holds\})
shows A\{is compact of cardinal\}Q\{in\}T
proof -
from assms(1) have a1:Card(Q) unfolding IsCompactOfCard_def RestrictedTo_def by auto
from assms(1) have a2:A \(\subseteq \bigcup T\) unfolding IsCompactOfCard_def RestrictedTo_def by auto \{
fix \(M\) assume \(M \in \operatorname{Pow}(T) A \subseteq \bigcup M\)
let \(M=M\{r e s t r i c t e d ~ t o\} B ~\)
from \(\langle M \in \operatorname{Pow}(T)\rangle\) have \(M \in \operatorname{Pow}(T\{r e s t r i c t e d ~ t o\} B)\) unfolding RestrictedTo_def
by auto
from \(\langle A \subseteq \bigcup M\rangle\) have \(A \subseteq \bigcup M\) unfolding RestrictedTo_def using assms (2)
by auto
with assms \(\langle M \in \operatorname{Pow}(T\{r e s t r i c t e d ~ t o\} B)\)) obtain \(N\) where \(N: N \in \operatorname{Pow}(M) A \subseteq \bigcup N\) \(\mathrm{N} \prec \mathrm{Q}\) unfolding IsCompactOfCard_def by blast
from \(N(3)\) have \(N \lesssim Q\) using lesspoll_imp_lepoll by auto moreover \{
fix \(B B\) assume \(B B \in N\)
with \(\langle N \in \operatorname{Pow}(M)\)) have \(B B \in M\) unfolding FinPow_def by auto
then obtain \(S\) where \(S \in M\) and \(B B=B \cap S\) unfolding RestrictedTo_def
by auto
then have \(S \in\{S \in M\). \(B \cap S=B B\}\) by auto
then obtain \(\{S \in M . B \cap S=B B\} \neq 0\) by auto
\}
then have \(\forall B B \in N\). \(((\lambda W \in N .\{S \in M . B \cap S=W\}) B B) \neq 0\) by auto moreover
have \((N \lesssim Q \wedge(\forall t \in N .(\lambda W \in N .\{S \in M . B \cap S=W\}) t \neq 0) \longrightarrow(\exists f . f \in\) \(\operatorname{Pi}(N, \lambda t .(\lambda W \in N .\{S \in M . B \cap S=W\}) t) \wedge(\forall t \in N . f \quad t \in(\lambda W \in N .\{S \in M . B \cap S=W\})\) t)))
using assms(3) unfolding AxiomCardinalChoiceGen_def by blast ultimately
obtain \(f\) where \(A A: f \in \operatorname{Pi}(N, \lambda t .(\lambda W \in N .\{S \in M . B \cap S=W\})\) t) \(\forall t \in N . f t \in(\lambda W \in N\).
\(\{S \in M . B \cap S=W\}\)) \(t\) by blast
from \(A A(2)\) have \(s s: \forall t \in N . f t \in\{S \in M\). \(B \cap S=t\}\) using beta_if by auto then have \(\{f t . t \in N\} \subseteq M\) by auto
\{
fix \(t\) assume \(t \in N\)
with ss have \(f t \in\{S \in M . B \cap S \in N\}\) by auto
\}
with \(A A(1)\) have \(F F: f: N \rightarrow\{S \in M\). \(B \cap S \in N\}\) unfolding Pi_def Sigma_def using beta_if by auto moreover
\{
fix aa bb assume \(A A A: a a \in N\) bb \(\in N\) faa \(=f b b\)
from \(A A A(1)\) ss have \(B \cap\) (faa) =aa by auto
with \(A A A(3)\) have \(B \cap(f b b)=a a\) by auto
with ss AAA(2) have aa=bb by auto
\}
ultimately have \(f \in \operatorname{inj}(N,\{S \in M . B \cap S \in N\}\)) unfolding inj_def by auto
then have \(f \in b i j(N, r a n g e(f))\) using inj_bij_range by auto
then have \(f \in \operatorname{bij}^{(N, f N)}\) using range_image_domain \(F F\) by auto
then have \(f \in \operatorname{bij}(N,\{f t . t \in N\}\)) using func_imagedef \(F F\) by auto
then have \(N \approx\{f t . t \in N\}\) unfolding eqpoll_def by auto
with \(\langle N \prec Q\rangle\) have \(\{f t . t \in N\} \prec Q\) using eqpoll_sym eq_lesspoll_trans by blast moreover
with ss have \{ft. \(t \in N\} \in \operatorname{Pow}(M)\) unfolding FinPow_def by auto more-
over
\{
fix aa assume aa \(\in A\)
with \(\langle A \subseteq \bigcup N\rangle\) obtain \(b\) where \(b \in N\) and \(a a \in b\) by auto
with ss have \(B \cap(f b)=b\) by auto
with \(\langle a a \in b\rangle\) have \(a a \in B \cap(f b)\) by auto
then have \(a \mathrm{a} \in \mathrm{fb}\) by auto
with \(\langle b \in N\rangle\) have aa \(\in \bigcup\{f t\). \(t \in N\}\) by auto
\}
then have \(A \subseteq \bigcup\{f t . t \in N\}\) by auto ultimately
```

        have \existsR\in\operatorname{Pow (M). A\subseteq\ R ^ R\precQ by auto}
    }
    then show thesis using a1 a2 unfolding IsCompactOfCard_def by auto
    qed

```

Every set, with the cofinite topology is compact.
lemma cofinite_compact:
shows X \{is compact in\} (CoFinite X) unfolding IsCompact_def
proof
show \(\mathrm{X} \subseteq \bigcup\) (CoFinite X) using union_cocardinal unfolding Cofinite_def by auto
next
\{
fix \(M\) assume \(M \in \operatorname{Pow}(\) CoFinite \(X) X \subseteq \bigcup M\)
\{
assume \(\mathrm{M}=0 \vee \mathrm{M}=\{0\}\)
then have \(M \in \operatorname{FinPow}(M)\) unfolding FinPow_def by auto
with \(\langle X \subseteq \bigcup M\) have \(\exists \mathrm{N} \in\) FinPow (\(M\)) . \(X \subseteq \bigcup N\) by auto
\}
moreover
\{
assume \(M \neq 0 M \neq\{0\}\)
then obtain \(U\) where \(U \in M U \neq 0\) by auto
with \(\langle M \in \operatorname{Pow}(C o F i n i t e ~ X)\)) have \(U \in\) CoFinite \(X\) by auto
with \(\langle\mathrm{U} \neq 0\) 〉 have \(\mathrm{U} \subseteq \mathrm{X}(\mathrm{X}-\mathrm{U}) \prec\) nat unfolding Cofinite_def CoCardinal_def
by auto
then have Finite(X-U) using lesspoll_nat_is_Finite by auto
then have (\(\mathrm{X}-\mathrm{U}\)) \(\{\) is in the spectrum of \(\}(\lambda T\). (\(\bigcup \mathrm{T})\) is compact in\}T)
using compact_spectrum
by auto
then have \(((\bigcup\) (CoFinite \((X-U))) \approx X-U) \longrightarrow((\bigcup\) (CoFinite \((X-U)))\) is
compact in\} (CoFinite (X-U))) unfolding Spec_def
using InfCard_nat CoCar_is_topology unfolding Cofinite_def by
auto
then have com: (X-U)\{is compact in\} (CoFinite (X-U)) using union_cocardinal
unfolding Cofinite_def by auto
have (\(X-U\)) \(\cap X=X-U\) by auto
then have (CoFinite X) \{restricted to\} (X-U)=(CoFinite (X-U)) us-
ing subspace_cocardinal unfolding Cofinite_def by auto
with com have (\(\mathrm{X}-\mathrm{U}\)) \{is compact in\} (CoFinite X) using compact_subspace_imp_compact[of
\(X\)-UCoFinite \(X X-U]\) by auto
moreover have \(X-U \subseteq \bigcup M\) using \(\langle X \subseteq \bigcup M\) by auto
moreover note \(\langle M \in \operatorname{Pow}\) (CoFinite \(X\)) >
ultimately have \(\exists \mathrm{N} \in \operatorname{FinPow}(\mathrm{M})\). X-U \(\subseteq \bigcup \mathrm{N}\) unfolding IsCompact_def by
auto
then obtain \(N\) where \(N \subseteq M\) Finite (\(N\)) \(X-U \subseteq \bigcup N\) unfolding FinPow_def by auto
with \(\langle\mathrm{U} \in \mathrm{M}\rangle\) have \(\mathrm{N} \cup\{\mathrm{U}\} \subseteq M\) Finite(\(N \cup\{U\}\)) \(X \subseteq \bigcup(N \cup\{U\})\) by auto
then have \(\exists \mathrm{N} \in \operatorname{FinPow}(\mathrm{M})\). \(\mathrm{X} \subseteq \bigcup \mathrm{N}\) unfolding FinPow_def by blast
```

        }
        ultimately
        have }\exists\textrm{N}\in\operatorname{FinPow (M). X\subseteqUN by auto
    }
    then show }\forallM\in\operatorname{Pow}(CoFinite X). X\subseteq UM\longrightarrow(\existsN\inFinPow(M).X\subseteq\N
    by auto
qed

```

A corollary is then that the cofinite topology is locally compact; since every subspace of a cofinite space is cofinite.
```

corollary cofinite_locally_compact:
shows (CoFinite X){is locally-compact}
proof-
have cof:topology0(CoFinite X) and cof1:(CoFinite X){is a topology}

```
 using CoCar_is_topology InfCard_nat Cofinite_def unfolding topology0_def
by auto
 \{
 fix \(x B\) assume \(x \in \bigcup\) (CoFinite \(X\)) \(B \in(\) CoFinite \(X) x \in B\)
 then have \(x \in\) Interior (\(B\), CoFinite \(X\)) using topologyO.Top_2_L3[0F cof]
by auto moreover
 from \(\langle B \in\) (CoFinite \(X\))) have \(B \subseteq X\) unfolding Cofinite_def CoCardinal_def
by auto
 then have \(\mathrm{B} \cap \mathrm{X}=\mathrm{B}\) by auto
 then have (CoFinite X) \{restricted to\}B=CoFinite B using subspace_cocardinal
unfolding Cofinite_def by auto
 then have \(\mathrm{B}\{\) is compact \(\operatorname{in\} }((\) CoFinite X\()\{\) restricted to\}B) using cofinite_compact
 union_cocardinal unfolding Cofinite_def by auto
 then have B\{is compact in\}(CoFinite X) using compact_subspace_imp_compact
by auto
 ultimately have \(\exists \mathrm{c} \in \operatorname{Pow}(\mathrm{B}) . \mathrm{x} \in\) Interior \((\mathrm{c}\), CoFinite X\() \wedge \mathrm{c}\{\) is compact
in\} (CoFinite X) by auto
 \}
 then have (\(\forall \mathrm{x} \in \mathrm{U}\) (CoFinite X). \(\forall \mathrm{b} \in(\) CoFinite X\() . \mathrm{x} \in \mathrm{b} \longrightarrow\) (\(\exists \mathrm{c} \in \operatorname{Pow}(\mathrm{b})\).
\(\mathrm{x} \in\) Interior (c , CoFinite X) \(\wedge\) c\{is compact in\}(CoFinite X)))
 by auto
 then show thesis unfolding IsLocallyComp_def IsLocally_def [OF cof 1]
by auto
qed

In every locally compact space, by definition, every point has a compact neighbourhood.
```

theorem (in topology0) locally_compact_exist_compact_neig:
assumes T{is locally-compact}
shows }\forallx\in<br>T. \existsA\inPow(UT). A{is compact in}T ^ x\inint(A)
proof-
{
fix x assume x\in\bigcupT moreover
then have }\cupT\not=0\mathrm{ by auto

```
```

        have \T\inT using union_open topSpaceAssum by auto
        ultimately have }\exists\textrm{c}\in\operatorname{Pow}(\bigcup\textrm{U}). x\inint(c)^ c{is compact in}T using assm
            IsLocally_def topSpaceAssum unfolding IsLocallyComp_def by auto
        then have \existsc\in\operatorname{Pow (UT). c{is compact in}T }\wedgex\inint(c) by auto
    }
    then show thesis by auto
    qed
In Hausdorff spaces, the previous result is an equivalence.
theorem (in topology0) exist_compact_neig_T2_imp_locally_compact:
assumes }\forallx\in\bigcupT. \existsA\in\operatorname{Pow}(\bigcupT). x\inint(A) ^ A{is compact in}T T{is T T }
shows T{is locally-compact}
proof-
{
fix x assume }x\in<br>
with assms(1) obtain A where A\inPow(UT) x\inint(A) and Acom:A{is compact
in}T by blast
then have Acl:A{is closed in}T using in_t2_compact_is_cl assms(2)
by auto
then have sub:A\subseteqUT unfolding IsClosed_def by auto
{
fix U assume U\inT }x\in
let V=int(A\capU)
from {x\inU\rangle\langlex\inint(A) \ have x\inU\cap(int (A)) by auto
moreover from \U\inT\rangle have U\cap(int(A))\inT using Top_2_L2 topSpaceAssum
unfolding IsATopology_def
by auto moreover
have U\cap(int(A))\subseteqA\capU using Top_2_L1 by auto
ultimately have x\inV using Top_2_L5 by blast
have V\subseteqA using Top_2_L1 by auto
then have cl(V)\subseteqA using Acl Top_3_L13 by auto
then have A\capcl(V)=cl(V) by auto moreover
have clcl:cl(V){is closed in}T using cl_is_closed \langleV\subseteqA\rangle\langleA\subseteq\bigcupT\rangle by
auto
ultimately have comp:cl(V){is compact in}T using Acom compact_closed[of
AnatTcl(V)] Compact_is_card_nat
by auto
{
then have cl(V){is compact in}(T{restricted to}cl(V)) using compact_imp_compact_sub
cl(V)natT] Compact_is_card_nat
by auto moreover
have U(T{restricted to}cl(V))=cl(V) unfolding RestrictedTo_def
using clcl unfolding IsClosed_def by auto moreover
ultimately have (U (T{restricted to}cl(V))){is compact in}(T{restricted
to}cl(V)) by auto
}
then have (U(T{restricted to}cl(V))){is compact in}(T{restricted
to}cl(V)) by auto moreover

```
have (T\{restricted to\}cl(V))\{is \(\left.\mathrm{T}_{2}\right\}\) using assms(2) T2_here clcl
unfolding IsClosed_def by auto
ultimately have (T\{restricted to\}cl(V))\{is \(\left.T_{4}\right\}\) using topology0.T2_compact_is_normal
unfolding topology0_def
using Top_1_L4 unfolding isT4_def using T2_is_T1 by auto
then have clvreg: (T\{restricted to\}cl(V))\{is regular\} using topology0.T4_is_T3
unfolding topology0_def isT3_def using Top_1_L4
by auto
have \(\mathrm{V} \subseteq c l(\mathrm{~V})\) using cl_contains_set \(\langle\mathrm{V} \subseteq \mathrm{A}\rangle\langle\mathrm{A} \subseteq \bigcup \mathrm{T}\rangle\) by auto
then have \(\mathrm{V} \in(\mathrm{T}\{\) restricted to\}cl(V)) unfolding RestrictedTo_def
using Top_2_L2 by auto
with \(\langle\mathrm{x} \in \mathrm{V}\rangle\) obtain W where \(\mathrm{Wop}: \mathrm{W} \in(\mathrm{T}\{r e s t r i c t e d ~ t o\} c l(V))\) and clcont:Closure(W, (T\{rest to\}cl(V))) \(\subseteq\) V and cinW: \(x \in W\)
using topology0.regular_imp_exist_clos_neig unfolding topology0_def
using Top_1_L4 clvreg by blast
from clcont Wop have \(W \subseteq V\) using topology0.cl_contains_set unfolding topology0_def using Top_1_L4 by auto
with Wop have \(\mathrm{W} \in(\mathrm{T}\{\) restricted to\}cl(V))\{restricted to\}V unfold-
ing RestrictedTo_def by auto
moreover from \(\langle V \subseteq A\rangle\langle A \subseteq \bigcup T\rangle\) have \(V \subseteq \bigcup T\) by auto
then have \(\mathrm{V} \subseteq c l(V) c l(V) \subseteq \bigcup T\) using \(\langle V \subseteq c l(V)\rangle\) Top_3_L11(1) by auto
then have (T\{restricted to\}cl(V))\{restricted to\}V=(T\{restricted
to\}V) using subspace_of_subspace by auto
ultimately have \(\mathrm{W} \in(T\{r e s t r i c t e d ~ t o\} V)\) by auto
then obtain \(U U\) where \(U U \in T W=U U \cap V\) unfolding RestrictedTo_def by auto
then have \(\mathrm{W} \in \mathrm{T}\) using Top_2_L2 topSpaceAssum unfolding IsATopology_def by auto moreover
have \(W \subseteq\) Closure(\(W\), (T\{restricted to\}cl(V))) using topologyo.cl_contains_set unfolding topology0_def
using Top_1_L4 Wop by auto
ultimately have A1:x \(\operatorname{int(Closure(W,(T\{ restricted~to\} cl(V))))~us-~}\) ing Top_2_L6 cinW by auto
from clcont have A2:Closure (W, (T\{restricted to\}cl(V))) \(\subseteq\) U using Top_2_L1 by auto
have clwcl:Closure(W,(T\{restricted to\}cl(V))) \{is closed in\}(T\{restricted to\}cl(V))
using topology0.cl_is_closed Top_1_L4 Wop unfolding topology0_def
by auto
from comp have cl(V)\{is compact in\}(T\{restricted to\}cl(V)) us-
ing compact_imp_compact_subspace[of cl(V)natT] Compact_is_card_nat
by auto
with clwcl have ((cl(V) \(\cap(C l o s u r e(W,(T\{r e s t r i c t e d ~ t o\} c l(V))))))\{i s\) compact in\}(T\{restricted to\}cl(V))
using compact_closed Compact_is_card_nat by auto moreover
from clcont have cont: (Closure (W, (T\{restricted to\}cl(V)))) \(\subseteq c l(V)\)
using cl_contains_set \(\langle\mathrm{V} \subseteq \mathrm{A}\rangle\langle\mathrm{A} \subseteq \bigcup \mathrm{T}\rangle\)
by blast
then have \(((\mathrm{cl}(\mathrm{V}) \cap(C l o s u r e(W,(T\{r e s t r i c t e d ~ t o\} c l(V))))))=C l o s u r e(W,(T\{r e s t r i c t e d\) to\}cl(V))) by auto
ultimately have Closure (W, (T\{restricted to\}cl(V)))\{is compact in\}(T\{restricted to\}cl(V)) by auto
then have Closure(W, (T\{restricted to\}cl(V)))\{is compact in\}T using compact_subspace_imp_compact[of Closure(W,T\{restricted to\}cl(V))] cont by auto
with A1 A2 have \(\exists c \in \operatorname{Pow}(U) . x \in \operatorname{int}(c) \wedge c\{i s\) compact in\}T by auto
\}
then have \(\forall U \in T . x \in U \longrightarrow(\exists c \in \operatorname{Pow}(U) . x \in \operatorname{int}(c) \wedge c\{i s\) compact in\}T) by auto
\}
then show thesis unfolding IsLocally_def [OF topSpaceAssum] IsLocallyComp_def by auto
qed

\subsection*{68.4 Compactification by one point}

Given a topological space, we can always add one point to the space and get a new compact topology; as we will check in this section.
```

definition
OPCompactification ({one-point compactification of}_ 90)
where {one-point compactification of}T\equivT\cup{{\T}\cup((UT)-K). K\in{B\inPow(\T).
B{is compact in}T ^ B{is closed in}T}}

```

Firstly, we check that what we defined is indeed a topology.
```

theorem (in topology0) op_comp_is_top:
shows ({one-point compactification of}T){is a topology} unfolding IsATopology_def
proof(safe)
fix M assume M\subseteq{one-point compactification of}T
then have disj:M\subseteqT\cup{{\T}\cup((\bigcupT)-K). K\in{B\inPow(\bigcupT). B{is compact in}T
\wedge B{is closed in}T}} unfolding OPCompactification_def by auto
let MT={A\inM. A\inT}
have MT\subseteqT by auto
then have c1:\MT\inT using topSpaceAssum unfolding IsATopology_def by
auto
let MK={A\inM. A\not\inT}
have \M=\bigcupMK \cup \MT by auto
from disj have MK\subseteq{A\inM. A\in{{\T}\cup((UT)-K). K\in{B\inPow(UT). B{is compact
in}T ^ B{is closed in}T}}} by auto
moreover have N:\bigcupT\not\in(UT) using mem_not_refl by auto
{
fix B assume B\inM B\in{{\T}\cup((\T)-K). K\in{B\inPow(\T). B{is compact
in}T ^ B{is closed in}T}}
then obtain K where K\in\operatorname{Pow}(\cupT) B={\T}\cup((UT)-K) by auto
with N have }\bigcupT\inB by aut
with N have }B\not\inT\mathrm{ by auto
with }\langleB\inM` have B\inMK by aut

```

\section*{\}}
then have \(\{A \in M . A \in\{\{\bigcup T\} \cup((\cup T)-K) . K \in\{B \in \operatorname{Pow}(\bigcup T)\). B\{is compact in \(\} T\)
\(\wedge B\{i s\) closed in \(\} T\}\}\} \subseteq M K\) by auto
ultimately have \(M K _\)def \(: M K=\{A \in M . A \in\{\{\bigcup T\} \cup((\cup T)-K) . K \in\{B \in \operatorname{Pow}(\cup T)\).
\(\mathrm{B}\{\) is compact in\(\} \mathrm{T} \wedge \mathrm{B}\{\) is closed in\(\} \mathrm{T}\}\}\}\) by auto
let \(K K=\{K \in \operatorname{Pow}(\bigcup T)\). \(\{\cup T\} \cup((\cup T)-K) \in M K\}\)
\{
assume MK=0
then have \(\bigcup \mathrm{M}=\bigcup \mathrm{MT}\) by auto
then have \(\cup M \in T\) using c1 by auto

by auto
\}
moreover
\{
assume \(\mathrm{MK} \neq 0\)
then obtain A where \(\mathrm{A} \in \mathrm{MK}\) by auto
then obtain K 1 where \(\mathrm{A}=\{\mathrm{U} \mathrm{T}\} \cup((\cup \mathrm{T})-\mathrm{K} 1) \mathrm{K} 1 \in \operatorname{Pow}(\bigcup \mathrm{U}) \mathrm{K} 1\{\) is closed
in\}T K1\{is compact in\}T using MK_def by auto
with \(\langle A \in M K\rangle\) have \(\bigcap K K \subseteq K 1\) by auto
from \(\langle A \in M K\rangle\langle A=\{\bigcup T\} \cup((\cup T)-K 1)\rangle\langle K 1 \in \operatorname{Pow}(U T)\rangle\) have \(K K \neq 0\) by blast
\{
fix \(K\) assume \(K \in K K\)
then have \(\{\cup T\} \cup((\cup T)-K) \in M K K \subseteq \bigcup T\) by auto
then obtain KK where \(A:\{\bigcup T\} \cup((\cup T)-K)=\{\bigcup T\} \cup((\cup T)-K K) K K \subseteq \cup T\)
KK\{is compact in\}T KK\{is closed in\}T using MK_def by auto
note \(A(1)\) moreover
have (\((\mathrm{UT})-\mathrm{K} \subseteq\{\bigcup T\} \cup((\cup T)-K)(\cup T)-K K \subseteq\{\bigcup T\} \cup((\cup T)-K K)\) by auto
ultimately have (\(\cup T)-K \subseteq\{\cup T\} \cup((\cup T)-K K)(\cup T)-K K \subseteq\{\bigcup T\} \cup((\cup T)-K)\)
by auto moreover
from \(N\) have \(\cup T \notin(U T)-K ~ \bigcup T \notin(U T)-K K\) by auto ultimately

then have (\(\cup T)-K=(\cup T)\)-KK by auto moreover
from \(\langle K \subseteq \bigcup T\rangle\) have \(K=(\bigcup T)-((\bigcup T)-K)\) by auto ultimately
have \(K=(\cup T)-\left(\left(U^{\prime}\right)-K K\right)\) by auto
with (KK \(\subseteq \cup T\)) have \(K=K K\) by auto
with \(\mathrm{A}(4)\) have K\{is closed in\}T by auto
\}
then have \(\forall K \in K K\). K\{is closed in\}T by auto
with \(\langle\mathrm{KK} \neq 0\)) have (\(\cap \mathrm{KK}\)) \{is closed in\}T using Top_3_L4 by auto
with (K1\{is compact in\}T) have (K1 \(\cap(\cap \mathrm{KK})\)) \{is compact in\}T using Compact_is_card_nat compact_closed [of K1natT \(\cap \mathrm{KK}\)] by auto moreover
from \(\bigcap \cap \mathrm{KK} \subseteq \mathrm{K} 1\)) have \(\mathrm{K} 1 \cap(\bigcap \mathrm{KK})=(\bigcap \mathrm{KK})\) by auto ultimately
have (\(\cap \mathrm{KK}\)) \{is compact in\}T by auto
with \((\bigcap\) KK) \{is closed in\}T) \(\bigcap\) KK \(\subseteq\) K1 \(\langle K 1 \in \operatorname{Pow}(\cup T)\rangle\) have \((\{\cup T\} \cup((\cup T)-(\cap K K))) \in(\{\) one-p compactification offT)
unfolding OPCompactification_def by blast
have \(t: \bigcup M K=\bigcup\{A \in M . A \in\{\{\bigcup T\} \cup((\bigcup T)-K)\). \(K \in\{B \in \operatorname{Pow}(\bigcup T)\). \(B\{\) is compact in\}T \(\wedge B\{i s\) closed in\}T\}\}\}
using MK＿def by auto
\｛
fix \(x\) assume \(x \in \bigcup\) MK
with \(t\) have \(x \in \bigcup\{A \in M . A \in\{\{\bigcup T\} \cup((\bigcup T)-K) . K \in\{B \in \operatorname{Pow}(\bigcup T)\) ．\(B\{i s\)
compact in\}T \(\wedge\) B\｛is closed in\}T\}\}\} by auto
then have \(\exists A A \in\{A \in M . A \in\{\{\bigcup T\} \cup((\bigcup T)-K) . K \in\{B \in \operatorname{Pow}(\cup T)\) ．\(B\{\) is compact in\}T \(\wedge B\{i s\) closed in\}T\}\}\}. \(x \in A A\)
using Union＿iff by auto
then obtain \(A A\) where \(A A p: A A \in\{A \in M . A \in\{\{\bigcup T\} \cup((\cup T)-K) . K \in\{B \in \operatorname{Pow}(\bigcup T)\) ．
\(B\{i s\) compact in\}T \(\wedge \mathrm{B}\{\) is closed in\}T\}\}\} \(\mathrm{x} \in \mathrm{AA}\) by auto
then obtain \(K 2\) where \(A A=\{\bigcup T\} \cup((\bigcup T)-K 2) K 2 \in \operatorname{Pow}(\cup T) K 2\{i s\) compact
in\}T K2\{is closed in\}T by auto
with \(\langle x \in A A\rangle\) have \(x=\bigcup T \vee(x \in(\bigcup T) \wedge x \notin K 2)\) by auto
from \(\langle K 2 \in \operatorname{Pow}(\bigcup T)\rangle\langle A A=\{\bigcup T\} \cup((\bigcup T)-K 2)\rangle\) AAp（1）MK＿def have K2 \(\mathcal{K} K\)
by auto
then have \(\bigcap K K \subseteq K 2\) by auto
with \(\langle x=\bigcup T \vee(x \in(\bigcup T) \wedge x \notin K 2)\rangle\) have \(x=\bigcup T \vee(x \in \bigcup T \wedge x \notin \bigcap K K)\) by
auto
then have \(x \in\{\bigcup T\} \cup((\bigcup T)-(\bigcap K K))\) by auto
\}
then have \(\bigcup M K \subseteq\{\bigcup T\} \cup((\bigcup T)-(\bigcap K K))\) by auto
moreover
\｛
fix \(x\) assume \(x \in\{\bigcup T\} \cup((\bigcup T)-(\bigcap K K))\)
then have \(x=\bigcup T \vee(x \in(\bigcup T) \wedge x \notin \bigcap K K)\) by auto
with \(\langle K K \neq 0\rangle\) obtain \(K 2\) where \(K 2 \in K K ~ x=\bigcup T \vee(x \in \bigcup T \wedge x \notin K 2)\) by auto
then have \(\{\bigcup T\} \cup((\cup T)-K 2) \in M K\) by auto
with \(\langle x=\bigcup T \vee(x \in \bigcup T \wedge x \notin K 2)\rangle\) have \(x \in \bigcup M K\) by auto
\}
then have \(\{\bigcup T\} \cup((\bigcup T)-(\bigcap K K)) \subseteq \bigcup M K\) by（safe，auto）
ultimately have \(\cup M K=\{\cup T\} \cup((\bigcup T)-(\bigcap K K))\) by blast
from \(\bigcup M T \in T\rangle\) have \(\bigcup T-(\bigcup T-\bigcup M T)=\bigcup M T\) by auto
with \(\bigcup \mathrm{MT} \in \mathrm{T}\rangle\) have（ \(\cup \mathrm{T}-\bigcup \mathrm{MT}\) ）\｛is closed in\}T unfolding IsClosed_def
by auto
have \(((\bigcup T)-(\bigcap K K)) \cup(\bigcup T-(\bigcup T-\bigcup M T))=(\bigcup T)-((\bigcap K K) \cap(\bigcup T-\bigcup M T))\) by auto
then have \((\{\bigcup T\} \cup((\bigcup T)-(\bigcap K K))) \cup(\bigcup T-(\bigcup T-\bigcup M T))=\{\bigcup T\} \cup((\bigcup T)-((\bigcap K K) \cap(\bigcup T-\bigcup M T)))\)
by auto
with \(\bigcup M K=\{\bigcup T\} \cup((\bigcup T)-(\bigcap K K))\rangle(\bigcup T-(\bigcup T-\bigcup M T)=\bigcup M T\) have \(\bigcup M K \cup \bigcup M T=\{\bigcup T\} \cup((\bigcup T)-((\bigcap K K)\)
by auto
with \(\bigcup M=\bigcup M K \cup \bigcup M T\) have \(u n M: \bigcup M=\{\bigcup T\} \cup((\bigcup T)-((\bigcap K K) \cap(\bigcup T-\bigcup M T)))\)
by auto
have \(((\bigcap \mathrm{KK}) \cap(\bigcup \mathrm{T}-\bigcup \mathrm{MT}))\) \｛is closed in\}T using \(\left\langle(\bigcap \mathrm{KK})\right.\) \｛is closed in\}T〉く(UT-(\(\left.\mathrm{UMT}^{\mathrm{M}}\right)\) ）\｛is closed in\}T)

Top＿3＿L5 by auto
moreover
note 〈（UT－（UMT））\｛is closed in\}T〉〈(\(\bigcap \mathrm{KK})\) \｛is compact in\}T〉
then have \(((\bigcap \mathrm{KK}) \cap(\bigcup \mathrm{T}-\bigcup \mathrm{MT}))\) \｛is compact of cardinal\}nat\{in\}T using compact＿closed［of \(\bigcap\) KKnatT（ \(\bigcup\) T－\(\bigcup\) MT）］Compact＿is＿card＿nat
by auto
then have \(((\bigcap \mathrm{KK}) \cap(\bigcup \mathrm{T}-\bigcup \mathrm{MT}))\) \{is compact in\}T using Compact_is_card_nat
by auto
ultimately have \(\{\bigcup T\} \cup(\bigcup T-((\bigcap K K) \cap(\bigcup T-\bigcup M T))) \in\{\) one-point compactification of \} \(T\)
unfolding OPCompactification_def IsClosed_def by auto
with unM have \(\bigcup \mathcal{M} \in\{\) one-point compactification of \(\} T\) by auto
\}
ultimately show \(\bigcup M \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T ~ b y ~ a u t o ~\) next
 compactification of\}T
then have \(A: U \in T \vee(\exists K U \in \operatorname{Pow}(\bigcup T) . U=\{\bigcup T\} \cup(\bigcup T-K U) \wedge K U\{\) is closed in\}T \(\wedge K U\{\) is compact in\}T)
\(\mathrm{V} \in \mathrm{T} \vee(\exists \mathrm{KV} \in \operatorname{Pow}(\bigcup \mathrm{T}) . \mathrm{V}=\{\bigcup \mathrm{T}\} \cup(\bigcup \mathrm{T}-\mathrm{KV}) \wedge \mathrm{KV}\) \{is closed in\}T\(\wedge \mathrm{KV}\) \{is compact
in\}T) unfolding OPCompactification_def
by auto
have \(N: \bigcup T \notin(\bigcup T)\) using mem_not_refl by auto
\{
assume \(U \in T V \in T\)
then have \(U \cap V \in T\) using topSpaceAssum unfolding IsATopology_def by auto
then have \(U \cap V \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T\) unfolding OPCompactification_def by auto
\}
moreover
\{
assume \(\mathrm{U} \in \mathrm{TV} \notin \mathrm{T}\)
then obtain KV where \(V: K V\{i s\) closed in\}TKV\{is compact in\}TV=\{ \(\backslash T\} \cup(\bigcup T-K V)\)
using A(2) by auto
with \(N\langle U \in T\rangle\) have \(\bigcup T \notin U\) by auto
then have \(\bigcup T \notin U \cap V\) by auto
then have \(U \cap V=U \cap(\cup T-K V)\) using \(V(3)\) by auto
moreover have \(\cup T-K V \in T\) using \(\mathrm{V}(1)\) unfolding IsClosed_def by auto
with \(\langle U \in T\rangle\) have \(U \cap(\cup T-K V) \in T\) using topSpaceAssum unfolding IsATopology_def
by auto
with \(\langle U \cap V=U \cap(\cup T-K V)\) 〉 have \(U \cap V \in T\) by auto
then have \(U \cap V \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T\) unfolding OPCompactification_def by auto
\}
moreover
\{
assume \(\mathrm{U} \notin \mathrm{TV} \in \mathrm{T}\)
then obtain KV where V:KV\{is closed in\}TKV\{is compact in\}TU=\{UT\} \(\cup(\bigcup T-K V)\)
using A(1) by auto
with \(N\langle V \in T\rangle\) have \(\cup T \notin V\) by auto
then have \(\bigcup T \notin U \cap V\) by auto
then have \(U \cap V=(\bigcup T-K V) \cap V\) using \(V(3)\) by auto
moreover have \(\bigcup T-K V \in T\) using \(V(1)\) unfolding IsClosed_def by auto
with \(\langle\mathrm{V} \in \mathrm{T}\rangle\) have (\(\cup \mathrm{T}-\mathrm{KV}\)) \(\cap \mathrm{V} \in \mathrm{T}\) using topSpaceAssum unfolding IsATopology_def by auto
with \(\langle U \cap V=(\cup T-K V) \cap V\) have \(U \cap V \in T\) by auto
then have \(U \cap V \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T\) unfolding OPCompactification_def by auto
\}
moreover
\{
assume \(\mathrm{U} \notin \mathrm{TV} \notin \mathrm{T}\)
then obtain KV KU where \(\mathrm{V}: \mathrm{KV}\{i\) is closed in\}TKV\{is compact in\}TV=\{UT\} \(\cup(\bigcup \mathrm{T}-\mathrm{KV})\)
and \(U: K U\{i s\) closed in\}TKU\{is compact in\}TU=\{UT\} \(\cup(\cup T-K U)\)
using A by auto
with \(V(3) U(3)\) have \(\bigcup T \in U \cap V\) by auto
then have \(U \cap V=\{\bigcup T\} \cup((\bigcup T-K V) \cap(\bigcup T-K U))\) using \(V(3) U(3)\) by auto
moreover have \(\bigcup \mathrm{T}-\mathrm{KV} \in \mathrm{T} \bigcup \mathrm{T}-\mathrm{KU} \in \mathrm{T}\) using \(\mathrm{V}(1) \mathrm{U}(1)\) unfolding IsClosed_def
by auto
then have \((\cup T-K V) \cap(\cup T-K U) \in T\) using topSpaceAssum unfolding IsATopology_def

\section*{by auto}
then have \((\bigcup T-K V) \cap(\bigcup T-K U)=\bigcup T-(\bigcup T-((\bigcup T-K V) \cap(\bigcup T-K U)))\) by auto
moreover
with \(\langle(\bigcup T-K V) \cap(\bigcup T-K U) \in T\rangle\) have \((\bigcup T-(\bigcup T-K V) \cap(\bigcup T-K U))\) is closed in\}T unfolding IsClosed_def
by auto moreover
from \(\mathrm{V}(1) \mathrm{U}(1)\) have \((\cup \mathrm{T}-(\bigcup \mathrm{T}-\mathrm{KV}) \cap(\bigcup \mathrm{T}-\mathrm{KU}))=\mathrm{KV} \cup K U\) unfolding IsClosed_def
by auto
with \(V(2) \mathrm{U}(2)\) have \((\cup T-(\bigcup T-K V) \cap(\cup T-K U))\) \{is compact in\}T using
union_compact[of KVnatTKU] Compact_is_card_nat
InfCard_nat by auto ultimately
 by auto
\}
ultimately show \(U \cap V \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T\) by auto
qed
The original topology is an open subspace of the new topology.
theorem (in topology0) open_subspace:
shows \(\bigcup T \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T\) and (\{one-point compactification
of\}T) \{restricted to\} \(\backslash \mathrm{T}=\mathrm{T}\)
proof-

unfolding OPCompactification_def using topSpaceAssum unfolding IsATopology_def
by auto
have \(T \subseteq\) (\{one-point compactification of \}T) \{restricted to\} \(\cup T\) unfold-
ing OPCompactification_def RestrictedTo_def by auto
moreover
\{
fix A assume \(A \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T)\{r e s t r i c t e d ~ t o\} \bigcup T ~\)
then obtain \(R\) where \(R \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T) ~ A=\bigcup T \cap R\) unfolding RestrictedTo_def by auto
then obtain \(K\) where \(K: R \in T \vee(R=\{\bigcup T\} \cup(\bigcup T-K) \wedge K\{i s\) closed in\}T)
unfolding OPCompactification_def by auto
with \(\langle A=\bigcup T \cap R\rangle\) have \((A=R \wedge R \in T) \vee(A=\bigcup T-K \wedge K\{\) is closed in\}T) using mem_not_refl unfolding IsClosed_def by auto
with \(K\) have \(A \in T\) unfolding IsClosed_def by auto
\}
ultimately
show (\{one-point compactification of \}T) \{restricted to\} \(\bigcup T=T\) by auto qed

We added only one new point to the space.
lemma (in topology0) op_compact_total:
shows \(\bigcup\) (\{one-point compactification of \(\} T)=\{\bigcup T\} \cup(\bigcup T)\)
proof-
have O\{is compact in\}T unfolding IsCompact_def FinPow_def by auto
moreover note Top_3_L2 ultimately have TT: \(0 \in\{A \in \operatorname{Pow}(\bigcup T)\). A\{is compact
in\}T \(\wedge A\{\) is closed in\}T\} by auto
have \(\bigcup\) (\{one-point compactification of \(\} T)=(\bigcup T) \cup(\bigcup\{\{\bigcup T\} \cup(\bigcup T-K) . K \in\{B \in \operatorname{Pow}(\bigcup T)\).
\(B\{i s\) compact in\} \(T \wedge B\{i s\) closed in\}T\}\}) unfolding OPCompactification_def
by blast
also have \(\ldots=(\bigcup T) \cup\{\bigcup T\} \cup(\bigcup\{(\bigcup T-K) . K \in\{B \in \operatorname{Pow}(\bigcup T)\). \(B\{\) is compact in \(\} T \wedge B\{\) is closed in\}T\}\}) using TT by auto
ultimately show \(\bigcup\) (\{one-point compactification of \(\} T)=\{\bigcup T\} \cup(\bigcup T)\) by auto
qed
The one point compactification, gives indeed a compact topological space.
theorem (in topology0) compact_op:
shows \((\{\bigcup T\} \cup(\bigcup T))\) \{is compact in\}(\{one-point compactification of \}T)
unfolding IsCompact_def
proof(safe)
have 0 \{is compact in\}T unfolding IsCompact_def FinPow_def by auto
moreover note Top_3_L2 ultimately have \(0 \in\{A \in \operatorname{Pow}(\cup T)\). A\{is compact
in\}T \(\wedge\) A\{is closed in\}T\} by auto
then have \(\{\bigcup T\} \cup(\bigcup T) \in\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T\) unfolding OPCompactification_def by auto
then show \(\bigcup T \in \bigcup\) \{one-point compactification of\}T by auto

\section*{next}
fix \(x\) B assume \(x \in B B \in T\)
then show \(x \in \bigcup\) (\{one-point compactification of\}T) using open_subspace

\section*{by auto}
next
fix \(M\) assume \(A: M \subseteq(\{o n e-p o i n t\) compactification of \(\} T)\{\bigcup T\} \cup \bigcup T \subseteq \bigcup M\)
then obtain \(R\) where \(R \in M \cup T \in R\) by auto
have \(\bigcup T \notin \bigcup T\) using mem_not_refl by auto
with \(\langle R \in M\rangle\langle T \in R\rangle A(1)\) obtain \(K\) where \(K: R=\{\bigcup T\} \cup(\bigcup T-K) K\{\) is compact in\}TK\{is closed in\}T
unfolding OPCompactification_def by auto
from \(K(1,2)\) have \(B:\{\bigcup T\} \cup(\bigcup T)=R \cup K\) unfolding IsCompact_def by
auto
with \(A(2)\) have \(K \subseteq \bigcup M\) by auto
from \(K(2)\) have \(K\{i s\) compact in\}((\{one-point compactification of \(\}\) ）\｛restricted to\} \(ل\) T）using open＿subspace（2）
by auto
then have \(K\{i s\) compact in\}(\{one-point compactification of\}T) using compact＿subspace＿imp＿compact

〈K\｛is closed in\}T〉 unfolding IsClosed_def by auto
with \(\langle K \subseteq \bigcup M\rangle A(1)\) have \((\exists N \in \operatorname{FinPow}(M) . K \subseteq \bigcup N\) ）unfolding IsCompact＿def by auto
then obtain \(N\) where \(N \in \operatorname{FinPow}(M) K \subseteq \bigcup N\) by auto
with \(\langle R \in M\rangle\) have \((N \cup\{R\}) \in \operatorname{FinPow}(M) R \cup K \subseteq \bigcup\)（ \(N \cup\{R\}\) ）unfolding FinPow＿def by auto
with \(B\) show \(\exists N \in \operatorname{FinPow}(M) .\{\bigcup T\} \cup(\bigcup T) \subseteq \bigcup N\) by auto
qed
The one point compactification is Hausdorff iff the original space is also Hausdorff and locally compact．
```

lemma (in topology0) op_compact_T2_1:
assumes ({one-point compactification of}T){is T T }
shows T{is T}\mp@subsup{T}{2}{}
using T2_here[OF assms, of \T] open_subspace by auto
lemma (in topology0) op_compact_T2_2:
assumes ({one-point compactification of}T){is }\mp@subsup{\textrm{T}}{2}{}
shows T{is locally-compact}
proof-
{
fix x assume }x\in\bigcup
then have }x\in{\bigcupT}\cup(\bigcupT) by aut
moreover have \T\in{\T}\cup(\bigcupT) by auto moreover
from {x\in\bigcupT> have x\not=\T using mem_not_refl by auto
ultimately have \existsU\in{one-point compactification of}T. \existsV\in{one-point
compactification of}T. x }\inU|$UT)\inV ^ U \cap V = 0
            using assms op_compact_total unfolding isT2_def by auto
            then obtain U V where UV:U\in{one-point compactification of}TV\in{one-point
compactification of}T
        x\inU\T\inVU\capV=0 by auto
            from <V\in{one-point compactification of}T〉\UT\inV` mem_not_refl ob-
tain K where K:V={UT}\cup(UT-K)K{is closed in}TK{is compact in}T
            unfolding OPCompactification_def by auto
    from 〈U\in{one-point compactification of}T\rangle have U\subseteq{\T}\cup(UT) un-
folding OPCompactification_def
            using op_compact_total by auto
    with 〈U\capV=0\rangle K have U\subseteqKK\subseteq\bigcupT unfolding IsClosed_def by auto
    then have ( UT)\capU=U by auto moreover
    from UV(1) have ((UT)\capU)\in({one-point compactification of}T){restricted
to}\T
        unfolding RestrictedTo_def by auto
```
ultimately have \(U \in T$ using open_subspace(2) by auto
with $\langle x \in U\rangle\langle U \subseteq K\rangle$ have $x \in \operatorname{int}(K)$ using Top_2_L6 by auto
with $\langle K \subseteq \bigcup T\rangle\langle K\{$ is compact in\}T〉 have $\exists A \in \operatorname{Pow}(\bigcup T)$. $x \in \operatorname{int}(A) \wedge A\{$ is
compact in\}T by auto
\}
then have $\forall x \in \bigcup T . \exists A \in \operatorname{Pow}(\bigcup T) . x \in \operatorname{int}(A) \wedge A\{i s$ compact in\}T by auto
then show thesis using op_compact_T2_1[0F assms] exist_compact_neig_T2_imp_locally_compa
by auto
qed
lemma (in topology0) op_compact_T2_3:
assumes $\mathrm{T}\left\{\right.$ is locally-compact\} T \{is $\left.\mathrm{T}_{2}\right\}$
shows (\{one-point compactification of \}T) \{is $\left.\mathrm{T}_{2}\right\}$
proof-
\{
fix x y assume $x \neq y x \in \bigcup$ (\{one-point compactification of $\} T) y \in \bigcup$ (\{one-point
compactification of \}T)
then have $S: x \in\{\bigcup T\} \cup(\bigcup T) y \in\{\bigcup T\} \cup(\bigcup T)$ using op_compact_total by auto
\{
assume $x \in \bigcup T y \in \bigcup T$
with $\langle x \neq y\rangle$ have $\exists U \in T . \exists V \in T . \quad x \in U \wedge y \in V \wedge U \cap V=0$ using assms (2) un-
folding isT2_def by auto
then have $\exists \mathrm{U} \in\left(\left\{\begin{array}{l}\text { one-point compactification of }\} T) . \exists V \in(\{o n e-p o i n t ~\end{array}\right.\right.$ compactification of $\} T$). $x \in U \wedge y \in V \wedge U \cap V=0$
unfolding OPCompactification_def by auto
\}
moreover
\{
assume $x \notin \bigcup T \vee y \notin \bigcup T$
with S have $x=\bigcup T \vee y=\bigcup T$ by auto
with $\langle x \neq y\rangle$ have $(x=\bigcup T \wedge y \neq \bigcup T) \vee(y=\bigcup T \wedge x \neq \bigcup T)$ by auto
with S have ($x=\bigcup T \wedge y \in \bigcup T) \vee(y=\bigcup T \wedge x \in \bigcup T)$ by auto
then obtain $K y K x$ where ($x=\bigcup T \wedge K y\{i s$ compact in\} $\} \wedge y \in \operatorname{int}(K y)) \vee(y=\bigcup T \wedge$
$K x\{$ is compact in\} $T \wedge x \in \operatorname{int}(K x))$
using assms(1) locally_compact_exist_compact_neig by blast
then have ($x=\bigcup T \wedge$ Ky\{is compact in\}T^Ky\{is closed in\} $T \wedge y \in i n t(K y)) \vee(y=\bigcup T \wedge$
$\mathrm{Kx}\{\mathrm{is}$ compact in\}T^Kx\{is closed in\}T^xfint(Kx))
using in_t2_compact_is_cl assms(2) by auto
then have $(x \in\{\bigcup T\} \cup(\bigcup T-K y) \wedge y \in \operatorname{int}(K y) \wedge K y\{i s$ compact in\} $T \wedge K y\{i s$
closed in\}T) $\vee(y \in\{\bigcup T\} \cup(\bigcup T-K x) \wedge x \in \operatorname{int}(K x) \wedge K x\{$ is compact in\} $T \wedge K x\{i s$
closed in\}T)
by auto moreover
\{
fix K
assume A:K\{is closed in\}TK\{is compact in\}T
then have $K \subseteq \bigcup T$ unfolding IsClosed_def by auto
moreover have $\bigcup T \notin \bigcup T$ using mem_not_refl by auto
ultimately have $(\{\bigcup T\} \cup(\bigcup T-K)) \cap K=0$ by auto
then have $(\{\bigcup T\} \cup(\bigcup T-K)) \cap \operatorname{int}(K)=0$ using Top_2_L1 by auto moreover
from A have $\{\bigcup T\} \cup(\bigcup T-K) \in(\{o n e-p o i n t$ compactification of $\}$)
unfolding OPCompactification_def
IsClosed_def by auto moreover

unfolding OPCompactification_def
by auto ultimately
have int $(K) \in(\{$ one-point compactification of $\} T) \wedge\{\bigcup T\} \cup(\bigcup T-K) \in(\{$ one-point
compactification of $\} T) \wedge(\{\bigcup T\} \cup(\bigcup T-K)) \cap \operatorname{int}(K)=0$
by auto
\}
ultimately have $(\{\cup T\} \cup(\cup T-K y) \in(\{o n e-$ point compactification of $\} T) \wedge \operatorname{int}(K y) \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T) \wedge x \in\{\bigcup T\} \cup(U T-K y)$ $\wedge \mathrm{y} \in \operatorname{int}(\mathrm{Ky}) \wedge(\{\bigcup \mathrm{T}\} \cup(\bigcup \mathrm{T}-\mathrm{Ky})) \cap \operatorname{int}(\mathrm{Ky})=0) \vee$
$(\{\bigcup T\} \cup(\bigcup T-K x) \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T) \wedge i n t(K x) \in(\{o n e-p o i n t$ compactification of $\} T) \wedge y \in\{\bigcup T\} \cup(\bigcup T-K x) \wedge x \in \operatorname{int}(K x) \wedge(\{\bigcup T\} \cup(\bigcup T-K x)) \cap \operatorname{int}(K x)=0)$ by auto

moreover

\{
assume $(\{\bigcup T\} \cup(\bigcup T-K y) \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T) \wedge i n t(K y) \in(\{o n e-p o i n t$ compactification of $\} T) \wedge x \in\{\bigcup T\} \cup(\bigcup T-K y) \wedge y \in \operatorname{int}(K y) \wedge(\{\bigcup T\} \cup(\cup T-K y)) \cap i n t(K y)=0)$
then have $\exists U \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T) . ~ \exists V \in(\{o n e-p o i n t$
compactification of $\}$). $x \in U \wedge y \in V \wedge U \cap V=0$ using exI[$0 F \operatorname{exI}[$ of _ int (Ky)], of

of $\} T) \wedge x \in U \wedge y \in V \wedge U \cap V=0\{\bigcup T\} \cup(\bigcup T-K y)]$
by auto
\} moreover
\{
assume $(\{\bigcup T\} \cup(\bigcup T-K x) \in(\{o n e-p o i n t$ compactification of $\} T) \wedge$ int $(K x) \in(\{o n e-p o i n t$ compactification of $\} T) \wedge y \in\{\bigcup T\} \cup(\bigcup T-K x) \wedge x \in \operatorname{int}(K x) \wedge(\{\bigcup T\} \cup(\bigcup T-K x)) \cap \operatorname{int}(K x)=0)$
then have $\exists \mathrm{U} \in$ (\{one-point compactification of $\}$). $\exists \mathrm{V} \in$ (\{one-point compactification of $\} T$). $x \in U \wedge y \in V \wedge U \cap V=0$ using exI[OF exI[of _ $\{\bigcup T\} \cup(\bigcup T-K x)]$, of
$\lambda U \mathrm{~V} . \mathrm{U} \in\left(\left\{o n e-p o i n t\right.\right.$ compactification of \}T) $\wedge \mathrm{V} \in\left(\left\{\begin{array}{l}\text { ne-point compactification }\end{array}\right.\right.$ of $\} T) \wedge x \in U \wedge y \in V \wedge U \cap V=0 i n t(K x)]$
by blast
\}
ultimately have $\exists \mathrm{U} \in$ (\{one-point compactification of\}T). $\exists \mathrm{V} \in\left(\left\{\begin{array}{l}\text { ne-point }\end{array}\right.\right.$ compactification of $\} T$). $x \in U \wedge y \in V \wedge U \cap V=0$ by auto
\}
ultimately have $\exists U \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} T) . ~ \exists V \in(\{o n e-p o i n t$ compactification of $\} T$). $x \in U \wedge y \in V \wedge U \cap V=0$ by auto
\}
then show thesis unfolding isT2_def by auto qed

In conclusion, every locally compact Hausdorff topological space is regular; since this property is hereditary.
corollary (in topology0) locally_compact_T2_imp_regular:

```
    assumes T{is locally-compact} T{is T T }
    shows T{is regular}
proof-
    from assms have ( {one-point compactification of}T) {is T T } using op_compact_T2_3
by auto
    then have ({one-point compactification of}T) {is T4} unfolding isT4_def
using T2_is_T1 topology0.T2_compact_is_normal
            op_comp_is_top unfolding topologyO_def using op_compact_total compact_op
by auto
    then have ({one-point compactification of}T) {is T3} using topology0.T4_is_T3
op_comp_is_top unfolding topology0_def
            by auto
    then have ({one-point compactification of}T) {is regular} using isT3_def
by auto moreover
    have \T\subseteq\bigcup({one-point compactification of}T) using op_compact_total
by auto
    ultimately have (({one-point compactification of}T){restricted to}\\T)
{is regular} using regular_here by auto
    then show T{is regular} using open_subspace(2) by auto
qed
```

This last corollary has an explanation: In Hausdorff spaces, compact sets are closed and regular spaces are exactly the "locally closed spaces" (those which have a neighbourhood basis of closed sets). So the neighbourhood basis of compact sets also works as the neighbourhood basis of closed sets we needed to find.

```
definition
    IsLocallyClosed (_{is locally-closed})
    where T{is locally-closed} \equiv T{is locally}(\lambdaB TT. B{is closed in}TT)
lemma (in topology0) regular_locally_closed:
    shows T{is regular} \longleftrightarrow(T{is locally-closed})
proof
    assume T{is regular}
    then have a:\forallx\in\bigcupT. \forallU\inT. (x\inU) \longrightarrow( }\exists\textrm{V}\in\textrm{V
ing regular_imp_exist_clos_neig by auto
    {
            fix x b assume }x\in\bigcupTb\inTx\in
            with a obtain V where V }\inTx\in\textrm{Vcl}(\textrm{V})\subseteqb by blas
            note 〈cl(V)\subseteqb> moreover
            from \langleV\inT\rangle have V\subseteq\bigcupT by auto
            then have V\subseteqcl(V) using cl_contains_set by auto
            with \langlex\inV`\V\inT\rangle have x\inint(cl(V)) using Top_2_L6 by auto moreover
            from 〈V\subseteq\bigcupT` have cl(V){is closed in}T using cl_is_closed by auto
            ultimately have x\inint(cl(V))cl(V)\subseteqbcl(V){is closed in}T by auto
            then have }\exists\textrm{K}\in\operatorname{Pow(b). x\inint(K)\wedgeK{is closed in}T by auto
    }
    then show T{is locally-closed} unfolding IsLocally_def[OF topSpaceAssum]
IsLocallyClosed_def
```

```
        by auto
next
    assume T{is locally-closed}
    then have a: }\forall\textrm{x}\in\bigcup\textrm{T}.\forall\textrm{b}\in\textrm{T}.\textrm{x}\in\textrm{b}\longrightarrow(\exists\textrm{K}\in\operatorname{Pow}(b). x\inint(K)\wedgeK{is closed
in}T) unfolding IsLocally_def [OF topSpaceAssum]
            IsLocallyClosed_def by auto
    {
        fix x b assume }x\in\bigcupTb\inTx\in
        with a obtain K where K:K\subseteqbx\inint(K)K{is closed in}T by blast
        have int(K)\subseteqK using Top_2_L1 by auto
        with K(3) have cl(int(K))\subseteqK using Top_3_L13 by auto
        with K(1) have cl(int(K))\subseteqb by auto moreover
        have int(K)\inT using Top_2_L2 by auto moreover
        note <x\inint(K) > ultimately have }\exists\textrm{V}\in\textrm{T}.\textrm{x}\in\textrm{V}\wedge cl(V)\subseteqb by aut
    }
    then have }\forallx\in\bigcupT. \forallb\inT. x\inb \longrightarrow ( \existsV\inT. x\inV^ cl(V)\subseteqb) by aut
    then show T{is regular} using exist_clos_neig_imp_regular by auto
qed
```


68.5 Hereditary properties and local properties

In this section, we prove a relation between a property and its local property for hereditary properties. Then we apply it to locally-Hausdorff or locallyT_{2}. We also prove the relation between locally- T_{2} and another property that appeared when considering anti-properties, the anti-hyperconnectness.

If a property is hereditary in open sets, then local properties are equivalent to find just one open neighbourhood with that property instead of a whole local basis.

```
lemma (in topology0) her_P_is_loc_P:
    assumes \(\forall T T . \forall B \in \operatorname{Pow}(\bigcup T T) . \forall A \in T T\). TT\{is a topology\} \(\wedge P(B, T T) \longrightarrow P(B \cap A, T T)\)
    shows ( \(T\{\) is locally\}P) \(\longleftrightarrow(\forall x \in \bigcup T . \exists A \in T . x \in A \wedge P(A, T))\)
proof
    assume A:T\{is locally\}P
    \{
        fix \(x\) assume \(x: x \in \bigcup T\)
        with A have \(\forall b \in T . x \in b \longrightarrow(\exists c \in \operatorname{Pow}(b) . x \in \operatorname{int}(c) \wedge P(c, T))\) unfolding
IsLocally_def [OF topSpaceAssum]
            by auto moreover
        note \(x\) moreover
        have \(\bigcup T \in T\) using topSpaceAssum unfolding IsATopology_def by auto
        ultimately have \(\exists c \in \operatorname{Pow}(\bigcup T)\). \(x \in \operatorname{int}(c) \wedge P(c, T)\) by auto
        then obtain \(c\) where \(c: c \subseteq \bigcup T x \in \operatorname{int}(c) P(c, T)\) by auto
        have \(P\) :int ( \(c\) ) \(\in\) T using Top_2_L2 by auto moreover
        from \(c(1,3)\) topSpaceAssum assms have \(\forall A \in T\). \(P(c \cap A, T)\) by auto
        ultimately have \(P(c \cap i n t(c), T)\) by auto moreover
        from Top_2_L1[of c] have int (c) \(\subseteq c\) by auto
        then have \(c \cap i n t(c)=i n t(c)\) by auto
```

ultimately have P (int (c), T) by auto
with $P c(2)$ have $\exists V \in T . x \in V \wedge P(V, T)$ by auto
\}
then show $\forall x \in \bigcup T . \exists V \in T . x \in V \wedge P(V, T)$ by auto
next
assume $\mathrm{A}: \forall \mathrm{x} \in \bigcup \mathrm{T} . \exists \mathrm{A} \in \mathrm{T} . \mathrm{x} \in \mathrm{A} \wedge \mathrm{P}(\mathrm{A}, \mathrm{T})$
\{
fix x assume $x: x \in \bigcup T$ \{
fix b assume $b: x \in b b \in T$
from x A obtain A where $A_{-} d e f: A \in T x \in A P(A, T)$ by auto
from $A_{-} \operatorname{def}(1,3)$ assms topSpaceAssum have $\forall G \in T$. $P(A \cap G, T)$ by auto with $b(2)$ have $P(A \cap b, T)$ by auto moreover from $b(1) A_{-} d e f(2)$ have $x \in A \cap b$ by auto moreover have $A \cap b \in T$ using $b(2)$ A_def(1) topSpaceAssum IsATopology_def by
auto
then have int $(A \cap b)=A \cap b$ using Top_2_L3 by auto
ultimately have $x \in \operatorname{int}(A \cap b) \wedge P(A \cap b, T)$ by auto
then have $\exists c \in \operatorname{Pow}(b) . x \in \operatorname{int}(c) \wedge P(c, T)$ by auto
\}
then have $\forall b \in T . x \in b \longrightarrow(\exists c \in \operatorname{Pow}(b) . x \in \operatorname{int}(c) \wedge P(c, T))$ by auto
\}
then show T\{is locally\}P unfolding IsLocally_def [OF topSpaceAssum] by auto
qed

definition

IsLocallyT2 (_\{is locally- $\left.\mathrm{T}_{2}\right\}$ 70)
where $T\left\{\right.$ is locally $\left.-T_{2}\right\} \equiv T\{i s$ locally\} (λB. λT. ($T\{$ restricted to\}B) $\{$ is T_{2} \})

Since T_{2} is an hereditary property, we can apply the previous lemma.

```
corollary (in topology0) loc_T2:
```

 shows (\(\mathrm{T}\left\{\right.\) is locally \(\left.-\mathrm{T}_{2}\right\}\)) \(\longleftrightarrow(\forall \mathrm{x} \in \bigcup \mathrm{T} . \exists \mathrm{A} \in \mathrm{T} . \mathrm{x} \in \mathrm{A} \wedge\) (\(T\{\) restricted to\}A) is
 T_{2} \})
proof-
\{
fix TT B A assume TT:TT\{is a topology\} (TT\{restricted to\}B) \{is $\left.\mathrm{T}_{2}\right\}$
$A \in T T B \in \operatorname{Pow}(\cup T T)$
then have $s: B \cap A \subseteq B B \subseteq \bigcup T T$ by auto
then have (TT\{restricted to\} $(B \cap A))=(T T\{$ restricted to\}B) \{restricted
to\} ($B \cap A$) using subspace_of_subspace
by auto moreover
have \bigcup (TT\{restricted to\}B)=B unfolding RestrictedTo_def using s(2)
by auto
then have $B \cap A \subseteq \bigcup$ ($T T\{$ restricted to\} B) using $s(1)$ by auto moreover
note $\operatorname{TT}(2)$ ultimately have (TT\{restricted $\operatorname{to\} }(\mathrm{B} \cap \mathrm{A}))$ \{is $\left.\mathrm{T}_{2}\right\}$ using T 2 _here
by auto

\}

then have $\forall T T . \forall B \in \operatorname{Pow}(\bigcup T T) . \forall A \in T T$. TT\{is a topology\} \wedge (TT\{restricted to\}B) $\left\{\right.$ is $\left.\mathrm{T}_{2}\right\} \longrightarrow(\mathrm{TT}\{$ restricted to$\}(\mathrm{B} \cap \mathrm{A}))\left\{\right.$ is $\left.\mathrm{T}_{2}\right\}$
by auto
with her_P_is_loc_P[where $P=\lambda A$. $\lambda T T$. (TT\{restricted to\}A) $\left\{\right.$ is $\left.\left.T_{2}\right\}\right]$ show thesis unfolding IsLocallyT2_def by auto
qed
First, we prove that a locally- T_{2} space is anti-hyperconnected.
Before starting, let's prove that an open subspace of an hyperconnected space is hyperconnected.
lemma(in topology0) open_subspace_hyperconn:
assumes $\mathrm{T}\{$ is hyperconnected\} $\mathrm{U} \in \mathrm{T}$
shows (T\{restricted to\}U)\{is hyperconnected\}
proof-
\{
fix A B assume $A \in(T\{r e s t r i c t e d ~ t o\} U) B \in(T\{r e s t r i c t e d ~ t o\} U) A \cap B=0$
then obtain $A U$ BU where $A=U \cap A U B=U \cap B U A U \in T B U \in T$ unfolding RestrictedTo_def
by auto
then have $A \in T B \in T$ using topSpaceAssum assms(2) unfolding IsATopology_def
by auto
with $\langle A \cap B=0\rangle$ have $A=0 \vee B=0$ using assms(1) unfolding IsHConnected_def
by auto
\}
then show thesis unfolding IsHConnected_def by auto
qed
lemma(in topology0) locally_T2_is_antiHConn:
assumes $\mathrm{T}\left\{\mathrm{is}\right.$ locally- $\left.\mathrm{T}_{2}\right\}$
shows T\{is anti-\}IsHConnected
proof-
\{
fix A assume $A: A \in \operatorname{Pow}(\bigcup T)(T\{r e s t r i c t e d ~ t o\} A)\{i s ~ h y p e r c o n n e c t e d\}$ \{
fix x assume $x \in A$
with $A(1)$ have $x \in \bigcup T$ by auto moreover
have $\cup T \in T$ using topSpaceAssum unfolding IsATopology_def by auto ultimately
have $\exists c \in \operatorname{Pow}(\bigcup T) . x \in \operatorname{int}(c) \wedge(T$ \{restricted to\} $c)$ \{is $\left.T_{2}\right\}$ using assms
unfolding IsLocallyT2_def IsLocally_def [OF topSpaceAssum] by auto
then obtain c where $c: c \in \operatorname{Pow}(\bigcup T) x \in \operatorname{int}(c)(T$ \{restricted to\} c) \{is
$\left.\mathrm{T}_{2}\right\}$ by auto
have \bigcup (T \{restricted to\} $c)=(\bigcup T) \cap c$ unfolding RestrictedTo_def
by auto
with $\langle c \in \operatorname{Pow}(\bigcup T)\rangle(\bigcup T \in T\rangle$ have tot: \bigcup (T \{restricted to\} $c)=c$ by auto have int (c) \in T using Top_2_L2 by auto then have $A \cap(\operatorname{int}(c)) \in(T\{r e s t r i c t e d ~ t o\} A)$ unfolding RestrictedTo_def
by auto
with $A(2)$ have ((T\{restricted to\}A)\{restricted to\}(A (int(c))))\{is hyperconnected\}
using topology0.open_subspace_hyperconn unfolding topology0_def
using Top_1_L4
by auto
then have (T\{restricted to\}($\mathrm{A} \cap(\operatorname{int}(\mathrm{c}))$)) \{is hyperconnected\} using subspace_of_subspace[of $A \cap$ (int (c))

AT] A(1) by force moreover
have int (c) $\subseteq c$ using Top_2_L1 by auto
then have sub: $A \cap(\operatorname{int}(c)) \subseteq c$ by auto
then have $A \cap(\operatorname{int}(c)) \subseteq \bigcup(T$ \{restricted to\} c) using tot by auto
then have ((T \{restricted to\} c) \{restricted to\} (A $\cap(\operatorname{int}(c)))$) \{is
$\left.\mathrm{T}_{2}\right\}$ using
T2_here[0F c(3)] by auto
with sub have (T \{restricted to\} (A $\cap(\operatorname{int}(c)))$) is $\left.T_{2}\right\}$ using subspace_of_subspace[of $\mathrm{A} \cap$ (int(c))
cT] $\langle c \in \operatorname{Pow}(\bigcup T)\rangle$ by auto
ultimately have (T\{restricted to\}(A $(\operatorname{int}(c)))$) \{is hyperconnected\} (T \{restricted to\}(A $\cap(\operatorname{int}(c))))\left\{\right.$ is $\left.T_{2}\right\}$ by auto
then have (T\{restricted to\}(A (int(c))))\{is hyperconnected\}(T \{restricted to\} (A $(\operatorname{int}(c))))$ is anti-\}IsHConnected
using topology0.T2_imp_anti_HConn unfolding topology0_def using Top_1_L4 by auto
moreover
have $\bigcup(T\{$ restricted to\} $(A \cap(\operatorname{int}(c))))=(\bigcup T) \cap A \cap(i n t(c))$ unfolding RestrictedTo_def by auto
with A(1) Top_2_L2 have $\bigcup(T\{r e s t r i c t e d ~ t o\}(A \cap(i n t(c))))=A \cap(i n t(c))$
by auto
then have $A \cap(\operatorname{int}(c)) \subseteq \bigcup(T\{$ restricted to\} (A $\cap(\operatorname{int}(c))))$ by auto moreover
have $A \cap(i n t(c)) \subseteq \bigcup T$ using $A(1)$ Top_2_L2 by auto
then have (T\{restricted to\}(A $(\operatorname{int}(c))))\{$ restricted to\}(A $(\operatorname{int}(c)))=(T\{$ restricted to\} (A $(\operatorname{int}(c))))$
using subspace_of_subspace[of $A \cap(\operatorname{int}(c)) A \cap(i n t(c)) T]$ by auto
ultimately have (A \cap (int(c)))\{is in the spectrum of\}IsHConnected
unfolding antiProperty_def
by auto
then have $\mathrm{A} \cap(\operatorname{int}(\mathrm{c})) \lesssim 1$ using HConn_spectrum by auto
then have $(A \cap(\operatorname{int}(c))=\{x\})$ using lepoll_1_is_sing $\langle x \in A\rangle\langle x \in \operatorname{int}(c)\rangle$
by auto
then have $\{x\} \in(T\{r e s t r i c t e d ~ t o\} A)$ using $\langle(A \cap(i n t(c)) \in(T\{r e s t r i c t e d$ to\}A)) > by auto
\}
then have pointOpen: $\forall x \in A .\{x\} \in(T\{$ restricted to\}A) by auto
\{
fix x y assume $x \neq y x \in A y \in A$
with pointOpen have $\{x\} \in(T\{r e s t r i c t e d ~ t o\} A)\{y\} \in(T\{r e s t r i c t e d ~ t o\} A)\{x\} \cap\{y\}=0$

```
                by auto
            with A(2) have {x}=0V{y}=0 unfolding IsHConnected_def by auto
            then have False by auto
    }
    then have uni: }\forall\textrm{x}\in\textrm{A}.,\forall\textrm{y}\in\textrm{A}.\textrm{x}=\textrm{y}\mathrm{ by auto
    {
        assume A}=
        then obtain }x\mathrm{ where }x\inA\mathrm{ by auto
        with uni have }A={x}\mathrm{ by auto
        then have A\approx1 using singleton_eqpoll_1 by auto
        then have A\lesssim1 using eqpoll_imp_lepoll by auto
    }
    moreover
    {
        assume A=0
        then have A\approx0 by auto
        then have A\lesssim1 using empty_lepollI eq_lepoll_trans by auto
        }
        ultimately have A\lesssim1 by auto
        then have A{is in the spectrum of}IsHConnected using HConn_spectrum
by auto
    }
    then show thesis unfolding antiProperty_def by auto
qed
```

Now we find a counter-example for: Every anti-hyperconnected space is locally-Hausdorff.

The example we are going to consider is the following. Put in X an antihyperconnected topology, where an infinite number of points don't have finite sets as neighbourhoods. Then add a new point to the set, $p \notin X$. Consider the open sets on $X \cup p$ as the anti-hyperconnected topology and the open sets that contain p are $p \cup A$ where $X \backslash A$ is finite.

This construction equals the one-point compactification iff X is anti-compact; i.e., the only compact sets are the finite ones. In general this topology is contained in the one-point compactification topology, making it compact too.

It is easy to check that any open set containing p meets infinite other nonempty open set. The question is if such a topology exists.

```
theorem (in topology0) COF_comp_is_top:
    assumes T{is T T } ᄀ(UT\precnat)
    shows ((({one-point compactification of}(CoFinite (UT)))-{{\T}})\cupT)
{is a topology}
proof-
    have N:\T\not\in(\bigcupT) using mem_not_refl by auto
    {
        fix M assume M:M\subseteq((({one-point compactification of}(CoFinite (UT)))-{{\T}})\cupT)
```

```
    let MT={A\inM. A\inT}
    let MK={A\inM. A}\not=T
    have MM: (\bigcupMT)\cup(\MK)=\bigcupM by auto
    have MN:\MT\inT using topSpaceAssum unfolding IsATopology_def by auto
    then have sub:MK\subseteq({one-point compactification of}(CoFinite (UT)))-{{\T}}
        using M by auto
    then have MK\subseteq({one-point compactification of}(CoFinite (UT))) by
auto
    then have CO:\MK\in({one-point compactification of}(CoFinite (UT)))
using
    topology0.op_comp_is_top[OF topology0_CoCardinal[OF InfCard_nat]]
unfolding Cofinite_def
    IsATopology_def by auto
    {
        assume AS:\MK={\T}
        moreover have }\forallR\inMK. R\subseteq\bigcupMK by aut
        ultimately have }\forallR\inMK. R\subseteq{\bigcupT} by aut
        then have }\forallR\inMK.R={\bigcupT}\veeR=0 by force moreove
        with sub have }\forallR\inMK. R=0 by aut
        then have \ MK=0 by auto
        with AS have False by auto
    }
    with CO have CO2:\MK\in({one-point compactification of}(CoFinite (\T)))-{{\T}}
by auto
    {
        assume \ MK\in(CoFinite (UT))
        then have \MK\inT using assms(1) T1_cocardinal_coarser by auto
        with MN have {\MT,\bigcupMK}\subseteq(T) by auto
        then have ( UMT)\cup(\bigcupMK)\inT using union_open[OF topSpaceAssum, of
{\MT,\MK}] by auto
        then have \ \ M T using MM by auto
    }
    moreover
    {
        assume \MK\not\in(CoFinite (UT))
        with CO obtain B where B{is compact in}(CoFinite (UT))B{is closed
in}(CoFinite (UT))
            \MK={\CoFinite \T}\cup(U(CoFinite \T)-B) unfolding OPCompactification_def
by auto
    then have MK:\MK={\T}\cup(\bigcupT-B)B{is closed in}(CoFinite (UT))
            using union_cocardinal unfolding Cofinite_def by auto
    then have B:B\subseteq\bigcupT B\precnat\veeB=\T using closed_sets_cocardinal un-
folding Cofinite_def by auto
    {
        assume B=\T
        with MK have \ MK={\T} by auto
        then have False using CO2 by auto
    }
    with B have }B\subseteq\bigcupT\mathrm{ and natB: }\textrm{B}<\mathrm{ nat by auto
```

have $(\bigcup T-(\bigcup M T)) \cap B \subseteq B$ by auto
then have $(\bigcup T-(\bigcup M T)) \cap B \lesssim B$ using subset_imp_lepoll by auto
then have $(\bigcup T-(\bigcup M T)) \cap B \prec$ nat using natB lesspoll_trans1 by auto
then have $((\bigcup T-(\bigcup M T)) \cap B)$ is closed in\} (CoFinite $(\bigcup T)$) using closed_sets_cocardinal

B(1) unfolding Cofinite_def by auto
then have $\bigcup \mathrm{T}-((\bigcup \mathrm{T}-(\bigcup \mathrm{MT})) \cap \mathrm{B}) \in($ CoFinite $(\bigcup \mathrm{T}))$ unfolding IsClosed_def using union_cocardinal unfolding Cofinite_def by auto
also have $\bigcup \mathrm{T}-((\bigcup \mathrm{T}-(\bigcup \mathrm{MT})) \cap \mathrm{B})=(\bigcup \mathrm{T}-(\bigcup \mathrm{T}-(\bigcup \mathrm{MT}))) \cup(\bigcup \mathrm{T}-\mathrm{B})$ by auto
also have $\ldots=(\bigcup \mathrm{MT}) \cup(\bigcup \mathrm{T}-\mathrm{B})$ by auto
ultimately have $P:(\bigcup M T) \cup(\bigcup T-B) \in($ CoFinite $(\bigcup T))$ by auto
then have eq: $\cup \mathrm{T}-(\bigcup \mathrm{T}-((\bigcup \mathrm{MT}) \cup(\bigcup \mathrm{T}-\mathrm{B})))=(\bigcup \mathrm{MT}) \cup(\bigcup \mathrm{T}-\mathrm{B})$ by auto
from P eq have $(\bigcup T-((\bigcup M T) \cup(\bigcup T-B)))$ \{is closed in\} (CoFinite ($\cup T)$)
unfolding IsClosed_def
using union_cocardinal [of nat $\bigcup \mathrm{T}$] unfolding Cofinite_def by auto moreover
have $(\bigcup T-((\bigcup M T) \cup(\bigcup T-B))) \cap \bigcup T=(\bigcup T-((\bigcup M T) \cup(\bigcup T-B)))$ by auto
then have (CoFinite $\bigcup T)\{$ restricted to\} $(\bigcup T-((\bigcup M T) \cup(\bigcup T-B)))=$ CoFinite $(\bigcup T-((\bigcup M T) \cup(\bigcup T-B)))$ using subspace_cocardinal unfolding Cofinite_def by auto
then have $(\bigcup \mathrm{T}-((\bigcup \mathrm{MT}) \cup(\bigcup \mathrm{T}-\mathrm{B}))$) \{is compact in\} ((CoFinite $\bigcup \mathrm{T})$ \{restricted to\} $(\bigcup T-((\bigcup M T) \cup(\bigcup T-B))))$ using cofinite_compact
union_cocardinal unfolding Cofinite_def by auto
then have $(\bigcup T-((\bigcup M T) \cup(\bigcup T-B)))$ is compact in\} (CoFinite $\cup T$) using compact_subspace_imp_compact by auto ultimately
have $\{\bigcup T\} \cup(\bigcup T-(\bigcup T-((\bigcup M T) \cup(\bigcup T-B)))) \in(\{$ one-point compactification of\} (CoFinite (UT)))
unfolding OPCompactification_def using union_cocardinal unfolding Cofinite_def by auto
with eq have $\{\bigcup \mathrm{T}\} \cup((\bigcup \mathrm{MT}) \cup(\bigcup \mathrm{T}-\mathrm{B})) \in(\{$ one-point compactification of\} (CoFinite (UT))) by auto
moreover have $A A:\{\bigcup T\} \cup((\bigcup M T) \cup(\bigcup T-B))=((\bigcup M T) \cup(\bigcup M K))$ using MK (1) by auto
ultimately have AA2: $((\bigcup$ MT $) \cup(\bigcup$ MK $)) \in($ (one-point compactification
of\} (CoFinite (UT))) by auto
\{
assume AS: $(\bigcup$ MT $) \cup(\bigcup M K)=\{\bigcup T\}$
from MN have $\mathrm{T}: \bigcup \mathrm{T} \notin \bigcup \mathrm{MT}$ using N by auto
\{
fix x assume $G: x \in \bigcup$ MT
then have $x \in(\cup M T) \cup(\cup M K)$ by auto
with AS have $x \in\{\bigcup T\}$ by auto
then have $x=\bigcup T$ by auto
with T have False using G by auto
\}
then have $\cup M T=0$ by auto
with AS have $(\bigcup M K)=\{\bigcup T\}$ by auto
then have False using CO2 by auto
\}
with AA2 have $((\bigcup$ MT $) \cup(\bigcup$ MK $)) \in(\{o n e-$ point compactification of $\}$ (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}$ by auto
with MM have $\bigcup M \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}$

by auto

\}
ultimately
have $\bigcup M \in((\{o n e-p o i n t$ compactification of $\}$ (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T$ by auto \}
then have $\forall \mathrm{M} \in \operatorname{Pow}(((\{o n e-$ point compactification of $\}$ (CoFinite ($\cup \mathrm{T})))-\{\{\bigcup \mathrm{T}\}\}) \cup T)$.
$\bigcup M \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}) \cup T$
by auto moreover
$\{$
fix $U V$ assume $U \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f ~(C o F i n i t e ~(U T)))-\{\{\bigcup T\}\}) \cup T V \in((\{o n e$ compactification of $($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T$ moreover
\{
assume $U \in T V \in T$
then have $U \cap V \in T$ using topSpaceAssum unfolding IsATopology_def by
auto
then have $U \cap V \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T)))-\{\{\bigcup T\}\}) \cup T$ by auto
\}
moreover
\{
assume $U V: U \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T)))-\{\{\bigcup T\}\}) V \in((\{o n e-p o i n$ compactification of (CoFinite ($(\mathrm{UT}))$)-\{\{ $\left.\left.\mathrm{U}_{\mathrm{T}}\right\}\right\}$)
then have $0: U \cap V \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T)))$
using topology0.op_comp_is_top[OF topology0_CoCardinal[0 F InfCard_nat]]
unfolding Cofinite_def
IsATopology_def by auto
then have $\bigcup T \cap(U \cap V) \in(\{o n e-$ point compactification of $\}$ (CoFinite $(\bigcup T)))\{$ restricted to\} $\bigcup T$
unfolding RestrictedTo_def by auto
then have $\bigcup T \cap(U \cap V) \in$ CoFinite $\bigcup T$ using topology0.open_subspace(2) [0F topology0_CoCardinal[OF InfCard_nat]]
union_cocardinal unfolding Cofinite_def by auto
from UV have $U \neq\{\bigcup T\} V \neq\{\bigcup T\} \bigcup T \cap U \in$ (\{one-point compactification of\} (CoFinite $(\bigcup T)))\{$ restricted to\} $\bigcup T \cup T \cap V \in$ (\{one-point compactification of\} (CoFinite (\bigcup T))) \{restricted to\} $\bigcup T$
unfolding RestrictedTo_def by auto
then have $R: U \neq\{\bigcup T\} V \neq\{\bigcup T\} \bigcup T \cap U \in$ CoFinite $\bigcup T \cup T \cap V \in$ CoFinite $\bigcup T$ using topology0.open_subspace(2) [OF topology0_CoCardinal [OF InfCard_nat]]
union_cocardinal unfolding Cofinite_def by auto
from $U V$ have $U \subseteq \bigcup$ (\{one-point compactification of (CoFinite (UT)))V $\subseteq \cup$ (\{one-point compactification of (CoFinite (UT))) by auto
then have $U \subseteq\{\bigcup T\} \cup \bigcup T V \subseteq\{\bigcup T\} \cup \bigcup T$ using topology0.op_compact_total [0F topology0_CoCardinal[OF InfCard_nat]]
union_cocardinal unfolding Cofinite_def by auto
then have $E: U=(\bigcup T \cap U) \cup(\{\bigcup T\} \cap U) V=(\bigcup T \cap V) \cup(\{\bigcup T\} \cap V) U \cap V=(\bigcup T \cap U \cap V) \cup(\{\bigcup T\} \cap U \cap V)$

```
by auto
    {
        assume Q:U\capV={\T}
        then have RR: \T\cap(U\capV)=0 using N by auto
        {
            assume \T\capU=0
            with E(1) have U={\T}\capU by auto
            also have ...\subseteq{\T} by auto
            ultimately have U\subseteq{\T} by auto
            then have }\textrm{U}=0\vee\textrm{O}={\T}\mathrm{ by auto
            with R(1) have U=0 by auto
            then have U\capV=0 by auto
            then have False using Q by auto
            }
            moreover
            {
            assume \T\capV=0
            with E(2) have V={\T}\capV by auto
            also have ...\subseteq{\T} by auto
            ultimately have V\subseteq{\T} by auto
            then have V=0\veeV={\T} by auto
            with }R(2) have V=0 by aut
            then have U\capV=0 by auto
            then have False using Q by auto
            }
            moreover
            {
                assume \bigcupT\capU\not=0\T\capV\not=0
                        with R(3,4) have ( }\cupT\capU)\cap(\cupT\capV)\not=0 using Cofinite_nat_HConn[O
assms(2)]
                    unfolding IsHConnected_def by auto
                        then have }\bigcupT\cap(U\capV)\not=0 by aut
                        then have False using RR by auto
            }
            ultimately have False by auto
        }
        with O have U\capV\in(({one-point compactification of}(CoFinite (UT)))-{{\T}})\cupT
by auto
    }
    moreover
    {
        assume UV:U\inTV\in({one-point compactification of}(CoFinite (UT)))-{{\T}}
        from UV(2) obtain B where V\in(CoFinite UT)\vee(V={\T}\cup(UT-B)\wedgeB{is
closed in}(CoFinite (UT))) unfolding OPCompactification_def
            using union_cocardinal unfolding Cofinite_def by auto
        with assms(1) have V }\inTV(V={\T}\cup(UT-B)\wedgeB{is closed in}(CoFinit
(UT))) using T1_cocardinal_coarser by auto
    then have }\textrm{V}\in\textrm{T}\vee(U\capV=U\cap(\cupT-B)\wedgeB{is closed in}(CoFinite (UT))
using UV(1) N by auto
```

then have $V \in T \vee(U \cap V=U \cap(\cup T-B) \wedge(\cup T-B) \in($ CoFinite $(\cup T)))$ unfolding IsClosed_def using union_cocardinal unfolding Cofinite_def by auto
then have $V \in T \vee(U \cap V=U \cap(\cup T-B) \wedge(\cup T-B) \in T)$ using assms (1) T1_cocardinal_coarser by auto
with UV(1) have U $\cap V \in T$ using topSpaceAssum unfolding IsATopology_def
by auto
then have $U \cap V \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}) \cup T$

by auto

\}
moreover
\{
assume $U V: U \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T)))-\{\{\bigcup T\}\} V \in T$
from $U V(1)$ obtain B where $U \in($ CoFinite $\bigcup T) \vee(U=\{\cup T\} \cup(\bigcup T-B) \wedge B\{$ is
closed in\}(CoFinite (UT))) unfolding OPCompactification_def
using union_cocardinal unfolding Cofinite_def by auto
with assms(1) have $U \in T \vee(U=\{\bigcup T\} \cup(\bigcup T-B) \wedge B\{i s$ closed in\} (CoFinite
(UT))) using T1_cocardinal_coarser by auto
then have $U \in T \vee(U \cap V=(\bigcup T-B) \cap V \wedge B\{$ is closed in\} (CoFinite $(\bigcup T))$)
using UV(2) N by auto
then have $U \in T \vee(U \cap V=(\bigcup T-B) \cap V \wedge(\bigcup T-B) \in($ CoFinite $(\bigcup T)))$ unfolding IsClosed_def using union_cocardinal unfolding Cofinite_def by auto
then have $U \in T \vee(U \cap V=(\cup T-B) \cap V \wedge(\cup T-B) \in T)$ using assms(1) T1_cocardinal_coarser by auto
with UV(2) have U $\cap \in T$ using topSpaceAssum unfolding IsATopology_def
by auto
then have $U \cap V \in((\{o n e-$ point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T$ by auto
\}
ultimately
have $U \cap V \in((\{o n e-p o i n t$ compactification of $\}$ (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T$ by auto
\}
ultimately show thesis unfolding IsATopology_def by auto
qed
The previous construction preserves anti-hyperconnectedness.

```
theorem (in topology0) COF_comp_antiHConn:
    assumes T{is anti-}IsHConnected }\neg(\T<\mathrm{ nat)
    shows ((({one-point compactification of}(CoFinite (UT)))-{{\T}})\cupT)
{is anti-}IsHConnected
proof-
    have N:\T\not\in(UT) using mem_not_refl by auto
    from assms(1) have T1:T{is T T } using anti_HConn_imp_T1 by auto
    have tot1:\ ({one-point compactification of}(CoFinite (UT)))={\bigcupT}\cup\T
using topology0.op_compact_total[OF topology0_CoCardinal[OF InfCard_nat],
of \T]
            union_cocardinal[of nat\T] unfolding Cofinite_def by auto
    then have ( U({one-point compactification of}(CoFinite (UT))))\cup\bigcupT={\bigcupT}\cup\bigcupT
by auto moreover
```

have $\bigcup((\{$ one-point compactification of \} (CoFinite $(\bigcup T))) \cup T)=(\bigcup(\{o n e-p o i n t$ compactification of (CoFinite (UT)))) UلT
by auto
ultimately have tot2: \bigcup ((\{one-point compactification of $\}($ CoFinite $(\bigcup T))) \cup T)=\{\bigcup T\} \cup \bigcup T$ by auto
have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T))$) us-
ing union_open[OF topology0.op_comp_is_top[OF topologyO_CoCardinal[0F
InfCard_nat]], of \{one-point compactification of\}(CoFinite (UT))]
tot1 unfolding Cofinite_def by auto moreover
\{
assume $\bigcup \mathrm{T}=0$
with assms (2) have \neg ($0 \prec$ nat) by auto
then have False unfolding lesspoll_def using empty_lepollI eqpoll_0_is_0
eqpoll_sym by auto
\}
then have $\bigcup \mathrm{T} \neq 0$ by auto
with N have Not: $\neg(\bigcup T \subseteq\{\bigcup T\})$ by auto \{
assume $\{\cup T\} \cup \bigcup T=\{\bigcup T\}$ moreover
have $\bigcup T \subseteq\{\bigcup T\} \cup \bigcup T$ by auto ultimately
have $\cup T \subseteq\{\bigcup T\}$ by auto
with Not have False by auto
\}
then have $\{\bigcup T\} \cup \bigcup T \neq\{\bigcup T\}$ by auto ultimately
have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-p o i n t$ compactification of $\}$ (CoFinite ($\bigcup T)$))-\{\{ $\backslash T\}\}$ by auto
then have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-$ point compactification of $\}$ (CoFinite $(\bigcup T))$)-\{\{ $\backslash T\}\} \cup T$ by auto
then have $\{\bigcup T\} \cup \bigcup T \subseteq \bigcup((\{o n e-$ point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T)$ by auto moreover
have (\{one-point compactification of (CoFinite (UT)))-\{\{\T\}\} $\cup T \subseteq$ (\{one-point compactification of (CoFinite (UT))) UT by auto
then have $\bigcup((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\} \cup T) \subseteq \bigcup((\{o n e-p o i n t$ compactification of $\}($ CoFinite $(\bigcup T))) \cup T$) by auto
with tot2 have $\bigcup((\{o n e-$ point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T) \subseteq\{\bigcup T\} \cup \bigcup T$

by auto

ultimately have $\mathrm{TOT}: \bigcup(((\{$ one-point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)=\{\bigcup$ by auto
\{
fix A assume AS:A〕\T ((((\{one-point compactification of \} (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)$ \{restricted to\}A) \{is hyperconnected\}
from AS (1,2) have e0: (((\{one-point compactification of (CoFinite

$(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to\} \bigcup T) \{restricted to\}A
using subspace_of_subspace[of $\mathrm{A} \bigcup \mathrm{T}\left(\left(\left(\left\{\begin{array}{l}\text { ne-point compactification }\end{array}\right.\right.\right.\right.$
of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)]$ TOT by auto
have e1: ((((\{one-point compactification of $($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to\} $(\bigcup T))=(((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\})\{r e s t r i c t e d$ to\} $\bigcup T) \cup(T\{$ restricted to\} $\bigcup T)$
unfolding RestrictedTo_def by auto \{
fix A assume $A \in T\{$ restricted to $\} \backslash T$
then obtain B where $B \in T A=B \cap T$ unfolding RestrictedTo_def by auto then have $A=B$ by auto
with $\langle B \in T\rangle$ have $A \in T$ by auto
\}
then have $\mathrm{T}\{$ restricted to\} $\cup \mathrm{T} \subseteq \mathrm{T}$ by auto moreover
\{
fix A assume $A \in T$
then have $\cup T \cap A=A$ by auto
with $\langle A \in T\rangle$ have $A \in T\{r e s t r i c t e d ~ t o\} \bigcup T$ unfolding RestrictedTo_def
by auto
\}
ultimately have $\mathrm{T}\{$ restricted to$\} \backslash \mathrm{T}=\mathrm{T}$ by auto moreover
\{
fix A assume $A \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\})\{$ restricted to\} $\bigcup T$
then obtain B where $B \in$ (\{one-point compactification of (CoFinite
$(\bigcup T))-\{\{\bigcup T\}\} \bigcup T \cap B=A$ unfolding RestrictedTo_def by auto
then have $B \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T))) \bigcup T \cap B=A$ by auto
then have $A \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(U T)))\{r e s t r i c t e d$ to\} $\bigcup T$ unfolding RestrictedTo_def by auto
then have $A \in$ (CoFinite ($\cup T)$) using topology0.open_subspace (2) [OF topology0_CoCardinal[OF InfCard_nat]]
union_cocardinal unfolding Cofinite_def by auto
with T1 have A \in T using T1_cocardinal_coarser by auto
\}
then have ((\{one-point compactification of (CoFinite ($\bigcup T)$))-\{\{ \bigcup T\}\})\{restricted to\} $\bigcup T \subseteq T$ by auto
moreover note e1 ultimately
have (((\{one-point compactification of\} (CoFinite $\bigcup T))$ - $\{\{\bigcup T\}\} \cup$
T) \{restricted to\} $(\bigcup T))=T$ by auto
with e0 have (((\{one-point compactification of (CoFinite (UT)))-\{\{UT\}\}) $\cup T)\{$ restrictec
to\}A=T\{restricted to\}A by auto
with assms(1) AS have A\{is in the spectrum of\}IsHConnected unfold-
ing antiProperty_def by auto
\}
then have reg: $\forall \mathrm{A} \in \operatorname{Pow}(\bigcup \mathrm{T})$. (((((\{one-point compactification of (CoFinite
$(\bigcup T))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to$\} \mathrm{A})$ \{is hyperconnected\}) $\longrightarrow(A\{i s$ in the spectrum of\}IsHConnected) by auto
have $\bigcup T \in T$ using topSpaceAssum unfolding IsATopology_def by auto
then have $P: \bigcup T \in(((\{o n e-$ point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)$

by auto

\{
fix B assume sub: $B \in \operatorname{Pow}(\bigcup T \cup\{\bigcup T\})$ and hyp: (((((\{one-point compactification
of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to\}B) \{is hyperconnected\})
from P have subop: $\bigcup T \cap B \in(()(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~$
$(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)$ \{restricted to\}B) unfolding RestrictedTo_def by auto with hyp have hypSub: ((((\{one-point compactification of \} (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)$ \{restricted to\}B) \{restricted to\} ($\cup T \cap B)$) \{is hyperconnected\}
using topology0.open_subspace_hyperconn
topology0.Top_1_L4 COF_comp_is_top[0F T1 assms(2)] unfolding topology0_def
by auto
from sub TOT have $B \subseteq \bigcup$ ((\{one-point compactification of (CoFinite $\bigcup T)$) - \{\{ $\bigcup \mathrm{T}\}\} \cup \mathrm{T}$) by auto
then have ((((\{one-point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to\} $(\bigcup T \cap B))=((((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{r e s t r i c t e d$ to\}B) \{restricted to\} (\bigcup T $\cap \mathrm{B}$)
using subspace_of_subspace[of $\bigcup \mathrm{T} \cap \mathrm{BB}(($ (\{one-point compactification
of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)]$ by auto
with hypSub have (((\{one-point compactification of (CoFinite UT))

- $\{\{\bigcup T\}\} \cup T$) \{restricted to\} ($\bigcup T \cap B)$) is hyperconnected\} by auto
with reg have $(\cup T \cap B)\{$ is in the spectrum of $\}$ IsHConnected by auto
then have le: $\bigcup \mathrm{T} \cap \mathrm{B} \lesssim 1$ using HConn_spectrum by auto
\{
fix x assume $x: x \in \bigcup T \cap B$
with le have sing: $\bigcup T \cap B=\{x\}$ using lepoll_1_is_sing by auto \{
fix y assume $y: y \in B$
then have $\mathrm{y} \in \bigcup \mathrm{T} \cup\{\bigcup \mathrm{T}\}$ using sub by auto
with y have $y \in \bigcup T \cap B \vee y=\bigcup T$ by auto
with sing have $y=x \vee y=\bigcup T$ by auto
\}
then have $B \subseteq\{x, \bigcup T\}$ by auto
with x have disj: $B=\{x\} \vee B=\{x, \bigcup T\}$ by auto
\{
assume $\bigcup T \in B$
with disj have $B: B=\{x, \bigcup T\}$ by auto
from sing subop have singOp: $\{x\} \in(()(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~$
of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{r e s t r i c t e d ~ t o\} B)$
by auto
have $\{x\}\{$ is closed in\} (CoFinite UT) using topology0.T1_iff_singleton_closed[OF topology0_CoCardinal[OF InfCard_nat]] cocardinal_is_T1[OF InfCard_nat] x union_cocardinal unfolding Cofinite_def by auto
moreover
have Finite($\{x\}$) by auto
then have spec: $\{x\}\{i s$ in the spectrum of $\}(\lambda T$. ($\cup T)$ \{is compact
in\}T) using compact_spectrum by auto
have ((CoFinite $\bigcup T)\{$ restricted to\}\{x\})\{is a topology\} \backslash (CoFinite UT) $\{$ restricted to\} $\{x\}$) $=\{x\}$
using topology0.Top_1_L4[0F topology0_CoCardinal[0F InfCard_nat]]
unfolding RestrictedTo_def Cofinite_def using x union_cocardinal by auto
with spec have $\{x\}\{$ is compact in\}((CoFinite UT)\{restricted to\}\{x\})
unfolding Spec_def by auto
then have $\{x\}\{$ is compact in\} (CoFinite UT) using compact_subspace_imp_compact by auto moreover note x
ultimately have $\{\bigcup T\} \cup(\bigcup T-\{x\}) \in\{o n e-p o i n t$ compactification of $\}$ (CoFinite
(UT)) unfolding OPCompactification_def
using union_cocardinal unfolding Cofinite_def by auto more-
over
\{
assume $A:\{\bigcup T\} \cup(\bigcup T-\{x\})=\{\bigcup T\}$
\{
fix y assume $P: y \in \bigcup T-\{x\}$
then have $y \in\{\bigcup T\} \cup(\bigcup T-\{x\})$ by auto
then have $y=\bigcup T$ using A by auto
with N P have False by auto
\}
then have $\bigcup T-\{x\}=0$ by auto
with x have $\cup T=\{x\}$ by auto
then have $\bigcup T \approx 1$ using singleton_eqpoll_1 by auto moreover
have $1 \prec$ nat using n_lesspoll_nat by auto
ultimately have $\bigcup T \prec$ nat using eq_lesspoll_trans by auto
then have False using assms(2) by auto
\}
ultimately have $\{\bigcup T\} \cup(\bigcup T-\{x\}) \in$ (\{one-point compactification of $\}$ (CoFinite
$(\bigcup T)))-\{\{\bigcup T\}\}$ by auto
then have $\{\bigcup T\} \cup(\bigcup T-\{x\}) \in((($ (one-point compactification of (CoFinite
$(\bigcup T))-\{\{(\bigcup T\}\}) \cup T)$) by auto
then have $\mathrm{B} \cap(\{\bigcup \mathrm{T}\} \cup(\bigcup \mathrm{T}-\{\mathrm{x}\})) \in((((\{o n e-$ point compactification
of $($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to\}B) unfolding RestrictedTo_def
by auto
moreover have $\mathrm{B} \cap(\{\bigcup \mathrm{T}\} \cup(\bigcup \mathrm{T}-\{\mathrm{x}\}))=\{\bigcup \mathrm{T}\}$ using B by auto
ultimately have $\{\bigcup T\} \in(()(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}$ (CoFinite
$(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)\{$ restricted to$\} \mathrm{B})$ by auto
with singOp hyp N x have False unfolding IsHConnected_def by
auto
\}
with disj have $B=\{x\}$ by auto
then have $B \approx 1$ using singleton_eqpoll_1 by auto
then have $B \lesssim 1$ using eqpoll_imp_lepoll by auto
\}
then have $\cup T \cap B \neq 0 \longrightarrow B \lesssim 1$ by blast
moreover
\{
assume $\bigcup T \cap B=0$
with sub have $B \subseteq\{\bigcup T\}$ by auto
then have $\mathrm{B} \lesssim\{\bigcup \mathrm{T}\}$ using subset_imp_lepoll by auto
then have $\mathrm{B} \lesssim 1$ using singleton_eqpoll_1 lepoll_eq_trans by auto
\}
ultimately have $\mathrm{B} \lesssim 1$ by auto
then have $B\{i s$ in the spectrum of $\}$ IsHConnected using HConn_spectrum by auto

\}

then show thesis unfolding antiProperty_def using tot by auto qed

The previous construction, applied to a densely ordered topology, gives the desired counterexample. What happends is that every neighbourhood of $\cup T$ is dense; because there are no finite open sets, and hence meets every nonempty open set. In conclusion, UT cannot be separated from other points by disjoint open sets.

Every open set that contains $\cup \mathrm{T}$ is dense, when considering the order topology in a densely ordered set with more than two points.

```
theorem neigh_infPoint_dense:
    fixes T X r
    defines T_def:T \equiv (OrdTopology X r)
    assumes IsLinOrder(X,r) X{is dense with respect to}r
        \existsx y. x 
UT\inU
            V\in(({one-point compactification of}(CoFinite (UT)))-{{\T}})\cupT V }\not=
    shows U\capV }\not=
proof
    have N:UT\not\in(UT) using mem_not_refl by auto
    have tot1:U({one-point compactification of}(CoFinite (UT)))={\ T}\cup\ T
using topology0.op_compact_total [OF topology0_CoCardinal [OF InfCard_nat],
of \T]
                union_cocardinal[of nat\T] unfolding Cofinite_def by auto
    then have ( U({one-point compactification of}(CoFinite (UT))))\cup\T={\T}\cup\T
by auto moreover
    have U(({one-point compactification of}(CoFinite (UT)))UT)=(U ({one-point
compactification of}(CoFinite (UT))))\cup\T
            by auto
    ultimately have tot2: \(({one-point compactification of}(CoFinite (UT)))\cupT)={UT}\cup\T
by auto
    have {UT}\cup\\T\in({one-point compactification of}(CoFinite (UT))) us-
ing union_open[OF topology0.op_comp_is_top[OF topologyO_CoCardinal[0F
InfCard_nat]],of {one-point compactification of}(CoFinite (UT))]
            tot1 unfolding Cofinite_def by auto moreover
    {
        assume \ T=0
        then have X=0 unfolding T_def using union_ordtopology[OF assms(2)]
assms(4) by auto
            then have False using assms(4) by auto
        }
        then have }\cupT\not=0\mathrm{ by auto
        with N have Not:\neg(UT\subseteq{\T}) by auto
        {
            assume {UT}\cup\T={UT} moreover
            have \\T\subseteq{\T}\cup\T by auto ultimately
            have \ \T\subseteq{\cupT} by auto
```

```
        with Not have False by auto
```

 \}
 then have \(\{\bigcup T\} \cup \bigcup T \neq\{\cup T\}\) by auto ultimately
 have \(\{\bigcup T\} \cup \bigcup T \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}\)
 by auto
then have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-$ point compactification of $\}$ (CoFinite $(\bigcup T))$)-\{\{ $\backslash T\}\} \cup T$
by auto
then have $\{\bigcup T\} \cup \bigcup T \subseteq \bigcup$ ((\{one-point compactification of (CoFinite $(\bigcup T))$)-\{\{ $\bigcup \bigcup T\}\} \cup T$)
by auto moreover
have (\{one-point compactification of \} (CoFinite ($\cup T)$))-\{\{ $\backslash T\}\} \cup T \subseteq$ (\{one-point
compactification of (CoFinite (UT))) UT by auto
then have $\bigcup((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T) \subseteq \bigcup((\{o n e-p o i n t$
compactification of (CoFinite (UT))) UT) by auto
with tot2 have $\cup((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\cup T)))-\{\{\bigcup T\}\} \cup T) \subseteq\{\bigcup T\} \cup \bigcup T$
by auto
ultimately have TOT: $\bigcup(((\{$ one-point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)=\{\bigcup$
by auto
assume $A: U \cap V=0$
with assms (6) have $N N: \bigcup T \notin V$ by auto
with assms (7) have $\mathrm{V} \in($ CoFinite $\bigcup \mathrm{T}) \cup T$ unfolding OPCompactification_def
using union_cocardinal
unfolding Cofinite_def by auto
moreover have $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{2}\right\}$ unfolding T_{-}def using order_top_T2[0F assms(2)]
assms (4) by auto
then have T : $\mathrm{T}\left\{\right.$ is T_{1} \} using T 2 _is_T1 by auto
ultimately have VopT:V \in T using topology0.T1_cocardinal_coarser [OF topology0_ordtopology (1
assms (2)]]
unfolding T_def by auto
from A assms (7) have $\mathrm{V} \subseteq \bigcup$ (((\{one-point compactification of (CoFinite
$(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)-U$ by auto
then have $\mathrm{V} \subseteq(\{\bigcup T\} \cup \bigcup T)-U$ using $T O T$ by auto
then have $V \subseteq(\cup T)-U$ using $N N$ by auto
from N have $U \notin T$ using assms(6) by auto
then have $\mathrm{U} \notin$ (CoFinite $\bigcup T$) $\cup T$ using T1 topology0.T1_cocardinal_coarser [OF
topologyO_ordtopology (1) [0F assms (2)]]
unfolding T_def using union_cocardinal union_ordtopology[0F assms(2)]
assms(4) by auto
with assms $(5,6)$ obtain B where $U: U=\{\bigcup T\} \cup(\bigcup T-B) B\{i s$ closed in\} (CoFinite
UT) $\mathrm{B} \neq \mathrm{U}^{\mathrm{T}}$
unfolding OPCompactification_def using union_cocardinal unfolding
Cofinite_def by auto
then have $U=\{\bigcup T\} \cup(\bigcup T-B) B=\bigcup T \vee B \prec$ nat $B \neq \bigcup T$ using closed_sets_cocardinal
unfolding Cofinite_def
by auto
then have $U=\{\bigcup T\} \cup(\bigcup T-B) B \prec$ nat by auto
with N have $\cup T-U=\bigcup T-(\cup T-B)$ by auto
then have $\bigcup T-U=B$ using $U(2)$ unfolding IsClosed_def using union_cocardinal
unfolding Cofinite_def
by auto
with 〈B々nat〉 have Finite（UT－U）using lesspoll＿nat＿is＿Finite by auto
with $\langle V \subseteq(\bigcup T)-U$ 〉 have Finite (V) using subset＿Finite by auto
from assms（8）obtain v where $v \in V$ by auto
with VopT have $\exists R \in\{$ IntervalX $(X, r, b, c) .\langle b, c\rangle \in X \times X\} \cup\{\operatorname{LeftRayX}(X$, $r, b) . b \in X\} \cup\{\operatorname{RightRayX}(X, r, b) . b \in X\} . R \subseteq V \wedge v \in R$ using point＿open＿base＿neigh［OF Ordtopology＿is＿a＿topology（2）［OF assms（2）］］
unfolding T＿def by auto
then obtain R where R_{-}def ：$R \in\{$ IntervalX $(X, r, b, c) .\langle b, c\rangle \in X \times X\}$
$\cup\{\operatorname{LeftRayX}(X, r, b) \cdot b \in X\} \cup\{\operatorname{RightRayX}(X, r, b) . b \in X\} R \subseteq V v \in R$
by blast
moreover
$\{$
assume $R \in\{$ IntervalX（ $\mathrm{X}, \mathrm{r}, \mathrm{b}, \mathrm{c}$ ）．$\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{X} \times \mathrm{X}\}$
then obtain $b c$ where lim：$b \in X c \in X R=$ Interval $X(X, r, b, c)$ by auto with $\langle\mathrm{v} \in \mathrm{R}\rangle$ have \neg Finite（ R ）using dense＿order＿inf＿intervals［OF assms（2）
＿＿－assms（3）］
by auto
with $\langle R \subseteq V\rangle$（Finite（V）〉 have False using subset＿Finite by auto
\} moreover
\｛
assume $R \in\{\operatorname{LeftRay} X(X, r, b) . b \in X\}$
then obtain b where $\lim : b \in X R=L e f t R a y X(X, r, b)$ by auto
with $\langle\mathrm{v} \in \mathrm{R}\rangle$ have \neg Finite（ R ）using dense＿order＿inf＿lrays［OF assms（2）
＿＿assms（3）］by auto
with $\langle R \subseteq V\rangle\langle$ Finite（V）〉 have False using subset＿Finite by auto
\} moreover
\｛
assume $R \in\{\operatorname{RightRay} X(X, r, b) . b \in X\}$
then obtain b where $\lim : b \in X R=\operatorname{RightRay} X(X, r, b)$ by auto
with $\langle v \in R\rangle$ have \neg Finite (R) using dense＿order＿inf＿rrays［OF assms（2）＿
＿assms（3）］by auto
with $\langle R \subseteq V\rangle\langle F i n i t e(V)\rangle$ have False using subset＿Finite by auto
\} ultimately
show False by auto
qed
A densely ordered set with more than one point gives an order topology．
Applying the previous construction to this topology we get a non locally－
Hausdorff space．

```
theorem OPComp_cofinite_dense_order_not_loc_T2:
    fixes T X r
    defines T_def:T \equiv (OrdTopology X r)
    assumes IsLinOrder(X,r) X{is dense with respect to}r
        \existsx y. x\not=y^x\inX^y\inX
    shows }\neg((({one-point compactification of}(CoFinite (UT)))-{{\T}}\cupT){i
locally-T}\mp@subsup{T}{2}{\prime}\mathrm{ )
proof
    have N:\T\not\in(\bigcupT) using mem_not_refl by auto
    have tot1:\({one-point compactification of}(CoFinite (UT)))={\T}\cup\T
```

using topology0.op_compact_total[0F topology0_CoCardinal[0F InfCard_nat], of $\cup T]$ union_cocardinal[of nat \bigcup T] unfolding Cofinite_def by auto
then have (\bigcup (\{one-point compactification of $\}$ (CoFinite $(\bigcup T)))$) $\bigcup \backslash T=\{\bigcup T\} \cup \bigcup T$ by auto moreover
have $\bigcup((\{$ one-point compactification of $\}$ (CoFinite $(\bigcup T))) \cup T)=(\bigcup$ (\{one-point compactification of (CoFinite ($\bigcup T)$))) $\cup \bigcup T$
by auto
ultimately have tot2: $\bigcup((\{o n e-$ point compactification of $\}($ CoFinite $(\bigcup T))) \cup T)=\{\bigcup T\} \cup \bigcup T$ by auto
have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T))) ~ u s-~$ ing union_open[OF topology0.op_comp_is_top[OF topology0_CoCardinal[0F InfCard_nat]], of \{one-point compactification of (CoFinite (UT))]
tot1 unfolding Cofinite_def by auto moreover
\{
assume $\bigcup \mathrm{T}=0$
then have $\mathrm{X}=0$ unfolding $\mathrm{T}_{\text {_ }}$ def using union_ordtopology[0F assms(2)]
assms(4) by auto
then have False using assms (4) by auto
\}
then have $\cup T \neq 0$ by auto
with N have Not: $\neg(\bigcup T \subseteq\{\bigcup T\})$ by auto
\{
assume $\{\bigcup T\} \cup \bigcup T=\{\bigcup T\}$ moreover
have $\cup T \subseteq\{\bigcup T\} \cup \bigcup T$ by auto ultimately
have $\cup T \subseteq\{\bigcup T\}$ by auto
with Not have False by auto
\}
then have $\{\bigcup T\} \cup \bigcup T \neq\{\bigcup T\}$ by auto ultimately
have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}$ by auto
then have $\{\bigcup T\} \cup \bigcup T \in(\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\} \cup T$ by auto
then have $\{\bigcup T\} \cup \bigcup T \subseteq \bigcup((\{o n e-$ point compactification of $\}($ CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T)$ by auto moreover
have (\{one-point compactification of (CoFinite (UT)))-\{\{\T\}\} $\cup T \subseteq$ (\{one-point compactification of\}(CoFinite ($\cup T)$)) UT by auto
then have $\bigcup((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\} \cup T) \subseteq \bigcup((\{o n e-p o i n t$ compactification of $($ CoFinite ($\cup T))) \cup T$) by auto
with tot2 have $\bigcup((\{o n e-$ point compactification of $\}(\operatorname{CoFinite}(\cup T)))-\{\{\bigcup T\}\} \cup T) \subseteq\{\bigcup T\} \cup \bigcup T$ by auto
ultimately have TOT: $\bigcup(((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~(\bigcup T)))-\{\{\bigcup T\}\}) \cup T)=\{\bigcup$ by auto
have T1:T\{is $\left.\mathrm{T}_{1}\right\}$ using order_top_T2[0F assms $\left.(2,4)\right]$ T2_is_T1 unfold-
ing T_def by auto moreover
from assms (4) obtain b c where $B: b \in X c \in X b \neq c$ by auto
\{
assume $\langle\mathrm{b}, \mathrm{c}\rangle \notin \mathrm{r}$
with assms (2) have $\langle c, b\rangle \in r$ unfolding IsLinOrder_def IsTotal_def us-
ing $\langle b \in X\rangle\langle c \in X\rangle$ by auto
with assms (3) B obtain z where $z \in X-\{b, c\}\langle c, z\rangle \in r\langle z, b\rangle \in r$ unfolding
IsDense_def by auto
then have IntervalX $(X, r, c, b) \neq 0$ unfolding IntervalX_def using Order_ZF_2_L1 by auto
then have \neg (Finite (IntervalX $(X, r, c, b))$) using dense_order_inf_intervals[0F $\operatorname{assms}(2) \quad$ _ $\langle c \in X\rangle\langle b \in X\rangle \operatorname{assms}(3)]$
by auto moreover
have Interval $X(X, r, c, b) \subseteq X$ unfolding IntervalX_def by auto
ultimately have \neg (Finite (X)) using subset_Finite by auto
then have \neg ($\mathrm{X} \prec$ nat) using lesspoll_nat_is_Finite by auto
\}
moreover
\{
assume $\langle\mathrm{b}, \mathrm{c}\rangle \in \mathrm{r}$
with assms(3) B obtain z where $z \in X-\{b, c\}\langle b, z\rangle \in r\langle z, c\rangle \in r$ unfolding
IsDense_def by auto
then have IntervalX $(X, r, b, c) \neq 0$ unfolding IntervalX_def using Order_ZF_2_L1 by auto
then have \neg (Finite (IntervalX $(X, r, b, c))$) using dense_order_inf_intervals [OF assms(2) _ $\langle\mathrm{b} \in \mathrm{X}\rangle\langle c \in \mathrm{X}\rangle$ assms (3)]
by auto moreover
have Interval $X(X, r, b, c) \subseteq X$ unfolding IntervalX_def by auto
ultimately have \neg (Finite (X)) using subset_Finite by auto
then have \neg ($\mathrm{X} \prec$ nat) using lesspoll_nat_is_Finite by auto
\}
ultimately have \neg ($\mathrm{X} \prec$ nat) by auto
with T1 have top: ((\{one-point compactification of (CoFinite ($\cup T)$)) -\{\{ \bigcup T\}\} $\cup T$) \{is
a topology\} using topology0.COF_comp_is_top[OF topologyO_ordtopology[0F
assms (2)]] unfolding T_def
using union_ordtopology[0F assms $(2,4)]$ by auto
assume ((\{one-point compactification of \} (CoFinite (UT)))-\{\{UT\}\}UT)\{is locally- $\left.\mathrm{T}_{2}\right\}$ moreover
have $\bigcup T \in \bigcup$ ((\{one-point compactification of\} (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T$)
using TOT by auto
moreover have $\bigcup((\{o n e-$ point compactification of $\}$ (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T) \in((\{o n e-$ poi compactification of (CoFinite (\bigcup T)))-\{\{
using top unfolding IsATopology_def by auto
ultimately have $\exists \mathrm{c} \in \operatorname{Pow}(\bigcup$ ((\{one-point compactification of \} (CoFinite
 $\bigcup T))-\{\{\bigcup T\}\}) \cup T) \wedge$
(((\{one-point compactification of\}CoFinite \bigcup T) - \{\{
$\cup \mathrm{T})$ \{restricted to\} c) \{is $\left.\mathrm{T}_{2}\right\}$ unfolding IsLocallyT2_def IsLocally_def [OF top] by auto
then obtain C where $C: C \subseteq \bigcup$ ((\{one-point compactification of (CoFinite $(\bigcup T)))-\{\{\bigcup T\}\} \cup T) \bigcup T \in$ Interior (C, ((\{one-point compactification of $\}$ (CoFinite $\bigcup T)$) - \{\{ $\bigcup \mathrm{T}\}\}) \cup \mathrm{T}$) and $\mathrm{T} 2:(((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} C o F i n i t e ~$ $\bigcup T)-\{\{\bigcup T\}\} \cup T)$ \{restricted to\} C) \{is $\left.T_{2}\right\}$
by auto
have sub:Interior (C, ((\{one-point compactification of (CoFinite UT))

- $\{\{\cup T\}\}) \cup T) \subseteq C$ using topologyo.Top_2_L1
top unfolding topology0_def by auto
have ((((\{one-point compactification of (CoFinite \bigcup T)) - \{\{
T) \{restricted to\}C) \{restricted to\}(Interior (C, ((\{one-point compactification
 $\bigcup T)$) $-\{\{\cup T\}\}) \cup T)\{$ restricted to\} (Interior (C, ((\{one-point compactification of $\}($ CoFinite $\cup T)$) $-\{\{\bigcup T\}\}) \cup T$)
using subspace_of_subspace[0F sub C(1)] by auto moreover
have ($\cup(((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} C o F i n i t e ~ U T) ~-~\{\{\bigcup T\}\} ~ U ~$
T) $\{$ restricted to\} C)) \subseteq C unfolding RestrictedTo_def by auto
with C(1) have ($\cup(((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\} C o F i n i t e ~ U T) ~-~$ $\{\{\cup T\}\} \cup T)$ \{restricted to$\} \mathrm{C})$)=C unfolding RestrictedTo_def by auto
with sub have pp:Interior(C, ((\{one-point compactification of (CoFinite
 UT) - \{\{ \bigcup T\}\} $\cup T$) \{restricted to\} C)) by auto
ultimately have T2_2:((((\{one-point compactification of\} (CoFinite UT))
- $\{\{\cup T\}\}) \cup T)\{$ restricted to\}(Interior (C, ((\{one-point compactification of $\}\left(\right.$ CoFinite \bigcup T)) - $\left\{\left\{\left(\begin{array}{l}\text { T }\end{array}\right\}\right.\right.$) $\cup T$)) $\left\{\right.$ is $\left.\mathrm{T}_{2}\right\}$ using T2_here[0F T2 pp] by auto
have top2:((((\{one-point compactification of (CoFinite UT)) - \{\{
$\cup \mathrm{T})$ \{restricted to\}(Interior (C, ((\{one-point compactification of (CoFinite (UT)) - \{\{ $(\mathrm{T}\}\}) \cup \mathrm{T})$)) $\{$ is a topology $\}$
using topology0.Top_1_L4 top unfolding topology0_def by auto
from C(2) pp have $1: \cup \mathrm{T} \in \mathrm{U}$ (()(\{one-point compactification of\}(CoFinite $\bigcup T)$) - \{\{ \bigcup T $\}\}$) $\cup T)$ \{restricted to\}(Interior (C, ((\{one-point compactification of $($ (CoFinite $\cup T)$) - \{\{ $(\mathrm{T}\}\}) \cup T))$)
unfolding RestrictedTo_def by auto
from top topology0.Top_2_L2 have intop: (Interior(C, ((\{one-point
 of $\}($ CoFinite $\cup T)$) - $\{\{\bigcup T\}\}) \cup T$ unfolding topology0_def by auto
\{
fix x assume $\mathrm{x} \neq \bigcup \mathrm{T} x \in \bigcup$ ((((\{one-point compactification of (CoFinite $\bigcup T)$) $-\{\{\bigcup T\}\}$) $\cup T$) \{restricted to$\}$ (Interior (C, ((\{one-point compactification of $\}($ CoFinite $\cup T)$) $\left.\left.-\left\{\left\{\left(\begin{array}{l}\text { T }\end{array}\right\}\right\}\right) \cup T\right)\right)$)
with p1 have $\exists \mathrm{U} \in((($ (\{one-point compactification of (CoFinite $\cup T))$ - $\{\{\bigcup \mathrm{T}\}\}) \cup \mathrm{T})$ \{restricted to$\}$ (Interior (C, ((\{one-point compactification of $($ CoFinite \bigcup T)) - $\{\{\bigcup \mathrm{T}\}\}) \cup \mathrm{T}))$). $\exists \mathrm{V} \in((((\{o n e-$ point compactification of\} (CoFinite $\cup T)$) - $\{\{\cup \mathrm{T}\}\}) \cup \mathrm{T})\{$ restricted to$\}$ (Interior (C, ((\{one-point compactification of (CoFinite \bigcup T)) - $\{\{\bigcup T\}\}) \cup T)$)). $\mathrm{x} \in \mathrm{U} \wedge \cup \mathrm{T} \in \mathrm{V} \wedge \mathrm{U} \cap \mathrm{V}=0$ using T^{2} _2 unfolding isT2_def by auto
 $\bigcup T)$) - \{\{ \bigcup T $\}\}$) $\cup T)\{$ restricted to\}(Interior (C, ((\{one-point compactification of $($ (CoFinite $\cup T))-\{\{\bigcup T\}\}) \cup T)$)

 $\mathrm{U} \neq \mathrm{O} \cup \mathrm{T} \in \mathrm{VU} \cap \mathrm{V}=0$ by auto
from UV(1) obtain UC where $\mathrm{U}=($ Interior (C, ((\{one-point compactification
of $\}($ CoFinite $\bigcup T))$ - $\{\{\bigcup T\}\}) \cup T)) \cap U C U C \in((((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~$ of $\}($ CoFinite $\bigcup T))-\{\{\bigcup T\}\}) \cup T)$)
unfolding RestrictedTo_def by auto
with top intOP have Uop: $\mathrm{U} \in$ ((\{one-point compactification of (CoFinite $\bigcup T)$) - \{\{ \bigcup T\}\}) \cup T unfolding IsATopology_def by auto
from UV(2) obtain VC where $\mathrm{V}=$ (Interior (C, ((\{one-point compactification of\} (CoFinite $\bigcup T))-\{\{\bigcup T\}\}) \cup T)) \cap V C V C \in((((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~$ of $\}($ CoFinite $\bigcup T))-\{\{\bigcup T\}\}) \cup T)$)
unfolding RestrictedTo_def by auto
with top intOP have $\mathrm{V} \in($ (\{one-point compactification of (CoFinite $\bigcup T)$) - \{\{ \bigcup T\}\}) $\cup T$ unfolding IsATopology_def by auto
with UV(3-5) Uop neigh_infPoint_dense[OF assms(2-4), of VU] union_ordtopology [OF assms $(2,4)]$
have False unfolding T_def by auto
\}
then have $\bigcup((((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~ \bigcup T))-\{\{\bigcup T\}\})$
 $\bigcup T)$) - $\{\{\bigcup T\}\}) \cup T)) \subseteq \subseteq\{\bigcup T\}$
by auto
with p1 have $\bigcup(((\{$ one-point compactification of $\}($ CoFinite $\bigcup T))$ $\{\{\bigcup T\}\}) \cup T)\{r e s t r i c t e d ~ t o\}$ (Interior (C, ((\{one-point compactification of $\}($ CoFinite $\bigcup T)$) $-\{\{\bigcup T\}\}) \cup T)))=\{\bigcup T\}$

by auto

with top2 have $\{\bigcup T\} \in((((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f ~(C o F i n i t e ~ \bigcup T)) ~$

- $\{\{\bigcup \mathrm{T}\}\}) \cup \mathrm{T})\{$ restricted to\} (Interior (C, ((\{one-point compactification of\} (CoFinite $\bigcup T)$) - \{\{
unfolding IsATopology_def by auto
then obtain W where UT: $\{\bigcup \mathrm{T}\}=$ (Interior (C, ((\{one-point compactification of $\}($ CoFinite $\bigcup T))-\{\{\bigcup T\}\}) \cup T)) \cap W W \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~$ of $\}($ CoFinite $\bigcup T))-\{\{\bigcup T\}\}) \cup T$
unfolding RestrictedTo_def by auto
from this(2) have (Interior (C, ((\{one-point compactification of\}(CoFinite $\bigcup T))-\{\{\bigcup T\}\}) \cup T)) \cap W \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~ U T))$ - \{\{ $\bigcup \mathrm{T}\}\}$) $\cup \mathrm{T}$ using intOP
top unfolding IsATopology_def by auto
with UT(1) have $\{\bigcup T\} \in((\{o n e-p o i n t ~ c o m p a c t i f i c a t i o n ~ o f\}(C o F i n i t e ~ U T))$
- $\{\{\cup T\}\}) \cup T$ by auto
then have $\{\bigcup T\} \in T$ by auto
with N show False by auto qed

This topology, from the previous result, gives a counter-example for antihyperconnected implies locally- T_{2}.

```
theorem antiHConn_not_imp_loc_T2:
    fixes T X r
    defines T_def:T \equiv (OrdTopology X r)
    assumes IsLinOrder(X,r) X{is dense with respect to}r
        \existsx y. x}\not=y\wedgex\inX\wedgey\in
    shows \neg((({one-point compactification of}(CoFinite (UT)))-{{\T}}\cupT){is
```

```
locally-T2})
    and (({one-point compactification of}(CoFinite (UT)))-{{\T}}\cupT){is
anti-}IsHConnected
    using OPComp_cofinite_dense_order_not_loc_T2[OF assms(2-4)] dense_order_infinite[OF
assms(2-4)] union_ordtopology[OF assms(2,4)]
    topology0.COF_comp_antiHConn[OF topology0_ordtopology[OF assms(2)] topology0.T2_imp_anti_
topology0_ordtopology[OF assms(2)] order_top_T2[OF assms(2,4)]]]
    unfolding T_def by auto
```

Let's prove that T_{2} spaces are locally- T_{2}, but that there are locally- T_{2} spaces which aren't T_{2}. In conclusion $T_{2} \Rightarrow$ locally $-T_{2} \Rightarrow$ anti-hyperconnected; all implications proper.

```
theorem(in topology0) T2_imp_loc_T2:
    assumes T{is T T }
    shows T{is locally-T2}
proof-
    {
        fix x assume }x\in\bigcup
        {
            fix b assume b:b\inTx\inb
            then have (T{restricted to}b){is T2} using T2_here assms by auto
moreover
            from b have x\inint(b) using Top_2_L3 by auto
            ultimately have }\exists\textrm{c}\in\operatorname{Pow}(\textrm{b}).\textrm{x}\in\operatorname{int}(c)\wedge(T{restricted to}c){is T2
by auto
        }
            then have }\forall\textrm{b}\in\textrm{T}.\textrm{x}\in\textrm{b}\longrightarrow(\exists\textrm{c}\in\operatorname{Pow(b). x\inint(c)^(T{restricted to}c){is
T2}) by auto
    }
    then show thesis unfolding IsLocallyT2_def IsLocally_def [OF topSpaceAssum]
by auto
qed
```

If there is a closed singleton, then we can consider a topology that makes this point doble.
theorem(in topology0) doble_point_top:
assumes $\{m\}\{i s$ closed in\}T
shows ($T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$) \{is a topology\}
proof-
\{
fix M assume $M: M \subseteq T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$
let $M T=\{V \in M . V \in T\}$
let $\mathrm{Mm}=\{\mathrm{V} \in \mathrm{M} . \mathrm{V} \notin \mathrm{T}\}$
have unm: $\bigcup M=(\bigcup M T) \cup(\bigcup M m)$ by auto
have tt: \bigcup MT $\in T$ using topSpaceAssum unfolding IsATopology_def by auto
\{
assume $\mathrm{Mm}=0$
then have $\cup M m=0$ by auto
with unm have $\bigcup M=(\bigcup M T)$ by auto
with tt have $\bigcup M \in T$ by auto
then have $\cup M \in T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by auto \}
moreover
\{
assume AS:Mm $\neq 0$
then obtain V where $\mathrm{V}: \mathrm{V} \in \mathrm{MV} \notin \mathrm{T}$ by auto
with M have $V \in\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by blast
then obtain $U W$ where $U: V=(U-\{m\}) \cup\{\bigcup T\} \cup W ~ U \in T m \in U W \in T$ by auto
let $U=\{\langle V, W\rangle \in T \times T . m \in V \wedge(V-\{m\}) \cup\{\cup T\} \cup W \in M m\}$
let $f U=\{f s t(B) . B \in U\}$
let $s U=\{\operatorname{snd}(B) . B \in U\}$
have $f U \subseteq T s U \subseteq T$ by auto
then have $P: \bigcup f U \in T \bigcup s U \in T$ using topSpaceAssum unfolding IsATopology_def by auto moreover
have $\langle\mathrm{U}, \mathrm{W}\rangle \in \mathrm{U}$ using $\mathrm{U} V$ by auto
then have $m \in \bigcup f U$ by auto
ultimately have $s:\langle\bigcup f U, \bigcup s U\rangle \in\{V \in T . m \in V\} \times T$ by auto
moreover have $r: \forall S . \forall R . S \in\{V \in T . m \in V\} \longrightarrow R \in T \longrightarrow(S-\{m\}) \cup\{\cup T\} \cup R \in\{(U-\{m\}) \cup\{\cup T\} \cup W$.
$\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\}$
by auto
ultimately have $(\bigcup f U-\{m\}) \cup\{\bigcup T\} \cup \bigcup s U \in\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T$.
$m \in V\} \times T\}$ by auto
$\{$
fix v assume $v \in \bigcup \mathbb{M m}$
then obtain V where $v: v \in V V \in M m$ by auto
then have $\mathrm{V}: \mathrm{V} \in \mathrm{MV} \notin \mathrm{T}$ by auto
with M have $V \in\{U-\{m\} \cup\{\bigcup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by blast
then obtain $U W$ where $U: V=(U-\{m\}) \cup\{\cup T\} \cup W U \in T m \in U W \in T$ by auto
with $v(1)$ have $v \in(U-\{m\}) \cup\{\cup T\} \cup W$ by auto
then have $v \in U-\{m\} \vee v=\bigcup T \vee v \in W$ by auto
then have $(v \in U \wedge v \neq m) \vee v=\bigcup T \vee v \in W$ by auto
moreover from $U V$ have $\langle U, W\rangle \in U$ by auto
ultimately have $v \in((\bigcup f U)-\{m\}) \cup\{\bigcup T\} \cup(\bigcup s U)$ by auto
\}
then have $\bigcup \mathrm{Mm} \subseteq((\bigcup f U)-\{m\}) \cup\{\bigcup T\} \cup(\bigcup s U)$ by blast moreover
\{
fix v assume $v: v \in((\bigcup f U)-\{m\}) \cup\{\bigcup T\} \cup(\bigcup s U)$
\{
assume $v=\bigcup T$
then have $\mathrm{v} \in(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\} \cup W$ by auto
with $\langle\langle\mathrm{U}, \mathrm{W}\rangle \in \mathrm{U}\rangle$ have $\mathrm{v} \in \bigcup \mathrm{Mm}$ by auto
\}
moreover
\{
assume $\mathrm{v} \neq \bigcup \mathrm{Tv} \notin \bigcup \mathrm{sU}$
with v have $v \in((\bigcup f U)-\{m\})$ by auto
then have ($v \in \bigcup f U \wedge v \neq m$) by auto
then obtain W where ($v \in W \wedge W \in f U \wedge v \neq m$) by auto

```
                then have }\textrm{v}\in(\textrm{W}-{m})\cup{\T} W\infU by aut
                then obtain B where fst(B)=W B\inU v\in(W-{m})\cup{\T} by blast
                then have v\in\bigcupMm by auto
            }
            ultimately have v\in\ Mm by auto
        }
        then have ((\bigcupfU)-{m})\cup{\bigcupT}\cup(\bigcupsU)\subseteq\bigcupMm by auto
        ultimately have }\bigcup\textrm{Mm}=((\bigcup\textrm{fU})-{m})\cup{\bigcupT}\cup(UsU)\mathrm{ by auto
        then have }\bigcupM=((\bigcupfU)-{m})\cup{\bigcupT}\cup((\bigcupsU)\cup(\bigcupMT)) using unm by aut
        moreover from P tt have ( UsU)\cup(\bigcupMT)\inT using topSpaceAssum
            union_open[OF topSpaceAssum, of {\sU,\MT}] by auto
        with s have }\langle\cupfU,(\cupsU)\cup(\bigcupMT)\rangle\in{V\inT. m\inV}\timesT by auto
        then have ((UfU)-{m})\cup{\cupT}\cup((UsU)\cup(\cupMT))\in{(U-{m})\cup{\cupT}\cupW.
<U,W\rangle\in{V\inT. m\inV} }\timesT}\mathrm{ using r
            by auto
            ultimately have }\bigcupM\in{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by aut
            then have }\bigcupM\inT\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by aut
        }
        ultimately
        have }\cupM\inT\cup{(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by aut
    }
    then have }\forallM\in\operatorname{Pow}(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}). \cupM\inT\cup{(U-{m})\cup{\bigcupT}\cupW
\langleU,W\rangle\in{V\inT. m\inV}\timesT} by auto
    moreover
    {
    fix A B assume ass:A\inT \cup{(U-{m})\cup{UT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}B\inT
\cup{(U-{m})\cup{UT}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\times\textrm{T}
    {
        assume A:A\inT
        {
            assume B\inT
            with A have A\capB\inT using topSpaceAssum unfolding IsATopology_def
by auto
        }
        moreover
        {
            assume B }\not\in\textrm{T
            with ass(2) have }B\in{(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by
auto
            then obtain U W where U:U\inTm\inUW\inTB=(U-{m})\cup{\T}\cupW by auto
moreover
            from A mem_not_refl have \T&A by auto
            ultimately have A\capB=A\cap((U-{m})\cupW) by auto
            then have eq:A\capB=(A\cap(U-{m}))\cup(A\capW) by auto
            have UT-{m}\inT using assms unfolding IsClosed_def by auto
            with U(1) have 0:U\cap(\bigcupT-{m})\inT using topSpaceAssum unfolding
IsATopology_def
            by auto
            have U\cap(UT-{m})=U-{m} using U(1) by auto
```

```
            with O have U-{m}\inT by auto
            with A have (A\cap(U-{m}))\inT using topSpaceAssum unfolding IsATopology_def
                by auto
            moreover
            from A U(3) have A\capW\inT using topSpaceAssum unfolding IsATopology_def
                by auto
            ultimately have (A\cap(U-{m}))\cup(A\capW)\inT using
                union_open[OF topSpaceAssum, of {A\cap(U-{m}),A\capW}] by auto
            with eq have }A\capB\inT\mathrm{ by auto
        }
    ultimately have A\capB\inT by auto
    }
    moreover
    {
    assume A\not\inT
    with ass(1) have A:A\in{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by
auto
            {
            assume B:B\inT
            from A obtain U W where U:U\inTm\inUW\inTA=(U-{m})\cup{\T}\cupW by auto
moreover
            from B mem_not_refl have \T\not\inB by auto
            ultimately have A\capB=((U-{m})\cupW)\capB by auto
            then have eq:A\capB=((U-{m})\capB)\cup(W\capB) by auto
            have \T-{m}\inT using assms unfolding IsClosed_def by auto
            with U(1) have 0:U\cap(\bigcupT-{m})\inT using topSpaceAssum unfolding
IsATopology_def
                by auto
            have U\cap(UT-{m})=U-{m} using U(1) by auto
            with O have U-{m}\inT by auto
            with B have ( (U-{m})\capB)\inT using topSpaceAssum unfolding IsATopology_def
                by auto
            moreover
            from B U(3) have W\capB\inT using topSpaceAssum unfolding IsATopology_def
                by auto
            ultimately have ( (U-{m})\capB)\cup(W\capB)\inT using
                union_open[OF topSpaceAssum, of {((U-{m})\capB),(W\capB)}] by auto
            with eq have A\capB\inT by auto
    }
    moreover
    {
            assume B}\not\in\textrm{T
            with ass(2) have }B\in{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by
auto
            then obtain U W where U:U\inTm\inUW\inTB=(U-{m})\cup{\T}\cupW by auto
moreover
            from A obtain UA WA where UA:UA\inTm\inUAWA\inTA=(UA-{m})\cup{\T}\cupWA
by auto
            ultimately have A\capB=(((UA-{m})\cupWA)\cap((U-{m})\cupW))\cup{\T} by auto
```

then have eq: $A \cap B=((U A-\{m\}) \cap(U-\{m\})) \cup(W A \cap(U-\{m\})) \cup((U A-\{m\}) \cap W) \cup(W A \cap W) \cup\{\cup T\}$ by auto
have $\bigcup T-\{m\} \in T$ using assms unfolding IsClosed_def by auto
with $U(1) U A(1)$ have $0: U \cap(\cup T-\{m\}) \in T U A \cap(\cup T-\{m\}) \in T$ using topSpaceAssum
unfolding IsATopology_def
by auto
have $U \cap(\cup T-\{m\})=U-\{m\} U A \cap(\cup T-\{m\})=U A-\{m\}$ using $U(1) U A(1)$ by
auto
with 0 have $00: U-\{m\} \in T U A-\{m\} \in T$ by auto
then have $((U A-\{m\}) \cap(U-\{m\}))=U A \cap U-\{m\}$ by auto
moreover
have $U A \cap U \in T m \in U A \cap U$ using $U(1,2)$ UA $(1,2)$ topSpaceAssum unfolding IsATopology_def
by auto
moreover
from $00 \mathrm{U}(3) \mathrm{UA}(3)$ have $T T: W A \cap(\mathrm{U}-\{\mathrm{m}\}) \in T(\mathrm{UA}-\{m\}) \cap W \in T W A \cap W \in T$ us-
ing topSpaceAssum unfolding IsATopology_def by auto
from $\operatorname{TT}(2,3)$ have $((U A-\{m\}) \cap W) \cup(W A \cap W) \in T$ using union_open [OF
topSpaceAssum, of $\{(U A-\{m\}) \cap W, W A \cap W\}]$ by auto
with $\operatorname{TT}(1)$ have $(W A \cap(U-\{m\})) \cup(((U A-\{m\}) \cap W) \cup(W A \cap W)) \in T$ using union_open[OF
topSpaceAssum, of $\{W A \cap(U-\{m\}),((U A-\{m\}) \cap W) \cup(W A \cap W)\}]$ by auto
ultimately
have $A \cap B=(U A \cap U-\{m\}) \cup\{\bigcup T\} \cup((W A \cap(U-\{m\})) \cup(((U A-\{m\}) \cap W) \cup(W A \cap W)))$ $(W A \cap(U-\{m\})) \cup(((U A-\{m\}) \cap W) \cup(W A \cap W)) \in T \quad U A \cap U \in\{V \in T . m \in V\}$ using
eq by auto
then have $\exists W \in T$. $A \cap B=(U A \cap U-\{m\}) \cup\{\cup T\} \cup W U A \cap U \in\{V \in T . m \in V\}$ by
auto
then have $A \cap B \in\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by auto
\}
ultimately
have $A \cap B \in T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by auto
\}
ultimately have $A \cap B \in T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by auto \}
then have $\forall A \in T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\} . \forall B \in T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$.
$A \cap B \in T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by blast
ultimately show thesis unfolding IsATopology_def by auto
qed
The previous topology is defined over a set with one more point.

```
lemma(in topology0) union_doublepoint_top:
    assumes {m}{is closed in}T
    shows }\cup(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})=\bigcupT \cup{\T
proof
    {
```

```
        fix x assume }x\in\(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}
        then obtain R where x:x\inRR\inT\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\timesT
by blast
        {
            assume R\inT
            with }x\mathrm{ (1) have }x\in\T\mathrm{ by auto
        }
        moreover
        {
            assume R\not\inT
            with x(2) have R\in{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by auto
            then obtain U W where R=(U-{m})\cup{\cupT}\cupWW\inTU\inTm\inU by auto
            with }x\mathrm{ (1) have }x=\bigcupT\veex\in\bigcupT by aut
        }
        ultimately have }x\in\bigcupT\cup{\T} by aut
    }
    then show }\bigcup(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})\subseteq\bigcupT \cup{\T
by auto
    {
        fix x assume }x\in\T\cup{\T
        then have dis:x\in\bigcupT\veex=\T by auto
        {
            assume }x\in\bigcup
            then have }x\in\(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}) by aut
        }
        moreover
        {
            assume x }\not\succeq\
            with dis have }x=\T\mathrm{ by auto
            moreover from assms have \T-{m}\inTm\in\bigcupT unfolding IsClosed_def
by auto
        moreover have 0\inT using empty_open topSpaceAssum by auto
        ultimately have }x\in(\cupT-{m})\cup{\bigcupT}\cup0(\cupT-{m})\cup{\bigcupT}\cup0\in{(U-{m})\cup{\bigcupT}\cupW
\langleU,W\rangle\in{V\inT. m\inV} }\timesT
            using union_open[OF topSpaceAssum] by auto
        then have }x\in(\bigcupT-{m})\cup{\bigcupT}\cup0(\bigcupT-{m})\cup{\bigcupT}\cup0\inT \cup{(U-{m})\cup{\bigcupT}\cupW
\langleU,W\rangle\in{V\inT. m\inV}\timesT}
            by auto
        then have }x\in\bigcup(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}) by blas
        }
        ultimately have }x\in\bigcup(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}) by
auto
    }
    then show \T \cup{\T}\subseteq\bigcup(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})
by auto
qed
In this topology, the previous topological space is an open subspace.
theorem(in topology0) open_subspace_double_point:
```

```
    assumes {m}{is closed in}T
    shows (T\cup{(U-{m})\cup{\T}\cupW. }\langle\textrm{U},\textrm{W}\rangle\in{V\inT.m\inV}\timesT}){\mathrm{ restricted to}\T=T
and }\cupT\in(T\cup{(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}
proof-
    have N:\T\not\in\bigcupT using mem_not_refl by auto
    {
        fix x assume x\in(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\timesT}){restricted
to}\T
            then obtain U where U:U\in(T\cup{(U-{m})\cup{\T}\cupW. }\langle\textrm{U},\textrm{W}\rangle\in{V\inT.m\inV}\timesT})x=\T\cap
                unfolding RestrictedTo_def by blast
            {
                assume U\not\inT
            with U(1) have }U\in{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by aut
            then obtain V W where VW:U= (V-{m}) \cup{UT}\cupWVUTTm\inVW\inT by auto
            with N U(2) have x:x=(V-{m})\cupW by auto
            have \T-{m}\inT using assms unfolding IsClosed_def by auto
            then have V\cap(UT-{m})\inT using VW(2) topSpaceAssum unfolding IsATopology_def
                by auto moreover
            have }\textrm{V}-{\textrm{m}}=\textrm{V}\cap(\bigcupT-{m}) using VW (2,3) by auto ultimately
            have V-{m}\inT by auto
            with VW(4) have (V-{m})\cupW\inT using union_open[OF topSpaceAssum,
of {V-{m},W}]
                by auto
            with x have }x\inT\mathrm{ by auto
        }
        moreover
        {
            assume A:U\inT
            with U(2) have x=U by auto
            with A have }x\inT\mathrm{ by auto
        }
        ultimately have x\inT by auto
    }
    then have (T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}){restricted to}\T\subseteqT
by auto
    moreover
    {
        fix x assume x:x\inT
        then have }x\in(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}) by auto more
over
    from x have }\bigcupT\capx=x by auto ultimately
    have }\existsM\in(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}). UT\capM=x by blas
    then have }x\in(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}){restricted
to}\T unfolding RestrictedTo_def
        by auto
    }
    ultimately show (T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}){restricted
to}\T=T by auto
    have P:\bigcupT\inT using topSpaceAssum unfolding IsATopology_def by auto
```

then show $\bigcup T \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})$ by auto qed

The previous topology construction applied to a T_{2} non-discrite space topology, gives a counter-example to: Every locally- T_{2} space is T_{2}.

If there is a singleton which is not open, but closed; then the construction on that point is not T_{2}.

```
theorem(in topology0) loc_T2_imp_T2_counter_1:
    assumes {m}\not\inT {m}{is closed in}T
    shows }\neg((T\cup{(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV} \T}) {is T T } ),
proof
    assume ass:(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\timesT}){\mathrm{ is }\mp@subsup{T}{2}{}
    then have tot1: U(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\times\textrm{T}})=\bigcupT \cup{\bigcupT
using union_doublepoint_top
            assms(2) by auto
    have m\not=\T using mem_not_refl assms(2) unfolding IsClosed_def by auto
moreover
    from ass tot1 have }\forallx y. x\in\bigcupT\cup{\T} ^ y\in\bigcupT \cup{\bigcupT}^x\not=y \longrightarrow( (\exists\mathfrak{U}\in(T\cup{(U-{m})\cup{\bigcupT}\cupW
\langleU,W\rangle\in{V\inT. m\inV}\timesT}).
            \exists\mathfrak{V}\in(T\cup{(U-{m})\cup{UT}\cupW. }\langle\textrm{U},\textrm{W}\rangle\in{V\inT..m\inV}\timesT}). x\in\mathfrak{U}\wedgey\in\mathfrak{V}\wedge\mathfrak{L}\cap\mathfrak{V}=0
unfolding isT2_def by auto
    moreover
    from assms(2) have m\in\bigcupT \cup{\T} unfolding IsClosed_def by auto more-
over
    have }\cupT\in\bigcupT\cup{\T} by auto ultimatel
    have }\exists\mathfrak{U}\in(T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}). \exists\mathfrak{V}\in(T\cup{(U-{m})\cup{\bigcupT}\cupW
\langleU,W\rangle\in{V\inT. m\inV}\timesT}).m\in\mathfrak{U}\wedge\T\in\mathfrak{V}\\mathfrak{U}\cap\mathfrak{V}=0
            by auto
    then obtain }\mathfrak{U}\mathfrak{V}\mathrm{ where UV:{UG(TU{(U-{m}) U{UT}\W. }\langle\textrm{U},\textrm{W}\rangle\in{V\inT.m\inV}\timesT}
            VJ\in(T\cup{(U-{m})\cup{UT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})m\in\mathfrak{U}\cupT\in\mathfrak{VU}\cap\mathfrak{V}=0 using
tot1 by blast
    then have }\bigcupT\not\in\mathfrak{U}\mathrm{ by auto
    with UV(1) have P:UUT by auto
    {
        assume }\mathfrak{V}\in
            then have }\mathfrak{V}\subseteq\bigcupT by aut
            with UV(4) have \T\in\bigcupT using tot1 by auto
            then have False using mem_not_refl by auto
    }
    with UV(2) have }\mathfrak{V}\in{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT} by aut
    then obtain U W where V:\mathfrak{V}=(U-{m})\cup{\bigcupT}\cupW U\inTm\inUW\inT by auto
    from V(2,3) P have int:U\cap{U\inTm\inU\cap{U using UV(3) topSpaceAssum
        unfolding IsATopology_def by auto
    have (U\cap\mathfrak{U}-{m})\subseteq\mathfrak{U}(U\cap\mathfrak{U}-{m})\subseteq\mathfrak{V}\mathrm{ using V(1) by auto}
    then have (U\cap{U-{m})=0 using UV(5) by auto
    with int(2) have U\cap{U={m} by auto
    with int(1) assms(1) show False by auto
qed
```

This topology is locally- T_{2}.

```
theorem(in topology0) loc_T2_imp_T2_counter_2:
    assumes {m}\not\inT m\inUT T{is T T }
    shows (T\cup{(U-{m})\cup{UT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}) {is locally-T T }
proof-
    from assms(3) have T{is T T } using T2_is_T1 by auto
    with assms(2) have mc:{m}{is closed in}T using T1_iff_singleton_closed
by auto
    have N:UT&UT using mem_not_refl by auto
    have res:(T\cup{(U-{m})\cup{\ T}\cupW. \langleU,W\rangle\in{V\inT, m\inV}\timesT}){restricted to} UT=T
        and P:UT\inT and Q:UT\in(T\cup{(U-{m})\cup{UT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})
using open_subspace_double_point mc
            topSpaceAssum unfolding IsATopology_def by auto
    {
        fix A assume ass:A\in\T \cup{\T}
        {
            assume A}=\\cup
            with ass have }A\in\bigcupT by aut
            with Q res assms(3) have UT\in(TU{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})^
A\in\T ^ (( (TU{ (U-{m})U{\T}\cupW. {U,W\rangle\in{V\inT. m\inV} \T}){restricted to}UT){is
T2}) by auto
            then have }\exists\textrm{Z}\in(T\textrm{T}\cup{(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}). A\inZ^(((T\cup{(U-{m})\cup{\T}\cupW
\langleU,W\rangle\in{V\inT. m\inV} }\times\textrm{T}}\mathrm{ ) {restricted to}Z){is T T } )
            by blast
    }
    moreover
    {
        assume A:A=\T
        have \T\inTm\in\ T0\inT using assms(2) empty_open[OF topSpaceAssum]
unfolding IsClosed_def using P by auto
    then have (\cupT-{m})\cup{\T}\cup0\in{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\timesT
by auto
```

 then have opp: \((\cup T-\{m\}) \cup\{\bigcup T\} \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W\). \(\langle U, W\rangle \in\{V \in T\).
 $\mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\}$) by auto
\{
fix A1 A2 assume points:A1 $\in(\bigcup T-\{m\}) \cup\{\bigcup T\} A 2 \in(\bigcup T-\{m\}) \cup\{\cup T\} A 1 \neq A 2$
from points $(1,2)$ have notm: $: A 1 \neq \mathrm{mA} 2 \neq \mathrm{m}$ using assms (2) unfolding
IsClosed_def
using mem_not_refl by auto
\{
assume or: $\mathrm{A} 1 \in \bigcup$ TA2 $\in \bigcup$ T
with points(3) assms(3) obtain $U V$ where $U V: U \in T V \in T A 1 \in U A 2 \in V$
$\mathrm{U} V=0$ unfolding isT2_def by blast
from $U V(1,2)$ have $U \cap((\cup T-\{m\}) \cup\{\cup T\}) \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$.
$\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted $\operatorname{to}\}\left(\left(\cup_{\mathrm{T}}-\{\mathrm{m}\}\right) \cup\{\cup \mathrm{T}\}\right)$
$\mathrm{V} \cap((\cup \mathrm{T}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\}) \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\} \cup \mathrm{W} .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted
$\operatorname{tof}((\cup \mathrm{T}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\})$
unfolding RestrictedTo_def by auto moreover

using UV(1,2) mem_not_refl[of UT]
by auto
ultimately have opUV:U $\cap(\cup T-\{m\}) \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W . \quad\langle U, W\rangle \in\{V \in T$.
$m \in V\} \times T\})\{$ restricted to\} ($(\cup T-\{m\}) \cup\{\cup T\})$
$V \cap(\bigcup T-\{m\}) \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})$ rrestricted
to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\})$ by auto
moreover have $U \cap(\cup T-\{m\}) \cap(V \cap(\cup T-\{m\}))=0$ using $U V(5)$ by auto
moreover
from $U V(3)$ or(1) notm(1) have $A 1 \in U \cap(\bigcup T-\{m\})$ by auto more-
over
from $U V(4)$ or(2) notm(2) have $A 2 \in V \cap(\cup T-\{m\})$ by auto ulti-
mately
have $\exists \mathrm{V} . \mathrm{V} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\} \cup \mathrm{W} .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted $\operatorname{to}\}((\cup T-\{m\}) \cup\{\cup T\}) \wedge A 1 \in U \cap(\bigcup T-\{m\}) \wedge A 2 \in V \wedge(U \cap(\cup T-\{m\})) \cap V=0$ using exI[where $\mathrm{x}=\mathrm{V} \cap(\bigcup \mathrm{T}-\{\mathrm{m}\})$ and $\mathrm{P}=\lambda \mathrm{W} . \mathrm{W} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup W .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\}) \wedge A 1 \in(U \cap(\cup T-\{m\})) \wedge A 2 \in W \wedge(U \cap(\cup T-\{m\})) \cap W=0]$
using opUV(2) by auto
then have $\exists \mathrm{U} . \mathrm{U} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\} \cup W .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted $\operatorname{to}\}((\cup T-\{m\}) \cup\{\cup T\}) \wedge(\exists V . V \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\}) \wedge$
$A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)$ using exI[where $x=U \cap(\bigcup T-\{m\})$ and $P=\lambda W$.
$W \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} $((\cup T-\{m\}) \cup\{\cup T\}) \wedge(\exists V$. $\mathrm{V} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup W .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to\} $((\cup \mathrm{T}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\}) \wedge$ $\mathrm{A} 1 \in \mathrm{~W} \wedge \mathrm{~A} 2 \in \mathrm{~V} \wedge \mathrm{~W} \cap \mathrm{~V}=0)]$
using opUV(1) by auto
then have $\exists \mathrm{U} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup \mathrm{T}\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $\operatorname{to\} }((\cup T-\{m\}) \cup\{\bigcup T\})$. ($\exists \mathrm{V} . \mathrm{V} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup W .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\}) \wedge A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)$ by blast
then have $\exists \mathrm{U} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $t o\}((\cup T-\{m\}) \cup\{\cup T\}) .(\exists V \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $\operatorname{to\} }((\bigcup T-\{m\}) \cup\{\bigcup T\})$. $A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)$ by blast
\}
moreover
\{
assume $\mathrm{A} \notin \bigcup \mathrm{T}$
then have ig:A1= $\bigcup T$ using points(1) by auto \{
assume A2 $\ddagger \bigcup T$
then have $A 2=\bigcup T$ using points (2) by auto
with points(3) ig have False by auto
\}
then have igA2:A2 $\in \bigcup T$ by auto moreover
have $m \in \bigcup T$ using assms(2) unfolding IsClosed_def by auto moreover note notm(2) assms(3) ultimately obtain U V where
UV : $\mathrm{U} \in \mathrm{TV} \in \mathrm{T}$
$\mathrm{m} \in \mathrm{UA} 2 \in \mathrm{VU} \cap \mathrm{V}=0$ unfolding isT2_def by blast
from $U V(1,3)$ have $U \in\{W \in T . m \in W\}$ by auto moreover
have $0 \in T$ using empty_open topSpaceAssum by auto ultimately
have $(U-\{m\}) \cup\{\bigcup T\} \in\{(U-\{m\}) \cup\{\bigcup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by
auto
then have Uop: $(U-\{m\}) \cup\{\cup T\} \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T$.
$m \in V\} \times T\}$) by auto
from $U V(2)$ have $V o p: V \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})$
by auto
from $U V(1-3,5)$ have sub:V؟(UT-\{m\}) $\cup\{\bigcup T\}((U-\{m\}) \cup\{\bigcup T\}) \subseteq(\bigcup T-\{m\}) \cup\{\bigcup T\}$
by auto
from $\operatorname{sub}(1)$ have $V=((\bigcup T-\{m\}) \cup\{\bigcup T\}) \cap V$ by auto
then have $V V: V \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted
to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\})$ unfolding RestrictedTo_def
using Vop by blast moreover
from $\operatorname{sub}(2)$ have $((U-\{m\}) \cup\{\bigcup T\})=((\bigcup T-\{m\}) \cup\{\bigcup T\}) \cap((U-\{m\}) \cup\{\bigcup T\})$
by auto
then have $U U:((U-\{m\}) \cup\{\cup T\}) \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T$.
$m \in V\} \times T\})\{$ restricted to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\})$ unfolding RestrictedTo_def
using Uop by blast moreover
from $U V(2)$ have $((U-\{m\}) \cup\{\bigcup T\}) \cap V=(U-\{m\}) \cap V$ using mem_not_refl
by auto
then have $((U-\{m\}) \cup\{\bigcup T\}) \cap V=0$ using $U V(5)$ by auto
with $U V(4)$ VV ig igA2 have $\exists V \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T$.
$\mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to\} $((\bigcup \mathrm{T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\})$.
$A 1 \in(U-\{m\}) \cup\{\bigcup T\} \wedge A 2 \in V \wedge((U-\{m\}) \cup\{\cup T\}) \cap V=0$ by auto
with $U U$ ig have $\exists U . U \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $\operatorname{to}\}((\bigcup T-\{m\}) \cup\{\bigcup T\}) \wedge(\exists V \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} $((\cup T-\{m\}) \cup\{\cup T\})$.
$A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)$ using exI[where $x=((U-\{m\}) \cup\{\bigcup T\})$ and
$P=\lambda U . U \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to $\}((\cup T-\{m\}) \cup\{\bigcup T\}) \wedge$
$(\exists \mathrm{V} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup W .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to$\}((\cup \mathrm{T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\})$.
$\mathrm{A} 1 \in \mathrm{U} \wedge \mathrm{A} 2 \in \mathrm{~V} \wedge \mathrm{U} \cap \mathrm{V}=0)]$ by auto
then have $\exists U \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $\operatorname{to}\}((\bigcup T-\{m\}) \cup\{\cup T\}) .(\exists V \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} (($\cup T-\{m\}) \cup\{\bigcup T\})$. $\mathrm{A} 1 \in \mathrm{U} \wedge \mathrm{A} 2 \in \mathrm{~V} \wedge \mathrm{U} \cap \mathrm{V}=0$) by blast
\}
moreover
\{
assume A2 $\ddagger \bigcup T$
then have ig:A2= $\bigcup T$ using points(2) by auto
\{
assume $A 1 \notin \bigcup T$
then have $A 1=\bigcup T$ using points (1) by auto
with points(3) ig have False by auto
\}
then have igA2:A1 $\in \bigcup T$ by auto moreover
have $\mathrm{m} \in \bigcup \mathrm{T}$ using assms(2) unfolding IsClosed_def by auto
moreover note notm(1) assms (3) ultimately obtain U V where
$\mathrm{UV}: \mathrm{U} \in \mathrm{TV} \in \mathrm{T}$
$\mathrm{m} \in \mathrm{UA} 1 \in \mathrm{VU} \cap \mathrm{V}=0$ unfolding isT2_def by blast
from $U V(1,3)$ have $U \in\{W \in T . m \in W\}$ by auto moreover
have $0 \in T$ using empty_open topSpaceAssum by auto ultimately have $(U-\{m\}) \cup\{\bigcup T\} \in\{(U-\{m\}) \cup\{\bigcup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\}$ by
auto
then have Uop: $(U-\{m\}) \cup\{\bigcup T\} \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T$.
$m \in V\} \times T\}$) by auto
from $U V(2)$ have $\operatorname{Vop}: V \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})$
by auto
from $U V(1-3,5)$ have sub: $V \subseteq(\cup T-\{m\}) \cup\{\bigcup T\}((U-\{m\}) \cup\{\bigcup T\}) \subseteq(\bigcup T-\{m\}) \cup\{\bigcup T\}$
by auto
from sub(1) have $V=((\bigcup T-\{m\}) \cup\{\bigcup T\}) \cap V$ by auto
then have $V V: V \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted
$\operatorname{to\} }((\bigcup \mathrm{T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\})$ unfolding RestrictedTo_def using Vop by blast moreover
from $\operatorname{sub}(2)$ have $((U-\{m\}) \cup\{\cup T\})=((\cup T-\{m\}) \cup\{\cup T\}) \cap((U-\{m\}) \cup\{\cup T\})$
by auto
then have $U U:((U-\{m\}) \cup\{\cup T\}) \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T$.
$\mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to$\}((\cup \mathrm{T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\})$ unfolding RestrictedTo_def using Uop by blast moreover
from $U V(2)$ have $V \cap((U-\{m\}) \cup\{\bigcup T\})=V \cap(U-\{m\})$ using mem_not_refl
by auto
then have $\mathrm{V} \cap((\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup T\})=0$ using $U V(5)$ by auto
with $U U U V(4)$ ig igA2 have $\exists U \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$. $\langle U, W\rangle \in\{V \in T$.
$\mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to\} $((\bigcup \mathrm{T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\})$.
$\mathrm{A} 1 \in \mathrm{~V} \wedge \mathrm{~A} 2 \in \mathrm{U} \wedge \mathrm{V} \cap \mathrm{U}=0$ by auto
with VV igA2 have $\exists \mathrm{U} . \mathrm{U} \in(T \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\cup T\} \cup W$. $\langle\mathrm{U}, \mathrm{W}\rangle \in\{V \in T$.
$m \in V\} \times T\})\{$ restricted to$\}((\cup T-\{m\}) \cup\{\cup T\}) \wedge(\exists V \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$.
$\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} $((\bigcup T-\{m\}) \cup\{\cup T\})$.
$A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)$ using exI[where $x=V$ and $P=\lambda U . U \in(T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W$.
$\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $t o\}((\cup T-\{m\}) \cup\{\cup T\}) \wedge(\exists V \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W$.
$\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} $((\bigcup T-\{m\}) \cup\{\bigcup T\})$. $A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)]$ by auto
then have $\exists \mathrm{U} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup \mathrm{W} .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})$ \{restricted $\operatorname{to}\}((\cup T-\{m\}) \cup\{\bigcup T\}) .(\exists \mathrm{V} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup \mathrm{W} .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted $\operatorname{to}\}((\cup T-\{m\}) \cup\{\bigcup T\})$. $\mathrm{A} 1 \in \mathrm{U} \wedge \mathrm{A} 2 \in \mathrm{~V} \wedge \mathrm{U} \cap \mathrm{V}=0$) by blast
\}
ultimately have $\exists \mathrm{U} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup \mathrm{W} .\langle\mathrm{U}, \mathrm{W}\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted $\operatorname{to\} }((\cup T-\{m\}) \cup\{\bigcup T\}) .(\exists V \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $\operatorname{to\} }((\cup T-\{m\}) \cup\{\cup T\})$.
$\mathrm{A} 1 \in \mathrm{U} \wedge \mathrm{A} 2 \in \mathrm{~V} \wedge \mathrm{U} \cap \mathrm{V}=0$) by blast
\}
then have $\forall \mathrm{A} 1 \in(\bigcup \mathrm{~T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} . \forall \mathrm{A} 2 \in(\bigcup \mathrm{~T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} . \mathrm{A} 1 \neq \mathrm{A} 2 \longrightarrow$
$(\exists U \in(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted to\} $((\cup T-\{m\}) \cup\{\bigcup T\})$.
$(\exists \mathrm{V} \in(\mathrm{T} \cup\{(\mathrm{U}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\} \cup W .\langle U, W\rangle \in\{\mathrm{V} \in \mathrm{T} . \mathrm{m} \in \mathrm{V}\} \times \mathrm{T}\})\{$ restricted to$\}((\cup \mathrm{T}-\{\mathrm{m}\}) \cup\{\bigcup \mathrm{T}\})$.
$A 1 \in U \wedge A 2 \in V \wedge U \cap V=0)$) by auto moreover
have $\cup((T \cup\{(U-\{m\}) \cup\{\cup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted $\operatorname{to}\}((\bigcup T-\{m\}) \cup\{\bigcup T\}))=(\bigcup(T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W .\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})) \cap((\cup T-\{m\}) \cup\{\cup T\})$
unfolding RestrictedTo_def by auto
then have $\cup((T \cup\{(U-\{m\}) \cup\{\bigcup T\} \cup W$. $\langle U, W\rangle \in\{V \in T . m \in V\} \times T\})\{$ restricted

```
to} ((\bigcupT-{m})\cup{\bigcupT}))=(\T\cup{\T})\cap((UT-{m})\cup{\bigcupT}) using
            union_doublepoint_top mc by auto
                            then have }\cup((T\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}){restricted
to} ((UT-{m})\cup{\T}))=(\bigcupT-{m})\cup{\bigcupT} by auto
            ultimately have }\forall\textrm{A}1\in\bigcup((T)\cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}){restricted
to} ((UT-{m})\cup{\bigcupT})). \forallA2\in\bigcup ((T \cup{ (U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV} \T}){restricted
to}((UT-{m})\cup{\cupT})). A1\not=A2\longrightarrow(\existsU\in(T \cup{(U-{m})\cup{\bigcupT}\cupW. \langleU,W\rangle\in{V\inT.
m\inV}\timesT}){restricted to}((UT-{m})\cup{\cupT}). (\existsV\in(T \cup{(U-{m})\cup{\cupT}\cupW.
\langleU,W\rangle\in{V\inT. m\inV}\timesT}){restricted to}((UT-{m})\cup{\T}).
                A1\inU^A2\inV\wedgeU\capV=0)) by auto
            then have ((T \cup{(U-{m})\cup{\T}\cupW. }\langle\textrm{U},\textrm{W}\rangle\in{V\inT. m\inV}\timesT}){restricted
to}((UT-{m})\cup{UT})){is T T } unfolding isT2_def
                by force
            with opp A have }\exists\textrm{Z}\in(T\cup{(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT})
A\inZ^(((T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV} }\timesT}){restricted to}Z){i
T
                by blast
    }
    ultimately
    have }\exists\textrm{Z}\in(T\cup{\(U-{m})\cup{\cupT}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}). A\inZ^(((T\cup{(U-{m})\cup{\bigcupT}\cupW.
\langleU,W\rangle\in{V\inT. m\inV} }\times\textrm{T}}){\mathrm{ restricted to}Z){is T}\mp@subsup{T}{2}{}}\mathrm{ )
                by blast
    }
    then have }\forallA\in\bigcup(T\cup{(U-{m})\cup{\T}\cupW. \langleU,W\rangle\in{V\inT. m\inV}\timesT}). \existsZ\inT 
{U - {m} \cup{UT} \cup W . \langleU,W\rangle\in{V \inT . m \in V} > T}.
            A \in Z ^ ((T \cup {U - {m} \cup{\T} U W . \langleU,W\rangle \in {V \in T . m \in V} >
T}) {restricted to} Z) {is T2}
            using union_doublepoint_top mc by auto
    with topologyO.loc_T2 show (T \cup{U - {m} \cup{UT} \cup W . \langleU,W\rangle\in {V \in
T. m \in V} }\times T}){is locally-T T }
    unfolding topology0_def using doble_point_top mc by auto
qed
```

There can be considered many more local properties, which; as happens with locally- T_{2}; can distinguish between spaces other properties cannot.
end

69 Topological groups 1

theory TopologicalGroup_ZF_1 imports TopologicalGroup_ZF Topology_ZF_properties_2 begin

This theory deals with some topological properties of topological groups.

69.1 Separation properties of topological groups

The topological groups have very specific properties. For instance, G is T_{0} iff it is T_{3}.

```
theorem(in topgroup) cl_point:
    assumes x\inG
    shows cl({x}) =(\bigcapH\in\mathcal{N}
proof-
    {
        have c:cl({x}) = (\bigcapH\in\mathcal{N}
        {
            fix H
            assume }\textrm{H}\in\mp@subsup{\mathcal{N}}{0}{
            then have {x}+H=x+ H using interval_add(3) assms
                by auto
            with \langleH\in\mathcal{N}}\mp@subsup{0}{0}{}\rangle\mathrm{ have {x}+H}\{{x+H. H\in\mathcal{N
        }
        then have {{x}+H. H\in\mathcal{N}
        moreover
        {
            fix H
            assume H\in\mathcal{N}
            then have {x}+H=x+ H using interval_add(3) assms
                    by auto
            with \langleH\in\mathcal{N}
        }
        then have {x+H. H\in\mathcal{N}0}\subseteq{{x}+H. H\in\mathcal{N}
        ultimately have {{x}+H. H\in\mathcal{N}}
        then have ( }\bigcap\textrm{H}\in\mathcal{N}\mp@subsup{\mathcal{N}}{0}{}.{x}+H)=(\bigcapH\in\mp@subsup{\mathcal{N}}{0}{}.x+H)\mathrm{ by auto
        with c show cl ({x})=(\bigcapH\in\mathcal{N}
    }
qed
```

We prove the equivalence between T_{0} and T_{1} first.

```
theorem (in topgroup) neu_closed_imp_T1:
    assumes \{0\}\{is closed in\}T
    shows \(\mathrm{T}\left\{\right.\) is \(\left.\mathrm{T}_{1}\right\}\)
proof-
    \{
        fix \(x\) z assume \(x G: x \in G\) and \(z G: z \in G\) and dis: \(x \neq z\)
        then have clx:cl \((\{x\})=\left(\bigcap H \in \mathcal{N}_{0} . x+H\right)\) using cl_point by auto
        \{
            fix y
            assume \(\mathrm{y} \in \mathrm{cl}(\{\mathrm{x}\})\)
            with clx have \(\mathrm{y} \in\left(\bigcap \mathrm{H} \in \mathcal{N}_{0} . \mathrm{x}+\mathrm{H}\right)\) by auto
            then have \(t: \forall H \in \mathcal{N}_{0} . y \in x+H\) by auto
            from \(\langle\mathrm{y} \in \mathrm{cl}(\{\mathrm{x}\})\rangle \mathrm{xG}\) have \(\mathrm{yG}: \mathrm{y} \in \mathrm{G}\) using Top_3_L11(1) G_def by auto
            \{
                    fix \(H\)
                    assume HNeig: \(\mathrm{H} \in \mathcal{N}_{0}\)
                    with \(t\) have \(y \in x+H\) by auto
                    then obtain \(n\) where \(y=x+n\) and \(n \in H\) unfolding ltrans_def grop_def
LeftTranslation_def by auto
```

with HNeig have nG:n \in G unfolding zerohoods_def by auto
from $\langle y=x+n\rangle$ and $\langle n \in H\rangle$ have (-x) $+\mathrm{y} \in \mathrm{H}$ using group0.group0_2_L18(2) group0_valid_in_tgroup xG nG yG unfolding grinv_def grop_def by auto
\}
then have el: $(-x)+y \in\left(\bigcap \mathcal{N}_{0}\right)$ using zneigh_not_empty by auto
have $\mathrm{cl}(\{0\})=\left(\bigcap \mathrm{H} \in \mathcal{N}_{0} \cdot 0+\mathrm{H}\right)$ using cl_point zero_in_tgroup by auto moreover
\{
fix H assume $H \in \mathcal{N}_{0}$
then have $H \subseteq G$ unfolding zerohoods_def by auto
then have $0+\mathrm{H}=\mathrm{H}$ using image_id_same group0.trans_neutral(2)
group0_valid_in_tgroup unfolding gzero_def ltrans_def
by auto
with $\left\langle\mathrm{H} \in \mathcal{N}_{0}\right\rangle$ have $0+\mathrm{H} \in \mathcal{N}_{0} \mathrm{H} \in\left\{0+\mathrm{H} . \mathrm{H} \in \mathcal{N}_{0}\right\}$ by auto
\}
then have $\left\{0+\mathrm{H} . \mathrm{H} \in \mathcal{N}_{0}\right\}=\mathcal{N}_{0}$ by blast
ultimately have $\operatorname{cl}(\{0\})=\left(\bigcap \mathcal{N}_{0}\right)$ by auto
with el have $(-x)+y \in c l(\{0\})$ by auto
then have $(-x)+y \in\{0\}$ using assms Top_3_L8 G_def zero_in_tgroup by auto
then have $(-x)+y=0$ by auto
then have $y=-(-x)$ using group0.group0_2_L9(2) group0_valid_in_tgroup neg_in_tgroup xG yG unfolding grop_def grinv_def by auto
then have $y=x$ using group0.group_inv_of_inv group0_valid_in_tgroup xG unfolding grinv_def by auto
\}
then have $c l(\{x\}) \subseteq\{x\}$ by auto
then have $c l(\{x\})=\{x\}$ using $x G$ cl_contains_set G_{-}def by blast
then have $\{x\}\{$ is closed in\}T using Top_3_L8 xG G_def by auto
then have ($\bigcup T)-\{x\} \in T$ using IsClosed_def by auto moreover
from dis $z G$ G_def have $z \in((\bigcup T)-\{x\}) \wedge x \notin((\bigcup T)-\{x\})$ by auto
ultimately have $\exists \mathrm{V} \in \mathrm{T} . \mathrm{z} \in \mathrm{V} \wedge \mathrm{x} \notin \mathrm{V}$ by (safe,auto)
\}
then show $T\left\{\right.$ is $\left.\mathrm{T}_{1}\right\}$ using isT1_def by auto qed
theorem (in topgroup) T0_imp_neu_closed:
assumes $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{0}\right\}$
shows \{0\}\{is closed in\}T
proof-
\{
fix x assume $x \in c l(\{0\})$ and $x \neq 0$
have $c l(\{0\})=\left(\bigcap H \in \mathcal{N}_{0} .0+H\right)$ using cl_point zero_in_tgroup by auto moreover \{
fix H assume $H \in \mathcal{N}_{0}$
then have $H \subseteq G$ unfolding zerohoods_def by auto
then have $0+\mathrm{H}=\mathrm{H}$ using image_id_same group0.trans_neutral(2) group0_valid_in_tgroup
unfolding gzero_def ltrans_def
by auto
with $\left\langle H \in \mathcal{N}_{0}\right\rangle$ have $0+H \in \mathcal{N}_{0} H \in\left\{0+H . H \in \mathcal{N}_{0}\right\}$ by auto
\}
then have $\left\{0+\mathrm{H} . \mathrm{H} \in \mathcal{N}_{0}\right\}=\mathcal{N}_{0}$ by blast
ultimately have $\mathrm{cl}(\{0\})=\left(\bigcap \mathcal{N}_{0}\right)$ by auto
from $\langle x \neq 0\rangle$ and $\langle x \in c l(\{0\})\rangle$ obtain U where $U \in T$ and $(x \notin U \wedge 0 \in U) \vee(0 \notin U \wedge x \in U)$
using assms Top_3_L11(1)
zero_in_tgroup unfolding isT0_def G_def by blast moreover
\{
assume $0 \in U$
with $\langle\mathrm{U} \in \mathrm{T}\rangle$ have $\mathrm{U} \in \mathcal{N}_{0}$ using zerohoods_def G_def Top_2_L3 by auto with $\langle x \in c l(\{0\})\rangle$ and $\left\langle c l(\{0\})=\left(\bigcap \mathcal{N}_{0}\right)\right\rangle$ have $x \in U$ by auto
\}
ultimately have $0 \notin U$ and $x \in U$ by auto
with $\langle\mathrm{U} \in \mathrm{T}\rangle\langle\mathrm{x} \in \mathrm{cl}(\{0\})\rangle$ have False using cl_inter_neigh zero_in_tgroup
unfolding G_def by blast
\}
then have $c l(\{0\}) \subseteq\{0\}$ by auto
then have $c l(\{0\})=\{0\}$ using zero_in_tgroup cl_contains_set G_def by
blast
then show thesis using Top_3_L8 zero_in_tgroup unfolding G_def by auto qed

69.2 Existence of nice neighbourhoods.

theorem(in topgroup) exists_sym_zerohood:
assumes $\mathrm{U} \in \mathcal{N}_{0}$
shows $\exists \mathrm{V} \in \mathcal{N}_{0} . \quad(\mathrm{V} \subseteq \mathrm{U} \wedge(-\mathrm{V})=\mathrm{V})$
proof
let $\mathrm{V}=\mathrm{U} \cap(-\mathrm{U})$
have $U \subseteq G$ using assms unfolding zerohoods_def by auto
then have $V \subseteq G$ by auto
have invg: $\operatorname{Group} \operatorname{Inv}(G, f) \in G \rightarrow G$ using group0_2_T2 Ggroup by auto
have invb:GroupInv(G, f) \in bij(G,G) using group0.group_inv_bij(2) group0_valid_in_tgroup
by auto
have (-V)=GroupInv(G,f)-V unfolding setninv_def using group0.inv_image_vimage
group0_valid_in_tgroup by auto
also have $\ldots=(\operatorname{GroupInv}(G, f)-U) \cap(\operatorname{GroupInv}(G, f)-(-U))$ using invim_inter_inter_invim
invg by auto
also have $\ldots=(-U) \cap(\operatorname{GroupInv}(G, f)-(G r o u p I n v(G, f) U))$ unfolding setninv_def
using group0.inv_image_vimage group0_valid_in_tgroup by auto
also with $\langle U \subseteq G\rangle$ have ... $=(-U) \cap U$ using inj_vimage_image invb unfolding
bij_def
by auto
finally have (-V) $=\mathrm{V}$ by auto
then show $V \subseteq U \wedge(-V)=V$ by auto
from assms have $(-U) \in \mathcal{N}_{0}$ using neg_neigh_neigh by auto
with assms have $0 \in \operatorname{int}(U) \cap i n t(-U)$ unfolding zerohoods_def by auto
moreover
have int $(U) \cap \operatorname{int}(-U) \in T$ using Top_2_L3 IsATopology_def topSpaceAssum Top_2_L4 by auto
then have int:int (int $(U) \cap \operatorname{int}(-U))=\operatorname{int}(U) \cap \operatorname{int}(-U)$ using Top_2_L3 by auto
have int (U) $\cap \operatorname{int}(-U) \subseteq V$ using Top_2_L1 by auto
from interior_mono[OF this] int have int(U) $\cap \operatorname{int}(-U) \subseteq i n t(V)$ by auto
ultimately have $0 \in i n t(V)$ by auto
with $\langle V \subseteq G\rangle$ show $V \in \mathcal{N}_{0}$ using zerohoods_def by auto
qed
theorem(in topgroup) exists_procls_zerohood:
assumes $\mathrm{U} \in \mathcal{N}_{0}$
shows $\exists \mathrm{V} \in \mathcal{N}_{0} . \quad(\mathrm{V} \subseteq \mathrm{U} \wedge(\mathrm{V}+\mathrm{V}) \subseteq \mathrm{U} \wedge(-\mathrm{V})=\mathrm{V})$
proof-
have int $(U) \in T$ using Top_2_L2 by auto
then have f-(int $(U)) \in \tau$ using fcon IsContinuous_def by auto
moreover
have fne:f $\langle\mathbf{0}, \mathbf{0}\rangle=\mathbf{0}$ using group0.group0_2_L2 group0_valid_in_tgroup
by auto
have $0 \in i n t(U)$ using assms unfolding zerohoods_def by auto
then have $f-\{0\} \subseteq f-(i n t(U))$ using func1_1_L8 vimage_def by auto
then have $\operatorname{Group} \operatorname{Inv}(G, f) \subseteq f-(i n t(U))$ using group0.group0_2_T3 group0_valid_in_tgroup by auto
then have $\langle 0,0\rangle \in f-(i n t(U))$ using fne zero_in_tgroup unfolding GroupInv_def
by auto
ultimately obtain W V where wop: $W \in T$ and vop: $V \in T$ and cartsub: $W \times V \subseteq f-(i n t(U))$
and zerhood: $\langle\mathbf{0}, \mathbf{0}\rangle \in W \times V$ using prod_top_point_neighb topSpaceAssum
unfolding prodtop_def by force
then have $0 \in \mathrm{~W}$ and $0 \in \mathrm{~V}$ by auto
then have $0 \in W \cap V$ by auto
have sub:WคV $\subseteq G$ using wop vop G_def by auto
have assoc: $f \in G \times G \rightarrow G$ using group0.group_oper_assocA group0_valid_in_tgroup
by auto
\{
fix $t s$ assume $t \in W \cap V$ and $s \in W \cap V$
then have $t \in W$ and $s \in V$ by auto
then have $\langle t, s\rangle \in W \times V$ by auto
then have $\langle t, s\rangle \in f-(i n t(U))$ using cartsub by auto
then have $f\langle t, s\rangle \in \operatorname{int}(U)$ using func1_1_L15 assoc by auto
\}
then have $\{f\langle t, s\rangle .\langle t, s\rangle \in(W \cap V) \times(W \cap V)\} \subseteq i n t(U)$ by auto
then have $(W \cap V)+(W \cap V) \subseteq i n t(U)$ unfolding setadd_def using lift_subsets_explained (4)
assoc sub
by auto
then have $(W \cap V)+(W \cap V) \subseteq U$ using Top_2_L1 by auto
from topSpaceAssum have $\mathrm{W} \cap \mathrm{V} \in \mathrm{T}$ using vop wop unfolding IsATopology_def
by auto
then have int $(W \cap V)=W \cap V$ using Top_2_L3 by auto
with sub $\langle 0 \in W \cap V\rangle$ have $W \cap V \in \mathcal{N}_{0}$ unfolding zerohoods_def by auto
then obtain Q where $Q \in \mathcal{N}_{0}$ and $Q \subseteq W \cap V$ and ($-Q=Q$ using exists_sym_zerohood by blast
then have $Q \times Q \subseteq(W \cap V) \times(W \cap V)$ by auto
moreover from 〈 $Q \subseteq W \cap V$ ไhave $W \cap V \subseteq G$ and $Q \subseteq G$ using vop wop unfolding
G_def by auto
ultimately have $\mathrm{Q}+\mathrm{Q} \subseteq(\mathrm{W} \cap \mathrm{V})+(\mathrm{W} \cap \mathrm{V})$ using interval_add(2) func1_1_L8 by
auto
with $\langle(W \cap V)+(W \cap V) \subseteq U$ have $Q+Q \subseteq U$ by auto
from $\left\langle Q \in \mathcal{N}_{0}\right\rangle$ have $0 \in Q$ unfolding zerohoods_def using Top_2_L1 by auto
with $\langle Q+Q \subseteq U\rangle\langle Q \subseteq G\rangle$ have $0+Q \subseteq U$ using interval_add(3) by auto
with $\langle Q \subseteq G$ have $Q \subseteq U$ unfolding ltrans_def using group0.trans_neutral(2)
group0_valid_in_tgroup
unfolding gzero_def using image_id_same by auto
with $\left\langle Q \in \mathcal{N}_{0}\right\rangle\langle Q+Q \subseteq U\rangle\langle(-Q)=Q\rangle$ show thesis by auto
qed
lemma (in topgroup) exist_basehoods_closed:
assumes $\mathrm{U} \in \mathcal{N}_{0}$
shows $\exists V \in \mathcal{N}_{0} . c l(V) \subseteq U$
proof-
from assms obtain V where $\mathrm{V} \in \mathcal{N}_{0} \mathrm{~V} \subseteq \mathrm{U}(\mathrm{V}+\mathrm{V}) \subseteq \mathrm{U}(-\mathrm{V})=\mathrm{V}$ using exists_procls_zerohood by blast
have inv_fun: GroupInv (G,f) $\in G \rightarrow G$ using group0_2_T2 Ggroup by auto
have f_fun: $f \in G \times G \rightarrow G$ using group0.group_oper_assocA group0_valid_in_tgroup by auto
\{
fix x assume $x \in c l(V)$
with $\left\langle\mathrm{V} \in \mathcal{N}_{0}\right\rangle$ have $\mathrm{x} \in \bigcup \mathrm{T} \mathrm{V} \subseteq \bigcup \mathrm{T}$ using Top_3_L11(1) unfolding zerohoods_def G_def by blast+
with $\left\langle V \in \mathcal{N}_{0}\right\rangle$ have $x \in \operatorname{int}(x+V)$ using elem_in_int_trans $G_{-} d e f$ by auto
with $\langle V \subseteq \bigcup T\rangle\langle x \in c l(V)\rangle$ have int $(x+V) \cap V \neq 0$ using cl_inter_neigh Top_2_L2
by blast
then have $(x+V) \cap V \neq 0$ using Top_2_L1 by blast
then obtain q where $q \in(x+V)$ and $q \in V$ by blast
with $\langle V \subseteq \bigcup T\rangle\langle x \in \bigcup T\rangle$ obtain v where $q=x+v \quad v \in V$ unfolding ltrans_def grop_def using group0.ltrans_image
group0_valid_in_tgroup unfolding G_def by auto
from $\langle V \subseteq \bigcup T\rangle\langle v \in V\rangle\langle q \in V\rangle$ have $v \in \bigcup T \mathrm{q} \in \bigcup \mathrm{T}$ by auto
with $\langle\mathrm{q}=\mathrm{x}+\mathrm{v}\rangle\langle\mathrm{x} \in \bigcup \mathrm{T}\rangle$ have $\mathrm{q}-\mathrm{v}=\mathrm{x}$ using group0.group0_2_L18(1) group0_valid_in_tgroup unfolding G_def
unfolding grsub_def grinv_def grop_def by auto moreover
from $\langle\mathrm{v} \in \mathrm{V}\rangle$ have (-v$) \in(-\mathrm{V})$ unfolding setninv_def grinv_def using func_imagedef inv_fun $\langle V \subseteq \bigcup T\rangle$ G_def by auto
then have $(-\mathrm{v}) \in \mathrm{V}$ using $\langle(-\mathrm{V})=\mathrm{V}\rangle$ by auto
with $\langle\mathrm{q} \in \mathrm{V}\rangle$ have $\langle\mathrm{q},-\mathrm{v}\rangle \in \mathrm{V} \times \mathrm{V}$ by auto
then have $f\langle q,-v\rangle \in V+V$ using lift_subset_suff f _fun $\langle V \subseteq \bigcup T\rangle$ unfolding setadd_def by auto

```
        with \V+V\subseteqU` have q-v\inU unfolding grsub_def grop_def by auto
        with \langleq-v=x\rangle have }x\inU\mathrm{ by auto
    }
    then have cl(V)\subseteqU by auto
    with }\langle\textrm{V}\in\mathcal{N}\mp@subsup{\mathcal{N}}{0}{}\rangle\mathrm{ show thesis by auto
qed
```


69．3 Rest of separation axioms

theorem（in topgroup）T1＿imp＿T2：
assumes $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{1}\right\}$
shows $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{2}\right\}$
proof－
\｛
fix x y assume ass：$x \in \bigcup T y \in \bigcup T \neq y$
\｛
assume（ -y ）$+\mathrm{x}=0$
with ass $(1,2)$ have $y=x$ using group0．group0＿2＿L11［where $a=y$ and
b＝x］group0＿valid＿in＿tgroup by auto with ass（3）have False by auto
\}
then have $(-y)+x \neq 0$ by auto
then have $0 \neq(-y)+x$ by auto
from $\langle y \in \bigcup T\rangle$ have $(-y) \in \bigcup T$ using neg＿in＿tgroup G＿def by auto
with $\langle x \in \bigcup T\rangle$ have（ $-y$ ）＋x $\in \bigcup T$ using group0．group＿op＿closed［where $a=-y$
and $b=x$ ］group0＿valid＿in＿tgroup unfolding
G＿def by auto
with assms $\langle 0 \neq(-y)+x\rangle$ obtain U where $U \in T$ and $(-y)+x \notin U$ and $0 \in U$ un－
folding isT1＿def using zero＿in＿tgroup
by auto
then have $\mathrm{U} \in \mathcal{N}_{0}$ unfolding zerohoods＿def G＿def using Top＿2＿L3 by auto
then obtain Q where $Q \in \mathcal{N}_{0} Q \subseteq U(Q+Q) \subseteq U(-Q)=Q$ using exists＿procls＿zerohood
by blast
with $\langle(-y)+x \notin U\rangle$ have $(-y)+x \notin Q$ by auto
from $\left\langle Q \in \mathcal{N}_{0}\right\rangle$ have $Q \subseteq G$ unfolding zerohoods＿def by auto
\｛
assume $x \in y+Q$
with $\langle Q \subseteq G\rangle\langle y \in \bigcup T\rangle$ obtain u where $u \in Q$ and $x=y+u$ unfolding ltrans＿def
grop＿def using group0．ltrans＿image group0＿valid＿in＿tgroup
unfolding G＿def by auto
with $\langle Q \subseteq G\rangle$ have $u \in \bigcup T$ unfolding G＿def by auto
with $\langle x=y+u\rangle\langle y \in \bigcup T\rangle\langle x \in \bigcup T\rangle\langle Q \subseteq G\rangle$ have（ -y ）＋x＝u using group0．group0＿2＿L18（2）
group0＿valid＿in＿tgroup unfolding G＿def
unfolding grsub＿def grinv＿def grop＿def by auto
with $\langle u \in Q$ 〉 have $(-y)+x \in Q$ by auto
then have False using 〈（－y）＋x \notin 〉 by auto
\}
then have $x \notin y+Q$ by auto moreover
\｛
assume $y \in x+Q$
with $\langle\mathrm{Q} \subseteq \mathrm{G}\rangle\langle\mathrm{x} \in \bigcup \mathrm{T}\rangle$ obtain u where $\mathrm{u} \in \mathrm{Q}$ and $\mathrm{y}=\mathrm{x}+\mathrm{u}$ unfolding ltrans＿def grop＿def using group0．ltrans＿image group0＿valid＿in＿tgroup
unfolding G＿def by auto
with $\langle Q \subseteq G\rangle$ have $u \in \bigcup T$ unfolding G＿def by auto
with $\langle y=x+u\rangle\langle y \in \bigcup T\rangle\langle x \in \bigcup T\rangle\langle Q \subseteq G\rangle$ have（ -x ）＋ $\mathrm{y}=\mathrm{u}$ using group0．group0＿2＿L18（2） group0＿valid＿in＿tgroup unfolding G＿def
unfolding grsub＿def grinv＿def grop＿def by auto
with 〈u \in § have（ $-y$ ）＋x＝－u using group0．group＿inv＿of＿two［0F group0＿valid＿in＿tgroup
group0．inverse＿in＿group［OF group0＿valid＿in＿tgroup，of x］，of y］
using $\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle$ using group0．group＿inv＿of＿inv［OF group0＿valid＿in＿tgroup］
unfolding G＿def grinv＿def grop＿def by auto
moreover from $\langle u \in Q\rangle$ have $(-u) \in(-Q)$ unfolding setninv＿def grinv＿def
using func＿imagedef［0F group0＿2＿T2［OF Ggroup］$\langle Q \subseteq G\rangle$ by auto
ultimately have $(-y)+x \in Q$ using $\langle(-y)+x \notin Q\rangle\langle(-Q)=Q\rangle$ unfolding setninv＿def
grinv＿def by auto
then have False using $\langle(-y)+x \notin Q\rangle$ by auto
\}
then have $y \notin x+Q$ by auto moreover
\｛
fix t
assume $t \in(x+Q) \cap(y+Q)$
then have $t \in(x+Q) t \in(y+Q)$ by auto
with $\langle Q \subseteq G\rangle\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle$ obtain u v where $u \in Q \quad v \in Q$ and $t=x+u t=y+v$
unfolding ltrans＿def grop＿def using group0．ltrans＿image［OF group0＿valid＿in＿tgroup］
unfolding G＿def by auto
then have $x+u=y+v$ by auto
moreover from $\langle u \in Q\rangle\langle v \in Q\rangle\langle Q \subseteq G\rangle$ have $u \in \bigcup T v \in \bigcup T$ unfolding G＿def
by auto
moreover note $\langle x \in \bigcup T\rangle\langle y \in \bigcup T\rangle$
ultimately have $(-y)+(x+u)=v$ using group0．group0＿2＿L18（2）［OF group0＿valid＿in＿tgroup， of y v x＋u］group0．group＿op＿closed［OF group0＿valid＿in＿tgroup，of x u］
unfolding G＿def
unfolding grsub＿def grinv＿def grop＿def by auto
then have $((-y)+x)+u=v$ using group0．group＿oper＿assoc［0F group0＿valid＿in＿tgroup］
unfolding grop＿def using $\langle\mathrm{x} \in \bigcup \mathrm{T}\rangle\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle\langle\mathrm{u} \in \bigcup \mathrm{T}\rangle$ using group0．inverse＿in＿group［OF group0＿valid＿in＿tgroup］unfolding G＿def by auto
then have $((-y)+x)=v-u$ using group0．group0＿2＿L18（1）［0F group0＿valid＿in＿tgroup，of （ -y ）$+\mathrm{x} \quad \mathrm{u}$ v］
using $\langle(-y)+x \in \bigcup T\rangle\langle u \in \bigcup T\rangle\langle v \in \bigcup T\rangle$ unfolding G＿def grsub＿def grinv＿def
grop＿def by force
moreover
from $\langle u \in Q$ 〉 have（ $-u) \in(-Q)$ unfolding setninv＿def grinv＿def using
func＿imagedef［OF group0＿2＿T2［OF Ggroup］$\langle Q \subseteq G\rangle$ ］by auto
then have $(-u) \in Q$ using $\langle(-Q)=Q\rangle$ by auto
with $\langle v \in Q\rangle$ have $\langle v,-u\rangle \in Q \times Q$ by auto
then have $f\langle v,-u\rangle \in Q+Q$ using lift＿subset＿suff［OF group0．group＿oper＿assocA［OF group0＿valid＿in＿tgroup］〈Q $\subseteq G$（ $\langle Q \subseteq G\rangle]$
unfolding setadd_def by auto
with $\langle Q+Q \subseteq U\rangle$ have $v-u \in U$ unfolding grsub_def grop_def by auto
ultimately have $(-y)+x \in U$ by auto
with $\langle(-y)+x \notin U\rangle$ have False by auto
\}
then have $(x+Q) \cap(y+Q)=0$ by auto
moreover have $x \in \operatorname{int}(x+Q) y \in \operatorname{int}(y+Q)$ using elem_in_int_trans $\left\langle Q \in \mathcal{N}_{0}\right\rangle$ $\langle\mathrm{x} \in \bigcup \mathrm{T}\rangle\langle\mathrm{y} \in \bigcup \mathrm{T}\rangle$ unfolding G_{-}def by auto moreover
have int $(x+Q) \subseteq(x+Q)$ int $(y+Q) \subseteq(y+Q)$ using Top_2_L1 by auto
moreover have int $(x+Q) \in T$ int $(y+Q) \in T$ using Top_2_L2 by auto
ultimately have $\operatorname{int}(x+Q) \in T \wedge \operatorname{int}(y+Q) \in T \wedge x \in \operatorname{int}(x+Q) \wedge y \in \operatorname{int}(y+Q)$
$\wedge \operatorname{int}(x+Q) \cap \operatorname{int}(y+Q)=0$
by blast
then have $\exists U \in T . \exists V \in T . \quad x \in U \wedge y \in V \wedge U \cap V=0$ by auto
\}
then show thesis using isT2_def by auto
qed
Here follow some auxiliary lemmas.
lemma (in topgroup) trans_closure:
assumes $x \in G \quad A \subseteq G$
shows $\mathrm{cl}(\mathrm{x}+\mathrm{A})=\mathrm{x}+\mathrm{cl}(\mathrm{A})$

proof-

have $\bigcup T-(\bigcup T-(x+A))=(x+A)$ unfolding ltrans_def using group0.group0_5_L1(2) [OF group0_valid_in_tgroup assms(1)]
unfolding image_def range_def domain_def converse_def Pi_def by auto
then have $c l(x+A)=\bigcup T$-int $(\bigcup T-(x+A))$ using Top_3_L11 (2) [of $\bigcup T-(x+A)]$
by auto moreover
have $x+G=G$ using surj_image_eq group0.trans_bij(2) [OF group0_valid_in_tgroup
assms(1)] bij_def by auto
then have $\bigcup T-(x+A)=x+(\bigcup T-A)$ using inj_image_dif[of LeftTranslation(G, $\mathrm{f}, \mathrm{x}) \mathrm{GG}, \mathrm{OF}$ _ assms(2)]
unfolding ltrans_def G_def using group0.trans_bij(2) [OF group0_valid_in_tgroup assms(1)] bij_def by auto
then have $\operatorname{int}(\bigcup T-(x+A))=\operatorname{int}(x+(\bigcup T-A))$ by auto
then have $\operatorname{int}(\bigcup \mathrm{T}-(\mathrm{x}+\mathrm{A}))=\mathrm{x}+\operatorname{int}(\bigcup \mathrm{T}-\mathrm{A})$ using trans_interior [0F assms(1), of
UT-A] unfolding G_def by force
have $\bigcup T$-int $(\bigcup T-A)=c l(\bigcup T-(\bigcup T-A))$ using Top_3_L11(2) [of $\bigcup T-A]$ by
force
have $\bigcup T-(\bigcup T-A)=A$ using assms(2) G_def by auto
with $\bigcup T$-int $(\bigcup T-A)=c l(\bigcup T-(\bigcup T-A))$) have $\bigcup T-i n t(\bigcup T-A)=c l(A)$ by auto
have $\bigcup T-(\bigcup T-i n t(\bigcup T-A))=i n t(\bigcup T-A)$ using Top_2_L2 by auto
with $\bigcup T-\operatorname{int}(\bigcup T-A)=c l(A)$ have int $(\bigcup T-A)=\bigcup T-c l(A)$ by auto
with $\langle\operatorname{int}(\bigcup T-(x+A))=x+\operatorname{int}(\bigcup T-A)\rangle$ have $\operatorname{int}(\bigcup T-(x+A))=x+(\bigcup T-c l(A))$
by auto
with $\langle x+G=G\rangle$ have $\operatorname{int}(\bigcup T-(x+A))=\bigcup T-(x+c l(A))$ using inj_image_dif[of
LeftTranslation(G, f, x) GGcl(A)]
unfolding ltrans_def using group0.trans_bij(2) [OF group0_valid_in_tgroup
assms(1)] Top_3_L11(1) assms(2) unfolding bij_def G_def
by auto
then have $\bigcup T$-int $(\bigcup T-(x+A))=\bigcup T-(\bigcup T-(x+c l(A)))$ by auto
then have $\bigcup T-i n t(\bigcup T-(x+A))=x+c l(A)$ unfolding ltrans_def using group0.group0_5_L1(2) [0F group0_valid_in_tgroup assms(1)]
unfolding image_def range_def domain_def converse_def Pi_def by auto
with $\langle c l(x+A)=\bigcup T$-int $(\bigcup T-(x+A))\rangle$ show thesis by auto
qed
lemma (in topgroup) trans_interior2: assumes $A 1: g \in G$ and $A 2: A \subseteq G$
shows $\operatorname{int}(A)+g=\operatorname{int}(A+g)$
proof -
from assms have $A \subseteq \bigcup T$ and IsAhomeomorphism($T, T, \operatorname{RightTranslation(G,f,g))}$ using tr_homeo by auto
then show thesis using int_top_invariant by simp
qed
lemma (in topgroup) trans_closure2:
assumes $x \in G \quad A \subseteq G$
shows $c l(A+x)=c l(A)+x$
proof-
have $\bigcup \mathrm{T}-(\bigcup \mathrm{T}-(\mathrm{A}+\mathrm{x}))=(\mathrm{A}+\mathrm{x})$ unfolding ltrans_def using group0.group0_5_L1(1)[0F group0_valid_in_tgroup assms(1)]
unfolding image_def range_def domain_def converse_def Pi_def by auto
then have $c l(A+x)=\bigcup T$-int $(\bigcup T-(A+x))$ using Top_3_L11(2) [of $\bigcup T-(A+x)]$
by auto moreover
have $\mathrm{G}+\mathrm{x}=\mathrm{G}$ using surj_image_eq group0.trans_bij(1) [OF group0_valid_in_tgroup
assms(1)] bij_def by auto
then have $\bigcup T-(A+x)=(\bigcup T-A)+x$ using inj_image_dif[of RightTranslation(G, f, x) GG, 0 _ $\operatorname{assms}(2)]$
unfolding rtrans_def G_def using group0.trans_bij(1) [OF group0_valid_in_tgroup
assms(1)] bij_def by auto
then have $\operatorname{int}(\bigcup T-(A+x))=\operatorname{int}((\bigcup T-A)+x)$ by auto
then have int $(\bigcup \mathrm{T}-(\mathrm{A}+\mathrm{x}))=\operatorname{int}(\bigcup \mathrm{T}-\mathrm{A})+\mathrm{x}$ using trans_interior2[0F assms(1),of
UT-A] unfolding G_def by force
have $\cup T-i n t(\bigcup T-A)=c l(\bigcup T-(\cup T-A))$ using Top_3_L11(2) [of UT-A] by
force
have $\bigcup T-(\bigcup T-A)=A$ using assms(2) G_def by auto
with $\bigcup T-i n t(\bigcup T-A)=c l(\bigcup T-(\bigcup T-A))$ have $\bigcup T-i n t(\bigcup T-A)=c l(A)$ by auto
have $\bigcup T-(\bigcup T-i n t(\bigcup T-A))=i n t(\bigcup T-A)$ using Top_2_L2 by auto
with $\bigcup T-i n t(\bigcup T-A)=c l(A)$) have $\operatorname{int}(\bigcup T-A)=\bigcup T-c l(A)$ by auto
with $\langle\operatorname{int}(\bigcup T-(A+x))=\operatorname{int}(\bigcup T-A)+x\rangle$ have $\operatorname{int}(\bigcup T-(A+x))=(\bigcup T-c l(A))+x$
by auto
with $\langle G+x=G\rangle$ have $\operatorname{int}(\bigcup T-(A+x))=\bigcup T-(c l(A)+x)$ using inj_image_dif[of
RightTranslation(G, f, x)GGcl(A)]
unfolding rtrans_def using group0.trans_bij(1) [OF group0_valid_in_tgroup
assms(1)] Top_3_L11(1) assms(2) unfolding bij_def G_def
by auto
then have $\bigcup T-\operatorname{int}(\bigcup T-(A+x))=\bigcup T-(\bigcup T-(c l(A)+x))$ by auto
then have $\bigcup T$-int $(\bigcup T-(A+x))=c l(A)+x$ unfolding ltrans_def using group0.group0_5_L1(1)[0F
group0_valid_in_tgroup assms(1)]
unfolding image_def range_def domain_def converse_def Pi_def by auto with $\langle c l(A+x)=\bigcup T$-int $(\bigcup T-(A+x))\rangle$ show thesis by auto
qed
lemma (in topgroup) trans_subset:
assumes $A \subseteq((-x)+B) x \in G A \subseteq G B \subseteq G$
shows $x+A \subseteq B$
proof-
\{
fix t assume $t \in x+A$
with $\langle\mathrm{x} \in \mathrm{G}\rangle\langle\mathrm{A} \subseteq \mathrm{G}\rangle$ obtain u where $\mathrm{u} \in \mathrm{A} \mathrm{t}=\mathrm{x}+\mathrm{u}$ unfolding ltrans_def grop_def
using group0.ltrans_image [OF group0_valid_in_tgroup]
unfolding G_def by auto
with $\langle x \in G\rangle\langle A \subseteq G\rangle\langle u \in A\rangle$ have (-x)+t=u using group0.group0_2_L18(2)[0F
group0_valid_in_tgroup, of xut]
group0.group_op_closed [OF group0_valid_in_tgroup, of x u] unfold-
ing grop_def grinv_def by auto
with $\langle u \in A\rangle$ have $(-x)+t \in A$ by auto
with $\langle A \subseteq(-x)+B\rangle$ have $(-x)+t \in(-x)+B$ by auto
with $\langle B \subseteq G\rangle$ obtain v where $(-x)+t=(-x)+v \quad v \in B$ unfolding ltrans_def
grop_def using neg_in_tgroup[0F $\langle\mathrm{x} \in \mathrm{G}\rangle$] group0.ltrans_image[0F group0_valid_in_tgroup] unfolding G_def by auto
have LeftTranslation (G,f,-x) $\operatorname{inj}(G, G)$ using group0.trans_bij(2) [OF
group0_valid_in_tgroup neg_in_tgroup [$\mathrm{OF}\langle\mathrm{X} \in \mathrm{G}\rangle$]] bij_def by auto
then have eq: $\forall \mathrm{A} \in \mathrm{G} . \forall \mathrm{B} \in \mathrm{G}$. LeftTranslation($\mathrm{G}, \mathrm{f},-\mathrm{x}$) A=LeftTranslation(G,f,-x)B
$\longrightarrow A=B$ unfolding inj_def by auto
\{
fix A B assume $A \in G B \in G$
assume $f\langle-x, A\rangle=f\langle-x, B\rangle$
then have LeftTranslation(G,f,-x)A=LeftTranslation(G,f,-x)B us-
ing group0.group0_5_L2(2)[OF group0_valid_in_tgroup neg_in_tgroup [OF $\langle x \in G$)]]
$\langle A \in G\rangle\langle B \in G\rangle$ by auto
with eq $\langle A \in G\rangle\langle B \in G\rangle$ have $A=B$ by auto
\}
then have eq1: $\forall \mathrm{A} \in \mathrm{G} . \forall \mathrm{B} \in \mathrm{G} . \mathrm{f}\langle-\mathrm{x}, \mathrm{A}\rangle=\mathrm{f}\langle-\mathrm{x}, \mathrm{B}\rangle \longrightarrow \mathrm{A}=\mathrm{B}$ by auto
from $\langle A \subseteq G\rangle\langle u \in A\rangle$ have $u \in G$ by auto
with $\langle v \in B\rangle\langle B \subseteq G\rangle\langle t=x+u\rangle$ have $t \in G \quad v \in G$ using group0.group_op_closed [OF
group0_valid_in_tgroup $\langle x \in G$, of u] unfolding grop_def
by auto
with eq1 $\langle(-x)+t=(-x)+v\rangle$ have $t=v$ unfolding grop_def by auto
with $\langle v \in B$ 〉 have $t \in B$ by auto
\}
then show thesis by auto
qed
Every topological group is regular, and hence T_{3}. The proof is in the next section, since it uses local properties.

69.4 Local properties

In a topological group, all local properties depend only on the neighbourhoods of the neutral element; when considering topological properties. The next result of regularity, will use this idea, since translations preserve closed sets.
lemma (in topgroup) local_iff_neutral:
assumes $\forall U \in T \cap \mathcal{N}_{0} . \exists N \in \mathcal{N}_{0} . N \subseteq U \wedge P(N, T) \quad \forall N \in \operatorname{Pow}(G) . \forall x \in G . P(N, T) \longrightarrow$ $\mathrm{P}(\mathrm{x}+\mathrm{N}, \mathrm{T})$
shows T\{is locally\}P
proof-
\{
fix $x U$ assume $x \in \bigcup T U \in T x \in U$
then have $(-\mathrm{x})+\mathrm{U} \in \mathrm{T} \cap \mathcal{N}_{0}$ using open_tr_open(1) open_trans_neigh neg_in_tgroup
unfolding G_def
by auto
with assms(1) obtain N where $\mathbb{N} \subseteq((-x)+U) P(N, T) N \in \mathcal{N}_{0}$ by auto
note $\langle x \in \bigcup T\rangle N \subseteq((-x)+U)\rangle$ moreover
from $\langle U \in T\rangle$ have $U \subseteq \cup T$ by auto moreover
from $\left.\mathbb{N} \in \mathcal{N}_{0}\right\rangle$ have $N \subseteq G$ unfolding zerohoods_def by auto
ultimately have ($\mathrm{x}+\mathrm{N}$) $\subseteq \mathrm{U}$ using trans_subset unfolding G_{-}def by auto moreover
from $\langle\mathbb{N} \subseteq G\rangle(x \in \bigcup T\rangle$ assms(2) $\langle P(N, T)\rangle$ have $P((x+N), T)$ unfolding $G_{-} d e f$ by auto moreover
from $\left\langle\mathbb{N} \in \mathcal{N}_{0} \backslash \backslash x \in \bigcup T\right\rangle$ have $x \in \operatorname{int}(x+N)$ using elem_in_int_trans unfolding G_def by auto
ultimately have $\exists \mathrm{N} \in \operatorname{Pow}(\mathrm{U}) . \mathrm{x} \in \operatorname{int}(\mathrm{N}) \wedge \mathrm{P}(\mathrm{N}, \mathrm{T})$ by auto
\}
then show thesis unfolding IsLocally_def [OF topSpaceAssum] by auto qed
lemma (in topgroup) trans_closed:
assumes A\{is closed in $\} T x \in G$
shows ($\mathrm{x}+\mathrm{A}$) \{is closed in\}T
proof-
from assms (1) have cl(A)=A using Top_3_L8 unfolding IsClosed_def by auto
then have $\mathrm{x}+\mathrm{cl}(\mathrm{A})=\mathrm{x}+\mathrm{A}$ by auto
then have $\mathrm{cl}(\mathrm{x}+\mathrm{A})=\mathrm{x}+\mathrm{A}$ using trans_closure assms unfolding IsClosed_def by auto
moreover have $x+A \subseteq G$ unfolding ltrans_def using group0.group0_5_L1(2) [OF group0_valid_in_tgroup ($\mathrm{x} \in \mathrm{G}$)]
unfolding image_def range_def domain_def converse_def Pi_def by
auto
ultimately show thesis using Top_3_L8 unfolding G_def by auto qed

As it is written in the previous section, every topological group is regular.
theorem (in topgroup) topgroup_reg:

```
    shows T{is regular}
proof-
    {
        fix U assume U\inT\cap\mathcal{N}
        then obtain V where cl(V)\subseteqUV\in\mathcal{N}
blast
    then have V\subseteqcl(V) using cl_contains_set unfolding zerohoods_def G_def
by auto
    then have int(V)\subseteqint(cl(V)) using interior_mono by auto
    with }\langle\textrm{V}\in\mathcal{N}\mp@subsup{\mathcal{N}}{0}{}\rangle\mathrm{ have cl(V) }\in\mp@subsup{\mathcal{N}}{0}{}\mathrm{ unfolding zerohoods_def G_def using Top_3_L11(1)
by auto
    from \V }\in\mp@subsup{\mathcal{N}}{0}{\prime}\rangle\mathrm{ have cl(V){is closed in}T using cl_is_closed unfold-
ing zerohoods_def G_def by auto
            with 〈cl(V)\in\mathcal{N}
        }
    then have }\forall\textrm{U}\in\textrm{T}\cap\mp@subsup{\mathcal{N}}{0}{}.\exists\textrm{N}\in\mp@subsup{\mathcal{N}}{0}{}.N\textrm{N}\subseteq\textrm{U}\N{\mathrm{ is closed in}T by auto moreover
    have }\forallN\in\operatorname{Pow}(G).( \forallx\inG. (N{is closed in}T\longrightarrow(x+N){is closed in}T))
using trans_closed by auto
    ultimately have T{is locally-closed} using local_iff_neutral unfold-
ing IsLocallyClosed_def by auto
    then show T{is regular} using regular_locally_closed by auto
qed
```

The promised corollary follows:
corollary (in topgroup) T2_imp_T3:
assumes $\mathrm{T}\left\{\mathrm{is} \mathrm{T}_{2}\right\}$
shows T\{is $\left.\mathrm{T}_{3}\right\}$ using T2_is_T1 topgroup_reg isT3_def assms by auto
end

70 Topological groups 2

theory TopologicalGroup_ZF_2 imports Topology_ZF_8 TopologicalGroup_ZF Group_ZF_2
begin
This theory deals with quotient topological groups.

70.1 Quotients of topological groups

The quotient topology given by the quotient group equivalent relation, has an open quotient map.
theorem(in topgroup) quotient_map_topgroup_open:
assumes IsAsubgroup (H,f) A A
defines $r \equiv$ QuotientGroupRel (G,f,H)
shows $\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A \in(T\{q u o t i e n t ~ b y\} r)$
proof-
have eqT: equiv($\cup T, r$) and eqG:equiv(G,r) using group0.Group_ZF_2_4_L3
assms(1) unfolding $r_{\text {_ }}$ def IsAnormalSubgroup_def
using group0_valid_in_tgroup by auto
have subA: $A \subseteq G$ using assms(2) by auto
have subH:H〇G using group0.group0_3_L2[0F group0_valid_in_tgroup assms(1)].
have $A 1:\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A)=H+A$
proof
\{
fix t assume $t \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A)$
then have $\exists \mathrm{m} \in(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\} \mathrm{A}) .\langle\mathrm{t}, \mathrm{m}\rangle \in\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{J}\}$ using
vimage_iff by auto
then obtain m where $m \in(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A)\langle t, m\rangle \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}$
by auto
then obtain b where $b \in A\langle b, m\rangle \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\} t \in G$ and rel:r\{t\}=m
using image_iff by auto
then have $r\{b\}=m$ by auto
then have $r\{t\}=r\{b\}$ using rel by auto
with $\langle b \in A\rangle$ subA have $\langle t, b\rangle \in r$ using eq_equiv_class [$O F$ _ eqT] by auto
then have $f\langle t, \operatorname{Group} \operatorname{Inv}(G, f) b\rangle \in H$ unfolding $r_{\text {_ }}$ def QuotientGroupRel_def
by auto
then obtain h where $h \in H$ and prd:f $\langle\mathrm{t}, \operatorname{GroupInv}(\mathrm{G}, \mathrm{f}) \mathrm{b}\rangle=\mathrm{h}$ by auto
then have $h \in G$ using subH by auto
have $b \in G$ using $\langle b \in A\rangle\langle A \in T\rangle$ by auto
then have (-b) $\in \mathrm{G}$ using neg_in_tgroup by auto
from prd have $\mathrm{t}=\mathrm{f}\langle\mathrm{h}$, $\operatorname{GroupInv}(\mathrm{G}, \mathrm{f})$ (- b) \rangle using group0.group0_2_L18(1) [0F group0_valid_in_tgroup $\langle\mathrm{t} \in \mathrm{G}\rangle\langle(-\mathrm{b}) \in \mathrm{G}\rangle(\mathrm{h} \in \mathrm{G})$]
unfolding grinv_def by auto
then have $\mathrm{t}=\mathrm{f}\langle\mathrm{h}, \mathrm{b}\rangle$ using group0.group_inv_of_inv[0F group0_valid_in_tgroup $\langle b \in G\rangle]$
unfolding grinv_def by auto
then have $\langle\langle\mathrm{h}, \mathrm{b}\rangle, \mathrm{t}\rangle \in \mathrm{f}$ using apply_Pair[0F topgroup_f_binop] $\langle\mathrm{h} \in \mathrm{G}\rangle\langle\mathrm{b} \in \mathrm{G}\rangle$
by auto moreover
from $\langle h \in H\rangle\langle b \in A\rangle$ have $\langle h, b\rangle \in H \times A$ by auto
ultimately have $t \in f(H \times A)$ using image_iff by auto
with subA subH have $t \in H+A$ using interval_add(2) by auto
\}
then show $(\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A)) \subseteq H+A$ by force
\{
fix t assume $t \in H+A$
with subA subH have $t \in f(H \times A)$ using interval_add(2) by auto
then obtain ha where ha $\in H \times A\langle h a, t\rangle \in f$ using image_iff by auto
then obtain h aa where $h a=\langle h, a a\rangle h \in H a a \in A$ by auto
then have $h \in G a a \in G$ using subH subA by auto
from $\langle\langle h a, t\rangle \in f\rangle$ have $t \in G$ using topgroup_f_binop unfolding Pi_def
by auto
from $\langle\mathrm{ha}=\langle\mathrm{h}, \mathrm{aa}\rangle\rangle\langle\langle\mathrm{ha}, \mathrm{t}\rangle \in \mathrm{f}\rangle$ have $\mathrm{t}=\mathrm{f}\langle\mathrm{h}, \mathrm{aa}\rangle$ using apply_equality[0F _ topgroup_f_binop] by auto
then have $f\langle t,-a a\rangle=h$ using group0.group0_2_L18(1) [OF group0_valid_in_tgroup $\langle\mathrm{h} \in \mathrm{G}\rangle\langle\mathrm{aa} \in \mathrm{G}\rangle\langle\mathrm{t} \in \mathrm{G}\rangle]$
by auto
with $\langle\mathrm{h} \in \mathrm{H}\rangle\langle\mathrm{t} \in \mathrm{G}\rangle\langle\mathrm{aa} \in \mathrm{G}\rangle$ have $\langle\mathrm{t}, \mathrm{aa}\rangle \in \mathrm{r}$ unfolding $\mathrm{r}_{\text {_ }}$ def QuotientGroupRel_def by auto
then have $r\{t\}=r\{a a\}$ using eqT equiv_class_eq by auto
with $\langle a a \in G\rangle$ have $\langle a a, r\{t\}\rangle \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}$ by auto
with $\langle a \mathrm{a} \in \mathrm{A}\rangle$ have $\mathrm{A} 1: r\{\mathrm{t}\} \in(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{U}\} \mathrm{A})$ using image_iff by
auto
from $\langle t \in G\rangle$ have $\langle t, r\{t\}\rangle \in\{\langle b, r\{b\}\rangle$. $b \in \bigcup T\}$ by auto
with $A 1$ have $t \in\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-(\{\langle b, r\{b\}\rangle$. $b \in \bigcup T\} A)$ using vimage_iff
by auto
\}
then show $H+A \subseteq\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A)$ by auto
qed
have $H+A=(\bigcup x \in H . x+A)$ using interval_add(3) subH subA by auto moreover
have $\forall \mathrm{x} \in \mathrm{H} . \mathrm{x}+\mathrm{A} \in \mathrm{T}$ using open_tr_open(1) assms(2) subH by blast
then have $\{x+A . x \in H\} \subseteq T$ by auto
then have $(\bigcup x \in H . x+A) \in T$ using topSpaceAssum unfolding IsATopology_def by auto
ultimately have $\mathrm{H}+\mathrm{A} \in \mathrm{T}$ by auto
with $A 1$ have $\{\langle b, r\{b\}\rangle . b \in \bigcup T\}-(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A) \in T$ by auto
then have $(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A) \in\{q u o t i e n t$ topology $\operatorname{in}\}((\cup T) / / r)\{b y\}\{b, r\{b\}\rangle$.
$\mathrm{b} \in \bigcup \mathrm{U}\}\{$ from $\}$
using QuotientTop_def topSpaceAssum quotient_proj_surj using func1_1_L6(2) [OF quotient_proj_fun] by auto
then show $(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} A) \in(T\{q u o t i e n t ~ b y\} r)$ using EquivQuo_def [OF eqT] by auto
qed
A quotient of a topological group is just a quotient group with an appropiate topology that makes product and inverse continuous.
theorem (in topgroup) quotient_top_group_F_cont:
assumes IsAnormalSubgroup(G,f,H)
defines $r \equiv$ QuotientGroupRel (G,f,H)
defines $F \equiv$ QuotientGroupOp (G,f,H)
shows IsContinuous(ProductTopology(T\{quotient by\}r, T\{quotient by\}r), T\{quotient
by\}r,F)
proof-
have eqT:equiv ($\bigcup T, r$) and eqG:equiv(G, r) using group0.Group_ZF_2_4_L3
assms(1) unfolding r_def IsAnormalSubgroup_def
using group0_valid_in_tgroup by auto
have fun: $\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}: \mathrm{G} \times \mathrm{G} \rightarrow(\mathrm{G} / / \mathrm{r}) \times(\mathrm{G} / / \mathrm{r})$ us-
ing product_equiv_rel_fun unfolding G_def by auto
have C:Congruent2(r,f) using Group_ZF_2_4_L5A[OF Ggroup assms(1)] unfolding r_{-}def.
with eqT have IsContinuous (ProductTopology (T, T), ProductTopology (T\{quotient
by\}r, $T\{q u o t i e n t ~ b y\} r),\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\})$
using product_quo_fun by auto
have tprod:topology0(ProductTopology(T,T)) unfolding topology0_def us-
ing Top_1_4_T1(1) [0F topSpaceAssum topSpaceAssum].
have Hfun: $\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\} \in \operatorname{surj}(\bigcup$ ProductTopology $(\mathrm{T}, \mathrm{T}), \bigcup((\{q u o t i e n t$ topology in\} $(((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\{f r o m\}$ (ProductTop using prod_equiv_rel_surj
total_quo_equi[OF eqT] topology0.total_quo_func[OF tprod prod_equiv_rel_surj]
unfolding F_def QuotientGroupOp_def r_def by auto
have Ffun:F: $\bigcup((\{q u o t i e n t ~ t o p o l o g y ~ i n\}(((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle$. $\langle b, c\rangle \in \bigcup T \times \bigcup T\}\{f r o m\}$ (ProductTopology $(T, T))$) $\rightarrow \bigcup$ (T\{quotient by\}r)
using EquivClass_1_T1[0F eqG C] using total_quo_equi [OF eqT] topology0.total_quo_func [0:
tprod prod_equiv_rel_surj] unfolding F_def QuotientGroupOp_def r_def by auto
have $c c:(F)\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}): G \times G \rightarrow G / / r$ using comp_fun $[0 F$ fun EquivClass_1_T1[0F eqG C]]
unfolding F_def QuotientGroupOp_def r_def by auto
then have ($\mathrm{F} 0\{\langle\langle\mathrm{~b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}$) : \bigcup (ProductTopology (T, T)) $\rightarrow \bigcup$ ($\mathrm{T}\{$ quotier by\}r) using Top_1_4_T1(3) [0F topSpaceAssum topSpaceAssum] total_quo_equi[0F eqT] by auto
then have two:two_top_spaces0(ProductTopology (T,T), T\{quotient by\}r, (F $0 \quad\{\langle\langle\mathrm{~b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\})$) unfolding two_top_spaces0_def using Top_1_4_T1(1)[0F topSpaceAssum topSpaceAssum] equiv_quo_is_top[0F eqT] by auto
have IsContinuous(ProductTopology(T,T),T,f) using fcon prodtop_def by auto moreover
have IsContinuous($T, T\{q u o t i e n t ~ b y\} r,\{\langle b, r\{b\}\rangle . b \in \bigcup T\}$) using quotient_func_cont [OF quotient_proj_surj] unfolding EquivQuo_def [OF eqT] by auto
ultimately have cont:IsContinuous(ProductTopology(T,T),T\{quotient by\}r, $\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle$.
$\mathrm{b} \in \bigcup$ T\} 0 f)
using comp_cont by auto
\{
fix A assume $A: A \in G \times G$
then obtain $g 1$ g2 where A_{-}def: $A=\langle g 1, g 2\rangle g 1 \in G g 2 \in G$ by auto
then have $f A=g 1+g 2$ and $p: g 1+g 2 \in \bigcup T$ unfolding grop_def using
apply_type[OF topgroup_f_binop] by auto
then have $\{\langle b, r\{b\}\rangle . b \in \bigcup T\}(f A)=\{\langle b, r\{b\}\rangle . b \in \bigcup T\}(g 1+g 2)$ by auto
with p have $\{\langle b, r\{b\}\rangle$. $b \in \bigcup T\}(f A)=r\{g 1+g 2\}$ using apply_equality[OF
_ quotient_proj_fun]
by auto
then have $\operatorname{Pr} 1:(\{\langle b, r\{b\}\rangle . b \in \bigcup T\} \quad 0 \quad f) A=r\{g 1+g 2\}$ using comp_fun_apply[0F
topgroup_f_binop A] by auto
from $A_{-} \operatorname{def}(2,3)$ have $\langle g 1, g 2\rangle \in \bigcup T \times \bigcup T$ by auto
then have $\langle\langle\mathrm{g} 1, \mathrm{~g} 2\rangle,\langle\mathrm{r}\{\mathrm{g} 1\}, \mathrm{r}\{\mathrm{g} 2\}\rangle\rangle \in\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}$
by auto
then have $\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\} A=\langle r\{g 1\}, r\{g 2\}\rangle$ using
A_def (1) apply_equality[0F _ product_equiv_rel_fun]
by auto
then have $\mathrm{F}(\{\langle\langle\mathrm{b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\} \mathrm{A})=\mathrm{F}\langle\mathrm{r}\{\mathrm{g} 1\}, \mathrm{r}\{\mathrm{g} 2\}\rangle$ by
auto
then have $F(\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\} A)=r(\{g 1+g 2\})$ using group0.Group_ZF_2_2_L2[OF group0_valid_in_tgroup eqG C
_ A_def $(2,3)$] unfolding F_def QuotientGroupOp_def r_def by auto moreover
note fun ultimately have ($\mathrm{F} 0\{\langle\langle\mathrm{~b}, \mathrm{c}\rangle,\langle\mathrm{r}\{\mathrm{b}\}, \mathrm{r}\{\mathrm{c}\}\rangle\rangle .\langle\mathrm{b}, \mathrm{c}\rangle \in \bigcup \mathrm{T} \times \bigcup \mathrm{T}\}$) $\mathrm{A}=\mathrm{r}(\{\mathrm{g} 1+\mathrm{g} 2\})$
using comp_fun_apply[0F _ A] by auto
then have $(F)\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}) A=(\{\langle b, r\{b\}\rangle . b \in \bigcup T\}$
0 f) A using Pr1 by auto
\}
then have $(F \cap\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\})=(\{\langle b, r\{b\}\rangle . b \in \bigcup T\}$
0 f) using fun_extension[OF cc comp_fun[OF topgroup_f_binop quotient_proj_fun]]
unfolding F_def QuotientGroupOp_def r_def by auto
then have A:IsContinuous (ProductTopology (T,T), T\{quotient by $\}, F O\{\langle\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle$. $\langle b, c\rangle \in \bigcup T \times \bigcup T\}$) using cont by auto
have IsAsubgroup(H,f) using assms(1) unfolding IsAnormalSubgroup_def by auto
then have $\forall A \in T .\{\langle b, r \quad\{b\}\rangle . b \in \bigcup T\} \quad A \in$ (\{quotient by\}r) using quotient_map_topgroup_open unfolding r_def by auto
with eqT have ProductTopology (\{quotient by\}r,\{quotient by\}r) $=($ \{quotient topology in\} $(((\bigcup T) / / r) \times((\bigcup T) / / r))\{b y\}\{\langle b, c\rangle,\langle r\{b\}, r\{c\}\rangle\rangle .\langle b, c\rangle \in \bigcup T \times \bigcup T\}\{f r o m\}$ (ProductTop using prod_quotient
by auto
with A show IsContinuous(ProductTopology(T\{quotient by\}r, T\{quotient by\}r), T\{quotient by\}r,F)
using two_top_spaces0.cont_quotient_top[OF two Hfun Ffun] topology0.total_quo_func[OF
tprod prod_equiv_rel_surj] unfolding F_def QuotientGroupOp_def r_def by auto
qed
lemma (in group0) Group_ZF_2_4_L8:
assumes IsAnormalSubgroup (G, P, H)
defines $r \equiv$ QuotientGroupRel (G, P, H)
and $\mathrm{F} \equiv$ QuotientGroupOp(G,P,H)
shows $\operatorname{GroupInv}(\mathrm{G} / / \mathrm{r}, \mathrm{F}): \mathrm{G} / / \mathrm{r} \rightarrow \mathrm{G} / / \mathrm{r}$
using group0_2_T2[0F Group_ZF_2_4_T1[0F _ assms(1)]] groupAssum us-
ing assms $(2,3)$
by auto
theorem (in topgroup) quotient_top_group_INV_cont:
assumes IsAnormalSubgroup(G,f,H)
defines $r \equiv$ QuotientGroupRel(G,f,H)
defines $F \equiv$ QuotientGroupOp(G,f,H)
shows IsContinuous(T\{quotient by\}r,T\{quotient by\}r, GroupInv(G//r,F))
proof-
have eqT: equiv($\cup T, r$) and eqG:equiv(G,r) using group0.Group_ZF_2_4_L3
assms(1) unfolding r_def IsAnormalSubgroup_def
using group0_valid_in_tgroup by auto
have two:two_top_spaces0(T,T\{quotient by\}r, $\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \mathrm{G}\}$) unfold-
ing two_top_spaces0_def
using topSpaceAssum equiv_quo_is_top[OF eqT] quotient_proj_fun total_quo_equi [OF eqT] by auto
have IsContinuous(T,T,GroupInv(G,f)) using inv_cont. moreover \{
fix g assume $G: g \in G$
then have $\operatorname{GroupInv}(G, f) g=-g$ using grinv_def by auto
then have $r(\{\operatorname{Group} \operatorname{Inv}(G, f) g\})=\operatorname{GroupInv}(G / / r, F)(r\{g\})$ using group0. Group_ZF_2_4_L7 [OF group0_valid_in_tgroup assms(1) G] unfolding r_def F_def by auto
then have $\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \mathrm{G}\}(\operatorname{GroupInv}(\mathrm{G}, \mathrm{f}) \mathrm{g})=\operatorname{GroupInv}(\mathrm{G} / / \mathrm{r}, \mathrm{F})(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle$. $\mathrm{b} \in \mathrm{G}\} \mathrm{g}$)
using apply_equality[0F _ quotient_proj_fun] G neg_in_tgroup un-
folding grinv_def
by auto
then have $(\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \mathrm{G}\} 0 \operatorname{GroupInv}(\mathrm{G}, \mathrm{f})) \mathrm{g}=(\operatorname{GroupInv}(\mathrm{G} / / \mathrm{r}, \mathrm{F}) \mathrm{O}\{\langle\mathrm{b}, \mathrm{r}\{\mathrm{b}\}\rangle$. $b \in G\}) g$
using comp_fun_apply[0F quotient_proj_fun G] comp_fun_apply[OF group0_2_T2[OF Ggroup] G] by auto \}
then have $A 1:\{\langle b, r\{b\}\rangle . b \in G\} 0 \operatorname{GroupInv}(G, f)=\operatorname{GroupInv}(G / / r, F) 0(\langle b, r\{b\}\rangle$. $b \in G\}$ using fun_extension[

OF comp_fun[0F quotient_proj_fun group0.Group_ZF_2_4_L8[0F group0_valid_in_tgroup assms(1)]]
comp_fun[OF group0_2_T2[OF Ggroup] quotient_proj_fun[of Gr]]] unfolding r_{-}def F_{-}def by auto
have IsContinuous($T, T\{q u o t i e n t ~ b y\} r,\{\langle b, r\{b\}\rangle . b \in \bigcup T\}$) using quotient_func_cont [OF quotient_proj_surj]
unfolding EquivQuo_def [OF eqT] by auto
ultimately have IsContinuous($\mathrm{T}, \mathrm{T}\{$ quotient by$\} r,\{\langle\mathrm{~b}, \mathrm{r}\{\mathrm{b}\}\rangle . \mathrm{b} \in \bigcup \mathrm{T}\} \mathrm{O}$ GroupInv (G, f))
using comp_cont by auto
with A1 have IsContinuous(T,T\{quotient by\}r, $\operatorname{GroupInv}(G / / r, F) 0\{\langle b, r\{b\}\rangle$.
$\mathrm{b} \in \mathrm{G}\}$) by auto
then have IsContinuous(\{quotient topology in\} (UT) //r\{by\}\{〈b, r \{b\}〉
. $\mathrm{b} \in \bigcup \mathrm{U}\}\{$ from\}T,T\{quotient by\}r, GroupInv(G//r,F))
using two_top_spaces0.cont_quotient_top[OF two quotient_proj_surj,
of $\operatorname{Group} \operatorname{Inv}(\mathrm{G} / / \mathrm{r}, \mathrm{F}) \mathrm{r}]$ group0.Group_ZF_2_4_L8[OF group0_valid_in_tgroup assms(1)]
using total_quo_equi [OF eqT] unfolding r_def F_def by auto
then show thesis unfolding EquivQuo_def [OF eqT].
qed
Finally we can prove that quotient groups of topological groups are topo-
logical groups.
theorem(in topgroup) quotient_top_group:
assumes IsAnormalSubgroup (G,f,H)
defines $r \equiv$ QuotientGroupRel(G,f,H)
defines $F \equiv$ QuotientGroupOp(G,f,H)
shows IsAtopologicalGroup(\{quotient by\}r,F)
unfolding IsAtopologicalGroup_def using total_quo_equi equiv_quo_is_top

Group_ZF_2_4_T1 Ggroup assms(1) quotient_top_group_INV_cont quotient_top_group_F_cont group0.Group_ZF_2_4_L3 group0_valid_in_tgroup assms(1) unfolding r_def
F_def IsAnormalSubgroup_def
by auto
end

71 Topological groups 3

theory TopologicalGroup_ZF_3 imports Topology_ZF_10 TopologicalGroup_ZF_2
TopologicalGroup_ZF_1
Group_ZF_4

begin

This theory deals with topological properties of subgroups, quotient groups and relations between group theorical properties and topological properties.

71.1 Subgroups topologies

The closure of a subgroup is a subgroup.
theorem (in topgroup) closure_subgroup:
assumes IsAsubgroup (H,f)
shows IsAsubgroup (cl(H),f)
proof-
have two:two_top_spaces0(ProductTopology(T,T),T,f) unfolding two_top_spaces0_def
using
topSpaceAssum Top_1_4_T1 $(1,3)$ topgroup_f_binop by auto
from fcon have cont:IsContinuous (ProductTopology (T, T), T, f) by auto
then have closed: $\forall \mathrm{D}$. $\mathrm{D}\{$ is closed in\}T $\longrightarrow \mathrm{f}-\mathrm{D}\{$ is closed in\} τ using
two_top_spaces0.TopZF_2_1_L1
two by auto
then have closure: $\forall \mathrm{A} \in \operatorname{Pow}(\bigcup \tau) . \mathrm{f}(\operatorname{Closure}(\mathrm{A}, \tau)) \subseteq c l(f \mathrm{~A})$ using two_top_spaces0.Top_ZF_2_1_1 two by force
have sub1:H $\subseteq G$ using group0.group0_3_L2 group0_valid_in_tgroup assms
by force
then have sub: $(\mathrm{H}) \times(\mathrm{H}) \subseteq \bigcup \tau$ using prod_top_on_G(2) by auto
from sub1 have clHG:cl(H) $\subseteq G$ using Top_3_L11(1) by auto
then have clHsub1:cl(H) $\times \mathrm{cl}(\mathrm{H}) \subseteq G \times G$ by auto
have Closure ($H \times H$, ProductTopology $(T, T))=c l(H) \times c l(H)$ using cl_product topSpaceAssum group0.group0_3_L2 group0_valid_in_tgroup assms by auto
then have $f(C l o s u r e(H \times H, \operatorname{ProductTopology}(T, T)))=f(c l(H) \times c l(H))$ by auto
with closure sub have clcl:f(cl(H) $\times \mathrm{cl}(\mathrm{H})) \subseteq \mathrm{cl}(\mathrm{f}(\mathrm{H} \times \mathrm{H}))$ by force
from assms have fun:restrict $(f, H \times H): H \times H \rightarrow H$ unfolding IsAsubgroup_def using
group0.group_oper_assocA unfolding group0_def by auto
then have restrict $(f, H \times H)(H \times H)=f(H \times H)$ using restrict_image by auto
moreover from fun have restrict $(f, H \times H)(H \times H) \subseteq H$ using func1_1_L6(2) by blast
ultimately have $f(H \times H) \subseteq H$ by auto
with sub1 have $f(H \times H) \subseteq H f(H \times H) \subseteq G H \subseteq G$ by auto
then have $c l(f(H \times H)) \subseteq c l(H)$ using top_closure_mono by auto
with clcl have img: $f(\mathrm{cl}(\mathrm{H}) \times \mathrm{cl}(\mathrm{H})) \subseteq \mathrm{cl}(\mathrm{H})$ by auto
\{
fix x y assume $x \in c l(H) y \in c l(H)$
then have $\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{cl}(\mathrm{H}) \times \mathrm{cl}(\mathrm{H})$ by auto moreover
have $f(c l(H) \times c l(H))=\{f t . t \in c l(H) \times c l(H)\}$ using func_imagedef topgroup_f_binop
clHsub1 by auto ultimately
have $f\langle x, y\rangle \in f(c l(H) \times c l(H))$ by auto
with img have $f\langle x, y\rangle \in c l(H)$ by auto
\}
then have A1:cl(H) \{is closed under\} f unfolding IsOpClosed_def by auto
have two:two_top_spaces0(T,T,GroupInv(G,f)) unfolding two_top_spaces0_def using
topSpaceAssum Ggroup group0_2_T2 by auto
from inv_cont have cont:IsContinuous(T,T,GroupInv(G,f)) by auto
then have closed: $\forall \mathrm{D}$. $\mathrm{D}\{\mathrm{is}$ closed in\}T \longrightarrow GroupInv(G,f)-D\{is closed
in\}T using two_top_spaces0.TopZF_2_1_L1
two by auto
then have closure: $\forall \mathrm{A} \in \operatorname{Pow}(\cup \mathrm{T}) . \operatorname{GroupInv}(\mathrm{G}, \mathrm{f})(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{cl}(\operatorname{GroupInv}(\mathrm{G}, \mathrm{f}) \mathrm{A})$
using two_top_spaces0.Top_ZF_2_1_L2
two by force
with sub1 have $\operatorname{Inv}: \operatorname{GroupInv}(G, f)(c l(H)) \subseteq c l(\operatorname{GroupInv}(G, f) H)$ by auto
moreover
have GroupInv(H,restrict (f, $\mathrm{H} \times \mathrm{H}$)) : $\mathrm{H} \rightarrow \mathrm{H}$ using assms unfolding IsAsubgroup_def using group0_2_T2 by auto then
have GroupInv(H,restrict ($f, H \times H$)) $\mathrm{H} \subseteq H$ using func1_1_L6(2) by auto
then have restrict ($\operatorname{GroupInv}(G, f), H) H \subseteq H$ using group0.group0_3_T1 assms group0_valid_in_tgroup by auto
then have sss:GroupInv (G,f) $\mathrm{H} \subseteq \mathrm{H}$ using restrict_image by auto
then have $H \subseteq G$ GroupInv(G, f) $H \subseteq G$ using sub1 by auto
with sub1 sss have $c l(\operatorname{GroupInv}(G, f) H) \subseteq c l(H)$ using top_closure_mono
by auto ultimately
have img: $\operatorname{GroupInv}(G, f)(c l(H)) \subseteq c l(H)$ by auto
\{
fix x assume $x \in c l(H)$ moreover
have $\operatorname{GroupInv}(G, f)(c l(H))=\{\operatorname{GroupInv}(G, f) t . t \in c l(H)\}$ using func_imagedef Ggroup group0_2_T2
clHG by force ultimately
have $\operatorname{GroupInv}(G, f) x \in \operatorname{GroupInv}(G, f)(c l(H))$ by auto
with img have GroupInv(G, f) $x \in c l(H)$ by auto
\}
then have A2: $\forall \mathrm{x} \in \mathrm{cl}(\mathrm{H})$. GroupInv(G,f) $\mathrm{x} \in \mathrm{cl}(\mathrm{H})$ by auto
from assms have $\mathrm{H} \neq 0$ using group0.group0_3_L5 group0_valid_in_tgroup by auto moreover

```
have H\subseteqcl(H) using cl_contains_set sub1 by auto ultimately
have cl(H)\not=0 by auto
with clHG A2 A1 show thesis using group0.group0_3_T3 group0_valid_in_tgroup
by auto
qed
```

The closure of a normal subgroup is normal.
theorem (in topgroup) normal_subg:
assumes IsAnormalSubgroup(G,f,H)
shows IsAnormalSubgroup (G,f,cl(H))
proof-
have A:IsAsubgroup(cl(H),f) using closure_subgroup assms unfolding IsAnormalSubgroup_def by auto
have sub1:H $\subseteq G$ using group0.group0_3_L2 group0_valid_in_tgroup assms
unfolding IsAnormalSubgroup_def by auto
then have sub2:cl(H) $\subseteq G$ using Top_3_L11(1) by auto
\{
fix g assume $g: g \in G$
then have $\mathrm{cl1}: \mathrm{cl}(\mathrm{g}+\mathrm{H})=\mathrm{g}+\mathrm{cl}(\mathrm{H})$ using trans_closure sub1 by auto
have ss:g+cl(H) $\subseteq G$ unfolding ltrans_def LeftTranslation_def by auto
have $\mathrm{g}+\mathrm{H} \subseteq \mathrm{G}$ unfolding ltrans_def LeftTranslation_def by auto
moreover from g have (-g$) \in \mathrm{G}$ using neg_in_tgroup by auto
ultimately have $\mathrm{cl2}: \mathrm{cl}((\mathrm{g}+\mathrm{H})+(-\mathrm{g}))=\mathrm{cl}(\mathrm{g}+\mathrm{H})+(-\mathrm{g})$ using trans_closure2
by auto
with cl1 have clcon: $\mathrm{cl}((\mathrm{g}+\mathrm{H})+(-\mathrm{g}))=(\mathrm{g}+(\mathrm{cl}(\mathrm{H})))+(-\mathrm{g})$ by auto
\{
fix r assume $r \in(g+H)+(-g)$
then obtain q where $\mathrm{q}: \mathrm{q} \in \mathrm{g}+\mathrm{H} \mathrm{r}=\mathrm{q}+(-\mathrm{g})$ unfolding rtrans_def RightTranslation_def
by force
from $q(1)$ obtain h where $h \in H \quad q=g+h$ unfolding ltrans_def LeftTranslation_def
by auto
with $\mathrm{q}(2)$ have $\mathrm{r}=(\mathrm{g}+\mathrm{h})+(-\mathrm{g})$ by auto
with $\langle\mathrm{h} \in \mathrm{H}\rangle\langle\mathrm{g} \in \mathrm{G}\rangle\langle(-\mathrm{g}) \in \mathrm{G}\rangle$ have $\mathrm{r} \in \mathrm{H}$ using assms unfolding IsAnormalSubgroup_def grinv_def grop_def by auto
\}
then have $(\mathrm{g}+\mathrm{H})+(-\mathrm{g}) \subseteq \mathrm{H}$ by auto
moreover then have $(\mathrm{g}+\mathrm{H})+(-\mathrm{g}) \subseteq \mathrm{GH} \subseteq \mathrm{G}$ using sub1 by auto ultimately
have $\mathrm{cl}((\mathrm{g}+\mathrm{H})+(-\mathrm{g})) \subseteq \mathrm{cl}(\mathrm{H})$ using top_closure_mono by auto
with clcon have $(\mathrm{g}+(\mathrm{cl}(\mathrm{H})))+(-\mathrm{g}) \subseteq \mathrm{cl}(\mathrm{H})$ by auto moreover \{
fix b assume $b \in\{g+(d-g) . d \in c l(H)\}$
then obtain d where $d: d \in c l(H) b=g+(d-g)$ by auto moreover
then have $d \in G$ using sub2 by auto
then have $g+d \in G$ using group0.group_op_closed[0F group0_valid_in_tgroup
($\mathrm{g} \in \mathrm{G}$)] by auto
from $d(2)$ have $b: b=(g+d)-g$ using group0.group_oper_assoc[OF group0_valid_in_tgroup
$\langle\mathrm{g} \in \mathrm{G}\rangle\langle\mathrm{d} \in \mathrm{G}\rangle\langle(-\mathrm{g}) \in \mathrm{G}\rangle]$
unfolding grsub_def grop_def grinv_def by blast
have ($g+d$)=LeftTranslation(G, f, g)d using group0.group0_5_L2(2) [OF
group0_valid_in_tgroup]
$\langle\mathrm{g} \in \mathrm{G}\rangle\langle\mathrm{d} \in \mathrm{G}\rangle$ by auto
with $\langle d \in c l(H)\rangle$ have $g+d \in g+c l(H)$ unfolding ltrans_def using func_imagedef [OF group0.group0_5_L1(2) [OF group0_valid_in_tgroup $\langle g \in G\rangle]$ sub2] by auto
moreover from b have $b=$ RightTranslation (G,f,-g) ($g+d$) using group0.group0_5_L2(1) [OF group0_valid_in_tgroup]
$\langle(-g) \in G\rangle\langle g+d \in G\rangle$ by auto
ultimately have $b \in(g+c l(H))+(-g)$ unfolding rtrans_def using func_imagedef[0F group0.group0_5_L1(1) [OF group0_valid_in_tgroup $\langle(-g) \in G\rangle]$ ss] by force \}
ultimately have $\{g+(d-g) . d \in c l(H)\} \subseteq c l(H)$ by force
\}
then show thesis using A group0.cont_conj_is_normal[0F group0_valid_in_tgroup, of $\mathrm{cl}(\mathrm{H})]$
unfolding grsub_def grinv_def grop_def by auto
qed
Every open subgroup is also closed.
theorem (in topgroup) open_subgroup_closed:
assumes IsAsubgroup (H, f) $\mathrm{H} \in \mathrm{T}$
shows H\{is closed in\}T
proof-
from assms(1) have sub:H $\subseteq G$ using group0.group0_3_L2 group0_valid_in_tgroup
by force
\{
fix t assume $t \in G-H$
then have $\mathrm{tnH}: \mathrm{t} \notin \mathrm{H}$ and $\mathrm{tG}: \mathrm{t} \in \mathrm{G}$ by auto
from assms(1) have sub:H $\subseteq G$ using group0.group0_3_L2 group0_valid_in_tgroup
by force
from assms (1) have nSubG:0 $\mathbf{0}$ H using group0.group0_3_L5 group0_valid_in_tgroup
by auto
from assms (2) tG have $P: t+H \in T$ using open_tr_open(1) by auto
from nSubG sub tG have tp:t $\in \mathrm{t}+\mathrm{H}$ using group0_valid_in_tgroup group0.neut_trans_elem by auto
$\{$
fix x assume $x \in(t+H) \cap H$
then obtain u where $x=t+u \quad u \in H \quad x \in H$ unfolding ltrans_def LeftTranslation_def by auto
then have $u \in G x \in G t \in G$ using sub $t G$ by auto
with 〈 $x=t+u\rangle$ have $x+(-u)=t$ using group0.group0_2_L18(1) group0_valid_in_tgroup unfolding grop_def grinv_def by auto
from $\langle u \in H\rangle$ have $(-u) \in H$ unfolding grinv_def using assms (1) group0.group0_3_T3A group0_valid_in_tgroup
by auto
with $\langle x \in H\rangle$ have $x+(-u) \in H$ unfolding grop_def using assms (1) group0.group0_3_L6 group0_valid_in_tgroup by auto
with $\langle\mathrm{x}+(-\mathrm{u})=\mathrm{t}$ 〉 have False using tnH by auto \}
then have $(t+H) \cap H=0$ by auto moreover
have $t+H \subseteq G$ unfolding ltrans＿def LeftTranslation＿def by auto ulti－
mately
have $(t+H) \subseteq G-H$ by auto
with tp P have $\exists V \in T . t \in V \wedge V \subseteq G-H$ unfolding Bex＿def by auto
\}
then have $\forall \mathrm{t} \in \mathrm{G}-\mathrm{H} . \exists \mathrm{V} \in \mathrm{T} . \mathrm{t} \in \mathrm{V} \wedge \mathrm{V} \subseteq \mathrm{G}-\mathrm{H}$ by auto
then have G－H $\in T$ using open＿neigh＿open by auto
then show thesis unfolding IsClosed＿def using sub by auto
qed
Any subgroup with non－empty interior is open．
theorem（in topgroup）clopen＿or＿emptyInt：
assumes IsAsubgroup（ H, f ）int（ H ）$\neq 0$
shows $\mathrm{H} \in \mathrm{T}$
proof－
from assms（1）have sub：H〇G using group0．group0＿3＿L2 group0＿valid＿in＿tgroup by force \｛
fix h assume $h \in H$
have intsub：int $(H) \subseteq H$ using Top＿2＿L1 by auto
from assms（2）obtain u where $u \in \operatorname{int}(H)$ by auto
with intsub have $u \in H$ by auto
then have（－u）$\in \mathrm{H}$ unfolding grinv＿def using assms（1）group0．group0＿3＿T3A
group0＿valid＿in＿tgroup
by auto
with $\langle\mathrm{h} \in \mathrm{H}\rangle$ have $\mathrm{h}-\mathrm{u} \in \mathrm{H}$ unfolding grop＿def using assms（1）group0．group0＿3＿L6
group0＿valid＿in＿tgroup
by auto
\｛
fix t assume $t \in(h-u)+(\operatorname{int}(H))$
then obtain r where $r \in i n t(H) t=(h-u)+r$ unfolding grsub＿def grinv＿def
grop＿def
ltrans＿def LeftTranslation＿def by auto
then have $r \in H$ using intsub by auto
with $\langle\mathrm{h}-\mathrm{u} \in \mathrm{H}\rangle$ have（ $\mathrm{h}-\mathrm{u})+\mathrm{r} \in \mathrm{H}$ unfolding grop＿def using assms（1）group0．group0＿3＿L6
group0＿valid＿in＿tgroup
by auto
with $\langle\mathrm{t}=(\mathrm{h}-\mathrm{u})+\mathrm{r}$ ）have $\mathrm{t} \in \mathrm{H}$ by auto
\}
then have ss：$(\mathrm{h}-\mathrm{u})+(\operatorname{int}(\mathrm{H})) \subseteq \mathrm{H}$ by auto
have $P:(h-u)+(i n t(H)) \in T$ using open＿tr＿open（1）$\langle h-u \in H\rangle$ Top＿2＿L2 sub
by blast
from $\langle h-u \in H\rangle\langle u \in H\rangle h \in H\rangle$ sub have（ $h-u) \in G \quad u \in G h \in G$ by auto
have int $(H) \subseteq G$ using sub intsub by auto moreover
have LeftTranslation（G，f，（h－u））$\in G \rightarrow G$ using group0．group0＿5＿L1（2）group0＿valid＿in＿tgroup〈（h－u）\in G

```
            by auto ultimately
    have LeftTranslation(G,f,(h-u))(int(H))={LeftTranslation(G,f,(h-u))r.
r\inint(H)}
        using func_imagedef by auto moreover
    from \langle(h-u)\inG\rangle\langleu\inG\rangle have LeftTranslation(G,f,(h-u))u=(h-u)+u using
group0.group0_5_L2(2) group0_valid_in_tgroup
        by auto
    with <u\inint(H)\rangle have (h-u)+u\in{LeftTranslation(G,f,(h-u))r. r\inint(H)}
by force ultimately
    have (h-u)+u\in(h-u)+(int(H)) unfolding ltrans_def by auto moreover
    have (h-u)+u=h using group0.inv_cancel_two(1) group0_valid_in_tgroup
                <u\inG}\\textrm{h}\in\textrm{G}\rangle\mathrm{ by auto ultimately
            have h\in(h-u)+(int(H)) by auto
            with P ss have }\exists\textrm{V}\in\textrm{T}.\textrm{h}\in\textrm{V}\wedge\textrm{V}\subseteqH\mathrm{ unfolding Bex_def by auto
    }
    then show thesis using open_neigh_open by auto
qed
```

In conclusion, a subgroup is either open or has empty interior.

```
corollary(in topgroup) emptyInterior_xor_op:
    assumes IsAsubgroup(H,f)
    shows (int(H)=0) Xor (H\inT)
    unfolding Xor_def using clopen_or_emptyInt assms Top_2_L3
    group0.group0_3_L5 group0_valid_in_tgroup by force
```

Then no connected topological groups has proper subgroups with non-empty interior.

```
corollary(in topgroup) connected_emptyInterior:
    assumes IsAsubgroup(H,f) T{is connected}
    shows (int (H)=0) Xor (H=G)
proof-
    have (int(H)=0) Xor (H\inT) using emptyInterior_xor_op assms(1) by auto
moreover
    {
            assume H\inT moreover
            then have H{is closed in}T using open_subgroup_closed assms(1) by
auto ultimately
            have H=OVH=G using assms(2) unfolding IsConnected_def by auto
            then have H=G using group0.group0_3_L5 group0_valid_in_tgroup assms(1)
by auto
    } moreover
    have G\inT using topSpaceAssum unfolding IsATopology_def G_def by auto
    ultimately show thesis unfolding Xor_def by auto
qed
```

Every locally-compact subgroup of a T_{0} group is closed.
theorem (in topgroup) loc_compact_T0_closed:
assumes IsAsubgroup (H,f) (T\{restricted to\}H) \{is locally-compact\} T\{is
T_{0} \}
shows H\{is closed in\}T
proof-
from assms(1) have clsub:IsAsubgroup(cl(H),f) using closure_subgroup by auto
then have subcl:cl(H) $\subseteq G$ using group0.group0_3_L2 group0_valid_in_tgroup by force
from assms(1) have sub:H؟G using group0.group0_3_L2 group0_valid_in_tgroup by force
from assms(3) have $\mathrm{T}\left\{\right.$ is $\left.\mathrm{T}_{2}\right\}$ using T1_imp_T2 neu_closed_imp_T1 T0_imp_neu_closed by auto
then have ($\mathrm{T}\left\{\right.$ restricted to\}H) is $\left.\mathrm{T}_{2}\right\}$ using T 2 _here sub by auto
have tot: \bigcup ($T\{$ restricted to\} H) $=\mathrm{H}$ using sub unfolding RestrictedTo_def by auto
with assms (2) have $\forall x \in H . \exists A \in \operatorname{Pow}(H)$. A \{is compact in\} (T\{restricted to\} H) $\wedge x \in$ Interior (A, (T\{restricted to\}H)) using
topology0.locally_compact_exist_compact_neig[of T\{restricted to\}H]
Top_1_L4 unfolding topology0_def
by auto
 to\}H))
using group0.group0_3_L5 group0_valid_in_tgroup assms(1) unfolding
gzero_def by force
from $K(1,2)$ have $K\{i s$ compact in\} T using compact_subspace_imp_compact by auto
with 〈T\{is $\left.\mathrm{T}_{2}\right\}$ 〉 have $\mathrm{Kcl:K}$ \{is closed in\}T using in_t2_compact_is_cl
by auto
have Interior $(\mathrm{K},(\mathrm{T}\{$ restricted to$\} \mathrm{H})) \in(\mathrm{T}\{$ restricted to\}H) using topology0.Top_2_L2
unfolding topology0_def
using Top_1_L4 by auto
then obtain U where $U: U \in T \operatorname{Interior}(K,(T\{$ restricted to\} $H))=H \cap U$ unfold-
ing RestrictedTo_def by auto
then have $H \cap U \subseteq K$ using topology0.Top_2_L1[of T\{restricted to\}H] un-
folding topology0_def using Top_1_L4 by force
moreover have U2:UভUUK by auto
have ksub: $K \subseteq H$ using tot $K(2)$ unfolding IsCompact_def by auto
ultimately have int: $\mathrm{H} \cap(\mathrm{U} \cup \mathrm{K})=\mathrm{K}$ by auto
from $U(2) K(3)$ have $0 \in U$ by auto
with $U(1)$ U2 have $0 \in \operatorname{int}(U \cup K)$ using Top_2_L6 by auto
then have $U \cup K \in \mathcal{N}_{0}$ unfolding zerohoods_def using $U(1)$ ksub sub by auto
then obtain V where $V: V \subseteq U \cup K ~ V \in \mathcal{N}_{0} \quad V+V \subseteq U \cup K(-V)=V$ using exists_procls_zerohood[of UUK]
by auto
\{
fix h assume AS: $h \in c l(H)$
with clsub have (-h$) \in \mathrm{cl}(\mathrm{H})$ using group0.group0_3_T3A group0_valid_in_tgroup by auto moreover
then have (-h$) \in \mathrm{G}$ using subcl by auto
with $V(2)$ have (-h$) \in \operatorname{int}((-\mathrm{h})+\mathrm{V})$ using elem_in_int_trans by auto ultimately
have $(-h) \in(c l(H)) \cap(\operatorname{int}((-h)+V))$ by auto moreover
have int $((-h)+V) \in T$ using Top_2_L2 by auto moreover
note sub ultimately
have $\mathrm{H} \cap(\operatorname{int}((-\mathrm{h})+\mathrm{V})) \neq 0$ using cl_inter_neigh by auto moreover
from $\langle(-h) \in G\rangle V(2)$ have $\operatorname{int}((-h)+V)=(-h)+i n t(V)$ unfolding zerohoods_def
using trans_interior by force
ultimately have $\mathrm{H} \cap((-\mathrm{h})+\operatorname{int}(\mathrm{V})) \neq 0$ by auto
then obtain y where $y: y \in H y \in(-h)+i n t(V)$ by blast
then obtain v where $v: v \in \operatorname{int}(V) y=(-h)+v$ unfolding ltrans_def LeftTranslation_def
by auto
with $\langle(-h) \in G\rangle V(2) y(1)$ sub have $v \in G(-h) \in G y \in G$ using Top_2_L1[of V]
unfolding zerohoods_def by auto
with $\mathrm{v}(2)$ have ($-(-\mathrm{h})$)+y=v using group0.group0_2_L18(2) group0_valid_in_tgroup
unfolding grop_def grinv_def by auto moreover
have $h \in G$ using AS subcl by auto
then have (-(-h))=h using group0.group_inv_of_inv group0_valid_in_tgroup
by auto ultimately
have $h+y=v$ by auto
with $\mathrm{v}(1)$ have $\mathrm{hyV}: \mathrm{h}+\mathrm{y} \in \operatorname{int}(\mathrm{V})$ by auto
have $y \in c l(H)$ using $y(1) c l _c o n t a i n s _s e t ~ s u b ~ b y ~ a u t o ~$
with AS have hycl:h+ $y \in c l(H)$ using clsub group0.group0_3_L6 group0_valid_in_tgroup
by auto
\{
fix W assume $W: W \in T h+y \in W$
with hyV have $h+y \in \operatorname{int}(V) \cap W$ by auto moreover
from $W(1)$ have int $(V) \cap W \in T$ using Top_2_L2 topSpaceAssum unfold-
ing IsATopology_def by auto moreover
note hycl sub
ultimately have (int $(V) \cap W) \cap H \neq 0$ using cl_inter_neigh[of Hint (V) $\cap W h+y$]
by auto
then have $\mathrm{V} \cap \mathrm{W} \cap \mathrm{H} \neq 0$ using Top_2_L1 by auto
with $V(1)$ have ($U \cup K) \cap W \cap H \neq 0$ by auto
then have $(H \cap(U \cup K)) \cap W \neq 0$ by auto
with int have $\mathrm{K} \cap \mathrm{W} \neq 0$ by auto
\}
then have $\forall \mathrm{W} \in \mathrm{T} . \mathrm{h}+\mathrm{y} \in \mathrm{W} \longrightarrow \mathrm{K} \cap \mathrm{W} \neq 0$ by auto moreover
have $K \subseteq G h+y \in G$ using ksub sub hycl subcl by auto ultimately
have $h+y \in c l(K)$ using inter_neigh_cl[of $K h+y]$ unfolding G_def by force
then have $\mathrm{h}+\mathrm{y} \in \mathrm{K}$ using Kcl Top_3_L8 $\langle\mathrm{K} \subseteq G\rangle$ by auto
with ksub have $h+y \in H$ by auto
moreover from $y(1)$ have (-y) $\in \mathrm{H}$ using group0.group0_3_T3A assms(1)
group0_valid_in_tgroup
by auto
ultimately have ($\mathrm{h}+\mathrm{y}$) $-\mathrm{y} \in \mathrm{H}$ unfolding grsub_def using group0.group0_3_L6
group0_valid_in_tgroup
assms(1) by auto
moreover
have $(-y) \in G$ using $\langle(-y) \in H\rangle$ sub by auto
then have $h+(y-y)=(h+y)-y$ using $\langle y \in G\rangle h \in G\rangle$ group0.group_oper_assoc
group0_valid_in_tgroup unfolding grsub_def by auto
then have $\mathrm{h}+0=(\mathrm{h}+\mathrm{y})$-y using group0.group0_2_L6 group0_valid_in_tgroup $\langle\mathrm{y} \in \mathrm{G}\rangle$
unfolding grsub_def grinv_def grop_def gzero_def by auto
then have $\mathrm{h}=(\mathrm{h}+\mathrm{y})$-y using group0.group0_2_L2 group0_valid_in_tgroup $\langle\mathrm{h} \in \mathrm{G}\rangle$ unfolding gzero_def by auto ultimately have $h \in H$ by auto
\}
then have $\mathrm{cl}(\mathrm{H}) \subseteq \mathrm{H}$ by auto
then have $H=c l(H)$ using cl_contains_set sub by auto
then show thesis using Top_3_L8 sub by auto
qed
We can always consider a factor group which is T_{2}.

```
theorem(in topgroup) factor_haus:
    shows (T{quotient by}QuotientGroupRel(G,f,cl({0}))){is T T }
proof-
    let r=QuotientGroupRel(G,f,cl({0}))
    let f=QuotientGroupOp(G,f,cl({0}))
    let i=GroupInv(G//r,f)
    have IsAnormalSubgroup(G,f,{0}) using group0.trivial_normal_subgroup
Ggroup unfolding group0_def
            by auto
    then have normal:IsAnormalSubgroup(G,f,cl({0})) using normal_subg by
auto
    then have eq:equiv(UT,r) using group0.Group_ZF_2_4_L3[OF group0_valid_in_tgroup]
            unfolding IsAnormalSubgroup_def by auto
    then have tot: \ (T{quotient by}r)=G//r using total_quo_equi by auto
    have neu:r{0}=TheNeutralElement(G//r,f) using Group_ZF_2_4_L5B[OF Ggroup
normal] by auto
    then have r{0}\inG//r using group0.group0_2_L2 Group_ZF_2_4_T1[OF Ggroup
normal] unfolding group0_def by auto
    then have sub1:{r{0}}\subseteqG//r by auto
    then have sub:{r{0}}\subseteq\bigcup(T{quotient by}r) using tot by auto
    have zG:0\in\T using group0.group0_2_L2[OF group0_valid_in_tgroup] by
auto
    from zG have cla:r{0}\inG//r unfolding quotient_def by auto
    let }\textrm{x}=\textrm{G}//\textrm{r}-{r{0}
    {
        fix s assume A:s\in\ (G//r-{r{0}})
        then obtain U where s\inU U\inG//r-{r{0}} by auto
        then have U\inG//r U\not=r{0} s\inU by auto
        then have U\inG//r s\inU s\not\inr{0} using cla quotient_disj[OF eq] by auto
        then have s\in\ (G//r)-r{0} by auto
    }
    moreover
    {
        fix s assume A:s\in\bigcup (G//r)-r{0}
        then obtain U where s\inU U\inG//r s\not\inr{0} by auto
```

```
        then have s\inU U\inG//r-{r{0}} by auto
        then have s\inU (G//r-{r{0}}) by auto
    }
    ultimately have U(G//r-{r{0}})=U(G//r)-r{0} by auto
    then have A:U(G//r-{r{0}})=G-r{0} using Union_quotient eq by auto
    {
        fix s assume A:s\inr{0}
        then have }\langle0,\textrm{s}\rangle\in\textrm{r}\mathrm{ by auto
    then have }\langle\textrm{s},0\rangle\in\textrm{r}\mathrm{ using eq unfolding equiv_def sym_def by auto
    then have s\incl({0}) using group0.Group_ZF_2_4_L5C[OF group0_valid_in_tgroup]
unfolding QuotientGroupRel_def by auto
    }
    moreover
    {
        fix s assume A:s\incl({0})
        then have s\inG using Top_3_L11(1) zG by auto
        then have \langles,0\rangle\inr using group0.Group_ZF_2_4_L5C[OF group0_valid_in_tgroup]
A by auto
            then have }\langle0,\textrm{s}\rangle\in\textrm{r}\mathrm{ using eq unfolding equiv_def sym_def by auto
            then have s\inr{0} by auto
    }
    ultimately have r{0}=cl({0}) by blast
    with A have U (G//r-{r{0}})=G-cl({0}) by auto
    moreover have cl({0}){is closed in}T using cl_is_closed zG by auto
    ultimately have U(G//r-{r{0}})\inT unfolding IsClosed_def by auto
    then have (G//r-{r{0}})\in{quotient by}r using quotient_equiv_rel eq
by auto
    then have (U(T{quotient by}r)-{r{0}})\in{quotient by}r using total_quo_equi[OF
eq] by auto
    moreover from sub1 have {r{0}}\subseteq(U(T{quotient by}r)) using total_quo_equi[0F
eq] by auto
    ultimately have {r{0}}{is closed in}(T{quotient by}r) unfolding IsClosed_def
by auto
    then have {TheNeutralElement(G//r,f)}{is closed in}(T{quotient by}r)
using neu by auto
    then have (T{quotient by}r){is }\mp@subsup{\textrm{T}}{1}{}}\mathrm{ using topgroup.neu_closed_imp_T1[0F
topGroupLocale[OF quotient_top_group[OF normal]]]
        total_quo_equi[0F eq] by auto
    then show thesis using topgroup.T1_imp_T2[OF topGroupLocale[OF quotient_top_group[OF
normal]j] by auto
qed
```

end

72 Metamath introduction

theory MMI_prelude imports Order_ZF_1

begin

Metamath's set.mm features a large (over 8000) collection of theorems proven in the ZFC set theory. This theory is part of an attempt to translate those theorems to Isar so that they are available for Isabelle/ZF users. A total of about 1200 assertions have been translated, 600 of that with proofs (the rest was proven automatically by Isabelle). The translation was done with the support of the mmisar tool, whose source is included in the IsarMathLib distributions prior to version 1.6.4. The translation tool was doing about 99 percent of work involved, with the rest mostly related to the difference between Isabelle/ZF and Metamath metalogics. Metamath uses Tarski-Megill metalogic that does not have a notion of bound variables (see http://planetx.cc.vt.edu/AsteroidMeta/Distinctors_vs_binders for details and discussion). The translation project is closed now as I decided that it was too boring and tedious even with the support of mmisar software. Also, the translated proofs are not as readable as native Isar proofs which goes against IsarMathLib philosophy.

72.1 Importing from Metamath - how is it done

We are interested in importing the theorems about complex numbers that start from the "recnt" theorem on. This is done mostly automatically by the mmisar tool that is included in the IsarMathLib distributions prior to version 1.6.4. The tool works as follows:
First it reads the list of (Metamath) names of theorems that are already imported to IsarMathlib ("known theorems") and the list of theorems that are intended to be imported in this session ("new theorems"). The new theorems are consecutive theorems about complex numbers as they appear in the Metamath database. Then mmisar creates a "Metamath script" that contains Metamath commands that open a log file and put the statements and proofs of the new theorems in that file in a readable format. The tool writes this script to a disk file and executes metamath with standard input redirected from that file. Then the log file is read and its contents converted to the Isar format. In Metamath, the proofs of theorems about complex numbers depend only on 28 axioms of complex numbers and some basic logic and set theory theorems. The tool finds which of these dependencies are not known yet and repeats the process of getting their statements from Metamath as with the new theorems. As a result of this process mmisar creates files new_theorems.thy, new_deps.thy and new_known_theorems.txt. The file new_theorems.thy contains the theorems (with proofs) imported from Metamath in this session. These theorems are added (by hand) to the current MMI_Complex_ZF_x.thy file. The file new_deps.thy contains the statements of new dependencies with generic proofs "by auto". These are added to the MMI_logic_and_sets.thy. Most of the dependencies can be proven au-
tomatically by Isabelle. However, some manual work has to be done for the dependencies that Isabelle can not prove by itself and to correct problems related to the fact that Metamath uses a metalogic based on distinct variable constraints (Tarski-Megill metalogic), rather than an explicit notion of free and bound variables.
The old list of known theorems is replaced by the new list and mmisar is ready to convert the next batch of new theorems. Of course this rarely works in practice without tweaking the mmisar source files every time a new batch is processed.

72.2 The context for Metamath theorems

We list the Metamth's axioms of complex numbers and define notation here.
The next definition is what Metamath $X \in V$ is translated to. I am not sure why it works, probably because Isabelle does a type inference and the $"="$ sign indicates that both sides are sets.

```
definition
    IsASet :: i }=>0\mathrm{ (_ isASet [90] 90) where
    IsASet_def[simp]: X isASet \equiv X = X
```

The next locale sets up the context to which Metamath theorems about complex numbers are imported. It assumes the axioms of complex numbers and defines the notation used for complex numbers.
One of the problems with importing theorems from Metamath is that Metamath allows direct infix notation for binary operations so that the notation $a f b$ is allowed where f is a function (that is, a set of pairs). To my knowledge, Isar allows only notation $f\langle a, b\rangle$ with a possibility of defining a syntax say $a+b$ to mean the same as $f\langle a, b\rangle$ (please correct me if I am wrong here). This is why we have two objects for addition: one called caddset that represents the binary function, and the second one called ca which defines the $\mathrm{a}+\mathrm{b}$ notation for caddset $\langle\mathrm{a}, \mathrm{b}\rangle$. The same applies to multiplication of real numbers.
Another difficulty is that Metamath allows to define sets with syntax $\{x \mid p\}$ where p is some formula that (usually) depends on x. Isabelle allows the set comprehension like this only as a subset of another set i.e. $\{x \in A . p(x)\}$. This forces us to have a sligtly different definition of (complex) natural numbers, requiring explicitly that natural numbers is a subset of reals. Because of that, the proofs of Metamath theorems that reference the definition directly can not be imported.

```
locale MMIsar0 =
    fixes real (\mathbb{R})
    fixes complex (\mathbb{C}
```

```
fixes one (1)
fixes zero (0)
fixes iunit (i)
fixes caddset (+)
fixes cmulset (.)
fixes lessrrel ( \(<_{\mathbb{R}}\) )
fixes ca (infixl + 69)
defines ca_def: \(\mathrm{a}+\mathrm{b} \equiv+\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes cm (infixl • 71)
defines cm_def: \(\mathrm{a} \cdot \mathrm{b} \equiv \cdot\langle\mathrm{a}, \mathrm{b}\rangle\)
fixes sub (infixl - 69)
defines sub_def: \(\mathrm{a}-\mathrm{b} \equiv \bigcup\{\mathrm{x} \in \mathbb{C} . \mathrm{b}+\mathrm{x}=\mathrm{a}\}\)
fixes cneg (-_ 95)
defines cneg_def: - a \(\equiv \mathbf{0}\) - a
fixes cdiv (infixl / 70)
defines cdiv_def: \(\mathrm{a} / \mathrm{b} \equiv \bigcup\{\mathrm{x} \in \mathbb{C} . \mathrm{b} \cdot \mathrm{x}=\mathrm{a}\}\)
fixes cpnf ( \(+\infty\) )
defines cpnf_def: \(+\infty \equiv \mathbb{C}\)
fixes cmnf ( \(-\infty\) )
defines cmnf_def: \(-\infty \equiv\{\mathbb{C}\}\)
fixes \(\operatorname{cxr}\left(\mathbb{R}^{*}\right)\)
defines cxr_def: \(\mathbb{R}^{*} \equiv \mathbb{R} \cup\{+\infty,-\infty\}\)
fixes \(\operatorname{cxn}(\mathbb{N})\)
defines cxn_def: \(\mathbb{N} \equiv \bigcap\{\mathrm{N} \in \operatorname{Pow}(\mathbb{R}) . \mathbf{1} \in \mathrm{N} \wedge(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow \mathrm{n}+\mathbf{1} \in \mathrm{N})\}\)
fixes lessr (infix \(<_{\mathbb{R}} 68\) )
defines lessr_def: \(\mathrm{a}<_{\mathbb{R}} \mathrm{b} \equiv\langle\mathrm{a}, \mathrm{b}\rangle \in<_{\mathbb{R}}\)
fixes cltrrset (<)
defines cltrrset_def:
\(<\equiv\left(<_{\mathbb{R}} \cap \mathbb{R} \times \mathbb{R}\right) \cup\{\langle-\infty,+\infty\rangle\} \cup\)
\((\mathbb{R} \times\{+\infty\}) \cup(\{-\infty\} \times \mathbb{R})\)
fixes cltrr (infix < 68)
defines cltrr_def: \(\mathrm{a}<\mathrm{b} \equiv\langle\mathrm{a}, \mathrm{b}\rangle \in<\)
fixes convcltrr (infix > 68)
defines convcltrr_def: \(\mathrm{a}>\mathrm{b} \equiv\langle\mathrm{a}, \mathrm{b}\rangle \in\) converse( \(<\) )
fixes lsq (infix \(\leq 68\) )
defines lsq_def: \(\mathrm{a} \leq \mathrm{b} \equiv \neg(\mathrm{b}<\mathrm{a})\)
fixes two (2)
defines two_def: \(2 \equiv 1+1\)
fixes three (3)
defines three_def: \(3 \equiv 2+1\)
fixes four (4)
defines four_def: \(4 \equiv 3+1\)
fixes five (5)
defines five_def: \(5 \equiv \mathbf{4 + 1}\)
fixes six (6)
defines six_def: \(6 \equiv 5+1\)
fixes seven (7)
defines seven_def: \(\mathbf{7} \equiv \mathbf{6 + 1}\)
```

```
fixes eight (8)
```

defines eight_def: $\mathbf{8} \equiv \mathbf{7 + 1}$
fixes nine (9)
defines nine_def: $9 \equiv 8+1$
assumes MMI_pre_axlttri:
$A \in \mathbb{R} \wedge B \in \mathbb{R} \longrightarrow\left(A \ll_{\mathbb{R}} B \longleftrightarrow \neg\left(A=B \vee B<_{\mathbb{R}} A\right)\right)$
assumes MMI_pre_axlttrn:
$A \in \mathbb{R} \wedge B \in \mathbb{R} \wedge C \in \mathbb{R} \longrightarrow\left(\left(A<_{\mathbb{R}} B \wedge B<\mathbb{R} C\right) \longrightarrow A<\mathbb{R} C\right)$
assumes MMI_pre_axltadd:
$A \in \mathbb{R} \wedge B \in \mathbb{R} \wedge C \in \mathbb{R} \longrightarrow\left(A<_{\mathbb{R}} B \longrightarrow C+A<\mathbb{R} C+B\right)$
assumes MMI_pre_axmulgt0:
$A \in \mathbb{R} \wedge B \in \mathbb{R} \longrightarrow\left(\mathbf{0}<_{\mathbb{R}} A \wedge \mathbf{0}<_{\mathbb{R}} B \longrightarrow \mathbf{0}<_{\mathbb{R}} A \cdot B\right)$
assumes MMI_pre_axsup:
$A \subseteq \mathbb{R} \wedge \mathrm{~A} \neq 0 \wedge\left(\exists \mathrm{x} \in \mathbb{R} . \forall \mathrm{y} \in \mathrm{A} . \mathrm{y}<_{\mathbb{R}} \mathrm{x}\right) \longrightarrow$
$\left(\exists \mathrm{x} \in \mathbb{R} .\left(\forall \mathrm{y} \in \mathrm{A} . \neg\left(\mathrm{x}<_{\mathbb{R}} \mathrm{y}\right)\right) \wedge\left(\forall \mathrm{y} \in \mathbb{R} .\left(\mathrm{y}<_{\mathbb{R}} \mathrm{x} \longrightarrow\left(\exists \mathrm{z} \in \mathrm{A} . \mathrm{y}<_{\mathbb{R}} \mathrm{z}\right)\right)\right)\right)$
assumes MMI_axresscn: $\mathbb{R} \subseteq \mathbb{C}$
assumes MMI_ax1ne0: $\mathbf{1} \neq \mathbf{0}$
assumes MMI_axcnex: \mathbb{C} isASet
assumes MMI_axaddopr: $+:(\mathbb{C} \times \mathbb{C}) \rightarrow \mathbb{C}$
assumes MMI_axmulopr: $\cdot:(\mathbb{C} \times \mathbb{C}) \rightarrow \mathbb{C}$
assumes MMI_axmulcom: $\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C} \longrightarrow \mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A}$
assumes MMI_axaddcl: $A \in \mathbb{C} \wedge B \in \mathbb{C} \longrightarrow A+B \in \mathbb{C}$
assumes MMI_axmulcl: $A \in \mathbb{C} \wedge B \in \mathbb{C} \longrightarrow A \cdot B \in \mathbb{C}$
assumes MMI_axdistr:
$A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C} \longrightarrow A \cdot(B+C)=A \cdot B+A \cdot C$
assumes MMI_axaddcom: $A \in \mathbb{C} \wedge B \in \mathbb{C} \longrightarrow A+B=B+A$
assumes MMI_axaddass:
$A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C} \longrightarrow A+B+C=A+(B+C)$
assumes MMI_axmulass:
$A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C} \longrightarrow A \cdot B \cdot C=A \cdot(B \cdot C)$
assumes MMI_ax1re: $1 \in \mathbb{R}$
assumes MMI_axi2m1: i $\cdot \mathrm{i}+\mathbf{1}=\mathbf{0}$
assumes MMI_ax0id: $\mathrm{A} \in \mathbb{C} \longrightarrow \mathrm{A}+\mathbf{0}=\mathrm{A}$
assumes MMI_axicn: $i \in \mathbb{C}$
assumes MMI_axnegex: $A \in \mathbb{C} \longrightarrow(\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=0)$
assumes MMI_axrecex: $A \in \mathbb{C} \wedge A \neq 0 \longrightarrow(\exists \mathrm{x} \in \mathbb{C} \cdot \mathrm{A} \cdot \mathrm{x}=1)$
assumes MMI_ax1id: $\mathrm{A} \in \mathbb{C} \longrightarrow \mathrm{A} \cdot \mathbf{1}=\mathrm{A}$
assumes MMI_axaddrcl: $A \in \mathbb{R} \wedge B \in \mathbb{R} \longrightarrow A+B \in \mathbb{R}$
assumes MMI_axmulrcl: $A \in \mathbb{R} \wedge B \in \mathbb{R} \longrightarrow A \cdot B \in \mathbb{R}$
assumes MMI_axrnegex: $A \in \mathbb{R} \longrightarrow(\exists \mathrm{x} \in \mathbb{R} . \mathrm{A}+\mathrm{x}=0)$
assumes MMI_axrrecex: $A \in \mathbb{R} \wedge A \neq 0 \longrightarrow(\exists \mathrm{x} \in \mathbb{R} . \mathrm{A} \cdot \mathrm{x}=1)$
end

73 Logic and sets in Metamatah

theory MMI_logic_and_sets imports MMI_prelude

begin

73.1 Basic Metamath theorems

This section contains Metamath theorems that the more advanced theorems from MMIsar.thy depend on. Most of these theorems are proven automatically by Isabelle, some have to be proven by hand and some have to be modified to convert from Tarski-Megill metalogic used by Metamath to one based on explicit notion of free and bound variables.

```
lemma MMI_ax_mp: assumes \(\varphi\) and \(\varphi \longrightarrow \psi\) shows \(\psi\)
    using assms by auto
lemma MMI_sseli: assumes A1: A \(\subseteq\) B
    shows \(C \in A \longrightarrow C \in B\)
    using assms by auto
lemma MMI_sselii: assumes A1: \(\mathrm{A} \subseteq \mathrm{B}\) and
        A2: \(C \in A\)
        shows \(C \in B\)
    using assms by auto
lemma MMI_syl: assumes A1: \(\varphi \longrightarrow\) ps and
        A2: ps \(\longrightarrow \mathrm{ch}\)
        shows \(\varphi \longrightarrow\) ch
        using assms by auto
lemma MMI_elimhyp: assumes A1: A \(=\operatorname{if}(\varphi, \mathrm{A}, \mathrm{B}) \longrightarrow(\varphi \longleftrightarrow \psi)\)
and
        A2: \(\mathrm{B}=\operatorname{if}(\varphi, \mathrm{A}, \mathrm{B}) \longrightarrow(\mathrm{ch} \longleftrightarrow \psi)\) and
        A3: ch
        shows \(\psi\)
proof -
    \{ assume \(\varphi\)
        with A1 have \(\psi\) by simp \}
    moreover
    \{ assume \(\neg \varphi\)
        with A2 A3 have \(\psi\) by simp \(\}\)
    ultimately show \(\psi\) by auto
qed
lemma MMI_neeq1:
        shows \(A=B \longrightarrow(A \neq C \longleftrightarrow B \neq C)\)
    by auto
lemma MMI_mp2: assumes A1: \(\varphi\) and
    A2: \(\psi\) and
    A3: \(\varphi \longrightarrow(\psi \longrightarrow\) chi \()\)
```

```
    shows chi
    using assms by auto
lemma MMI_xpex: assumes A1: A isASet and
    A2: B isASet
    shows ( A > B ) isASet
    using assms by auto
lemma MMI_fex:
    shows
    A C C \longrightarrow ( F : A B B \longrightarrow F isASet )
    A isASet }\longrightarrow(F:A H B \longrightarrowF isASet 
    by auto
lemma MMI_3eqtr4d: assumes A1: \varphi \longrightarrow A = B and
        A2: \varphi\longrightarrowC = A and
        A3: \varphi\longrightarrowD = B
        shows \varphi\longrightarrowC=D
        using assms by auto
lemma MMI_3coml: assumes A1: ( }\varphi\wedge\psi\wedge chi ) \longrightarrow th
    shows ( \psi ^ chi ^\varphi ) \longrightarrow th
    using assms by auto
lemma MMI_sylan: assumes A1: ( }\varphi\wedge\psi)\longrightarrow\mathrm{ chi and
        A2: th \longrightarrow}
        shows ( th }\wedge\psi) \longrightarrow ch
        using assms by auto
lemma MMI_3impa: assumes A1: ( ( }\varphi\wedge\psi)\wedge chi ) \longrightarrow th
    shows ( }\varphi\wedge\psi\wedge chi ) \longrightarrow th
    using assms by auto
lemma MMI_3adant2: assumes A1: ( }\varphi\wedge\psi)\longrightarrow\mathrm{ chi
    shows ( }\varphi\wedge\mathrm{ th }\wedge\psi)\longrightarrow\mathrm{ chi
    using assms by auto
lemma MMI_3adant1: assumes A1: ( }\varphi\wedge\psi) \longrightarrow ch
    shows ( th }\wedge\varphi\wedge\psi)\longrightarrowch
    using assms by auto
lemma (in MMIsar0) MMI_opreq12d: assumes A1: \varphi }\longrightarrow\textrm{A}=\textrm{B}\mathrm{ and
        A2: \varphi C C = D
        shows
    \varphi\longrightarrow(A+C)=( B + D )
    \varphi\longrightarrow(A C C) = ( B | D )
    \varphi\longrightarrow(A-C)=( B - D )
    \varphi\longrightarrow(A/C ) = ( B / D )
    using assms by auto
```

lemma MMI_mp2an: assumes A1: φ and A2: ψ and A3: $(\varphi \wedge \psi) \longrightarrow \mathrm{chi}$
shows chi using assms by auto
lemma MMI_mp3an: assumes A1: φ and A2: ψ and
A3: ch and
A4: $(\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$
shows ϑ
using assms by auto
lemma MMI_eqeltrr: assumes A1: A = B and A2: $A \in C$ shows $B \in C$ using assms by auto
lemma MMI_eqtr: assumes $A 1: A=B$ and A2: $B=C$ shows $A=C$ using assms by auto
lemma MMI_impbi: assumes A1: $\varphi \longrightarrow \psi$ and
A2: $\psi \longrightarrow \varphi$
shows $\varphi \longleftrightarrow \psi$
proof
assume φ with A1 show ψ by simp
next
assume ψ with A2 show φ by simp
qed
lemma MMI_mp3an3: assumes A1: ch and A2: $(\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$
shows $(\varphi \wedge \psi) \longrightarrow \vartheta$
using assms by auto
lemma MMI_eqeq12d: assumes $A 1: \varphi \longrightarrow A=B$ and A2: $\varphi \longrightarrow \mathrm{C}=\mathrm{D}$
shows $\varphi \longrightarrow(\mathrm{A}=\mathrm{C} \longleftrightarrow \mathrm{B}=\mathrm{D})$
using assms by auto
lemma MMI_mpan2: assumes A1: ψ and A2: $(\varphi \wedge \psi) \longrightarrow \mathrm{ch}$
shows $\varphi \longrightarrow$ ch using assms by auto

```
lemma (in MMIsar0) MMI_opreq2:
        shows
    \(A=B \longrightarrow(C+A)=(C+B)\)
    \(\mathrm{A}=\mathrm{B} \longrightarrow(\mathrm{C} \cdot \mathrm{A})=(\mathrm{C} \cdot \mathrm{B})\)
    \(A=B \longrightarrow(C-A)=(C-B)\)
    \(A=B \longrightarrow(C / A)=(C / B)\)
    by auto
lemma MMI_syl5bir: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
    A2: \(\vartheta \longrightarrow \mathrm{ch}\)
    shows \(\varphi \longrightarrow(\vartheta \longrightarrow \psi)\)
    using assms by auto
lemma MMI_adantr: assumes A1: \(\varphi \longrightarrow \psi\)
    shows ( \(\varphi \wedge \mathrm{ch}) \longrightarrow \psi\)
    using assms by auto
lemma MMI_mpan: assumes A1: \(\varphi\) and
    A2: \((\varphi \wedge \psi) \longrightarrow \mathrm{ch}\)
    shows \(\psi \longrightarrow\) ch
    using assms by auto
lemma MMI_eqeq1d: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\)
    shows \(\varphi \longrightarrow(A=C \longleftrightarrow B=C)\)
    using assms by auto
lemma (in MMIsar0) MMI_opreq1:
    shows
    \(\mathrm{A}=\mathrm{B} \longrightarrow(\mathrm{A} \cdot \mathrm{C})=(\mathrm{B} \cdot \mathrm{C})\)
    \(A=B \longrightarrow(A+C)=(B+C)\)
    \(A=B \longrightarrow(A-C)=(B-C)\)
    \(A=B \longrightarrow(A / C)=(B / C)\)
    by auto
lemma MMI_syl6eq: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\) and
        A2: \(\mathrm{B}=\mathrm{C}\)
        shows \(\varphi \longrightarrow \mathrm{A}=\mathrm{C}\)
        using assms by auto
lemma MMI_syl6bi: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow c h)\) and
        A2: ch \(\longrightarrow \vartheta\)
        shows \(\varphi \longrightarrow(\psi \longrightarrow \vartheta)\)
        using assms by auto
lemma MMI_imp: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch \()\)
    shows \((\varphi \wedge \psi) \longrightarrow c h\)
    using assms by auto
```

```
lemma MMI_sylibd: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch ) and
        A2: \(\varphi \longrightarrow(\mathrm{ch} \longleftrightarrow \vartheta)\)
    shows \(\varphi \longrightarrow(\psi \longrightarrow \vartheta)\)
    using assms by auto
lemma MMI_ex: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch
    shows \(\varphi \longrightarrow(\psi \longrightarrow\) ch \()\)
    using assms by auto
lemma MMI_r19_23aiv: assumes A1: \(\forall x . \quad(x \in A \longrightarrow(\varphi(x) \longrightarrow \psi))\)
    shows ( \(\exists \mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\) ) \(\longrightarrow \psi\)
    using assms by auto
lemma MMI_bitr: assumes A1: \(\varphi \longleftrightarrow \psi\) and
        A2: \(\psi \longleftrightarrow \mathrm{ch}\)
        shows \(\varphi \longleftrightarrow\) ch
    using assms by auto
lemma MMI_eqeq12i: assumes A1: \(A=B\) and
        A2: \(C=D\)
        shows \(A=C \longleftrightarrow B=D\)
        using assms by auto
lemma MMI_dedth3h:
    assumes A1: A \(=\) if ( \(\varphi, \mathrm{A}, \mathrm{D}) \longrightarrow(\vartheta \longleftrightarrow\) ta \()\) and
        A2: B = if \((\psi, \mathrm{B}, \mathrm{R}) \longrightarrow(\mathrm{ta} \longleftrightarrow\) et \()\) and
        A3: C = if ( ch , C , S ) \(\longrightarrow(\) et \(\longleftrightarrow\) ze ) and
        A4: ze
        shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\)
        using assms by auto
lemma MMI_bibi1d: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\)
    shows \(\varphi \longrightarrow((\psi \longleftrightarrow \vartheta) \longleftrightarrow(c h \longleftrightarrow \vartheta))\)
    using assms by auto
lemma MMI_eqeq1:
    shows \(A=B \longrightarrow(A=C \longleftrightarrow B=C)\)
    by auto
lemma MMI_bibi12d: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow c h)\) and
        A2: \(\varphi \longrightarrow(\vartheta \longleftrightarrow\) ta \()\)
        shows \(\varphi \longrightarrow((\psi \longleftrightarrow \vartheta) \longleftrightarrow(\mathrm{ch} \longleftrightarrow\) ta \())\)
        using assms by auto
lemma MMI_eqeq2d: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\)
        shows \(\varphi \longrightarrow(C=A \longleftrightarrow C=B)\)
        using assms by auto
lemma MMI_eqeq2:
```

```
    shows A = B \longrightarrow ( C = A \longleftrightarrowC = B )
    by auto
lemma MMI_elimel: assumes A1: B \in C
    shows if ( A \inC , A , B ) \in C
    using assms by auto
lemma MMI_3adant3: assumes A1: ( }\varphi\wedge\psi)\longrightarrow\mathrm{ ch
    shows ( }\varphi\wedge\psi\wedge\vartheta) \longrightarrow c
    using assms by auto
lemma MMI_bitr3d: assumes A1: \varphi \longrightarrow ( \psi \longleftrightarrow ch ) and
    A2: \varphi\longrightarrow(\psi\longleftrightarrow\vartheta)
    shows \varphi\longrightarrow( ch \longleftrightarrow\vartheta )
    using assms by auto
lemma MMI_3eqtr3d: assumes A1: \varphi\longrightarrowA = B and
    A2: \varphi\longrightarrowA = C and
    A3: \varphi \longrightarrow B = D
    shows \varphi\longrightarrowC = D
    using assms by auto
lemma (in MMIsar0) MMI_opreq1d: assumes A1: \varphi }\longrightarrow\textrm{A}=\textrm{B
    shows
    \varphi\longrightarrow(A+C)=( B + C )
    \varphi\longrightarrow( A - C ) = ( B - C )
    \varphi\longrightarrow( A C C ) = ( B | C )
    \varphi\longrightarrow(A/C ) = ( B / C )
    using assms by auto
lemma MMI_3com12: assumes A1: ( }\varphi\wedge\psi\wedge ch ) \longrightarrow \vartheta
    shows ( }\psi\wedge\varphi\wedgech ) \longrightarrow
    using assms by auto
lemma (in MMIsar0) MMI_opreq2d: assumes A1: \varphi \longrightarrow A = B
    shows
    \varphi\longrightarrow(C + A ) = ( C + B )
    \varphi\longrightarrow(C-A ) = ( C - B )
    \varphi\longrightarrow(C.A )=(C. B )
    \varphi\longrightarrow(C / A ) = ( C / B )
    using assms by auto
lemma MMI_3com23: assumes A1: ( }\varphi\wedge\psi\wedge ch ) \longrightarrow
    shows ( }\varphi\wedge\mathrm{ ch }\wedge\psi)\longrightarrow
    using assms by auto
lemma MMI_3expa: assumes A1: ( }\varphi\wedge\psi\wedge ch ) \longrightarrow \
```

```
    shows ( ( }\varphi\wedge\psi)^ch) \longrightarrow
    using assms by auto
lemma MMI_adantrr: assumes A1: ( }\varphi\wedge\psi)\longrightarrowc
    shows (\varphi\wedge (\psi\wedge\vartheta) ) \longrightarrowch
    using assms by auto
lemma MMI_3expb: assumes A1: ( }\varphi\wedge\psi\wedge ch ) \longrightarrow
    shows ( }\varphi\wedge(\psi\wedgech)) \longrightarrow
    using assms by auto
lemma MMI_an4s: assumes A1: ( ( }\varphi\wedge\psi) ^(ch ^\vartheta) ) \longrightarrow < <
    shows (( }\varphi\wedge\textrm{ch})\wedge(\psi\wedge\vartheta))\longrightarrow
    using assms by auto
lemma MMI_eqtrd: assumes A1: \varphi \longrightarrow A = B and
    A2: \varphi\longrightarrow B = C
    shows \varphi\longrightarrow A = C
    using assms by auto
lemma MMI_ad2ant2l: assumes A1: ( }\varphi\wedge\psi)\longrightarrow\mathrm{ ch
    shows ( ( \vartheta ^\varphi ) ^( \tau ^\psi ) ) \longrightarrow ch
    using assms by auto
lemma MMI_pm3_2i: assumes A1: \varphi and
        A2: \psi
    shows }\varphi\wedge
    using assms by auto
lemma (in MMIsar0) MMI_opreq2i: assumes A1: A = B
    shows
    (C + A ) = ( C + B )
    (C-A ) = ( C - B )
    ( C . A ) = ( C · B )
    using assms by auto
lemma MMI_mpbir2an: assumes A1: \varphi \longleftrightarrow( \psi^ ch ) and
    A2: }\psi\mathrm{ and
    A3: ch
    shows \varphi
    using assms by auto
lemma MMI_reu4: assumes A1: }\forall\textrm{x y. x = y }\longrightarrow(\varphi(\textrm{x})\longleftrightarrow\psi(\textrm{y})
    shows ( }\exists\textrm{!}\textrm{x}.\textrm{x}\in\textrm{A}\wedge\varphi(\textrm{x}))
    ( ( \exists x f A . \varphi(x) ) ^( }\forall\textrm{x}\in\textrm{A}|.|\textrm{y}\in\textrm{A}
    (( }\varphi(\textrm{x})\wedge\psi(\textrm{y}))\longrightarrow\textrm{x}=\textrm{y})) 
    using assms by auto
```

```
lemma MMI_risset:
    shows \(A \in B \longleftrightarrow(\exists x \in B . x=A)\)
    by auto
lemma MMI_sylib: assumes A1: \(\varphi \longrightarrow \psi\) and
        A2: \(\psi \longleftrightarrow \mathrm{ch}\)
    shows \(\varphi \longrightarrow\) ch
    using assms by auto
lemma MMI_mp3an13: assumes A1: \(\varphi\) and
    A2: ch and
    A3: \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\)
    shows \(\psi \longrightarrow \vartheta\)
    using assms by auto
lemma MMI_eqcomd: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\)
    shows \(\varphi \longrightarrow \mathrm{B}=\mathrm{A}\)
    using assms by auto
lemma MMI_sylan9eqr: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\) and
    A2: \(\psi \longrightarrow \mathrm{B}=\mathrm{C}\)
    shows \((\psi \wedge \varphi) \longrightarrow \mathrm{A}=\mathrm{C}\)
    using assms by auto
lemma MMI_exp32: assumes A1: \((\varphi \wedge(\psi \wedge c h)) \longrightarrow \vartheta\)
    shows \(\varphi \longrightarrow(\psi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta))\)
    using assms by auto
lemma MMI_impcom: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch \()\)
    shows \((\psi \wedge \varphi) \longrightarrow c h\)
    using assms by auto
lemma MMI_a1d: assumes A1: \(\varphi \longrightarrow \psi\)
    shows \(\varphi \longrightarrow(\mathrm{ch} \longrightarrow \psi)\)
    using assms by auto
lemma MMI_r19_21aiv: assumes A1: \(\forall \mathrm{x} . \varphi \longrightarrow(\mathrm{x} \in \mathrm{A} \longrightarrow \psi(\mathrm{x}))\)
    shows \(\varphi \longrightarrow(\forall \mathrm{x} \in \mathrm{A} \cdot \psi(\mathrm{x}))\)
    using assms by auto
lemma MMI_r19_22:
    shows \((\forall \mathrm{x} \in \mathrm{A} .(\varphi(\mathrm{x}) \longrightarrow \psi(\mathrm{x}))) \longrightarrow\)
    \(((\exists \mathrm{x} \in \mathrm{A} \cdot \varphi(\mathrm{x})) \longrightarrow(\exists \mathrm{x} \in \mathrm{A} \cdot \psi(\mathrm{x})))\)
    by auto
lemma MMI_syl6: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch ) and
        A2: \(\mathrm{ch} \longrightarrow \vartheta\)
        shows \(\varphi \longrightarrow(\psi \longrightarrow \vartheta)\)
```

using assms by auto
lemma MMI_mpid: assumes A1: $\varphi \longrightarrow \mathrm{ch}$ and
A2: $\varphi \longrightarrow(\psi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta))$
shows $\varphi \longrightarrow(\psi \longrightarrow \vartheta)$
using assms by auto
lemma MMI_eqtr3t:
shows $(A=C \wedge B=C) \longrightarrow A=B$
by auto
lemma MMI_syl5bi: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow c h)$ and A2: $\vartheta \longrightarrow \psi$
shows $\varphi \longrightarrow(\vartheta \longrightarrow$ ch $)$ using assms by auto
lemma MMI_mp3an1: assumes A1: φ and A2: $(\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$
shows $(\psi \wedge \mathrm{ch}) \longrightarrow \vartheta$
using assms by auto
lemma MMI_rgen2: assumes A1: $\forall x y .(x \in A \wedge y \in A) \longrightarrow \varphi(x, y)$ shows $\forall \mathrm{x} \in \mathrm{A} . \forall \mathrm{y} \in \mathrm{A} . \varphi(\mathrm{x}, \mathrm{y})$
using assms by auto
lemma MMI_ax_17: shows $\varphi \longrightarrow(\forall \mathrm{x} . \varphi)$ by simp
lemma MMI_3eqtr 4 g : assumes $\mathrm{A} 1: \varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and
A2: $\mathrm{C}=\mathrm{A}$ and
A3: $D=B$
shows $\varphi \longrightarrow C=D$
using assms by auto
lemma MMI_3imtr4: assumes A1: $\varphi \longrightarrow \psi$ and
A2: ch $\longleftrightarrow \varphi$ and
A3: $\vartheta \longleftrightarrow \psi$
shows ch $\longrightarrow \vartheta$
using assms by auto
lemma MMI_eleq2i: assumes A1: $A=B$
shows $C \in A \longleftrightarrow C \in B$
using assms by auto

```
lemma MMI_albii: assumes A1: \(\varphi \longleftrightarrow \psi\)
    shows \((\forall \mathrm{x} . \varphi) \longleftrightarrow(\forall \mathrm{x} . \psi)\)
    using assms by auto
lemma MMI_reucl:
    shows \((\exists!\mathrm{x} . \mathrm{x} \in \mathrm{A} \wedge \varphi(\mathrm{x})) \longrightarrow \bigcup\{\mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\} \in \mathrm{A}\)
proof
    assume A1: \(\exists!\mathrm{x} . \mathrm{x} \in \mathrm{A} \wedge \varphi(\mathrm{x})\)
    then obtain a where I: a \(\in \mathrm{A}\) and \(\varphi\) (a) by auto
    with A1 have \(\{x \in A \cdot \varphi(x)\}=\{a\}\) by blast
    with I show \(\cup\{x \in A . \varphi(x)\} \in A\) by simp
qed
lemma MMI_dedth2h: assumes A1: A = if ( \(\varphi, \mathrm{A}, \mathrm{C}) \longrightarrow(\mathrm{ch} \longleftrightarrow \vartheta\)
) and
        A2: \(\mathrm{B}=\) if \((\psi, \mathrm{B}, \mathrm{D}) \longrightarrow(\vartheta \longleftrightarrow \tau)\) and
        A3: \(\tau\)
        shows \((\varphi \wedge \psi) \longrightarrow c h\)
        using assms by auto
lemma MMI_eleq1d: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\)
        shows \(\varphi \longrightarrow(A \in C \longleftrightarrow B \in C)\)
        using assms by auto
lemma MMI_syl5eqel: assumes A1: \(\varphi \longrightarrow \mathrm{A} \in \mathrm{B}\) and
        \(\mathrm{A} 2: \mathrm{C}=\mathrm{A}\)
        shows \(\varphi \longrightarrow C \in B\)
        using assms by auto
```

```
lemma IML_eeuni: assumes A1: \(\mathrm{x} \in \mathrm{A}\) and \(\mathrm{A} 2: \exists!\mathrm{t} . \mathrm{t} \in \mathrm{A} \wedge \varphi(\mathrm{t})\)
```

lemma IML_eeuni: assumes A1: $\mathrm{x} \in \mathrm{A}$ and $\mathrm{A} 2: \exists!\mathrm{t} . \mathrm{t} \in \mathrm{A} \wedge \varphi(\mathrm{t})$
shows $\varphi(\mathrm{x}) \longleftrightarrow \bigcup\{\mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\}=\mathrm{x}$
shows $\varphi(\mathrm{x}) \longleftrightarrow \bigcup\{\mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\}=\mathrm{x}$
proof
proof
assume φ (x)
assume φ (x)
with A1 A2 show $\bigcup\{x \in A \cdot \varphi(x)\}=x$ by auto
with A1 A2 show $\bigcup\{x \in A \cdot \varphi(x)\}=x$ by auto
next assume A3: $\bigcup\{x \in A \cdot \varphi(x)\}=x$
next assume A3: $\bigcup\{x \in A \cdot \varphi(x)\}=x$
from A2 obtain y where $y \in A$ and $I: \varphi(y)$ by auto
from A2 obtain y where $y \in A$ and $I: \varphi(y)$ by auto
with A2 A3 have $\mathrm{x}=\mathrm{y}$ by auto
with A2 A3 have $\mathrm{x}=\mathrm{y}$ by auto
with I show $\varphi(\mathrm{x})$ by simp
with I show $\varphi(\mathrm{x})$ by simp
qed
qed
lemma MMI_reuuni1:
lemma MMI_reuuni1:
shows $(x \in A \wedge(\exists!x . x \in A \wedge \varphi(x))) \longrightarrow$
shows $(x \in A \wedge(\exists!x . x \in A \wedge \varphi(x))) \longrightarrow$
$(\varphi(\mathrm{x}) \longleftrightarrow \bigcup \bigcup\{\mathrm{x} \in \mathrm{A} \cdot \varphi(\mathrm{x})\}=\mathrm{x})$
$(\varphi(\mathrm{x}) \longleftrightarrow \bigcup \bigcup\{\mathrm{x} \in \mathrm{A} \cdot \varphi(\mathrm{x})\}=\mathrm{x})$
using IML_eeuni by simp

```
    using IML_eeuni by simp
```

```
lemma MMI_eqeq1i: assumes A1: A = B
    shows \(A=C \longleftrightarrow B=C\)
    using assms by auto
lemma MMI_syl6rbbr: assumes A1: \(\forall x . \varphi(x) \longrightarrow(\psi(x) \longleftrightarrow c h(x))\) and
    A2: \(\forall \mathrm{x} . \vartheta(\mathrm{x}) \longleftrightarrow \mathrm{ch}(\mathrm{x})\)
    shows \(\forall \mathrm{x} . \varphi(\mathrm{x}) \longrightarrow(\vartheta(\mathrm{x}) \longleftrightarrow \psi(\mathrm{x}))\)
    using assms by auto
lemma MMI_syl6rbbrA: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
        A2: \(\vartheta \longleftrightarrow \mathrm{ch}\)
        shows \(\varphi \longrightarrow(\vartheta \longleftrightarrow \psi)\)
        using assms by auto
lemma MMI_vtoclga: assumes A1: \(\forall \mathrm{x} . \mathrm{x}=\mathrm{A} \longrightarrow(\varphi(\mathrm{x}) \longleftrightarrow \psi)\) and
        A2: \(\forall \mathrm{x} . \mathrm{x} \in \mathrm{B} \longrightarrow \varphi(\mathrm{x})\)
    shows \(A \in B \longrightarrow \psi\)
    using assms by auto
lemma MMI_3bitr4: assumes A1: \(\varphi \longleftrightarrow \psi\) and
    A2: ch \(\longleftrightarrow \varphi\) and
    A3: \(\vartheta \longleftrightarrow \psi\)
    shows ch \(\longleftrightarrow \vartheta\)
    using assms by auto
lemma MMI_mpbii: assumes Amin: \(\psi\) and
    Amaj: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\)
    shows \(\varphi \longrightarrow\) ch
    using assms by auto
lemma MMI_eqid:
        shows A \(=A\)
        by auto
lemma MMI_pm3_27:
        shows \((\varphi \wedge \psi) \longrightarrow \psi\)
        by auto
lemma MMI_pm3_26:
        shows \((\varphi \wedge \psi) \longrightarrow \varphi\)
        by auto
lemma MMI_ancoms: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch
    shows \((\psi \wedge \varphi) \longrightarrow c h\)
    using assms by auto
```

lemma MMI_syl3anc: assumes A1: $(\varphi \wedge \psi \wedge c h) \longrightarrow \vartheta$ and A2: $\tau \longrightarrow \varphi$ and A3: $\tau \longrightarrow \psi$ and A4: $\tau \longrightarrow$ ch shows $\tau \longrightarrow \vartheta$ using assms by auto
lemma MMI_syl5eq: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\mathrm{C}=\mathrm{A}$ shows $\varphi \longrightarrow C=B$ using assms by auto
lemma MMI_eqcomi: assumes A1: A = B
shows $B=A$ using assms by auto
lemma MMI_3eqtr: assumes A1: A = B and A2: $B=C$ and A3: $C=D$
shows A = D using assms by auto
lemma MMI_mpbir: assumes Amin: ψ and Amaj: $\varphi \longleftrightarrow \psi$
shows φ using assms by auto
lemma MMI_syl3an3: assumes A1: $(\varphi \wedge \psi \wedge c h) \longrightarrow \vartheta$ and A2: $\tau \longrightarrow$ ch
shows $(\varphi \wedge \psi \wedge \tau) \longrightarrow \vartheta$ using assms by auto
lemma MMI_3eqtrd: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\varphi \longrightarrow B=C$ and A3: $\varphi \longrightarrow \mathrm{C}=\mathrm{D}$ shows $\varphi \longrightarrow \mathrm{A}=\mathrm{D}$ using assms by auto
lemma MMI_syl5: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow c h)$ and A2: $\vartheta \longrightarrow \psi$
shows $\varphi \longrightarrow(\vartheta \longrightarrow \mathrm{ch})$ using assms by auto
lemma MMI_exp3a: assumes A1: $\varphi \longrightarrow((\psi \wedge c h) \longrightarrow \vartheta)$ shows $\varphi \longrightarrow(\psi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta))$ using assms by auto
lemma MMI_com12: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow$ ch $)$

```
    shows }\psi\longrightarrow(\varphi\longrightarrow ch 
    using assms by auto
lemma MMI_3imp: assumes A1: \varphi \longrightarrow( \psi \longrightarrow ( ch \longrightarrow\vartheta) )
    shows ( }\varphi\wedge\psi\wedgech) \longrightarrow
    using assms by auto
lemma MMI_3eqtr3: assumes A1: A = B and
    A2: A = C and
    A3: B = D
    shows C = D
    using assms by auto
lemma (in MMIsar0) MMI_opreq1i: assumes A1: A = B
    shows
    (A+C) = (B+C)
    (A-C) = ( B - C )
    (A/C ) = ( B / C )
    (A C ) = ( B · C )
    using assms by auto
lemma MMI_eqtr3: assumes A1: A = B and
        A2: A = C
    shows B = C
    using assms by auto
lemma MMI_dedth: assumes A1: A = if ( }\varphi,\textrm{A},\textrm{B})\longrightarrow(\psi\longleftrightarrow\textrm{ch}
and
    A2: ch
    shows \varphi\longrightarrow\psi
    using assms by auto
lemma MMI_id:
        shows \varphi\longrightarrow\varphi
        by auto
lemma MMI_eqtr3d: assumes A1: \varphi \longrightarrow A = B and
        A2: \varphi \longrightarrow A = C
        shows \varphi\longrightarrowB=C
        using assms by auto
lemma MMI_sylan2: assumes A1: ( }\varphi\wedge\psi)>>ch an
        A2: \vartheta \longrightarrow \psi
        shows ( }\varphi\wedge\vartheta) \longrightarrowc
        using assms by auto
lemma MMI_adantl: assumes A1: \varphi \longrightarrow\psi
```

```
    shows \((\operatorname{ch} \wedge \varphi) \longrightarrow \psi\)
    using assms by auto
lemma (in MMIsar0) MMI_opreq12:
    shows
    \((A=B \wedge C=D) \longrightarrow(A+C)=(B+D)\)
    \((A=B \wedge C=D) \longrightarrow(A-C)=(B-D)\)
    \((A=B \wedge C=D) \longrightarrow(A \cdot C)=(B \cdot D)\)
    \((A=B \wedge C=D) \longrightarrow(A / C)=(B / D)\)
    by auto
lemma MMI_anidms: assumes A1: \((\varphi \wedge \varphi) \longrightarrow \psi\)
    shows \(\varphi \longrightarrow \psi\)
    using assms by auto
lemma MMI_anabsan2: assumes A1: \((\varphi \wedge(\psi \wedge \psi)) \longrightarrow\) ch
    shows \((\varphi \wedge \psi) \longrightarrow c h\)
    using assms by auto
lemma MMI_3simp2:
    shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \psi\)
    by auto
lemma MMI_3simp3:
    shows ( \(\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \mathrm{ch}\)
    by auto
lemma MMI_sylbir: assumes A1: \(\psi \longleftrightarrow \varphi\) and
        A2: \(\psi \longrightarrow\) ch
        shows \(\varphi \longrightarrow\) ch
    using assms by auto
lemma MMI_3eqtr3g: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\) and
    A2: \(A=C\) and
    A3: \(B=D\)
    shows \(\varphi \longrightarrow C=D\)
    using assms by auto
lemma MMI_3bitr: assumes A1: \(\varphi \longleftrightarrow \psi\) and
    A2: \(\psi \longleftrightarrow\) ch and
    A3: ch \(\longleftrightarrow \vartheta\)
    shows \(\varphi \longleftrightarrow \vartheta\)
    using assms by auto
```

lemma MMI_3bitr3: assumes A1: $\varphi \longleftrightarrow \psi$ and

```
        A2: \(\varphi \longleftrightarrow\) ch and
        A3: \(\psi \longleftrightarrow \vartheta\)
        shows ch \(\longleftrightarrow \vartheta\)
        using assms by auto
lemma MMI_eqcom:
    shows \(A=B \longleftrightarrow B=A\)
    by auto
lemma MMI_syl6bb: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
    A2: ch \(\longleftrightarrow \vartheta\)
    shows \(\varphi \longrightarrow(\psi \longleftrightarrow \vartheta)\)
    using assms by auto
lemma MMI_3bitr3d: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
    A2: \(\varphi \longrightarrow(\psi \longleftrightarrow \vartheta)\) and
    A3: \(\varphi \longrightarrow(\mathrm{ch} \longleftrightarrow \tau)\)
    shows \(\varphi \longrightarrow(\vartheta \longleftrightarrow \tau)\)
    using assms by auto
lemma MMI_syl3an2: assumes A1: \((\varphi \wedge \psi \wedge\) ch ) \(\longrightarrow \vartheta\) and
    A2: \(\tau \longrightarrow \psi\)
    shows \((\varphi \wedge \tau \wedge\) ch ) \(\longrightarrow \vartheta\)
    using assms by auto
lemma MMI_df_rex:
    shows \((\exists \mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})) \longleftrightarrow(\exists \mathrm{x} .(\mathrm{x} \in \mathrm{A} \wedge \varphi(\mathrm{x})))\)
    by auto
lemma MMI_mpbi: assumes Amin: \(\varphi\) and
    Amaj: \(\varphi \longleftrightarrow \psi\)
    shows \(\psi\)
    using assms by auto
lemma MMI_mp3an12: assumes A1: \(\varphi\) and
    A2: \(\psi\) and
    A3: \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\)
    shows ch \(\longrightarrow \vartheta\)
    using assms by auto
lemma MMI_syl5bb: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
    A2: \(\vartheta \longleftrightarrow \psi\)
    shows \(\varphi \longrightarrow(\vartheta \longleftrightarrow\) ch \()\)
    using assms by auto
lemma MMI_eleq1a:
    shows \(A \in B \longrightarrow(C=A \longrightarrow C \in B)\)
```

by auto
lemma MMI_sylbird: assumes A1: $\varphi \longrightarrow(\mathrm{ch} \longleftrightarrow \psi)$ and A2: $\varphi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta)$ shows $\varphi \longrightarrow(\psi \longrightarrow \vartheta)$ using assms by auto
lemma MMI_19_23aiv: assumes A1: $\forall \mathrm{x} . \varphi(\mathrm{x}) \longrightarrow \psi$ shows ($\exists \mathrm{x} . \varphi(\mathrm{x})$) $\longrightarrow \psi$ using assms by auto
lemma MMI_eqeltrrd: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and $\mathrm{A} 2: \varphi \longrightarrow \mathrm{A} \in \mathrm{C}$ shows $\varphi \longrightarrow B \in C$ using assms by auto
lemma MMI_syl2an: assumes A1: $(\varphi \wedge \psi) \longrightarrow c h$ and A2: $\vartheta \longrightarrow \varphi$ and
A3: $\tau \longrightarrow \psi$
shows $(\vartheta \wedge \tau) \longrightarrow c h$ using assms by auto
lemma MMI_adantrl: assumes A1: $(\varphi \wedge \psi) \longrightarrow \mathrm{ch}$ shows $(\varphi \wedge(\vartheta \wedge \psi)) \longrightarrow \mathrm{ch}$ using assms by auto
lemma MMI_ad2ant2r: assumes A1: $(\varphi \wedge \psi) \longrightarrow$ ch shows $((\varphi \wedge \vartheta) \wedge(\psi \wedge \tau)) \longrightarrow c h$ using assms by auto
lemma MMI_adantll: assumes A1: $(\varphi \wedge \psi) \longrightarrow$ ch shows $((\vartheta \wedge \varphi) \wedge \psi) \longrightarrow c h$ using assms by auto
lemma MMI_anandirs: assumes A1: $((\varphi \wedge \mathrm{ch}) \wedge(\psi \wedge \mathrm{ch})) \longrightarrow \tau$ shows $((\varphi \wedge \psi) \wedge \mathrm{ch}) \longrightarrow \tau$ using assms by auto
lemma MMI_adantlr: assumes A1: $(\varphi \wedge \psi) \longrightarrow$ ch shows $((\varphi \wedge \vartheta) \wedge \psi) \longrightarrow c h$ using assms by auto
lemma MMI_an42s: assumes A1: $((\varphi \wedge \psi) \wedge(\operatorname{ch} \wedge \vartheta)) \longrightarrow \tau$ shows $((\varphi \wedge \mathrm{ch}) \wedge(\vartheta \wedge \psi)) \longrightarrow \tau$ using assms by auto

```
lemma MMI_mp3an2: assumes A1: \(\psi\) and
A2: \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\)
shows ( \(\varphi \wedge\) ch ) \(\longrightarrow \vartheta\)
using assms by auto
lemma MMI_3simp1:
    shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \varphi\)
    by auto
lemma MMI_3impb: assumes A1: \((\varphi \wedge(\psi \wedge c h)) \longrightarrow \vartheta\)
    shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\)
    using assms by auto
lemma MMI_mpbird: assumes Amin: \(\varphi \longrightarrow\) ch and
        Amaj: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\)
    shows \(\varphi \longrightarrow \psi\)
    using assms by auto
lemma (in MMIsar0) MMI_opreq12i: assumes A1: A = B and
    A2: \(C=D\)
    shows
    \((A+C)=(B+D)\)
    \((A \cdot C)=(B \cdot D)\)
    \((A-C)=(B-D)\)
    using assms by auto
lemma MMI_3eqtr4: assumes A1: \(A=B\) and
    A2: \(C=A\) and
    A3: \(D=B\)
    shows \(C=D\)
    using assms by auto
```

lemma MMI_eqtr4d: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and
A2: $\varphi \longrightarrow \mathrm{C}=\mathrm{B}$
shows $\varphi \longrightarrow \mathrm{A}=\mathrm{C}$
using assms by auto
lemma MMI_3eqtr3rd: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and
$\mathrm{A} 2: \varphi \longrightarrow \mathrm{A}=\mathrm{C}$ and
A3: $\varphi \longrightarrow \mathrm{B}=\mathrm{D}$
shows $\varphi \longrightarrow \mathrm{D}=\mathrm{C}$
using assms by auto
lemma MMI_sylanc: assumes A1: $(\varphi \wedge \psi) \longrightarrow c h$ and A2: $\vartheta \longrightarrow \varphi$ and A3: $\vartheta \longrightarrow \psi$
shows $\vartheta \longrightarrow$ ch using assms by auto
lemma MMI_anim12i: assumes A1: $\varphi \longrightarrow \psi$ and A2: ch $\longrightarrow \vartheta$ shows $(\varphi \wedge \mathrm{ch}) \longrightarrow(\psi \wedge \vartheta)$ using assms by auto
lemma (in MMIsar0) MMI_opreqan12d: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\psi \longrightarrow \mathrm{C}=\mathrm{D}$ shows
$(\varphi \wedge \psi) \longrightarrow(\mathrm{A}+\mathrm{C})=(\mathrm{B}+\mathrm{D})$
$(\varphi \wedge \psi) \longrightarrow(\mathrm{A}-\mathrm{C})=(\mathrm{B}-\mathrm{D})$
$(\varphi \wedge \psi) \longrightarrow(\mathrm{A} \cdot \mathrm{C})=(\mathrm{B} \cdot \mathrm{D})$
using assms by auto
lemma MMI_sylanr2: assumes A1: $(\varphi \wedge(\psi \wedge c h)) \longrightarrow \vartheta$ and A2: $\tau \longrightarrow$ ch
shows $(\varphi \wedge(\psi \wedge \tau)) \longrightarrow \vartheta$ using assms by auto
lemma MMI_sylanl2: assumes A1: $((\varphi \wedge \psi) \wedge c h) \longrightarrow \vartheta$ and A2: $\tau \longrightarrow \psi$
shows $((\varphi \wedge \tau) \wedge \mathrm{ch}) \longrightarrow \vartheta$ using assms by auto
lemma MMI_ancom2s: assumes A1: $(\varphi \wedge(\psi \wedge c h)) \longrightarrow \vartheta$ shows $(\varphi \wedge(\operatorname{ch} \wedge \psi)) \longrightarrow \vartheta$ using assms by auto
lemma MMI_anandis: assumes A1: $((\varphi \wedge \psi) \wedge(\varphi \wedge c h)) \longrightarrow \tau$ shows $(\varphi \wedge(\psi \wedge$ ch $)) \longrightarrow \tau$ using assms by auto
lemma MMI_sylan9eq: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\psi \longrightarrow \mathrm{B}=\mathrm{C}$ shows $(\varphi \wedge \psi) \longrightarrow \mathrm{A}=\mathrm{C}$ using assms by auto
lemma MMI_keephyp: assumes A1: A $=\operatorname{if}(\varphi, \mathrm{A}, \mathrm{B}) \longrightarrow(\psi \longleftrightarrow \vartheta)$ and

```
        A2: B = if ( }\varphi,\textrm{A},\textrm{B})\longrightarrow(\textrm{ch}\longleftrightarrow\vartheta) an
        A3: }\psi\mathrm{ and
        A4: ch
    shows \vartheta
proof -
    { assume \varphi
        with A1 A3 have \vartheta by simp }
    moreover
    { assume \neg\varphi
        with A2 A4 have \vartheta by simp }
    ultimately show \vartheta by auto
qed
lemma MMI_eleq1:
    shows A = B \longrightarrow( A C C \longleftrightarrow B GC )
    by auto
lemma MMI_pm4_2i:
    shows \varphi}\longrightarrow(\psi\longleftrightarrow\psi
    by auto
lemma MMI_3anbi123d: assumes A1: }\varphi\longrightarrow(\psi\longleftrightarrow ch ) and
    A2: \varphi\longrightarrow(\vartheta\longleftrightarrow ( }\longleftrightarrow)\mathrm{ and
    A3: \varphi\longrightarrow( }\eta\longleftrightarrow\zeta
    shows \varphi\longrightarrow((\psi\wedge\vartheta\wedge\eta) \longleftrightarrow(ch^\tau^\zeta))
    using assms by auto
lemma MMI_imbi12d: assumes A1: }\varphi\longrightarrow(\psi\longleftrightarrow ch ) an
        A2: \varphi\longrightarrow(\vartheta\longleftrightarrow < )
    shows }\varphi\longrightarrow((\psi\longrightarrow\vartheta)\longleftrightarrow(ch\longrightarrow\tau)
    using assms by auto
lemma MMI_bitrd: assumes A1: \varphi \longrightarrow( \psi\longleftrightarrow ch ) and
        A2: \varphi\longrightarrow( ch \longleftrightarrow\vartheta)
    shows }\varphi\longrightarrow(\psi\longleftrightarrow\vartheta
    using assms by auto
lemma MMI_df_ne:
    shows ( A \not= B \longleftrightarrow ᄀ( A = B ) )
    by auto
lemma MMI_3pm3_2i: assumes A1: \varphi and
        A2: }\psi\mathrm{ and
        A3: ch
        shows \varphi^\psi^ch
        using assms by auto
lemma MMI_eqeq2i: assumes A1: A = B
    shows C = A \longleftrightarrowC = B
```

using assms by auto
lemma MMI_syl5bbr: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow c h)$ and A2: $\psi \longleftrightarrow \vartheta$
shows $\varphi \longrightarrow(\vartheta \longleftrightarrow$ ch)
using assms by auto
lemma MMI_biimpd: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch $)$
shows $\varphi \longrightarrow(\psi \longrightarrow c h)$
using assms by auto
lemma MMI_orrd: assumes A1: $\varphi \longrightarrow(\neg(\psi) \longrightarrow$ ch $)$ shows $\varphi \longrightarrow(\psi \vee \mathrm{ch})$
using assms by auto
lemma MMI_jaoi: assumes A1: $\varphi \longrightarrow \psi$ and A2: ch $\longrightarrow \psi$
shows $(\varphi \vee$ ch $) \longrightarrow \psi$
using assms by auto
lemma MMI_oridm:
shows $(\varphi \vee \varphi) \longleftrightarrow \varphi$
by auto
lemma MMI_orbi1d: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch $)$
shows $\varphi \longrightarrow((\psi \vee \vartheta) \longleftrightarrow(c h \vee \vartheta))$
using assms by auto
lemma MMI_orbi2d: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch $)$
shows $\varphi \longrightarrow((\vartheta \vee \psi) \longleftrightarrow(\vartheta \vee \mathrm{ch}))$
using assms by auto
lemma MMI_3bitr4g: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow c h)$ and A2: $\vartheta \longleftrightarrow \psi$ and A3: $\tau \longleftrightarrow$ ch shows $\varphi \longrightarrow(\vartheta \longleftrightarrow \tau)$ using assms by auto
lemma MMI_negbid: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch $)$ shows $\varphi \longrightarrow(\neg(\psi) \longleftrightarrow \neg(\mathrm{ch}))$ using assms by auto
lemma MMI_ioran:
shows $\neg((\varphi \vee \psi)) \longleftrightarrow$ $(\neg(\varphi) \wedge \neg(\psi))$ by auto

```
lemma MMI_syl6rbb: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
    A2: \(\mathrm{ch} \longleftrightarrow \vartheta\)
    shows \(\varphi \longrightarrow(\vartheta \longleftrightarrow \psi)\)
    using assms by auto
lemma MMI_anbi12i: assumes A1: \(\varphi \longleftrightarrow \psi\) and
        A2: \(\mathrm{ch} \longleftrightarrow \vartheta\)
    shows \((\varphi \wedge \mathrm{ch}) \longleftrightarrow(\psi \wedge \vartheta)\)
    using assms by auto
lemma MMI_keepel: assumes A1: \(A \in C\) and A2: \(B \in C\) shows if ( \(\varphi, \mathrm{A}, \mathrm{B}) \in \mathrm{C}\) using assms by auto
lemma MMI_imbi2d: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\) shows \(\varphi \longrightarrow((\vartheta \longrightarrow \psi) \longleftrightarrow(\vartheta \longrightarrow c h))\) using assms by auto
lemma MMI_eqeltr: assumes \(A=B\) and \(B \in C\) shows \(A \in C\) using assms by auto
lemma MMI_3impia: assumes A1: \((\varphi \wedge \psi) \longrightarrow(c h \longrightarrow \vartheta)\) shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\) using assms by auto
lemma MMI_eqneqd: assumes \(A 1: \varphi \longrightarrow(A=B \longleftrightarrow C=D)\) shows \(\varphi \longrightarrow(A \neq B \longleftrightarrow C \neq D)\) using assms by auto
lemma MMI_3ad2ant2: assumes A1: \(\varphi \longrightarrow\) ch shows \((\psi \wedge \varphi \wedge \vartheta) \longrightarrow \mathrm{ch}\) using assms by auto
lemma MMI_mp3anl3: assumes A1: ch and A2: \(((\varphi \wedge \psi \wedge c h) \wedge \vartheta) \longrightarrow \tau\) shows \(((\varphi \wedge \psi) \wedge \vartheta) \longrightarrow \tau\) using assms by auto
lemma MMI_bitr4d: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
```

A2: $\varphi \longrightarrow(\vartheta \longleftrightarrow$ ch $)$
shows $\varphi \longrightarrow(\psi \longleftrightarrow \vartheta)$
using assms by auto
lemma MMI_neeq1d: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$
shows $\varphi \longrightarrow(A \neq C \longleftrightarrow B \neq C)$
using assms by auto
lemma MMI_3anim123i: assumes A1: $\varphi \longrightarrow \psi$ and
A2: ch $\longrightarrow \vartheta$ and
A3: $\tau \longrightarrow \eta$
shows $(\varphi \wedge \mathrm{ch} \wedge \tau) \longrightarrow(\psi \wedge \vartheta \wedge \eta)$ using assms by auto
lemma MMI_3exp: assumes A1: $(\varphi \wedge \psi \wedge c h) \longrightarrow \vartheta$ shows $\varphi \longrightarrow(\psi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta))$
using assms by auto
lemma MMI_exp4a: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow((\operatorname{ch} \wedge \vartheta) \longrightarrow \tau))$
shows $\varphi \longrightarrow(\psi \longrightarrow(\operatorname{ch} \longrightarrow(\vartheta \longrightarrow \tau)))$
using assms by auto
lemma MMI_3imp1: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow(\operatorname{ch} \longrightarrow(\vartheta \longrightarrow \tau)))$
shows $((\varphi \wedge \psi \wedge \mathrm{ch}) \wedge \vartheta) \longrightarrow \tau$
using assms by auto
lemma MMI_anim1i: assumes A1: $\varphi \longrightarrow \psi$
shows $(\varphi \wedge \mathrm{ch}) \longrightarrow(\psi \wedge \mathrm{ch})$
using assms by auto
lemma MMI_3adantl1: assumes A1: $((\varphi \wedge \psi) \wedge c h) \longrightarrow \vartheta$ shows $((\tau \wedge \varphi \wedge \psi) \wedge \mathrm{ch}) \longrightarrow \vartheta$ using assms by auto
lemma MMI_3adantl2: assumes A1: $((\varphi \wedge \psi) \wedge \mathrm{ch}) \longrightarrow \vartheta$ shows $((\varphi \wedge \tau \wedge \psi) \wedge c h) \longrightarrow \vartheta$ using assms by auto
lemma MMI_3comr: assumes A1: $(\varphi \wedge \psi \wedge c h) \longrightarrow \vartheta$ shows $(\operatorname{ch} \wedge \varphi \wedge \psi) \longrightarrow \vartheta$ using assms by auto
lemma MMI_bitr3: assumes A1: $\psi \longleftrightarrow \varphi$ and A2: $\psi \longleftrightarrow \mathrm{ch}$

```
shows }\varphi\longleftrightarrowc
using assms by auto
```

lemma MMI_anbi12d: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch) and A2: $\varphi \longrightarrow(\vartheta \longleftrightarrow \tau)$ shows $\varphi \longrightarrow((\psi \wedge \vartheta) \longleftrightarrow(\operatorname{ch} \wedge \tau))$ using assms by auto
lemma MMI_pm3_26i: assumes A1: $\varphi \wedge \psi$ shows φ using assms by auto
lemma MMI_pm3_27i: assumes A1: $\varphi \wedge \psi$ shows ψ using assms by auto
lemma MMI_anabsan: assumes A1: $((\varphi \wedge \varphi) \wedge \psi) \longrightarrow$ ch shows $(\varphi \wedge \psi) \longrightarrow c h$ using assms by auto
lemma MMI_3eqtr4rd: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and
A2: $\varphi \longrightarrow \mathrm{C}=\mathrm{A}$ and
A3: $\varphi \longrightarrow \mathrm{D}=\mathrm{B}$
shows $\varphi \longrightarrow \mathrm{D}=\mathrm{C}$ using assms by auto
lemma MMI_syl3an1: assumes A1: $(\varphi \wedge \psi \wedge c h) \longrightarrow \vartheta$ and A2: $\tau \longrightarrow \varphi$ shows $(\tau \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$ using assms by auto
lemma MMI_syl3anl2: assumes A1: $((\varphi \wedge \psi \wedge \operatorname{ch}) \wedge \vartheta) \longrightarrow \tau$ and A2: $\eta \longrightarrow \psi$
shows $((\varphi \wedge \eta \wedge \mathrm{ch}) \wedge \vartheta) \longrightarrow \tau$ using assms by auto
lemma MMI_jca: assumes A1: $\varphi \longrightarrow \psi$ and A2: $\varphi \longrightarrow$ ch shows $\varphi \longrightarrow(\psi \wedge \mathrm{ch})$ using assms by auto
lemma MMI_3ad2ant3: assumes A1: $\varphi \longrightarrow$ ch shows $(\psi \wedge \vartheta \wedge \varphi) \longrightarrow \mathrm{ch}$ using assms by auto

```
lemma MMI_anim2i: assumes A1: \(\varphi \longrightarrow \psi\)
    shows \((\operatorname{ch} \wedge \varphi) \longrightarrow(\operatorname{ch} \wedge \psi)\)
    using assms by auto
lemma MMI_ancom:
    shows \((\varphi \wedge \psi) \longleftrightarrow(\psi \wedge \varphi)\)
    by auto
lemma MMI_anbi1i: assumes Aaa: \(\varphi \longleftrightarrow \psi\)
    shows \((\varphi \wedge \mathrm{ch}) \longleftrightarrow(\psi \wedge \mathrm{ch})\)
    using assms by auto
lemma MMI_an42:
    shows \(((\varphi \wedge \psi) \wedge(c h \wedge \vartheta)) \longleftrightarrow\)
    \(((\varphi \wedge \mathrm{ch}) \wedge(\vartheta \wedge \psi))\)
    by auto
lemma MMI_sylanb: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch and
        A2: \(\vartheta \longleftrightarrow \varphi\)
    shows \((\vartheta \wedge \psi) \longrightarrow c h\)
    using assms by auto
lemma MMI_an4:
        shows \(((\varphi \wedge \psi) \wedge(c h \wedge \vartheta)) \longleftrightarrow\)
    \(((\varphi \wedge c h) \wedge(\psi \wedge \vartheta))\)
    by auto
lemma MMI_syl2anb: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch and
        A2: \(\vartheta \longleftrightarrow \varphi\) and
        A3: \(\tau \longleftrightarrow \psi\)
        shows ( \(\vartheta \wedge \tau) \longrightarrow c h\)
        using assms by auto
lemma MMI_eqtr2d: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\) and
        A2: \(\varphi \longrightarrow \mathrm{B}=\mathrm{C}\)
        shows \(\varphi \longrightarrow C=A\)
        using assms by auto
lemma MMI_sylbid: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow c h)\) and
        \(\mathrm{A} 2: \varphi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta)\)
        shows \(\varphi \longrightarrow(\psi \longrightarrow \vartheta)\)
        using assms by auto
lemma MMI_sylanl1: assumes A1: \(((\varphi \wedge \psi) \wedge c h) \longrightarrow \vartheta\) and
        A2: \(\tau \longrightarrow \varphi\)
        shows \(((\tau \wedge \psi) \wedge c h) \longrightarrow \vartheta\)
        using assms by auto
```

```
lemma MMI_sylan2b: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch and
        A2: \(\vartheta \longleftrightarrow \psi\)
    shows \((\varphi \wedge \vartheta) \longrightarrow c h\)
    using assms by auto
lemma MMI_pm3_22:
    shows \((\varphi \wedge \psi) \longrightarrow(\psi \wedge \varphi)\)
    by auto
lemma MMI_ancli: assumes A1: \(\varphi \longrightarrow \psi\)
    shows \(\varphi \longrightarrow(\varphi \wedge \psi)\)
    using assms by auto
lemma MMI_ad2antlr: assumes A1: \(\varphi \longrightarrow \psi\)
    shows \(((\operatorname{ch} \wedge \varphi) \wedge \vartheta) \longrightarrow \psi\)
    using assms by auto
lemma MMI_biimpa: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\)
    shows \((\varphi \wedge \psi) \longrightarrow c h\)
    using assms by auto
lemma MMI_sylan2i: assumes A1: \(\varphi \longrightarrow((\psi \wedge c h) \longrightarrow \vartheta)\) and
    A2: \(\tau \longrightarrow\) ch
    shows \(\varphi \longrightarrow((\psi \wedge \tau) \longrightarrow \vartheta)\)
    using assms by auto
lemma MMI_3jca: assumes A1: \(\varphi \longrightarrow \psi\) and
    A2: \(\varphi \longrightarrow\) ch and
    A3: \(\varphi \longrightarrow \vartheta\)
    shows \(\varphi \longrightarrow(\psi \wedge \mathrm{ch} \wedge \vartheta)\)
    using assms by auto
lemma MMI_com34: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow(\operatorname{ch} \longrightarrow(\vartheta \longrightarrow \tau))\)
    shows \(\varphi \longrightarrow(\psi \longrightarrow(\vartheta \longrightarrow(\mathrm{ch} \longrightarrow \tau)))\)
    using assms by auto
lemma MMI_imp43: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow(\operatorname{ch} \longrightarrow(\vartheta \longrightarrow \tau)))\)
    shows \(((\varphi \wedge \psi) \wedge(c h \wedge \vartheta)) \longrightarrow \tau\)
    using assms by auto
lemma MMI_3anass:
    shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longleftrightarrow(\varphi \wedge(\psi \wedge \mathrm{ch}))\)
    by auto
```

lemma MMI_3eqtr4r: assumes A1: A = B and

```
        A2: C = A and
        A3: D = B
        shows D = C
        using assms by auto
lemma MMI_jctl: assumes A1: \psi
    shows \varphi\longrightarrow(\psi\wedge\varphi)
    using assms by auto
lemma MMI_sylibr: assumes A1: \varphi \longrightarrow \psi and
    A2: ch \longleftrightarrow\psi
    shows \varphi\longrightarrow ch
    using assms by auto
lemma MMI_mpanl1: assumes A1: }\varphi\mathrm{ and
    A2: ( ( }\varphi\wedge\psi)\wedge ch ) \longrightarrow
    shows ( }\psi\wedge\mathrm{ ch ) }\longrightarrow
    using assms by auto
lemma MMI_a1i: assumes A1: \varphi
    shows \psi\longrightarrow\varphi
    using assms by auto
lemma (in MMIsar0) MMI_opreqan12rd: assumes A1: \varphi\longrightarrowA = B and
        A2: }\psi\longrightarrow\textrm{C}=\textrm{D
        shows
    (\psi\wedge\varphi) \longrightarrow( A + C ) = ( B + D )
    (\psi\wedge\varphi) \longrightarrow( A C C ) = ( B | D )
    (\psi\wedge\varphi) \longrightarrow( A - C ) = ( B - D )
    (\psi\wedge\varphi) \longrightarrow( A/C ) = ( B / D )
        using assms by auto
lemma MMI_3adantl3: assumes A1: ( ( }\varphi\wedge\psi)\wedge ch ) \longrightarrow \vartheta
    shows ( ( }\varphi\wedge\psi\wedge\tau) ^ch ) \longrightarrow
    using assms by auto
lemma MMI_sylbi: assumes A1: \varphi \longleftrightarrow\psi and
    A2: \psi}\longrightarrow\textrm{ch
    shows \varphi}\longrightarrow\mathrm{ ch
    using assms by auto
lemma MMI_eirr:
    shows \neg ( A \in A )
    by (rule mem_not_refl)
lemma MMI_eleq1i: assumes A1: A = B
    shows A }\inC\longleftrightarrowB\in
```

```
    using assms by auto
lemma MMI_mtbir: assumes A1: }\neg(\psi)\mathrm{ and
        A2: \varphi}\longleftrightarrow
        shows \neg ( \varphi )
        using assms by auto
lemma MMI_mto: assumes A1: \neg ( \psi ) and
    A2: \varphi\longrightarrow\psi
    shows \neg ( }\varphi\mathrm{ )
    using assms by auto
lemma MMI_df_nel:
        shows ( A \not\existsB\longleftrightarrow \longleftrightarrow (A\inB ) )
    by auto
lemma MMI_snid: assumes A1: A isASet
    shows A \in { A }
    using assms by auto
lemma MMI_en2lp:
    shows \neg ( A \in B ^ B \inA )
proof
    assume A1: A }\inB\wedgeB\in
    then have A }\inB\mathrm{ by simp
    moreover
    { assume }\neg(\neg(A\inB\wedgeB\inA)
        then have B\inA by auto}
    ultimately have }\neg(A\inB\wedgeB\inA
        by (rule mem_asym)
    with A1 show False by simp
qed
lemma MMI_imnan:
        shows (\varphi\longrightarrow\neg(\psi))\longleftrightarrow\neg((\varphi\wedge\psi))
    by auto
```

lemma MMI_sseqtr4: assumes A1: $A \subseteq B$ and
A2: $C=B$
shows $A \subseteq C$
using assms by auto
lemma MMI_ssun1:
shows $A \subseteq(A \cup B)$
by auto
lemma MMI_ibar:

```
    shows }\varphi\longrightarrow(\psi\longleftrightarrow(\varphi\wedge\psi)
    by auto
lemma MMI_mtbiri: assumes Amin: ᄀ ( ch ) and
    Amaj: \varphi \longrightarrow ( \psi }\longleftrightarrow\mathrm{ ch )
    shows \varphi}\longrightarrow\neg(\psi
    using assms by auto
lemma MMI_con2i: assumes Aa: \varphi \longrightarrow \neg ( \psi )
    shows \psi\longrightarrow \neg(\varphi)
    using assms by auto
lemma MMI_intnand: assumes A1: \varphi \longrightarrow \neg( \psi )
    shows }\varphi\longrightarrow\neg((ch\wedge\psi)
    using assms by auto
lemma MMI_intnanrd: assumes A1: \varphi \longrightarrow \neg( \psi )
    shows \varphi}\longrightarrow\neg((\psi\wedgech)
    using assms by auto
lemma MMI_biorf:
    shows \neg(\varphi) \longrightarrow(\psi\longleftrightarrow (\varphi\vee\psi))
    by auto
lemma MMI_bitr2d: assumes A1: \varphi \longrightarrow( \psi\longleftrightarrow ch ) and
    A2: \varphi \longrightarrow ( ch \longleftrightarrow ` )
    shows \varphi\longrightarrow(\vartheta\longleftrightarrow\psi)
    using assms by auto
lemma MMI_orass:
    shows ( ( \varphi\vee\psi ) \vee ch ) \longleftrightarrow ( \varphi\vee (\psi\vee ch ) )
    by auto
lemma MMI_orcom:
    shows ( }\varphi\vee\psi)\longleftrightarrow(\psi\vee\varphi
    by auto
```

lemma MMI_3bitr4d: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch) and A2: $\varphi \longrightarrow(\vartheta \longleftrightarrow \psi)$ and A3: $\varphi \longrightarrow(\tau \longleftrightarrow$ ch) shows $\varphi \longrightarrow(\vartheta \longleftrightarrow \tau)$ using assms by auto
lemma MMI_3imtr4d: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow$ ch $)$ and A2: $\varphi \longrightarrow(\vartheta \longleftrightarrow \psi)$ and A3: $\varphi \longrightarrow(\tau \longleftrightarrow$ ch $)$

```
shows \varphi\longrightarrow(\vartheta\longrightarrow\tau)
```

using assms by auto

```
lemma MMI_3impdi: assumes A1: \(((\varphi \wedge \psi) \wedge(\varphi \wedge \mathrm{ch})) \longrightarrow \vartheta\)
    shows \((\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta\)
    using assms by auto
lemma MMI_bi2anan9: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow c h)\) and
    A2: \(\vartheta \longrightarrow(\tau \longleftrightarrow \eta)\)
    shows \((\varphi \wedge \vartheta) \longrightarrow((\psi \wedge \tau) \longleftrightarrow(\operatorname{ch} \wedge \eta))\)
    using assms by auto
lemma MMI_ssel2:
    shows \(((A \subseteq B \wedge C \in A) \longrightarrow C \in B)\)
    by auto
lemma MMI_an1rs: assumes A1: \(((\varphi \wedge \psi) \wedge \mathrm{ch}) \longrightarrow \vartheta\)
    shows \(((\varphi \wedge \mathrm{ch}) \wedge \psi) \longrightarrow \vartheta\)
    using assms by auto
```

lemma MMI_ralbidva: assumes A1: $\forall \mathrm{x} .(\varphi \wedge \mathrm{x} \in \mathrm{A}) \longrightarrow(\psi(\mathrm{x}) \longleftrightarrow \mathrm{ch}(\mathrm{x})$
)
shows $\varphi \longrightarrow((\forall \mathrm{x} \in \mathrm{A} \cdot \psi(\mathrm{x})) \longleftrightarrow(\forall \mathrm{x} \in \mathrm{A} \cdot \mathrm{ch}(\mathrm{x})))$
using assms by auto
lemma MMI_rexbidva: assumes A1: $\forall \mathrm{x} .(\varphi \wedge \mathrm{x} \in \mathrm{A}) \longrightarrow(\psi(\mathrm{x}) \longleftrightarrow \mathrm{ch}(\mathrm{x})$
)
shows $\varphi \longrightarrow((\exists \mathrm{x} \in \mathrm{A} \cdot \psi(\mathrm{x})) \longleftrightarrow(\exists \mathrm{x} \in \mathrm{A} \cdot \mathrm{ch}(\mathrm{x})))$
using assms by auto
lemma MMI_con2bid: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow \neg(c h))$
shows $\varphi \longrightarrow(\mathrm{ch} \longleftrightarrow \neg(\psi))$
using assms by auto

lemma MMI_so: assumes

```
A1: }\forall\textrm{x}y\textrm{y}.(\textrm{x}\in\textrm{A}\wedge\textrm{y}\in\textrm{A}\wedge\textrm{z}\in\textrm{A})
    (( \langlex,y\rangle\inR\longleftrightarrow \longleftrightarrow ( ( x = y V \y, x\rangle\in R ) ) ) ^
    (( \langlex, y\rangle\inR ^ \y, z\rangle\inR ) \longrightarrow <x, z\rangle\inR ) )
    shows R Orders A
    using assms StrictOrder_def by auto
```

lemma MMI_con1bid: assumes A1: $\varphi \longrightarrow(\neg(\psi) \longleftrightarrow$ ch $)$

```
    shows \(\varphi \longrightarrow(\neg(c h) \longleftrightarrow \psi)\)
    using assms by auto
lemma MMI_sotrieq:
    shows ( ( R Orders A\() \wedge(\mathrm{B} \in \mathrm{A} \wedge \mathrm{C} \in \mathrm{A})\) ) \(\longrightarrow\)
    \((B=C \longleftrightarrow \neg((\langle B, C\rangle \in R \vee\langle C, B\rangle \in R)))\)
proof -
    \{ assume A1: \(R\) Orders \(A\) and \(A 2: B \in A \wedge C \in A\)
            from A1 have \(\forall x\) y \(z . ~(x \in A \wedge y \in A \wedge z \in A) \longrightarrow\)
                \((\langle x, y\rangle \in R \longleftrightarrow \neg(x=y \vee\langle y, x\rangle \in R)) \wedge\)
                \((\langle x, y\rangle \in R \wedge\langle y, z\rangle \in R \longrightarrow\langle x, z\rangle \in R)\)
                by (unfold StrictOrder_def)
            then have
                \(\forall \mathrm{x} y . \mathrm{x} \in \mathrm{A} \wedge \mathrm{y} \in \mathrm{A} \longrightarrow(\langle\mathrm{x}, \mathrm{y}\rangle \in \mathrm{R} \longleftrightarrow \neg(\mathrm{x}=\mathrm{y} \vee\langle\mathrm{y}, \mathrm{x}\rangle \in \mathrm{R}))\)
                by auto
            with \(A 2\) have \(I:\langle B, C\rangle \in R \longleftrightarrow \neg(B=C \vee\langle C, B\rangle \in R)\)
                by blast
            then have \(B=C \longleftrightarrow \neg(\langle B, C\rangle \in R \vee\langle C, B\rangle \in R)\)
                by auto
    \(\}\) then show ( ( R Orders \(A\) ) \(\wedge(B \in A \wedge C \in A)) \longrightarrow\)
                \((B=C \longleftrightarrow \neg((\langle B, C\rangle \in R \vee\langle C, B\rangle \in R)))\) by simp
qed
lemma MMI_bicomd: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch )
    shows \(\varphi \longrightarrow(\mathrm{ch} \longleftrightarrow \psi)\)
    using assms by auto
lemma MMI_sotrieq2:
    shows \((R\) Orders \(A \wedge(B \in A \wedge C \in A)) \longrightarrow\)
    \((B=C \longleftrightarrow(\neg(\langle B, C\rangle \in R) \wedge \neg(\langle C, B\rangle \in R)))\)
    using MMI_sotrieq by auto
lemma MMI_orc:
    shows \(\varphi \longrightarrow(\varphi \vee \psi)\)
    by auto
lemma MMI_syl6bbr: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch ) and
    A2: \(\vartheta \longleftrightarrow \mathrm{ch}\)
    shows \(\varphi \longrightarrow(\psi \longleftrightarrow \vartheta)\)
    using assms by auto
```

lemma MMI_orbi1i: assumes A1: $\varphi \longleftrightarrow \psi$
shows $(\varphi \vee$ ch $) \longleftrightarrow(\psi \vee$ ch $)$
using assms by auto
lemma MMI_syl5rbbr: assumes A1: $\varphi \longrightarrow(\psi \longleftrightarrow c h)$ and
A2: $\psi \longleftrightarrow \vartheta$

```
    shows \(\varphi \longrightarrow(\mathrm{ch} \longleftrightarrow \vartheta)\)
    using assms by auto
lemma MMI_anbi2d: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch )
    shows \(\varphi \longrightarrow((\vartheta \wedge \psi) \longleftrightarrow(\vartheta \wedge c h))\)
    using assms by auto
lemma MMI_ord: assumes A1: \(\varphi \longrightarrow(\psi \vee \mathrm{ch})\)
    shows \(\varphi \longrightarrow(\neg(\psi) \longrightarrow c h)\)
    using assms by auto
lemma MMI_impbid: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch ) and
        \(\mathrm{A} 2: \varphi \longrightarrow(\mathrm{ch} \longrightarrow \psi)\)
    shows \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\)
    using assms by blast
lemma MMI_jcad: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch \()\) and
        A2: \(\varphi \longrightarrow(\psi \longrightarrow \vartheta)\)
    shows \(\varphi \longrightarrow(\psi \longrightarrow(\operatorname{ch} \wedge \vartheta))\)
    using assms by auto
lemma MMI_ax_1:
    shows \(\varphi \longrightarrow(\psi \longrightarrow \varphi)\)
    by auto
lemma MMI_pm2_24:
    shows \(\varphi \longrightarrow(\neg(\varphi) \longrightarrow \psi)\)
    by auto
lemma MMI_imp3a: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow(\operatorname{ch} \longrightarrow \vartheta))\)
    shows \(\varphi \longrightarrow((\psi \wedge c h) \longrightarrow \vartheta)\)
    using assms by auto
lemma (in MMIsar0) MMI_breq1:
    shows
    \(A=B \longrightarrow(A \leq C \longleftrightarrow B \leq C)\)
    \(A=B \longrightarrow(A<C \longleftrightarrow B<C)\)
    by auto
lemma MMI_biimprd: assumes A1: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch )
    shows \(\varphi \longrightarrow(\mathrm{ch} \longrightarrow \psi)\)
    using assms by auto
lemma MMI_jaod: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow\) ch \()\) and
        A2: \(\varphi \longrightarrow(\vartheta \longrightarrow \mathrm{ch})\)
    shows \(\varphi \longrightarrow((\psi \vee \vartheta) \longrightarrow\) ch \()\)
    using assms by auto
lemma MMI_com23: assumes A1: \(\varphi \longrightarrow(\psi \longrightarrow(\mathrm{ch} \longrightarrow \vartheta))\)
```

```
    shows \varphi\longrightarrow( ch \longrightarrow(\psi\longrightarrow\vartheta))
    using assms by auto
lemma (in MMIsar0) MMI_breq2:
    shows
    A = B }\longrightarrow(C\leqA\longleftrightarrowC\leqB
    A = B \longrightarrow ( C < A \longleftrightarrow C < B )
    by auto
lemma MMI_syld: assumes A1: \varphi \longrightarrow ( \psi \longrightarrow ch ) and
    A2: \varphi\longrightarrow( ch \longrightarrow \vartheta )
    shows \varphi\longrightarrow(\psi\longrightarrow\vartheta)
    using assms by auto
lemma MMI_biimpcd: assumes A1: \varphi\longrightarrow( }\psi\longleftrightarrow\mathrm{ ch )
    shows }\psi\longrightarrow(\varphi\longrightarrowch
    using assms by auto
lemma MMI_mp2and: assumes A1: \varphi\longrightarrow\psi and
    A2: \varphi\longrightarrow ch and
    A3: \varphi \longrightarrow( ( \psi ^ ch ) \longrightarrow \vartheta )
    shows \varphi\longrightarrow\vartheta
    using assms by auto
lemma MMI_sonr:
    shows ( R Orders A ^ B \inA ) \longrightarrow ᄀ ( \langleB,B\rangle\inR )
    unfolding StrictOrder_def by auto
lemma MMI_orri: assumes A1: \neg( \varphi) \longrightarrow\psi
    shows \varphi\vee\psi
    using assms by auto
lemma MMI_mpbiri: assumes Amin: ch and
    Amaj: \varphi\longrightarrow(\psi\longleftrightarrow ch )
    shows \varphi\longrightarrow\psi
    using assms by auto
lemma MMI_pm2_46:
        shows }\neg((\varphi\vee\psi))\longrightarrow\neg(\psi
        by auto
lemma MMI_elun:
    shows A}\in(B\cupC)\longleftrightarrow(A\inB\veeA\inC
    by auto
lemma (in MMIsar0) MMI_pnfxr:
    shows }+\infty\in\mp@subsup{\mathbb{R}}{}{*
```

```
    using cxr_def by simp
lemma MMI_elisseti: assumes A1: A \in B
    shows A isASet
    using assms by auto
lemma (in MMIsar0) MMI_mnfxr:
    shows }-\infty\in\mp@subsup{\mathbb{R}}{}{*
    using cxr_def by simp
lemma MMI_elpr2: assumes A1: B isASet and
        A2: C isASet
    shows A \in{ B , C } \longleftrightarrow( A = B V A = C )
    using assms by auto
lemma MMI_orbi2i: assumes A1: \varphi \longleftrightarrow\psi
    shows ( ch \vee \varphi ) \longleftrightarrow( ch \vee \psi)
    using assms by auto
lemma MMI_3orass:
    shows ( }\varphi\vee\psi\veech)\longleftrightarrow(\varphi\vee(\psi\veech)
    by auto
lemma MMI_bitr4: assumes A1: }\varphi\longleftrightarrow\psi\mathrm{ and
        A2: ch \longleftrightarrow\psi
    shows }\varphi\longleftrightarrowc
    using assms by auto
lemma MMI_eleq2:
    shows A = B \longrightarrow( C \inA \longleftrightarrowC\inB )
    by auto
lemma MMI_nelneq:
    shows ( A C C ^ ᄀ( B GC ) ) \longrightarrow ᄀ( A = B )
    by auto
lemma MMI_df_pr:
    shows { A , B } = ( { A } \cup{ B } )
    by auto
lemma MMI_ineq2i: assumes A1: A = B
    shows ( C \cap A ) = ( C \cap B )
    using assms by auto
lemma MMI_mt2: assumes A1: }\psi\mathrm{ and
    A2: \varphi \longrightarrow \neg ( \psi )
    shows \neg ( \varphi )
```

```
    using assms by auto
lemma MMI_disjsn:
```



```
    by auto
lemma MMI_undisj2:
    shows ( ( A \cap B ) =
    0^(A\capC) =
    0 ) \longleftrightarrow( A \cap ( B \cup C ) ) = 0
    by auto
lemma MMI_disjssun:
    shows ( ( A \cap B ) = 0 \longrightarrow( A\subseteq ( B \cupC ) \longleftrightarrowA\subseteqC ) )
    by auto
lemma MMI_uncom:
    shows ( A \cup B ) = ( B \cup A )
    by auto
lemma MMI_sseq2i: assumes A1: A = B
    shows ( C \subseteqA \longleftrightarrowC\subseteqB )
    using assms by auto
lemma MMI_disj:
    shows ( A \cap B ) =
    0\longleftrightarrow( 
    by auto
lemma MMI_syl5ibr: assumes A1: \varphi \longrightarrow( \psi\longrightarrow ch ) and
    A2: }\psi\longleftrightarrow
    shows \varphi\longrightarrow(\vartheta 
    using assms by auto
lemma MMI_con3d: assumes A1: \varphi \longrightarrow( \psi\longrightarrow ch )
    shows }\varphi\longrightarrow(\neg(ch)\longrightarrow\neg(\psi)
    using assms by auto
```

lemma MMI_dfrex2:
shows $(\exists \mathrm{x} \in \mathrm{A} \cdot \varphi(\mathrm{x})) \longleftrightarrow \neg((\forall \mathrm{x} \in \mathrm{A} \cdot \neg \varphi(\mathrm{x})))$
by auto
lemma MMI_visset:
shows x isASet
by auto
lemma MMI_elpr: assumes A1: A isASet

```
    shows A \in{ B , C } \longleftrightarrow( A = B V A = C )
    using assms by auto
lemma MMI_rexbii: assumes A1: }\forall\textrm{x}.\varphi(\textrm{x})\longleftrightarrow\psi(\textrm{x}
    shows ( \exists x f A . \varphi(x) ) \longleftrightarrow( 
    using assms by auto
lemma MMI_r19_43:
    shows ( }\exists\textrm{x}\in\textrm{A}.(\varphi(\textrm{x})\vee\psi(\textrm{x})))
    (( }\exists\textrm{x}\in\textrm{A}\cdot\varphi(\textrm{x})\vee\vee(\exists\textrm{x}\in\textrm{A}\cdot\psi(\textrm{x})))
    by auto
lemma MMI_exancom:
    shows ( \exists x . ( }\varphi(\textrm{x})\wedge\psi(\textrm{x})) ) 
    ( \exists x . ( \psi(x) ^ \varphi(x) ) )
    by auto
lemma MMI_ceqsexv: assumes A1: A isASet and
        A2: }\forall\textrm{x}.\textrm{x}=\textrm{A}\longrightarrow(\varphi(\textrm{x})\longleftrightarrow\psi(\textrm{x})
    shows ( \exists x . ( x = A ^\varphi(x) ) ) \longleftrightarrow\psi(A)
    using assms by auto
lemma MMI_orbi12i_orig: assumes A1: }\varphi\longleftrightarrow\psi\mathrm{ and
        A2: ch \longleftrightarrow\vartheta
        shows ( }\varphi\veech) \longleftrightarrow(\psi\vee\vartheta
        using assms by auto
lemma MMI_orbi12i: assumes A1: ( }\exists\textrm{x}.\varphi(\textrm{x}))\longleftrightarrow\psi an
        A2: (\existsx.ch(x)) \longleftrightarrow 
    shows ( \existsx. \varphi(x) ) \vee (\existsx.ch(x)) \longleftrightarrow( \psi\vee\vee )
    using assms by auto
lemma MMI_syl6ib: assumes A1: \varphi \longrightarrow( \psi }\longrightarrow\mathrm{ ch ) and
        A2: ch \longleftrightarrow\vartheta
    shows }\varphi\longrightarrow(\psi\longrightarrow\vartheta
    using assms by auto
lemma MMI_intnan: assumes A1: ᄀ ( \varphi )
    shows \neg ( (\psi\wedge\varphi) )
    using assms by auto
lemma MMI_intnanr: assumes A1: \neg ( \varphi )
    shows \neg ( ( }\varphi\wedge\psi)
    using assms by auto
lemma MMI_pm3_2ni: assumes A1: \neg ( \varphi ) and
        A2: \neg ( \psi )
        shows ᄀ( ( \varphi\vee\psi) )
        using assms by auto
```

```
lemma (in MMIsar0) MMI_breq12:
    shows
    \((A=B \wedge C=D) \longrightarrow(A<C \longleftrightarrow B<D)\)
    \((\mathrm{A}=\mathrm{B} \wedge \mathrm{C}=\mathrm{D}) \longrightarrow(\mathrm{A} \leq \mathrm{C} \longleftrightarrow \mathrm{B} \leq \mathrm{D})\)
    by auto
lemma MMI_necom:
        shows \(A \neq B \longleftrightarrow B \neq A\)
    by auto
lemma MMI_3jaoi: assumes A1: \(\varphi \longrightarrow \psi\) and
        A2: ch \(\longrightarrow \psi\) and
        A3: \(\vartheta \longrightarrow \psi\)
        shows ( \(\varphi \vee \mathrm{ch} \vee \vartheta\) ) \(\longrightarrow \psi\)
        using assms by auto
lemma MMI_jctr: assumes A1: \(\psi\)
        shows \(\varphi \longrightarrow(\varphi \wedge \psi)\)
        using assms by auto
lemma MMI_olc:
        shows \(\varphi \longrightarrow(\psi \vee \varphi)\)
        by auto
lemma MMI_3syl: assumes A1: \(\varphi \longrightarrow \psi\) and
        A2: \(\psi \longrightarrow \mathrm{ch}\) and
        A3: ch \(\longrightarrow \vartheta\)
        shows \(\varphi \longrightarrow \vartheta\)
        using assms by auto
lemma MMI_mtbird: assumes Amin: \(\varphi \longrightarrow \neg(c h)\) and
        Amaj: \(\varphi \longrightarrow(\psi \longleftrightarrow\) ch \()\)
        shows \(\varphi \longrightarrow \neg(\psi)\)
        using assms by auto
lemma MMI_pm2_21d: assumes A1: \(\varphi \longrightarrow \neg(\psi)\)
        shows \(\varphi \longrightarrow(\psi \longrightarrow\) ch \()\)
        using assms by auto
lemma MMI_3jaodan: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch and
        A2: \((\varphi \wedge \vartheta) \longrightarrow\) ch and
        A3: \((\varphi \wedge \tau) \longrightarrow \mathrm{ch}\)
        shows \((\varphi \wedge(\psi \vee \vartheta \vee \tau)) \longrightarrow c h\)
        using assms by auto
lemma MMI_sylan2br: assumes A1: \((\varphi \wedge \psi) \longrightarrow\) ch and
```

> A2: $\psi \longleftrightarrow \vartheta$
> shows $(\varphi \wedge \vartheta) \longrightarrow$ ch
> using assms by auto
lemma MMI_3jaoian: assumes A1: $(\varphi \wedge \psi) \longrightarrow c h$ and
A2: $(\vartheta \wedge \psi) \longrightarrow c h$ and
A3: $(\tau \wedge \psi) \longrightarrow c h$
shows $((\varphi \vee \vartheta \vee \tau) \wedge \psi) \longrightarrow \mathrm{ch}$
using assms by auto
lemma MMI_mtbid: assumes Amin: $\varphi \longrightarrow \neg(\psi)$ and Amaj: $\varphi \longrightarrow(\psi \longleftrightarrow$ ch $)$ shows $\varphi \longrightarrow \neg$ (ch) using assms by auto
lemma MMI_con1d: assumes A1: $\varphi \longrightarrow(\neg(\psi) \longrightarrow c h)$
shows $\varphi \longrightarrow(\neg(\mathrm{ch}) \longrightarrow \psi)$
using assms by auto
lemma MMI_pm2_21nd: assumes A1: $\varphi \longrightarrow \psi$ shows $\varphi \longrightarrow(\neg(\psi) \longrightarrow$ ch $)$ using assms by auto
lemma MMI_syl3an1b: assumes A1: $(\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$ and A2: $\tau \longleftrightarrow \varphi$
shows $(\tau \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$ using assms by auto
lemma MMI_adantld: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow$ ch $)$ shows $\varphi \longrightarrow((\vartheta \wedge \psi) \longrightarrow c h)$ using assms by auto
lemma MMI_adantrd: assumes A1: $\varphi \longrightarrow(\psi \longrightarrow$ ch $)$ shows $\varphi \longrightarrow((\psi \wedge \vartheta) \longrightarrow c h)$ using assms by auto
lemma MMI_anasss: assumes A1: $((\varphi \wedge \psi) \wedge c h) \longrightarrow \vartheta$ shows $(\varphi \wedge(\psi \wedge c h)) \longrightarrow \vartheta$ using assms by auto
lemma MMI_syl3an3b: assumes A1: $(\varphi \wedge \psi \wedge \mathrm{ch}) \longrightarrow \vartheta$ and A2: $\tau \longleftrightarrow$ ch shows $(\varphi \wedge \psi \wedge \tau) \longrightarrow \vartheta$ using assms by auto
lemma MMI_mpbid: assumes Amin: $\varphi \longrightarrow \psi$ and

```
    Amaj: \varphi \longrightarrow( }\psi\longleftrightarrow ch 
    shows \varphi\longrightarrow ch
    using assms by auto
lemma MMI_orbi12d: assumes A1: }\varphi\longrightarrow(\psi\longleftrightarrow ch ) and
    A2: \varphi\longrightarrow(\vartheta\longleftrightarrow ( ) 
    shows \varphi\longrightarrow((\psi\vee\vartheta) \longleftrightarrow(ch\vee\tau))
    using assms by auto
lemma MMI_ianor:
```



```
    by auto
lemma MMI_bitr2: assumes A1: }\varphi\longleftrightarrow\psi \mathrm{ and
        A2: }\psi\longleftrightarrowc
        shows ch \longleftrightarrow\varphi
    using assms by auto
lemma MMI_biimp: assumes A1: \varphi \longleftrightarrow\psi
    shows }\varphi\longrightarrow
    using assms by auto
lemma MMI_mpan2d: assumes A1: \varphi \longrightarrow ch and
        A2: \varphi\longrightarrow( (\psi\wedge ch ) \longrightarrow\vartheta)
        shows }\varphi\longrightarrow(\psi\longrightarrow\vartheta
        using assms by auto
lemma MMI_ad2antrr: assumes A1: \varphi \longrightarrow \psi
    shows ( ( \varphi^ch ) ^\vartheta ) \longrightarrow\psi
    using assms by auto
lemma MMI_biimpac: assumes A1: \varphi \longrightarrow( }\psi\longleftrightarrow ch 
    shows ( }\psi\wedge\varphi) \longrightarrow c
    using assms by auto
```

lemma MMI_con2bii: assumes A1: $\varphi \longleftrightarrow \neg(\psi)$
shows $\psi \longleftrightarrow \neg(\varphi)$
using assms by auto
lemma MMI_pm3_26bd: assumes A1: $\varphi \longleftrightarrow(\psi \wedge$ ch $)$
shows $\varphi \longrightarrow \psi$
using assms by auto
lemma MMI_biimpr: assumes A1: $\varphi \longleftrightarrow \psi$
shows $\psi \longrightarrow \varphi$

```
    using assms by auto
lemma (in MMIsar0) MMI_3brtr3g: assumes A1: \varphi \longrightarrow A < B and
        A2: A = C and
        A3: B = D
    shows \varphi \longrightarrowC < D
    using assms by auto
lemma (in MMIsar0) MMI_breq12i: assumes A1: A = B and
        A2: C = D
        shows
    A}<\textrm{C}\longleftrightarrow\textrm{B}<\textrm{D
    A}\leq\textrm{C}\longleftrightarrow\textrm{B}\leq\textrm{D
    using assms by auto
lemma MMI_negbii: assumes Aa: }\varphi\longleftrightarrow
    shows }\neg\varphi\longleftrightarrow\checkmark\neg
    using assms by auto
lemma (in MMIsar0) MMI_breq1i: assumes A1: A = B
    shows
    A<C \longleftrightarrow B < C
    A}\leq\textrm{C}\longleftrightarrow\textrm{B}\leq\textrm{C
    using assms by auto
lemma MMI_syl5eqr: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\) and A2: \(\mathrm{A}=\mathrm{C}\)
shows \(\varphi \longrightarrow C=B\)
using assms by auto
lemma (in MMIsar0) MMI_breq2d: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\)
shows
\(\varphi \longrightarrow \mathrm{C}<\mathrm{A} \longleftrightarrow \mathrm{C}<\mathrm{B}\)
\(\varphi \longrightarrow \mathrm{C} \leq \mathrm{A} \longleftrightarrow \mathrm{C} \leq \mathrm{B}\)
using assms by auto
lemma MMI_ccase: assumes A1: \(\varphi \wedge \psi \longrightarrow \tau\) and
A2: ch \(\wedge \psi \longrightarrow \tau\) and
A3: \(\varphi \wedge \vartheta \longrightarrow \tau\) and
A4: ch \(\wedge \vartheta \longrightarrow \tau\)
shows \((\varphi \vee \mathrm{ch}) \wedge(\psi \vee \vartheta) \longrightarrow \tau\)
using assms by auto
lemma MMI_pm3_27bd: assumes A1: \(\varphi \longleftrightarrow \psi \wedge\) ch shows \(\varphi \longrightarrow\) ch
```

using assms by auto
lemma MMI_nsyl3: assumes A1: $\varphi \longrightarrow \neg \psi$ and A2: ch $\longrightarrow \psi$
shows ch $\longrightarrow \neg \varphi$
using assms by auto
lemma MMI_jctild: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch and A2: $\varphi \longrightarrow \vartheta$
shows $\varphi \longrightarrow$
$\psi \longrightarrow \vartheta \wedge \mathrm{ch}$
using assms by auto
lemma MMI_jctird: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch and A2: $\varphi \longrightarrow \vartheta$
shows $\varphi \longrightarrow$
$\psi \longrightarrow \operatorname{ch} \wedge \vartheta$
using assms by auto
lemma MMI_ccase2: assumes A1: $\varphi \wedge \psi \longrightarrow \tau$ and A2: ch $\longrightarrow \tau$ and A3: $\vartheta \longrightarrow \tau$ shows $(\varphi \vee \mathrm{ch}) \wedge(\psi \vee \vartheta) \longrightarrow \tau$ using assms by auto
lemma MMI_3bitr3r: assumes A1: $\varphi \longleftrightarrow \psi$ and A2: $\varphi \longleftrightarrow$ ch and
A3: $\psi \longleftrightarrow \vartheta$
shows $\vartheta \longleftrightarrow$ ch
using assms by auto
lemma (in MMIsar0) MMI_syl6breq: assumes A1: $\varphi \longrightarrow \mathrm{A}<\mathrm{B}$ and A2: $B=C$
shows
$\varphi \longrightarrow A<C$ using assms by auto
lemma MMI_pm2_61i: assumes A1: $\varphi \longrightarrow \psi$ and A2: $\neg \varphi \longrightarrow \psi$
shows ψ
using assms by auto
lemma MMI_syl6req: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\mathrm{B}=\mathrm{C}$
shows $\varphi \longrightarrow C=A$
using assms by auto
lemma MMI_pm2_61d: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch and A2: $\varphi \longrightarrow$
$\neg \psi \longrightarrow \mathrm{ch}$
shows $\varphi \longrightarrow$ ch
using assms by auto
lemma MMI_orim1d: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch
shows $\varphi \longrightarrow$
$\psi \vee \vartheta \longrightarrow c h \vee \vartheta$
using assms by auto
lemma (in MMIsar0) MMI_breq1d: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$
shows
$\varphi \longrightarrow \mathrm{A}<\mathrm{C} \longleftrightarrow \mathrm{B}<\mathrm{C}$
$\varphi \longrightarrow \mathrm{A} \leq \mathrm{C} \longleftrightarrow \mathrm{B} \leq \mathrm{C}$
using assms by auto
lemma (in MMIsar0) MMI_breq12d: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\varphi \longrightarrow \mathrm{C}=\mathrm{D}$
shows
$\varphi \longrightarrow \mathrm{A}<\mathrm{C} \longleftrightarrow \mathrm{B}<\mathrm{D}$
$\varphi \longrightarrow \mathrm{A} \leq \mathrm{C} \longleftrightarrow \mathrm{B} \leq \mathrm{D}$
using assms by auto
lemma MMI_bibi2d: assumes A1: $\varphi \longrightarrow$
$\psi \longleftrightarrow$ ch
shows $\varphi \longrightarrow$
$(\vartheta \longleftrightarrow \psi) \longleftrightarrow$
$\vartheta \longleftrightarrow c h$
using assms by auto
lemma MMI_con4bid: assumes A1: $\varphi \longrightarrow$
$\neg \psi \longleftrightarrow \neg \mathrm{ch}$
shows $\varphi \longrightarrow$
$\psi \longleftrightarrow \mathrm{ch}$
using assms by auto
lemma MMI_3com13: assumes A1: $\varphi \wedge \psi \wedge \mathrm{ch} \longrightarrow \vartheta$
shows ch $\wedge \psi \wedge \varphi \longrightarrow \vartheta$
using assms by auto
lemma MMI_3bitr3rd: assumes A1: $\varphi \longrightarrow$
$\psi \longleftrightarrow$ ch and
$\mathrm{A} 2: \varphi \longrightarrow$
$\psi \longleftrightarrow \vartheta$ and

```
    A3: \varphi \longrightarrow
    ch \longleftrightarrow }
    shows \varphi}
    \tau\longleftrightarrow\vartheta
    using assms by auto
```

lemma MMI_3imtr4g: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch and
A2: $\vartheta \longleftrightarrow \psi$ and
A3: $\tau \longleftrightarrow$ ch
shows $\varphi \longrightarrow$
$\vartheta \longrightarrow \tau$
using assms by auto
lemma MMI_expcom: assumes A1: $\varphi \wedge \psi \longrightarrow$ ch
shows $\psi \longrightarrow \varphi \longrightarrow$ ch
using assms by auto
lemma (in MMIsar0) MMI_breq2i: assumes A1: $A=B$
shows
$\mathrm{C}<\mathrm{A} \longleftrightarrow \mathrm{C}<\mathrm{B}$
$\mathrm{C} \leq \mathrm{A} \longleftrightarrow \mathrm{C} \leq \mathrm{B}$
using assms by auto
lemma MMI_3bitr2r: assumes A1: $\varphi \longleftrightarrow \psi$ and
A2: ch $\longleftrightarrow \psi$ and
A3: ch $\longleftrightarrow \vartheta$
shows $\vartheta \longleftrightarrow \varphi$
using assms by auto
lemma MMI_dedth4h: assumes A1: A = if $(\varphi, \mathrm{A}, \mathrm{R}) \longrightarrow$
$\tau \longleftrightarrow \eta$ and
A2: B $=\operatorname{if}(\psi, \mathrm{B}, \mathrm{S}) \longrightarrow$
$\eta \longleftrightarrow \zeta$ and
A3: C $=\operatorname{if}(\mathrm{ch}, \mathrm{C}, \mathrm{F}) \longrightarrow$
$\zeta \longleftrightarrow$ si and
A4: D $=\operatorname{if}(\vartheta, \mathrm{D}, \mathrm{G}) \longrightarrow$ si \longleftrightarrow rh and
A5: rh
shows $(\varphi \wedge \psi) \wedge \operatorname{ch} \wedge \vartheta \longrightarrow \tau$
using assms by auto
lemma MMI_anbi1d: assumes A1: $\varphi \longrightarrow$
$\psi \longleftrightarrow$ ch
shows $\varphi \longrightarrow$
$\psi \wedge \vartheta \longleftrightarrow \operatorname{ch} \wedge \vartheta$
using assms by auto

```
lemma (in MMIsar0) MMI_breqtrrd: assumes A1: \(\varphi \longrightarrow \mathrm{A}<\mathrm{B}\) and
        A2: \(\varphi \longrightarrow \mathrm{C}=\mathrm{B}\)
        shows \(\varphi \longrightarrow \mathrm{A}<\mathrm{C}\)
        using assms by auto
lemma MMI_syl3an: assumes A1: \(\varphi \wedge \psi \wedge c h \longrightarrow \vartheta\) and
        A2: \(\tau \longrightarrow \varphi\) and
        A3: \(\eta \longrightarrow \psi\) and
        A4: \(\zeta \longrightarrow \mathrm{ch}\)
        shows \(\tau \wedge \eta \wedge \zeta \longrightarrow \vartheta\)
        using assms by auto
lemma MMI_3bitrd: assumes A1: \(\varphi \longrightarrow\)
    \(\psi \longleftrightarrow\) ch and
        A2: \(\varphi \longrightarrow\)
        ch \(\longleftrightarrow \vartheta\) and
        A3: \(\varphi \longrightarrow\)
        \(\vartheta \longleftrightarrow \tau\)
        shows \(\varphi \longrightarrow\)
        \(\psi \longleftrightarrow \tau\)
        using assms by auto
lemma (in MMIsar0) MMI_breqtr: assumes A1: A < B and
        A2: \(B=C\)
        shows A < C
        using assms by auto
lemma MMI_mpi: assumes A1: \(\psi\) and
    A2: \(\varphi \longrightarrow \psi \longrightarrow \mathrm{ch}\)
    shows \(\varphi \longrightarrow\) ch
    using assms by auto
lemma MMI_eqtr2: assumes A1: \(A=B\) and
        A2: \(B=C\)
        shows \(C=A\)
        using assms by auto
lemma MMI_eqneqi: assumes \(A 1: A=B \longleftrightarrow C=D\)
        shows \(A \neq B \longleftrightarrow C \neq D\)
        using assms by auto
lemma (in MMIsar0) MMI_eqbrtrrd: assumes A1: \(\varphi \longrightarrow \mathrm{A}=\mathrm{B}\) and
```

> A2: $\varphi \longrightarrow \mathrm{A}<\mathrm{C}$
> shows $\varphi \longrightarrow \mathrm{B}<\mathrm{C}$
> using assms by auto
lemma MMI_mpd: assumes A1: $\varphi \longrightarrow \psi$ and
$\mathrm{A} 2: \varphi \longrightarrow \psi \longrightarrow \mathrm{ch}$
shows $\varphi \longrightarrow$ ch
using assms by auto
lemma MMI_mpdan: assumes A1: $\varphi \longrightarrow \psi$ and
A2: $\varphi \wedge \psi \longrightarrow \mathrm{ch}$
shows $\varphi \longrightarrow$ ch using assms by auto
lemma (in MMIsar0) MMI_breqtrd: assumes A1: $\varphi \longrightarrow \mathrm{A}<\mathrm{B}$ and A2: $\varphi \longrightarrow \mathrm{B}=\mathrm{C}$
shows $\varphi \longrightarrow \mathrm{A}<\mathrm{C}$ using assms by auto
lemma MMI_mpand: assumes A1: $\varphi \longrightarrow \psi$ and A2: $\varphi \longrightarrow$ $\psi \wedge \mathrm{ch} \longrightarrow \vartheta$ shows $\varphi \longrightarrow$ ch $\longrightarrow \vartheta$ using assms by auto
lemma MMI_imbi1d: assumes A1: $\varphi \longrightarrow$ $\psi \longleftrightarrow$ ch
shows $\varphi \longrightarrow$ $(\psi \longrightarrow \vartheta) \longleftrightarrow$ (ch $\longrightarrow \vartheta$)
using assms by auto
lemma MMI_mtbii: assumes Amin: $\neg \psi$ and Amaj: $\varphi \longrightarrow$
$\psi \longleftrightarrow$ ch
shows $\varphi \longrightarrow \neg$ ch
using assms by auto
lemma MMI_sylan2d: assumes A1: $\varphi \longrightarrow$
$\psi \wedge \mathrm{ch} \longrightarrow \vartheta$ and
A2: $\varphi \longrightarrow \tau \longrightarrow$ ch
shows $\varphi \longrightarrow$
$\psi \wedge \tau \longrightarrow \vartheta$
using assms by auto
lemma MMI_imp32: assumes A1: $\varphi \longrightarrow$

$$
\psi \longrightarrow \mathrm{ch} \longrightarrow \vartheta
$$

shows $\varphi \wedge \psi \wedge \mathrm{ch} \longrightarrow \vartheta$ using assms by auto
lemma (in MMIsar0) MMI_breqan12d: assumes A1: $\varphi \longrightarrow A=B$ and A2: $\psi \longrightarrow \mathrm{C}=\mathrm{D}$ shows
$\varphi \wedge \psi \longrightarrow \mathrm{A}<\mathrm{C} \longleftrightarrow \mathrm{B}<\mathrm{D}$
$\varphi \wedge \psi \longrightarrow \mathrm{A} \leq \mathrm{C} \longleftrightarrow \mathrm{B} \leq \mathrm{D}$
using assms by auto
lemma MMI_a1dd: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch
shows $\varphi \longrightarrow$
$\psi \longrightarrow \vartheta \longrightarrow \mathrm{ch}$
using assms by auto
lemma (in MMIsar0) MMI_3brtr3d: assumes A1: $\varphi \longrightarrow \mathrm{A} \leq \mathrm{B}$ and A2: $\varphi \longrightarrow \mathrm{A}=\mathrm{C}$ and A3: $\varphi \longrightarrow \mathrm{B}=\mathrm{D}$
shows $\varphi \longrightarrow \mathrm{C} \leq \mathrm{D}$
using assms by auto
lemma MMI_ad2antll: assumes A1: $\varphi \longrightarrow \psi$
shows ch $\wedge \vartheta \wedge \varphi \longrightarrow \psi$ using assms by auto
lemma MMI_adantrrl: assumes A1: $\varphi \wedge \psi \wedge c h \longrightarrow \vartheta$
shows $\varphi \wedge \psi \wedge \tau \wedge \mathrm{ch} \longrightarrow \vartheta$ using assms by auto
lemma MMI_syl2ani: assumes A1: $\varphi \longrightarrow$ $\psi \wedge \mathrm{ch} \longrightarrow \vartheta$ and A2: $\tau \longrightarrow \psi$ and A3: $\eta \longrightarrow \mathrm{ch}$
shows $\varphi \longrightarrow$
$\tau \wedge \eta \longrightarrow \vartheta$
using assms by auto
lemma MMI_im2anan9: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch and A2: $\vartheta \longrightarrow$
$\tau \longrightarrow \eta$
shows $\varphi \wedge \vartheta \longrightarrow$
$\psi \wedge \tau \longrightarrow \operatorname{ch} \wedge \eta$
using assms by auto
lemma MMI_ancomsd: assumes A1: $\varphi \longrightarrow$
$\psi \wedge \mathrm{ch} \longrightarrow \vartheta$
shows $\varphi \longrightarrow$
$\operatorname{ch} \wedge \psi \longrightarrow \vartheta$
using assms by auto
lemma MMI_mpani: assumes A1: ψ and
A2: $\varphi \longrightarrow$
$\psi \wedge \mathrm{ch} \longrightarrow \vartheta$
shows $\varphi \longrightarrow$ ch $\longrightarrow \vartheta$
using assms by auto
lemma MMI_syldan: assumes A1: $\varphi \wedge \psi \longrightarrow$ ch and A2: $\varphi \wedge \mathrm{ch} \longrightarrow \vartheta$
shows $\varphi \wedge \psi \longrightarrow \vartheta$ using assms by auto
lemma MMI_mp3anl1: assumes A1: φ and
A2: $(\varphi \wedge \psi \wedge \mathrm{ch}) \wedge \vartheta \longrightarrow \tau$
shows $(\psi \wedge \mathrm{ch}) \wedge \vartheta \longrightarrow \tau$
using assms by auto
lemma MMI_3ad2ant1: assumes A1: $\varphi \longrightarrow$ ch
shows $\varphi \wedge \psi \wedge \vartheta \longrightarrow \mathrm{ch}$
using assms by auto
lemma MMI_pm3_2:
shows $\varphi \longrightarrow$
$\psi \longrightarrow \varphi \wedge \psi$
by auto
lemma MMI_pm2_43i: assumes A1: $\varphi \longrightarrow$
$\varphi \longrightarrow \psi$
shows $\varphi \longrightarrow \psi$
using assms by auto
lemma MMI_jctil: assumes A1: $\varphi \longrightarrow \psi$ and
A2: ch
shows $\varphi \longrightarrow \mathrm{ch} \wedge \psi$
using assms by auto
lemma MMI_mpanl12: assumes A1: φ and
A2: ψ and
A3: $(\varphi \wedge \psi) \wedge \mathrm{ch} \longrightarrow \vartheta$
shows ch $\longrightarrow \vartheta$
using assms by auto
lemma MMI_mpanr1: assumes A1: ψ and $\mathrm{A} 2: \varphi \wedge \psi \wedge \mathrm{ch} \longrightarrow \vartheta$ shows $\varphi \wedge$ ch $\longrightarrow \vartheta$ using assms by auto
lemma MMI_ad2antrl: assumes A1: $\varphi \longrightarrow \psi$ shows ch $\wedge \varphi \wedge \vartheta \longrightarrow \psi$ using assms by auto
lemma MMI_3adant3r: assumes A1: $\varphi \wedge \psi \wedge c h \longrightarrow \vartheta$ shows $\varphi \wedge \psi \wedge \mathrm{ch} \wedge \tau \longrightarrow \vartheta$ using assms by auto
lemma MMI_3adant11: assumes A1: $\varphi \wedge \psi \wedge \mathrm{ch} \longrightarrow \vartheta$ shows $(\tau \wedge \varphi) \wedge \psi \wedge c h \longrightarrow \vartheta$ using assms by auto
lemma MMI_3adant2r: assumes A1: $\varphi \wedge \psi \wedge \mathrm{ch} \longrightarrow \vartheta$ shows $\varphi \wedge(\psi \wedge \tau) \wedge \mathrm{ch} \longrightarrow \vartheta$ using assms by auto
lemma MMI_3bitr4rd: assumes A1: $\varphi \longrightarrow$ $\psi \longleftrightarrow$ ch and A2: $\varphi \longrightarrow$ $\vartheta \longleftrightarrow \psi$ and A3: $\varphi \longrightarrow$ $\tau \longleftrightarrow$ ch shows $\varphi \longrightarrow$ $\tau \longleftrightarrow \vartheta$ using assms by auto
lemma MMI_3anrev: shows $\varphi \wedge \psi \wedge \mathrm{ch} \longleftrightarrow \mathrm{ch} \wedge \psi \wedge \varphi$ by auto
lemma MMI_eqtr4: assumes A1: A = B and A2: $C=B$ shows $A=C$ using assms by auto
lemma MMI_anidm: shows $\varphi \wedge \varphi \longleftrightarrow \varphi$ by auto
lemma MMI_bi2anan9r: assumes A1: $\varphi \longrightarrow$ $\psi \longleftrightarrow$ ch and A2: $\vartheta \longrightarrow$

```
    \tau\longleftrightarrow\eta
    shows \vartheta ^\varphi\longrightarrow
    \psi\wedge\tau\longleftrightarrow ch ^ \eta
    using assms by auto
lemma MMI_3imtr3g: assumes A1: \varphi\longrightarrow\psi\longrightarrow ch and
    A2: \psi\longleftrightarrow\vartheta and
    A3: ch \longleftrightarrow 
    shows \varphi}
    \vartheta \longrightarrow \tau
    using assms by auto
lemma MMI_a3d: assumes A1: \varphi \longrightarrow
    \neg \psi \longrightarrow \neg \mathrm { ch }
    shows \varphi\longrightarrow ch }\longrightarrow
    using assms by auto
lemma MMI_sylan9bbr: assumes A1: \varphi}
    \psi\longleftrightarrow ch and
        A2: \vartheta}
        ch \longleftrightarrow\tau
        shows \vartheta ^\varphi\longrightarrow
        \psi \longleftrightarrow \tau
        using assms by auto
lemma MMI_sylan9bb: assumes A1: \varphi \longrightarrow
    \psi\longleftrightarrow ch and
        A2: \vartheta \longrightarrow
        ch \longleftrightarrow\tau
        shows \varphi}\wedge\vartheta
        \psi \longleftrightarrow \tau
        using assms by auto
lemma MMI_3bitr3g: assumes A1: \varphi \longrightarrow
    \psi\longleftrightarrow ch and
        A2: }\psi\longleftrightarrow\vartheta\mathrm{ and
        A3: ch \longleftrightarrow }
        shows \varphi}
        \vartheta \longleftrightarrow \tau
        using assms by auto
lemma MMI_pm5_21:
    shows }\neg\varphi\wedge\neg\psi
    \varphi \longleftrightarrow \psi
    by auto
```

lemma MMI_an6:

```
    shows ( }\varphi\wedge\psi\wedge\textrm{ch})\wedge\vartheta\wedge\tau~\wedge\eta
```

 \((\varphi \wedge \vartheta) \wedge(\psi \wedge \tau) \wedge \operatorname{ch} \wedge \eta\)
 by auto
 lemma MMI_syl3anl1: assumes A1: $(\varphi \wedge \psi \wedge \mathrm{ch}) \wedge \vartheta \longrightarrow \tau$ and A2: $\eta \longrightarrow \varphi$ shows $(\eta \wedge \psi \wedge \mathrm{ch}) \wedge \vartheta \longrightarrow \tau$ using assms by auto
lemma MMI_imp4a: assumes A1: $\varphi \longrightarrow$
$\psi \longrightarrow$
$\mathrm{ch} \longrightarrow$
$\vartheta \longrightarrow \tau$
shows $\varphi \longrightarrow$
$\psi \longrightarrow$
$\operatorname{ch} \wedge \vartheta \longrightarrow \tau$
using assms by auto
lemma (in MMIsar0) MMI_breqan12rd: assumes A1: $\varphi \longrightarrow \mathrm{A}=\mathrm{B}$ and A2: $\psi \longrightarrow \mathrm{C}=\mathrm{D}$
shows
$\psi \wedge \varphi \longrightarrow \mathrm{A}<\mathrm{C} \longleftrightarrow \mathrm{B}<\mathrm{D}$
$\psi \wedge \varphi \longrightarrow \mathrm{A} \leq \mathrm{C} \longleftrightarrow \mathrm{B} \leq \mathrm{D}$
using assms by auto
lemma (in MMIsar0) MMI_3brtr4d: assumes A1: $\varphi \longrightarrow \mathrm{A}<\mathrm{B}$ and A2: $\varphi \longrightarrow \mathrm{C}=\mathrm{A}$ and
A3: $\varphi \longrightarrow \mathrm{D}=\mathrm{B}$
shows $\varphi \longrightarrow \mathrm{C}<\mathrm{D}$
using assms by auto
lemma MMI_adantrrr: assumes A1: $\varphi \wedge \psi \wedge \mathrm{ch} \longrightarrow \vartheta$ shows $\varphi \wedge \psi \wedge \operatorname{ch} \wedge \tau \longrightarrow \vartheta$ using assms by auto
lemma MMI_adantrlr: assumes A1: $\varphi \wedge \psi \wedge$ ch $\longrightarrow \vartheta$ shows $\varphi \wedge(\psi \wedge \tau) \wedge c h \longrightarrow \vartheta$ using assms by auto
lemma MMI_imdistani: assumes A1: $\varphi \longrightarrow \psi \longrightarrow$ ch shows $\varphi \wedge \psi \longrightarrow \varphi \wedge \mathrm{ch}$ using assms by auto
lemma MMI_anabss3: assumes A1: $(\varphi \wedge \psi) \wedge \psi \longrightarrow \mathrm{ch}$
shows $\varphi \wedge \psi \longrightarrow \mathrm{ch}$ using assms by auto

```
lemma MMI_mp3anl2: assumes A1: \(\psi\) and
        A2: \((\varphi \wedge \psi \wedge \mathrm{ch}) \wedge \vartheta \longrightarrow \tau\)
        shows \((\varphi \wedge \mathrm{ch}) \wedge \vartheta \longrightarrow \tau\)
        using assms by auto
lemma MMI_mpanl2: assumes A1: \(\psi\) and
    A2: \((\varphi \wedge \psi) \wedge \mathrm{ch} \longrightarrow \vartheta\)
    shows \(\varphi \wedge\) ch \(\longrightarrow \vartheta\)
    using assms by auto
lemma MMI_mpancom: assumes A1: \(\psi \longrightarrow \varphi\) and
    A2: \(\varphi \wedge \psi \longrightarrow \mathrm{ch}\)
    shows \(\psi \longrightarrow\) ch
    using assms by auto
lemma MMI_or12:
        shows \(\varphi \vee \psi \vee \mathrm{ch} \longleftrightarrow \psi \vee \varphi \vee \mathrm{ch}\)
        by auto
lemma MMI_rcla4ev: assumes A1: \(\forall \mathrm{x} . \mathrm{x}=\mathrm{A} \longrightarrow \varphi(\mathrm{x}) \longleftrightarrow \psi\)
    shows \(A \in B \wedge \psi \longrightarrow(\exists x \in B . \varphi(x))\)
    using assms by auto
lemma MMI_jctir: assumes A1: \(\varphi \longrightarrow \psi\) and
    A2: ch
    shows \(\varphi \longrightarrow \psi \wedge \mathrm{ch}\)
    using assms by auto
lemma MMI_iffalse:
    shows \(\neg \varphi \longrightarrow \quad \operatorname{if}(\varphi, \mathrm{A}, \mathrm{B})=\mathrm{B}\)
    by auto
lemma MMI_iftrue:
        shows \(\varphi \longrightarrow \quad\) if \((\varphi, \mathrm{A}, \mathrm{B})=\mathrm{A}\)
        by auto
lemma MMI_pm2_61d2: assumes A1: \(\varphi \longrightarrow\)
        \(\neg \psi \longrightarrow \mathrm{ch}\) and
        A2: \(\psi \longrightarrow\) ch
        shows \(\varphi \longrightarrow\) ch
        using assms by auto
lemma MMI_pm2_61dan: assumes A1: \(\varphi \wedge \psi \longrightarrow\) ch and
        A2: \(\varphi \wedge \neg \psi \longrightarrow \mathrm{ch}\)
        shows \(\varphi \longrightarrow\) ch
        using assms by auto
```

```
lemma MMI_orcanai: assumes A1: \(\varphi \longrightarrow \psi \vee\) ch
    shows \(\varphi \wedge \neg \psi \longrightarrow\) ch
    using assms by auto
lemma MMI_ifcl:
    shows \(\mathrm{A} \in \mathrm{C} \wedge \mathrm{B} \in \mathrm{C} \longrightarrow \operatorname{if}(\varphi, \mathrm{A}, \mathrm{B}) \in \mathrm{C}\)
    by auto
lemma MMI_imim2i: assumes A1: \(\varphi \longrightarrow \psi\)
    shows \((\mathrm{ch} \longrightarrow \varphi) \longrightarrow \mathrm{ch} \longrightarrow \psi\)
    using assms by auto
lemma MMI_com13: assumes A1: \(\varphi \longrightarrow\)
    \(\psi \longrightarrow \mathrm{ch} \longrightarrow \vartheta\)
    shows ch \(\longrightarrow\)
    \(\psi \longrightarrow\)
    \(\varphi \longrightarrow \vartheta\)
    using assms by auto
lemma MMI_rcla4v: assumes A1: \(\forall \mathrm{x} . \mathrm{x}=\mathrm{A} \longrightarrow \varphi(\mathrm{x}) \longleftrightarrow \psi\)
    shows \(A \in B \longrightarrow(\forall x \in B . \varphi(x)) \longrightarrow \psi\)
    using assms by auto
lemma MMI_syl5d: assumes A1: \(\varphi \longrightarrow\)
    \(\psi \longrightarrow \mathrm{ch} \longrightarrow \vartheta\) and
        A2: \(\varphi \longrightarrow \tau \longrightarrow\) ch
    shows \(\varphi \longrightarrow\)
    \(\psi \longrightarrow\)
    \(\tau \longrightarrow \vartheta\)
    using assms by auto
lemma MMI_eqcoms: assumes A1: \(\mathrm{A}=\mathrm{B} \longrightarrow \varphi\)
    shows \(\mathrm{B}=\mathrm{A} \longrightarrow \varphi\)
    using assms by auto
lemma MMI_rgen: assumes A1: \(\forall \mathrm{x} . \mathrm{x} \in \mathrm{A} \longrightarrow \varphi(\mathrm{x})\)
    shows \(\forall \mathrm{x} \in \mathrm{A} . \varphi(\mathrm{x})\)
    using assms by auto
lemma (in MMIsar0) MMI_reex:
    shows \(\mathbb{R}=\mathbb{R}\)
    by auto
lemma MMI_sstri: assumes A1: \(A \subseteq B\) and
    A2: \(B \subseteq C\)
    shows A \(\subseteq\) C
    using assms by auto
```

lemma MMI_ssexi: assumes A1: $\mathrm{B}=\mathrm{B}$ and A2: $A \subseteq B$
shows $\mathrm{A}=\mathrm{A}$
using assms by auto
end

74 Complex numbers in Metamatah - introduction

theory MMI_Complex_ZF imports MMI_logic_and_sets
begin
This theory contains theorems (with proofs) about complex numbers imported from the Metamath's set.mm database. The original Metamath proofs were mostly written by Norman Megill, see the Metamath Proof Explorer pages for full atribution. This theory contains about 200 theorems from "recnt" to "div11t".
lemma (in MMIsar0) MMI_recnt:
shows $A \in \mathbb{R} \longrightarrow A \in \mathbb{C}$
proof -
have $S 1: \mathbb{R} \subseteq \mathbb{C}$ by (rule MMI_axresscn)
from $S 1$ show $A \in \mathbb{R} \longrightarrow A \in \mathbb{C}$ by (rule MMI_sseli)
qed
lemma (in MMIsar0) MMI_recn: assumes A1: $A \in \mathbb{R}$
shows $A \in \mathbb{C}$
proof -
have $S 1: \mathbb{R} \subseteq \mathbb{C}$ by (rule MMI_axresscn)
from A1 have $\mathrm{S} 2: \mathrm{A} \in \mathbb{R}$.
from S1 S2 show $A \in \mathbb{C}$ by (rule MMI_sselii)
qed
lemma (in MMIsar0) MMI_recnd: assumes A1: $\varphi \longrightarrow \mathrm{A} \in \mathbb{R}$
shows $\varphi \longrightarrow A \in \mathbb{C}$
proof -
from A1 have $S 1: \varphi \longrightarrow A \in \mathbb{R}$.
have $S 2: A \in \mathbb{R} \longrightarrow A \in \mathbb{C}$ by (rule MMI_recnt)
from S 1 S 2 show $\varphi \longrightarrow \mathrm{A} \in \mathbb{C}$ by (rule MMI_syl)
qed
lemma (in MMIsar0) MMI_elimne0:
shows if $(A \neq 0, A, 1) \neq 0$
proof -
have $S 1: A=$ if $(A \neq \mathbf{0}, A, 1) \longrightarrow$

```
        ( A \not=0 \longleftrightarrow if ( A # 0 , A , 1 ) \not= 0 ) by (rule MMI_neeq1)
    have S2: 1 = if ( A # 0 , A , 1 ) }
        ( 1 = 0 \longleftrightarrow if ( A = 0 , A , 1 ) = 0 ) by (rule MMI_neeq1)
    have S3: 1 = 0 by (rule MMI_ax1ne0)
    from S1 S2 S3 show if ( A \not= 0 , A , 1 ) \not= 0 by (rule MMI_elimhyp)
qed
lemma (in MMIsar0) MMI_addex:
    shows + isASet
proof -
    have S1: \mathbb{C isASet by (rule MMI_axcnex)}
    have S2: \mathbb{C isASet by (rule MMI_axcnex)}
    from S1 S2 have S3: ( \mathbb{C C ) isASet by (rule MMI_xpex)}
    have S4: +:(\mathbb{C}\times\mathbb{C}) }->\mathbb{C}\mathrm{ by (rule MMI_axaddopr)
    have S5: (\mathbb{C}\times\mathbb{C}) isASet }
        ( + : (\mathbb{C}\times\mathbb{C}) }->\mathbb{C}\longrightarrow+\mathrm{ isASet ) by (rule MMI_fex)
    from S3 S4 S5 show + isASet by (rule MMI_mp2)
qed
lemma (in MMIsar0) MMI_mulex:
    shows · isASet
proof -
    have S1: \mathbb{ isASet by (rule MMI_axcnex)}
    have S2: \mathbb{C isASet by (rule MMI_axcnex)}
    from S1 S2 have S3: (\mathbb{C}\times\mathbb{C}) isASet by (rule MMI_xpex)
    have S4: . : (\mathbb{C}\times\mathbb{C}) }->\mathbb{C}\mathrm{ by (rule MMI_axmulopr)
    have S5: (\mathbb{C}\times\mathbb{C}) isASet }
        ( . : (\mathbb{C}\times\mathbb{C}) }->\mathbb{C}\longrightarrow\cdotisASet ) by (rule MMI_fex)
    from S3 S4 S5 show . isASet by (rule MMI_mp2)
qed
lemma (in MMIsar0) MMI_adddirt:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ((A+B) C C ) = ( ( A C C ) + ( B C C ) )
proof -
    have S1: ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C ) }\longrightarrow
        (C ( ( A + B ) ) = ( ( C . A ) + ( C | B ) )
        by (rule MMI_axdistr)
    from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
        ( C . ( A + B ) ) = ( ( C · A ) + ( C . B ) ) by (rule MMI_3coml)
    have S3: ( ( A + B ) \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( A + B ) . C ) = ( C . ( A + B ) ) by (rule MMI_axmulcom)
    have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(A+B) \in\mathbb{C}\mathrm{ by (rule MMI_axaddcl)}
    from S3 S4 have S5: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^C\in\mathbb{C})\longrightarrow
        ( ( A + B ) . C ) = ( C . ( A + B ) ) by (rule MMI_sylan)
    from S5 have S6: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
        ( ( A + B ) . C ) = ( C . ( A + B ) ) by (rule MMI_3impa)
    have S7: (A G\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A\cdotC)=(C\cdotA )
        by (rule MMI_axmulcom)
```

```
    from S7 have S8: ( A \in\mathbb{C}\wedge B \in\mathbb{C ^C C C ) \longrightarrow( A C ) = (C .}
A )
    by (rule MMI_3adant2)
    have S9: ( B \in\mathbb{C}^C\in\mathbb{C ) }\longrightarrow(B\cdotC ) = (C P B )
        by (rule MMI_axmulcom)
    from S9 have S10: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow(B\cdotC ) = ( C
B )
            by (rule MMI_3adant1)
    from S8 S10 have S11: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( A C C ) + ( B C C ) ) = ( ( C | A ) + ( C | B ) )
        by (rule MMI_opreq12d)
    from S2 S6 S11 show ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ((A+B)\cdotC) = ((A.C ) + ( B C C ) )
        by (rule MMI_3eqtr4d)
qed
lemma (in MMIsar0) MMI_addcl: assumes A1: A \in \mathbb{C}}\mathrm{ and
        A2: B }\in\mathbb{C
    shows ( A + B ) \in\mathbb{C}
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(A+B ) \in\mathbb{C}\mathrm{ by (rule MMI_axaddcl)}
    from S1 S2 S3 show ( A + B ) \in\mathbb{C}}\mathrm{ by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_mulcl: assumes A1: A \in C
    A2: B }\in\mathbb{C
    shows ( A • B ) \in\mathbb{C}
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(A.B ) \in\mathbb{C}\mathrm{ by (rule MMI_axmulcl)}
    from S1 S2 S3 show ( A • B ) \in\mathbb{C}}\mathrm{ by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_addcom: assumes A1: A \in C and
    A2: B }\in\mathbb{C
    shows ( A + B ) = ( B + A )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    have S3: ( A \in\mathbb{C}\wedge B\in\mathbb{C})\longrightarrow(A+B) = ( B + A )
        by (rule MMI_axaddcom)
    from S1 S2 S3 show ( A + B ) = ( B + A ) by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_mulcom: assumes A1: A \in C and
    A2: B }\in\mathbb{C
```

```
    shows ( A | B ) = ( B · A )
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
```



```
        by (rule MMI_axmulcom)
    from S1 S2 S3 show ( A | B ) = ( B | A ) by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_addass: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C}\mathrm{ and
    A3: C }\in\mathbb{C
    shows ((A + B ) +C) = ( A + ( B + C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A+B) +C ) =
        ( A + ( B + C ) ) by (rule MMI_axaddass)
    from S1 S2 S3 S4 show ( ( A + B ) + C ) =
        ( A + ( B + C ) ) by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_mulass: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C }\in\mathbb{C
    shows (( A | B ) C ) = ( A | ( B | C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4:(A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A\cdotB)
        ( A . ( B . C ) ) by (rule MMI_axmulass)
    from S1 S2 S3 S4 show ( ( A | B ) . C ) = ( A | ( B | C ) )
        by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_adddi: assumes A1: A \in C
    A2: B \in\mathbb{C}}\mathrm{ and
    A3: C }\in\mathbb{C
    shows (A. ( B + C ) ) = ( ( A | B ) + ( A C C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4:( A G\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A.(B+C)) =
        ( ( A • B ) + ( A . C ) ) by (rule MMI_axdistr)
    from S1 S2 S3 S4 show ( A . ( B + C ) ) =
        ( ( A | B ) + ( A | C ) ) by (rule MMI_mp3an)
```

qed
lemma (in MMIsar0) MMI_adddir: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$
shows $((A+B) \cdot C)=((A \cdot C)+(B \cdot C))$
proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
from A2 have $\mathrm{S} 2: \mathrm{B} \in \mathbb{C}$.
from A3 have S3: $C \in \mathbb{C}$.
have S4: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A+B) \cdot C)=$ ((A • C) + (B • C)) by (rule MMI_adddirt)
from S1 S2 S3 S4 show ($(A+B) \cdot C)=$
((A C C) + (B C)) by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_1cn:
shows $1 \in \mathbb{C}$
proof -
have $S 1: \mathbf{1} \in \mathbb{R}$ by (rule MMI_ax1re)
from $S 1$ show $1 \in \mathbb{C}$ by (rule MMI_recn)
qed
lemma (in MMIsar0) MMI_Ocn:
shows $0 \in \mathbb{C}$
proof -
have S1: ((i . i) + $\mathbf{1}$) = $\mathbf{0}$ by (rule MMI_axi2m1)
have S2: i $\in \mathbb{C}$ by (rule MMI_axicn)
have S3: i $\in \mathbb{C}$ by (rule MMI_axicn)
from S2 S3 have S4: (i . i) $\in \mathbb{C}$ by (rule MMI_mulcl)
have $S 5: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from S4 S5 have $\mathrm{S} 6:((\mathrm{i} \cdot \mathrm{i})+1$) $\in \mathbb{C}$ by (rule MMI_addcl)
from S 1 S 6 show $0 \in \mathbb{C}$ by (rule MMI_eqeltrr)
qed
lemma (in MMIsar0) MMI_addid1: assumes A1: $A \in \mathbb{C}$
shows $(\mathrm{A}+0)=\mathrm{A}$
proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
have $\mathrm{S} 2: \mathrm{A} \in \mathbb{C} \longrightarrow(\mathrm{A}+0)=\mathrm{A}$ by (rule MMI_ax0id)
from S 1 S 2 show $(\mathrm{A}+0$) = A by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_addid2: assumes A1: $A \in \mathbb{C}$
shows $(0+A)=A$
proof -
have S1: $\mathbf{0} \in \mathbb{C}$ by (rule MMI_0cn)
from A1 have $S 2: A \in \mathbb{C}$.
from S1 S2 have S3: ($0+\mathrm{A})=(\mathrm{A}+\mathbf{0})$ by (rule MMI_addcom)
from A1 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C}$.
from S4 have $S 5:(A+0)=A$ by (rule MMI_addid1)
from S3 S5 show ($0+\mathrm{A}$) = A by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_mulid1: assumes A1: $A \in \mathbb{C}$
shows (A • 1) = A
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
have $S 2: A \in \mathbb{C} \longrightarrow(A \cdot 1)=A$ by (rule MMI_ax1id)
from S1 S2 show (A • 1) = A by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_mulid2: assumes A1: A $\in \mathbb{C}$
shows (1 1 A) = A
proof -
have $\mathrm{S} 1: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from A1 have $\mathrm{S} 2: \mathrm{A} \in \mathbb{C}$.
from S1 S2 have S3: ($1 \cdot \mathrm{~A}$) = (A • 1) by (rule MMI_mulcom)
from A 1 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C}$.
from S4 have S5: (A 1) = A by (rule MMI_mulid1)
from S3 S5 show (1 • A) = A by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_negex: assumes A1: A $\in \mathbb{C}$
shows $\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=0$
proof -
from A 1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
have $S 2: A \in \mathbb{C} \longrightarrow(\exists x \in \mathbb{C} .(A+x)=0)$ by (rule MMI_axnegex)
from $S 1$ S2 show $\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=\mathbf{0}$ by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_recex: assumes A1: $A \in \mathbb{C}$ and
A2: $\mathrm{A} \neq \mathbf{0}$
shows $\exists \mathrm{x} \in \mathbb{C}$. ($\mathrm{A} \cdot \mathrm{x})=1$
proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
from $A 2$ have $S 2: A \neq 0$.
have $\mathrm{S} 3:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{A} \neq \mathbf{0}) \longrightarrow(\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A} \cdot \mathrm{x})=1)$
by (rule MMI_axrecex)
from S1 S2 S3 show $\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A} \cdot \mathrm{x})=\mathbf{1}$ by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_readdcl: assumes A1: $A \in \mathbb{R}$ and
A2: $B \in \mathbb{R}$
shows $(A+B) \in \mathbb{R}$
proof -
from $A 1$ have $S 1: A \in \mathbb{R}$.
from $A 2$ have $S 2: B \in \mathbb{R}$.
have $\operatorname{S3}:(A \in \mathbb{R} \wedge B \in \mathbb{R}) \longrightarrow(A+B) \in \mathbb{R}$ by (rule MMI_axaddrcl)
from S1 S2 S3 show ($A+B$) $\in \mathbb{R}$ by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_remulcl: assumes A1: $A \in \mathbb{R}$ and
A2: $B \in \mathbb{R}$
shows (A • B) $\in \mathbb{R}$
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{R}$.
from $A 2$ have $S 2: B \in \mathbb{R}$.
have S3: $(A \in \mathbb{R} \wedge B \in \mathbb{R}) \longrightarrow(A \cdot B) \in \mathbb{R}$ by (rule MMI_axmulrcl)
from S 1 S 2 S 3 show ($\mathrm{A} \cdot \mathrm{B}$) $\in \mathbb{R}$ by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_addcan: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$
shows $(A+B)=(A+C) \longleftrightarrow B=C$
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from S1 have S2: $\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=0$ by (rule MMI_negex)
from $A 1$ have $S 3: A \in \mathbb{C}$.
from A2 have $\mathrm{S} 4: \mathrm{B} \in \mathbb{C}$.
\{ fix x
have S5: $(x \in \mathbb{C} \wedge A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((x+A)+B)=$ ($\mathrm{x}+(\mathrm{A}+\mathrm{B})$) by (rule MMI_axaddass)
from S4 S5 have $\mathrm{S} 6:(\mathrm{x} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow((\mathrm{x}+\mathrm{A})+\mathrm{B})=$ ($\mathrm{x}+(\mathrm{A}+\mathrm{B})$) by (rule MMI_mp3an3)
from A 3 have $\mathrm{S7}: \mathrm{C} \in \mathbb{C}$.
have $\mathrm{S8}:(\mathrm{x} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((x+A)+C)=$ ($\mathrm{x}+(\mathrm{A}+\mathrm{C})$) by (rule MMI_axaddass)
from S7 S8 have $\mathrm{S} 9:(\mathrm{x} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow((\mathrm{x}+\mathrm{A})+C)=$ ($\mathrm{x}+(\mathrm{A}+\mathrm{C})$) by (rule MMI_mp3an3)
from S6 S9 have S10: $(x \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow$
$(((x+A)+B)=((x+A)+C) \longleftrightarrow$ $(x+(A+B))=(x+(A+C)))$ by (rule MMI_eqeq12d)
from S3 S10 have S11: $x \in \mathbb{C} \longrightarrow((1+A)+B)=$ $((x+A)+C) \longleftrightarrow(x+(A+B))=$ $(x+(A+C)))$ by (rule MMI_mpan2)
have S12: $(A+B)=(A+C) \longrightarrow(x+(A+B))=$ ($\mathrm{x}+(\mathrm{A}+\mathrm{C})$) by (rule MMI_opreq2)
from S11 S12 have S13: $x \in \mathbb{C} \longrightarrow((A+B)=(A+C) \longrightarrow$ $((x+A)+B)=((x+A)+C))$

> by (rule MMI_syl5bir)
from $S 13$ have $S 14:(x \in \mathbb{C} \wedge(A+x)=0) \longrightarrow((A+B)=$
$(A+C) \longrightarrow((x+A)+B)=$
(($\mathrm{x}+\mathrm{A}$) + C)) by (rule MMI_adantr)
from A1 have S15: A $\in \mathbb{C}$.
have S16: $(A \in \mathbb{C} \wedge x \in \mathbb{C}) \longrightarrow(A+x)=(x+A)$
by (rule MMI_axaddcom)
from S15 S16 have S17: $x \in \mathbb{C} \longrightarrow(A+x)=(x+A)$ by (rule MMI_mpan)
from S17 have S18: $x \in \mathbb{C} \longrightarrow((A+x)=0 \longleftrightarrow$ $(x+A)=0)$ by (rule MMI_eqeq1d)
have S19: $(x+A)=0 \longrightarrow((x+A)+B)=$ ($0+B$) by (rule MMI_opreq1)
from $A 2$ have $S 20: B \in \mathbb{C}$.
from S20 have S21: ($0+B$) = B by (rule MMI_addid2)
from S19 S21 have $\mathrm{S} 22:(\mathrm{x}+\mathrm{A})=0 \longrightarrow$ $((x+A)+B)=B$ by (rule MMI_syl6eq)
have $\mathrm{S} 23:(\mathrm{x}+\mathrm{A})=0 \longrightarrow((\mathrm{x}+\mathrm{A})+\mathrm{C})=$ ($0+C$) by (rule MMI_opreq1)
from A3 have S24: $C \in \mathbb{C}$.
from S24 have S25: ($0+C$) = C by (rule MMI_addid2)
from S23 S25 have $\mathrm{S} 26:(\mathrm{x}+\mathrm{A})=0 \longrightarrow$ $((x+A)+C)=C$ by (rule MMI_syl6eq)
from S22 S26 have S27: $(x+A)=0 \longrightarrow$ $(((x+A)+B)=((x+A)+C) \longleftrightarrow B=C)$ by (rule MMI_eqeq12d)
from S18 S27 have S28: $x \in \mathbb{C} \longrightarrow((A+x)=0 \longrightarrow$ $(((x+A)+B)=((x+A)+C) \longleftrightarrow B=C))$ by (rule MMI_syl6bi)
from S28 have S29: $(x \in \mathbb{C} \wedge(A+x)=0) \longrightarrow$ $(((x+A)+B)=((x+A)+C) \longleftrightarrow B=C)$ by (rule MMI_imp)
from S14 S29 have S30: $(x \in \mathbb{C} \wedge(A+x)=0) \longrightarrow$ $((A+B)=(A+C) \longrightarrow B=C)$ by (rule MMI_sylibd)
from S30 have $x \in \mathbb{C} \longrightarrow((A+x)=0 \longrightarrow$ $((A+B)=(A+C) \longrightarrow B=C))$ by (rule MMI_ex)
$\}$ then have S31: $\forall x .(x \in \mathbb{C} \longrightarrow((A+x)=0 \longrightarrow$ $((A+B)=(A+C) \longrightarrow B=C))$) by auto
from S31 have S32: $(\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=0) \longrightarrow$
$((A+B)=(A+C) \longrightarrow B=C)$ by (rule MMI_r19_23aiv)
from S2 S32 have S33: $(A+B)=(A+C) \longrightarrow B=C$
by (rule MMI_ax_mp)
have S34: $\mathrm{B}=\mathrm{C} \longrightarrow(\mathrm{A}+\mathrm{B})=(\mathrm{A}+\mathrm{C})$ by (rule MMI_opreq2)
from S33 S34 show $(A+B)=(A+C) \longleftrightarrow B=C$ by (rule MMI_impbi)
qed
lemma (in MMIsar0) MMI_addcan2: assumes A1: $A \in \mathbb{C}$ and

```
        A2: \(B \in \mathbb{C}\) and
        A3: \(C \in \mathbb{C}\)
    shows \((A+C)=(B+C) \longleftrightarrow A=B\)
proof -
    from A1 have \(S\) 1: \(A \in \mathbb{C}\).
    from \(A 3\) have \(S 2: C \in \mathbb{C}\).
    from S1 S2 have S3: \((\mathrm{A}+\mathrm{C})=(\mathrm{C}+\mathrm{A})\) by (rule MMI_addcom)
    from \(A 2\) have \(S 4: B \in \mathbb{C}\).
    from \(A 3\) have \(55: C \in \mathbb{C}\).
    from S4 S5 have S6: ( B + C ) = ( C + B ) by (rule MMI_addcom)
    from S3 S6 have S7: \((A+C)=(B+C) \longleftrightarrow\)
        \((C+A)=(C+B)\) by (rule MMI_eqeq12i)
    from \(A 3\) have \(58: C \in \mathbb{C}\).
    from \(A 1\) have \(59: A \in \mathbb{C}\).
    from A2 have \(\mathrm{S} 10: \mathrm{B} \in \mathbb{C}\).
    from S8 S9 S10 have S11: \((C+A)=(C+B) \longleftrightarrow A=B\)
        by (rule MMI_addcan)
    from \(S 7\) S11 show \((A+C)=(B+C) \longleftrightarrow A=B\) by (rule MMI_bitr)
qed
lemma (in MMIsar0) MMI_addcant:
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow\)
    \(((A+B)=(A+C) \longleftrightarrow B=C)\)
proof -
    have \(S 1: A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow(A+B)=(\operatorname{if}(A \in \mathbb{C}\),
A , 0 ) + B ) by (rule MMI_opreq1)
    have \(\mathrm{S} 2: \mathrm{A}=\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, 0) \longrightarrow\)
        \((A+C)=(\operatorname{if}(A \in \mathbb{C}, A, 0)+C)\) by (rule MMI_opreq1)
    from S1 S2 have S3: \(A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
        \(((A+B)=(A+C) \longleftrightarrow\)
        ( if \((A \in \mathbb{C}, A, \mathbf{0})+B)=(\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})+C))\)
        by (rule MMI_eqeq12d)
    from S3 have S4: \(A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
        \((((A+B)=(A+C) \longleftrightarrow B=C) \longleftrightarrow\)
        \(((\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})+B)=(\operatorname{if}(A \in \mathbb{C}, A, 0)+C)\)
        \(\longleftrightarrow B=C\) ) ) by (rule MMI_bibi1d)
    have \(\mathrm{S} 5: \mathrm{B}=\) if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow\)
        (if \((A \in \mathbb{C}, A, \mathbf{0})+B)=\)
        ( if \((A \in \mathbb{C}, A, \mathbf{0})+\operatorname{if}(B \in \mathbb{C}, B, 0)\) ) by (rule MMI_opreq2)
    from \(S 5\) have \(S 6: B=\operatorname{if}(B \in \mathbb{C}, B, 0) \longrightarrow\)
        \(((\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})+B)=(\operatorname{if}(A \in \mathbb{C}, A, 0)+C)\)
        \(\longleftrightarrow\) ( if \((A \in \mathbb{C}, A, \mathbf{0})+\operatorname{if}(B \in \mathbb{C}, B, 0))=\)
        ( if \((A \in \mathbb{C}, A, \mathbf{0})+C\) ) ) by (rule MMI_eqeq1d)
    have \(57: B=\) if \((B \in \mathbb{C}, B, 0) \longrightarrow(B=C \longleftrightarrow\)
        if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0})=\mathrm{C}\) ) by (rule MMI_eqeq1)
    from S6 S7 have S8: B \(=\) if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
        ( ( \(\operatorname{if}(A \in \mathbb{C}, A, 0)+B)=\)
        (if \((A \in \mathbb{C}, A, \mathbf{0})+C) \longleftrightarrow B=C) \longleftrightarrow\)
        \(((\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})+\operatorname{if}(B \in \mathbb{C}, B, 0))=\)
```

```
        ( if ( A \in\mathbb{C},A,0 ) + C ) \longleftrightarrow if ( B \in\mathbb{C , B , 0 ) = C ) )}
        by (rule MMI_bibi12d)
    have S9: C = if ( C G \mathbb{C}, C , 0 ) \longrightarrow( if ( A | \mathbb{C,A , 0 ) + C}
) =
            ( if ( A \in\mathbb{C , A, 0 ) + if ( C \in\mathbb{C},C,0 ) )}
            by (rule MMI_opreq2)
    from S9 have S10: C = if ( C G \mathbb{C , C , 0 ) }\longrightarrow
        ( ( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},B,0 ) ) =
        ( if ( A \in\mathbb{C},A,0 ) + C ) \longleftrightarrow
        (if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},B,0 ) ) =
        (if ( A \in\mathbb{C},A,0 ) + if (C C C , C , 0 ) ) )
        by (rule MMI_eqeq2d)
    have S11: C = if ( C \in\mathbb{C},C,0 ) \longrightarrow( if ( B \in\mathbb{C},B,0 ) = C
\longleftrightarrow
    if ( B \in\mathbb{C , B , 0 ) = if ( C \in \mathbb{C C , 0 ) ) by (rule MMI_eqeq2)}}\mathbf{~}=\mp@code{C}
    from S10 S11 have S12: C = if ( C \in\mathbb{C}, C , 0 ) \longrightarrow
        (( ( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},B,0 ) ) =
        ( if (A\in\mathbb{C},A,0 ) +C ) \longleftrightarrow if ( B \in\mathbb{C},B,0
        (( if ( A \in\mathbb{C , A , 0 ) + if ( B \in\mathbb{C},B,0 ) ) =}
        ( if ( A \in\mathbb{C},A,0 ) + if ( C \in\mathbb{C},C,0 ) ) \longleftrightarrow
        if ( B \in\mathbb{C}, B , 0 ) = if ( C \in\mathbb{C}, C , 0 ) ) ) by (rule MMI_bibi12d)
    have S13: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S13 have S14: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S15: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S15 have S16: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S17: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from S17 have S18: if ( C \in\mathbb{C},C,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    from S14 S16 S18 have S19:
        (if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},\textrm{B},\mathbf{0}) ) =
        (if ( A \in\mathbb{C},A,0) + if (C\in\mathbb{C},C,0 ) ) \longleftrightarrow
        if ( B \in\mathbb{C}, B , 0 ) = if ( C \in\mathbb{C}, C , 0 ) by (rule MMI_addcan)
    from S4 S8 S12 S19 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( (A + B ) = ( A + C ) \longleftrightarrowB = C ) by (rule MMI_dedth3h)
qed
lemma (in MMIsar0) MMI_addcan2t:
    shows (A\in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A+C) = (B+C) \longleftrightarrow
    A = B )
proof -
    have S1:( C \in\mathbb{C}\wedgeA\in\mathbb{C})\longrightarrow(C+A)=(A+C)
        by (rule MMI_axaddcom)
    from S1 have S2: ( C G\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(C+A)=
        ( A + C ) by (rule MMI_3adant3)
    have S3: ( C \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(C+B)=(B+C)
        by (rule MMI_axaddcom)
    from S3 have S4: ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(C+B)=
        ( B + C ) by (rule MMI_3adant2)
```

```
from S2 S4 have S5: \((C \in \mathbb{C} \wedge A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow\)
    \(((C+A)=(C+B) \longleftrightarrow(A+C)=(B+C))\)
    by (rule MMI_eqeq12d)
have \(56:(C \in \mathbb{C} \wedge A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((C+A)=\)
    \((C+B) \longleftrightarrow A=B)\) by (rule MMI_addcant)
    from S5 S6 have \(\mathrm{S7}:(C \in \mathbb{C} \wedge A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+C)=\)
        \((B+C) \longleftrightarrow A=B)\) by (rule MMI_bitr3d)
from \(S 7\) show \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A+C)=\)
        \((B+C) \longleftrightarrow A=B)\) by (rule MMI_3coml)
qed
```

lemma (in MMIsar0) MMI_add12t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A+(B+C))=$
($\mathrm{B}+(\mathrm{A}+\mathrm{C})$)
proof -
have S1: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+B)=(B+A)$
by (rule MMI_axaddcom)
from $S 1$ have $S 2:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)+C)=$
((B + A) + C) by (rule MMI_opreq1d)
from S2 have $\mathrm{S} 3:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B)+C)=((B+A)+C)$
by (rule MMI_3adant3)
have $\mathrm{S} 4:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C}) \longrightarrow((A+B)+C)=$
(A + (B + C)) by (rule MMI_axaddass)
have $\mathrm{S} 5:(\mathrm{B} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C}) \longrightarrow((B+A)+C)=$
($\mathrm{B}+(\mathrm{A}+\mathrm{C})$) by (rule MMI_axaddass)
from S5 have S6: ($A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((B+A)+C)=(B+(A+C))$ by (rule MMI_3com12)
from S3 S4 S6 show ($A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}$) \longrightarrow
$(A+(B+C))=(B+(A+C))$
by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_add23t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A+B)+C)=$
($(A+C)+B)$
proof -
have S1: $(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B+C)=(C+B)$
by (rule MMI_axaddcom)
from S1 have $\mathrm{S} 2:(\mathrm{B} \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A+(B+C))=$
($\mathrm{A}+(\mathrm{C}+\mathrm{B})$) by (rule MMI_opreq2d)
from S2 have $\mathrm{S} 3:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(A+(B+C))=(A+(C+B))$
by (rule MMI_3adant1)
have S4: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A+B)+C)=$
($\mathrm{A}+(\mathrm{B}+\mathrm{C})$) by (rule MMI_axaddass)

```
    have S5: ( A G\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow((A+C) + B )=
        ( A + ( C + B ) ) by (rule MMI_axaddass)
    from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( A + C ) + B ) = ( A + ( C + B ) ) by (rule MMI_3com23)
    from S3 S4 S6 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( (A+B) + C ) = ( ( A + C ) + B )
        by (rule MMI_3eqtr4d)
qed
lemma (in MMIsar0) MMI_add4t:
    shows ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C ) ) }\longrightarrow
    ((A+B) + (C + D ) ) = ( ( A + C ) + ( B + D ) )
proof -
    have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( A + B ) + C ) = ( ( A + C ) + B ) by (rule MMI_add23t)
    from S1 have S2: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( ( A + B ) + C ) + D ) =
        ( ( ( A + C ) + B ) + D ) by (rule MMI_opreq1d)
    from S2 have S3: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^C\in\mathbb{C )}\longrightarrow
        (( (A + B ) + C ) + D ) =
        ( ( ( A + C ) + B ) + D ) by (rule MMI_3expa)
```



```
        (((A+B) +C) + D ) =
        ( ( ( A + C ) + B ) + D ) by (rule MMI_adantrr)
    have S5: ( ( A + B ) \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeD\in\mathbb{C ) }\longrightarrow
        (( (A + B ) + C ) + D ) =
        ( ( A + B ) + ( C + D ) ) by (rule MMI_axaddass)
    from S5 have S6: ( (A + B ) \in\mathbb{C}\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))\longrightarrow
        (( ( A + B ) + C ) + D ) =
        ( ( A + B ) + ( C + D ) ) by (rule MMI_3expb)
    have S7: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A+B ) \in\mathbb{C}\mathrm{ by (rule MMI_axaddcl)}
    from S6 S7 have S8: ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C})
\longrightarrow
        (((A + B ) +C ) + D ) =
        ( ( A + B ) + ( C + D ) ) by (rule MMI_sylan)
    have S9: ( ( A + C ) \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeD\in\mathbb{C ) }\longrightarrow
        ( ( ( A + C ) + B ) + D ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_axaddass)
    from S9 have S10: ( (A +C ) \in\mathbb{C}\wedge( B G\mathbb{C}\wedgeD\in\mathbb{C}))\longrightarrow
        (( ( A + C ) + B ) + D ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_3expb)
    have S11: ( A \in\mathbb{C ^ C G C ) }\longrightarrow(A+C ) \in\mathbb{C}\mathrm{ by (rule MMI_axaddcl)}
    from S10 S11 have S12:( ( A \in\mathbb{C}\wedgeC\in\mathbb{C}) ^(B\in\mathbb{C}\wedgeD\in\mathbb{C})
)}
        (( ( A + C ) + B ) + D ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_sylan)
    from S12 have S13:( (A\in\mathbb{C}\wedge B\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
```

```
        (( ( A + C ) + B ) + D ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_an4s)
    from S4 S8 S13 show ( ( A G \mathbb{C ^B G C ) ^( C \in\mathbb{C}\wedgeD\in\mathbb{C})})
\longrightarrow
    ((A + B ) + ( C + D ) ) =
    ( ( A + C ) + ( B + D ) ) by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_add42t:
    shows ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C ) ) }\longrightarrow
    ((A+B) + (C + D ) ) = ( ( A + C ) + ( D + B ) )
proof -
    have S1: ( ( A G\mathbb{C}\wedgeB\in\mathbb{C})}\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))
        (( A + B ) + (C + D ) ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_add4t)
    have S2: ( B \in\mathbb{C}\wedgeD\in\mathbb{C})\longrightarrow(B+D )=
        ( D + B ) by (rule MMI_axaddcom)
    from S2 have S3:( (A\in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
        ( B + D ) = ( D + B ) by (rule MMI_ad2ant2l)
    from S3 have S4:( (A G\mathbb{C}\wedge B\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
        ((A+C) + (B+D) ) =
        ( ( A + C ) + ( D + B ) ) by (rule MMI_opreq2d)
    from S1 S4 show ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C})
        ((A+B) + (C + D ) ) =
        ( ( A + C ) + ( D + B ) ) by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_add12: assumes A1: A \in \mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C }\in\mathbb{C
    shows (A + ( B + C ) ) = ( B + ( A + C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4: (A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A+(B+C))=
        ( B + ( A + C ) ) by (rule MMI_add12t)
    from S1 S2 S3 S4 show ( A + ( B + C ) ) =
        ( B + ( A + C ) ) by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_add23: assumes A1: A }\in\mathbb{C}\mathrm{ and
    A2: B }\in\mathbb{C}\mathrm{ and
    A3: C }\in\mathbb{C
    shows ( ( A + B ) + C ) = ( ( A + C ) + B )
proof -
```

```
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C ^C\in\mathbb{C ) }}\longrightarrow\mathbf{C}
        ( ( A + B ) + C ) = ( ( A + C ) + B ) by (rule MMI_add23t)
    from S1 S2 S3 S4 show ( ( A + B ) + C ) =
        ( ( A + C ) + B ) by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_add4: assumes A1: A \in \mathbb{C and}
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C \in\mathbb{C}}\mathrm{ and
    A4: D }\in\mathbb{C
    shows ( ( A + B ) + ( C + D ) ) =
    ( (A + C ) + ( B + D ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: A }\in\mathbb{C}\wedgeB\in\mathbb{C}\mathrm{ by (rule MMI_pm3_2i)
    from A3 have S4: C }\in\mathbb{C}\mathrm{ .
    from A4 have S5: D }\in\mathbb{C}\mathrm{ .
    from S4 S5 have S6: C \in\mathbb{C}\wedge D \in\mathbb{C}\mathrm{ by (rule MMI_pm3_2i)}
    have S7:( ( A \in\mathbb{C ^B G C ) ^ ( C \in\mathbb{C}\wedge D \in\mathbb{C}) ) }\longrightarrow
        ((A+B) + (C + D ) ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_add4t)
    from S3 S6 S7 show ( ( A + B ) + ( C + D ) ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_add42: assumes A1: A }\in\mathbb{C}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C \in\mathbb{C}}\mathrm{ and
    A4: D \in\mathbb{C}
    shows ( ( A + B ) + ( C + D ) ) =
    ( (A +C ) + ( D + B ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    from A4 have S4: D }\in\mathbb{C}\mathrm{ .
    from S1 S2 S3 S4 have S5: ( ( A + B ) + ( C + D ) ) =
        ( ( A + C ) + ( B + D ) ) by (rule MMI_add4)
    from A2 have S6: B }\in\mathbb{C}\mathrm{ .
    from A4 have S7: D }\in\mathbb{C}\mathrm{ .
    from S6 S7 have S8: ( B + D ) = ( D + B ) by (rule MMI_addcom)
    from S8 have S9: ( ( A + C ) + ( B + D ) ) =
        ( ( A + C ) + ( D + B ) ) by (rule MMI_opreq2i)
    from S5 S9 show ( ( A + B ) + ( C + D ) ) =
        ( ( A + C ) + ( D + B ) ) by (rule MMI_eqtr)
```

qed
lemma (in MMIsar0) MMI_addid2t:
shows $A \in \mathbb{C} \longrightarrow(0+A)=A$
proof -
have $\mathrm{S} 1: \mathbf{0} \in \mathbb{C}$ by (rule MMI_0cn)
have $S 2:(0 \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow(0+A)=(A+\mathbf{0})$
by (rule MMI_axaddcom)
from S1 S2 have $\mathrm{S} 3: \mathrm{A} \in \mathbb{C} \longrightarrow(\mathbf{0}+\mathrm{A})=(\mathrm{A}+\mathbf{0})$
by (rule MMI_mpan)
have $S 4: A \in \mathbb{C} \longrightarrow(A+0)=A$ by (rule MMI_ax0id)
from S 3 S 4 show $\mathrm{A} \in \mathbb{C} \longrightarrow(\mathbf{0}+\mathrm{A})=\mathrm{A}$ by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_peano2cn:
shows $A \in \mathbb{C} \longrightarrow(A+1) \in \mathbb{C}$
proof -
have S : $1 \in \mathbb{C}$ by (rule MMI_1cn)
have $\operatorname{S2:}(A \in \mathbb{C} \wedge 1 \in \mathbb{C}) \longrightarrow(A+1) \in \mathbb{C}$ by (rule MMI_axaddcl)
from $S 1$ S2 show $A \in \mathbb{C} \longrightarrow(A+1) \in \mathbb{C}$ by (rule MMI_mpan2)
qed
lemma (in MMIsar0) MMI_peano2re:
shows $A \in \mathbb{R} \longrightarrow(A+1) \in \mathbb{R}$
proof -
have $S 1: 1 \in \mathbb{R}$ by (rule MMI_ax1re)
have $S 2:(A \in \mathbb{R} \wedge 1 \in \mathbb{R}) \longrightarrow(A+1) \in \mathbb{R}$ by (rule MMI_axaddrcl)
from $S 1$ S2 show $A \in \mathbb{R} \longrightarrow(A+1) \in \mathbb{R}$ by (rule MMI_mpan2)
qed
lemma (in MMIsar0) MMI_negeu: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$
shows $\exists!\mathrm{x} . \mathrm{x} \in \mathbb{C} \wedge(\mathrm{A}+\mathrm{x})=\mathrm{B}$
proof -
\{ fix x y have $S 1: \mathrm{x}=\mathrm{y} \longrightarrow(\mathrm{A}+\mathrm{x})=(\mathrm{A}+\mathrm{y})$ by (rule MMI_opreq2) from S1 have $x=y \longrightarrow((A+x)=B \longleftrightarrow(A+y)=B)$
by (rule MMI_eqeq1d)
$\}$ then have S2: $\forall x y . x=y \longrightarrow((A+x)=B \longleftrightarrow$
(A + y) = B) by simp
from S2 have S3: $(\exists!\mathrm{x} \cdot \mathrm{x} \in \mathbb{C} \wedge(\mathrm{A}+\mathrm{x})=\mathrm{B}) \longleftrightarrow$ $((\exists \mathrm{x} \in \mathbb{C} \cdot(\mathrm{A}+\mathrm{x})=\mathrm{B}) \wedge$ $(\forall \mathrm{x} \in \mathbb{C} \cdot \forall \mathrm{y} \in \mathbb{C} \cdot(((\mathrm{A}+\mathrm{x})=\mathrm{B} \wedge(\mathrm{A}+\mathrm{y})=\mathrm{B}) \longrightarrow$ $\mathrm{x}=\mathrm{y}$))) by (rule MMI_reu4)
from A1 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C}$.
from S4 have S5: $\exists \mathrm{y} \in \mathbb{C} .(\mathrm{A}+\mathrm{y})=\mathbf{0}$ by (rule MMI_negex)

```
from A2 have S6: B }\in\mathbb{C}\mathrm{ .
    { fix y
    have S7: ( y \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(y+B ) 
    from S6 S7 have S8: y }\in\mathbb{C}\longrightarrow(y+B)\in\mathbb{C}\mathrm{ by (rule MMI_mpan2)
    have S9: ( y + B ) \in\mathbb{C}\longleftrightarrow(\exists x\in\mathbb{C}.x=(y+B))
        by (rule MMI_risset)
    from S8 S9 have S10: y \in\mathbb{C}\longrightarrow( 
        by (rule MMI_sylib)
    { fix x
        have S11: x = ( y + B ) }\longrightarrow(A+x)
( A + ( y + B ) ) by (rule MMI_opreq2)
        from A1 have S12: A \in\mathbb{C}.
        from A2 have S13: B }\in\mathbb{C}\mathrm{ .
        have S14:( }A\in\mathbb{C}\wedgey\in\mathbb{C}\wedgeB\in\mathbb{C})
( (A+y) + B ) = ( A + ( y + B ) )
by (rule MMI_axaddass)
    from S12 S13 S14 have S15: y \in C \longrightarrow ( ( A + y ) + B ) =
( A + ( y + B ) ) by (rule MMI_mp3an13)
        from S15 have S16: y \in\mathbb{C}\longrightarrow(A+(y+B))=
( ( A + y ) + B ) by (rule MMI_eqcomd)
    from S11 S16 have S17: ( y \in\mathbb{C}\wedge x = ( y + B ) )
\longrightarrow(A+x ) = ( ( A + y ) + B ) by (rule MMI_sylan9eqr)
        have S18: ( A + y ) = 0 \longrightarrow
( ( A + y ) + B ) = ( 0 + B ) by (rule MMI_opreq1)
        from A2 have S19: B }\in\mathbb{C}\mathrm{ .
        from S19 have S20: ( 0 + B ) = B by (rule MMI_addid2)
        from S18 S20 have S21: ( A + y ) = 0 }
( ( A + y ) + B ) = B by (rule MMI_syl6eq)
    from S17 S21 have S22: ( ( A + y ) = 0 ^( y f \mathbb{C ^ x =}
( y + B ) ) ) \longrightarrow ( A + x ) = B by (rule MMI_sylan9eqr)
        from S22 have S23: ( A + y ) = 0 \longrightarrow
(y\in\mathbb{C}\longrightarrow(x=(y+B)\longrightarrow(A+x)=B))
by (rule MMI_exp32)
    from S23 have S24: ( y \in\mathbb{C}\wedge(A+y ) = 0 ) \longrightarrow
( x = ( y + B ) \longrightarrow ( A + x ) = B ) by (rule MMI_impcom)
        from S24 have ( y \in\mathbb{C}\wedge(A+y)=0)\longrightarrow
( x G C C ( x = ( y + B ) \longrightarrow (A + x ) = B ) )
by (rule MMI_a1d)
    } then have S25: }\forall\textrm{x}.(\textrm{y}\in\mathbb{C}\wedge(\textrm{A}+\textrm{y})=00)
( }\textrm{x}\in\mathbb{C}\longrightarrow(x=(y+B)\longrightarrow(A+x)=B)) by aut
    from S25 have S26: ( y \in\mathbb{C}\wedge(A+y)=0 ) \longrightarrow
        ( }\forall\textrm{x}\in\mathbb{C}.(\textrm{x}=(\textrm{y}+\textrm{B})\longrightarrow(\textrm{A}+\textrm{x})=\textrm{B})
        by (rule MMI_r19_21aiv)
    from S26 have S27: y \in\mathbb{C}\longrightarrow((A+y) = 0 \longrightarrow
        ( }\forall\textrm{x}\in\mathbb{C}.(\textrm{x}=(\textrm{y}+\textrm{B})\longrightarrow(\textrm{A}+\textrm{x})=\textrm{B}))
        by (rule MMI_ex)
    have S28:( }\forall\textrm{x}\in\mathbb{C}.(\textrm{x}=(\textrm{y}+\textrm{B})\longrightarrow(\textrm{A}+\textrm{x})=B)
        \longrightarrow((\existsx\in\mathbb{C}.x=(y+B))}
        ( \exists x \in\mathbb{C}.(A+x ) = B ) ) by (rule MMI_r19_22)
```

```
    from S27 S28 have S29: y \(\in \mathbb{C} \longrightarrow((A+y)=0 \longrightarrow\)
        \(((\exists \mathrm{x} \in \mathbb{C} . \mathrm{x}=(\mathrm{y}+\mathrm{B})) \longrightarrow\)
        \((\exists \mathrm{x} \in \mathbb{C} \cdot(\mathrm{A}+\mathrm{x})=\mathrm{B})\) ) ) by (rule MMI_syl6)
    from S10 S29 have \(y \in \mathbb{C} \longrightarrow((A+y)=0 \longrightarrow\)
        \((\exists \mathrm{x} \in \mathbb{C} \cdot(\mathrm{A}+\mathrm{x})=\mathrm{B})\) ) by (rule MMI_mpid)
    \(\}\) then have S30: \(\forall \mathrm{y} . \mathrm{y} \in \mathbb{C} \longrightarrow((\mathrm{A}+\mathrm{y})=\mathbf{0} \longrightarrow\)
        \((\exists \mathrm{x} \in \mathbb{C} \cdot(\mathrm{A}+\mathrm{x})=\mathrm{B}))\) by simp
    from S30 have S31: \((\exists \mathrm{y} \in \mathbb{C} .(\mathrm{A}+\mathrm{y})=0) \longrightarrow\)
    ( \(\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=\mathrm{B})\) by (rule MMI_r19_23aiv)
    from S5 S31 have S32: \(\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A}+\mathrm{x})=\mathrm{B}\) by (rule MMI_ax_mp)
    from A1 have S33: A \(\in \mathbb{C}\).
    \{ fix \(x\) y
    have S34: \((A \in \mathbb{C} \wedge x \in \mathbb{C} \wedge y \in \mathbb{C}) \longrightarrow\)
        \(((A+x)=(A+y) \longleftrightarrow x=y)\) by (rule MMI_addcant)
    have S35: \(((A+x)=B \wedge(A+y)=B) \longrightarrow\)
        \((A+x)=(A+y)\) by (rule MMI_eqtr3t)
    from S34 S35 have S36: ( \(A \in \mathbb{C} \wedge x \in \mathbb{C} \wedge \mathrm{y} \in \mathbb{C}) \longrightarrow\)
        \((((A+x)=B \wedge(A+y)=B) \longrightarrow x=y)\)
        by (rule MMI_syl5bi)
    from S33 S36 have \((x \in \mathbb{C} \wedge y \in \mathbb{C}) \longrightarrow\)
        \(((A+x)=B \wedge(A+y)=B) \longrightarrow x=y)\)
        by (rule MMI_mp3an1)
    \(\}\) then have S37: \(\forall \mathrm{x} y .(\mathrm{x} \in \mathbb{C} \wedge \mathrm{y} \in \mathbb{C}) \longrightarrow\)
        \((((A+x)=B \wedge(A+y)=B) \longrightarrow x=y)\) by auto
    from S37 have S38: \(\forall x \in \mathbb{C} . \forall y \in \mathbb{C} .\left(\left(\begin{array}{c} \\ \mathrm{x}\end{array} \mathrm{x}\right)=\mathrm{B} \wedge\right.\)
        \((\mathrm{A}+\mathrm{y})=\mathrm{B}) \longrightarrow \mathrm{x}=\mathrm{y})\) by (rule MMI_rgen2)
    from S3 S32 S38 show \(\exists!\mathrm{x} . \mathrm{x} \in \mathbb{C} \wedge(A+\mathrm{x})=B\)
    by (rule MMI_mpbir2an)
```

qed
lemma (in MMIsar0) MMI_subval: assumes $A \in \mathbb{C} \quad B \in \mathbb{C}$
shows $A-B=\bigcup\{x \in \mathbb{C} . B+x=A\}$
using sub_def by simp
lemma (in MMIsar0) MMI_df_neg: shows (- A) = 0-A
using cneg_def by simp
lemma (in MMIsar0) MMI_negeq:
shows $A=B \longrightarrow(-A)=(-B)$
proof -
have $\mathrm{S} 1: \mathrm{A}=\mathrm{B} \longrightarrow(\mathbf{0}-\mathrm{A})=(\mathbf{0}-\mathrm{B})$ by (rule MMI_opreq2)
have S2: (-A) = (0 - A) by (rule MMI_df_neg)
have S3: (-B) = (0 - B) by (rule MMI_df_neg)

```
    from S1 S2 S3 show A = B \longrightarrow (-A) = (-B) by (rule MMI_3eqtr4g)
qed
lemma (in MMIsar0) MMI_negeqi: assumes A1: A = B
    shows (- A) = (-B)
proof -
    from A1 have S1: A = B.
    have S2: A = B \longrightarrow (-A) = (-B) by (rule MMI_negeq)
    from S1 S2 show (-A) = (-B) by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_negeqd: assumes A1: \varphi \longrightarrow A = B
    shows }\varphi\longrightarrow(-A)=(-B
proof -
    from A1 have S1: \varphi\longrightarrow A = B.
    have S2: A = B }\longrightarrow(-A)=(-B) by (rule MMI_negeq)
    from S1 S2 show }\varphi\longrightarrow(-A)=(-B) by (rule MMI_syl)
qed
lemma (in MMIsar0) MMI_hbneg: assumes A1: y \in A \longrightarrow ( }\forall\textrm{x}.\textrm{y}\in\textrm{A}
    shows y \in((- A)) \longrightarrow( }\forall\textrm{x}.(\textrm{y}\in((-\textrm{A})))
    using assms by auto
lemma (in MMIsar0) MMI_minusex:
    shows ((- A)) isASet by auto
lemma (in MMIsar0) MMI_subcl: assumes A1: A \in C
    A2: B }\in\mathbb{C
    shows ( A - B ) \in\mathbb{C}
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( A - B ) = \ { x \in\mathbb{C}.(B+x) = A }
        by (rule MMI_subval)
    from A2 have S4: B }\in\mathbb{C}\mathrm{ .
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    from S4 S5 have S6: \exists! x . x \in C ^ ( B + x ) = A by (rule MMI_negeu)
    have S7: ( \exists! x . x \in\mathbb{C}\wedge ( B + x ) = A ) }
        U{x\in\mathbb{C}.(B+x)=A } \in\mathbb{C}\mathrm{ by (rule MMI_reucl)}
    from S6 S7 have S8: \ { x \in\mathbb{C}.( B + x ) = A } \in\mathbb{C}
        by (rule MMI_ax_mp)
    from S3 S8 show ( A - B ) \in\mathbb{C}}\mathrm{ by simp
qed
```

```
lemma (in MMIsar0) MMI_subclt:
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A-B) \in \mathbb{C}\)
proof -
    have \(S 1: A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow(A-B)=\)
        ( if ( \(A \in \mathbb{C}, A, 0)\) - B ) by (rule MMI_opreq1)
    from S1 have \(S 2: A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow((A-B) \in \mathbb{C} \longleftrightarrow\)
        ( if \((A \in \mathbb{C}, A, \mathbf{0})-\mathrm{B}) \in \mathbb{C}\) ) by (rule MMI_eleq1d)
    have \(\mathrm{S} 3: \mathrm{B}=\) if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow(\operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) - B
) =
        ( if ( \(\mathrm{A} \in \mathbb{C}\), \(\mathrm{A}, \mathbf{0}\) ) - if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) by (rule MMI_opreq2)
    from S3 have \(S 4: B=\) if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
        ( ( if \((A \in \mathbb{C}, A, \mathbf{0})-B) \in \mathbb{C} \longleftrightarrow\)
        ( if \((A \in \mathbb{C}, A, \mathbf{0})\) - if \((B \in \mathbb{C}, B, \mathbf{0})\) ) \(\in \mathbb{C}\) )
        by (rule MMI_eleq1d)
    have \(S 5: 0 \in \mathbb{C}\) by (rule MMI_Ocn)
    from S5 have \(S 6\) : if ( \(A \in \mathbb{C}, A, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    have \(\mathrm{S7}: 0 \in \mathbb{C}\) by (rule MMI_Ocn)
    from 57 have 58 : if \((B \in \mathbb{C}, B, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    from S 6 S 8 have S 9 :
        ( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) - if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0})\) ) \(\in \mathbb{C}\)
        by (rule MMI_subcl)
    from S 2 S 4 S 9 show \((\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C}) \longrightarrow(\mathrm{A}-\mathrm{B}) \in \mathbb{C}\)
        by (rule MMI_dedth2h)
qed
lemma (in MMIsar0) MMI_negclt:
    shows \(A \in \mathbb{C} \longrightarrow((-A)) \in \mathbb{C}\)
proof -
    have S1: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
    have \(\operatorname{S2:~}(0 \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow(0-A) \in \mathbb{C}\) by (rule MMI_subclt)
    from S1 S2 have S3: A \(\in \mathbb{C} \longrightarrow(0-A) \in \mathbb{C}\) by (rule MMI_mpan)
    have S4: ( ( -A ) ) = ( 0 - A ) by (rule MMI_df_neg)
    from S3 S4 show \(A \in \mathbb{C} \longrightarrow((-A)) \in \mathbb{C}\) by (rule MMI_syl5eqel)
qed
lemma (in MMIsar0) MMI_negcl: assumes A1: A \(\in \mathbb{C}\)
    shows \(((-A)) \in \mathbb{C}\)
proof -
    from A1 have \(S 1: A \in \mathbb{C}\).
    have \(S 2: A \in \mathbb{C} \longrightarrow((-A)) \in \mathbb{C}\) by (rule MMI_negclt)
    from \(S 1\) S2 show ( \((-\mathrm{A})\) ) \(\in \mathbb{C}\) by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_subadd: assumes A1: \(A \in \mathbb{C}\) and
    A2: \(B \in \mathbb{C}\) and
    A3: \(C \in \mathbb{C}\)
    shows \((A-B)=C \longleftrightarrow(B+C)=A\)
proof -
```

```
from A3 have \(\mathrm{S} 1: \mathrm{C} \in \mathbb{C}\).
    \{ fix x
    have \(S 2: x=C \longrightarrow((A-B)=x \longleftrightarrow(A-B)=C)\)
        by (rule MMI_eqeq2)
    have S3: \(\mathrm{x}=\mathrm{C} \longrightarrow(\mathrm{B}+\mathrm{x})=(\mathrm{B}+\mathrm{C})\) by (rule MMI_opreq2)
    from S3 have S4: \(x=C \longrightarrow((B+x)=A \longleftrightarrow(B+C)=A)\)
        by (rule MMI_eqeq1d)
    from S2 S4 have \(x=C \longrightarrow((1-B)=x \longleftrightarrow\)
        \((B+x)=A) \longleftrightarrow((A-B)=C \longleftrightarrow(B+C)=A))\)
        by (rule MMI_bibi12d)
    \(\}\) then have S5: \(\forall \mathrm{x} . \mathrm{x}=\mathrm{C} \longrightarrow((\mathrm{A}-\mathrm{B})=\mathrm{x} \longleftrightarrow\)
        \((B+x)=A) \longleftrightarrow((A-B)=C \longleftrightarrow\)
        \((B+C)=A)\) ) by simp
    from \(A 2\) have \(\mathrm{S} 6: B \in \mathbb{C}\).
    from A1 have \(\mathrm{S7}: \mathrm{A} \in \mathbb{C}\).
    from 56 S7 have \(\mathrm{S} 8: \exists!\mathrm{x} . \mathrm{x} \in \mathbb{C} \wedge(\mathrm{B}+\mathrm{x})=\mathrm{A}\) by (rule MMI_negeu)
    \{ fix x
        have S9: \((x \in \mathbb{C} \wedge(\exists!x . x \in \mathbb{C} \wedge(B+x)=A) \longrightarrow\)
            \(((B+x)=A) \longleftrightarrow \bigcup\{x \in \mathbb{C} .(B+x)=A\}=x)\)
        by (rule MMI_reuuni1)
    from S8 S9 have \(x \in \mathbb{C} \longrightarrow((B+x)=A \longleftrightarrow\)
        \(\bigcup\{x \in \mathbb{C} .(B+x)=A\}=x)\) by (rule MMI_mpan2)
    \(\}\) then have \(\mathrm{S} 10: \forall \mathrm{x} . \mathrm{x} \in \mathbb{C} \longrightarrow((\mathrm{B}+\mathrm{x})=\mathrm{A} \longleftrightarrow\)
        \(\bigcup\{x \in \mathbb{C} \cdot(B+x)=A\}=x)\) by blast
    from A1 have \(\mathrm{S} 11: \mathrm{A} \in \mathbb{C}\).
    from A2 have \(S\) 12: \(B \in \mathbb{C}\).
    from S11 S12 have S13: ( A - B ) \(=\bigcup\{x \in \mathbb{C} .(B+x)=A\}\)
        by (rule MMI_subval)
    from S13 have S14: \(\forall x\). ( \(A-B)=x \longleftrightarrow\)
        \(\bigcup\{x \in \mathbb{C} .(B+x)=A\}=x\) by \(\operatorname{simp}\)
    from S10 S14 have S15: \(\forall \mathrm{x} . \mathrm{x} \in \mathbb{C} \longrightarrow((\mathrm{A}-\mathrm{B})=\mathrm{x} \longleftrightarrow\)
        ( \(\mathrm{B}+\mathrm{x}\) ) \(=\mathrm{A}\) ) by (rule MMI_syl6rbbr)
    from S5 S15 have S16: \(C \in \mathbb{C} \longrightarrow((A-B)=C \longleftrightarrow\)
        ( \(\mathrm{B}+\mathrm{C}\) ) \(=\mathrm{A}\) ) by (rule MMI_vtoclga)
    from \(S 1\) S16 show \((A-B)=C \longleftrightarrow(B+C)=A\)
        by (rule MMI_ax_mp)
qed
```

lemma (in MMIsar0) MMI_subsub23: assumes A1: A $\in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$
shows $(A-B)=C \longleftrightarrow(A-C)=B$
proof -
from A2 have $\mathrm{S} 1: \mathrm{B} \in \mathbb{C}$.
from $A 3$ have $\mathrm{S} 2: \mathrm{C} \in \mathbb{C}$.
from S1 S2 have S3: (B + C) = (C + B) by (rule MMI_addcom)

```
from S3 have S4: ( B + C ) = A \longleftrightarrow ( C + B ) = A
    by (rule MMI_eqeq1i)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    from A2 have S6: B \in\mathbb{C}
    from A3 have S7: C \in \mathbb{C}
    from S5 S6 S7 have S8: ( A - B ) = C \longleftrightarrow ( B + C ) = A
        by (rule MMI_subadd)
    from A1 have S9: A }\in\mathbb{C}\mathrm{ .
    from A3 have S10: C }\in\mathbb{C}\mathrm{ .
    from A2 have S11: B }\in\mathbb{C}\mathrm{ .
    from S9 S10 S11 have S12: ( A - C ) = B \longleftrightarrow ( C + B ) = A
        by (rule MMI_subadd)
    from S4 S8 S12 show ( A - B ) = C \longleftrightarrow ( A - C ) = B
        by (rule MMI_3bitr4)
qed
lemma (in MMIsar0) MMI_subaddt:
    shows (A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A-B)=C}
    ( B + C ) = A )
proof -
    have S1: A = if ( A G C , A , 0 ) \longrightarrow( A - B ) =
        ( if ( A \in\mathbb{C},A,0 ) - B ) by (rule MMI_opreq1)
    from S1 have S2: A = if ( A G C , A , 0 ) \longrightarrow( ( A - B ) = C \longleftrightarrow
        ( if ( A \in\mathbb{C},A,0 ) - B ) = C ) by (rule MMI_eqeq1d)
    have S3:A = if ( A G C , A , 0 ) \longrightarrow( ( B + C ) = A \longleftrightarrow
        ( B + C ) = if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_eqeq2)
    from S2 S3 have S4: A = if ( A \in\mathbb{C},A,0 ) 
        (( ( A - B ) = C \longleftrightarrow ( B + C ) = A ) \longleftrightarrow
        (( if ( A G C ,A,0 ) - B ) = C \longleftrightarrow ( B + C ) =
        if ( A \in\mathbb{C , A , 0 ) ) ) by (rule MMI_bibi12d)}
    have S5: B = if ( B \in\mathbb{C},\textrm{B},\mathbf{0})\longrightarrow
        ( if (A \in\mathbb{C},A,0 ) - B ) =
        ( if ( A \in\mathbb{C},A,0 ) - if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_opreq2)
    from S5 have S6: B = if ( B \in\mathbb{C},B,0 ) }
        (( if ( A C C , A, 0 ) - B ) = C \longleftrightarrow
        ( if ( A \in\mathbb{C},A,0 ) - if ( B \in\mathbb{C},B,0 ) ) = C )
        by (rule MMI_eqeq1d)
    have S7: B = if ( B C C , B , 0 ) \longrightarrow( B + C ) =
        ( if ( B \in\mathbb{C}, B , 0 ) + C ) by (rule MMI_opreq1)
    from S7 have S8: B = if ( B \in\mathbb{C},B,0 ) 
        (( B + C ) = if ( A \in\mathbb{C},A,0 ) \longleftrightarrow
        ( if ( B \in\mathbb{C},\textrm{B},\mathbf{0})+C})=\mathrm{ if ( A G C , A, 0 ) )
        by (rule MMI_eqeq1d)
    from S6 S8 have S9: B = if ( B \in\mathbb{C},B,0 ) \longrightarrow
        (( ( if ( A \in\mathbb{C},A,0) - B ) = C \longleftrightarrow
        ( B + C ) = if ( A \in\mathbb{C},A,0 ) ) \longleftrightarrow
        (( if ( A \in\mathbb{C},A,0) - if ( B \in\mathbb{C},B,0 ) ) = C \longleftrightarrow
        ( if ( B \in\mathbb{C}, B , 0 ) + C ) = if ( A \in\mathbb{C},A,0 ) ) )
```

by (rule MMI_bibi12d)
have S10: $C=$ if $(C \in \mathbb{C}, C, 0) \longrightarrow$
((if $(A \in \mathbb{C}, A, \mathbf{0})$ - if $(B \in \mathbb{C}, B, \mathbf{0}))=C \longleftrightarrow$
(if $(A \in \mathbb{C}, A, \mathbf{O})$ - if $(B \in \mathbb{C}, B, \mathbf{O})$) =
if ($C \in \mathbb{C}, C, 0)$) by (rule MMI_eqeq2)
have S11: $\mathrm{C}=\operatorname{if}(\mathrm{C} \in \mathbb{C}, \mathrm{C}, \mathbf{0}) \longrightarrow$
(if $(B \in \mathbb{C}, B, 0)+C)=$
(if $(B \in \mathbb{C}, B, \mathbf{0})+$ if $(C \in \mathbb{C}, C, 0)$) by (rule MMI_opreq2)
from S11 have S12: $C=$ if $(C \in \mathbb{C}, C, 0) \longrightarrow$
$(($ if $(B \in \mathbb{C}, B, \mathbf{O})+C)=$ if $(A \in \mathbb{C}, A, \mathbf{O}) \longleftrightarrow$ (if $(B \in \mathbb{C}, B, \mathbf{0})+$ if $(C \in \mathbb{C}, C, 0)$) = if $(A \in \mathbb{C}, A, 0)$) by (rule MMI_eqeq1d)
from S10 S12 have S13: $C=$ if $(C \in \mathbb{C}, C, 0) \longrightarrow$
$(()$ if $(A \in \mathbb{C}, A, \mathbf{0})$ - if $(B \in \mathbb{C}, B, \mathbf{0}))=C \longleftrightarrow$ (if $(B \in \mathbb{C}, B, \mathbf{O})+C)=$ if $(A \in \mathbb{C}, A, \mathbf{0})$) \longleftrightarrow ((if $(A \in \mathbb{C}, A, \mathbf{0})$ - if $(B \in \mathbb{C}, B, \mathbf{0})$) = if $(C \in \mathbb{C}, C, 0) \longleftrightarrow$ (if $(B \in \mathbb{C}, B, \mathbf{0})+\operatorname{if}(C \in \mathbb{C}, C, 0))=$ if ($A \in \mathbb{C}, A, 0$)) by (rule MMI_bibi12d)
have S14: $0 \in \mathbb{C}$ by (rule MMI_0cn)
from S14 have S15: if ($A \in \mathbb{C}, A, 0) \in \mathbb{C}$ by (rule MMI_elimel)
have S16: $0 \in \mathbb{C}$ by (rule MMI_Ocn)
from S16 have S17: if $(B \in \mathbb{C}, B, 0) \in \mathbb{C}$ by (rule MMI_elimel)
have S18: $0 \in \mathbb{C}$ by (rule MMI_Ocn)
from S18 have S19: if ($C \in \mathbb{C}, C, 0) \in \mathbb{C}$ by (rule MMI_elimel)
from S15 S17 S19 have S20:
(if $(A \in \mathbb{C}, A, \mathbf{0})$ - if $(B \in \mathbb{C}, B, \mathbf{0})$) = if $(C \in \mathbb{C}, C, 0) \longleftrightarrow$ $(\operatorname{if}(B \in \mathbb{C}, B, 0)+\operatorname{if}(C \in \mathbb{C}, C, 0))=$ if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) by (rule MMI_subadd)
from $S 4$ S9 S13 S20 show $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $((A-B)=C \longleftrightarrow(B+C)=A)$ by (rule MMI_dedth3h)
qed
lemma (in MMIsar0) MMI_pncan3t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+(B-A))=B$
proof -
have S1: ($\mathrm{B}-\mathrm{A}$) $=(\mathrm{B}-\mathrm{A})$ by (rule MMI_eqid)
have $\operatorname{S2:~}(B \in \mathbb{C} \wedge A \in \mathbb{C} \wedge(B-A) \in \mathbb{C}) \longrightarrow$ $((B-A)=(B-A) \longleftrightarrow(A+(B-A))=B)$
by (rule MMI_subaddt)
have S3: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow B \in \mathbb{C}$ by (rule MMI_pm3_27)
have $54:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow A \in \mathbb{C}$ by (rule MMI_pm3_26)
have $\operatorname{S5}:(B \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow(B-A) \in \mathbb{C}$ by (rule MMI_subclt)
from S5 have S6: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(B-A) \in \mathbb{C}$
by (rule MMI_ancoms)
from S2 S3 S4 S6 have S7: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((B-A)=$ $(B-A) \longleftrightarrow(A+(B-A))=B)$ by (rule MMI_syl3anc)
from $S 157$ show $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+(B-A))=B$

```
        by (rule MMI_mpbii)
qed
lemma (in MMIsar0) MMI_pncan3: assumes A1: A \in\mathbb{C}}\mathrm{ and
        A2: B }\in\mathbb{C
    shows ( A + ( B - A ) ) = B
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    have S3: (A\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(A+(B-A))=B
        by (rule MMI_pncan3t)
    from S1 S2 S3 show ( A + ( B - A ) ) = B by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_negidt:
    shows A }\in\mathbb{C}\longrightarrow(A+((-A)))=
proof -
    have S1: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    have S2:(A\in\mathbb{C}\wedge0\in\mathbb{C})\longrightarrow(A+(0-A))=0
        by (rule MMI_pncan3t)
    from S1 S2 have S3:A G C }\longrightarrow(A+(0-A))=
        by (rule MMI_mpan2)
    have S4: ( (- A) ) = ( 0 - A ) by (rule MMI_df_neg)
    from S4 have S5: ( A + ( (- A) ) ) = ( A + ( 0 - A ) )
        by (rule MMI_opreq2i)
    from S3 S5 show A \in\mathbb{C}\longrightarrow(A + ((- A) ) ) = 0 by (rule MMI_syl5eq)
qed
lemma (in MMIsar0) MMI_negid: assumes A1: A }\in\mathbb{C
    shows (A + ( (- A) ) ) = 0
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    have S2: A }\in\mathbb{C}\longrightarrow(A+((-A)) ) = 0 by (rule MMI_negidt
    from S1 S2 show ( A + ( (- A) ) ) = 0 by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_negsub: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C
    shows ( A + ( (- B) ) ) = ( A - B )
proof -
    from A2 have S1: B }\in\mathbb{C}\mathrm{ .
    from A1 have S2: A }\in\mathbb{C}\mathrm{ .
    from A2 have S3: B }\in\mathbb{C}\mathrm{ .
    from S3 have S4: ( (- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negcl)}
    from S2 S4 have S5: ( A + ( (- B) ) ) \in\mathbb{C}\mathrm{ by (rule MMI_addcl)}
    from S1 S5 have S6: ( B + (A + ( (- B) ) ) ) =
        ( ( A + ( (- B) ) ) + B ) by (rule MMI_addcom)
    from A1 have S7:A }\in\mathbb{C}\mathrm{ .
    from S4 have S8: ( (- B) ) \in\mathbb{C}.
```

from $A 2$ have $\mathrm{S} 9: \mathrm{B} \in \mathbb{C}$.
from S7 S8 S9 have S10: ($(\mathrm{A}+((-\mathrm{B}) \mathrm{O})+\mathrm{B})=$ $(A+((-B))+B))$ by (rule MMI_addass)
from S4 have S11: ($(-\mathrm{B})$) $\in \mathbb{C}$.
from A2 have S12: $B \in \mathbb{C}$.
from S11 S12 have S13: $((-B))+B)=(B+((-B)))$ by (rule MMI_addcom)
from A2 have S 14: $B \in \mathbb{C}$.
from S14 have S15: ($\mathrm{B}+\left(\begin{array}{l}(-\mathrm{B}))\end{array}\right)=0$ by (rule MMI_negid)
from S13 S15 have S16: (($(-\mathrm{B})$) + B) = $\mathbf{0}$ by (rule MMI_eqtr)
from S16 have S17: $(A+(((-B))+B))=(A+0)$ by (rule MMI_opreq2i)
from $A 1$ have $\mathrm{S} 18: \mathrm{A} \in \mathbb{C}$.
from S18 have S19: ($\mathrm{A}+0$) = A by (rule MMI_addid1)
from S10 S17 S19 have S20: ((A + ((-B$)$)) + B) $=\mathrm{A}$ by (rule MMI_3eqtr)
from S6 S20 have S21: ($\mathrm{B}+(\mathrm{A}+((-\mathrm{B})))$) $=\mathrm{A}$ by (rule MMI_eqtr)
from $A 1$ have $\mathrm{S} 22: \mathrm{A} \in \mathbb{C}$.
from A2 have S 23 : $\mathrm{B} \in \mathbb{C}$.
from S5 have S24: $(A+((-B))) \in \mathbb{C}$.
from S22 S23 S24 have S25: $(A-B)=\left(A+\left(\begin{array}{l}(-B))) \longleftrightarrow\end{array}\right.\right.$ $(B+(A+((-B)))=A$ by (rule MMI_subadd)
from S21 S25 have S26: (A-B) $=\left(A+\left(\begin{array}{ll}(-B))\end{array}\right)\right.$ by (rule MMI_mpbir)
from $\operatorname{S26}$ show $(A+((-B)))=(A-B)$ by (rule MMI_eqcomi)
qed
lemma (in MMIsar0) MMI_negsubt:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+((-B)))=(A-B)$
proof -
have $\mathrm{S} 1: \mathrm{A}=\operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow(\mathrm{A}+((-\mathrm{B})))=$ (if $(A \in \mathbb{C}, A, \mathbf{0})+((-B))$ by (rule MMI_opreq1)
have $S 2: A=$ if $(A \in \mathbb{C}, A, 0) \longrightarrow(A-B)=$ (if $(A \in \mathbb{C}, A, 0)-B)$ by (rule MMI_opreq1)
from S1 S2 have S3: $A=$ if $(A \in \mathbb{C}, A, 0) \longrightarrow$ $((A+((-B)))=(A-B) \longleftrightarrow$ $($ if $(A \in \mathbb{C}, A, 0)+((-B)))=$ (if $(A \in \mathbb{C}, A, 0)-B)$) by (rule MMI_eqeq12d)
have $S 4: B=\operatorname{if}(B \in \mathbb{C}, B, 0) \longrightarrow$ $((-B))=(-\operatorname{if}(B \in \mathbb{C}, B, 0))$ by (rule MMI_negeq)
from $S 4$ have $S 5: B=$ if $(B \in \mathbb{C}, B, 0) \longrightarrow$ $(\operatorname{if}(A \in \mathbb{C}, A, \mathbf{O})+((-B)))=$ (if $(A \in \mathbb{C}, A, \mathbf{0})+(-\operatorname{if}(B \in \mathbb{C}, B, 0))$ by (rule MMI_opreq2d)
have $\mathrm{S} 6: \mathrm{B}=$ if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow($ if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})$ - B) =
(if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) - if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0})$)
by (rule MMI_opreq2)

```
from S5 S6 have \(\mathrm{S} 7: \mathrm{B}=\mathrm{if}(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow\)
    \(((\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})+((-B)))=\)
    ( if \((A \in \mathbb{C}, A, 0)-B) \longleftrightarrow\)
    ( if \((A \in \mathbb{C}, A, \mathbf{0})+(-i f(B \in \mathbb{C}, B, \mathbf{0}))\) ) =
    ( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) - if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) )
    by (rule MMI_eqeq12d)
have S8: \(0 \in \mathbb{C}\) by (rule MMI_0cn)
from S 8 have \(\mathrm{S} 9:\) if \((A \in \mathbb{C}, A, 0) \in \mathbb{C}\) by (rule MMI_elimel)
have S10: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
from S10 have S11: if ( \(B \in \mathbb{C}, B, 0) \in \mathbb{C}\) by (rule MMI_elimel)
from S9 S11 have S12:
        ( if \((A \in \mathbb{C}, A, \mathbf{0})+(-i f(B \in \mathbb{C}, B, \mathbf{0}))\) ) =
        ( if \((A \in \mathbb{C}, A, \mathbf{0})\) - if \((B \in \mathbb{C}, B, \mathbf{0})\) )
        by (rule MMI_negsub)
from S3 S7 S12 show \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+((-B)))=\)
        ( A - B ) by (rule MMI_dedth2h)
```

qed
lemma (in MMIsar0) MMI_addsubasst:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A+B)-C)=$
($\mathrm{A}+(\mathrm{B}-\mathrm{C})$)
proof -
have S1: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(-C) \in \mathbb{C}) \longrightarrow$
$((A+B)+(-C))=$
($\mathrm{A}+(\mathrm{B}+(-\mathrm{C}))$) by (rule MMI_axaddass)
have $\mathrm{S} 2: \mathrm{C} \in \mathbb{C} \longrightarrow(-\mathrm{C}) \in \mathbb{C}$ by (rule MMI_negclt)
from S1 S2 have S3: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B)+(-C))=$
($\mathrm{A}+(\mathrm{B}+(-\mathrm{C}))$) by (rule MMI_syl3an3)
have $\mathrm{S} 4:((A+B) \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B)+(-C))=((A+B)-C)$
by (rule MMI_negsubt)
have $\mathrm{S} 5:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C}) \longrightarrow(\mathrm{A}+\mathrm{B}) \in \mathbb{C}$ by (rule MMI_axaddcl)
from S4 S5 have S6: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B)+(-C))=((A+B)-C)$
by (rule MMI_sylan)
from S6 have $\mathrm{S} 7:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B)+(-C))=((A+B)-C)$
by (rule MMI_3impa)
have $S 8:(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B+(-C))=(B-C)$
by (rule MMI_negsubt)
from 58 have $\mathrm{S} 9:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(B+(-C))=(B-C)$ by (rule MMI_3adant1)
from S9 have S10: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(A+(B+(-C)))=(A+(B-C))$
by (rule MMI_opreq2d)
from S3 S7 S10 show $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B)-C)=(A+(B-C))$
by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_addsubt:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A+B)-C)=$
($(\mathrm{A}-\mathrm{C})+\mathrm{B})$
proof -
have S1: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+B)=(B+A)$ by (rule MMI_axaddcom)
from $S 1$ have $S 2:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-C)=$ (($\mathrm{B}+\mathrm{A}$) - C) by (rule MMI_opreq1d)
from S2 have S3: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $((A+B)-C)=((B+A)-C)$ by (rule MMI_3adant3)
have $\mathrm{S} 4:(\mathrm{B} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C}) \longrightarrow((B+A)-C)=$ ($\mathrm{B}+(\mathrm{A}-\mathrm{C})$) by (rule MMI_addsubasst)
from S4 have S5: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $((B+A)-C)=(B+(A-C))$ by (rule MMI_3com12)
have S6: $(B \in \mathbb{C} \wedge(A-C) \in \mathbb{C}) \longrightarrow(B+(A-C))=$ ((A - C) + B) by (rule MMI_axaddcom)
from S 6 have $\mathrm{S} 7: \mathrm{B} \in \mathbb{C} \longrightarrow((A-C) \in \mathbb{C} \longrightarrow$ $(B+(A-C))=((A-C)+B))$ by (rule MMI_ex)
have S8: $(A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A-C) \in \mathbb{C}$ by (rule MMI_subclt)
from 57 S8 have $S 9: B \in \mathbb{C} \longrightarrow((A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $(B+(A-C))=((A-C)+B))$ by (rule MMI_syl5)
from S9 have $\mathrm{S} 10: \mathrm{B} \in \mathbb{C} \longrightarrow(A \in \mathbb{C} \longrightarrow(C \in \mathbb{C} \longrightarrow$ $(B+(A-C))=((A-C)+B))$ by (rule MMI_exp3a)
from $S 10$ have S11: $A \in \mathbb{C} \longrightarrow(B \in \mathbb{C} \longrightarrow(C \in \mathbb{C} \longrightarrow$ $(B+(A-C))=((A-C)+B))$ by (rule MMI_com12)
from $S 11$ have $\mathrm{S} 12:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $(B+(A-C))=((A-C)+B)$ by (rule MMI_3imp)
from S3 S5 S12 show $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $((A+B)-C)=((A-C)+B)$ by (rule MMI_3eqtrd)
qed
lemma (in MMIsar0) MMI_addsub12t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A+(B-C))=$ $(B+(A-C))$
proof -
have S1: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+B)=(B+A)$ by (rule MMI_axaddcom)
from S1 have $S 2:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-C)=$ ($(B+A)-C)$ by (rule MMI_opreq1d)
from $S 2$ have $S 3:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ $((A+B)-C)=((B+A)-C)$ by (rule MMI_3adant3)

```
    have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A+B)-C)=
        ( A + ( B - C ) ) by (rule MMI_addsubasst)
    have S5: ( B \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((B+A) - C ) =
        ( B + ( A - C ) ) by (rule MMI_addsubasst)
    from S5 have S6: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
        ( ( B + A ) - C ) = ( B + ( A - C ) ) by (rule MMI_3com12)
    from S3 S4 S6 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        (A+(B-C) ) = ( B + (A - C ) )
        by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_addsubass: assumes A1: A }\in\mathbb{C}\mathrm{ and
    A2: B \in\mathbb{C}}\mathrm{ and
    A3: C }\in\mathbb{C
    shows ((A + B ) - C ) = ( A + ( B - C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4: (A A\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A+B) - C ) =
        ( A + ( B - C ) ) by (rule MMI_addsubasst)
    from S1 S2 S3 S4 show ( ( A + B ) - C ) =
        ( A + ( B - C ) ) by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_addsub: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C }\in\mathbb{C
    shows ((A + B ) - C ) = ( ( A - C ) + B )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A+B) - C ) =
        ( ( A - C ) + B ) by (rule MMI_addsubt)
    from S1 S2 S3 S4 show ( ( A + B ) - C ) =
        ( ( A - C ) + B ) by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_2addsubt:
    shows (( A \in\mathbb{C}\wedgeB\in\mathbb{C})}\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))
    (((A+B) +C ) - D ) = ( ( ( A + C ) - D ) + B )
proof -
    have S1: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A+B)+C)=
        ( ( A + C ) + B ) by (rule MMI_add23t)
    from S1 have S2: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C})\wedgeC\in\mathbb{C})\longrightarrow
        ( ( A + B ) + C ) = ( ( A + C ) + B ) by (rule MMI_3expa)
    from S2 have S3:( (A G\mathbb{C}\wedge B\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
```

```
    (( A + B ) + C ) = ( ( A + C ) + B )
```

 by (rule MMI_adantrr)
 from S3 have S4: \(((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow\)
 \((((A+B)+C)-D)=\)
 ((\((A+C)+B)-D)\) by (rule MMI_opreq1d)
 have \(\operatorname{S5:}((A+C) \in \mathbb{C} \wedge B \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow\)
 \((((A+C)+B)-D)=\)
 ((\((\mathrm{A}+\mathrm{C})-\mathrm{D})+\mathrm{B})\) by (rule MMI_addsubt)
 from \(S 5\) have \(\mathrm{S} 6:((A+C) \in \mathbb{C} \wedge(B \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow\)
 \((((A+C)+B)-D)=\)
 \((((A+C)-D)+B)\) by (rule MMI_3expb)
 have S7: \((A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A+C) \in \mathbb{C}\) by (rule MMI_axaddcl)
 from S 6 S 7 have S : \(((A \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge D \in \mathbb{C})\))
 - $(((A+C)+B)-D)=$
(($(A+C)-D)+B)$ by (rule MMI_sylan)
from S8 have S9: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$(((A+C)+B)-D)=$
(((A + C) - D) + B) by (rule MMI_an4s)
from $S 4$ S9 show $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$(((A+B)+C)-D)=$
$(((A+C)-D)+B)$ by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_negneg: assumes A1: A $\in \mathbb{C}$
shows $(-((-A)))=A$
proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
from S1 have S2: ($(-\mathrm{A})$) $\in \mathbb{C}$ by (rule MMI_negcl)
from S2 have S3: (((-A$) ~) ~+(-((-\mathrm{A})))=0$ by (rule MMI_negid)
from S3 have S4: $(\mathrm{A}+(((-\mathrm{A}))+(-((-\mathrm{A})))))=$ ($\mathrm{A}+\mathbf{0}$) by (rule MMI_opreq2i)
from $A 1$ have $\mathrm{S} 5: \mathrm{A} \in \mathbb{C}$.
from S5 have S6: ($\mathrm{A}+((-\mathrm{A}))$) $=\mathbf{0}$ by (rule MMI_negid)
from S6 have $\mathrm{S7}:((\mathrm{A}+((-\mathrm{A})))+(-((-\mathrm{A}))))=$ (0 + ($-(-\mathrm{A})$))) by (rule MMI_opreq1i)
from $A 1$ have $\mathrm{S} 8: \mathrm{A} \in \mathbb{C}$.
from S 2 have $\mathrm{S} 9:((-\mathrm{A})) \in \mathbb{C}$.
from S2 have S10: ($(-\mathrm{A})$) $\in \mathbb{C}$.
from S10 have S11: ($-((-\mathrm{A})$)) $\in \mathbb{C}$ by (rule MMI_negcl)
from S8 S9 S11 have S12:
$((A+((-A)))+(-((-A))))=$
$(A+(((-A))+(-((-A))))$
by (rule MMI_addass)
from S11 have S13: $(-((-A))) \in \mathbb{C}$.
from S13 have S14: (0 + (- ((A$)$))) = (- ((-A))) by (rule MMI_addid2)
from S7 S12 S14 have S15:
$(A+(((-A))+(-((-A))))=$ (- ((- A))) by (rule MMI_3eqtr3)
from A1 have S16: $A \in \mathbb{C}$.
from S16 have S17: (A + 0) = A by (rule MMI_addid1)
from S4 S15 S17 show ($-((-\mathrm{A})$)) = A by (rule MMI_3eqtr3)
qed
lemma (in MMIsar0) MMI_subid: assumes A1: A $\in \mathbb{C}$
shows $(A-A)=0$
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from A1 have $\mathrm{S} 2: \mathrm{A} \in \mathbb{C}$.
from S1 S2 have S3: (A + ((-A))) = (A - A) by (rule MMI_negsub)
from $A 1$ have $S 4: A \in \mathbb{C}$.
from S4 have S5: ($\mathrm{A}+((-\mathrm{A}))$) $=\mathbf{0}$ by (rule MMI_negid)
from S3 S5 show (A - A) = $\mathbf{0}$ by (rule MMI_eqtr3)
qed
lemma (in MMIsar0) MMI_subid1: assumes A1: $A \in \mathbb{C}$
shows $(\mathrm{A}-0)=\mathrm{A}$
proof -
from A1 have S1: $A \in \mathbb{C}$.
from S1 have S2: ($0+\mathrm{A}$) = A by (rule MMI_addid2)
from A1 have S3: A $\in \mathbb{C}$.
have $\mathrm{S} 4: \mathbf{0} \in \mathbb{C}$ by (rule MMI_0cn)
from A1 have $\mathrm{S} 5: \mathrm{A} \in \mathbb{C}$.
from S3 S4 S5 have S6: ($\mathrm{A}-\mathbf{0}$) $=\mathrm{A} \longleftrightarrow(0+A)=A$ by (rule MMI_subadd)
from S2 S6 show (A - 0) = A by (rule MMI_mpbir)
qed
lemma (in MMIsar0) MMI_negnegt:
shows $A \in \mathbb{C} \longrightarrow(-((-A)))=A$
proof -
have $\mathrm{S} 1: \mathrm{A}=$ if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow((-\mathrm{A}))=$ (- if ($A \in \mathbb{C}, A, 0$)) by (rule MMI_negeq)
from $S 1$ have $S 2: A=$ if $(A \in \mathbb{C}, A, 0) \longrightarrow(-((-A)))=$ (- (- if $(A \in \mathbb{C}, A, \mathbf{0})$)) by (rule MMI_negeqd)
have $S 3: A=\operatorname{if}(A \in \mathbb{C}, A, 0) \longrightarrow A=\operatorname{if}(A \in \mathbb{C}, A, 0)$ by (rule MMI_id)
from S2 S3 have S4: A $=$ if $(A \in \mathbb{C}, A, 0) \longrightarrow$ $\left(\left(-\left(\begin{array}{ll}(-A))\end{array}\right)=A \longleftrightarrow\right.\right.$
 by (rule MMI_eqeq12d)
have $S 5: 0 \in \mathbb{C}$ by (rule MMI_0cn)
from S5 have S6: if $(A \in \mathbb{C}, A, 0) \in \mathbb{C}$ by (rule MMI_elimel)
from S6 have S7: ($-(-\operatorname{if}(A \in \mathbb{C}, A, 0))$) = if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) by (rule MMI_negneg)
from S 4 S 7 show $\mathrm{A} \in \mathbb{C} \longrightarrow\left(-\left(\begin{array}{ll}(-\mathrm{A})\end{array}\right)\right.$) = A by (rule MMI_dedth) qed
lemma (in MMIsar0) MMI_subnegt:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A-((-B)))=(A+B)$
proof -
have S1: $(A \in \mathbb{C} \wedge((-B)) \in \mathbb{C}) \longrightarrow$ $(A+(-((-B)))=(A-((-B)))$ by (rule MMI_negsubt)
have $S 2: B \in \mathbb{C} \longrightarrow((-\quad B)) \in \mathbb{C}$ by (rule MMI_negclt)
from S 1 S 2 have $\mathrm{S} 3:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C}) \longrightarrow$ $(A+(-((-B))))=(A-((-B)))$ by (rule MMI_sylan2)
have $S 4: B \in \mathbb{C} \longrightarrow(-((-B)))=B$ by (rule MMI_negnegt)
from $S 4$ have $S 5: B \in \mathbb{C} \longrightarrow(A+(-((-B)))=$ ($A+B$) by (rule MMI_opreq2d)
from S5 have 56 : $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$ $(A+(-((-B))))=(A+B)$ by (rule MMI_adantl)
from $S 3$ S6 show $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A-((-B)))=$ ($\mathrm{A}+\mathrm{B}$) by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_subidt:
shows $A \in \mathbb{C} \longrightarrow(A-A)=0$
proof -
have S 1: ($A=$ if $(A \in \mathbb{C}, A, \mathbf{0}) \wedge A=\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})$)
\longrightarrow
$(A-A)=(\operatorname{if}(A \in \mathbb{C}, A, 0)-\operatorname{if}(A \in \mathbb{C}, A, 0))$ by (rule MMI_opreq12)
from S 1 have $S 2: A=\operatorname{if}(A \in \mathbb{C}, A, 0) \longrightarrow$ $(A-A)=(\operatorname{if}(A \in \mathbb{C}, A, 0)$ - if $(A \in \mathbb{C}, A, 0))$ by (rule MMI_anidms)
from S 2 have $\mathrm{S} 3: \mathrm{A}=$ if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow$ $((A-A)=0 \longleftrightarrow$ (if ($A \in \mathbb{C}, A, 0)$ - if $(A \in \mathbb{C}, A, 0)$) \mathbf{A}) by (rule MMI_eqeq1d)
have $S 4: \mathbf{0} \in \mathbb{C}$ by (rule MMI_0cn)
from $S 4$ have $S 5$: if ($A \in \mathbb{C}, A, 0) \in \mathbb{C}$ by (rule MMI_elimel)
from $S 5$ have 56 :
(if $(A \in \mathbb{C}, A, 0)-\operatorname{if}(A \in \mathbb{C}, A, 0))=0$
by (rule MMI_subid)
from $S 3$ S6 show $A \in \mathbb{C} \longrightarrow(A-A)=0$ by (rule MMI_dedth)
qed

```
lemma (in MMIsar0) MMI_subid1t:
    shows \(A \in \mathbb{C} \longrightarrow(A-0)=A\)
proof -
    have \(S 1: A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow(A-0)=\)
        ( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) - \(\mathbf{0}\) ) by (rule MMI_opreq1)
    have \(\mathrm{S} 2: \mathrm{A}=\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow\)
        \(\mathrm{A}=\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) by (rule MMI_id)
    from S1 S2 have S3: \(A=\) if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
        \(((A-0)=A \longleftrightarrow\) (if \((A \in \mathbb{C}, A, 0)-0)=\)
        if ( \(A \in \mathbb{C}, A, 0\) ) ) by (rule MMI_eqeq12d)
    have \(S 4: 0 \in \mathbb{C}\) by (rule MMI_Ocn)
    from \(S 4\) have \(S 5\) : if \((A \in \mathbb{C}, A, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    from S5 have \(\mathrm{S} 6:(\) if \((A \in \mathbb{C}, A, 0)-\mathbf{0})=\)
        if ( \(A \in \mathbb{C}, A, 0)\) by (rule MMI_subid1)
    from S 3 S 6 show \(\mathrm{A} \in \mathbb{C} \longrightarrow(\mathrm{A}-\mathbf{0})=\mathrm{A}\) by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_pncant:
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-B)=A\)
proof -
    have S 1: \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-B)=\)
        ( \(\mathrm{A}+(\mathrm{B}-\mathrm{B})\) ) by (rule MMI_addsubasst)
    from S1 have S2: \((A \in \mathbb{C} \wedge(B \in \mathbb{C} \wedge B \in \mathbb{C})) \longrightarrow\)
        \(((A+B)-B)=(A+(B-B))\) by (rule MMI_3expb)
    from S2 have S3: \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-B)=\)
        ( A + ( B - B ) ) by (rule MMI_anabsan2)
    have \(S 4: B \in \mathbb{C} \longrightarrow(B-B)=\mathbf{0}\) by (rule MMI_subidt)
    from \(S 4\) have \(S 5: B \in \mathbb{C} \longrightarrow(A+(B-B))=(A+0)\)
        by (rule MMI_opreq2d)
    have \(\mathrm{S6}: \mathrm{A} \in \mathbb{C} \longrightarrow(\mathrm{A}+\mathbf{0})=\mathrm{A}\) by (rule MMI_ax0id)
    from S5 S6 have \(\mathrm{S} 7:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+(B-B))=A\)
        by (rule MMI_sylan9eqr)
    from \(S 3\) S7 show \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-B)=A\)
        by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_pncan2t:
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-A)=B\)
proof -
    have S1: \((B \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow(B+A)=(A+B)\)
        by (rule MMI_axaddcom)
    from S1 have \(\mathrm{S} 2:(\mathrm{B} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow((B+A)-A)=\)
        ( ( A + B ) - A ) by (rule MMI_opreq1d)
    have \(\mathrm{S} 3:(B \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow((B+A)-A)=B\)
        by (rule MMI_pncant)
    from S2 S3 have \(\mathrm{S} 4:(\mathrm{B} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow\)
        \(((A+B)-A)=B\) by (rule MMI_eqtr3d)
    from \(S 4\) show \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A+B)-A)=B\)
```

```
        by (rule MMI_ancoms)
qed
lemma (in MMIsar0) MMI_npcant:
    shows (A A C ^ B \in\mathbb{C})\longrightarrow((A-B ) + B ) = A
proof -
    have S1: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\in\mathbb{C ) }\longrightarrow
        ( (A + B ) - B ) = ( ( A - B ) + B )
        by (rule MMI_addsubt)
    from S1 have S2: ( A \in\mathbb{C}\wedge( B \in\mathbb{C}\wedge B\in\mathbb{C}) ) }
        ( ( A + B ) - B ) = ( ( A - B ) + B ) by (rule MMI_3expb)
    from S2 have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
        ( ( A + B ) - B ) = ( ( A - B ) + B )
        by (rule MMI_anabsan2)
    have S4:(A\in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow((A+B) - B ) = A
        by (rule MMI_pncant)
    from S3 S4 show ( A G C ^ B \in\mathbb{C})\longrightarrow((A - B ) + B ) = A
        by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_npncant:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ( (A-B) + ( B - C ) ) = (A - C )
proof -
    have S1: ( ( A - B ) \in\mathbb{C ^ B \in\mathbb{C ^C C C ) }}\longrightarrow
        (((A-B) + B ) - C ) =
        ( ( A - B ) + ( B - C ) ) by (rule MMI_addsubasst)
    have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}) \longrightarrow(A - B ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
    from S2 have S3: ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( A - B ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant3)
    have S4:( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowB\in\mathbb{C}\mathrm{ by (rule MMI_3simp2)
    have S5: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowC
    from S1 S3 S4 S5 have S6: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        (( (A-B) + B ) - C ) =
        ( ( A - B ) + ( B - C ) ) by (rule MMI_syl3anc)
    have S7:(A\in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow((A-B) + B ) = A
        by (rule MMI_npcant)
    from S7 have S8: ( A \in\mathbb{C ^ B \in\mathbb{C ) }}\longrightarrow
        ( ( (A-B) + B ) - C ) = ( A - C )
        by (rule MMI_opreq1d)
    from S8 have S9: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C )}\longrightarrow
        ( ( (A-B ) + B ) - C ) = ( A - C )
        by (rule MMI_3adant3)
    from S6 S9 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( (A-B) + ( B - C ) ) = ( A - C )
        by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_nppcant:
```

```
    shows ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ( ( (A-B) +C) + B ) = (A +C)
proof -
    have S1: ( ( A - B ) \in\mathbb{C}\wedgeC\in\mathbb{C}\wedge B\in\mathbb{C ) }\longrightarrow
        (( (A-B) +C) + B ) =
        ( ( ( A - B ) + B ) + C ) by (rule MMI_add23t)
    have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A - B ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
    from S2 have S3: ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A-B)\in\mathbb{C}
        by (rule MMI_3adant3)
    have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowC\in\mathbb{C}\mathrm{ by (rule MMI_3simp3)}
    have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowB 
    from S1 S3 S4 S5 have S6: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        (( ( A - B ) +C ) + B ) =
        ( ( ( A - B ) + B ) + C ) by (rule MMI_syl3anc)
    have S7:(A\in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow((A-B ) + B ) = A
        by (rule MMI_npcant)
    from S7 have S8: ( A \in\mathbb{C ^ B \in\mathbb{C ) }}\longrightarrow\mathbf{N}
        ( ( ( A - B ) + B ) +C ) = ( A + C )
        by (rule MMI_opreq1d)
    from S8 have S9: ( A \in\mathbb{C }\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
        ( ( ( A - B ) + B ) + C ) = ( A + C )
        by (rule MMI_3adant3)
    from S6 S9 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
        ( ( ( A - B ) + C ) + B ) = ( A + C ) by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_subneg: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C
    shows (A - ( (- B) ) ) = ( A + B )
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    have S3: ( A \in\mathbb{C}^B\in\mathbb{C ) }\longrightarrow(A-((- B) ) ) = ( A + B )
        by (rule MMI_subnegt)
    from S1 S2 S3 show ( A - ( (- B) ) ) = ( A + B )
        by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_subeq0: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C
    shows ( A - B ) = 0 \longleftrightarrow A = B
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( A + ( (- B) ) ) = ( A - B )
        by (rule MMI_negsub)
    from S3 have S4: ( A + ( (- B) ) ) = 0 \longleftrightarrow ( A - B ) = 0
        by (rule MMI_eqeq1i)
    have S5: ( A + ( (- B) ) ) = 0 \longrightarrow
```

```
    ( ( A + ( (- B) ) ) + B ) = ( 0 + B ) by (rule MMI_opreq1)
    from S4 S5 have S6: ( A - B ) = 0 }
        ( ( A + ( (- B) ) ) + B ) = ( 0 + B ) by (rule MMI_sylbir)
    from A1 have S7: A \in\mathbb{C}.
    from A2 have S8: B }\in\mathbb{C}\mathrm{ .
    from S8 have S9: ( (- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negcl)}
    from A2 have S10: B }\in\mathbb{C}\mathrm{ .
    from S7 S9 S10 have S11: ( ( A + ( (- B) ) ) + B ) =
        ( ( A + B ) + ( (- B) ) ) by (rule MMI_add23)
    from A1 have S12: A }\in\mathbb{C}\mathrm{ .
    from A2 have S13: B }\in\mathbb{C}\mathrm{ .
    from S9 have S14: ( (- B) ) \in\mathbb{C}.
    from S12 S13 S14 have S15: ( ( A + B ) + ( (- B) ) ) =
        ( A + ( B + ( (- B) ) ) ) by (rule MMI_addass)
    from A2 have S16: B }\in\mathbb{C}\mathrm{ .
    from S16 have S17: ( B + ( (- B) ) ) = 0 by (rule MMI_negid)
    from S17 have S18: ( A + ( B + ( (- B) ) ) ) = ( A + 0 )
        by (rule MMI_opreq2i)
    from A1 have S19: A }\in\mathbb{C}\mathrm{ .
    from S19 have S20: ( A + 0 ) = A by (rule MMI_addid1)
    from S18 S20 have S21: ( A + ( B + ( (- B) ) ) ) = A
        by (rule MMI_eqtr)
    from S11 S15 S21 have S22: ( ( A + ( (- B) ) ) + B ) = A
        by (rule MMI_3eqtr)
    from A2 have S23: B }\in\mathbb{C}\mathrm{ .
    from S23 have S24: ( 0 + B ) = B by (rule MMI_addid2)
    from S6 S22 S24 have S25: ( A - B ) = 0 \longrightarrowA = B
        by (rule MMI_3eqtr3g)
    have S26: A = B \longrightarrow ( A - B ) = ( B - B ) by (rule MMI_opreq1)
    from A2 have S27: B }\in\mathbb{C}\mathrm{ .
    from S27 have S28: ( B - B ) = 0 by (rule MMI_subid)
    from S26 S28 have S29: A = B \longrightarrow ( A - B ) = 0 by (rule MMI_syl6eq)
    from S25 S29 show ( A - B ) = 0 \longleftrightarrow A = B by (rule MMI_impbi)
qed
lemma (in MMIsar0) MMI_neg11: assumes A1: \(A \in \mathbb{C}\) and
            A2: B }\in\mathbb{C
    shows ((- A) ) = ( (- B) ) \longleftrightarrow A = B
proof -
    have S1: ( (- A) ) = ( 0 - A ) by (rule MMI_df_neg)
    have S2: ( (- B) ) = ( 0 - B ) by (rule MMI_df_neg)
    from S1 S2 have S3: ( (- A) ) = ( (- B) ) \longleftrightarrow ( 0 - A ) =
        ( 0 - B ) by (rule MMI_eqeq12i)
    have S4: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    have S6: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from A2 have S7: B }\in\mathbb{C}\mathrm{ .
    from S6 S7 have S8: ( 0 - B ) \in\mathbb{C by (rule MMI_subcl)}
    from S4 S5 S8 have S9: ( 0 - A ) = ( 0 - B ) \longleftrightarrow
```

```
    ( A + ( 0 - B ) ) = 0 by (rule MMI_subadd)
    from S2 have S10: ( (- B) ) = ( 0 - B ).
    from S10 have S11: ( A + ( (- B) ) ) = ( A + ( 0 - B ) )
    by (rule MMI_opreq2i)
    from A1 have S12: A }\in\mathbb{C}\mathrm{ .
    from A2 have S13: B \in\mathbb{C}
    from S12 S13 have S14: ( A + ( (- B) ) ) = ( A - B )
        by (rule MMI_negsub)
    from S11 S14 have S15: ( A + ( 0 - B ) ) = ( A - B )
        by (rule MMI_eqtr3)
    from S15 have S16: ( A + ( 0 - B ) ) = 0 \longleftrightarrow ( A - B ) = 0
        by (rule MMI_eqeq1i)
    from A1 have S17: A }\in\mathbb{C}\mathrm{ .
    from A2 have S18: B }\in\mathbb{C}\mathrm{ .
    from S17 S18 have S19: ( A - B ) = 0 \longleftrightarrowA = B by (rule MMI_subeq0)
    from S16 S19 have S20: ( A + ( 0 - B ) ) = 0 \longleftrightarrow A = B
        by (rule MMI_bitr)
    from S3 S9 S20 show ( (- A) ) = ( (- B) ) \longleftrightarrow A = B by (rule MMI_3bitr)
```

qed
lemma (in MMIsar0) MMI_negcon1: assumes A1: $A \in \mathbb{C}$ and A2: $B \in \mathbb{C}$
shows $((-A))=B \longleftrightarrow((-B))=A$
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from S1 have S2: (- ((-A))) = A by (rule MMI_negneg)
from S2 have S3: $(-((-A)))=((-B)) \longleftrightarrow A=\left(\begin{array}{l}(-B))\end{array}\right.$
by (rule MMI_eqeq1i)
from A1 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C}$.
from S4 have S5: ((-A)) $\in \mathbb{C}$ by (rule MMI_negcl)
from $A 2$ have $\mathrm{S} 6: \mathrm{B} \in \mathbb{C}$.
from S5 S6 have S7: ($-((-\mathrm{A}))$) $=$ $((-\quad B)) \longleftrightarrow((-\quad A))=B$ by (rule MMI_neg11)
have $S 8: A=((-B)) \longleftrightarrow((-B))=A$ by (rule MMI_eqcom)
from S3 S7 S8 show $((-A))=B \longleftrightarrow((-B))=A$ by (rule MMI_3bitr3)
qed
lemma (in MMIsar0) MMI_negcon2: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$
shows $A=((-B)) \longleftrightarrow B=((-A))$
proof -
from A2 have S 1: $B \in \mathbb{C}$.
from $A 1$ have $S 2: A \in \mathbb{C}$.
from S1 S2 have S3: $\left(\begin{array}{ll}- & B\end{array}\right)=A \longleftrightarrow\left(\begin{array}{ll}- & A\end{array}\right)=B$ by (rule MMI_negcon1)
have $S 4: A=((-B)) \longleftrightarrow((-B))=A$ by (rule MMI_eqcom)

```
    have S5: B = ( (- A) ) \longleftrightarrow ( (- A) ) = B by (rule MMI_eqcom)
    from S3 S4 S5 show A = ( (- B) ) \longleftrightarrowB = ( (- A) ) by (rule MMI_3bitr4)
qed
lemma (in MMIsar0) MMI_neg11t:
    shows ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(((-A))=((- B) ) \longleftrightarrowA = B
)
proof -
    have S1: A = if ( A G \mathbb{C , A , 0 ) }\longrightarrow((- A) ) =
        ( - if ( A \in\mathbb{C , A , 0 ) ) by (rule MMI_negeq)}
    from S1 have S2: A = if ( A G C , A , 0 ) \longrightarrow ( ( (- A) ) =
        ((- B) ) \longleftrightarrow( - if ( A \in\mathbb{C , A , 0 ) ) = ( (- B) ) )}
        by (rule MMI_eqeq1d)
    have S3: A = if ( A \in\mathbb{C},A,0 ) \longrightarrow( A = B \longleftrightarrow
        if ( A \in\mathbb{C , A , 0 ) = B ) by (rule MMI_eqeq1)}
    from S2 S3 have S4: A = if ( A \in\mathbb{C},A,0 ) \longrightarrow
        ((( (- A) ) = ( (- B) ) \longleftrightarrow A = B ) \longleftrightarrow
        ( ( - if ( A \in\mathbb{C},A,0 ) ) = ( (- B) ) \longleftrightarrow
        if ( A \in\mathbb{C , A , 0 ) = B ) ) by (rule MMI_bibi12d)}
    have S5: B = if ( B \in\mathbb{C},B,0 ) \longrightarrow ( (- B) ) =
        ( - if ( B \in\mathbb{C , B , 0 ) ) by (rule MMI_negeq)}
    from S5 have S6: B = if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
        (( - if ( A \in\mathbb{C},A,0 ) ) = ( (- B) ) \longleftrightarrow
        ( - if ( A \in\mathbb{C},A,0 ) ) = ( - if ( B \in\mathbb{C}, B,0 ) ) )
        by (rule MMI_eqeq2d)
    have S7: B = if ( B \in\mathbb{C}, B , 0 ) \longrightarrow( if ( A \in\mathbb{C , A , 0 ) = B}
        if ( A \in\mathbb{C , A , 0 ) = if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_eqeq2)}
    from S6 S7 have S8: B = if ( B \in\mathbb{C},B,0 ) 
        (( ( - if ( A \in\mathbb{C},A,0) ) = ( (- B) ) \longleftrightarrow
        if ( A \in\mathbb{C},A,0 ) = B ) \longleftrightarrow(( - if (A A C , A , 0 ) ) =
        (- if ( B \in\mathbb{C},B,0 )) \longleftrightarrow if (A G C ,A , 0 ) =
        if ( B \in\mathbb{C , B , O ) ) ) by (rule MMI_bibi12d)}
    have S9: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from S9 have S10: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S11: 0 \in C by (rule MMI_0cn)
    from S11 have S12: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    from S10 S12 have S13: ( - if ( A \in\mathbb{C , A , 0 ) ) =}
        (-if ( B \in\mathbb{C},B,0)) \longleftrightarrow if (A\in\mathbb{C},A,0)=
        if ( B \in\mathbb{C , B , 0 ) by (rule MMI_neg11)}
    from S4 S8 S13 show ( A G\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(((- A)) =
        ( (- B) ) \longleftrightarrowA = B ) by (rule MMI_dedth2h)
qed
lemma (in MMIsar0) MMI_negcon1t:
    shows ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(((-A)) = B \longleftrightarrow((- B) ) = A
)
proof -
    have S1:(()}(-A))\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow((-((-A)))
```

```
        ((- B) ) \longleftrightarrow ( (- A) ) = B ) by (rule MMI_neg11t)
    have S2: A \in\mathbb{C}\longrightarrow((- A) ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
    from S1 S2 have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow((- ((-A)) ) =
        ( (- B) ) \longleftrightarrow ( (- A) ) = B ) by (rule MMI_sylan)
    have S4: A \in\mathbb{C}\longrightarrow( - ( (- A) ) ) = A by (rule MMI_negnegt)
    from S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow( - ((-A)) ) = A
        by (rule MMI_adantr)
    from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(( - ((- A) ) ) =
        ( (- B) ) \longleftrightarrowA = ( (- B) ) ) by (rule MMI_eqeq1d)
    from S3 S6 have S7: (A A C ^ B \in\mathbb{C})\longrightarrow(((-A)) = B \longleftrightarrowA
=
        ( (- B) ) ) by (rule MMI_bitr3d)
    have S8: A = ( (- B) ) \longleftrightarrow ( (- B) ) = A by (rule MMI_eqcom)
    from S7 S8 show ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(((-A))=B\longleftrightarrow
        ( (- B) ) = A ) by (rule MMI_syl6bb)
qed
lemma (in MMIsar0) MMI_negcon2t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(A=((-B))\longleftrightarrowB=((-A)
)
proof -
    have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(((-A)) = B \longleftrightarrow((- B) ) =
A )
        by (rule MMI_negcon1t)
    have S2: A = ( (- B) ) \longleftrightarrow ( (- B) ) = A by (rule MMI_eqcom)
    from S1 S2 have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A=((- B) ) \longleftrightarrow
        ( (- A) ) = B ) by (rule MMI_syl6rbbrA)
    have S4: ( (- A) ) = B \longleftrightarrow B = ( (- A) ) by (rule MMI_eqcom)
    from S3 S4 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(A=((- B) ) \longleftrightarrowB=
        ((- A) ) ) by (rule MMI_syl6bb)
qed
lemma (in MMIsar0) MMI_subcant:
    shows (A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A-B)=
    (A - C ) \longleftrightarrow B = C )
proof -
    have S1:( A \in\mathbb{C}\wedge((-B)) \in\mathbb{C}\wedge(-C) \in\mathbb{C})\longrightarrow
        ((A + ( (- B) ) ) = (A + ( - C ) ) \longleftrightarrow
        ( (- B) ) = ( - C ) ) by (rule MMI_addcant)
    have S2: C \in\mathbb{C}\longrightarrow( - C ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
    from S1 S2 have S3: ( A \in\mathbb{C}\wedge((- B) ) \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ((A+((-B))) = (A + ( - C ) ) \longleftrightarrow
        ( (- B) ) = ( - C ) ) by (rule MMI_syl3an3)
    have S4: B \in\mathbb{C}\longrightarrow((- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
    from S3 S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ((A+((-B))) = (A + ( - C ) ) \longleftrightarrow
        ( (- B) ) = ( - C ) ) by (rule MMI_syl3an2)
    have S6:( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow(A+((-B)) ) = (A - B )
```

```
        by (rule MMI_negsubt)
    from S6 have S7: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( A + ( (- B) ) ) = ( A - B ) by (rule MMI_3adant3)
    have S8: ( A \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A+(-C ) ) = (A - C )
        by (rule MMI_negsubt)
    from S8 have S9: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( A + ( - C ) ) = ( A - C ) by (rule MMI_3adant2)
    from S7 S9 have S10: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})}
        ((A + ( (- B) ) ) = ( A + ( - C ) ) \longleftrightarrow
        ( A - B ) = ( A - C ) ) by (rule MMI_eqeq12d)
    have S11: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(((- B) ) = ( - C ) \longleftrightarrow B = C
)
        by (rule MMI_neg11t)
    from S11 have S12: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( (- B) ) = ( - C ) \longleftrightarrow B = C ) by (rule MMI_3adant1)
    from S5 S10 S12 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( A - B ) = ( A - C ) \longleftrightarrow B = C ) by (rule MMI_3bitr3d)
qed
lemma (in MMIsar0) MMI_subcan2t:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( (A - C ) = ( B - C ) \longleftrightarrowA = B )
proof -
    have S1: ( A \in\mathbb{C}^C\in\mathbb{C})\longrightarrow(A+(-C)) = (A - C )
        by (rule MMI_negsubt)
    from S1 have S2: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( A + ( - C ) ) = ( A - C ) by (rule MMI_3adant2)
    have S3: ( B \in\mathbb{C}^C\in\mathbb{C ) }\longrightarrow(B+(-C ) ) = ( B - C )
        by (rule MMI_negsubt)
    from S3 have S4: ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( B + ( - C ) ) = ( B - C ) by (rule MMI_3adant1)
    from S2 S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ((A+(-C)) = (B+(-C)) \longleftrightarrow(A - C ) =
        ( B - C ) ) by (rule MMI_eqeq12d)
    have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge( - C ) \in\mathbb{C})\longrightarrow
        (( A + ( - C ) ) = ( B + ( - C ) ) \longleftrightarrowA = B )
        by (rule MMI_addcan2t)
    have S7: C \in\mathbb{C}\longrightarrow( - C ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
    from S6 S7 have S8: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ((A+(-C ) ) = ( B + ( - C ) ) \longleftrightarrowA = B )
        by (rule MMI_syl3an3)
    from S5 S8 show ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( A - C ) = ( B - C ) \longleftrightarrowA = B ) by (rule MMI_bitr3d)
qed
lemma (in MMIsar0) MMI_subcan: assumes A1: \(A \in \mathbb{C}\) and
        A2: B \in\mathbb{C}\mathrm{ and}
    A3: C }\in\mathbb{C
    shows (A - B ) = ( A - C ) \longleftrightarrow B = C
```

proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
from $A 2$ have $S 2: B \in \mathbb{C}$.
from A3 have S3: $C \in \mathbb{C}$.
have S4: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow((A-B)=(A-C) \longleftrightarrow$ B = C) by (rule MMI_subcant)
from S1 S2 S3 S4 show $(A-B)=(A-C) \longleftrightarrow B=C$ by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_subcan2: assumes A1: A $\in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$
shows $(A-C)=(B-C) \longleftrightarrow A=B$
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from A2 have $\mathrm{S} 2: \mathrm{B} \in \mathbb{C}$.
from $A 3$ have $\mathrm{S} 3: C \in \mathbb{C}$.
have S4: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ ($(A-C)=(B-C) \longleftrightarrow A=B)$ by (rule MMI_subcan2t)
from S1 S2 S3 S4 show (A-C) = (B-C) $\longleftrightarrow A=B$ by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_subeq0t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((A-B)=0 \longleftrightarrow A=B)$
proof -
have $\mathrm{S} 1: \mathrm{A}=$ if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow(\mathrm{A}-\mathrm{B})=$ (if ($A \in \mathbb{C}, A, 0$) - B) by (rule MMI_opreq1)
from $S 1$ have $S 2: A=$ if $(A \in \mathbb{C}, A, 0) \longrightarrow((A-B)=0 \longleftrightarrow$
(if $(A \in \mathbb{C}, A, \mathbf{0})-B)=0$) by (rule MMI_eqeq1d)
have S3: $A=\operatorname{if}(A \in \mathbb{C}, A, 0) \longrightarrow(A=B \longleftrightarrow$ if $(A \in \mathbb{C}, A, \mathbf{O})=B)$ by (rule MMI_eqeq1)
from S2 S3 have S4: A = if $(A \in \mathbb{C}, A, 0) \longrightarrow$ $(((A-B)=0 \longleftrightarrow A=B) \longleftrightarrow$ ((if $(A \in \mathbb{C}, A, \mathbf{0})-B)=\mathbf{0} \longleftrightarrow$ if $(A \in \mathbb{C}, A, 0)=B)$) by (rule MMI_bibi12d)
have $\mathrm{S} 5: \mathrm{B}=$ if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow$ (if $(A \in \mathbb{C}, A, 0)-B)=$ (if $(A \in \mathbb{C}, A, 0)$ - if ($B \in \mathbb{C}, B, 0)$) by (rule MMI_opreq2)
from S 5 have $\mathrm{S} 6: \mathrm{B}=$ if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow$ ((if $(A \in \mathbb{C}, A, \mathbf{0})-B)=\mathbf{0} \longleftrightarrow$ (if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) - if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0})$) = $\mathbf{0}$) by (rule MMI_eqeq1d)
have $\mathrm{S} 7: \mathrm{B}=$ if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow(\operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})=\mathrm{B}$ \longleftrightarrow if $(A \in \mathbb{C}, A, \mathbf{0})=\operatorname{if}(B \in \mathbb{C}, B, \mathbf{0})$) by (rule MMI_eqeq2)

```
from S6 S7 have S8: B = if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow\)
    \((()\) if \((A \in \mathbb{C}, A, \mathbf{0})-B)=\mathbf{0} \longleftrightarrow\)
    if \((A \in \mathbb{C}, A, \mathbf{0})=B) \longleftrightarrow\)
    ( (if \((A \in \mathbb{C}, A, \mathbf{0})\) - if \((B \in \mathbb{C}, B, \mathbf{0}))=\mathbf{0} \longleftrightarrow\)
    if \((A \in \mathbb{C}, A, \mathbf{O})=\) if \((B \in \mathbb{C}, B, \mathbf{O})\) )
    by (rule MMI_bibi12d)
have S9: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
from S9 have S 10 : if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \in \mathbb{C}\) by (rule MMI_elimel)
have S11: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
from S11 have S12: if \((B \in \mathbb{C}, B, 0) \in \mathbb{C}\) by (rule MMI_elimel)
from S 10 S 12 have S 13 :
    ( if \((A \in \mathbb{C}, A, \mathbf{0})\) - if \((B \in \mathbb{C}, B, \mathbf{0}))=\mathbf{0} \longleftrightarrow\)
    if \((A \in \mathbb{C}, A, \mathbf{0})=\operatorname{if}(B \in \mathbb{C}, B, \mathbf{O})\)
    by (rule MMI_subeq0)
from S4 S8 S13 show ( \(A \in \mathbb{C} \wedge B \in \mathbb{C}\) ) \(\longrightarrow\)
    \(((A-B)=0 \longleftrightarrow A=B)\) by (rule MMI_dedth2h)
```

qed
lemma (in MMIsar0) MMI_neg0:
shows $(-0)=0$
proof -
have S1: ($\mathbf{0}$) = ($\mathbf{0}-\mathbf{0}$) by (rule MMI_df_neg)
have $\mathrm{S} 2: 0 \in \mathbb{C}$ by (rule MMI_Ocn)
from S2 have S3: ($\mathbf{0}-\mathbf{0}$) = $\mathbf{0}$ by (rule MMI_subid)
from S1 S3 show ($-\mathbf{0}$) = $\mathbf{0}$ by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_renegcl: assumes A1: $A \in \mathbb{R}$
shows $\left(\begin{array}{ll}- & A\end{array}\right) \in \mathbb{R}$
proof -
from $A 1$ have $S 1: A \in \mathbb{R}$.
have $S 2: A \in \mathbb{R} \longrightarrow(\exists x \in \mathbb{R} .(A+x)=0)$ by (rule MMI_axrnegex)
from S1 S2 have S3: $\exists \mathrm{x} \in \mathbb{R} .(\mathrm{A}+\mathrm{x})=0$ by (rule MMI_ax_mp)
have $\operatorname{S4}:(\exists \mathrm{x} \in \mathbb{R} .(\mathrm{A}+\mathrm{x})=0) \longleftrightarrow$
$(\exists \mathrm{x} \cdot(\mathrm{x} \in \mathbb{R} \wedge(\mathrm{A}+\mathrm{x})=0)$) by (rule MMI_df_rex)
from S3 S4 have S5: $\exists \mathrm{x} .(\mathrm{x} \in \mathbb{R} \wedge(\mathrm{A}+\mathrm{x})=0)$
by (rule MMI_mpbi)
\{ fix x
have $56: x \in \mathbb{R} \longrightarrow x \in \mathbb{C}$ by (rule MMI_recnt)
have $57: 0 \in \mathbb{C}$ by (rule MMI_Ocn)
from A 1 have $\mathrm{S} 8: \mathrm{A} \in \mathbb{R}$.
from 58 have $\mathrm{S} 9: \mathrm{A} \in \mathbb{C}$ by (rule MMI_recn)
have S10: $(0 \in \mathbb{C} \wedge A \in \mathbb{C} \wedge x \in \mathbb{C}) \longrightarrow((0-A)=x \longleftrightarrow$
$(\mathrm{A}+\mathrm{x})=0$) by (rule MMI_subaddt)
from S7 S9 S10 have S11: $x \in \mathbb{C} \longrightarrow((0-A)=x \longleftrightarrow$
$(\mathrm{A}+\mathrm{x})=0$) by (rule MMI_mp3an12)
from S6 S11 have $\mathrm{S} 12: \mathrm{x} \in \mathbb{R} \longrightarrow((0-A)=x \longleftrightarrow$

```
                ( A + x ) = 0 ) by (rule MMI_syl)
            have S13: ( (- A) ) = ( 0 - A ) by (rule MMI_df_neg)
            from S13 have S14: ( (- A) ) = x \longleftrightarrow (0 - A ) = x
                by (rule MMI_eqeq1i)
            from S12 S14 have S15: x }\in\mathbb{R}\longrightarrow(((-A))=x
                ( A + x ) = 0 ) by (rule MMI_syl5bb)
            have S16: x \in R \longrightarrow( ( (- A) ) = x \longrightarrow ( (- A) ) \in\mathbb{R})
                by (rule MMI_eleq1a)
            from S15 S16 have S17: x }\in\mathbb{R}\longrightarrow((A+x)=0
                ((- A) ) \in\mathbb{R ) by (rule MMI_sylbird)}
            from S17 have ( }x\in\mathbb{R}\wedge(A+x)=0)\longrightarrow((-A))\in\mathbb{R
                by (rule MMI_imp)
            } then have S18:
    \forallx.( x \in\mathbb{R}\wedge(A+x)=0) \longrightarrow((-A)) \in\mathbb{R}
        by auto
    from S18 have S19:( }\exists\textrm{x}.(\textrm{x}\in\mathbb{R}\wedge(A+x)=0))
            ( (- A) ) \in \mathbb{R by (rule MMI_19_23aiv)}
    from S5 S19 show ( (- A) ) \in\mathbb{R}}\mathrm{ by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_renegclt:
    shows }A\in\mathbb{R}\longrightarrow((- A))\in\mathbb{R
proof -
    have S1: A = if ( A G R , A , 1 ) \longrightarrow((- A) ) =
        ( - if ( A \in \mathbb{R , A , 1 ) ) by (rule MMI_negeq)}
    from S1 have S2: A = if ( A G R , A , 1 ) \longrightarrow( ( (- A) ) \in\mathbb{R}\longleftrightarrow
        (- if ( A \in\mathbb{R , A , 1 ) ) \in\mathbb{R}}\mathrm{ ) by (rule MMI_eleq1d)}
    have S3: 1 \in\mathbb{R}\mathrm{ by (rule MMI_ax1re)}
```



```
    from S4 have S5: ( - if ( A \in \mathbb{R , A , 1 ) ) }\in\mathbb{R}\mathrm{ by (rule MMI_renegcl)}
    from S2 S5 show A }\in\mathbb{R}\longrightarrow((- A)) \in\mathbb{R}\mathrm{ by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_resubclt:
    shows ( A \in\mathbb{R}\wedge B\in\mathbb{R})\longrightarrow(A - B ) \in\mathbb{R}
proof -
    have S1: ( A G\mathbb{C}^B\in\mathbb{C})\longrightarrow(A+((-B)) ) = (A - B )
        by (rule MMI_negsubt)
    have S2: A \in\mathbb{R}\longrightarrowA\in\mathbb{C}\mathrm{ by (rule MMI_recnt)}
    have S3: B }\in\mathbb{R}\longrightarrowB\in\mathbb{C}\mathrm{ by (rule MMI_recnt)
    from S1 S2 S3 have S4:( A G R ^ B G \mathbb{R ) \longrightarrow( A + ((- B) ) )}
        ( A - B ) by (rule MMI_syl2an)
    have S5: ( A \in\mathbb{R}\wedge((-B) ) \in\mathbb{R})\longrightarrow( 
        by (rule MMI_axaddrcl)
    have S6: B \in\mathbb{R}\longrightarrow((- B) ) \in\mathbb{R}\mathrm{ by (rule MMI_renegclt)}
    from S5 S6 have S7: ( A \in\mathbb{R}\wedge B \in\mathbb{R})\longrightarrow(A+((- B) ) ) \in\mathbb{R}
```

```
        by (rule MMI_sylan2)
    from S4 S7 show ( A \in\mathbb{R}\wedge B \in\mathbb{R})\longrightarrow(A - B ) }\in\mathbb{R
        by (rule MMI_eqeltrrd)
qed
lemma (in MMIsar0) MMI_resubcl: assumes A1: A }\in\mathbb{R}\mathrm{ and
        A2: B }\in\mathbb{R
        shows ( A - B ) \in\mathbb{R}
proof -
    from A1 have S1: A }\in\mathbb{R}\mathrm{ .
    from A2 have S2: B }\in\mathbb{R}\mathrm{ .
    have S3: ( A \in \mathbb{R}\wedge B \in\mathbb{R ) }\longrightarrow(A-B ) \in\mathbb{R}\mathrm{ by (rule MMI_resubclt)}
    from S1 S2 S3 show ( A - B ) \in\mathbb{R}}\mathrm{ by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_Ore:
    shows 0}\in\mathbb{R
proof -
    have S1: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S1 have S2: ( 1 - 1 ) = 0 by (rule MMI_subid)
    have S3: 1 \in \mathbb{R by (rule MMI_ax1re)}
    have S4: 1 \in\mathbb{R}}\mathrm{ by (rule MMI_ax1re)
    from S3 S4 have S5: ( 1 - 1 ) \in \mathbb{R by (rule MMI_resubcl)}
    from S2 S5 show 0}\in\mathbb{R}\mathrm{ by (rule MMI_eqeltrr)
qed
lemma (in MMIsar0) MMI_mulid2t:
    shows A}\in\mathbb{C}\longrightarrow(1\cdotA)=
proof -
    have S1: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    have S2: ( 1 \in\mathbb{C}\wedgeA\in\mathbb{C})\longrightarrow(1.A ) = (A\cdot1 )
        by (rule MMI_axmulcom)
    from S1 S2 have S3: A \in\mathbb{C}\longrightarrow(1 | A ) = ( A . 1 ) by (rule MMI_mpan)
    have S4: A \in\mathbb{C}\longrightarrow(A.1 ) = A by (rule MMI_ax1id)
    from S3 S4 show A \in\mathbb{C}\longrightarrow(1 A A ) = A by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_mul12t:
    shows (A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A.(B
    ( B · ( A C C ) )
proof -
    have S1: (A G\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A\cdotB)=(B\cdotA )
        by (rule MMI_axmulcom)
    from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
        ( ( A P B ) | C ) = ( ( B | A ) . C ) by (rule MMI_opreq1d)
    from S2 have S3: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C ) }
        ( ( A P B ) | C ) = ( ( B | A ) . C ) by (rule MMI_3adant3)
```

```
    have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C ^C G C ) }\longrightarrow
    ( ( A | B ) . C ) = ( A . ( B . C ) ) by (rule MMI_axmulass)
    have S5: ( B \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( ( B | A ) . C ) = ( B . ( A | C ) ) by (rule MMI_axmulass)
    from S5 have S6: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( B · A ) . C ) = ( B . ( A | C ) ) by (rule MMI_3com12)
    from S3 S4 S6 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( A . ( B | C ) ) = ( B . ( A C C ) ) by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_mul23t:
    shows ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A.B ) . C ) =
    ( ( A | C ) . B )
proof -
    have S1: ( B \in\mathbb{C ^ C G C ) }\longrightarrow(B\cdotC ) = (C · B )
        by (rule MMI_axmulcom)
    from S1 have S2: ( B \in\mathbb{C ^ C \in C ) }\longrightarrow( A · ( B . C ) ) =
        ( A . ( C . B ) ) by (rule MMI_opreq2d)
    from S2 have S3: ( A G C ^ B G\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow(A\cdot(B.C ) )
        ( A . ( C · B ) ) by (rule MMI_3adant1)
    have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A\cdotB)
        ( A • ( B . C ) ) by (rule MMI_axmulass)
    have S5: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedge B\in\mathbb{C})\longrightarrow((A\cdotC).B )=
        ( A . ( C . B ) ) by (rule MMI_axmulass)
    from S5 have S6: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( A P C ) . B ) = ( A . ( C . B ) ) by (rule MMI_3com23)
    from S3 S4 S6 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( A · B ) . C ) = ( ( A | C ) · B ) by (rule MMI_3eqtr4d)
qed
lemma (in MMIsar0) MMI_mul4t:
    shows ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C ) ) }\longrightarrow
    ( ( A | B ) . ( C | D ) ) = ( ( A c C ) . ( B | D ) )
proof -
    have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( A | B ) . C ) = ( ( A . C ) . B ) by (rule MMI_mul23t)
    from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
        ( ( ( A | B ) | C ) | D ) = ( ( ( A | C ) | B ) | D )
        by (rule MMI_opreq1d)
    from S2 have S3: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^C\in\mathbb{C ) }\longrightarrow
        ( ( ( A | B ) | C ) | D ) = ( ( ( A | C ) | B ) | D )
        by (rule MMI_3expa)
```



```
        (((A | B ) | C ) | D ) = ( ( ( A | C ) | B ) . D )
        by (rule MMI_adantrr)
```



```
        (((A\cdotB) C C ) | D ) = ( ( A | B ) | ( C | D ) )
```

```
        by (rule MMI_axmulass)
    from S5 have S6:( (A.B ) \in\mathbb{C}\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
        ( ( ( A | B ) . C ) . D ) = ( ( A | B ) . ( C | D ) ) by (rule MMI_3expb)
    have S7:( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A.B ) }\in\mathbb{C}\mathrm{ by (rule MMI_axmulcl)
    from S6 S7 have S8: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C ) )}
\longrightarrow
        (( ( A · B ) . C ) . D ) = ( ( A · B ) · ( C . D ) ) by (rule MMI_sylan)
    have S9: ( ( A.C ) \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeD\in\mathbb{C ) \longrightarrow}
        ( ( ( A | C ) | B ) | D ) = ( ( A | C ) . ( B | D ) )
        by (rule MMI_axmulass)
    from S9 have S10: ( ( A C ) \in\mathbb{C}\wedge( B \in\mathbb{C}\wedge D \in\mathbb{C ) ) }\longrightarrow
        ( ( ( A C C ) | B ) | D ) = ( ( A c C ) . ( B | D ) )
        by (rule MMI_3expb)
    have S11: ( A \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow(A\cdotC ) \in\mathbb{C}\mathrm{ by (rule MMI_axmulcl)}
    from S10 S11 have S12:( ( A \in\mathbb{C}\wedgeC\in\mathbb{C}) ^(B\in\mathbb{C}\wedgeD\in\mathbb{C})
) }
        (((A C C ) | B ) | D ) = ( ( A | C ) | ( B | D ) )
        by (rule MMI_sylan)
    from S12 have S13:( ( A \in\mathbb{C}\wedge B\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
        (( ( A | C ) | B ) | D ) = ( ( A | C ) | ( B | D ) )
        by (rule MMI_an4s)
    from S4 S8 S13 show ( ( A G \mathbb{C ^B G C ) ^( C \in\mathbb{C}\wedge D G\mathbb{C})})
\longrightarrow
        (( A | B ) . ( C | D ) ) = ( ( A | C ) . ( B | D ) )
        by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_muladdt:
    shows (( }A\in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))
    ((A+B) . (C + D ) ) =
    (( ( A C C ) + ( D | B ) ) + ( ( A | D ) + (C | B ) ) )
proof -
```



```
        (( A + B ) . ( C + D ) ) =
        (( ( A + B ) | C ) + ( ( A + B ) | D ) )
        by (rule MMI_axdistr)
    have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(A+B) \in\mathbb{C}\mathrm{ by (rule MMI_axaddcl)}
    from S2 have S3:( ( A \in\mathbb{C ^ B G C ) ^ ( C G C ^D D C ) ) }\longrightarrow
        ( A + B ) \in\mathbb{C}}\mathrm{ by (rule MMI_adantr)
    have S4: ( C \in\mathbb{C}\wedgeD\in\mathbb{C ) }\longrightarrowC\in\mathbb{C}\mathrm{ by (rule MMI_pm3_26)}
    from S4 have S5:( (A G\mathbb{C}\wedge B \in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
C }\in\mathbb{C
        by (rule MMI_adantl)
    have S6: ( C \in\mathbb{C}\wedge D \in\mathbb{C ) }\longrightarrow\textrm{D}\in\mathbb{C}\mathrm{ by (rule MMI_pm3_27)}
    from S6 have S7:( ( A \in\mathbb{C ^ B \in\mathbb{C}) ^( C\in\mathbb{C}\wedgeD\in\mathbb{C}) ) }\longrightarrow
D }\in\mathbb{C
        by (rule MMI_adantl)
```

from S1 S3 S5 S7 have S8:
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A+B) \cdot(C+D))=$
$(((A+B) \cdot C)+((A+B) \cdot D))$
by (rule MMI_syl3anc)
have S9: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A+B) \cdot C)=((A \cdot C)+(B \cdot C))$
by (rule MMI_adddirt)
from S9 have $\mathrm{S} 10:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge C \in \mathbb{C}) \longrightarrow$ $((A+B) \cdot C)=((A \cdot C)+(B \cdot C))$
by (rule MMI_3expa)
from S10 have S11: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A+B) \cdot C)=((A \cdot C)+(B \cdot C))$
by (rule MMI_adantrr)
have $\operatorname{S12:}(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow$
$((A+B) \cdot D)=((A \cdot D)+(B \cdot D))$
by (rule MMI_adddirt)
from S12 have S13: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge D \in \mathbb{C}) \longrightarrow$ $((A+B) \cdot D)=((A \cdot D)+(B \cdot D))$ by (rule MMI_3expa)
from $S 13$ have $\operatorname{S14}:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $((A+B) \cdot D)=((A \cdot D)+(B \cdot D))$ by (rule MMI_adantrl)
from S11 S14 have S15: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$) \longrightarrow $(((A+B) \cdot C)+((A+B) \cdot D))=$ $(((A \cdot C)+(B \cdot C))+((A \cdot D)+(B \cdot D))$
by (rule MMI_opreq12d)
have S16:
$((A \cdot C) \in \mathbb{C} \wedge(B \cdot C) \in \mathbb{C} \wedge$
$((A \cdot D)+(B \cdot D)) \in \mathbb{C}) \longrightarrow$
$(((A \cdot C)+(B \cdot C))+((A \cdot D)+(B \cdot D)))=$
$((\mathrm{A} \cdot \mathrm{C})+((\mathrm{A} \cdot \mathrm{D})+(\mathrm{B} \cdot \mathrm{D})))+(\mathrm{B} \cdot \mathrm{C}))$
by (rule MMI_add23t)
have S17: $(A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A \cdot C) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S17 have S18: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
($\mathrm{A} \cdot \mathrm{C}$) $\in \mathbb{C}$ by (rule MMI_ad2ant2r)
have S19: $(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B \cdot C) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S19 have S 20 : $(B \in \mathbb{C} \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$) \longrightarrow
($\mathrm{B} \cdot \mathrm{C}$) $\in \mathbb{C}$ by (rule MMI_adantrr)
from S20 have S21: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
(B . C) $\in \mathbb{C}$ by (rule MMI_adantll)
have $\operatorname{S22:}((A \cdot D) \in \mathbb{C} \wedge(B \cdot D) \in \mathbb{C}) \longrightarrow$ $((\mathrm{A} \cdot \mathrm{D})+(\mathrm{B} \cdot \mathrm{D})) \in \mathbb{C}$ by (rule MMI_axaddcl)
have S23: $(A \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(A \cdot D) \in \mathbb{C}$ by (rule MMI_axmulcl)
have S24: $(B \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(B \cdot D) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S22 S23 S24 have S25:
$((A \in \mathbb{C} \wedge D \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((\mathrm{A} \cdot \mathrm{D})+(\mathrm{B} \cdot \mathrm{D})) \in \mathbb{C}$ by (rule MMI_syl2an)
from S25 have $\operatorname{S26}:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge D \in \mathbb{C}) \longrightarrow$ ((A $\cdot \mathrm{D})+(\mathrm{B} \cdot \mathrm{D})) \in \mathbb{C}$ by (rule MMI_anandirs)
from S26 have S27: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
((A $\cdot \mathrm{D})+(\mathrm{B} \cdot \mathrm{D})) \in \mathbb{C}$ by (rule MMI_adantrl)
from S16 S18 S21 S27 have S28:
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $(((A \cdot C)+(B \cdot C))+((A \cdot D)+(B \cdot D)))=$ $(((A \cdot C)+((A \cdot D)+(B \cdot D)))+(B \cdot C))$
by (rule MMI_syl3anc)
have $\operatorname{S29:}(B \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(B \cdot D)=(D \cdot B)$ by (rule MMI_axmulcom)
from S29 have $\operatorname{S30}:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ ($\mathrm{B} \cdot \mathrm{D})=(\mathrm{D} \cdot \mathrm{B})$ by (rule MMI_ad2ant2l)
from S30 have S31: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$

```
(((A\cdotC ) + ( A P D ) ) + ( B | D ) ) =
(( (A\cdotC ) + (A.D ) ) + ( D | B ) )
```

by (rule MMI_opreq2d)
have $\operatorname{S32:}((\mathrm{A} \cdot \mathrm{C}) \in \mathbb{C} \wedge(\mathrm{A} \cdot \mathrm{D}) \in \mathbb{C} \wedge(\mathrm{B} \cdot \mathrm{D}) \in \mathbb{C}) \longrightarrow$
$(((A \cdot C)+(A \cdot D))+(B \cdot D))=$
$((A \cdot C)+((A \cdot D)+(B \cdot D)))$
by (rule MMI_axaddass)
from S18 have S33:
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow(A \cdot C) \in \mathbb{C}$.
from S23 have S34: $(A \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(A \cdot D) \in \mathbb{C}$.
from S34 have S35: $(A \in \mathbb{C} \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
(A \cdot D) $\in \mathbb{C}$ by (rule MMI_adantrl)
from S35 have S36: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
(A D) $\in \mathbb{C}$ by (rule MMI_adantlr)
from S24 have S37: $(B \in \mathbb{C} \wedge \mathrm{D} \in \mathbb{C}) \longrightarrow(\mathrm{B} \cdot \mathrm{D}) \in \mathbb{C}$.
from S37 have S38: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
(B . D) $\in \mathbb{C}$ by (rule MMI_ad2ant2l)
from S32 S33 S36 S38 have S39:
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$(((A \cdot C)+(A \cdot D))+(B \cdot D))=$
$((A \cdot C)+((A \cdot D)+(B \cdot D)))$ by (rule MMI_syl3anc)
have $\mathrm{S} 40:((\mathrm{A} \cdot \mathrm{C}) \in \mathbb{C} \wedge(\mathrm{A} \cdot \mathrm{D}) \in \mathbb{C} \wedge(\mathrm{D} \cdot \mathrm{B}) \in \mathbb{C}) \longrightarrow$
$(((A \cdot C)+(A \cdot D))+(D \cdot B))=$
$(((A \cdot C)+(D \cdot B))+(A \cdot D))$ by (rule MMI_add23t)
from S 18 have S 41 :
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow(A \cdot C) \in \mathbb{C}$.
from S36 have $\operatorname{S42:}((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ ($\mathrm{A} \cdot \mathrm{D}) \in \mathbb{C}$.
have S43: $(D \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(D \cdot B) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S43 have $\mathrm{S} 44:(\mathrm{B} \in \mathbb{C} \wedge \mathrm{D} \in \mathbb{C}) \longrightarrow(\mathrm{D} \cdot \mathrm{B}) \in \mathbb{C}$ by (rule MMI_ancoms)
from $S 44$ have $\operatorname{S45}:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ (D • B) $\in \mathbb{C}$ by (rule MMI_ad2ant2l)
from S40 S41 S42 S45 have S46: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $(((A \cdot C)+(A \cdot D))+(D \cdot B))=$ $((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B}))+(\mathrm{A} \cdot \mathrm{D}))$ by (rule MMI_syl3anc)
from S31 S39 S46 have S47:
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $((A \cdot C)+((A \cdot D)+(B \cdot D)))=$ $(((A \cdot C)+(D \cdot B))+(A \cdot D))$ by (rule MMI_3eqtr3d)
have $\mathrm{S} 48:(\mathrm{B} \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B \cdot C)=(C \cdot B)$
by (rule MMI_axmulcom)
from 548 have $\operatorname{S49:}((A \in \mathbb{C} \wedge D \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge C \in \mathbb{C})) \longrightarrow$ (B • C) = (C • B) by (rule MMI_adantl)
from $S 49$ have $\operatorname{S50}:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ (B . C) $=(\mathrm{C} \cdot \mathrm{B})$ by (rule MMI_an42s)
from S47 S50 have S51: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$ $) \longrightarrow$ $(((A \cdot C)+((A \cdot D)+(B \cdot D)))+(B \cdot C))=$ $(((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B}))+(\mathrm{A} \cdot \mathrm{D}))+(\mathrm{C} \cdot \mathrm{B}))$
by (rule MMI_opreq12d)
have S52:
$(((A \cdot C)+(D \cdot B)) \in \mathbb{C} \wedge(A \cdot D) \in \mathbb{C} \wedge$ $(\mathrm{C} \cdot \mathrm{B}) \in \mathbb{C}) \longrightarrow$ $(((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B}))+(\mathrm{A} \cdot \mathrm{D}))+(\mathrm{C} \cdot \mathrm{B}))=$ $(((A \cdot C)+(D \cdot B))+((A \cdot D)+(C \cdot B)))$ by (rule MMI_axaddass)
have S53: ($(\mathrm{A} \cdot \mathrm{C}) \in \mathbb{C} \wedge(\mathrm{D} \cdot \mathrm{B}) \in \mathbb{C}) \longrightarrow$ $((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B})) \in \mathbb{C}$ by (rule MMI_axaddcl)
from S17 have S54: $(A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A \cdot C) \in \mathbb{C}$.
from S44 have S55: $(B \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(D \cdot B) \in \mathbb{C}$.
from S53 S54 S55 have S56:
$((A \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ ((A $\cdot \mathrm{C}$) $+(\mathrm{D} \cdot \mathrm{B})$) $\in \mathbb{C}$ by (rule MMI_syl2an)
from S56 have S57: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B})) \in \mathbb{C}$ by (rule MMI_an4s)
from S36 have S58: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $(\mathrm{A} \cdot \mathrm{D}) \in \mathbb{C}$.
have S59: $(C \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(C \cdot B) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S59 have $560:(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(C \cdot B) \in \mathbb{C}$
by (rule MMI_ancoms)
from 560 have $\operatorname{s61}:((A \in \mathbb{C} \wedge D \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge C \in \mathbb{C})) \longrightarrow$
(C • B) $\in \mathbb{C}$ by (rule MMI_adantl)
from S61 have S62: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ (C . B) $\in \mathbb{C}$ by (rule MMI_an42s)
from S52 S57 S58 S62 have S63: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$ $(((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B}))+(\mathrm{A} \cdot \mathrm{D}))+(\mathrm{C} \cdot \mathrm{B}))=$ $((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B}))+((\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B})))$
by (rule MMI_syl3anc)
from S28 S51 S63 have S64:
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$(((A \cdot C)+(B \cdot C))+((A \cdot D)+(B \cdot D)))=$ $((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B}))+((\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B})))$
by (rule MMI_3eqtrd)
from S8 S15 S64 show ($(A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$)
\qquad
$((A+B) \cdot(C+D))=$
$(((A \cdot C)+(D \cdot B))+((A \cdot D)+(C \cdot B)))$
by (rule MMI_3eqtrd)
qed
lemma (in MMIsar0) MMI_muladd11t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow((1+A) \cdot(1+B))=$
$((1+A)+(B+(A \cdot B)))$
proof -
have S1: $1 \in \mathbb{C}$ by (rule MMI_1cn)
have $\mathrm{S} 2:((1+A) \in \mathbb{C} \wedge 1 \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$((1+A) \cdot(1+B))=$
$((1+A) \cdot 1)+((1+A) \cdot B))$
by (rule MMI_axdistr)
from S1 S2 have $\mathrm{S} 3:((1+A) \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$ $((1+A) \cdot(1+B))=$ $(((1+A) \cdot 1)+((1+A) \cdot B))$
by (rule MMI_mp3an2)
have $S 4: 1 \in \mathbb{C}$ by (rule MMI_1cn)
have $\mathrm{S} 5:(\mathbf{1} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow(\mathbf{1}+\mathrm{A}) \in \mathbb{C}$ by (rule MMI_axaddcl)
from S4 S5 have S6: A $\in \mathbb{C} \longrightarrow(1+A) \in \mathbb{C}$ by (rule MMI_mpan)
from S 3 S 6 have $\mathrm{S} 7:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C}) \longrightarrow$
$((1+A) \cdot(1+B))=$
$((1+A) \cdot 1)+((1+A) \cdot B))$ by (rule MMI_sylan)
from S 6 have $\mathrm{S} 8: \mathrm{A} \in \mathbb{C} \longrightarrow(1+\mathrm{A}) \in \mathbb{C}$.
have $\mathrm{S} 9:(\mathbf{1}+\mathrm{A}) \in \mathbb{C} \longrightarrow((\mathbf{1}+\mathrm{A}) \cdot \mathbf{1})=(\mathbf{1}+\mathrm{A})$

```
        by (rule MMI_ax1id)
    from S8 S9 have S10: A \in\mathbb{C}\longrightarrow((1+A).1 ) = (1+A )
    by (rule MMI_syl)
    from S10 have S11: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
        ( ( 1 + A ) . 1 ) = ( 1 + A ) by (rule MMI_adantr)
    have S12: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    have S13: ( 1 \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow((1+A)\cdotB)=
        ( ( 1 . B ) + ( A . B ) ) by (rule MMI_adddirt)
    from S12 S13 have S14: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow((1+A)\cdotB ) =
(( 1 · B ) + ( A · B ) ) by (rule MMI_mp3an1)
    have S15: B }\in\mathbb{C}\longrightarrow(1. B ) = B by (rule MMI_mulid2t)
    from S15 have S16: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(1. B ) = B
        by (rule MMI_adantl)
    from S16 have S17:
        (A\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow((1.B) + (A B ) ) =
        ( B + ( A · B ) ) by (rule MMI_opreq1d)
    from S14 S17 have S18:
        (A\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow((1+A).B)=
        ( B + ( A | B ) ) by (rule MMI_eqtrd)
    from S11 S18 have S19: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }
        (((1 + A ) \cdot 1 ) + ( ( 1 + A ) . B ) ) =
        (( 1 + A ) + ( B + ( A P B ) ) ) by (rule MMI_opreq12d)
    from S7 S19 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C})
        ((1+A) . (1 + B ) ) =
        ((1 + A ) + ( B + ( A P B ) ) )
        by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_mul12: assumes A1: A }\in\mathbb{C}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C }\in\mathbb{C
    shows ( A | ( B | C ) ) = ( B | ( A | C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( A | B ) = ( B · A ) by (rule MMI_mulcom)
    from S3 have S4: ( ( A | B ) . C ) = ( ( B · A ) · C )
        by (rule MMI_opreq1i)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    from A2 have S6: B }\in\mathbb{C}\mathrm{ .
    from A3 have S7: C \in\mathbb{C}
    from S5 S6 S7 have S8: ( ( A | B ) C C ) = ( A · ( B | C ) )
        by (rule MMI_mulass)
    from A2 have S9: B }\in\mathbb{C}\mathrm{ .
    from A1 have S10: A }\in\mathbb{C}\mathrm{ .
    from A3 have S11: C }\in\mathbb{C}\mathrm{ .
    from S9 S10 S11 have S12: ( ( B | A ) | C ) = ( B | ( A C C ) )
        by (rule MMI_mulass)
    from S4 S8 S12 show ( A | ( B | C ) ) = ( B · ( A | C ) )
```

```
        by (rule MMI_3eqtr3)
qed
lemma (in MMIsar0) MMI_mul23: assumes A1: A \in\mathbb{C}\mathrm{ and}
    A2: B \in\mathbb{C}}\mathrm{ and
    A3: C \in C
    shows ( ( A | B ) . C ) = ( ( A | C ) . B )
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    have S4:( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A\cdotB)
        ( ( A . C ) . B ) by (rule MMI_mul23t)
    from S1 S2 S3 S4 show ( ( A | B ) . C ) = ( ( A | C ) . B )
        by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_mul4: assumes A1: A \in\mathbb{C}\mathrm{ and}
    A2: B }\in\mathbb{C}\mathrm{ and
    A3: C }\in\mathbb{C}\mathrm{ and
    A4: D }\in\mathbb{C
    shows (( A | B ) . ( C | D ) ) = ( ( A | C ) . ( B | D ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: A \in \mathbb{C }^\textrm{B}\in\mathbb{C}\mathrm{ by (rule MMI_pm3_2i)}
    from A3 have S4: C }\in\mathbb{C}\mathrm{ .
    from A4 have S5: D }\in\mathbb{C}\mathrm{ .
    from S4 S5 have S6: C \in\mathbb{C}\wedge D \in\mathbb{C}}\mathrm{ by (rule MMI_pm3_2i)
    have S7:( (A\in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
        (( A | B ) . ( C | D ) ) = ( ( A | C ) . ( B | D ) )
        by (rule MMI_mul4t)
    from S3 S6 S7 show ( ( A | B ) · ( C | D ) ) = ( ( A | C ) · ( B · D
) )
        by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_muladd: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}}\mathrm{ and
    A3: C }\in\mathbb{C}\mathrm{ and
    A4: D }\in\mathbb{C
    shows (( A + B ) \cdot ( C + D ) ) =
    (( ( A C ) + ( D | B ) ) + ( ( A | D ) + ( C · B ) ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: A \in \mathbb{C }\wedge B \in\mathbb{C}\mathrm{ by (rule MMI_pm3_2i)}
    from A3 have S4: C }\in\mathbb{C}\mathrm{ .
    from A4 have S5: D }\in\mathbb{C}\mathrm{ .
```

from S4 S5 have S6: $C \in \mathbb{C} \wedge D \in \mathbb{C}$ by (rule MMI_pm3_2i)
have $\mathrm{S7}:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A+B) \cdot(C+D))=$
$(((A \cdot C)+(D \cdot B))+((A \cdot D)+(C \cdot B)))$
by (rule MMI_muladdt)
from S3 S6 S7 show
$((A+B) \cdot(C+D))=$
$(((A \cdot C)+(D \cdot B))+((A \cdot D)+(C \cdot B)))$
by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_subdit:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(A \cdot(B-C))=((A \cdot B)-(A \cdot C))$
proof -
have S1: $(A \in \mathbb{C} \wedge C \in \mathbb{C} \wedge(B-C) \in \mathbb{C}) \longrightarrow$
$(A \cdot(C+(B-C)))=$
((A C C) + (A • (B - C))) by (rule MMI_axdistr)
have S2: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow A \in \mathbb{C}$ by (rule MMI_3simp1)
have S3: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow C \in \mathbb{C}$ by (rule MMI_3simp3)
have S4: $(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B-C) \in \mathbb{C}$ by (rule MMI_subclt)
from S4 have $S 5:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B-C) \in \mathbb{C}$
by (rule MMI_3adant1)
from S1 S2 S3 S5 have S6: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(A \cdot(C+(B-C)))=$
((A • C) + (A • (B - C))) by (rule MMI_syl3anc)
have $57:(C \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(C+(B-C))=B$ by (rule MMI_pncan3t)
from $S 7$ have $S 8:(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(C+(B-C))=B$ by (rule MMI_ancoms)
from S8 have S9: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(C+(B-C)$
) = B by (rule MMI_3adant1)
from S9 have S10: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(A \cdot(C+(B-C)))=(A \cdot B)$ by (rule MMI_opreq2d)
from S6 S10 have S11: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A \cdot C)+(A \cdot(B-C)))=(A \cdot B)$ by (rule MMI_eqtr3d)
have S12: $((A \cdot B) \in \mathbb{C} \wedge(A \cdot C) \in \mathbb{C} \wedge(A \cdot(B-C)) \in \mathbb{C}$
) \longrightarrow
$(((A \cdot B)-(A \cdot C))=(A \cdot(B-C)) \longleftrightarrow$
$((A \cdot C)+(A \cdot(B-C)))=(A \cdot B))$ by (rule MMI_subaddt)
have S13: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A \cdot B) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S13 have S14: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A \cdot B) \in \mathbb{C}$
by (rule MMI_3adant3)
have S15: $(A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A \cdot C) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S15 have S16: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A \cdot C) \in \mathbb{C}$
by (rule MMI_3adant2)
have S17: $(A \in \mathbb{C} \wedge(B-C) \in \mathbb{C}) \longrightarrow(A \cdot(B-C)) \in \mathbb{C}$

```
        by (rule MMI_axmulcl)
    from S4 have S18: ( B \in\mathbb{C}\wedge C \in\mathbb{C})\longrightarrow(B-C) \in\mathbb{C}.
    from S17 S18 have S19:( A \in\mathbb{C}\wedge(B\in\mathbb{C}\wedgeC\in\mathbb{C}))\longrightarrow
        ( A . ( B - C ) ) \in\mathbb{C}}\mathrm{ by (rule MMI_sylan2)
    from S19 have S20:( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
        ( A - ( B - C ) ) \in\mathbb{C}}\mathrm{ by (rule MMI_3impb)
    from S12 S14 S16 S20 have S21: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (((A\cdotB) - (A.C)) = (A.(B-C)) \longleftrightarrow
        ((A.C ) + (A.( B - C ) ) ) = ( A B B ) by (rule MMI_syl3anc)
    from S11 S21 have S22: ( A \in C}^B\in\mathbb{C}\wedgeC\in\mathbb{C})
    ((A.B) - (A.C ) ) = ( A | ( B - C ) ) by (rule MMI_mpbird)
    from S22 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    (A.( B - C ) ) = ( ( A B ) - ( A C C ) ) by (rule MMI_eqcomd)
qed
lemma (in MMIsar0) MMI_subdirt:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ((A-B ) C C ) = ( ( A C C ) - ( B C C ) )
proof -
    have S1: ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C ) }\longrightarrow
    ( C . ( A - B ) ) = ( ( C . A ) - ( C . B ) ) by (rule MMI_subdit)
        from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( C . ( A - B ) ) = ( ( C · A ) - ( C . B ) ) by (rule MMI_3coml)
        have S3: ( ( A - B ) \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A - B ) . C ) = ( C . ( A - B ) ) by (rule MMI_axmulcom)
            have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A - B ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
            from S3 S4 have S5: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}) ^C C\in\mathbb{C})\longrightarrow
    ( ( A - B ) . C ) = ( C . ( A - B ) ) by (rule MMI_sylan)
    from S5 have S6: ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A - B ) . C ) = ( C . ( A - B ) ) by (rule MMI_3impa)
    have S7: ( A \in\mathbb{C}\wedge C \in\mathbb{C ) }\longrightarrow(A\cdotC ) = ( C · A ) by (rule MMI_axmulcom)
    from S7 have S8: ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(A\cdotC ) = (C .
A )
        by (rule MMI_3adant2)
    have S9: ( B \in\mathbb{C}^C\in\mathbb{C})\longrightarrow( B . C ) = ( C . B ) by (rule MMI_axmulcom)
    from S9 have S10: ( A G\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow(B\cdotC)=(C
    B )
        by (rule MMI_3adant1)
    from S8 S10 have S11:( A \in\mathbb{C ^ B \in\mathbb{C}\wedgeC\in\mathbb{C})}\longrightarrow
    ( ( A C C ) - ( B | C ) ) = ( ( C . A ) - ( C | B ) )
            by (rule MMI_opreq12d)
        from S2 S6 S11 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( ( A - B ) | C ) = ( ( A | C ) - ( B | C ) ) by (rule MMI_3eqtr4d)
qed
lemma (in MMIsar0) MMI_subdi: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C }\in\mathbb{C
    shows ( A · ( B - C ) ) = ( ( A | B ) - ( A | C ) )
```

```
proof -
    from \(A 1\) have \(S 1: A \in \mathbb{C}\).
    from \(A 2\) have \(S 2: B \in \mathbb{C}\).
    from A3 have \(\mathrm{S} 3: \mathrm{C} \in \mathbb{C}\).
    have S4: \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow\)
    \((\mathrm{A} \cdot(\mathrm{B}-\mathrm{C}))=((\mathrm{A} \cdot \mathrm{B})-(\mathrm{A} \cdot \mathrm{C}))\) by (rule MMI_subdit)
        from S1 S2 S3 S4 show (A. (B-C) ) ( (A•B) - (A.C) )
        by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_subdir: assumes A1: \(A \in \mathbb{C}\) and
        A2: \(B \in \mathbb{C}\) and
        A3: \(C \in \mathbb{C}\)
    shows ( ( A - B ) • C ) = ( ( A C ) - ( B • C ) )
proof -
    from A1 have \(\mathrm{S} 1: \mathrm{A} \in \mathbb{C}\).
    from \(A 2\) have \(S 2: B \in \mathbb{C}\).
    from \(A 3\) have \(53: C \in \mathbb{C}\).
    have S4: \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow\)
    ( ( A B ) \(\cdot \mathrm{C})=((\mathrm{A} \cdot \mathrm{C})-(\mathrm{B} \cdot \mathrm{C})\) ) by (rule MMI_subdirt)
    from S1 S2 S3 S4 show ( ( A B ) C \()=((A \cdot C)-(B \cdot C))\)
        by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_mul01: assumes A1: A \(\in \mathbb{C}\)
    shows ( A • 0 ) = 0
proof -
    from A1 have \(\mathrm{S} 1: \mathrm{A} \in \mathbb{C}\).
    have S2: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
    have \(53: 0 \in \mathbb{C}\) by (rule MMI_Ocn)
```



```
)
        by (rule MMI_subdi)
    have S5: \(0 \in \mathbb{C}\) by (rule MMI_0cn)
    from S5 have S6: ( \(\mathbf{0}-\mathbf{0}\) ) = \(\mathbf{0}\) by (rule MMI_subid)
    from S6 have \(\mathrm{S} 7:(\mathrm{A} \cdot(\mathbf{0}-\mathbf{0})\) ) = (A.0) by (rule MMI_opreq2i)
    from A1 have \(\mathrm{S} 8: \mathrm{A} \in \mathbb{C}\).
    have \(\mathrm{S9}: \mathbf{0} \in \mathbb{C}\) by (rule MMI_0cn)
    from S8 S9 have S10: ( A 0 ) \(\in \mathbb{C}\) by (rule MMI_mulcl)
    from S10 have S11: ( ( A 0 ) - ( A 0 0 ) ) = 0 by (rule MMI_subid)
    from S4 S7 S11 show (A \(\quad \mathbf{0}\) ) = \(\mathbf{0}\) by (rule MMI_3eqtr3)
qed
lemma (in MMIsar0) MMI_mul02: assumes A1: A \(\in \mathbb{C}\)
    shows ( \(0 \cdot \mathrm{~A}\) ) \(=0\)
proof -
    have S1: \(\mathbf{0} \in \mathbb{C}\) by (rule MMI_0cn)
```

from $A 1$ have $S 2: A \in \mathbb{C}$.
from S1 S2 have S3: ($\mathbf{0} \cdot \mathrm{A}$) $=(\mathrm{A} \cdot \mathbf{0}$) by (rule MMI_mulcom)
from A1 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C}$.
from S4 have S5: (A • 0) = $\mathbf{0}$ by (rule MMI_mul01)
from S3 S5 show (0 • A) = $\mathbf{0}$ by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_1p1times: assumes A1: $A \in \mathbb{C}$
shows $((1+1) \cdot A)=(A+A)$
proof -
have S1: $\mathbf{1} \in \mathbb{C}$ by (rule MMI_1cn)
have $\mathrm{S} 2: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from $A 1$ have $S 3: A \in \mathbb{C}$.
from S1 S2 S3 have S4: ($\mathbf{~} \mathbf{1}+\mathbf{1}) \cdot \mathrm{A})=((1 \cdot A)+(1 \cdot A)$
)
by (rule MMI_adddir)
from A1 have $\mathrm{S} 5: \mathrm{A} \in \mathbb{C}$.
from S5 have S6: ($\mathbf{1} \cdot \mathrm{A}$) = A by (rule MMI_mulid2)
from S 6 have $\mathrm{S} 7:(1 \cdot \mathrm{~A})=\mathrm{A}$.
from S6 S7 have S8: (($1 \cdot \mathrm{~A})+(1 \cdot A))=(\mathrm{A}+\mathrm{A})$
by (rule MMI_opreq12i)
from S 4 S 8 show $((1+1) \cdot \mathrm{A})=(\mathrm{A}+\mathrm{A})$ by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_mul01t:
shows $A \in \mathbb{C} \longrightarrow(A \cdot 0)=0$
proof -
have S1: $\mathrm{A}=$ if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow$
$(\mathrm{A} \cdot \mathbf{0})=(\operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \cdot \mathbf{0})$ by (rule MMI_opreq1)
from $S 1$ have $S 2: A=\operatorname{if}(A \in \mathbb{C}, A, 0) \longrightarrow$
$((A \cdot \mathbf{0})=\mathbf{0} \longleftrightarrow($ if $(A \in \mathbb{C}, A, \mathbf{0}) \cdot \mathbf{0})=0$) by (rule MMI_eqeq1d)
have $\mathrm{S} 3: 0 \in \mathbb{C}$ by (rule MMI_0cn)
from S3 have S4: if $(A \in \mathbb{C}, A, 0) \in \mathbb{C}$ by (rule MMI_elimel)
from $S 4$ have $\mathrm{S} 5:(\operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \cdot \mathbf{0}$) = $\mathbf{0}$ by (rule MMI_mul01)
from S 2 S 5 show $\mathrm{A} \in \mathbb{C} \longrightarrow(\mathrm{A} \cdot \mathbf{0})=\mathbf{0}$ by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_mul02t:
shows $A \in \mathbb{C} \longrightarrow(\mathbf{0} \cdot \mathrm{~A})=\mathbf{0}$
proof -
have S1: $0 \in \mathbb{C}$ by (rule MMI_Ocn)
have $\mathrm{S} 2:(\mathbf{0} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow(\mathbf{0} \cdot \mathrm{A})=(\mathrm{A} \cdot \mathbf{0})$ by (rule MMI_axmulcom)
from S1 S2 have $\mathrm{S} 3: \mathrm{A} \in \mathbb{C} \longrightarrow(\mathbf{0} \cdot \mathrm{A})=(\mathrm{A} \cdot \mathbf{0})$ by (rule MMI_mpan)
have $\mathrm{S4}: \mathrm{A} \in \mathbb{C} \longrightarrow(\mathrm{A} \cdot \mathbf{0})=\mathbf{0}$ by (rule MMI_mul01t)
from S3 S4 show $A \in \mathbb{C} \longrightarrow(\mathbf{0} \cdot \mathrm{~A})=\mathbf{0}$ by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_mulneg1: assumes A1: A $\in \mathbb{C}$ and

```
        A2: B \in C
    shows (( (- A) ) . B ) = ( - ( A | B ) )
proof -
    from A2 have S1: B \in\mathbb{C}.
    from S1 have S2: ( B · 0 ) = 0 by (rule MMI_mul01)
    from A2 have S3: B \in\mathbb{C}
    from A1 have S4: A }\in\mathbb{C}\mathrm{ .
    from S3 S4 have S5: ( B . A ) = ( A . B ) by (rule MMI_mulcom)
    from S2 S5 have S6: ( ( B | 0 ) - ( B | A ) ) = ( 0 - ( A | B ) )
        by (rule MMI_opreq12i)
    have S7: ( (- A) ) = ( 0 - A ) by (rule MMI_df_neg)
    from S7 have S8: ( ( (- A) ) . B ) = ( ( 0 - A ) . B )
        by (rule MMI_opreq1i)
    have S9: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from A1 have S10: A }\in\mathbb{C}\mathrm{ .
    from S9 S10 have S11: ( 0 - A ) \in\mathbb{C}}\mathrm{ by (rule MMI_subcl)
    from A2 have S12: B }\in\mathbb{C}\mathrm{ .
    from S11 S12 have S13: ( ( 0 - A ) . B ) = ( B | ( 0 - A ) )
        by (rule MMI_mulcom)
    from A2 have S14: B }\in\mathbb{C}\mathrm{ .
    have S15: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from A1 have S16: A }\in\mathbb{C}\mathrm{ .
    from S14 S15 S16 have
        S17: ( B . ( 0 - A ) ) = ( ( B | 0 ) - ( B | A ) )
        by (rule MMI_subdi)
    from S8 S13 S17 have
        S18: ( ( (- A) ) · B ) = ( ( B · 0 ) - ( B · A ) ) by (rule MMI_3eqtr)
    have S19: ( - ( A | B ) ) = ( 0 - ( A | B ) ) by (rule MMI_df_neg)
    from S6 S18 S19 show ( ( (- A) ) . B ) = ( - ( A | B ) )
        by (rule MMI_3eqtr4)
qed
```

lemma (in MMIsar0) MMI_mulneg2: assumes A1: $A \in \mathbb{C}$ and A2: $B \in \mathbb{C}$
shows (A • ((- B))) =
(- (A • B))
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from $A 2$ have $S 2: B \in \mathbb{C}$.
from S2 have $\mathrm{S} 3:((-\quad B)) \in \mathbb{C}$ by (rule MMI_negcl)
from S1 S3 have S4: (A • ((-B))) =
(($(-\quad$ B)) • A) by (rule MMI_mulcom)
from $A 2$ have $S 5: B \in \mathbb{C}$.
from A1 have $\mathrm{S} 6: \mathrm{A} \in \mathbb{C}$.
from S5 S6 have S7: (((B)) A) =
(- (B • A)) by (rule MMI_mulneg1)
from $A 2$ have $S 8: B \in \mathbb{C}$.

```
    from A1 have S9: A }\in\mathbb{C}\mathrm{ .
    from S8 S9 have S10: ( B . A ) = ( A . B ) by (rule MMI_mulcom)
    from S10 have S11: ( - ( B · A ) ) =
    ( - ( A | B ) ) by (rule MMI_negeqi)
    from S4 S7 S11 show ( A · ( (- B) ) ) =
    ( - ( A | B ) ) by (rule MMI_3eqtr)
qed
lemma (in MMIsar0) MMI_mul2neg: assumes A1: A }\in\mathbb{C}\mathrm{ and
            A2: B }\in\mathbb{C
        shows (((- A)) . ((- B) ) ) =
    (A.B )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S2 have S3: ( (- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negcl)}
    from S1 S3 have S4: ( ( (- A) ) . ( (- B) ) ) =
    ( - ( A . ( (- B) ) ) ) by (rule MMI_mulneg1)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    from S3 have S6: ( (- B) ) \in \mathbb{C .}
    from S5 S6 have S7: ( A · ( (- B) ) ) =
    ( ( (- B) ) · A ) by (rule MMI_mulcom)
    from A2 have S8: B }\in\mathbb{C}\mathrm{ .
    from A1 have S9: A }\in\mathbb{C}\mathrm{ .
    from S8 S9 have S10: ( ( (- B) ) . A ) =
    ( - ( B · A ) ) by (rule MMI_mulneg1)
        from S7 S10 have S11: ( A · ( (- B) ) ) =
    ( - ( B . A ) ) by (rule MMI_eqtr)
        from S11 have S12: ( - ( A . ( (- B) ) ) ) =
    ( - ( - ( B . A ) ) ) by (rule MMI_negeqi)
        from A2 have S13: B }\in\mathbb{C}\mathrm{ .
        from A1 have S14: A }\in\mathbb{C}\mathrm{ .
        from S13 S14 have S15: ( B . A ) \in \mathbb{C by (rule MMI_mulcl)}
        from S15 have S16: ( - ( - ( B · A ) ) ) =
    ( B . A ) by (rule MMI_negneg)
    from S4 S12 S16 have S17: ( ( (- A) ) . ( (- B) ) ) =
    ( B · A ) by (rule MMI_3eqtr)
        from A2 have S18: B }\in\mathbb{C}\mathrm{ .
        from A1 have S19: A }\in\mathbb{C}\mathrm{ .
        from S18 S19 have S20: ( B . A ) = ( A | B ) by (rule MMI_mulcom)
        from S17 S20 show (((- A) ) . ( (- B) ) ) =
    ( A • B ) by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_negdi: assumes A1: A }\in\mathbb{C}\mathrm{ and
        A2: B }\in\mathbb{C
        shows ( - ( A + B ) ) =
    ( ((- A) ) + ((- B) ) )
proof -
```

```
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( A + B ) \in \mathbb{C by (rule MMI_addcl)}
    from S3 have S4: ( 1 . ( A + B ) ) =
    ( A + B ) by (rule MMI_mulid2)
    from S4 have S5: ( - ( 1 . ( A + B ) ) ) =
    ( - ( A + B ) ) by (rule MMI_negeqi)
    have S6: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S6 have S7: ( - 1 ) \in C by (rule MMI_negcl)
    from A1 have S8: A }\in\mathbb{C}\mathrm{ .
    from A2 have S9: B }\in\mathbb{C}\mathrm{ .
    from S7 S8 S9 have S10: ( ( - 1 ) . ( A + B ) ) =
    ( ( ( - 1 ) . A ) + ( ( - 1 ) . B ) ) by (rule MMI_adddi)
    have S11: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S3 have S12: ( A + B ) \in\mathbb{C}.
    from S11 S12 have S13: ( ( - 1 ) . ( A + B ) ) =
    ( - ( 1 . ( A + B ) ) ) by (rule MMI_mulneg1)
    have S14: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from A1 have S15: A }\in\mathbb{C}\mathrm{ .
    from S14 S15 have S16: ( ( - 1 ) . A ) =
    ( - ( 1 . A ) ) by (rule MMI_mulneg1)
    from A1 have S17: A }\in\mathbb{C}\mathrm{ .
    from S17 have S18: ( 1 · A ) = A by (rule MMI_mulid2)
    from S18 have S19: ( - ( 1 | A ) ) = ( (- A) ) by (rule MMI_negeqi)
    from S16 S19 have S20: ( ( - 1 ) . A ) = ( (- A) ) by (rule MMI_eqtr)
    have S21: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from A2 have S22: B \in\mathbb{C}
    from S21 S22 have S23: ( ( - 1 ) . B ) =
    ( - ( 1 . B ) ) by (rule MMI_mulneg1)
    from A2 have S24: B }\in\mathbb{C}\mathrm{ .
    from S24 have S25: ( 1 · B ) = B by (rule MMI_mulid2)
    from S25 have S26: ( - ( 1 · B ) ) = ( (- B) ) by (rule MMI_negeqi)
    from S23 S26 have S27: ( ( - 1 ) . B ) = ( (- B) ) by (rule MMI_eqtr)
    from S20 S27 have S28: ( ( ( - 1 ) · A ) + ( ( - 1 ) · B ) ) =
    ( ( (- A) ) + ( (- B) ) ) by (rule MMI_opreq12i)
    from S10 S13 S28 have S29: ( - ( 1 . ( A + B ) ) ) =
    ( ( (- A) ) + ( (- B) ) ) by (rule MMI_3eqtr3)
    from S5 S29 show ( - ( A + B ) ) =
    ( ( (- A) ) + ( (- B) ) ) by (rule MMI_eqtr3)
qed
lemma (in MMIsar0) MMI_negsubdi: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}
    shows ( - ( A - B ) ) =
    (( (- A) ) + B )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S2 have S3: ( (- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negcl)}
```

```
    from S1 S3 have S4: ( - ( A + ( (- B) ) ) ) =
    ( ( (- A) ) + ( - ( (- B) ) ) ) by (rule MMI_negdi)
        from A1 have S5: A }\in\mathbb{C}\mathrm{ .
        from A2 have S6: B }\in\mathbb{C}\mathrm{ .
        from S5 S6 have S7: ( A + ( (- B) ) ) = ( A - B ) by (rule MMI_negsub)
        from S7 have S8: ( - ( A + ( (- B) ) ) ) =
    ( - ( A - B ) ) by (rule MMI_negeqi)
        from A2 have S9: B }\in\mathbb{C}\mathrm{ .
        from S9 have S10: ( - ( (- B) ) ) = B by (rule MMI_negneg)
        from S10 have S11: ( ( (- A) ) + ( - ( (- B) ) ) ) =
    (( (- A) ) + B ) by (rule MMI_opreq2i)
    from S4 S8 S11 show ( - ( A - B ) ) =
    ( ( (- A) ) + B ) by (rule MMI_3eqtr3)
qed
lemma (in MMIsar0) MMI_negsubdi2: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C
    shows (- ( A - B ) ) = ( B - A )
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( - ( A - B ) ) =
    ( ( (- A) ) + B ) by (rule MMI_negsubdi)
    from A1 have S4: A }\in\mathbb{C}\mathrm{ .
    from S4 have S5: ( (- A) ) \in\mathbb{C}}\mathrm{ by (rule MMI_negcl)
    from A2 have S6: B }\in\mathbb{C}\mathrm{ .
    from S5 S6 have S7: ( ( (- A) ) + B ) =
    ( B + ( (- A) ) ) by (rule MMI_addcom)
    from A2 have S8: B }\in\mathbb{C}\mathrm{ .
    from A1 have S9: A }\in\mathbb{C}\mathrm{ .
    from S8 S9 have S10: ( B + ( (- A) ) ) = ( B - A ) by (rule MMI_negsub)
    from S3 S7 S10 show ( - ( A - B ) ) = ( B - A ) by (rule MMI_3eqtr)
qed
lemma (in MMIsar0) MMI_mulneg1t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C})
    (((-A)) \cdot B ) =
    ( - ( A | B ) )
proof -
    have S1: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ((- A) ) =
    ( - if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_negeq)
        from S1 have S2: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    (((- A) ) . B ) =
    (( - if ( A \in\mathbb{C},A,0 ) ) . B ) by (rule MMI_opreq1d)
        have S3: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
```

```
( A . B ) \(=\)
    ( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) • B ) by (rule MMI_opreq1)
    from S 3 have S 4 : \(\mathrm{A}=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
( \(-(\mathrm{A} \cdot \mathrm{B})\) ) \(=\)
( - (if ( A \(\in \mathbb{C}\), A , 0 ) • B ) ) by (rule MMI_negeqd)
    from S2 S4 have S5: \(\mathrm{A}=\)
if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \longrightarrow\)
\((((-A)) \cdot B)=\)
\((-(A \cdot B)) \longleftrightarrow\)
( ( \(-\operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) • B ) =
( \(-(\operatorname{if}(A \in \mathbb{C}, A, 0) \cdot B)\) ) by (rule MMI_eqeq12d)
    have S 6 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( ( \(-\operatorname{if}(A \in \mathbb{C}, A, 0)) \cdot B)=\)
( ( \(-\operatorname{if}(A \in \mathbb{C}, A, 0)\) ) if \((B \in \mathbb{C}, B, 0)\) ) by (rule MMI_opreq2)
    have \(\mathrm{S7}\) : \(\mathrm{B}=\)
if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \longrightarrow\)
(if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \cdot \mathrm{B})=\)
( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) • if \((\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) by (rule MMI_opreq2)
    from S 7 have \(\mathrm{S} 8: \mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\((-(\operatorname{if}(A \in \mathbb{C}, A, 0) \cdot B))=\)
( - (if \((A \in \mathbb{C}, A, 0)\) if \((B \in \mathbb{C}, B, 0)\) ) by (rule MMI_negeqd)
    from S 6 S 8 have \(\mathrm{S} 9: \mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( ( \((-\operatorname{if}(A \in \mathbb{C}, A, 0)) \cdot B)=\)
\((-(\operatorname{if}(A \in \mathbb{C}, A, 0) \cdot B)) \longleftrightarrow\)
( ( - if \((A \in \mathbb{C}, A, \mathbf{0})\) ) if \((B \in \mathbb{C}, B, 0))=\)
( - ( if ( \(A \in \mathbb{C}, A, 0) \cdot\) if \((B \in \mathbb{C}, B, 0)\) ) ) by (rule MMI_eqeq12d)
    have S10: \(0 \in \mathbb{C}\) by (rule MMI_0cn)
    from S10 have S11: if \((A \in \mathbb{C}, A, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    have S12: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
    from S12 have S13: if ( \(B \in \mathbb{C}, B, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    from S11 S13 have S14: ( \((-\operatorname{if}(A \in \mathbb{C}, A, 0)) \cdot\) if \((B \in \mathbb{C}\)
( \(\mathrm{B}, \mathbf{0}\) ) ) =
( \(-(\) if \((A \in \mathbb{C}, A, \mathbf{0}) \cdot\) if \((B \in \mathbb{C}, B, \mathbf{0})\) ) ) by (rule MMI_mulneg1)
    from S5 S9 S14 show \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow\)
\(((-A)) \cdot B)=\)
( - ( A • B ) ) by (rule MMI_dedth2h)
qed
lemma (in MMIsar0) MMI_mulneg2t:
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow\)
    \(\left(\mathrm{A} \cdot\left(\begin{array}{l}(-\mathrm{B}))\end{array}\right)=\right.\)
    ( \(-(\mathrm{A} \cdot \mathrm{B})\) )
proof -
    have S1: \((B \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow\)
\(((-B)) \cdot A)=\)
```

```
    ( - ( B · A ) ) by (rule MMI_mulneg1t)
    from S1 have S2: ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    (((- B) ) . A ) =
    ( - ( B · A ) ) by (rule MMI_ancoms)
    have S3: ( A \in\mathbb{C}^((- B) ) \in\mathbb{C})}
    ( A . ( (- B) ) ) =
    ( ( (- B) ) · A ) by (rule MMI_axmulcom)
        have S4: B \in\mathbb{C}\longrightarrow((- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
        from S3 S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    ( A . ( (- B) ) ) =
    (( (- B) ) . A ) by (rule MMI_sylan2)
        have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    ( A P B ) = ( B . A ) by (rule MMI_axmulcom)
    from S6 have S7: ( A \in\mathbb{C}\wedgeB\in\mathbb{C ) }\longrightarrow
    (- (A.B ) ) =
    ( - ( B · A ) ) by (rule MMI_negeqd)
        from S2 S5 S7 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    (A . ( (- B) ) ) =
    ( - ( A | B ) ) by (rule MMI_3eqtr4d)
qed
lemma (in MMIsar0) MMI_mulneg12t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C})
    (((- A) ) . B ) =
    (A • ( (- B) ) )
proof -
        have S1: (A G\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    (( (- A) ) . B ) =
    ( - ( A P B ) ) by (rule MMI_mulneg1t)
        have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }
    ( A . ( (- B) ) ) =
    ( - ( A • B ) ) by (rule MMI_mulneg2t)
        from S1 S2 show ( A G \mathbb{C ^B G C ) }\longrightarrow
    (((- A) ) · B ) =
    ( A . ( (- B) ) ) by (rule MMI_eqtr4d)
qed
lemma (in MMIsar0) MMI_mul2negt:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C})
    (((-A)) . ((- B) ) ) =
    ( A | B )
proof -
        have S1: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ((- A)) =
    ( - if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_negeq)
        from S1 have S2: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    (( (- A)) . ((- B) ) ) =
```

```
    (( - if ( A \in\mathbb{C},A , 0 ) ) · ((- B) ) ) by (rule MMI_opreq1d)
    have S3: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ( A P B ) =
    ( if ( A \in\mathbb{C},A,0 ) · B ) by (rule MMI_opreq1)
        from S2 S3 have S4: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ((((-A)) . ( (- B) ) ) =
    (A B B ) \longleftrightarrow
    (( - if ( A \in\mathbb{C , A , 0 ) ) . ( (- B) ) ) =}
    ( if ( A \in\mathbb{C},A,0 ) . B ) ) by (rule MMI_eqeq12d)
        have S5: B =
    if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
    ((- B) ) =
    ( - if ( B \in\mathbb{C , B , 0 ) ) by (rule MMI_negeq)}
        from S5 have S6: B =
    if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
    (( - if ( A G\mathbb{C},A,0)).((- B) ) ) =
    (( - if ( A \in\mathbb{C},A,0)).(-if ( B & \mathbb{C , B , 0 ) ) ) by (rule}
MMI_opreq2d)
        have S7: B =
    if ( B \in\mathbb{C}, B , 0 ) }
    ( if ( A \in\mathbb{C},A,0 ) . B ) =
    ( if ( A \in\mathbb{C},A,0 ) . if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_opreq2)
        from S6 S7 have S8: B =
    if ( B \in\mathbb{C}, B , 0 ) }
    (((-if (A\in\mathbb{C},A,0)).((-B))) =
    (if ( A \in\mathbb{C , A , 0 ) . B ) \longleftrightarrow}
    (( - if ( A \in\mathbb{C},A,0)).(-if ( B \in\mathbb{C},B,0 ) ) ) =
    ( if ( A G \mathbb{C , A , 0 ) . if ( B \in\mathbb{C}, B , 0 ) ) ) by (rule MMI_eqeq12d)}
        have S9: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
        from S9 have S10: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
        have S11: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
        from S11 have S12: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
        from S10 S12 have S13: ( ( - if ( A G C , A , 0 ) ) . ( - if ( B \in
C , B , 0 ) ) ) =
    ( if ( A G C , A , 0 ) . if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_mul2neg)
        from S4 S8 S13 show ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    (( (- A) ) . ( (- B) ) ) =
    ( A . B ) by (rule MMI_dedth2h)
qed
lemma (in MMIsar0) MMI_negdit:
    shows ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow
    (- (A + B ) ) =
    (((-A)) + ((- B) ) )
proof -
    have S1: A =
if ( A \in\mathbb{C},A,0 )}
```

```
    (A + B ) =
    ( if ( A \in C , A , 0 ) + B ) by (rule MMI_opreq1)
    from S1 have S2: A =
if ( A \in\mathbb{C},A,0 ) \longrightarrow
(- (A + B ) ) =
( - ( if ( A \in\mathbb{C},A,0 ) + B ) ) by (rule MMI_negeqd)
    have S3: A =
if ( A \in\mathbb{C},A,0 )}
( (- A) ) =
(- if ( A \in\mathbb{C , A , 0 ) ) by (rule MMI_negeq)}
    from S3 have S4: A =
if ( A \in\mathbb{C},A,0 )}
(((-A)) +((- B)) ) =
(( - if ( A \in\mathbb{C},A,0) ) + ((- B) ) ) by (rule MMI_opreq1d)
    from S2 S4 have S5: A =
if ( A \in\mathbb{C},A,0 ) \longrightarrow
((-(A+B)) =
(((-A)) + ((- B) ) ) \longleftrightarrow
(-( if (A\in\mathbb{C},A,0)+B) ) =
(( - if ( A \in\mathbb{C},A,0 ) ) + ((- B) ) ) ) by (rule MMI_eqeq12d)
    have S6: B =
if ( B \in\mathbb{C}, B , 0 ) }
( if (A\in\mathbb{C},A,0)+B)=
( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_opreq2)
    from S6 have S7: B =
if ( B \in\mathbb{C}, B , 0 ) }
(- ( if ( A \in\mathbb{C},A,0) + B ) ) =
(- ( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},B,0 ) ) ) by (rule MMI_negeqd)
    have S8: B =
if ( B \in\mathbb{C}, B , 0 ) }
((- B) ) =
( - if ( B \in\mathbb{C , B , 0 ) ) by (rule MMI_negeq)}
    from S8 have S9: B =
if ( B \in\mathbb{C}, B , 0 ) }
(( - if ( A \in\mathbb{C},A,0) ) +((- B) ) ) =
(( - if ( A \in\mathbb{C},A,0 ) ) + ( - if ( B \in\mathbb{C}, B , 0 ) ) ) by (rule
MMI_opreq2d)
            from S7 S9 have S10: B =
if ( B \in\mathbb{C}, B , 0 ) }
(( - (if ( A \in\mathbb{C},A,0) + B) ) =
    (( - if ( A \in\mathbb{C},A,0 ) ) + ((- B) ) ) \longleftrightarrow
    (- ( if ( A \in\mathbb{C},A,0 ) + if ( B \in\mathbb{C}, B , 0 ) ) ) =
    (( - if ( A \in\mathbb{C},A,0 ) ) + ( - if ( B \in\mathbb{C},B,0 ) ) ) ) by (rule
MMI_eqeq12d)
    have S11: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from S11 have S12: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    have S13: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S13 have S14: if ( B \in\mathbb{C},B,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    from S12 S14 have S15: ( - ( if ( A G \mathbb{C , A , 0 ) + if ( B \in\mathbb{C}}\mathrm{ ,},
```

```
B , 0 ) ) ) =
    (( - if ( A \in\mathbb{C},A,0)) +( - if ( B \in\mathbb{C},B,0 ) ) ) by (rule
MMI_negdi)
            from S5 S10 S15 show ( A \in\mathbb{C}\wedge B \in\mathbb{C})}
    (- (A + B ) ) =
    ( ( (- A) ) + ( (- B) ) ) by (rule MMI_dedth2h)
qed
```

lemma (in MMIsar0) MMI_negdi2t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(-(A+B))=(((-A))-B)$
proof -
have S1: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(-(A+B))=$
(((A$) \mathrm{O}+((-\mathrm{B}))$) by (rule MMI_negdit)
have S2: $(((-A)) \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(((-A))+((-B)))=$
(((-A)) - B) by (rule MMI_negsubt)
have S3: $A \in \mathbb{C} \longrightarrow((-A)) \in \mathbb{C}$ by (rule MMI_negclt)
from S2 S3 have $\mathrm{S} 4:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C}) \longrightarrow$
$(((-A))+((-B)))=$
(((-A$)$) - B) by (rule MMI_sylan)
from $S 1$ S4 show $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(-(A+B))=(((-A))-B)$
by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_negsubdit:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(-(A-B))=(((-A))+B)$
proof -
have S1: $(A \in \mathbb{C} \wedge((-B)) \in \mathbb{C}) \longrightarrow$
$(-(A+(-B)))=$
(((-A$)$) + ($-\left(\begin{array}{l}\text { B })\end{array}\right)$) by (rule MMI_negdit)
have $S 2: B \in \mathbb{C} \longrightarrow((-B)) \in \mathbb{C}$ by (rule MMI_negclt)
from S1 S2 have S3: ($A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(-(A+((-B))))=$
$\left(\left(\begin{array}{l}(-A)) \\ (\end{array}\left(-\left(\begin{array}{l}\text { B }\end{array}\right)\right)\right)\right.$ by (rule MMI_sylan2)
have S4: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(A+((-B)))=(A-B)$ by (rule MMI_negsubt)
from $S 4$ have $S 5:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(-(A+((-B))))=$
($-(\mathrm{A}-\mathrm{B})$) by (rule MMI_negeqd)
have S6: $B \in \mathbb{C} \longrightarrow(-((-B)))=B$ by (rule MMI_negnegt)
from S6 have $\mathrm{S} 7:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(-((-B)))=B$
by (rule MMI_adantl)
from S 7 have $\mathrm{S} 8:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$

```
    (((- A) ) + ( - ( (- B) ) ) ) =
    (( (- A) ) + B ) by (rule MMI_opreq2d)
        from S3 S5 S8 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C )}\longrightarrow
    ( - (A - B ) ) = ( ( (- A) ) + B )
    by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_negsubdi2t:
    shows ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow
    (- ( A - B ) ) = ( B - A )
proof -
        have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    ( - ( A - B ) ) = ( ( (- A) ) + B ) by (rule MMI_negsubdit)
        have S2: ( ( (- A) ) \in\mathbb{C}\wedge B \in\mathbb{C ) }
    ( ( (- A) ) + B ) = ( B + ( (- A) ) ) by (rule MMI_axaddcom)
        have S3: A \in\mathbb{C}\longrightarrow((- A) ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
        from S2 S3 have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }
    ( ( (- A) ) + B ) = ( B + ( (- A) ) ) by (rule MMI_sylan)
        have S5: ( B \in\mathbb{C}\wedgeA\in\mathbb{C})\longrightarrow
    ( B + ( (- A) ) ) = ( B - A ) by (rule MMI_negsubt)
        from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow
    ( B + ((- A) ) ) = ( B - A ) by (rule MMI_ancoms)
        from S1 S4 S6 show ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }
    (- (A-B) ) = ( B - A )
    by (rule MMI_3eqtrd)
qed
lemma (in MMIsar0) MMI_subsub2t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    (A-(B-C))}=(A+(C-B)
proof -
        have S1:( A \in\mathbb{C ^( B - C ) \in\mathbb{C})}\longrightarrow
    (A + (- ( B - C ) ) ) =
    ( A - ( B - C ) ) by (rule MMI_negsubt)
        have S2: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow( B - C ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
        from S1 S2 have S3: ( A \in\mathbb{C}\wedge( B G\mathbb{C}\wedgeC\in\mathbb{C}) ) 
    ( A + ( - ( B - C ) ) ) =
    ( A - ( B - C ) ) by (rule MMI_sylan2)
        from S3 have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (A + ( - (B - C ) ) ) =
    ( A - ( B - C ) ) by (rule MMI_3impb)
        have S5: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( - ( B - C ) ) = ( C - B ) by (rule MMI_negsubdi2t)
        from S5 have S6: ( B \in\mathbb{C ^C G C ) }\longrightarrow
    ( A + ( - ( B - C ) ) ) =
    ( A + ( C - B ) ) by (rule MMI_opreq2d)
        from S6 have S7: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    (A + (- (B - C ) ) ) =
    ( A + ( C - B ) ) by (rule MMI_3adant1)
```

```
    from S4 S7 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    (A-( B - C ) ) = ( A + ( C - B ) )
    by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_subsubt:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (A-( B - C) ) = ( ( A - B ) + C )
proof -
            have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A - ( B - C ) ) = ( A + ( C - B ) ) by (rule MMI_subsub2t)
        have S2: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( ( A + C ) - B ) = ( A + ( C - B ) ) by (rule MMI_addsubasst)
        have S3: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( ( A + C ) - B ) = ( ( A - B ) + C ) by (rule MMI_addsubt)
        from S2 S3 have S4: ( A \in\mathbb{C}\wedge C \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    ( A + ( C - B ) ) = ( ( A - B ) + C ) by (rule MMI_eqtr3d)
        from S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (A + ( C - B ) ) = ( ( A - B ) + C ) by (rule MMI_3com23)
        from S1 S5 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (A-( B - C ) ) = ( ( A - B ) + C )
    by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_subsub3t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    (A - ( B - C ) ) = ( ( A + C ) - B )
proof -
    have S1: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A - ( B - C ) ) = ( A + ( C - B ) ) by (rule MMI_subsub2t)
        have S2: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( ( A + C ) - B ) = ( A + ( C - B ) ) by (rule MMI_addsubasst)
        from S2 have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( ( A + C ) - B ) = ( A + ( C - B ) ) by (rule MMI_3com23)
        from S1 S3 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (A - ( B - C ) ) = ( ( A + C ) - B )
    by (rule MMI_eqtr4d)
qed
lemma (in MMIsar0) MMI_subsub4t:
            shows ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A-B) - C) = (A - ( B + C ) )
proof -
        have S1: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedge(-C) \in\mathbb{C ) }\longrightarrow
    ( A - ( B - ( - C ) ) ) =
    ( ( A - B ) + ( - C ) ) by (rule MMI_subsubt)
        have S2: C \in\mathbb{C}\longrightarrow( - C ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
        from S1 S2 have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A - ( B - ( - C ) ) ) =
```

```
    ( ( A - B ) + ( - C ) ) by (rule MMI_syl3an3)
    have S4:( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B - ( - C ) ) = ( B + C ) by (rule MMI_subnegt)
        from S4 have S5: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B - ( - C ) ) = ( B + C ) by (rule MMI_3adant1)
        from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ( A - ( B - ( - C ) ) ) =
    ( A - ( B + C ) ) by (rule MMI_opreq2d)
        have S7: ( ( A - B ) \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ((A - B ) + ( - C ) ) =
    ( ( A - B ) - C ) by (rule MMI_negsubt)
        have S8: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(A-B ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
        from S7 S8 have S9: ( ( A \in\mathbb{C}\wedge B\in\mathbb{C})\wedgeC\in\mathbb{C})\longrightarrow
    ( (A - B ) + ( - C ) ) =
    ( ( A - B ) - C ) by (rule MMI_sylan)
        from S9 have S10: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ((A - B ) + ( - C ) ) =
    ( ( A - B ) - C ) by (rule MMI_3impa)
        from S3 S6 S10 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})}
    ( ( A - B ) - C ) = ( A - ( B + C ) )
    by (rule MMI_3eqtr3rd)
qed
lemma (in MMIsar0) MMI_sub23t:
        shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( (A-B ) - C ) = ( ( A - C ) - B )
proof -
        have S1: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B + C ) = ( C + B ) by (rule MMI_axaddcom)
        from S1 have S2: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B + C ) = ( C + B ) by (rule MMI_3adant1)
        from S2 have S3: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A - ( B + C ) ) = ( A - ( C + B ) ) by (rule MMI_opreq2d)
        have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A - B ) - C ) = ( A - ( B + C ) ) by (rule MMI_subsub4t)
        have S5: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( ( A - C ) - B ) = ( A - ( C + B ) ) by (rule MMI_subsub4t)
        from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A - C ) - B ) = ( A - ( C + B ) ) by (rule MMI_3com23)
        from S3 S4 S6 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A - B ) - C ) = ( ( A - C ) - B )
    by (rule MMI_3eqtr4d)
qed
lemma (in MMIsar0) MMI_nnncant:
        shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( (A- ( B - C ) ) - C ) = ( A - B )
proof -
        have S1: ( A \in\mathbb{C}\wedge(B-C) \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
```

```
    (( A - ( B - C ) ) - C ) =
    ( A - ( ( B - C ) + C ) ) by (rule MMI_subsub4t)
    have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrowA\in\mathbb{C}\mathrm{ by (rule MMI_3simp1)}
    have S3: ( B \in\mathbb{C}\wedge C \in\mathbb{C ) }\longrightarrow(B-C ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
    from S3 have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( B - C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant1)
    have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowC
    from S1 S2 S4 S5 have S6: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( (A - ( B - C ) ) - C ) =
    ( A - ( ( B - C ) + C ) ) by (rule MMI_syl3anc)
    have S7: ( B \in\mathbb{C}^C\in\mathbb{C})\longrightarrow
    ( ( B - C ) + C ) = B by (rule MMI_npcant)
    from S7 have S8: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A - ( ( B - C ) + C ) ) = ( A - B ) by (rule MMI_opreq2d)
        from S8 have S9: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A - ( ( B - C ) + C ) ) = ( A - B ) by (rule MMI_3adant1)
    from S6 S9 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( ( A - ( B - C ) ) - C ) = ( A - B )
    by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_nnncan1t:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A-B) - (A-C) ) = ( C - B )
proof -
    have S1:( ( A - B ) \in\mathbb{C}\wedge(A - C ) \in\mathbb{C ) }\longrightarrow
    (( A - B ) + ( - (A - C ) ) ) =
    ( ( A - B ) - ( A - C ) ) by (rule MMI_negsubt)
        have S2: ( ( A - B ) \in\mathbb{C}\wedge(- (A - C ) ) \in\mathbb{C})\longrightarrow
    ((A-B) + (- (A - C ) ) ) =
    ( ( - ( A - C ) ) + ( A - B ) ) by (rule MMI_axaddcom)
        have S3: (A - C ) \in\mathbb{C}\longrightarrow(-(A - C ) ) \in\mathbb{C}
            by (rule MMI_negclt)
    from S2 S3 have S4: ( ( A - B ) \in\mathbb{C}\wedge(A-C ) \in\mathbb{C ) }\longrightarrow
    ((A-B) + (- (A - C) ) ) =
    ( ( - ( A - C ) ) + ( A - B ) ) by (rule MMI_sylan2)
    from S1 S4 have S5: ( ( A - B ) \in\mathbb{C}\wedge(A-C ) \in\mathbb{C ) }\longrightarrow
    ((A-B) - (A - C ) ) =
    ( ( - ( A - C ) ) + ( A - B ) ) by (rule MMI_eqtr3d)
    have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(A-B ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
    from S6 have S7: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A - B ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant3)
        have S8: ( A \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow(A-C ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
        from S8 have S9: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A - C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant2)
    from S5 S7 S9 have S10: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A - B ) - (A - C ) ) =
    (( - ( A - C ) ) + ( A - B ) ) by (rule MMI_sylanc)
    have S11: ( A \in\mathbb{C ^C C C ) }\longrightarrow
```

```
    ( - ( A - C ) ) = ( C - A ) by (rule MMI_negsubdi2t)
        from S11 have S12: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( - ( A - C ) ) = ( C - A ) by (rule MMI_3adant2)
        from S12 have S13: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((-(A-C)) + (A-B) ) =
    ( ( C - A ) + ( A - B ) ) by (rule MMI_opreq1d)
        have S14: ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    ( ( C - A ) + ( A - B ) ) = ( C - B ) by (rule MMI_npncant)
    from S14 have S15: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( ( C - A ) + ( A - B ) ) = ( C - B ) by (rule MMI_3coml)
    from S10 S13 S15 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( (A-B) - (A - C ) ) = ( C - B )
    by (rule MMI_3eqtrd)
qed
```

lemma (in MMIsar0) MMI_nnncan2t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A-C)-(B-C))=(A-B)$
proof -
have S1: $(A \in \mathbb{C} \wedge(B-C) \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A-(B-C))-C)=$
($(A-C)-(B-C))$ by (rule MMI_sub23t)
have $\operatorname{S2}:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow A \in \mathbb{C}$ by (rule MMI_3simp1)
have $\mathrm{S} 3:(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(B-C) \in \mathbb{C}$ by (rule MMI_subclt)
from $S 3$ have $S 4:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
($\mathrm{B}-\mathrm{C}$) $\in \mathbb{C}$ by (rule MMI_3adant1)
have S5: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow C \in \mathbb{C}$ by (rule MMI_3simp3)
from S1 S2 S4 S5 have S6: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A-(B-C))-C)=$
((A - C) - (B - C)) by (rule MMI_syl3anc)
have S7: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
($(\mathrm{A}-(\mathrm{B}-\mathrm{C}))-\mathrm{C})=(\mathrm{A}-\mathrm{B})$ by (rule MMI_nnncant)
from S 6 S 7 show $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$((A-C)-(B-C))=(A-B) b y\left(r u l e ~ M M I _e q t r 3 d\right)$
qed
lemma (in MMIsar0) MMI_nncant:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(A-(A-B))=B$
proof -
have S1: $0 \in \mathbb{C}$ by (rule MMI_Ocn)
have S2: $(A \in \mathbb{C} \wedge \mathbf{0} \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$((A-0)-(A-B))=(B-0)$ by (rule MMI_nnncan1t)
from S1 S2 have S3: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
($(\mathrm{A}-\mathbf{0})-(\mathrm{A}-\mathrm{B}))=(\mathrm{B}-\mathbf{0})$ by (rule MMI_mp3an2)
have $S 4: A \in \mathbb{C} \longrightarrow(A-0)=A$ by (rule MMI_subid1t)
from S4 have $55:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A-0)=A$

```
            by (rule MMI_adantr)
    from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    (( A - 0 ) - ( A - B ) ) =
    ( A - ( A - B ) ) by (rule MMI_opreq1d)
    have S7: B \in\mathbb{C}\longrightarrow( B - 0 ) = B by (rule MMI_subid1t)
    from S7 have S8: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(B-0) = B
            by (rule MMI_adantl)
    from S3 S6 S8 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( A - ( A - B ) ) = B by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_nppcan2t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( (A - ( B + C ) ) + C ) = ( A - B )
proof -
        have S1: ( A \in\mathbb{C}\wedge(B+C) \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ( A - ( ( B + C ) - C ) ) =
    ( ( A - ( B + C ) ) + C ) by (rule MMI_subsubt)
        have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowA\in\mathbb{C}\mathrm{ by (rule MMI_3simp1)}
        have S3: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow(B+C ) \in\mathbb{C}\mathrm{ by (rule MMI_axaddcl)}
        from S3 have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ( B + C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant1)
        have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowC\in\mathbb{C}\mathrm{ by (rule MMI_3simp3)}
        from S1 S2 S4 S5 have S6: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (A - ( ( B + C ) - C ) ) =
    ( ( A - ( B + C ) ) + C ) by (rule MMI_syl3anc)
        have S7: ( B \in\mathbb{C}^C\in\mathbb{C})\longrightarrow
    ( ( B + C ) - C ) = B by (rule MMI_pncant)
        from S7 have S8: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( ( B + C ) - C ) = B by (rule MMI_3adant1)
        from S8 have S9: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ( A - ( ( B + C ) - C ) ) = ( A - B ) by (rule MMI_opreq2d)
        from S6 S9 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A - ( B + C ) ) + C ) = ( A - B ) by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_mulm1t:
    shows A \in\mathbb{C}\longrightarrow((-1 ) · A ) = ( (- A) )
proof -
    have S1: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    have S2: ( }1\in\mathbb{C}\wedgeA\in\mathbb{C})
    ( - 1 ) · A ) = ( - ( 1 · A ) ) by (rule MMI_mulneg1t)
    from S1 S2 have S3: A \in\mathbb{C}\longrightarrow
    ( ( - 1 ) | A ) = ( - ( 1 | A ) ) by (rule MMI_mpan)
    have S4: A }\in\mathbb{C}\longrightarrow(1/A ) = A by (rule MMI_mulid2t),
    from S4 have S5: A }\in\mathbb{C}\longrightarrow(-(1\cdotA))=((-A)
        by (rule MMI_negeqd)
    from S3 S5 show A \in\mathbb{C}\longrightarrow((-1 ) . A ) = ((- A) )
        by (rule MMI_eqtrd)
```


qed

lemma (in MMIsar0) MMI_mulm1: assumes A1: A $\in \mathbb{C}$
shows $\left(\begin{array}{l}-1) \cdot A)=((-A))\end{array}\right.$

proof -

from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
have $S 2: A \in \mathbb{C} \longrightarrow((-1) \cdot A)=((-A))$ by (rule MMI_mulm1t)
from S1 S2 show ((-1) $\cdot \mathrm{A})=((-\mathrm{A})$) by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_sub4t:
shows $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A+B)-(C+D))=$
$((A-C)+(B-D))$
proof -
have S : $:(\mathrm{C} \in \mathbb{C} \wedge \mathrm{D} \in \mathbb{C}) \longrightarrow$
($-(C+D)$) =
((- C) + (- D)) by (rule MMI_negdit)
from S 1 have $\operatorname{S2:}((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$(-(C+D))=$
((-C) + (-D)) by (rule MMI_adantl)
from S2 have S3: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A+B)+(-(C+D)))=$
$((A+B)+((-C)+(-D)))$
by (rule MMI_opreq2d)
have S 4 :
$((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge((-C) \in \mathbb{C} \wedge(-D) \in \mathbb{C})) \longrightarrow$
$((A+B)+((-C)+(-D)))=$
(($\mathrm{A}+(-\mathrm{C}))+(\mathrm{B}+(-\mathrm{D}))$) by (rule MMI_add4t)
have S5: $C \in \mathbb{C} \longrightarrow(-C) \in \mathbb{C}$ by (rule MMI_negclt)
have $\mathrm{S} 6: \mathrm{D} \in \mathbb{C} \longrightarrow(-\mathrm{D}) \in \mathbb{C}$ by (rule MMI_negclt)
from S 5 S 6 have $\mathrm{S} 7:(\mathbb{C} \in \mathbb{C} \wedge \mathrm{D} \in \mathbb{C}) \longrightarrow$
$((-C) \in \mathbb{C} \wedge(-D) \in \mathbb{C})$ by (rule MMI_anim12i)
from S4 S7 have $\mathrm{S} 8:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$)
$((A+B)+((-C)+(-D)))=$
(($\mathrm{A}+(-\mathrm{C}))+(\mathrm{B}+(-\mathrm{D}))$) by (rule MMI_sylan2)
from S3 S8 have S9: ($(A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$)
\longrightarrow
$((A+B)+(-(C+D)))=$
$((A+(-C))+(B+(-D)))$ by (rule MMI_eqtrd)
have S10: $((A+B) \in \mathbb{C} \wedge(C+D) \in \mathbb{C}) \longrightarrow$
$((A+B)+(-(C+D)))=$
$((A+B)-(C+D))$ by (rule MMI_negsubt)
have S11: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A+B) \in \mathbb{C}$ by (rule MMI_axaddcl)
have S12: $(C \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(C+D) \in \mathbb{C}$ by (rule MMI_axaddcl)
from S10 S11 S12 have S13:

```
        ((A\in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))\longrightarrow
    ((A+B) + (-(C + D)) ) =
    ( ( A + B ) - ( C + D ) ) by (rule MMI_syl2an)
        have S14: ( A \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A + ( - C ) ) = ( A - C ) by (rule MMI_negsubt)
```



```
    ( A + ( - C ) ) = ( A - C ) by (rule MMI_ad2ant2r)
    have S16: ( B \in\mathbb{C}\wedgeD\in\mathbb{C ) }
    ( B + ( - D ) ) = ( B - D ) by (rule MMI_negsubt)
        from S16 have S17:( ( A G\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}) ) \longrightarrow
    ( B + ( - D ) ) = ( B - D ) by (rule MMI_ad2ant2l)
    from S15 S17 have S18:( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C})
) \longrightarrow
    (( A + ( - C ) ) + ( B + ( - D ) ) ) =
    ( ( A - C ) + ( B - D ) ) by (rule MMI_opreq12d)
        from S9 S13 S18 show ( ( A G\mathbb{C}\wedge B\in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C})
    \longrightarrow
    ((A+B) - (C + D ) ) =
    ( ( A - C ) + ( B - D ) ) by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_sub4: assumes A1: A \in\mathbb{C}}\mathrm{ and
        A2: B \in\mathbb{C}}\mathrm{ and
        A3: C \in\mathbb{C}}\mathrm{ and
        A4: D \in\mathbb{C}
        shows ( ( A + B ) - ( C + D ) ) =
    ( (A - C ) + ( B - D ) )
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: A }\in\mathbb{C}\wedge B \in\mathbb{C}\mathrm{ by (rule MMI_pm3_2i)
    from A3 have S4: C }\in\mathbb{C}\mathrm{ .
    from A4 have S5: D }\in\mathbb{C}\mathrm{ .
    from S4 S5 have S6: C \in\mathbb{C}\wedge D \in\mathbb{C}\mathrm{ by (rule MMI_pm3_2i)}
    have S7:( (A\in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))\longrightarrow
    (( A + B ) - (C + D ) ) =
    ( ( A - C ) + ( B - D ) ) by (rule MMI_sub4t)
    from S3 S6 S7 show ( ( A + B ) - ( C + D ) ) =
    ( ( A - C ) + ( B - D ) ) by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_mulsubt:
    shows (( A G\mathbb{C}\wedge B\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))}
    ((A-B) . (C - D ) ) =
    (( (A.C ) + ( D | B ) ) - ( ( A | D ) + (C | B ) ) )
proof -
    have S1:(A\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
```

```
    ( A + ( (- B) ) ) = ( A - B ) by (rule MMI_negsubt)
    have S2: ( C \in\mathbb{C}\wedge D G\mathbb{C})\longrightarrow
( C + ( - D ) ) = ( C - D ) by (rule MMI_negsubt)
    from S1 S2 have S3:( ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C})
\longrightarrow
    ((A + ((- B))) \cdot( C + ( - D ) ) ) =
    ( ( A - B ) . ( C - D ) ) by (rule MMI_opreqan12d)
        have S4:( ( A \in\mathbb{C}\wedge((- B) ) \in\mathbb{C})\wedge(C\in\mathbb{C}\wedge(-D)\in\mathbb{C})
) }
    (( A + ((- B) ) ) . ( C + ( - D ) ) ) =
    (((A.C ) + ( ( - D ) . ( (- B) ) ) ) + ( ( A | ( - D ) ) + ( C .
((- B) ) ) ) ) by (rule MMI_muladdt)
            have S5: D \in\mathbb{C}\longrightarrow( - D ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
            from S4 S5 have S6: ( ( A \in\mathbb{C}\wedge ( (- B) ) \in\mathbb{C}) ^( C \in\mathbb{C}\wedgeD
C C ) ) }
    (( A + ((- B) ) ) \cdot( C + ( - D ) ) ) =
    (((A.C ) + ( ( - D ) . ( (- B) ) ) ) +
                ( ( A . ( - D ) ) + ( C . ( (- B) ) ) ) ) by (rule MMI_sylanr2)
            have S7: B \in\mathbb{C}\longrightarrow((- B) ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
            from S6 S7 have S8: ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C ) )}
    \longrightarrow
    (( A + ((- B) ) ) \cdot ( C + ( - D ) ) ) =
    (( ( A | C ) + ( ( - D ) . ( (- B) ) ) )
        +((A.( - D ) ) + (C.( (- B) ) ) ) )
        by (rule MMI_sylanl2)
        have S9: ( D G\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow
    ( ( - D ) · ( (- B ) ) = ( D · B ) by (rule MMI_mul2negt)
        from S9 have S10: ( B \in\mathbb{C}\wedge D \in\mathbb{C ) }\longrightarrow
    ( ( - D ) . ( (- B ) ) = ( D · B ) by (rule MMI_ancoms)
        from S10 have S11: ( B \in\mathbb{C}\wedge D \in\mathbb{C ) }
    ((A C C ) + ( ( - D ) . ( (- B) ) ) ) =
    ( ( A C C ) + ( D · B ) ) by (rule MMI_opreq2d)
        from S11 have S12:( ( A G\mathbb{C}\wedge B\in\mathbb{C}) ^(C\in\mathbb{C}\wedgeD\in\mathbb{C})})
    ((A.C ) + (( - D ) . ( (- B) ) ) ) =
    ( ( A P C ) + ( D | B ) ) by (rule MMI_ad2ant2l)
        have S13: ( A \in\mathbb{C}\wedgeD\in\mathbb{C ) }\longrightarrow
    ( A · ( - D ) ) = ( - ( A P D ) ) by (rule MMI_mulneg2t)
        have S14: ( C \in\mathbb{C}\wedge B \in\mathbb{C ) }
    ( C . ( (- B) ) ) = ( - ( C . B ) ) by (rule MMI_mulneg2t)
        from S13 S14 have S15:( ( A \in\mathbb{C}\wedgeD\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeB\in\mathbb{C})
) }
    (( A . ( - D ) ) + (C . ( (- B) ) ) ) =
    ( ( - ( A P D ) + ( - ( C . B ) ) ) by (rule MMI_opreqan12d)
        have S16:( ( A | D ) \in\mathbb{C}\wedge(C.B ) \in\mathbb{C})\longrightarrow
    (- ((A.D ) + (C. B ) ) ) =
    ( ( - ( A · D ) ) + ( - ( C · B ) ) ) by (rule MMI_negdit)
        have S17: ( A \in\mathbb{C}\wedgeD\in\mathbb{C ) }\longrightarrow(A\cdotD ) \in\mathbb{C}\mathrm{ by (rule MMI_axmulcl)}
        have S18: ( C \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow(C\cdotB ) \in\mathbb{C}\mathrm{ by (rule MMI_axmulcl)}
```

```
    from S16 S17 S18 have S19:
        ((A\in\mathbb{C}\wedgeD\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeB\in\mathbb{C}))\longrightarrow
    (- ( ( A | D ) + ( C | B ) ) ) =
    ( ( - ( A | D ) ) + ( - ( C . B ) ) ) by (rule MMI_syl2an)
```

 from S15 S19 have S20: (\((A \in \mathbb{C} \wedge D \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge B \in \mathbb{C})\)
) \longrightarrow
$((A \cdot(-D))+(C \cdot((-B)))=$
($-((\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B})$)) by (rule MMI_eqtr4d)
from S20 have S21: $((A \in \mathbb{C} \wedge D \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge C \in \mathbb{C})) \longrightarrow$
$((A \cdot(-D))+(C \cdot((-B)))=$
($-(\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B})$)) by (rule MMI_ancom2s)
from S21 have S22: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A \cdot(-D))+(C \cdot((-B))))=$
($-((\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B}))$) by (rule MMI_an42s)
from S12 S22 have S23: ($(A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})$
) \longrightarrow
$(((A \cdot C)+((-D) \cdot((-B)))+$
(($\mathrm{A} \cdot(-\mathrm{D}))+(\mathrm{C} \cdot((-\mathrm{B})))))=$
$(((A \cdot C)+(D \cdot B))+(-((A \cdot D)+$
(C • B)))) by (rule MMI_opreq12d)
have S24: (($\mathrm{A} \cdot \mathrm{C}$) + (D.B)) $\in \mathbb{C} \wedge((A \cdot D)+$
$(\mathrm{C} \cdot \mathrm{B})) \in \mathbb{C}) \longrightarrow$
$(((A \cdot C)+(D \cdot B))+(-((A \cdot D)+(C \cdot B))))=$
$(((A \cdot C)+(D \cdot B))-((A \cdot D)+(C \cdot B)))$
by (rule MMI_negsubt)
have S25: ((A • C) $\in \mathbb{C} \wedge(\mathrm{D} \cdot \mathrm{B}) \in \mathbb{C}) \longrightarrow$
$((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B})) \in \mathbb{C}$ by (rule MMI_axaddcl)
have S26: $(A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(A \cdot C) \in \mathbb{C}$ by (rule MMI_axmulcl)
have S27: $(D \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(D \cdot B) \in \mathbb{C}$ by (rule MMI_axmulcl)
from S27 have S28: $(B \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(D \cdot B) \in \mathbb{C}$
by (rule MMI_ancoms)
from S25 S26 S28 have S29:
$((A \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((\mathrm{A} \cdot \mathrm{C})+(\mathrm{D} \cdot \mathrm{B})) \in \mathbb{C}$ by (rule MMI_syl2an)
from S29 have $\mathrm{S} 30:((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$
$((A \cdot C)+(D \cdot B)) \in \mathbb{C}$ by (rule MMI_an4s)
have S31: $((A \cdot D) \in \mathbb{C} \wedge(C \cdot B) \in \mathbb{C}) \longrightarrow$
$((\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B})) \in \mathbb{C}$ by (rule MMI_axaddcl)
from S17 have S32: $(A \in \mathbb{C} \wedge D \in \mathbb{C}) \longrightarrow(A \cdot D) \in \mathbb{C}$.
from S18 have S33: $(C \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(C \cdot B) \in \mathbb{C}$.
from S33 have S34: $(B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow(C \cdot B) \in \mathbb{C}$
by (rule MMI_ancoms)
from S31 S32 S34 have S35:
$((A \in \mathbb{C} \wedge D \in \mathbb{C}) \wedge(B \in \mathbb{C} \wedge C \in \mathbb{C})) \longrightarrow$
$((\mathrm{A} \cdot \mathrm{D})+(\mathrm{C} \cdot \mathrm{B})) \in \mathbb{C}$ by (rule MMI_syl2an)
from S35 have S36: $((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge(C \in \mathbb{C} \wedge D \in \mathbb{C})) \longrightarrow$

```
( ( A . D ) + ( C . B ) ) \in\mathbb{C}}\mathrm{ by (rule MMI_an42s)
    from S24 S30 S36 have S37:
        (( A \in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}))\longrightarrow
(((A\cdotC) + (D | B ) ) + ( - ( ( A | D ) + ( C | B ) ) ) ) =
(((A C ) + ( D | B ) ) - ( ( A | D ) + ( C | B ) ) )
        by (rule MMI_sylanc)
    from S8 S23 S37 have S38: ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C}
) ) }
    (( A + ( (- B) ) ) \cdot ( C + ( - D ) ) ) =
    (( ( A C C ) + ( D | B ) ) - ( ( A | D ) + ( C | B ) ) )
        by (rule MMI_3eqtrd)
    from S3 S38 show ( ( A \in\mathbb{C}\wedge B \in\mathbb{C})\wedge(C\in\mathbb{C}\wedgeD\in\mathbb{C})
    (( A - B ) . ( C - D ) ) =
    (((A\cdotC ) + ( D | B ) ) - ( ( A | D ) + ( C | B ) ) )
        by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_pnpcant:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A+B) - ( A + C ) ) = ( B - C )
proof -
    have S1: ( ( A \in\mathbb{C}\wedge B\in\mathbb{C})}\wedge(A\in\mathbb{C}\wedgeC\in\mathbb{C}))
    ((A + B) - (A + C ) ) =
    ( ( A - A ) + ( B - C ) ) by (rule MMI_sub4t)
        from S1 have S2: ( A \in\mathbb{C}\wedge(B\in\mathbb{C}\wedgeC\in\mathbb{C})})
    (( A + B ) - ( A + C ) ) =
    ( ( A - A ) + ( B - C ) ) by (rule MMI_anandis)
        have S3: A \in\mathbb{C}\longrightarrow( A - A ) = 0 by (rule MMI_subidt)
        from S3 have S4: A \in\mathbb{C}\longrightarrow
    (( A - A ) + ( B - C ) ) =
    ( 0 + ( B - C ) ) by (rule MMI_opreq1d)
        have S5: ( B \in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow(B-C ) \in\mathbb{C}\mathrm{ by (rule MMI_subclt)}
        have S6: ( B - C) &\mathbb{C}\longrightarrow
    ( 0 + ( B - C ) ) = ( B - C ) by (rule MMI_addid2t)
        from S5 S6 have S7: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( 0 + ( B - C ) ) = ( B - C ) by (rule MMI_syl)
        from S4 S7 have S8: ( A \in\mathbb{C}\wedge ( B \in\mathbb{C}\wedgeC\in\mathbb{C ) ) }\longrightarrow
    ( ( A - A ) + ( B - C ) ) = ( B - C ) by (rule MMI_sylan9eq)
        from S2 S8 have S9: ( A \in\mathbb{C}\wedge( B \in\mathbb{C}\wedgeC\in\mathbb{C}) ) \longrightarrow
    ( ( A + B ) - ( A + C ) ) = ( B - C ) by (rule MMI_eqtrd)
        from S9 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A + B ) - ( A + C ) ) = ( B - C ) by (rule MMI_3impb)
qed
lemma (in MMIsar0) MMI_pnpcan2t:
    shows ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A + C ) - ( B + C ) ) = ( A - B )
```

```
proof -
    have S1: ( A \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A + C ) = ( C + A ) by (rule MMI_axaddcom)
        from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A + C ) = ( C + A ) by (rule MMI_3adant2)
        have S3: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B + C ) = ( C + B ) by (rule MMI_axaddcom)
        from S3 have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B + C ) = ( C + B ) by (rule MMI_3adant1)
        from S2 S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A + C ) - ( B + C ) ) =
    ( ( C + A ) - ( C + B ) ) by (rule MMI_opreq12d)
        have S6: ( C G\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( ( C + A ) - ( C + B ) ) = ( A - B ) by (rule MMI_pnpcant)
        from S6 have S7: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( ( C + A ) - ( C + B ) ) = ( A - B ) by (rule MMI_3coml)
        from S5 S7 show ( A \in\mathbb{C}\wedge B \in\mathbb{C ^C C \mathbb{C ) }}\longrightarrow
    ( ( A + C ) - ( B + C ) ) = ( A - B ) by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_pnncant:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ((A+B)-(A-C)) = (B+C)
proof -
        have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge(-C) \in\mathbb{C ) }\longrightarrow
    (( A + B ) - ( A + ( - C ) ) ) =
    ( B - ( - C ) ) by (rule MMI_pnpcant)
        have S2: C \in\mathbb{C}\longrightarrow( - C ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
        from S1 S2 have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A + B) - (A + ( - C ) ) ) =
    ( B - ( - C ) ) by (rule MMI_syl3an3)
        have S4: ( A \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A + ( - C ) ) = ( A - C ) by (rule MMI_negsubt)
        from S4 have S5: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( A + ( - C ) ) = ( A - C ) by (rule MMI_3adant2)
        from S5 have S6: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A+B) - (A+(-C)) ) =
    ( ( A + B ) - ( A - C ) ) by (rule MMI_opreq2d)
        have S7:( B \in\mathbb{C}^C\in\mathbb{C})\longrightarrow
    ( B - ( - C ) ) = ( B + C ) by (rule MMI_subnegt)
        from S7 have S8: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B - ( - C ) ) = ( B + C ) by (rule MMI_3adant1)
        from S3 S6 S8 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A + B ) - ( A - C ) ) = ( B + C ) by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_ppncant:
    shows (A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
```

```
    ((A+B) + (C-B) ) = (A + C )
proof -
    have S1: ( A \in\mathbb{C}\wedge B\in\mathbb{C})\longrightarrow
    ( A + B ) = ( B + A ) by (rule MMI_axaddcom)
        from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A + B ) = ( B + A ) by (rule MMI_3adant3)
        from S2 have S3: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A+B)-(B-C)) =
    ( ( B + A ) - ( B - C ) ) by (rule MMI_opreq1d)
        have S4: ( ( A + B ) \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }\longrightarrow
    ((A + B ) - (B-C ) ) =
    ( ( A + B ) + ( C - B ) ) by (rule MMI_subsub2t)
        have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow( 
        from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A + B ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant3)
        have S7:( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowB\in\mathbb{C}\mathrm{ by (rule MMI_3simp2)}
        have S8: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowC\in\mathbb{C}\mathrm{ by (rule MMI_3simp3)}
        from S4 S6 S7 S8 have S9: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ((A + B ) - (B-C ) ) =
    ( ( A + B ) + ( C - B ) ) by (rule MMI_syl3anc)
        have S10: ( B \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( B + A ) - ( B - C ) ) = ( A + C ) by (rule MMI_pnncant)
        from S10 have S11: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( B + A ) - ( B - C ) ) = ( A + C ) by (rule MMI_3com12)
        from S3 S9 S11 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A + B ) + ( C - B ) ) = ( A + C ) by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_pnncan: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C}\mathrm{ and
    A3: C }\in\mathbb{C
    shows ((A + B ) - ( A - C ) ) = ( B + C )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
        from A3 have S3: C }\in\mathbb{C}\mathrm{ .
        have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( (A + B ) - ( A - C ) ) = ( B + C ) by (rule MMI_pnncant)
        from S1 S2 S3 S4 show ( ( A + B ) - ( A - C ) ) = ( B + C ) by (rule
MMI_mp3an)
qed
lemma (in MMIsar0) MMI_mulcan: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}}\mathrm{ and
    A3: C }\in\mathbb{C}\mathrm{ and
    A4: A \not= 0
    shows (A P B ) = ( A C C ) \longleftrightarrow B = C
proof -
    from A1 have S1: A }\in\mathbb{C}
```

from A 4 have $\mathrm{S} 2: \mathrm{A} \neq 0$.
from S1 S2 have S3: $\exists \mathrm{x} \in \mathbb{C}$. ($\mathrm{A} \cdot \mathrm{x}$) = 1 by (rule MMI_recex)
from A1 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C}$.
from $A 2$ have $S 5: B \in \mathbb{C}$.
\{ fix x
have S6: $(x \in \mathbb{C} \wedge A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$ (($\mathrm{x} \cdot \mathrm{A}$) $\cdot \mathrm{B})=(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{B})$) by (rule MMI_axmulass)
from S5 S6 have S7: $(x \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow$ (($\mathrm{x} \cdot \mathrm{A}$) $\cdot \mathrm{B})=(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{B})$) by (rule MMI_mp3an3)
from A3 have $58: C \in \mathbb{C}$.
have $59:(x \in \mathbb{C} \wedge A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$ (($\mathrm{x} \cdot \mathrm{A}$) $\cdot \mathrm{C})=(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{C})$) by (rule MMI_axmulass)
from S8 S9 have $\mathrm{S} 10:(\mathrm{x} \in \mathbb{C} \wedge \mathrm{A} \in \mathbb{C}) \longrightarrow$ (($\mathrm{x} \cdot \mathrm{A}$) $\cdot \mathrm{C})=(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{C})$) by (rule MMI_mp3an3)
from S7 S10 have S11: $(x \in \mathbb{C} \wedge A \in \mathbb{C}) \longrightarrow$ $((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{B})=$ $((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{C}) \longleftrightarrow$ $(x \cdot(A \cdot B))=$ ($\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{C}$))) by (rule MMI_eqeq12d)
from S4 S11 have S12: $x \in \mathbb{C} \longrightarrow$ $((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{B})=$ $((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{C}) \longleftrightarrow$ $(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{B}))=$ (x • (A • C))) by (rule MMI_mpan2)
have S13: $(\mathrm{A} \cdot \mathrm{B})=(\mathrm{A} \cdot \mathrm{C}) \longrightarrow$ $(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{B}))=(\mathrm{x} \cdot(\mathrm{A} \cdot \mathrm{C})$) by (rule MMI_opreq2)
from S12 S13 have S14: $x \in \mathbb{C} \longrightarrow$ $((A \cdot B)=(A \cdot C) \longrightarrow((x \cdot A) \cdot B)=$ ((x • A) • C)) by (rule MMI_syl5bir)
from S14 have S15: $(x \in \mathbb{C} \wedge(A \cdot x)=1) \longrightarrow((A \cdot B)=$ $(A \cdot C) \longrightarrow((x \cdot A) \cdot B)=$ ((x • A) • C)) by (rule MMI_adantr)
from A1 have S16: $A \in \mathbb{C}$.
have S17: $(A \in \mathbb{C} \wedge x \in \mathbb{C}) \longrightarrow$ ($\mathrm{A} \cdot \mathrm{x}$) $=(\mathrm{x} \cdot \mathrm{A})$ by (rule MMI_axmulcom)
from S16 S17 have S18: $x \in \mathbb{C} \longrightarrow(A \cdot x)=(x \cdot A)$ by (rule MMI_mpan)
from S18 have S19: $x \in \mathbb{C} \longrightarrow$ $((A \cdot x)=1 \longleftrightarrow(x \cdot A)=1)$ by (rule MMI_eqeq1d)
have S 20 : ($\mathrm{x} \cdot \mathrm{A}$) $=$ $1 \longrightarrow((x \cdot A) \cdot B)=(1 \cdot B)$ by (rule MMI_opreq1)
from $A 2$ have $\mathrm{S} 21: \mathrm{B} \in \mathbb{C}$.
from S21 have S22: ($\mathbf{1} \cdot \mathrm{B}$) = B by (rule MMI_mulid2)
from S20 S22 have S23: ($\mathrm{x} \cdot \mathrm{A})=1 \longrightarrow(\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{B})=\mathrm{B}$ by (rule MMI_syl6eq)
have S24: ($\mathrm{x} \cdot \mathrm{A}$) = $1 \longrightarrow((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{C})=(1 \cdot \mathrm{C})$ by (rule MMI_opreq1)
from $A 3$ have $\mathrm{S} 25: \mathrm{C} \in \mathbb{C}$.
from S25 have S26: ($\mathbf{1} \cdot \mathrm{C}$) = C by (rule MMI_mulid2)
from S24 S26 have S27: ($\mathrm{x} \cdot \mathrm{A}$) $=1 \longrightarrow(\mathrm{C} \cdot \mathrm{A}) \cdot \mathrm{C})=\mathrm{C}$
by (rule MMI_syl6eq)
from S23 S27 have S28: ($\mathrm{x} \cdot \mathrm{A}$) $=1 \longrightarrow$ (($\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{B})=$
$((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{C}) \longleftrightarrow \mathrm{B}=\mathrm{C})$ by (rule MMI_eqeq12d)
from S19 S28 have S29: $x \in \mathbb{C} \longrightarrow$
$((A \cdot x)=1 \longrightarrow$
$((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{B})=$
($(\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{C}) \longleftrightarrow \mathrm{B}=\mathrm{C}$)) by (rule MMI_syl6bi)
from S29 have S30:
$(x \in \mathbb{C} \wedge(A \cdot x)=1) \longrightarrow$ $((\mathrm{x} \cdot \mathrm{A}) \cdot \mathrm{B})=$ (($\mathrm{x} \cdot \mathrm{A}$) $\cdot \mathrm{C}$) $\longleftrightarrow \mathrm{B}=\mathrm{C}$) by (rule MMI_imp)
from S15 S30 have S31:
$(x \in \mathbb{C} \wedge(A \cdot x)=1) \longrightarrow$
$((A \cdot B)=(A \cdot C) \longrightarrow B=C)$ by (rule MMI_sylibd)
from S31 have $x \in \mathbb{C} \longrightarrow$ $((A \cdot x)=1 \longrightarrow((A \cdot B)=(A \cdot C) \longrightarrow B=C))$ by (rule MMI_ex)
\} then have S32: $\forall \mathrm{x} . \mathrm{x} \in \mathbb{C} \longrightarrow$ $((A \cdot x)=1 \longrightarrow((A \cdot B)=(A \cdot C) \longrightarrow B=C))$ by auto
from S32 have S33: $(\exists \mathrm{x} \in \mathbb{C} .(\mathrm{A} \cdot \mathrm{x})=1) \longrightarrow$ ((A $\cdot \mathrm{B}$) $=(\mathrm{A} \cdot \mathrm{C}) \longrightarrow \mathrm{B}=\mathrm{C}$) by (rule MMI_r19_23aiv)
from S3 S33 have S34: (A B) = (A C) $\longrightarrow B=C$ by (rule MMI_ax_mp)
have $\mathrm{S} 35: \mathrm{B}=\mathrm{C} \longrightarrow(\mathrm{A} \cdot \mathrm{B})=(\mathrm{A} \cdot \mathrm{C})$ by (rule MMI_opreq2)
from S34 S35 show $(A \cdot B)=(A \cdot C) \longleftrightarrow B=C$ by (rule MMI_impbi)
qed

```
lemma (in MMIsar0) MMI_mulcant2: assumes A1: A \(\neq 0\)
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow\)
    \(((A \cdot B)=(A \cdot C) \longleftrightarrow B=C)\)
proof -
    have \(\mathrm{S} 1: \mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 1) \longrightarrow\)
    ( \(\mathrm{A} \cdot \mathrm{B})=\)
    ( if ( \(A \in \mathbb{C}, A, 1\) ) B ) by (rule MMI_opreq1)
            have S 2 : \(\mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 1) \longrightarrow\)
    ( \(\mathrm{A} \cdot \mathrm{C}\) ) \(=\)
    ( if ( \(\mathrm{A} \in \mathbb{C}\), \(\mathrm{A}, \mathbf{1}\) ) • C ) by (rule MMI_opreq1)
        from S1 S2 have S3: \(A=\)
    if \((A \in \mathbb{C}, A, 1) \longrightarrow\)
    ( \((\mathrm{A} \cdot \mathrm{B})=\)
    \((\mathrm{A} \cdot \mathrm{C}) \longleftrightarrow\)
    ( if \((A \in \mathbb{C}, A, 1) \cdot B)=\)
```

```
( if ( A \in\mathbb{C , A , 1 ) . C ) ) by (rule MMI_eqeq12d)}
    from S3 have S4: A =
if ( A \in\mathbb{C},A,1 ) \longrightarrow
(((A\cdotB) = (A}\cdot\textrm{C})\longleftrightarrow\textrm{B}=\textrm{C})
( ( if ( A \in\mathbb{C , A , 1 ) . B ) =}
( if ( A \in\mathbb{C , A , 1 ) · C ) \longleftrightarrow}
B = C ) ) by (rule MMI_bibi1d)
    have S5: B =
if ( B \in\mathbb{C}, B , 1 ) }
( if ( A \in\mathbb{C , A , 1 ) . B ) =}
( if ( A \in\mathbb{C},A,1 ) . if ( B \in\mathbb{C}, B , 1 ) ) by (rule MMI_opreq2)
    from S5 have S6: B =
if ( B \in\mathbb{C}, B , 1 ) \longrightarrow
(( if ( A \in\mathbb{C , A , 1 ) . B ) =}
( if ( A \in C , A , 1 ) . C ) \longleftrightarrow
( if ( A \in\mathbb{C},A,1 ) . if ( B \in\mathbb{C},\textrm{B},\mathbf{1}) ) =
( if ( A \in\mathbb{C},A,1) C C) ) by (rule MMI_eqeq1d)
    have S7: B =
if ( B \in\mathbb{C}, B , 1 ) }
( B = C \longleftrightarrow if ( B \in\mathbb{C}, B , 1 ) = C ) by (rule MMI_eqeq1)
    from S6 S7 have S8: B =
if ( B \in\mathbb{C},\textrm{B},1
(( ( if ( A G\mathbb{C},A,1)
B = C ) \longleftrightarrow
    (( if ( A \in\mathbb{C},A,1) . if ( B \in\mathbb{C},\textrm{B},\mathbf{1})}\mathrm{ ) =
    ( if ( A \in \mathbb{C , A , 1 ) . C ) \longleftrightarrow}
    if ( B \in\mathbb{C}, B , 1 ) = C ) ) by (rule MMI_bibi12d)
        have S9: C =
    if (C C \mathbb{C , C , 1 ) }\longrightarrow
    ( if ( A \in\mathbb{C},A,1 ) . C ) =
    ( if ( A \in\mathbb{C , A , 1 ) . if ( C \in \mathbb{C C , 1 ) ) by (rule MMI_opreq2)}}\mathbf{(})
        from S9 have S10: C =
    if (C\in\mathbb{C},C,1)}
    (( if ( A \in\mathbb{C},A,1) . if ( B \in\mathbb{C},B,1) ) =
    ( if ( A \in\mathbb{C},A,1)
    ( if ( A \in\mathbb{C},A,1 ) . if ( B \in\mathbb{C},\textrm{B},\mathbf{1}) ) =
    ( if ( A \in\mathbb{C},A,1) | if ( C \in\mathbb{C},C,1 ) ) ) by (rule MMI_eqeq2d)
        have S11: C =
    if (C\in\mathbb{C , C , 1 ) }\longrightarrow
    ( if ( B \in\mathbb{C},B,1) =
    C \longleftrightarrow
    if ( B \in\mathbb{C}, B , 1 ) =
    if ( C \in\mathbb{C , C , 1 ) ) by (rule MMI_eqeq2)}
        from S10 S11 have S12: C =
    if ( C \in\mathbb{C},C,1 )}
    ((( if ( A \in\mathbb{C},A,1) . if ( B \in\mathbb{C},B,1) ) = ( if ( A \in\mathbb{C}
    ,A,1 ) . C ) \longleftrightarrow if ( B \in\mathbb{C},\textrm{B},\mathbf{1})=C C ) \longleftrightarrow
    (( if ( A \in\mathbb{C},A,1) . if ( B \in\mathbb{C},B,1 ) ) =
    ( if ( A \in\mathbb{C},A,1) . if (C C\mathbb{C},C,1) ) \longleftrightarrow
```

```
if ( B \in\mathbb{C}, B , 1 ) =
if (C C \mathbb{C , C , 1 ) ) ) by (rule MMI_bibi12d)}
    have S13: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S13 have S14: if ( A \in\mathbb{C},A,1 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S15: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S15 have S16: if ( B \in\mathbb{C}, B , 1 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S17: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S17 have S18: if ( C \in\mathbb{C},C,1 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    have S19: A =
if ( A \in\mathbb{C},A,1 ) \longrightarrow
( A \not=0\longleftrightarrow if ( A \in\mathbb{C , A , 1 ) \not= 0 ) by (rule MMI_neeq1)}
    have S20: 1 =
if ( A \in\mathbb{C}, A , 1 ) \longrightarrow
( 1 = 0 \longleftrightarrow if ( A \in\mathbb{C},A,1 ) = 0 ) by (rule MMI_neeq1)
    from A1 have S21: A }=0
    have S22: 1 = 0 by (rule MMI_ax1ne0)
    from S19 S20 S21 S22 have S23: if ( A \in\mathbb{C},A,1 ) f=0 by (rule
MMI_keephyp)
```



```
, B , 1 ) ) =
    ( if ( A \in\mathbb{C},A,1) · if (C G\mathbb{C},C,1 ) ) \longleftrightarrow
    if ( B \in\mathbb{C}, B , 1 ) =
    if ( C \in\mathbb{C}, C , 1 ) by (rule MMI_mulcan)
    from S4 S8 S12 S24 show ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A | B ) = ( A C C ) \longleftrightarrow B = C ) by (rule MMI_dedth3h)
qed
lemma (in MMIsar0) MMI_mulcant:
    shows ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeA\not=0)}
    ((A\cdotB) = (A.C ) \longleftrightarrowB=C )
proof -
    have S1: A =
    if ( A = 0 , A , 1 ) \longrightarrow
    ( A \in\mathbb{C}\longleftrightarrow if ( A = 0 , A , 1 ) \in\mathbb{C}) by (rule MMI_eleq1)
    have S2: A =
    if ( A = 0 , A , 1 ) }
    ( B \in\mathbb{C}\longleftrightarrowB 心代) by (rule MMI_pm4_2i)
    have S3: A =
if ( A f= 0 , A , 1 ) }
    (C C \mathbb{C C }\longleftrightarrow\mathbb{C})\mathrm{ by (rule MMI_pm4_2i)}
        from S1 S2 S3 have S4: A =
    if ( A # 0 , A , 1 ) }
    ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longleftrightarrow
    (if ( A = 0 , A, 1) ) \mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C}) ) by (rule MMI_3anbi123d)
        have S5: A =
    if ( A = 0 , A , 1 ) \longrightarrow
    ( A P B ) =
    ( if ( A \not= 0 , A , 1 ) · B ) by (rule MMI_opreq1)
        have S6: A =
```

```
if ( A f 0 , A , 1 ) }
(A.C ) =
( if ( A \not= 0 , A , 1 ) . C ) by (rule MMI_opreq1)
    from S5 S6 have S7: A =
if ( A = 0 , A , 1 ) \longrightarrow
((A.B ) =
(A}\cdotC)
( if ( A = 0 , A , 1 ) . B ) =
( if ( A \not= 0 , A , 1 ) . C ) ) by (rule MMI_eqeq12d)
    from S7 have S8: A =
if ( A = 0 , A , 1 ) \longrightarrow
```



```
( ( if ( A = 0 , A , 1 ) . B ) =
( if ( A = 0 , A , 1 ) . C ) \longleftrightarrow
B = C ) ) by (rule MMI_bibi1d)
    from S4 S8 have S9: A =
if ( A # 0 , A , 1 ) \longrightarrow
(((A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow((A\cdotB)=(A\cdotC) \longleftrightarrowB=
C ) ) \longleftrightarrow
    (( if ( A = 0 , A , 1 ) \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( if ( A = 0 , A , 1 ) . B ) =
    ( if ( A = 0 , A , 1 ) . C ) \longleftrightarrow
B = C ) ) ) by (rule MMI_imbi12d)
    have S10: if ( A = 0 , A , 1 ) \not=0 by (rule MMI_elimne0)
```



```
    (( if ( A \not=0 , A , 1 ) . B ) =
    ( if ( A = 0 , A , 1 ) . C ) \longleftrightarrow B = C ) by (rule MMI_mulcant2)
        from S9 S11 have S12: A \not=0\longrightarrow
    ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A B ) = ( A P C ) \longleftrightarrow B = C ) ) by (rule MMI_dedth)
        from S12 show ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeA\not=0 ) \longrightarrow
    ( ( A P B ) = ( A C ) \longleftrightarrow B = C ) by (rule MMI_impcom)
qed
lemma (in MMIsar0) MMI_mulcan2t:
    shows ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    ( ( A C C ) = ( B | C ) \longleftrightarrowA = B )
proof -
    have S1: ( A \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A C C ) = ( C . A ) by (rule MMI_axmulcom)
        from S1 have S2: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( A . C ) = ( C . A ) by (rule MMI_3adant2)
        have S3: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B . C ) = ( C . B ) by (rule MMI_axmulcom)
        from S3 have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B . C ) = ( C . B ) by (rule MMI_3adant1)
        from S2 S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( ( A P C ) =
```

```
( B . C ) \longleftrightarrow ( C . A ) = ( C · B ) ) by (rule MMI_eqeq12d)
    from S5 have S6: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^C C=0 ) \longrightarrow}
    ( ( A . C ) =
    ( B . C ) \longleftrightarrow ( C . A ) = ( C . B ) ) by (rule MMI_adantr)
        have S7:( ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedge B \in\mathbb{C}) ^C\not=0 ) \longrightarrow
    ( ( C . A ) = ( C . B ) \longleftrightarrow A = B ) by (rule MMI_mulcant)
    from S7 have S8: ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    (C\not=0}
    ( ( C . A ) = ( C . B ) \longleftrightarrow A = B ) ) by (rule MMI_ex)
        from S8 have S9: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (C # 0 \longrightarrow
    (( C . A ) = ( C . B ) \longleftrightarrow A = B ) ) by (rule MMI_3coml)
    from S9 have S10: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0) \longrightarrow
    ( ( C . A ) = ( C . B ) \longleftrightarrow A = B ) by (rule MMI_imp)
    from S6 S10 show ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) }\wedgeC\not=0 ) 
    ( ( A C C ) = ( B . C ) \longleftrightarrow A = B ) by (rule MMI_bitrd)
qed
```

lemma (in MMIsar0) MMI_mul0or: assumes A1: $A \in \mathbb{C}$ and A2: $B \in \mathbb{C}$
shows $(A \cdot B)=0 \longleftrightarrow(A=0 \vee B=0)$
proof -
have $S 1: A \neq 0 \longleftrightarrow \neg(A=0)$ by (rule MMI_df_ne)
from $A 1$ have $S 2: A \in \mathbb{C}$.
from A2 have S3: $B \in \mathbb{C}$.
have $S 4: 0 \in \mathbb{C}$ by (rule MMI_0cn)
from S2 S3 S4 have $\mathrm{S} 5: \mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C} \wedge \mathbf{0} \in \mathbb{C}$ by (rule MMI_3pm3_2i)
have S6: $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge \mathbf{0} \in \mathbb{C}) \wedge A \neq \mathbf{0}) \longrightarrow$
$((\mathrm{A} \cdot \mathrm{B})=(\mathrm{A} \cdot \mathbf{0}) \longleftrightarrow \mathrm{B}=\mathbf{0})$ by (rule MMI_mulcant)
from S5 S6 have S7: A $\neq \mathbf{0} \longrightarrow$
$((A \cdot B)=(A \cdot 0) \longleftrightarrow B=0)$ by (rule MMI_mpan)
from A1 have $\mathrm{S} 8: \mathrm{A} \in \mathbb{C}$.
from S8 have S9: (A • 0) = $\mathbf{0}$ by (rule MMI_mul01)
from S9 have S10: (A B) = (A • 0) $\longleftrightarrow ~(A \cdot B)=0$ by (rule
MMI_eqeq2i)
from S7 S10 have S11: A $\neq 0 \longrightarrow((A \cdot B)=0 \longleftrightarrow B=0)$ by (rule MMI_syl5bbr)
from S11 have S12: $A \neq 0 \longrightarrow((A \cdot B)=0 \longrightarrow B=0)$ by (rule
MMI_biimpd)
from S1 S12 have S13: $\neg(\mathrm{A}=$
0) $\longrightarrow((A \cdot B)=0 \longrightarrow B=0)$ by (rule MMI_sylbir)
from S13 have S14: (A B) =
$\mathbf{0} \longrightarrow(\neg(A=\mathbf{0}) \longrightarrow B=\mathbf{0})$ by (rule MMI_com12)
from S14 have S15: ($\mathrm{A} \cdot \mathrm{B}$) $=\mathbf{0} \longrightarrow(\mathrm{A}=\mathbf{0} \vee \mathrm{B}=\mathbf{0})$ by (rule MMI_orrd)
have S16: $\mathrm{A}=\mathbf{0} \longrightarrow(\mathrm{A} \cdot \mathrm{B})=(\mathbf{0} \cdot \mathrm{B})$ by (rule MMI_opreq1)
from A2 have $\mathrm{S} 17: \mathrm{B} \in \mathbb{C}$.
from S17 have S18: ($0 \cdot B$) = 0 by (rule MMI_mul02)
from S16 S18 have $\mathrm{S} 19: \mathrm{A}=\mathbf{0} \longrightarrow(\mathrm{A} \cdot \mathrm{B})=\mathbf{0}$ by (rule MMI_syl6eq)
have $\mathrm{S} 20: \mathrm{B}=\mathbf{0} \longrightarrow(\mathrm{A} \cdot \mathrm{B})=(\mathrm{A} \cdot \mathbf{0})$ by (rule MMI_opreq2)
from S9 have S21: ($\mathrm{A} \cdot \mathbf{0}$) = 0 .
from S20 S21 have $\mathrm{S} 22: \mathrm{B}=\mathbf{0} \longrightarrow(\mathrm{A} \cdot \mathrm{B})=\mathbf{0}$ by (rule MMI_syl6eq)
from S19 S22 have $\mathrm{S} 23:(\mathrm{A}=\mathbf{0} \vee \mathrm{B}=\mathbf{0}) \longrightarrow(\mathrm{A} \cdot \mathrm{B})=\mathbf{0}$ by (rule MMI_jaoi)
from S15 S23 show $(A \cdot B)=0 \longleftrightarrow(A=\mathbf{0} \vee B=\mathbf{0})$ by (rule MMI_impbi) qed
lemma (in MMIsar0) MMI_msq0: assumes A1: A $\in \mathbb{C}$
shows $(A \cdot A)=0 \longleftrightarrow A=0$
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from $A 1$ have $S 2: A \in \mathbb{C}$.
from S1 S2 have S3: (A.A) $=\mathbf{0} \longleftrightarrow(A=\mathbf{0} \vee A=0)$ by (rule MMI_mul0or)
have $\mathrm{S4}:(\mathrm{A}=\mathbf{0} \vee \mathrm{A}=\mathbf{0}) \longleftrightarrow \mathrm{A}=\mathbf{0}$ by (rule MMI_oridm)
from S3 S4 show (A A) = $\mathbf{0} \longleftrightarrow \mathrm{A}=\mathbf{0}$ by (rule MMI_bitr)
qed
lemma (in MMIsar0) MMI_mulOort:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$((A \cdot B)=\mathbf{0} \longleftrightarrow(A=\mathbf{0} \vee B=\mathbf{0}))$
proof -
have $\mathrm{S} 1: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
($\mathrm{A} \cdot \mathrm{B}$) $=$
(if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) • B) by (rule MMI_opreq1)
from S 1 have $\mathrm{S} 2: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$((A \cdot B))=$
$\mathbf{0} \longleftrightarrow$ (if $(A \in \mathbb{C}, A, \mathbf{0}) \cdot B)=\mathbf{0}$) by (rule MMI_eqeq1d)
have $\mathrm{S} 3: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
($\mathrm{A}=\mathbf{0} \longleftrightarrow$ if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})=\mathbf{0}$) by (rule MMI_eqeq1)
from S3 have S4: $A=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$((A=0 \vee B=0) \longleftrightarrow$
(if $(A \in \mathbb{C}, A, \mathbf{0})=\mathbf{0} \vee B=\mathbf{0}$)) by (rule MMI_orbi1d)
from S2 S4 have S5: A =
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$(((A \cdot B)=0 \longleftrightarrow(A=0 \vee B=0)) \longleftrightarrow$
$(($ if $(A \in \mathbb{C}, A, 0) \cdot B)=$
$\mathbf{0} \longleftrightarrow$
(if $(A \in \mathbb{C}, A, 0)=$
$0 \vee B=0$))) by (rule MMI_bibi12d)
have S 6 : $B=$
if $(B \in \mathbb{C}, B, 0) \longrightarrow$
(if $(A \in \mathbb{C}, A, 0) \cdot B)=$
(if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) • if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}$)) by (rule MMI_opreq2)
from S 6 have S 7 : $\mathrm{B}=$

```
if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
(( if ( A \in\mathbb{C},A,0) . B ) =
0}
( if ( A \in\mathbb{C , A , 0 ) . if ( B \in\mathbb{C , B , 0 ) ) =}}=\mathbf{=}
0 ) by (rule MMI_eqeq1d)
    have S8: B =
if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
( B = 0 \longleftrightarrow if ( B \in\mathbb{C}, B , 0 ) = 0 ) by (rule MMI_eqeq1)
    from S8 have S9: B =
if ( B \in\mathbb{C},B,0 ) \longrightarrow
(( if ( A \in\mathbb{C},A,0 ) = 0 \vee B = 0 ) \longleftrightarrow
(if ( A \in\mathbb{C},A,0) =
0 V if ( B \in\mathbb{C},B,0 ) = 0 ) ) by (rule MMI_orbi2d)
    from S7 S9 have S10: B =
if ( B \in\mathbb{C}, B , 0 ) }
((( if ( A \in\mathbb{C},A,0) . B ) = 0 \longleftrightarrow (if (A A C , A, 0 ) = 0
V B = 0 ) ) \longleftrightarrow
    (( if ( A \in\mathbb{C},A,0) . if ( B \in\mathbb{C},B,0) ) =
0}
    ( if ( A \in\mathbb{C},A,0 ) =
    0 V if ( B \in\mathbb{C}, B , 0 ) = 0 ) ) ) by (rule MMI_bibi12d)
        have S11: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
        from S11 have S12: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
        have S13: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
        from S13 have S14: if ( B \in\mathbb{C},B,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
        from S12 S14 have S15: ( if ( A \in\mathbb{C},A,0 ) . if ( B \in\mathbb{C},\textrm{B},
0 ) ) =
    0}
    (if (A\in\mathbb{C},A,0)=
    0 \vee if ( B \in\mathbb{C}, B , 0 ) = 0 ) by (rule MMI_mulOor)
        from S5 S10 S15 show ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }
    (( A P ) = 0 \longleftrightarrow ( A = 0 \vee B = 0 ) ) by (rule MMI_dedth2h)
qed
```

lemma (in MMIsar0) MMI_mulnObt:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$((A \neq 0 \wedge B \neq 0) \longleftrightarrow(A \cdot B) \neq 0)$
proof -
have S1: $(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$((A \cdot B)=0 \longleftrightarrow(A=\mathbf{0} \vee B=\mathbf{0}))$ by (rule MMI_mulOort)
from $S 1$ have $S 2:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
$(\neg((\mathrm{A} \cdot \mathrm{B})=0) \longleftrightarrow$
$\neg((A=0 \vee B=0))$) by (rule MMI_negbid)
have $\mathrm{S3}: \neg((A=0 \vee B=0)) \longleftrightarrow$
$(\neg(A=0) \wedge \neg(B=0))$ by (rule MMI_ioran)
from S2 S3 have $\mathrm{S} 4:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C}) \longrightarrow$
$((\neg(A=0) \wedge \neg(B=0)) \longleftrightarrow$

```
    \neg ( ( A . B ) = 0 ) ) by (rule MMI_syl6rbb)
    have S5: A }=0\longleftrightarrow\mp@code{0}(\textrm{A}=0\mathrm{ ) by (rule MMI_df_ne)
    have S6: B }=0\longleftrightarrow\mp@code{0}(\textrm{B}=0)\mathrm{ ) by (rule MMI_df_ne)
    from S5 S6 have S7: ( A f 0 ^ B = 0 ) \longleftrightarrow
    ( \neg ( A = 0 ) ^ ᄀ ( B = 0 ) ) by (rule MMI_anbi12i)
    have S8: ( A | B ) = 0 \longleftrightarrow }\longleftrightarrow( ( A | B ) = 0 ) by (rule MMI_df_ne)
    from S4 S7 S8 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( ( A f 0 ^ B = 0) ) < (A. B ) f 0 ) by (rule MMI_3bitr4g)
qed
lemma (in MMIsar0) MMI_muln0: assumes A1: A \in C
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: A}\not=0\mathrm{ and
    A4: B \not= 0
    shows ( A · B ) }=
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: A}\not=0\mathrm{ .
    from A4 have S4: B }=0\mathrm{ 0.
    from S3 S4 have S5: A \not= 0 ^ B \not= 0 by (rule MMI_pm3_2i)
    have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow
    ( ( A = 0 ^ B = 0 ) \longleftrightarrow ( A . B ) f 0 ) by (rule MMI_mulnObt)
    from S5 S6 have S7: ( A \in\mathbb{C}\wedge B \in\mathbb{C})\longrightarrow(A.B ) # 0 by (rule
MMI_mpbii)
    from S1 S2 S7 show ( A P B ) f= 0 by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_receu: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C}\mathrm{ and
    A3: A \not= 0
    shows }\exists!\textrm{x}.\textrm{x}\in\mathbb{C}\wedge(\textrm{A}\cdot\textrm{x})=
proof -
    {fix x y
        have S1: x = y \longrightarrow ( A . x ) = ( A . y ) by (rule MMI_opreq2)
        from S1 have S2: x = y \longrightarrow ( ( A | x ) = B \longleftrightarrow (A | y ) = B )
            by (rule MMI_eqeq1d)
    } then have S2: \forall x y. x = y \longrightarrow ( ( A | x ) = B \longleftrightarrow (A | y ) = B
)
        by simp
        from S2 have S3:
            ( \exists!x.x x C ^ ^(A.x ) = B ) \longleftrightarrow
            ( ( \exists x 化 . ( A | x ) = B ) ^
            ( }\forall\textrm{x}\in\mathbb{C}\cdot\forall\textrm{y}\in\mathbb{C}\cdot(((A\cdotx)=B\wedge(A\cdoty)=B)
x = y ) ) )
            by (rule MMI_reu4)
            from A1 have S4: A \in\mathbb{C}
            from A3 have S5: A }=0\mathrm{ 0.
    from S4 S5 have S6: \exists y \in\mathbb{C}.(A | y ) = 1 by (rule MMI_recex)
```

```
from A2 have \(\mathrm{S} 7: \mathrm{B} \in \mathbb{C}\).
    \{ fix y
    have S8: \((y \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(y \cdot B) \in \mathbb{C}\) by (rule MMI_axmulcl)
    from \(\mathrm{S7}\) S8 have \(\mathrm{S} 9: \mathrm{y} \in \mathbb{C} \longrightarrow(\mathrm{y} \cdot \mathrm{B}) \in \mathbb{C}\) by (rule MMI_mpan2)
    have S10: \((\mathrm{y} \cdot \mathrm{B}) \in \mathbb{C} \longleftrightarrow\)
        ( \(\exists \mathrm{x} \in \mathbb{C} \cdot \mathrm{x}=(\mathrm{y} \cdot \mathrm{B})\) ) by (rule MMI_risset)
    from S9 S10 have S11: \(y \in \mathbb{C} \longrightarrow(\exists \mathrm{x} \in \mathbb{C} \cdot \mathrm{x}=(\mathrm{y} \cdot \mathrm{B})\) )
        by (rule MMI_sylib)
    \{ fix x
        have S12: \(\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow\)
( A • x ) = ( A • ( y • B ) ) by (rule MMI_opreq2)
    from A1 have S13: \(A \in \mathbb{C}\).
        from A2 have S14: \(B \in \mathbb{C}\).
        have S15: \((A \in \mathbb{C} \wedge y \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow\)
( ( \(\mathrm{A} \cdot \mathrm{y}\) ) \(\cdot \mathrm{B})=(\mathrm{A} \cdot(\mathrm{y} \cdot \mathrm{B})\) ) by (rule MMI_axmulass)
        from S13 S14 S15 have S16: y \(\in \mathbb{C} \longrightarrow\)
( ( A \(\cdot \mathrm{y}\) ) \(\cdot \mathrm{B}\) ) \(=(\mathrm{A} \cdot(\mathrm{y} \cdot \mathrm{B})\) ) by (rule MMI_mp3an13)
        from S16 have S17: \(y \in \mathbb{C} \longrightarrow\)
\((\mathrm{A} \cdot(\mathrm{y} \cdot \mathrm{B}))=((\mathrm{A} \cdot \mathrm{y}) \cdot \mathrm{B})\) by (rule MMI_eqcomd)
    from S12 S17 have S18: \((y \in \mathbb{C} \wedge x=\)
( \(\mathrm{y} \cdot \mathrm{B}\) ) ) \(\longrightarrow\)
( A \(\cdot \mathrm{x}\) ) \(=((\mathrm{A} \cdot \mathrm{y}) \cdot \mathrm{B})\) by (rule MMI_sylan9eqr)
        have S19: ( A • y ) =
\(1 \longrightarrow((A \cdot y) \cdot B)=(1 \cdot B)\) by (rule MMI_opreq1)
    from A2 have \(\mathrm{S} 20: \mathrm{B} \in \mathbb{C}\).
    from S20 have S21: ( 1 . B ) = B by (rule MMI_mulid2)
    from S19 S21 have S22: ( \(\mathrm{A} \cdot \mathrm{y}\) ) \(=\mathbf{1} \longrightarrow((\mathrm{A} \cdot \mathrm{y}) \cdot \mathrm{B})=\mathrm{B}\)
by (rule MMI_syl6eq)
    from S18 S22 have S23:
\(((A \cdot y)=1 \wedge(y \in \mathbb{C} \wedge x=\)
\((\mathrm{y} \cdot \mathrm{B}) \mathrm{)}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B}\) by (rule MMI_sylan9eqr)
    from S23 have S24:
\((\mathrm{A} \cdot \mathrm{y})=\mathbf{1} \longrightarrow \quad(\mathrm{y} \in \mathbb{C} \longrightarrow\)
\((\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B})\) ) by (rule MMI_exp32)
        from S24 have S25: \((y \in \mathbb{C} \wedge(A \cdot y)=\)
1 ) \(\longrightarrow\)
\((\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B})\) by (rule MMI_impcom)
    from S25 have
\((\mathrm{y} \in \mathbb{C} \wedge(\mathrm{A} \cdot \mathrm{y})=\mathbf{1}) \longrightarrow(\mathrm{x} \in \mathbb{C} \longrightarrow\)
\((\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B})\) ) by (rule MMI_a1d)
        \} then have S26:
\(\forall x .(y \in \mathbb{C} \wedge(A \cdot y)=1) \longrightarrow(x \in \mathbb{C} \longrightarrow\)
\((\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B})\) ) by simp
    from S26 have S27:
\((\mathrm{y} \in \mathbb{C} \wedge(\mathrm{A} \cdot \mathrm{y})=1) \longrightarrow\)
\((\forall \mathrm{x} \in \mathbb{C} .(\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B})\) ) by (rule MMI_r19_21aiv)
        from S27 have S28: y \(\in \mathbb{C} \longrightarrow\)
\(((\mathrm{A} \cdot \mathrm{y})=1 \longrightarrow\)
\((\forall \mathrm{x} \in \mathbb{C} \cdot(\mathrm{x}=(\mathrm{y} \cdot \mathrm{B}) \longrightarrow(\mathrm{A} \cdot \mathrm{x})=\mathrm{B})\) ) ) by (rule MMI_ex)
```

```
    have S29:( }\forall\textrm{x}\in\mathbb{C}.(\textrm{x}=(\textrm{y}\cdot\textrm{B})\longrightarrow(\textrm{A}\cdot\textrm{x})=\textrm{B}))
    ((\existsx\in\mathbb{C}\cdotx=(y\cdotB)) \longrightarrow
    ( \exists x \in \mathbb{C . ( A P x ) = B ) ) by (rule MMI_r19_22)}
        from S28 S29 have S30:
    y }\in\mathbb{C}\longrightarrow((A\cdoty)=1
    ((\exists x 化. x = ( y . B ) ) }
    ( \exists x 化 . ( A . x ) = B ) ) ) by (rule MMI_syl6)
        from S11 S30 have
    y \in\mathbb{C}\longrightarrow((A\cdoty) = 1 \longrightarrow ( 
    by (rule MMI_mpid)
        } then have S31:
    y . y \in\mathbb{C}\longrightarrow((A\cdoty) = 1\longrightarrow(\exists\textrm{x}\in\mathbb{C}.(A\cdotx)=B
) )
    by simp
    from S31 have S32: ( }\exists\textrm{y}\in\mathbb{C}.(\textrm{A}\cdot\textrm{y})
1 ) }\longrightarrow(\exists\textrm{x}\in\mathbb{C}.(A\cdotx ) = B ) by (rule MMI_r19_23aiv
    from S6 S32 have S33: \exists x \in C . ( A | x ) = B by (rule MMI_ax_mp)
    from A1 have S34: A }\in\mathbb{C}\mathrm{ .
    from A3 have S35: A \not=0.
    { fix x y
from S35 have S36: ( A \in\mathbb{C}\wedgex\in\mathbb{C}\wedge y\in\mathbb{C})\longrightarrow
    ( ( A | x ) = ( A | y ) \longleftrightarrow x = y ) by (rule MMI_mulcant2)
have S37:
    ( ( A P ) = B ^ ( A | y ) =
    B ) }\longrightarrow(A\cdotx ) = ( A | y ) by (rule MMI_eqtr3t)
from S36 S37 have S38: ( A \in\mathbb{C}\wedgex\in\mathbb{C}\wedge y\in\mathbb{C})\longrightarrow
    (( (A P x ) = B ^( A | y ) = B ) \longrightarrow
    x = y ) by (rule MMI_syl5bi)
from S34 S38 have ( }x\in\mathbb{C}\wedgey\in\mathbb{C})
    ( ( ( A | x ) = B ^ ( A | y ) = B ) \longrightarrow
    x = y ) by (rule MMI_mp3an1)
        } then have S39: }\forall\textrm{x}y.(\textrm{x}\in\mathbb{C}\wedge\textrm{y}\in\mathbb{C})
    (( (A\cdotx) = B ^(A}A\cdoty)= B ) \longrightarrow
    x = y ) by auto
        from S39 have S40:
    x 化. }\forall\textrm{y}\in\mathbb{C}.(((A\cdotx)=B^(A\cdoty)=B)
    x = y ) by (rule MMI_rgen2)
        from S3 S33 S40 show \exists! x . x \in C ^ ( A c x ) = B by (rule MMI_mpbir2an)
qed
```

lemma (in MMIsar0) MMI_divval: assumes $A \in \mathbb{C} \quad B \in \mathbb{C} B \neq 0$
shows $A / B=\bigcup\{x \in \mathbb{C} \cdot B \cdot x=A\}$
using cdiv_def by simp

```
lemma (in MMIsar0) MMI_divmul: assumes A1: A \(\in \mathbb{C}\) and
    A2: \(B \in \mathbb{C}\) and
    A3: \(C \in \mathbb{C}\) and
    A4: \(B \neq 0\)
    shows \((A / B)=C \longleftrightarrow(B \cdot C)=A\)
proof -
    from \(A 3\) have \(S 1: C \in \mathbb{C}\).
    \{ fix x
        have S2: \(\mathrm{x}=\)
            \(\mathrm{C} \longrightarrow((\mathrm{A} / \mathrm{B})=\mathrm{x} \longleftrightarrow(\mathrm{A} / \mathrm{B})=\mathrm{C})\) by (rule MMI_eqeq2)
        have \(S 3: x=C \longrightarrow(B \cdot x)=(B \cdot C)\) by (rule MMI_opreq2)
        from S3 have S 4 : \(\mathrm{x}=\)
            \(\mathrm{C} \longrightarrow((\mathrm{B} \cdot \mathrm{x})=\mathrm{A} \longleftrightarrow(\mathrm{B} \cdot \mathrm{C})=\mathrm{A})\) by (rule MMI_eqeq1d)
        from S2 S4 have
            \(\mathrm{x}=\mathrm{C} \longrightarrow\)
            \((((A / B)=x \longleftrightarrow(B \cdot x)=A) \longleftrightarrow\)
            \(((A / B)=C \longleftrightarrow(B \cdot C)=A))\) by (rule MMI_bibi12d)
    \} then have \(\mathrm{S} 5: \forall \mathrm{x} . \mathrm{x}=\mathrm{C} \longrightarrow\)
            \((((A / B)=x \longleftrightarrow(B \cdot x)=A) \longleftrightarrow\)
            \(((A / B)=C \longleftrightarrow(B \cdot C)=A))\)
        by simp
    from A2 have \(\mathrm{S} 6: \mathrm{B} \in \mathbb{C}\).
    from \(A 1\) have \(S 7: A \in \mathbb{C}\).
    from \(A 4\) have \(S 8: B \neq 0\).
    from S6 S7 S8 have S9: \(\exists!\mathrm{x} . \mathrm{x} \in \mathbb{C} \wedge(\mathrm{B} \cdot \mathrm{x})=\mathrm{A}\) by (rule MMI_receu)
    \{ fix x
        have S10: \((x \in \mathbb{C} \wedge(\exists!x . x \in \mathbb{C} \wedge(B \cdot x)=A)) \longrightarrow\)
            ( ( B • x ) \(=\)
            \(\mathrm{A} \longleftrightarrow \bigcup\{\mathrm{x} \in \mathbb{C} .(\mathrm{B} \cdot \mathrm{x})=\mathrm{A}\}=\mathrm{x}\) ) by (rule MMI_reuuni1)
        from S9 S10 have
                        \(x \in \mathbb{C} \longrightarrow((B \cdot x)=A \longleftrightarrow \bigcup\{x \in \mathbb{C} \cdot(B \cdot x)=A\}=\)
x )
        by (rule MMI_mpan2)
    \} then have S11:
        \(\forall x . x \in \mathbb{C} \longrightarrow((B \cdot x)=A \longleftrightarrow \bigcup\{x \in \mathbb{C} \cdot(B \cdot x)=A\)
\(\}=x\) )
        by blast
    from A1 have S12: \(A \in \mathbb{C}\).
    from A2 have \(\mathrm{S} 13: \mathrm{B} \in \mathbb{C}\).
    from A4 have S14: \(B \neq 0\).
    from S12 S13 S14 have S15: ( A / B ) =
        \(\bigcup\{x \in \mathbb{C} .(B \cdot x)=A\}\) by (rule MMI_divval)
    from S15 have S16: \(\forall \mathrm{x}\). ( \(\mathrm{A} / \mathrm{B}\) ) \(=\)
        \(\mathrm{x} \longleftrightarrow \bigcup\{\mathrm{x} \in \mathbb{C} \cdot(\mathrm{B} \cdot \mathrm{x})=\mathrm{A}\}=\mathrm{x}\) by \(\operatorname{simp}\)
    from S11 S16 have S17: \(\forall \mathrm{x} . \mathrm{x} \in \mathbb{C} \longrightarrow\)
        \(((A / B)=x \longleftrightarrow(B \cdot x)=A)\) by (rule MMI_syl6rbbr)
    from S5 S17 have S18: \(C \in \mathbb{C} \longrightarrow\)
        \(((A / B)=C \longleftrightarrow(B \cdot C)=A)\) by (rule MMI_vtoclga)
```

from S 1 S 18 show $(\mathrm{A} / \mathrm{B})=\mathrm{C} \longleftrightarrow(\mathrm{B} \cdot \mathrm{C})=\mathrm{A}$ by (rule MMI_ax_mp) qed
lemma (in MMIsar0) MMI_divmulz: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$
shows $\mathrm{B} \neq 0 \longrightarrow$
$((A / B)=C \longleftrightarrow(B \cdot C)=A)$
proof -
have S1: $B=$
if $(B \neq 0, B, 1) \longrightarrow$
(A / B) $=$
($\mathrm{A} /$ if $(\mathrm{B} \neq \mathbf{0}, \mathrm{B}, \mathbf{1})$) by (rule MMI_opreq2)
from S 1 have $\mathrm{S} 2: \mathrm{B}=$
if $(B \neq 0, B, 1) \longrightarrow$
$((A / B))=$
$C \longleftrightarrow(A / \operatorname{if}(B \neq 0, B, 1))=C)$ by (rule MMI_eqeq1d) have S3: $B=$
if $(B \neq 0, B, 1) \longrightarrow$
($\mathrm{B} \cdot \mathrm{C}$) $=$
(if ($\mathrm{B} \neq \mathbf{0}, \mathrm{B}, \mathbf{1}$) • C) by (rule MMI_opreq1)
from S3 have S4: $B=$
if $(B \neq \mathbf{0}, B, 1) \longrightarrow$
$((B \cdot C)=$
$A \longleftrightarrow$ (if $(B \neq 0, B, 1) \cdot C)=A)$ by (rule MMI_eqeq1d) from S 2 S 4 have S 5 : $\mathrm{B}=$
if $(B \neq \mathbf{0}, B, 1) \longrightarrow$
$(((A / B)=C \longleftrightarrow(B \cdot C)=A) \longleftrightarrow$
$((A /$ if $(B \neq 0, B, 1))=$
$C \longleftrightarrow$
(if ($\mathrm{B} \neq \mathbf{0}, \mathrm{B}, \mathbf{1}$) $\cdot \mathrm{C}$) = A)) by (rule MMI_bibi12d)
from $A 1$ have $S 6: A \in \mathbb{C}$.
from $A 2$ have $57: B \in \mathbb{C}$.
have $\mathrm{S8}: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from S7 S8 have S9: if $(B \neq \mathbf{0}, B, 1) \in \mathbb{C}$ by (rule MMI_keepel)
from $A 3$ have $S 10: C \in \mathbb{C}$.
have S11: if ($B \neq \mathbf{0}, \mathrm{B}, \mathbf{1}$) $\neq \mathbf{0}$ by (rule MMI_elimne0)
from S6 S9 S10 S11 have S12: ($\mathrm{A} /$ if $(\mathrm{B} \neq \mathbf{0}, \mathrm{B}, \mathbf{1})$) $=$
$\mathrm{C} \longleftrightarrow$ (if $(\mathrm{B} \neq \mathbf{0}, \mathrm{B}, \mathbf{1}) \cdot \mathrm{C})=\mathrm{A}$ by (rule MMI_divmul)
from S 5 S 12 show $\mathrm{B} \neq \mathbf{0} \longrightarrow$
$((A / B)=C \longleftrightarrow(B \cdot C)=A)$ by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_divmult:
shows $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge B \neq \mathbf{0}) \longrightarrow$
$((A / B)=C \longleftrightarrow(B \cdot C)=A)$
proof -
have $\mathrm{S} 1: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$

```
(A / B ) =
( if ( A \in\mathbb{C},A,0 ) / B ) by (rule MMI_opreq1)
    from S1 have S2: A =
if ( A \in\mathbb{C},A,0 ) \longrightarrow
( ( A / B ) =
C \longleftrightarrow( if ( A \in\mathbb{C},A,0 ) / B ) = C ) by (rule MMI_eqeq1d)
    have S3: A =
if ( A \in\mathbb{C},A,0 )}
( (B.C ) =
A \longleftrightarrow( B | C ) = if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_eqeq2)
    from S2 S3 have S4: A =
if ( A \in\mathbb{C},A,0)\longrightarrow
(( (A/B) = C \longleftrightarrow ( B C C ) = A ) \longleftrightarrow
(( if ( A \in\mathbb{C},A,0)/B) =
C}
( B . C ) = if ( A \in\mathbb{C},A,0 ) ) ) by (rule MMI_bibi12d)
    from S4 have S5: A =
if ( A \in\mathbb{C},A,0 ) \longrightarrow
(( B = 0 \longrightarrow (( A / B ) = C \longleftrightarrow ( B | C ) = A ) ) \longleftrightarrow
(B\not=0}
(( if ( A \in\mathbb{C},A,0 ) / B ) =
C \longleftrightarrow
( B.C ) = if ( A G C , A , 0 ) ) ) ) by (rule MMI_imbi2d)
    have S6: B =
if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
( B = 0 \longleftrightarrow if ( B \in\mathbb{C}, B , 0 ) \not= 0 ) by (rule MMI_neeq1)
    have S7: B =
if ( B \in\mathbb{C},B,0 ) }
(if (A\in\mathbb{C},A,0)/B)=
( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_opreq2)
        from S7 have S8: B =
if ( B \in\mathbb{C},B,0 ) \longrightarrow
(( if (A A C , A , 0 ) / B ) =
C}
( if ( A \in\mathbb{C},A,0)/ if ( B \in\mathbb{C},B,0 ) ) =
C ) by (rule MMI_eqeq1d)
    have S9: B =
if ( B \in\mathbb{C}, B , O ) }
(B.C ) =
( if ( B \in\mathbb{C , B , 0 ) . C ) by (rule MMI_opreq1)}
    from S9 have S10: B =
if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
( ( B | C ) =
if (A}\in\mathbb{C},A,0)
( if ( B \in\mathbb{C}, B , 0 ) . C ) =
if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_eqeq1d)
    from S8 S10 have S11: B =
if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
(( ( if ( A \in\mathbb{C},A,0) / B ) = C \longleftrightarrow ( B C C ) = if ( A \in\mathbb{C},A
```

```
,0 ) ) \longleftrightarrow
    (( if ( A \in\mathbb{C},A,0) / if ( B \in\mathbb{C},B,0) ) =
    C \longleftrightarrow
    ( if ( B \in\mathbb{C , B , 0 ) . C ) =}
    if ( A \in\mathbb{C},A,0 ) ) ) by (rule MMI_bibi12d)
    from S6 S11 have S12: B =
    if ( B \in\mathbb{C},B,0 ) 
    (( B = 0 \longrightarrow ( ( if ( A \in\mathbb{C},A,0) / B ) = C \longleftrightarrow (B.C ) = if
(A\in\mathbb{C},A,0) ) ) \longleftrightarrow
    ( if ( B \in\mathbb{C}, B , 0 ) = 0 \longrightarrow
    (( if ( A \in\mathbb{C},A,0)/ if (B\in\mathbb{C},B,0) ) =
    C}
    ( if ( B \in\mathbb{C}, B , 0 ) . C ) =
    if ( A \in\mathbb{C}, A , 0 ) ) ) ) by (rule MMI_imbi12d)
        have S13: C =
    if (C\in\mathbb{C},C,0 ) }
    (( if ( A \in\mathbb{C},A,0) / if ( B \in\mathbb{C},B,0) ) =
    C }
    ( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C},B,0 ) ) =
    if (C C \mathbb{C , C , O ) ) by (rule MMI_eqeq2)}
        have S14: C =
    if (C C \mathbb{C},C,0 )}
    ( if ( B \in\mathbb{C}, B , 0 ) . C ) =
    ( if ( B \in\mathbb{C}, B , 0 ) . if ( C \in\mathbb{C , C , 0 ) ) by (rule MMI_opreq2)}
        from S14 have S15: C =
    if (C\in\mathbb{C},C,0 ) \longrightarrow
    (( if ( B \in\mathbb{C},\textrm{B},\mathbf{0})\cdotC ) =
    if (A}\in\mathbb{C},A,0)
    (if ( B \in\mathbb{C},\textrm{B},\mathbf{0})\cdotif(C\in\mathbb{C},C,0}))
    if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_eqeq1d)
    from S13 S15 have S16: C =
    if ( C \in\mathbb{C},C,0 ) }
    (((if ( A \in\mathbb{C},A,0) / if ( B \in\mathbb{C},B,0) ) = C \longleftrightarrow (if (
B}\in\mathbb{C},B,0)\cdotC)= if (A\in\mathbb{C},A,0))
    (( if ( A \in\mathbb{C},A,0) / if ( B \in\mathbb{C},B,0) ) =
    if (C C\mathbb{C},C,0) \longleftrightarrow
    ( if ( B \in\mathbb{C}, B , 0 ) . if ( C \in\mathbb{C , C , 0 ) ) =}
    if ( A \in\mathbb{C},A,0 ) ) ) by (rule MMI_bibi12d)
            from S16 have S17: C =
    if ( C G \mathbb{C C , 0 ) }\longrightarrow
    (( if ( B \in\mathbb{C},B,0) = 0 \longrightarrow (( if ( A \in\mathbb{C},A,0) / if ( B
C\mathbb{C},B,0) ) = C \longleftrightarrow (if ( B \in\mathbb{C},B,0)
A , 0 ) ) ) \longleftrightarrow
    ( if ( B \in\mathbb{C}, B , 0 ) # 0 }
    (( if ( A \in\mathbb{C},A,0)/ if ( B \in\mathbb{C},B,0) ) =
    if (C C\mathbb{C},C,0)}
    ( if ( B \in\mathbb{C}, B, 0 ) . if ( C \in\mathbb{C},C,0 ) ) =
    if ( A \in\mathbb{C},A,0 ) ) ) ) by (rule MMI_imbi2d)
    have S18: 0 \in C by (rule MMI_0cn)
```

```
    from S18 have S19: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    have S20: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from S20 have S21: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S22: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S22 have S23: if ( C \in\mathbb{C},C,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    from S19 S21 S23 have S24: if ( B \in\mathbb{C}, B , 0 ) \not= 0}
    (( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C},B,0 ) ) =
    if (C C \mathbb{C},C,0) \longleftrightarrow
    ( if ( B \in\mathbb{C},\textrm{B},\mathbf{0})\cdot\mathrm{ if ( C }\in\mathbb{C},C,0 ) ) =
    if ( A \in\mathbb{C},A,0 ) ) by (rule MMI_divmulz)
    from S5 S12 S17 S24 have S25: (A A C ^B G C ^C C C C ) }
    ( B # 0 \longrightarrow
    ( ( A / B ) = C \longleftrightarrow ( B . C ) = A ) ) by (rule MMI_dedth3h)
    from S25 show ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeB\not=0 ) \longrightarrow
    ( ( A / B ) = C \longleftrightarrow ( B . C ) = A ) by (rule MMI_imp)
qed
lemma (in MMIsarO) MMI_divmul2t:
        shows ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeB\not=0)}
    ( (A/B ) = C \longleftrightarrowA = ( B C C ) )
proof -
            have S1:( ( A G C ^ B \in\mathbb{C}^C\in\mathbb{C ) ^ B = 0 ) \longrightarrow}
    ( ( A / B ) = C \longleftrightarrow ( B . C ) = A ) by (rule MMI_divmult)
        have S2: ( B . C ) = A \longleftrightarrow A = ( B . C ) by (rule MMI_eqcom)
        from S1 S2 show ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeB\not=0 ) \longrightarrow
    ( ( A / B ) = C \longleftrightarrow A = ( B . C ) ) by (rule MMI_syl6bb)
qed
lemma (in MMIsar0) MMI_divmul3t:
        shows ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeB\not=0) \longrightarrow
    ( ( A / B ) = C \longleftrightarrowA = (C . B ) )
proof -
        have S1: ( ( A \in\mathbb{C ^ B G C ^ C G C ) ^ B # 0 ) }\longrightarrow
    ( ( A / B ) = C \longleftrightarrow A = ( B . C ) ) by (rule MMI_divmul2t)
        have S2: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B . C ) = ( C . B ) by (rule MMI_axmulcom)
        from S2 have S3: ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A = ( B | C ) \longleftrightarrowA = ( C . B ) ) by (rule MMI_eqeq2d)
        from S3 have S4: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( A = ( B C C ) \longleftrightarrow A = ( C . B ) ) by (rule MMI_3adant1)
        from S4 have S5: ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C ) ^B f=0 ) \longrightarrow}
    ( A = ( B . C ) \longleftrightarrow A = ( C . B ) ) by (rule MMI_adantr)
        from S1 S5 show ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C}) ^B\not=0 ) \longrightarrow
    ( ( A / B ) = C \longleftrightarrow A = ( C . B ) ) by (rule MMI_bitrd)
qed
lemma (in MMIsar0) MMI_divcl: assumes A1: A \in \mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: B }\not=
```

```
    shows ( A / B ) \in\mathbb{C}
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B \in\mathbb{C}
    from A3 have S3: B }\not=0\mathrm{ 0.
    from S1 S2 S3 have S4: ( A / B ) =
    U{x\in\mathbb{C}.(B\cdotx ) = A } by (rule MMI_divval)
    from A2 have S5: B }\in\mathbb{C}\mathrm{ .
    from A1 have S6: A }\in\mathbb{C}\mathrm{ .
    from A3 have S7: B }=0\mathrm{ 0.
    from S5 S6 S7 have S8: \exists! x . x \in \mathbb{C ^ ( B · x ) = A by (rule MMI_receu)}
    have S9: ( \exists! x . x \in\mathbb{C}\wedge ( B . x ) =
    A) \longrightarrowU{ x 化.( B . x ) = A } \in\mathbb{C}}\mathrm{ by (rule MMI_reucl)
    from S8 S9 have S10: \bigcup {x \in \mathbb{C . ( B | x ) = A } \in\mathbb{C}}\mathrm{ by (rule MMI_ax_mp)}
    from S4 S10 show ( A / B ) \in\mathbb{C}}\mathrm{ by (rule MMI_eqeltr)
qed
lemma (in MMIsar0) MMI_divclz: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C
    shows B =0 \longrightarrow ( A / B ) \in\mathbb{C}
proof -
    have S1: B =
    if ( B = 0 , B , 1 ) }
    (A/B ) =
    ( A / if ( B \not= 0 , B , 1 ) ) by (rule MMI_opreq2)
        from S1 have S2: B =
    if ( B = 0 , B , 1 ) }
    ( ( A / B ) \in\mathbb{C}\longleftrightarrow
    ( A / if ( B = 0 , B , 1 ) ) \in\mathbb{C ) by (rule MMI_eleq1d)}
        from A1 have S3: A }\in\mathbb{C}\mathrm{ .
        from A2 have S4: B }\in\mathbb{C}\mathrm{ .
        have S5: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
        from S4 S5 have S6: if ( B = 0 , B , 1 ) \in\mathbb{C}}\mathrm{ by (rule MMI_keepel)
        have S7: if ( B \not= 0 , B , 1 ) \not= 0 by (rule MMI_elimne0)
    from S3 S6 S7 have S8: ( A / if ( B \not=0 , B , 1 ) ) \in\mathbb{C}}\mathrm{ by (rule
MMI_divcl)
    from S2 S8 show B # 0 \longrightarrow (A / B ) \in\mathbb{C}\mathrm{ by (rule MMI_dedth)}
qed
```

lemma (in MMIsar0) MMI_divclt:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge B \neq 0) \longrightarrow$
$(\mathrm{A} / \mathrm{B}) \in \mathbb{C}$
proof -
have $\mathrm{S} 1: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
(A / B) $=$

```
    ( if ( A \in C , A , 0 ) / B ) by (rule MMI_opreq1)
    from S1 have S2: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ( (A/B ) \in\mathbb{C}\longleftrightarrow
    ( if ( A \in\mathbb{C , A , 0 ) / B ) \in C ) by (rule MMI_eleq1d)}
        from S2 have S3: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    (( B = 0 \longrightarrow (A/B) \in\mathbb{C})\longleftrightarrow
    (B\not=0}
    ( if ( A \in\mathbb{C , A , 0 ) / B ) \in\mathbb{C ) ) by (rule MMI_imbi2d)}}\mathbf{~}=\mp@code{M}
        have S4: B =
    if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
    ( B = 0 \longleftrightarrow if ( B \in\mathbb{C}, B , 0 ) # 0 ) by (rule MMI_neeq1)
    have S5: B =
    if ( B \in\mathbb{C}, B , O ) }
    ( if ( A \in\mathbb{C},A,0 ) / B ) =
    ( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C}, B , 0 ) ) by (rule MMI_opreq2)
        from S5 have S6: B =
    if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
    (( if ( A \in\mathbb{C},A,0 ) / B ) \in\mathbb{C}\longleftrightarrow
    ( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C},B,0 ) ) \in\mathbb{C}) by (rule MMI_eleq1d)
        from S4 S6 have S7: B =
    if ( B \in\mathbb{C},B,0) \longrightarrow
```



```
    ( if ( B \in\mathbb{C}, B , 0 ) # 0 \longrightarrow
```



```
        have S8: 0 \in \mathbb{C by (rule MMI_Ocn)}
        from S8 have S9: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
        have S10: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
        from S10 have S11: if ( B \in\mathbb{C},B,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    from S9 S11 have S12: if ( B \in\mathbb{C},B,0 ) = 0 \longrightarrow
    ( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C}, B , 0 ) ) \in\mathbb{C}}\mathrm{ by (rule MMI_divclz)
    from S3 S7 S12 have S13: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }\longrightarrow
    ( B = 0 \longrightarrow ( A / B ) \in\mathbb{C}) by (rule MMI_dedth2h)
    from S13 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=\mathbf{0})
    ( A / B ) \in\mathbb{C}}\mathrm{ by (rule MMI_3impia)
qed
lemma (in MMIsar0) MMI_reccl: assumes A1: A \in\mathbb{C}}\mathrm{ and
        A2: A }=
    shows ( 1 / A ) \in\mathbb{C}
proof -
    have S1: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from A1 have S2: A }\in\mathbb{C}\mathrm{ .
    from A2 have S3: A}\not=0\mathrm{ 0.
    from S1 S2 S3 show ( 1 / A ) \in\mathbb{C}}\mathrm{ by (rule MMI_divcl)
qed
lemma (in MMIsar0) MMI_recclz: assumes A1: A \in\mathbb{C}
```

```
    shows \(\mathrm{A} \neq \mathbf{0} \longrightarrow(\mathbf{1} / \mathrm{A}) \in \mathbb{C}\)
proof -
    have \(S 1: 1 \in \mathbb{C}\) by (rule MMI_1cn)
    from A1 have \(\mathrm{S} 2: \mathrm{A} \in \mathbb{C}\).
    from S 1 S 2 show \(\mathrm{A} \neq \mathbf{0} \longrightarrow(1 / \mathrm{A}) \in \mathbb{C}\) by (rule MMI_divclz)
qed
lemma (in MMIsar0) MMI_recclt:
    shows \((A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(1 / A) \in \mathbb{C}\)
proof -
    have S1: \(1 \in \mathbb{C}\) by (rule MMI_1cn)
    have \(\operatorname{S2:~}(1 \in \mathbb{C} \wedge A \in \mathbb{C} \wedge A \neq 0) \longrightarrow\)
    ( \(1 / \mathrm{A}\) ) \(\in \mathbb{C}\) by (rule MMI_divclt)
    from \(S 1\) S2 show \((A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(1 / A) \in \mathbb{C}\) by (rule MMI_mp3an1)
qed
lemma (in MMIsar0) MMI_divcan2: assumes A1: \(A \in \mathbb{C}\) and
    A2: \(B \in \mathbb{C}\) and
    A3: \(A \neq 0\)
    shows ( A • ( B / A ) ) = B
proof -
    have S1: ( B / A ) = ( B / A ) by (rule MMI_eqid)
    from \(A 2\) have \(S 2: B \in \mathbb{C}\).
    from \(A 1\) have \(S 3: A \in \mathbb{C}\).
    from \(A 2\) have \(S 4: B \in \mathbb{C}\).
    from A1 have \(\mathrm{S} 5: \mathrm{A} \in \mathbb{C}\).
    from \(A 3\) have \(\mathrm{S} 6: \mathrm{A} \neq 0\).
    from S4 S5 S6 have S7: ( B / A ) \(\in \mathbb{C}\) by (rule MMI_divcl)
    from \(A 3\) have \(S 8: A \neq 0\).
    from S2 S3 S7 S8 have S9: ( \(\mathrm{B} / \mathrm{A}\) ) \(=\)
    \((\mathrm{B} / \mathrm{A}) \longleftrightarrow(\mathrm{A} \cdot(\mathrm{B} / \mathrm{A}))=\mathrm{B}\) by (rule MMI_divmul)
    from S1 S9 show ( A • ( B / A ) ) = B by (rule MMI_mpbi)
qed
lemma (in MMIsar0) MMI_divcan1: assumes A1: \(A \in \mathbb{C}\) and
    A2: \(B \in \mathbb{C}\) and
    A3: \(A \neq 0\)
    shows ( ( B / A ) • A ) = B
proof -
    from \(A 2\) have \(\mathrm{S} 1: \mathrm{B} \in \mathbb{C}\).
    from \(A 1\) have \(S 2: A \in \mathbb{C}\).
    from \(A 3\) have \(\mathrm{S} 3: \mathrm{A} \neq 0\).
    from S1 S2 S3 have S4: ( B / A ) \(\in \mathbb{C}\) by (rule MMI_divcl)
    from \(A 1\) have \(\mathrm{S} 5: \mathrm{A} \in \mathbb{C}\).
    from S4 S5 have S6: ( ( B / A ) • A ) = ( A • ( B / A ) ) by (rule
MMI_mulcom)
    from A1 have \(\mathrm{S7}: \mathrm{A} \in \mathbb{C}\).
    from \(A 2\) have \(\mathrm{S} 8: \mathrm{B} \in \mathbb{C}\).
    from \(A 3\) have \(59: A \neq 0\).
```

from S7 S8 S9 have S10: (A . (B / A)) = B by (rule MMI_divcan2)
from S 6 S 10 show ((B / A) • A) = B by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_divcan1z: assumes A1: $A \in \mathbb{C}$ and A2: $B \in \mathbb{C}$
shows $A \neq 0 \longrightarrow((B / A) \cdot A)=B$
proof -
have S1: $\mathrm{A}=$
if $(A \neq 0, A, 1) \longrightarrow$
(B / A) $=$
($\mathrm{B} /$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1})$) by (rule MMI_opreq2)
have S 2 : $\mathrm{A}=$
if $(A \neq 0, A, 1) \longrightarrow$
$\mathrm{A}=$ if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1$) by (rule MMI_id)
from S 1 S2 have $S 3$: $A=$
if $(A \neq 0, A, 1) \longrightarrow$
($(\mathrm{B} / \mathrm{A}) \cdot \mathrm{A})=$
(($\mathrm{B} /$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1)$) if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$)) by (rule MMI_opreq12d)
from S 3 have S 4 : $\mathrm{A}=$
if $(A \neq 0, A, 1) \longrightarrow$
(($\mathrm{B} / \mathrm{A}) \cdot \mathrm{A})=$
$B \longleftrightarrow$
(($\mathrm{B} /$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1)) \cdot$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1))=$
B) by (rule MMI_eqeq1d)
from $A 1$ have $S 5: A \in \mathbb{C}$.
have $56: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from S 5 S 6 have S 7 : if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}) \in \mathbb{C}$ by (rule MMI_keepel)
from $A 2$ have $S 8: B \in \mathbb{C}$.
have S9: if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}) \neq \mathbf{0}$ by (rule MMI_elimne0)
from S7 S8 S9 have S 10 : (($\mathrm{B} / \mathrm{if}(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1$)) • if ($\mathrm{A} \neq$
0 , A , 1)) =
B by (rule MMI_divcan1)
from S4 S10 show $\mathrm{A} \neq 0 \longrightarrow((\mathrm{~B} / \mathrm{A}) \cdot \mathrm{A})=\mathrm{B}$ by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_divcan2z: assumes A1: A $\in \mathbb{C}$ and
A2: $B \in \mathbb{C}$
shows $A \neq 0 \longrightarrow(A \cdot(B / A))=B$
proof -
have S 1 : $\mathrm{A}=$
if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1$) \longrightarrow
$\mathrm{A}=$ if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1$) by (rule MMI_id)
have $\mathrm{S} 2: \mathrm{A}=$
if $(A \neq 0, A, 1) \longrightarrow$
(B / A) $=$
($\mathrm{B} /$ if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$)) by (rule MMI_opreq2)
from S1 S2 have S3: A =
if $(A \neq \mathbf{0}, A, 1) \longrightarrow$

```
(A.(B / A ) ) =
    ( if ( A = 0 , A , 1 ) . ( B / if ( A = 0 , A , 1 ) ) ) by (rule MMI_opreq12d)
    from S3 have S4: A =
if ( A = 0 , A , 1 ) \longrightarrow
( (A.(B/A ) ) =
B}
( if ( A f 0 , A , 1 ) . ( B / if ( A f 0 , A , 1 ) ) ) =
B ) by (rule MMI_eqeq1d)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    have S6: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S5 S6 have S7: if ( A # 0 , A , 1 ) \in \mathbb{C by (rule MMI_keepel)}
    from A2 have S8: B }\in\mathbb{C}\mathrm{ .
    have S9: if ( A f 0 , A , 1 ) = 0 by (rule MMI_elimne0)
    from S7 S8 S9 have S10: ( if ( A = 0 , A , 1 ) . ( B / if ( A f=0
, A , 1 ) ) ) =
B by (rule MMI_divcan2)
    from S4 S10 show A = 0 \longrightarrow ( A . ( B / A ) ) = B by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_divcan1t:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( ( B / A ) . A ) = B
proof -
    have S1: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ( A \not=0\longleftrightarrow if ( A \in\mathbb{C , A , 0 ) # 0 ) by (rule MMI_neeq1)}
    have S2: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    (B/A ) =
    ( B / if ( A \in\mathbb{C}, A , 0 ) ) by (rule MMI_opreq2)
    have S3: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    A = if ( A \in\mathbb{C},A, 0 ) by (rule MMI_id)
    from S2 S3 have S4: A =
    if ( A \in\mathbb{C},A,0)\longrightarrow
    (( B / A ) . A ) =
```



```
        from S4 have S5: A =
    if ( A \in\mathbb{C},A,0 ) }
    (( ( B / A ) . A ) =
    B}
    (( B / if ( A G C , A , 0 ) ) . if ( A \in\mathbb{C},A,0 ) ) =
    B ) by (rule MMI_eqeq1d)
        from S1 S5 have S6: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ((A\not=0\longrightarrow((B/A).A)= B ) \longleftrightarrow
    ( if ( A \in\mathbb{C},A,0 ) = 0 \longrightarrow
    (( B / if ( A \in\mathbb{C , A , 0 ) ) . if ( A \in\mathbb{C , A , 0 ) ) =}}===\mp@code{l}
    B ) ) by (rule MMI_imbi12d)
```

```
    have \(\mathrm{S7}\) : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( \(\mathrm{B} /\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) \(=\)
( if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) / if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) ) by (rule MMI_opreq1)
    from S7 have \(\mathrm{S} 8: \mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( ( \(\mathrm{B} /\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}))\). if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}))=\)
( ( if \((B \in \mathbb{C}, B, \mathbf{0}) /\) if \((A \in \mathbb{C}, A, 0)\) ) if \((A \in \mathbb{C}, A\)
, 0 ) ) by (rule MMI_opreq1d)
    have S9: \(B=\)
if \((B \in \mathbb{C}, \mathrm{~B}, \mathbf{0}) \longrightarrow\)
\(B=\) if \((B \in \mathbb{C}, B, 0)\) by (rule MMI_id)
    from S 8 S 9 have S 10 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, \mathbf{0}) \longrightarrow\)
( ( \(\mathrm{B} / \operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})) \cdot \operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}))=\)
B \(\longleftrightarrow\)
( ( if \((B \in \mathbb{C}, B, \mathbf{0}) /\) if \((A \in \mathbb{C}, A, 0)\) ) if \((A \in \mathbb{C}, A\)
, 0 ) ) =
if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) by (rule MMI_eqeq12d)
    from S10 have S11: \(B=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( (if \((A \in \mathbb{C}, A, \mathbf{0}) \neq \mathbf{0} \longrightarrow((B / i f(A \in \mathbb{C}, A, \mathbf{0})) \cdot\) if
\((A \in \mathbb{C}, A, \mathbf{0}))=\mathrm{B}) \longleftrightarrow\)
    (if \((A \in \mathbb{C}, A, 0) \neq 0 \longrightarrow\)
    ( ( if \((B \in \mathbb{C}, B, \mathbf{O}) /\) if \((A \in \mathbb{C}, A, 0)\) ) if ( \(A \in \mathbb{C}, A\)
, 0 ) ) =
if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) ) by (rule MMI_imbi2d)
    have S12: \(\mathbf{0} \in \mathbb{C}\) by (rule MMI_Ocn)
    from S12 have S13: if ( \(A \in \mathbb{C}, A, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    have S14: \(0 \in \mathbb{C}\) by (rule MMI_Ocn)
    from S14 have S15: if \((B \in \mathbb{C}, B, 0) \in \mathbb{C}\) by (rule MMI_elimel)
    from S13 S15 have S16: if \((A \in \mathbb{C}, A, 0) \neq 0 \longrightarrow\)
    ( ( if \((B \in \mathbb{C}, B, \mathbf{O}) /\) if \((A \in \mathbb{C}, A, 0)\) ) if ( \(A \in \mathbb{C}\), \(A\)
, 0 ) ) =
if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) by (rule MMI_divcan1z)
    from S6 S11 S16 have S17: \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow\)
    \((\mathrm{A} \neq \mathbf{0} \longrightarrow((\mathrm{B} / \mathrm{A}) \cdot \mathrm{A})=\mathrm{B})\) by (rule MMI_dedth2h)
    from \(S 17\) show \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge A \neq 0) \longrightarrow\)
( ( B / A ) • A ) = B by (rule MMI_3impia)
qed
lemma (in MMIsar0) MMI_divcan2t:
    shows \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge A \neq 0) \longrightarrow\)
    ( \(\mathrm{A} \cdot(\mathrm{B} / \mathrm{A})\) ) \(=\mathrm{B}\)
proof -
    have S 1 : \(\mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    \((A \neq \mathbf{0} \longleftrightarrow\) if \((A \in \mathbb{C}, A, 0) \neq \mathbf{0})\) by (rule MMI_neeq1)
    have \(\mathrm{S} 2: \mathrm{A}=\)
```

```
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(\mathrm{A}=\mathrm{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) by (rule MMI_id)
    have \(\mathrm{S} 3: \mathrm{A}=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
( \(\mathrm{B} / \mathrm{A}\) ) \(=\)
( \(\mathrm{B} / \operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) by (rule MMI_opreq2)
    from S2 S3 have S4: A =
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
( \(\mathrm{A} \cdot(\mathrm{B} / \mathrm{A}))=\)
( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) \(\cdot(\mathrm{B} / \operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) ) by (rule MMI_opreq12d)
    from S4 have S5: A =
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(((A \cdot(B / A))=\)
\(B \longleftrightarrow\)
( if \((A \in \mathbb{C}, A, \mathbf{0}) \cdot(B / \operatorname{if}(A \in \mathbb{C}, A, \mathbf{O}))\) ) =
B ) by (rule MMI_eqeq1d)
    from S1 S5 have S6: A =
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(((A \neq 0 \longrightarrow(A \cdot(B / A))=B) \longleftrightarrow\)
( if \((A \in \mathbb{C}, A, 0) \neq 0 \longrightarrow\)
( if \((A \in \mathbb{C}, A, \mathbf{0}) \cdot(B / \operatorname{if}(A \in \mathbb{C}, A, 0))\) ) =
B ) ) by (rule MMI_imbi12d)
    have \(\mathrm{S7}\) : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( \(\mathrm{B} / \operatorname{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) \(=\)
( if \((B \in \mathbb{C}, B, \mathbf{0}) /\) if \((A \in \mathbb{C}, A, 0)\) ) by (rule MMI_opreq1)
    from 57 have \(\mathrm{S} 8: \mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
(if \((A \in \mathbb{C}, A, 0) \cdot(B / \operatorname{if}(A \in \mathbb{C}, A, 0))\) ) =
(if \((A \in \mathbb{C}, A, 0)\). (if \((B \in \mathbb{C}, B, 0) /\) if \((A \in \mathbb{C}, A\),
0 ) ) ) by (rule MMI_opreq2d)
    have S9: B =
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\(B=\) if \((B \in \mathbb{C}, B, 0)\) by (rule MMI_id)
    from S8 S9 have S10: \(B=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( (if \((A \in \mathbb{C}, A, \mathbf{0}) \cdot(B / \operatorname{if}(A \in \mathbb{C}, A, \mathbf{0}))\) ) =
\(B \longleftrightarrow\)
(if \((A \in \mathbb{C}, A, 0) \cdot(\operatorname{if}(B \in \mathbb{C}, B, 0) /\) if \((A \in \mathbb{C}, A\),
0 ) ) ) =
    if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) by (rule MMI_eqeq12d)
    from S 10 have S 11 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( (if \((A \in \mathbb{C}, A, 0) \neq 0 \longrightarrow\) (if \((A \in \mathbb{C}, A, 0)\) ( \(B /\) if
\((A \in \mathbb{C}, A, 0)))=B) \longleftrightarrow\)
    ( if \((A \in \mathbb{C}, A, \mathbf{0}) \neq \mathbf{0} \longrightarrow\)
    (if \((A \in \mathbb{C}, A, 0) \cdot(\operatorname{if}(B \in \mathbb{C}, B, 0) /\) if \((A \in \mathbb{C}, A\),
0 ) ) ) =
    if ( \(\mathrm{B} \in \mathbb{C}\), \(\mathrm{B}, \mathbf{0}\) ) ) ) by (rule MMI_imbi2d)
```

```
    have S12: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from S12 have S13: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    have S14: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S14 have S15: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    from S13 S15 have S16: if ( A \in\mathbb{C},A,0 ) \not=0 \longrightarrow
```



```
0 ) ) ) =
    if ( B \in\mathbb{C}, B , 0 ) by (rule MMI_divcan2z)
    from S6 S11 S16 have S17: ( A \in\mathbb{C}\wedge B \in\mathbb{C ) }
    ( A = 0 \longrightarrow ( A . ( B / A ) ) = B ) by (rule MMI_dedth2h)
    from S17 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( A . ( B / A ) ) = B by (rule MMI_3impia)
qed
lemma (in MMIsarO) MMI_divneObt:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=\mathbf{0})
    (A\not=0\longleftrightarrow(A/B)}\not=
proof -
    have S1: B \in\mathbb{C}\longrightarrow( B . 0 ) = 0 by (rule MMI_mul01t)
    from S1 have S2: B \in\mathbb{C}\longrightarrow((B\cdot0) = A \longleftrightarrow0 = A ) by (rule MMI_eqeq1d)
    have S3: A = 0 \longleftrightarrow 0 = A by (rule MMI_eqcom)
    from S2 S3 have S4: B \in\mathbb{C}\longrightarrow( A=0 \longleftrightarrow ( B | 0 ) = A ) by (rule
MMI_syl6rbbrA)
    from S4 have S5: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge B f=0 ) \longrightarrow
    ( A = 0 \longleftrightarrow ( B . 0 ) = A ) by (rule MMI_3ad2ant2)
    have S6: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    have S7: ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedge0\in\mathbb{C})\wedgeB\not=0 ) \longrightarrow
    ( ( A / B ) = 0 \longleftrightarrow ( B . 0 ) = A ) by (rule MMI_divmult)
    from S6 S7 have S8: ( ( A G\mathbb{C}\wedge B \in\mathbb{C ) ^ B f= 0 ) \longrightarrow}
    (( A / B ) = 0 \longleftrightarrow ( B | 0 ) = A ) by (rule MMI_mp3anl3)
    from S8 have S9: ( A G C ^ B \in\mathbb{C}\wedge B = 0 ) \longrightarrow
    ( ( A / B ) = 0 \longleftrightarrow ( B | 0 ) = A ) by (rule MMI_3impa)
    from S5 S9 have S10: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeB\not=0 ) \longrightarrow
    ( A = 0 \longleftrightarrow ( A / B ) = 0 ) by (rule MMI_bitr4d)
    from S10 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0)
    ( A \not=0 \longleftrightarrow ( A / B ) # 0 ) by (rule MMI_eqneqd)
qed
lemma (in MMIsar0) MMI_divne0: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: A \not=0 and
    A4: B \not= 0
    shows ( A / B ) \not= 0
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A4 have S3: B }\not=0\mathrm{ 0.
```

from $A 3$ have $S 4$: $A \neq 0$.
have S5: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge B \neq \mathbf{0}) \longrightarrow$
($\mathrm{A} \neq \mathbf{0} \longleftrightarrow(\mathrm{A} / \mathrm{B}) \neq \mathbf{0}$) by (rule MMI_divneObt)
from S4 S5 have S6: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge B \neq \mathbf{0}) \longrightarrow$
(A / B) $\neq \mathbf{0}$ by (rule MMI_mpbii)
from S1 S2 S3 S6 show (A / B) $\neq \mathbf{0}$ by (rule MMI_mp3an)
qed
lemma (in MMIsar0) MMI_recneOz: assumes A1: A $\in \mathbb{C}$
shows $A \neq 0 \longrightarrow(1 / A) \neq 0$
proof -
have $\mathrm{S} 1: \mathrm{A}=$
if $(A \neq 0, A, 1) \longrightarrow$
($1 / \mathrm{A}$) $=$
($1 /$ if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1$)) by (rule MMI_opreq2)
from S 1 have S 2 : $\mathrm{A}=$
if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1) \longrightarrow$
$((1 / A) \neq 0 \longleftrightarrow$
($1 /$ if $(A \neq 0, A, 1)) \neq 0$) by (rule MMI_neeq1d)
have S3: $1 \in \mathbb{C}$ by (rule MMI_1cn)
from $A 1$ have $S 4: A \in \mathbb{C}$.
have $\mathrm{S} 5: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from S4 S5 have S6: if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$) $\in \mathbb{C}$ by (rule MMI_keepel)
have $\mathrm{S7}: \mathbf{1} \neq \mathbf{0}$ by (rule MMI_ax1ne0)
have S8: if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$) $\neq \mathbf{0}$ by (rule MMI_elimne0)
from S3 S6 S7 S8 have $\mathrm{S} 9:(\mathbf{1} /$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1})$) $\neq \mathbf{0}$ by (rule
MMI_divne0)
from S 2 S 9 show $\mathrm{A} \neq \mathbf{0} \longrightarrow(\mathbf{1} / \mathrm{A}) \neq 0$ by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_recneOt:
shows $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(1 / A) \neq 0$
proof -
have $\mathrm{S} 1: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$(A \neq \mathbf{0} \longleftrightarrow$ if $(A \in \mathbb{C}, A, 0) \neq \mathbf{0})$ by (rule MMI_neeq1)
have S2: $\mathrm{A}=$
if $(A \in \mathbb{C}, A, \mathbf{O}) \longrightarrow$
($1 / \mathrm{A}$) =
($1 /$ if $(A \in \mathbb{C}, A, 0)$) by (rule MMI_opreq2)
from S 2 have $\mathrm{S} 3: \mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$(1 / \mathrm{A}) \neq 0 \longleftrightarrow$
($1 / \operatorname{if}(A \in \mathbb{C}, A, 0)) \neq 0)$ by (rule MMI_neeq1d)
from S 1 S 3 have S 4 : $\mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$((A \neq 0 \longrightarrow(1 / A) \neq 0) \longleftrightarrow$
(if $(A \in \mathbb{C}, A, 0) \neq 0 \longrightarrow$
($1 /$ if $(A \in \mathbb{C}, A, 0)$) $\neq 0$)) by (rule MMI_imbi12d)
have $S 5: \mathbf{0} \in \mathbb{C}$ by (rule MMI_0cn)
from S5 have S 6 : if $(A \in \mathbb{C}, A, 0) \in \mathbb{C}$ by (rule MMI_elimel)
from S 6 have S 7 : if $(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}) \neq \mathbf{0} \longrightarrow$
($1 /$ if $(A \in \mathbb{C}, A, 0)$) $\neq 0$ by (rule MMI_recneOz)
from S 4 S 7 have $\mathrm{S} 8: \mathrm{A} \in \mathbb{C} \longrightarrow(\mathrm{A} \neq \mathbf{0} \longrightarrow(1 / \mathrm{A}) \neq 0)$ by (rule MMI_dedth)
from $S 8$ show $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(1 / A) \neq 0$ by (rule MMI_imp) qed
lemma (in MMIsar0) MMI_recid: assumes A1: $A \in \mathbb{C}$ and
A2: $A \neq 0$
shows (A. ($1 / \mathrm{A}$)) = 1
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
have $\mathrm{S} 2: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from A2 have S3: A $\neq 0$.
from S1 S2 S3 show (A • (1 / A)) = 1 by (rule MMI_divcan2)
qed
lemma (in MMIsar0) MMI_recidz: assumes A1: A $\in \mathbb{C}$
shows $A \neq 0 \longrightarrow(A \cdot(1 / A))=1$
proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
have $\mathrm{S} 2: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from S 1 S 2 show $\mathrm{A} \neq \mathbf{0} \longrightarrow(\mathrm{A} \cdot(\mathbf{1} / \mathrm{A})$) = $\mathbf{1}$ by (rule MMI_divcan2z)
qed

```
lemma (in MMIsar0) MMI_recidt:
    shows \((A \in \mathbb{C} \wedge A \neq 0) \longrightarrow\)
    ( \(\mathrm{A} \cdot(1 / \mathrm{A})\) ) \(=1\)
proof -
    have S1: \(\mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    \((A \neq 0 \longleftrightarrow\) if \((A \in \mathbb{C}, A, 0) \neq 0)\) by (rule MMI_neeq1)
        have S 2 : \(\mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    \(\mathrm{A}=\mathrm{if}(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) by (rule MMI_id)
        have \(\mathrm{S} 3: \mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    ( \(1 / \mathrm{A}\) ) =
    ( \(1 /\) if ( \(A \in \mathbb{C}, A, 0\) ) ) by (rule MMI_opreq2)
        from S2 S3 have S4: A =
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    ( \(\mathrm{A} \cdot(\mathbf{1} / \mathrm{A})\) ) \(=\)
    ( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) \(\cdot(\mathbf{1} /\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) ) by (rule MMI_opreq12d)
        from S 4 have \(\mathrm{S} 5: \mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    ( ( A • (1/A) ) =
    \(1 \longleftrightarrow\)
```

```
    ( if ( A G \mathbb{C , A 0 ) . ( 1 / if ( A G \mathbb{C , A , 0 ) ) ) =}}=\mathbf{=}
    1 ) by (rule MMI_eqeq1d)
    from S1 S5 have S6: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    ((A\not= 0 \longrightarrow (A. (1/A ) ) = 1 ) \longleftrightarrow
    ( if ( A \in\mathbb{C},A,0 ) = 0 \longrightarrow
    ( if ( A G C , A , 0 ) . (1 / if ( A \in\mathbb{C , A , 0 ) ) ) =}
    1 ) ) by (rule MMI_imbi12d)
    have S7: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S7 have S8: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    from S8 have S9: if ( A \in\mathbb{C},A,0 ) = 0 \longrightarrow
    ( if ( A \in\mathbb{C},\textrm{A},\mathbf{0})\cdot(\mathbf{1}/\mathrm{ if (A G C , A, 0 ) ) ) =}
    1 by (rule MMI_recidz)
        from S6 S9 have S10: A \in\mathbb{C}\longrightarrow
    ( A f 0 \longrightarrow ( A . ( 1 / A ) ) = 1 ) by (rule MMI_dedth)
    from S10 show ( A \in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( A . (1 / A ) ) = 1 by (rule MMI_imp)
qed
lemma (in MMIsar0) MMI_recid2t:
    shows ( A \in\mathbb{C}\wedgeA\not=0) \longrightarrow
    ((1 / A ) . A ) = 1
proof -
    have S1:((1/A) (\mathbb{C}\wedgeA\in\mathbb{C})\longrightarrow
    ( ( 1 / A ) . A ) = ( A · ( 1 / A ) ) by (rule MMI_axmulcom)
        have S2: ( A \in\mathbb{C}\wedgeA\not=\mathbf{0})\longrightarrow(1/A ) \in\mathbb{C}\mathrm{ by (rule MMI_recclt)}
        have S3: ( A \in\mathbb{C}\wedgeA\not=0 ) }\longrightarrow\textrm{A}\in\mathbb{C}\mathrm{ by (rule MMI_pm3_26)
        from S1 S2 S3 have S4: ( A \in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( ( 1 / A ) . A ) = ( A | ( 1 / A ) ) by (rule MMI_sylanc)
        have S5: (A \in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( A . ( 1 / A ) ) = 1 by (rule MMI_recidt)
        from S4 S5 show ( A \in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( ( 1 / A ) . A ) = 1 by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_divrec: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: B \not=0
    shows ( A / B ) = ( A · ( 1 / B ) )
proof -
    from A2 have S1: B }\in\mathbb{C}\mathrm{ .
    from A1 have S2: A }\in\mathbb{C}\mathrm{ .
    from A2 have S3: B \in\mathbb{C}
    from A3 have S4: B }=0\mathrm{ 0.
    from S3 S4 have S5: ( 1 / B ) \in\mathbb{C}\mathrm{ by (rule MMI_reccl)}
    from S2 S5 have S6: ( A . ( 1 / B ) ) \in\mathbb{C}\mathrm{ by (rule MMI_mulcl)}
    from S1 S6 have S7: ( B . ( A . ( 1 / B ) ) ) =
    ( ( A · ( 1 / B ) ) . B ) by (rule MMI_mulcom)
    from A1 have S8: A }\in\mathbb{C}\mathrm{ .
```

```
    from S5 have S9: ( 1 / B ) \in\mathbb{C}.
    from A2 have S10: B }\in\mathbb{C}\mathrm{ .
    from S8 S9 S10 have S11: ( ( A . ( 1 / B ) ) . B ) =
    ( A · ( ( 1 / B ) · B ) ) by (rule MMI_mulass)
    from A2 have S12: B }\in\mathbb{C}\mathrm{ .
    have S13: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from A3 have S14: B }\not=0\mathrm{ 0.
    from S12 S13 S14 have S15: ( ( 1 / B ) . B ) = 1 by (rule MMI_divcan1)
    from S15 have S16: ( A · ( ( 1 / B ) · B ) ) = ( A | 1 ) by (rule MMI_opreq2i)
    from A1 have S17: A }\in\mathbb{C}\mathrm{ .
    from S17 have S18: ( A · 1 ) = A by (rule MMI_mulid1)
    from S16 S18 have S19: ( A · ( ( 1 / B ) . B ) ) = A by (rule MMI_eqtr)
    from S7 S11 S19 have S20: ( B . ( A . ( 1 / B ) ) ) = A by (rule MMI_3eqtr)
    from A1 have S21: A }\in\mathbb{C}\mathrm{ .
    from A2 have S22: B }\in\mathbb{C}\mathrm{ .
    from S6 have S23: ( A . ( 1 / B ) ) \in\mathbb{C .}
    from A3 have S24: B \not=0.
    from S21 S22 S23 S24 have S25: ( A / B ) =
    (A.(1/B ) ) \longleftrightarrow
    ( B . ( A . ( 1 / B ) ) ) = A by (rule MMI_divmul)
    from S20 S25 show ( A / B ) = ( A . ( 1 / B ) ) by (rule MMI_mpbir)
qed
lemma (in MMIsar0) MMI_divrecz: assumes A1: A \in \mathbb{C}}\mathrm{ and
    A2: B }\in\mathbb{C
    shows B = 0 \longrightarrow ( A / B ) = ( A . ( 1 / B ) )
proof -
    have S1: B =
    if ( B = 0 , B , 1 ) }
    (A/B ) =
    ( A / if ( B \not=0 , B , 1 ) ) by (rule MMI_opreq2)
        have S2: B =
    if ( B = 0 , B , 1 ) }
    ( 1 / B ) =
    ( 1 / if ( B = 0 , B , 1 ) ) by (rule MMI_opreq2)
        from S2 have S3: B =
    if ( B = 0 , B , 1 ) \longrightarrow
    (A.(1/B ) ) =
    ( A . ( 1 / if ( B = 0 , B , 1 ) ) ) by (rule MMI_opreq2d)
        from S1 S3 have S4: B =
    if ( B = 0 , B , 1 ) }
    ((A/B ) =
    (A. (1 / B ) ) \longleftrightarrow
    ( A / if ( B = 0 , B , 1 ) ) =
    ( A . ( 1 / if ( B = 0 , B , 1 ) ) ) ) by (rule MMI_eqeq12d)
        from A1 have S5:A }\in\mathbb{C}\mathrm{ .
        from A2 have S6: B }\in\mathbb{C}\mathrm{ .
        have S7: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S6 S7 have S8: if ( B \not= 0 , B , 1 ) \in \mathbb{C by (rule MMI_keepel)}
```

```
    have S9: if ( B \not=0 , B , 1 ) \not= 0 by (rule MMI_elimne0)
```

 from S5 S8 S9 have S10: (\(\mathrm{A} /\) if \((\mathrm{B} \neq \mathbf{0}, \mathrm{B}, \mathbf{1})\)) =
 (\(\mathrm{A} \cdot(\mathbf{1} /\) if \((\mathrm{B} \neq \mathbf{0}, \mathrm{B}, 1\)))) by (rule MMI_divrec)
 from \(S 4\) S10 show \(B \neq 0 \longrightarrow(A / B)=(A \cdot(1 / B))\)
 by (rule MMI_dedth)
 qed
lemma (in MMIsar0) MMI_divrect:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge B \neq 0) \longrightarrow$
$(\mathrm{A} / \mathrm{B})=(\mathrm{A} \cdot(\mathbf{1} / \mathrm{B}))$
proof -
have S1: $\mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
(A / B) $=$
(if $(A \in \mathbb{C}, A, 0) / B)$ by (rule MMI_opreq1)
have S 2 : $\mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
($\mathrm{A} \cdot(\mathbf{1} / \mathrm{B})$) $=$
(if ($\mathrm{A} \in \mathbb{C}$, $\mathrm{A}, \mathbf{0}$) • ($1 / \mathrm{B}$)) by (rule MMI_opreq1)
from S1 S2 have S3: A =
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
($(\mathrm{A} / \mathrm{B})=$
$(A \cdot(1 / B)) \longleftrightarrow$
(if $(A \in \mathbb{C}, A, 0) / B)=$
(if $(A \in \mathbb{C}, A, 0) \cdot(1 / B))$) by (rule MMI_eqeq12d)
from S3 have S 4 : $\mathrm{A}=$
if $(A \in \mathbb{C}, A, 0) \longrightarrow$
$((B \neq 0 \longrightarrow(A / B)=(A \cdot(1 / B)) \longleftrightarrow$
($\mathrm{B} \neq 0 \longrightarrow$
(if $(A \in \mathbb{C}, A, 0) / B)=$
(if ($A \in \mathbb{C}, A, 0) \cdot(1 / B))$) by (rule MMI_imbi2d)
have $S 5: B=$
if $(B \in \mathbb{C}, B, 0) \longrightarrow$
($\mathrm{B} \neq \mathbf{0} \longleftrightarrow$ if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}) \neq \mathbf{0}$) by (rule MMI_neeq1)
have $\mathrm{S} 6: \mathrm{B}=$
if $(B \in \mathbb{C}, B, 0) \longrightarrow$
(if $(A \in \mathbb{C}, A, 0) / B)=$
(if $(A \in \mathbb{C}, A, \mathbf{0}) /$ if $(B \in \mathbb{C}, B, 0)$) by (rule MMI_opreq2)
have $S 7$: $B=$
if $(B \in \mathbb{C}, B, 0) \longrightarrow$
($1 / \mathrm{B}$) =
($1 /$ if $(B \in \mathbb{C}, B, 0)$) by (rule MMI_opreq2)
from S 7 have $\mathrm{S} 8: \mathrm{B}=$
if $(B \in \mathbb{C}, B, 0) \longrightarrow$
(if $(A \in \mathbb{C}, A, 0) \cdot(\mathbf{1} / \mathrm{B}))=$
(if ($\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}$) $\cdot(\mathbf{1} /$ if $(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0})$)) by (rule MMI_opreq2d)
from S 6 S 8 have S 9 : $\mathrm{B}=$

```
    if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
    ( (if ( A \in\mathbb{C},A,0)/B) =
    ( if ( A \in\mathbb{C},A,0 ) . (1 / B ) ) \longleftrightarrow
    (if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C},B,0 ) ) =
    ( if ( A \in\mathbb{C},A,0 ) . ( 1 / if ( B \in\mathbb{C}, B , 0 ) ) ) ) by (rule
MMI_eqeq12d)
    from S5 S9 have S10: B =
    if ( B \in\mathbb{C}, B , 0 ) \longrightarrow
    (( B = 0 \longrightarrow ( if ( A G C , A , 0 ) / B ) = ( if ( A \in\mathbb{C},A,0 )
    (1 / B ) ) ) \longleftrightarrow
    ( if ( B \in C , B , 0 ) # 0 }
    ( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C},B,0 ) ) =
    ( if (A A C , A , 0 ) . ( 1 / if ( B \in\mathbb{C}, B , 0 ) ) ) ) ) by (rule
MMI_imbi12d)
    have S11: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
    from S11 have S12: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    have S13: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
    from S13 have S14: if ( B \in\mathbb{C},B,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    from S12 S14 have S15: if ( }B\in\mathbb{C},B,0)\not=0
    ( if ( A \in\mathbb{C},A,0 ) / if ( B \in\mathbb{C},B,0 ) ) =
    ( if ( A \in\mathbb{C},A,0 ) . ( 1 / if ( B \in\mathbb{C}, B , 0 ) ) ) by (rule MMI_divrecz)
    from S4 S10 S15 have S16: ( A \in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( B = 0 \longrightarrow
    ( A / B ) = ( A . ( 1 / B ) ) ) by (rule MMI_dedth2h)
    from S16 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0)
    ( A / B ) = ( A . ( 1 / B ) ) by (rule MMI_3impia)
qed
lemma (in MMIsar0) MMI_divrec2t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0)
    ( A/B ) = ( ( 1 / B ) · A )
proof -
    have S1: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge B\not=0 ) \longrightarrow
    ( A / B ) = ( A . ( 1 / B ) ) by (rule MMI_divrect)
        have S2: ( A \in\mathbb{C}\wedge(1/B) \in\mathbb{C})\longrightarrow
    ( A . ( 1 / B ) ) = ( ( 1 / B ) . A ) by (rule MMI_axmulcom)
        have S3: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge B = 0 ) \longrightarrowA \in\mathbb{C}\mathrm{ by (rule MMI_3simp1)}
        have S4: ( B \in\mathbb{C}\wedge B = 0 ) \longrightarrow( 1/B ) \in\mathbb{C}\mathrm{ by (rule MMI_recclt)}
        from S4 have S5: ( A G \mathbb{C ^B }\in\mathbb{C}\wedgeB\not=0 ) \longrightarrow
    ( 1/B ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adant1)
        from S2 S3 S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge B f=0) \longrightarrow
    ( A . ( 1 / B ) ) = ( ( 1 / B ) . A ) by (rule MMI_sylanc)
        from S1 S6 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0)
    ( A / B ) = ( ( 1 / B ) · A ) by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_divasst:
    shows ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    ( ( A | B ) / C ) = ( A · ( B / C ) )
```

```
proof -
    have S1: \(A \in \mathbb{C} \longrightarrow A \in \mathbb{C}\) by (rule MMI_id)
    have \(\mathrm{S} 2: \mathrm{B} \in \mathbb{C} \longrightarrow B \in \mathbb{C}\) by (rule MMI_id)
    have S3: \((\mathbb{C} \in \mathbb{C} \wedge C \neq 0) \longrightarrow(\mathbf{C} / \mathrm{C}) \in \mathbb{C}\) by (rule MMI_recclt)
    from S1 S2 S3 have S4: \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(C \in \mathbb{C} \wedge C \neq \mathbf{O})\) ) \(\longrightarrow\)
    \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(1 / C) \in \mathbb{C})\) by (rule MMI_3anim123i)
    from S 4 have \(\mathrm{S} 5: \mathrm{A} \in \mathbb{C} \longrightarrow\)
( \(\mathrm{B} \in \mathbb{C} \longrightarrow\)
\((\quad(\mathrm{C} \in \mathbb{C} \wedge \mathrm{C} \neq \mathbf{0}) \longrightarrow\)
\((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(1 / C) \in \mathbb{C})\) ) ) by (rule MMI_3exp)
    from 55 have \(S 6: A \in \mathbb{C} \longrightarrow\)
( \(\mathrm{B} \in \mathbb{C} \longrightarrow\)
\((\mathrm{C} \in \mathbb{C} \longrightarrow\)
( \(\mathrm{C} \neq 0 \longrightarrow\)
\((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(1 / C) \in \mathbb{C}))\) ) ) by (rule MMI_exp4a)
    from 56 have \(57:((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow\)
\((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(1 / C) \in \mathbb{C})\) by (rule MMI_3imp1)
    have S8: \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge(1 / C) \in \mathbb{C}) \longrightarrow\)
\(((A \cdot B) \cdot(1 / C))=\)
( A • ( B • ( 1 / C ) ) ) by (rule MMI_axmulass)
    from S7 S8 have S9: ( \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow\)
\(((\mathrm{A} \cdot \mathrm{B}) \cdot(\mathbf{1} / \mathrm{C}))=\)
( A . ( B . ( \(1 / \mathrm{C}\) ) ) ) by (rule MMI_syl)
    have S10: ( \((A \cdot B) \in \mathbb{C} \wedge C \in \mathbb{C} \wedge C \neq 0) \longrightarrow\)
( ( A B ) / C ) =
( ( A • B ) • ( 1 / C ) ) by (rule MMI_divrect)
        from S10 have S11: ( ( \(\mathrm{A} \cdot \mathrm{B}) \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow\)
( ( \(\mathrm{A} \cdot \mathrm{B}) / \mathrm{C})=\)
( ( A • B ) • ( \(1 / \mathrm{C}\) ) ) by (rule MMI_3expa)
        have S12: \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow(A \cdot B) \in \mathbb{C}\) by (rule MMI_axmulcl)
        from S12 have S13: ( \((A \in \mathbb{C} \wedge B \in \mathbb{C}) \wedge C \in \mathbb{C}) \longrightarrow\)
    ( \((A \cdot B) \in \mathbb{C} \wedge C \in \mathbb{C})\) by (rule MMI_anim1i)
        from S13 have S14: \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow\)
    ( ( \(\mathrm{A} \cdot \mathrm{B}\) ) \(\in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C}\) ) by (rule MMI_3impa)
        from S11 S14 have S15: ( \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow\)
    ( ( A • B ) / C ) =
    ( ( A • B ) • ( 1 / C ) ) by (rule MMI_sylan)
        have S16: \((B \in \mathbb{C} \wedge C \in \mathbb{C} \wedge C \neq 0) \longrightarrow\)
    ( B / C ) = ( B . ( \(1 / \mathrm{C}\) ) ) by (rule MMI_divrect)
        from S16 have S17: ( \((B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow\)
    ( B / C ) = ( B • ( \(1 / \mathrm{C}\) ) ) by (rule MMI_3expa)
        from S17 have S18: ( \((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow\)
    \((\mathrm{B} / \mathrm{C})=(\mathrm{B} \cdot(\mathbf{1} / \mathrm{C}))\) by (rule MMI_3adantl1)
        from S18 have S19: \(((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq \mathbf{0}) \longrightarrow\)
( \(\mathrm{A} \cdot(\mathrm{B} / \mathrm{C})\) ) \(=\)
( A • ( B • ( 1 / C ) ) ) by (rule MMI_opreq2d)
```

from S9 S15 S19 show $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$ $((A \cdot B) / C)=(A \cdot(B / C)) b y\left(r u l e ~ M M I _3 e q t r 4 d\right)$ qed
lemma (in MMIsar0) MMI_div23t:
shows $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
$((A \cdot B) / C)=((A / C) \cdot B)$
proof -
have $\operatorname{S1}:(A \in \mathbb{C} \wedge B \in \mathbb{C}) \longrightarrow$
(A B $)=(\mathrm{B} \cdot \mathrm{A})$ by (rule MMI_axmulcom)
from S1 have S2: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
(A • B) $=(\mathrm{B} \cdot \mathrm{A})$ by (rule MMI_3adant3)
from S2 have $\mathrm{S} 3:((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
(A • B) = (B • A) by (rule MMI_adantr)
from S3 have $S 4$: $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
$((A \cdot B) / C)=((B \cdot A) / C)$ by (rule MMI_opreq1d)
have S5: $((B \in \mathbb{C} \wedge A \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
((B • A) $/ \mathrm{C})=(\mathrm{B} \cdot(\mathrm{A} / \mathrm{C})$) by (rule MMI_divasst)
from S5 have $\mathrm{S} 6:(B \in \mathbb{C} \wedge A \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(\mathrm{C} \neq 0 \longrightarrow$
$((B \cdot A) / C)=$
($\mathrm{B} \cdot(\mathrm{A} / \mathrm{C})$)) by (rule MMI_ex)
from S 6 have $\mathrm{S} 7:(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow$
$(\mathrm{C} \neq 0 \longrightarrow$
$((B \cdot A) / C)=$
(B • (A / C))) by (rule MMI_3com12)
from 57 have $58:((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
((B • A) / C) = (B • (A / C)) by (rule MMI_imp)
have S9: $(B \in \mathbb{C} \wedge(A / C) \in \mathbb{C}) \longrightarrow$
($\mathrm{B} \cdot(\mathrm{A} / \mathrm{C})$) $=(\mathrm{A} / \mathrm{C}) \cdot \mathrm{B})$ by (rule MMI_axmulcom) have S10: $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \longrightarrow B \in \mathbb{C}$ by (rule MMI_3simp2)
from S10 have S11: $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
$B \in \mathbb{C}$ by (rule MMI_adantr)
have S12: $(A \in \mathbb{C} \wedge C \in \mathbb{C} \wedge C \neq 0) \longrightarrow$
(A / C) $\in \mathbb{C}$ by (rule MMI_divclt)
from S12 have S13: $((A \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
(A / C) $\in \mathbb{C}$ by (rule MMI_3expa)
from S13 have S14: $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
(A / C) $\in \mathbb{C}$ by (rule MMI_3adantl2)
from S9 S11 S14 have S15: $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0$) \longrightarrow
$(\mathrm{B} \cdot(\mathrm{A} / \mathrm{C}))=((\mathrm{A} / \mathrm{C}) \cdot \mathrm{B})$ by (rule MMI_sylanc)
from $S 4$ S8 S15 show $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
$((A \cdot B) / C)=((A / C) \cdot B)$ by (rule MMI_3eqtrd)
qed
lemma (in MMIsar0) MMI_div13t:

```
        shows ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C}) ^B\not=0 ) \longrightarrow
    ((A/B )}\cdot\textrm{C})=((C/B)\cdotA
proof -
    have S1: (A A \mathbb{C ^C\in\mathbb{C ) }}\longrightarrow
    ( A C ) = ( C . A ) by (rule MMI_axmulcom)
        from S1 have S2: ( A \in\mathbb{C}\wedgeC\in\mathbb{C ) }
    ( ( A C C ) / B ) = ( ( C . A ) / B ) by (rule MMI_opreq1d)
        from S2 have S3: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( ( A C C ) / B ) = ( ( C . A ) / B ) by (rule MMI_3adant2)
        from S3 have S4:( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^B F 0 ) }\longrightarrow
    ( ( A C C ) / B ) = ( ( C . A ) / B ) by (rule MMI_adantr)
        have S5: ( ( A G\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\wedgeB\not=0
    ( ( A C C ) B ) = ( ( A / B ) . C ) by (rule MMI_div23t)
        from S5 have S6: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    (B\not=0}
    ((A.C) / B ) =
    (( A / B ) . C ) ) by (rule MMI_ex)
        from S6 have S7:( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    (B\not=0}
    ((A.C ) / B ) =
    (( A / B ) · C ) ) by (rule MMI_3com23)
```



```
    ( ( A | C ) / B ) = ( ( A / B ) . C ) by (rule MMI_imp)
        have S9: ( ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedge B \in\mathbb{C})\wedgeB\not=0
    ( ( C . A ) / B ) = ( ( C / B ) . A ) by (rule MMI_div23t)
        from S9 have S10: ( C \in\mathbb{C}\wedgeA\in\mathbb{C}\wedgeB\in\mathbb{C})\longrightarrow
    ( B = 0 \longrightarrow
    ((C.A )/ B ) =
    (( C / B ) . A ) ) by (rule MMI_ex)
        from S10 have S11: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( B = 0 \longrightarrow
    ((C.A )/ B ) =
    ( ( C / B ) · A ) ) by (rule MMI_3coml)
        from S11 have S12:( ( A G\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeB\not=0
    ( ( C . A ) / B ) = ( ( C / B ) . A ) by (rule MMI_imp)
        from S4 S8 S12 show ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeB\not=0 )}
    (( A / B ) · C ) = ( ( C / B ) · A ) by (rule MMI_3eqtr3d)
qed
lemma (in MMIsar0) MMI_div12t:
    shows ( ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0)}
    (A.(B/C) ) = ( B . ( A / C ) )
proof -
        have S1: ( A \in\mathbb{C}^(B/C) \in\mathbb{C})\longrightarrow
    ( A . ( B / C ) ) = ( ( B / C ) . A ) by (rule MMI_axmulcom)
        have S2: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowA\in\mathbb{C}\mathrm{ by (rule MMI_3simp1)}
        from S2 have S3: ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    A \in\mathbb{C}}\mathrm{ by (rule MMI_adantr)
```

```
    have S4:( B \in\mathbb{C}\wedgeC\in\mathbb{C ^C F 0 ) }\longrightarrow
    ( B / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_divclt)
    from S4 have S5: ( ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0) \longrightarrow
    ( B / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3expa)
    from S5 have S6: ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C ) ^C F 0 ) \longrightarrow}
    ( B / C ) \in\mathbb{C by (rule MMI_3adantl1)}
    from S1 S3 S6 have S7: ( (A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0
    ( A . ( B / C ) ) = ( ( B / C ) . A ) by (rule MMI_sylanc)
```



```
    ( ( B / C ) . A ) = ( ( A / C ) · B ) by (rule MMI_div13t)
    from S8 have S9: ( }B\in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeA\in\mathbb{C})
    ( C # 0 \longrightarrow
    (( B / C ) . A ) =
    (( A / C ) · B ) ) by (rule MMI_ex)
    from S9 have S10:( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (C = 0 \longrightarrow
    (( B / C ) . A ) =
    ( ( A / C ) . B ) ) by (rule MMI_3comr)
    from S10 have S11:( ( A G\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^C C 0 ) \longrightarrow}
    ( ( B / C ) · A ) = ( ( A / C ) . B ) by (rule MMI_imp)
    have S12: ( ( A / C ) \in\mathbb{C ^ B \in C ) }\longrightarrow
    ( ( A / C ) · B ) = ( B · ( A / C ) ) by (rule MMI_axmulcom)
    have S13: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeC\not=0 ) \longrightarrow
    ( A / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_divclt)
    from S13 have S14: ( ( A \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    ( A / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3expa)
    from S14 have S15: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^C C=0 ) }\longrightarrow
    ( A / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adantl2)
    have S16: ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrowB\in\mathbb{C}\mathrm{ by (rule MMI_3simp2)}
    from S16 have S17:( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C}) ^C\not= 0 ) \longrightarrow
    B }\in\mathbb{C}\mathrm{ by (rule MMI_adantr)
    from S12 S15 S17 have S18: ( ( A G C ^ B \in\mathbb{C}\wedgeC\in\mathbb{C}) ^C\not=0
) \longrightarrow
    ( ( A / C ) . B ) = ( B · ( A / C ) ) by (rule MMI_sylanc)
    from S7 S11 S18 show ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    ( A P ( B / C ) ) = ( B · ( A / C ) ) by (rule MMI_3eqtrd)
qed
lemma (in MMIsar0) MMI_divassz: assumes A1: A }\in\mathbb{C}\mathrm{ and
    A2: B \in\mathbb{C}}\mathrm{ and
    A3: C \in C
    shows C # 0 \longrightarrow
    ((A.B ) / C ) = ( A | ( B / C ) )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
```

from S1 S2 S3 have $\mathrm{S} 4: \mathrm{A} \in \mathbb{C} \wedge \mathrm{B} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C}$ by (rule MMI_3pm3_2i)
have S5: $((A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge C \in \mathbb{C}) \wedge C \neq 0) \longrightarrow$
((A B) / C) = (A • (B / C)) by (rule MMI_divasst)
from S4 S5 show $C \neq 0 \longrightarrow$
$((\mathrm{A} \cdot \mathrm{B}) / \mathrm{C})=(\mathrm{A} \cdot(\mathrm{B} / \mathrm{C}))$ by (rule MMI_mpan)
qed
lemma (in MMIsar0) MMI_divass: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$ and
A4: $C \neq 0$
shows ((A • B) / C) = (A • (B / C))
proof -
from A4 have S1: $\mathrm{C} \neq 0$.
from $A 1$ have $S 2: A \in \mathbb{C}$.
from A2 have $\mathrm{S} 3: \mathrm{B} \in \mathbb{C}$.
from $A 3$ have $\mathrm{S} 4: \mathrm{C} \in \mathbb{C}$.
from S2 S3 S4 have $\mathrm{S} 5: \mathrm{C} \neq 0 \longrightarrow$
((A B) / C) = (A • (B / C)) by (rule MMI_divassz)
from S1 S5 show ((A B) / C) = (A • (B C)) by (rule MMI_ax_mp)
qed
lemma (in MMIsar0) MMI_divdir: assumes A1: $A \in \mathbb{C}$ and
A2: $B \in \mathbb{C}$ and
A3: $C \in \mathbb{C}$ and
A4: $C \neq 0$
shows $((A+B) / C)=$
((A / C) + (B / C))
proof -
from A1 have $\mathrm{S} 1: \mathrm{A} \in \mathbb{C}$.
from A2 have $\mathrm{S} 2: \mathrm{B} \in \mathbb{C}$.
from A3 have S3: $C \in \mathbb{C}$.
from A4 have S 4 : $\mathrm{C} \neq 0$.
from S3 S4 have S5: ($1 / C$) $\in \mathbb{C}$ by (rule MMI_reccl)
from S1 S2 S5 have S6: ($\mathrm{A}+\mathrm{B}) \cdot(1 / \mathrm{C})$) $=$
((A • ($1 / \mathrm{C}$)) + (B • ($1 / \mathrm{C}$))) by (rule MMI_adddir)
from A1 have $\mathrm{S7}: \mathrm{A} \in \mathbb{C}$.
from $A 2$ have $\mathrm{S} 8: \mathrm{B} \in \mathbb{C}$.
from $\mathrm{S} 7 \mathrm{S8}$ have $\mathrm{S} 9:(\mathrm{A}+\mathrm{B}) \in \mathbb{C}$ by (rule MMI_addcl)
from A3 have $\mathrm{S} 10: \mathrm{C} \in \mathbb{C}$.
from A4 have S11: $C \neq 0$.
from S9 S10 S11 have S12: ((A + B) / C) =
(($\mathrm{A}+\mathrm{B}) \cdot(1 / \mathrm{C})$) by (rule MMI_divrec)
from A1 have S13: $A \in \mathbb{C}$.
from A3 have $\mathrm{S} 14: \mathrm{C} \in \mathbb{C}$.
from A4 have S15: $C \neq 0$.
from S13 S14 S15 have S16: (A / C) = (A. (1 / C)) by (rule
MMI_divrec)
from A2 have $\mathrm{S} 17: \mathrm{B} \in \mathbb{C}$.

```
    from A3 have S18: C \in\mathbb{C}.
    from A4 have S19: C }\not=
    from S17 S18 S19 have S20: ( B / C ) = ( B . ( 1 / C ) ) by (rule
MMI_divrec)
    from S16 S20 have S21: ( ( A / C ) + ( B / C ) ) =
    (( A . ( 1 / C ) ) + ( B . ( 1 / C ) ) ) by (rule MMI_opreq12i)
    from S6 S12 S21 show ( ( A + B ) / C ) =
    ( ( A / C ) + ( B / C ) ) by (rule MMI_3eqtr4)
qed
lemma (in MMIsar0) MMI_div23: assumes A1: A \in C and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C \in\mathbb{C}\mathrm{ and}
    A4: C = 0
    shows ( ( A · B ) / C ) = ( ( A / C ) · B )
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( A | B ) = ( B . A ) by (rule MMI_mulcom)
    from S3 have S4: ( ( A | B ) / C ) = ( ( B · A ) / C )
        by (rule MMI_opreq1i)
    from A2 have S5: B \in\mathbb{C}
    from A1 have S6: A }\in\mathbb{C}\mathrm{ .
    from A3 have S7: C }\in\mathbb{C}\mathrm{ .
    from A4 have S8: C }\not=0\mathrm{ 0.
    from S5 S6 S7 S8 have
        S9: ( ( B · A ) / C ) = ( B · ( A / C ) ) by (rule MMI_divass)
    from A2 have S10: B \in\mathbb{C}.
    from A1 have S11: A }\in\mathbb{C}\mathrm{ .
    from A3 have S12: C }\in\mathbb{C}\mathrm{ .
    from A4 have S13: C }\not=0\mathrm{ 0.
    from S11 S12 S13 have S14: ( A / C ) \in\mathbb{C by (rule MMI_divcl)}
    from S10 S14 have S15: ( B . ( A / C ) ) = ( ( A / C ) · B )
        by (rule MMI_mulcom)
    from S4 S9 S15 show ( ( A B ) / C ) = ( ( A / C ) . B )
        by (rule MMI_3eqtr)
qed
lemma (in MMIsar0) MMI_divdirz: assumes A1: A }\in\mathbb{C}\mathrm{ and
        A2: B \in\mathbb{C}\mathrm{ and}
        A3: C }\in\mathbb{C
    shows C = 0 \longrightarrow
    ( (A+B)/C ) =
    ( ( A / C ) + ( B / C ) )
proof -
    have S1: C =
```

```
    if ( C = 0 , C , 1 ) }
    ((A+B)/C) =
    ( ( A + B ) / if ( C = 0 , C , 1 ) ) by (rule MMI_opreq2)
        have S2: C =
    if (C\not= 0 , C , 1 ) \longrightarrow
    (A/C ) =
    ( A / if ( C = 0 , C , 1 ) ) by (rule MMI_opreq2)
    have S3: C =
    if (C\not= 0 , C , 1 ) \longrightarrow
    (B/C ) =
    ( B / if ( C = 0 , C , 1 ) ) by (rule MMI_opreq2)
        from S2 S3 have S4: C =
    if (C\not=0,C , 1 ) \longrightarrow
    ( ( A / C ) + ( B / C ) ) =
    ( ( A / if ( C = 0 , C , 1 ) ) + ( B / if ( C = 0 , C , 1 ) ) ) by
(rule MMI_opreq12d)
    from S1 S4 have S5: C =
    if (C\not= 0, C , 1 ) \longrightarrow
    (( (A + B ) / C ) =
    (( A / C ) + ( B / C ) ) \longleftrightarrow
    (( A + B ) / if ( C = 0 , C , 1 ) ) =
    (( A / if ( C = 0 , C , 1 ) ) + ( B / if ( C = 0 , C , 1 ) ) ) ) by
(rule MMI_eqeq12d)
    from A1 have S6: A }\in\mathbb{C}\mathrm{ .
    from A2 have S7: B }\in\mathbb{C}\mathrm{ .
    from A3 have S8: C }\in\mathbb{C}\mathrm{ .
    have S9: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from S8 S9 have S10: if ( C \not=0 , C , 1 ) \in\mathbb{C}\mathrm{ by (rule MMI_keepel)}
    have S11: if ( C \not=0 , C , 1 ) \not=0 by (rule MMI_elimne0)
    from S6 S7 S10 S11 have S12: ( ( A + B ) / if ( C = 0 , C , 1 ) )
=
    (( A / if ( C = 0 , C , 1 ) ) + ( B / if ( C = 0 , C , 1 ) ) ) by
(rule MMI_divdir)
    from S5 S12 show C }\not=0
    ((A+B)/C) =
    ( ( A / C ) + ( B / C ) ) by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_divdirt:
    shows ( ( A G\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0)}
    ((A + B ) / C ) =
    ( ( A / C ) + ( B / C ) )
proof -
            have S1: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
    (A+B) =
    ( if ( A \in C , A , 0 ) + B ) by (rule MMI_opreq1)
        from S1 have S2: A =
    if ( A \in\mathbb{C},A,0 ) \longrightarrow
```

```
\(((A+B) / C)=\)
( (if \((A \in \mathbb{C}, A, 0)+B) / C\) ) by (rule MMI_opreq1d)
    have \(\mathrm{S} 3: \mathrm{A}=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
( \(\mathrm{A} / \mathrm{C}\) ) =
( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) / C ) by (rule MMI_opreq1)
    from S 3 have S 4 : \(\mathrm{A}=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(((A / C)+(B / C))=\)
( ( if ( A \(\in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) / C ) + ( B / C ) ) by (rule MMI_opreq1d)
    from S2 S4 have S5: A =
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\((((A+B) / C)=\)
\(((A / C)+(B / C)) \longleftrightarrow\)
\(((\operatorname{if}(A \in \mathbb{C}, A, 0)+B) / C)=\)
( ( if \((A \in \mathbb{C}, A, 0) / C)+(B / C))\) ) by (rule MMI_eqeq12d)
        from S 5 have \(\mathrm{S} 6: \mathrm{A}=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(((C \neq 0 \longrightarrow((A+B) / C)=((A / C)+(B / C))) \longleftrightarrow\)
( \(\mathrm{C} \neq 0 \longrightarrow\)
( (if \((A \in \mathbb{C}, A, \mathbf{O})+B) / C)=\)
( ( if ( \(A \in \mathbb{C}, A, 0\) ) / C ) + ( B / C ) ) ) ) by (rule MMI_imbi2d)
        have \(\mathrm{S7}\) : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
(if \((A \in \mathbb{C}, A, 0)+B)=\)
( if ( \(A \in \mathbb{C}, A, \mathbf{0}\) ) + if ( \(B \in \mathbb{C}, B, \mathbf{0}\) ) ) by (rule MMI_opreq2)
    from S 7 have \(\mathrm{S} 8: \mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\(((\operatorname{if}(A \in \mathbb{C}, A, 0)+B) / C)=\)
( (if \((A \in \mathbb{C}, A, \mathbf{0})+\operatorname{if}(B \in \mathbb{C}, B, 0)\) ) C ) by (rule MMI_opreq1d)
    have S 9 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( \(\mathrm{B} / \mathrm{C}\) ) \(=\)
( if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) / C ) by (rule MMI_opreq1)
    from 59 have S 10 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( ( if \((A \in \mathbb{C}, A, \mathbf{O}) / C)+(B / C))=\)
( (if \((A \in \mathbb{C}, A, 0) / C)+(i f(B \in \mathbb{C}, B, 0) / C))\) by
(rule MMI_opreq2d)
    from S8 S10 have S11: \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\((() \operatorname{if}(A \in \mathbb{C}, A, 0)+B) / C)=\)
\(((\) if \((A \in \mathbb{C}, A, 0) / C)+(B / C)) \longleftrightarrow\)
( (if \((A \in \mathbb{C}, A, \mathbf{0})+\operatorname{if}(B \in \mathbb{C}, B, \mathbf{0})) / C)=\)
( (if \((A \in \mathbb{C}, A, 0) / C)+(\operatorname{if}(B \in \mathbb{C}, B, 0) / C))\) ) by
(rule MMI_eqeq12d)
    from S 11 have S 12 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\(((C \neq 0 \longrightarrow((\operatorname{if}(A \in \mathbb{C}, A, \mathbf{0})+B) / C)=((i f(A \in \mathbb{C}\)
```

```
, A , O ) / C ) + ( B / C ) ) ) \longleftrightarrow
    (C\not=0}
    (( if ( A \in\mathbb{C , A , 0 ) + if ( B \in\mathbb{C}, B , 0 ) ) / C ) =}
    (( if ( A \in\mathbb{C},A,0 ) / C ) + ( if ( B \in\mathbb{C}, B , 0 ) / C ) ) ) )
by (rule MMI_imbi2d)
    have S13: C =
    if (C\in\mathbb{C},C,0 ) \longrightarrow
    ( C f 0 \longleftrightarrow if ( C \in\mathbb{C , C , 0 ) \not= 0 ) by (rule MMI_neeq1)}
    have S14: C =
    if ( C \in\mathbb{C},C,0 ) \longrightarrow
    (( if ( A \in\mathbb{C},A,0 ) + if ( B \in\mathbb{C},\textrm{B},\mathbf{0}) ) / C ) =
    (( if ( A \in\mathbb{C},A,0 ) + if ( B \in\mathbb{C},B,0) ) / if ( C \in\mathbb{C},C
,0 ) ) by (rule MMI_opreq2)
            have S15: C =
    if (C G \mathbb{C , C , O ) }\longrightarrow
    (if ( A \in\mathbb{C},A,0 ) / C ) =
    ( if ( A \in\mathbb{C},A,0 ) / if ( C \in\mathbb{C}, C , 0 ) ) by (rule MMI_opreq2)
            have S16: C =
    if (C\in\mathbb{C},C,0 )}
    ( if ( B \in\mathbb{C , B , 0 ) / C ) =}
    ( if ( B \in\mathbb{C}, B , 0 ) / if ( C \in\mathbb{C}, C , 0 ) ) by (rule MMI_opreq2)
            from S15 S16 have S17: C =
    if (C\in\mathbb{C},C,0 ) \longrightarrow
    (( if ( A \in\mathbb{C},A,0)/C) + (if ( B G \mathbb{C , B , 0 ) / C ) ) =}
```



```
B , 0 ) / if ( C \in\mathbb{C}, C , 0 ) ) ) by (rule MMI_opreq12d)
            from S14 S17 have S18: C =
    if (C\in\mathbb{C},C,0 )}
    (( ( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C}, B , 0 ) ) / C ) =
    (( if ( A \in\mathbb{C},A,0 ) / C ) + ( if ( B \in\mathbb{C}, B,0 ) / C ) ) \longleftrightarrow
    (( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},B,0) ) / if (C\in\mathbb{C},C
,0 ) ) =
    (( if ( A \in\mathbb{C},A,0) / if (C\in\mathbb{C},C,0 ) ) + ( if ( B \in\mathbb{C},
B , 0 ) / if ( C \in\mathbb{C},C,0 ) ) ) by (rule MMI_eqeq12d)
            from S13 S18 have S19: C =
    if (C\in\mathbb{C},C,0 )}
    ((C\not=0\longrightarrow((if (A C C , A, 0 ) + if ( B \in\mathbb{C},B,0) ) / C
```



```
) \longleftrightarrow
    ( if ( C \in\mathbb{C},C,0 ) = 0 \longrightarrow
    (( if ( A \in\mathbb{C},A,0) + if ( B \in\mathbb{C},B,0) ) / if (C C \mathbb{C , C}
, 0 ) ) =
    (( if ( A \in\mathbb{C},A,0) / if (C\in\mathbb{C},C,0) ) + (if ( B \in\mathbb{C},
B , 0 ) / if ( C \in\mathbb{C},C,0 ) ) ) ) ) by (rule MMI_imbi12d)
            have S20: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_Ocn)
            from S20 have S21: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
            have S22: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
            from S22 have S23: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
```

```
        have S24: 0 \in \mathbb{C by (rule MMI_Ocn)}
    from S24 have S25: if ( C \in\mathbb{C},C,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
    from S21 S23 S25 have S26: if ( C \in\mathbb{C}, C, 0 ) \not= 0 \longrightarrow
    (( if ( A \in\mathbb{C},A,0 ) + if ( B \in\mathbb{C},B,0 ) ) / if (C C \mathbb{C , C}
, 0 ) ) =
    (( if (A\in\mathbb{C},A,0) / if (C\in\mathbb{C},C,0) + + if ( B \in\mathbb{C},
B , 0 ) / if ( C \in\mathbb{C , C , 0 ) ) ) by (rule MMI_divdirz)}
            from S6 S12 S19 S26 have S27: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    ( C }\not=0
    ((A + B ) / C ) =
    ( ( A / C ) + ( B / C ) ) ) by (rule MMI_dedth3h)
            from S27 show ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0)}
    ( (A + B ) / C ) =
    ( ( A / C ) + ( B / C ) ) by (rule MMI_imp)
qed
lemma (in MMIsar0) MMI_divcan3: assumes A1: A \in C
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: A \not=0
    shows ( ( A | B ) / A ) = B
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: B }\in\mathbb{C}\mathrm{ .
    from A1 have S3: A }\in\mathbb{C}\mathrm{ .
    from A3 have S4: A }=0\mathrm{ 0.
    from S1 S2 S3 S4 have S5: ( ( A | B ) / A ) = ( A · ( B / A ) ) by
(rule MMI_divass)
    from A1 have S6: A }\in\mathbb{C}\mathrm{ .
    from A2 have S7: B \in\mathbb{C}
    from A3 have S8: A}\not=0\mathrm{ .
    from S6 S7 S8 have S9: ( A · ( B / A ) ) = B by (rule MMI_divcan2)
    from S5 S9 show ( ( A | B ) / A ) = B by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_divcan4: assumes A1: A }\in\mathbb{C}\mathrm{ and
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: A \not= 0
    shows ( ( B . A ) / A ) = B
proof -
    from A2 have S1: B }\in\mathbb{C}
    from A1 have S2: A }\in\mathbb{C}\mathrm{ .
    from S1 S2 have S3: ( B · A ) = ( A | B ) by (rule MMI_mulcom)
    from S3 have S4: ( ( B · A ) / A ) = ( ( A | B ) / A ) by (rule MMI_opreq1i)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    from A2 have S6: B }\in\mathbb{C}\mathrm{ .
    from A3 have S7: A }=
    from S5 S6 S7 have S8: ( ( A · B ) / A ) = B by (rule MMI_divcan3)
    from S4 S8 show ( ( B · A ) / A ) = B by (rule MMI_eqtr)
qed
```

lemma (in MMIsar0) MMI_divcan3z: assumes A1: $A \in \mathbb{C}$ and A2: $B \in \mathbb{C}$
shows $A \neq 0 \longrightarrow((A \cdot B) / A)=B$
proof -
have S1: A =
if $(A \neq 0, A, 1) \longrightarrow$
($\mathrm{A} \cdot \mathrm{B}$) $=$
(if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1$) • B) by (rule MMI_opreq1)
have $\mathrm{S} 2: \mathrm{A}=$
if $(A \neq \mathbf{0}, \mathrm{A}, 1) \longrightarrow$
$\mathrm{A}=$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1)$ by (rule MMI_id)
from S1 S2 have S3: A =
if $(A \neq \mathbf{0}, A, 1) \longrightarrow$
((A B) / A) =
((if $(A \neq 0, A, 1) \cdot B) / i f(A \neq 0, A, 1))$ by (rule MMI_opreq12d) from S3 have S4: A =
if $(A \neq 0, A, 1) \longrightarrow$
$((1 A \cdot B) / A)=$
B \longleftrightarrow
((if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$) B$) /$ if $(\mathrm{A} \neq \mathbf{0}, \mathrm{A}, 1)$) $=$
B) by (rule MMI_eqeq1d)
from $A 1$ have $55: A \in \mathbb{C}$.
have $\mathrm{S} 6: 1 \in \mathbb{C}$ by (rule MMI_1cn)
from S 5 S 6 have S 7 : if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$) $\in \mathbb{C}$ by (rule MMI_keepel)
from $A 2$ have $\mathrm{S} 8: \mathrm{B} \in \mathbb{C}$.
have S9: if ($\mathrm{A} \neq \mathbf{0}, \mathrm{A}, \mathbf{1}$) $\neq \mathbf{0}$ by (rule MMI_elimne0)
from S7 S8 S9 have S10: ((if ($\mathrm{A} \neq \mathbf{0}$, A , 1) • B) / if ($\mathrm{A} \neq$
$\mathbf{0}, \mathrm{A}, 1$)) =
B by (rule MMI_divcan3)
from S4 S10 show $\mathrm{A} \neq 0 \longrightarrow((\mathrm{~A} \cdot \mathrm{~B}) / \mathrm{A})=\mathrm{B}$ by (rule MMI_dedth)
qed
lemma (in MMIsar0) MMI_divcan4z: assumes A1: $A \in \mathbb{C}$ and A2: $B \in \mathbb{C}$
shows $A \neq 0 \longrightarrow((B \cdot A) / A)=B$
proof -
from $A 1$ have $S 1: A \in \mathbb{C}$.
from $A 2$ have $S 2: B \in \mathbb{C}$.
from S1 S2 have S3: A $\neq 0 \longrightarrow((A \cdot B) / A)=B$ by (rule MMI_divcan3z)
from $A 2$ have $S 4: B \in \mathbb{C}$.
from $A 1$ have $55: A \in \mathbb{C}$.
from S4 S5 have S6: (B • A) = (A B) by (rule MMI_mulcom)
from S6 have S7: ((B • A) / A) = ((A • B) / A) by (rule MMI_opreq1i)
from S 3 S 7 show $\mathrm{A} \neq \mathbf{0} \longrightarrow((\mathrm{B} \cdot \mathrm{A}) / \mathrm{A})=\mathrm{B}$ by (rule MMI_syl5eq)
qed
lemma (in MMIsar0) MMI_divcan3t:
shows $(A \in \mathbb{C} \wedge B \in \mathbb{C} \wedge A \neq 0) \longrightarrow$

```
    ( ( A • B ) / A ) = B
proof -
    have \(\mathrm{S} 1: \mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    \((A \neq 0 \longleftrightarrow\) if \((A \in \mathbb{C}, A, 0) \neq 0)\) by (rule MMI_neeq1)
        have \(\mathrm{S} 2: \mathrm{A}=\)
    if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
    ( \(\mathrm{A} \cdot \mathrm{B}\) ) \(=\)
    ( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) • B ) by (rule MMI_opreq1)
        have S3: \(A=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(\mathrm{A}=\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) by (rule MMI_id)
        from S2 S3 have S4: A =
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
( ( A B ) / A ) =
( (if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) \(\cdot \mathrm{B}) /\) if \((\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0})\) ) by (rule MMI_opreq12d)
        from S 4 have \(\mathrm{S} 5: \mathrm{A}=\)
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(((1 A \cdot B) / A)=\)
B \(\longleftrightarrow\)
( (if \((A \in \mathbb{C}, A, \mathbf{0}) \cdot B) /\) if \((A \in \mathbb{C}, A, \mathbf{0}))=\)
B ) by (rule MMI_eqeq1d)
        from S1 S5 have S6: A =
if \((A \in \mathbb{C}, A, 0) \longrightarrow\)
\(((A \neq 0 \longrightarrow((A \cdot B) / A)=B) \longleftrightarrow\)
( if \((A \in \mathbb{C}, A, 0) \neq 0 \longrightarrow\)
( (if \((A \in \mathbb{C}, A, \mathbf{0}) \cdot B) /\) if \((A \in \mathbb{C}, A, \mathbf{0}))=\)
B ) ) by (rule MMI_imbi12d)
        have \(S 7\) : \(B=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
( if \((A \in \mathbb{C}, A, 0) \cdot B)=\)
( if ( \(\mathrm{A} \in \mathbb{C}, \mathrm{A}, \mathbf{0}\) ) . if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) by (rule MMI_opreq2)
        from 57 have \(\mathrm{S} 8: \mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\(((\operatorname{if}(A \in \mathbb{C}, A, 0) \cdot B) /\) if \((A \in \mathbb{C}, A, 0))=\)
( ( if \((A \in \mathbb{C}, A, \mathbf{0})\). if \((B \in \mathbb{C}, B, 0)) /\) if \((A \in \mathbb{C}, A\)
, 0 ) ) by (rule MMI_opreq1d)
        have S9: \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
\(\mathrm{B}=\mathrm{if}(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0})\) by (rule MMI_id)
            from S 8 S 9 have S 10 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, \mathbf{0}) \longrightarrow\)
\((() \operatorname{if}(A \in \mathbb{C}, A, \mathbf{0}) \cdot B) /\) if \((A \in \mathbb{C}, A, \mathbf{0}))=\)
\(B \longleftrightarrow\)
( ( if \((A \in \mathbb{C}, A, 0) \cdot\) if \((B \in \mathbb{C}, B, 0)) /\) if \((A \in \mathbb{C}, A\)
, 0 ) ) =
if ( \(\mathrm{B} \in \mathbb{C}, \mathrm{B}, \mathbf{0}\) ) ) by (rule MMI_eqeq12d)
    from \(S 10\) have S 11 : \(\mathrm{B}=\)
if \((B \in \mathbb{C}, B, 0) \longrightarrow\)
```



```
(A\in\mathbb{C},A,0) )= B ) \longleftrightarrow
    ( if ( A \in\mathbb{C},A,0 ) = 0 \longrightarrow
    (( if ( A \in\mathbb{C},A,0) . if ( B \in\mathbb{C},B,0) ) / if ( A \in\mathbb{C},A
    , 0 ) ) =
    if ( B \in\mathbb{C , B , 0 ) ) ) by (rule MMI_imbi2d)}
        have S12: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
        from S12 have S13: if ( A \in\mathbb{C},A,0 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
        have S14: 0 \in\mathbb{C}}\mathrm{ by (rule MMI_0cn)
        from S14 have S15: if ( B \in\mathbb{C}, B , 0 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
        from S13 S15 have S16: if ( A \in\mathbb{C},A,0 ) = 0 }
    (( if ( A \in\mathbb{C},A,0) . if ( B \in\mathbb{C},B,0) ) / if ( A G \mathbb{C , A}
,0 ) ) =
    if ( B \in\mathbb{C}, B , 0 ) by (rule MMI_divcan3z)
        from S6 S11 S16 have S17: ( A \in\mathbb{C}\wedgeB\in\mathbb{C ) }\longrightarrow
    ( A f 0 \longrightarrow ( ( A | B ) / A ) = B ) by (rule MMI_dedth2h)
        from S17 show ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeA\not=0)
    ( ( A | B ) / A ) = B by (rule MMI_3impia)
qed
lemma (in MMIsar0) MMI_divcan4t:
    shows ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( ( B | A ) / A ) = B
proof -
            have S1: (A A \mathbb{C ^B B C ) }\longrightarrow
    ( A P B ) = ( B . A ) by (rule MMI_axmulcom)
        from S1 have S2: ( A \in\mathbb{C ^ B G C ) }\longrightarrow
    (( A | B ) / A ) = ( ( B · A ) / A ) by (rule MMI_opreq1d)
        from S2 have S3: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeA\not=0)
    ( ( A P B ) / A ) = ( ( B | A ) / A ) by (rule MMI_3adant3)
        have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeA\not=0 ) \longrightarrow
    ( ( A | B ) / A ) = B by (rule MMI_divcan3t)
        from S3 S4 show ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeA\not=0 ) }
    ( ( B | A ) / A ) = B by (rule MMI_eqtr3d)
qed
lemma (in MMIsar0) MMI_div11: assumes A1: A \in\mathbb{C}\mathrm{ and}
    A2: B \in\mathbb{C}\mathrm{ and}
    A3: C \in\mathbb{C}}\mathrm{ and
    A4: C = 0
    shows ( A / C ) = ( B / C ) \longleftrightarrow A = B
proof -
    from A3 have S1: C }\in\mathbb{C}\mathrm{ .
    from A1 have S2: A }\in\mathbb{C}\mathrm{ .
    from A3 have S3: C }\in\mathbb{C}\mathrm{ .
    from A4 have S4: C }=
    from S2 S3 S4 have S5: ( A / C ) \in \mathbb{C by (rule MMI_divcl)}
    from A2 have S6: B }\in\mathbb{C}\mathrm{ .
    from A3 have S7: C }\in\mathbb{C}\mathrm{ .
```

```
    from A4 have S8: C }\not=0\mathrm{ 0.
    from S6 S7 S8 have S9: ( B / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_divcl)
    from A4 have S10: C # 0.
    from S1 S5 S9 S10 have S11: ( C . ( A / C ) ) =
    (C . ( B / C ) ) \longleftrightarrow
    ( A / C ) = ( B / C ) by (rule MMI_mulcan)
    from A3 have S12: C }\in\mathbb{C}\mathrm{ .
    from A1 have S13: A }\in\mathbb{C}\mathrm{ .
    from A4 have S14: C }\not=
    from S12 S13 S14 have S15: ( C . ( A / C ) ) = A by (rule MMI_divcan2)
    from A3 have S16: C }\in\mathbb{C}\mathrm{ .
    from A2 have S17: B }\in\mathbb{C}\mathrm{ .
    from A4 have S18: C }\not=
    from S16 S17 S18 have S19: ( C . ( B / C ) ) = B by (rule MMI_divcan2)
    from S15 S19 have S20: ( C . ( A / C ) ) =
    (C . ( B / C ) ) \longleftrightarrow A = B by (rule MMI_eqeq12i)
    from S11 S20 show ( A / C ) = ( B / C ) \longleftrightarrow A = B by (rule MMI_bitr3)
qed
lemma (in MMIsar0) MMI_div11t:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedge(C\in\mathbb{C}\wedgeC\not=0))
    ( ( A / C ) = ( B / C ) \longleftrightarrow A = B )
proof -
    have S1: A =
    if ( A \in\mathbb{C},A,1 ) 
    (A/C ) =
    ( if ( A \in C , A , 1 ) / C ) by (rule MMI_opreq1)
        from S1 have S2: A =
    if ( A \in\mathbb{C},A , 1 ) }
    ( (A/C ) =
    ( B / C ) \longleftrightarrow
    ( if ( A \in\mathbb{C , A , 1 ) / C ) =}
    ( B / C ) ) by (rule MMI_eqeq1d)
        have S3: A =
    if ( A \in\mathbb{C},A , 1 ) \longrightarrow
    ( A = B \longleftrightarrow if ( A \in\mathbb{C , A , 1 ) = B ) by (rule MMI_eqeq1)}
        from S2 S3 have S4: A =
    if ( A \in\mathbb{C},A,1 ) \longrightarrow
    (( ( A / C ) = ( B / C ) \longleftrightarrowA = B ) \longleftrightarrow
    ( (if ( A & C , A , 1 ) / C ) =
    ( B / C ) \longleftrightarrow
    if ( A \in\mathbb{C , A , 1 ) = B ) ) by (rule MMI_bibi12d)}
        have S5: B =
    if ( B \in\mathbb{C}, B , 1 ) \longrightarrow
    (B/C ) =
    ( if ( B \in\mathbb{C , B , 1 ) / C ) by (rule MMI_opreq1)}
        from S5 have S6: B =
    if ( B \in\mathbb{C}, B , 1 ) }
    (( if ( A \in\mathbb{C , A , 1 ) / C ) =}
```

```
( B / C ) \longleftrightarrow
(if (A A C ,A , 1 )/C ) =
( if ( B \in\mathbb{C , B , 1 ) / C ) ) by (rule MMI_eqeq2d)}
    have S7: B =
if ( B \in\mathbb{C}, B , 1 ) }
( if (A\in\mathbb{C},A,1) =
B}
if ( A \in\mathbb{C},A,1)=
if ( B \in\mathbb{C , B , 1 ) ) by (rule MMI_eqeq2)}
    from S6 S7 have S8: B =
if ( B \in\mathbb{C},\textrm{B},1)}
(( ( if ( A G\mathbb{C},A,1) / C ) = ( B / C ) \longleftrightarrow if (A A \mathbb{C , A , 1}
) = B ) \longleftrightarrow
    (( if ( A \in\mathbb{C , A , 1 ) / C ) =}
    ( if ( B \in\mathbb{C}, B , 1 ) / C ) \longleftrightarrow
    if ( A \in\mathbb{C},A,1)=
    if ( B \in\mathbb{C , B , 1 ) ) ) by (rule MMI_bibi12d)}
    have S9: C =
    if (( C \in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) }
    ( if ( A G C , A , 1 ) / C ) =
    ( if (A A C , A , 1 ) / if ( ( C \in\mathbb{C}^C\not=0 ) , C , 1 ) ) by (rule
MMI_opreq2)
            have S10: C =
    if (( C \in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) \longrightarrow
    ( if ( B \in\mathbb{C}, B , 1 ) / C ) =
    ( if ( B \in\mathbb{C}, B , 1 ) / if ( ( C \in\mathbb{C ^ C F=0 ) , C , 1 ) ) by (rule}
MMI_opreq2)
            from S9 S10 have S11: C =
if ( ( C \in\mathbb{C}^C\not=0 ) , C , 1 ) \longrightarrow
    ( (if ( A \in\mathbb{C},A,1)/C ) =
    ( if ( B \in\mathbb{C}, B , 1 ) / C ) \longleftrightarrow
    ( if (A\in\mathbb{C},A,1)/ if ( (C\in\mathbb{C}\wedgeC\not=0) , C, 1 ) ) =
    ( if ( B \in\mathbb{C}, B , 1 ) / if ( ( C \in\mathbb{C ^C F 0 ) , C , 1 ) ) ) by (rule}
MMI_eqeq12d)
            from S11 have S12: C =
    if ( ( C \in\mathbb{C}^C\not=0 ) , C , 1 ) }
    (( ( if ( A \in\mathbb{C , A , 1 ) / C ) = ( if ( B \in\mathbb{C}, B , 1 ) / C ) \longleftrightarrow}
if ( A \in\mathbb{C},A,1)=if( B \in\mathbb{C},\textrm{B},\mathbf{1}))\longleftrightarrow
    (( if (A\in\mathbb{C},A,1)/ if ((C\in\mathbb{C}\wedgeC\not=0) ,C,1 ) ) =
    ( if ( B \in\mathbb{C}, B,1 ) / if (( C \in\mathbb{C}\wedgeC\not=0 ), C, 1 ) ) \longleftrightarrow
    if ( A \in\mathbb{C},A,1) =
    if ( B \in\mathbb{C , B , 1 ) ) ) by (rule MMI_bibi1d)}
        have S13: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
        from S13 have S14: if ( A \in\mathbb{C},A,1 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
        have S15: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
        from S15 have S16: if ( B \in\mathbb{C}, B , 1 ) \in\mathbb{C}}\mathrm{ by (rule MMI_elimel)
    have S17: C =
if ((C\in\mathbb{C}\wedgeC\not=0) , C , 1 ) }
C C G \mathbb{C}\longleftrightarrow
```

```
if (( C \in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) \in\mathbb{C ) by (rule MMI_eleq1)}
    have S18: C =
    if ((C\in\mathbb{C}\wedgeC\not= 0) , C , 1 ) \longrightarrow
    C C = 0 \longleftrightarrow
    if (( C \in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) = 0 ) by (rule MMI_neeq1)
    from S17 S18 have S19: C =
if ((C\in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) \longrightarrow
    ( (C\in\mathbb{C}\wedgeC\not=0) \longleftrightarrow
    ( if ( ( C \in\mathbb{C}\wedge C = 0) , C , 1 ) \in\mathbb{C}^ if ( ( C \in\mathbb{C}^C\not=0 ),
C , 1 ) \not= 0 ) ) by (rule MMI_anbi12d)
    have S2O: 1 =
if ((C\in\mathbb{C}\wedgeC\not=0) , C , 1 ) \longrightarrow
    ( 1 \in\mathbb{C}\longleftrightarrow
    if ((C\in\mathbb{C}\wedgeC\not=0) ,C , 1 ) \in\mathbb{C ) by (rule MMI_eleq1)}
    have S21: 1 =
    if ((C\in\mathbb{C}\wedgeC\not= 0) , C , 1 ) }
    ( 1 = 0 \longleftrightarrow
    if (( C \in\mathbb{C}\wedgeC\not=0) , C , 1 ) = 0 ) by (rule MMI_neeq1)
    from S20 S21 have S22: 1 =
    if ( ( C \in\mathbb{C}^C\not=0 ) , C , 1 ) \longrightarrow
    ( (1\in\mathbb{C}\wedge1\not=0) \longleftrightarrow
    (if ( ( C \in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) \in\mathbb{C}\wedge if ( ( C \in\mathbb{C}\wedgeC\not=0 ),
C , 1 ) \not= 0 ) ) by (rule MMI_anbi12d)
    have S23: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    have S24: 1 f=0 by (rule MMI_ax1ne0)
    from S23 S24 have S25: 1 \in\mathbb{C}\wedge 1 = 0 by (rule MMI_pm3_2i)
```



```
^if ( ( C \in\mathbb{C}\wedge C = 0 ) , C, 1 ) \not=0 by (rule MMI_elimhyp)
    from S26 have S27: if ( ( C \in\mathbb{C ^C F 0 ) , C , 1 ) \in\mathbb{C}}\mathrm{ by (rule}
MMI_pm3_26i)
    from S26 have S28: if ( ( C \in\mathbb{C}\wedge C # 0 ) , C , 1 ) \in\mathbb{C}^ if (
(C\in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) \not=0.
    from S28 have S29: if ( ( C \in\mathbb{C}\wedgeC\not=0 ) , C , 1 ) = 0 by (rule
MMI_pm3_27i)
    from S14 S16 S27 S29 have S30: ( if ( A G C , A , 1 ) / if ( ( C
\in\mathbb{C}\wedgeC\not=0 ) , C , 1) ) =
    ( if ( B \in\mathbb{C},B,1) / if ( (C\in\mathbb{C}^C\not=0) ,C,1 ) ) \longleftrightarrow
    if ( A \in\mathbb{C},A,1) =
    if ( B \in\mathbb{C}, B , 1 ) by (rule MMI_div11)
    from S4 S8 S12 S30 show ( A G\mathbb{C}\wedge B\in\mathbb{C}\wedge(C\in\mathbb{C}\wedgeC\not=0) )
\longrightarrow
    ( ( A / C ) = ( B / C ) \longleftrightarrow A = B ) by (rule MMI_dedth3h)
qed
```

end

75 Metamath examples

theory MMI_examples imports MMI_Complex_ZF
begin
This theory contains 10 theorems translated from Metamath (with proofs). It is included in the proof document as an illustration of how a translated Metamath proof looks like. The "known_theorems.txt" file included in the IsarMathLib distribution provides a list of all translated facts.
lemma (in MMIsar0) MMI_dividt:
shows $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(A / A)=1$
proof -
have S1: $(A \in \mathbb{C} \wedge A \in \mathbb{C} \wedge A \neq 0) \longrightarrow$
(A / A) $=(\mathrm{A} \cdot(\mathbf{1} / \mathrm{A})$) by (rule MMI_divrect)
from $S 1$ have $S 2:((A \in \mathbb{C} \wedge A \in \mathbb{C}) \wedge A \neq 0) \longrightarrow$
$(\mathrm{A} / \mathrm{A})=(\mathrm{A} \cdot(\mathbf{1} / \mathrm{A}))$ by (rule MMI_3expa)
from S2 have S3: $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow$
($\mathrm{A} / \mathrm{A})=(\mathrm{A} \cdot(1 / \mathrm{A}))$ by (rule MMI_anabsan)
have $\mathrm{S} 4:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{A} \neq \mathbf{0}) \longrightarrow$
(A . ($1 / \mathrm{A}$)) = $\mathbf{1}$ by (rule MMI_recidt)
from S3 S4 show $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(A / A)=1$ by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_div0t:
shows $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(0 / A)=0$
proof -
have S1: $0 \in \mathbb{C}$ by (rule MMI_Ocn)
have $\operatorname{S2:}(0 \in \mathbb{C} \wedge A \in \mathbb{C} \wedge A \neq 0) \longrightarrow$
($\mathbf{0} / \mathrm{A}$) $=(\mathbf{0} \cdot(\mathbf{1} / \mathrm{A})$) by (rule MMI_divrect)
from S1 S2 have S3: ($\mathrm{A} \in \mathbb{C} \wedge \mathrm{A} \neq \mathbf{0}$) \longrightarrow
($0 / \mathrm{A})=(\mathbf{0} \cdot(\mathbf{1} / \mathrm{A}))$ by (rule MMI_mp3an1)
have S4: $(A \in \mathbb{C} \wedge A \neq 0) \longrightarrow(\mathbf{1} / \mathrm{A}) \in \mathbb{C}$ by (rule MMI_recclt)

by (rule MMI_mul02t)
from S4 S5 have $\mathrm{S} 6:(\mathrm{A} \in \mathbb{C} \wedge \mathrm{A} \neq \mathbf{0}) \longrightarrow$
($0 \cdot(1 / \mathrm{A}$)) = $\mathbf{0}$ by (rule MMI_syl)
from $S 3$ S6 show $(A \in \mathbb{C} \wedge A \neq \mathbf{A}) \longrightarrow(\mathbf{0} / \mathrm{A})=\mathbf{0}$ by (rule MMI_eqtrd)
qed
lemma (in MMIsar0) MMI_diveq0t:
shows $(A \in \mathbb{C} \wedge C \in \mathbb{C} \wedge C \neq 0) \longrightarrow$
$((A / C)=0 \longleftrightarrow A=0)$
proof -
have $\mathrm{S} 1:(\mathrm{C} \in \mathbb{C} \wedge \mathrm{C} \neq \mathbf{0}) \longrightarrow(\mathbf{0} / \mathrm{C})=\mathbf{0}$ by (rule MMI_div0t)
from S1 have $S 2:(C \in \mathbb{C} \wedge C \neq 0) \longrightarrow$
((A / C) $=$
($\mathbf{0} / \mathrm{C}) \longleftrightarrow(\mathrm{A} / \mathrm{C})=\mathbf{0}$) by (rule MMI_eqeq2d)
from S2 have S3: $(A \in \mathbb{C} \wedge C \in \mathbb{C} \wedge C \neq 0) \longrightarrow$

```
    ( ( A / C ) =
    ( 0 / C ) \longleftrightarrow ( A / C ) = 0 ) by (rule MMI_3adant1)
        have S4: 0 \in C by (rule MMI_0cn)
```



```
    ( ( A / C ) = ( 0 / C ) \longleftrightarrow A = 0 ) by (rule MMI_div11t)
    from S4 S5 have S6: ( A \in\mathbb{C}\wedge(C\in\mathbb{C}\wedgeC\not=0 ) ) }
    ( ( A / C ) = ( 0 / C ) \longleftrightarrow A = 0 ) by (rule MMI_mp3an2)
    from S6 have S7: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeC\not=0 ) \longrightarrow
    ( ( A / C ) = ( 0 / C ) \longleftrightarrowA = 0 ) by (rule MMI_3impb)
    from S3 S7 show ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeC\not=0 ) \longrightarrow
    ( ( A / C ) = 0 \longleftrightarrowA = 0 ) by (rule MMI_bitr3d)
qed
lemma (in MMIsar0) MMI_recrec: assumes A1: A \in\mathbb{C}}\mathrm{ and
    A2: A f 0
    shows ( 1 / ( 1 / A ) ) = A
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: A }=0\mathrm{ .
    from S1 S2 have S3: ( 1 / A ) \in \mathbb{C by (rule MMI_reccl)}
    have S4: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    have S6: 1 f=0 by (rule MMI_ax1ne0)
    from A2 have S7: A }=
    from S4 S5 S6 S7 have S8: ( 1 / A ) f= 0 by (rule MMI_divne0)
    from S3 S8 have S9: ( ( 1 / A ) . ( 1 / ( 1 / A ) ) ) = 1
        by (rule MMI_recid)
    from S9 have S10: ( A · ( ( 1 / A ) . ( 1 / ( 1 / A ) ) ) ) =
( A . 1 ) by (rule MMI_opreq2i)
    from A1 have S11: A }\in\mathbb{C}\mathrm{ .
    from A2 have S12: A }\not=
    from S11 S12 have S13: ( A · ( 1 / A ) ) = 1 by (rule MMI_recid)
    from S13 have S14: ( ( A . ( 1 / A ) ) . ( 1 / ( 1 / A ) ) ) =
(1 . (1 / ( 1 / A ) ) ) by (rule MMI_opreq1i)
    from A1 have S15: A }\in\mathbb{C}\mathrm{ .
    from S3 have S16: ( 1 / A ) \in\mathbb{C .}
    from S3 have S17: ( 1 / A ) \in\mathbb{C}.
    from S8 have S18: ( 1 / A ) # 0 .
    from S17 S18 have S19: ( 1 / ( 1 / A ) ) \in\mathbb{C}\mathrm{ by (rule MMI_reccl)}
    from S15 S16 S19 have S20:
        ((A.(1 / A ) ) . (1/(1/A ) ) ) =
    ( A · ( ( 1 / A ) . ( 1 / ( 1 / A ) ) ) ) by (rule MMI_mulass)
    from S19 have S21: ( 1 / ( 1 / A ) ) \in\mathbb{C .}
    from S21 have S22: ( 1 . ( 1 / ( 1 / A ) ) ) =
    ( 1 / ( 1 / A ) ) by (rule MMI_mulid2)
    from S14 S20 S22 have S23:
            ( A . ((1 / A ) . (1 / (1 / A ) ) ) ) =
( 1 / ( 1 / A ) ) by (rule MMI_3eqtr3)
    from A1 have S24: A }\in\mathbb{C}\mathrm{ .
```

```
    from S24 have S25: ( A · 1 ) = A by (rule MMI_mulid1)
    from S10 S23 S25 show ( 1 / ( 1 / A ) ) = A by (rule MMI_3eqtr3)
qed
lemma (in MMIsar0) MMI_divid: assumes A1: A \in \mathbb{C and}
    A2: A f= 0
    shows ( A / A ) = 1
proof -
    from A1 have S1: A }\in\mathbb{C}
    from A1 have S2: A }\in\mathbb{C}\mathrm{ .
    from A2 have S3: A }\not=0\mathrm{ 0.
    from S1 S2 S3 have S4: ( A / A ) = ( A . ( 1 / A ) ) by (rule MMI_divrec)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    from A2 have S6: A }=0\mathrm{ 0.
    from S5 S6 have S7: ( A · ( 1 / A ) ) = 1 by (rule MMI_recid)
    from S4 S7 show ( A / A ) = 1 by (rule MMI_eqtr)
qed
lemma (in MMIsar0) MMI_div0: assumes A1: A \in\mathbb{C}\mathrm{ and}
    A2: A f 0
    shows ( 0 / A ) = 0
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from A2 have S2: A }=
    have S3: ( A \in\mathbb{C}\wedge A f=0 ) \longrightarrow ( 0 / A ) = 0 by (rule MMI_div0t)
    from S1 S2 S3 show ( 0 / A ) = 0 by (rule MMI_mp2an)
qed
lemma (in MMIsar0) MMI_div1: assumes A1: A }\in\mathbb{C
    shows ( A / 1 ) = A
proof -
    from A1 have S1: A }\in\mathbb{C}\mathrm{ .
    from S1 have S2: ( 1 · A ) = A by (rule MMI_mulid2)
    from A1 have S3: A }\in\mathbb{C}\mathrm{ .
    have S4: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
    from A1 have S5: A }\in\mathbb{C}\mathrm{ .
    have S6: 1 = 0 by (rule MMI_ax1ne0)
    from S3 S4 S5 S6 have S7: ( A / 1 ) = A \longleftrightarrow ( 1 . A ) = A
        by (rule MMI_divmul)
    from S2 S7 show ( A / 1 ) = A by (rule MMI_mpbir)
qed
lemma (in MMIsar0) MMI_div1t:
    shows A \in\mathbb{C}\longrightarrow(A/1) = A
proof -
    have S1: A =
    if ( A \in\mathbb{C},A,1 ) \longrightarrow
    (A/1 ) =
    ( if ( A G C , A , 1 ) / 1 ) by (rule MMI_opreq1)
```

```
    have S2: A =
    if ( A \in\mathbb{C},A , 1 ) }
    A = if ( A \in\mathbb{C},A,1 ) by (rule MMI_id)
    from S1 S2 have S3: A =
    if ( A \in\mathbb{C},A,1)}
    ( (A/1 ) =
    A}
    ( if ( A \in\mathbb{C , A , 1 ) / 1 ) =}
    if ( A \in\mathbb{C},A,1 ) ) by (rule MMI_eqeq12d)
        have S4: 1 \in\mathbb{C}}\mathrm{ by (rule MMI_1cn)
        from S4 have S5: if ( A \in\mathbb{C},A,1 ) \in\mathbb{C}\mathrm{ by (rule MMI_elimel)}
        from S5 have S6: ( if ( A \in\mathbb{C},A,1 )/ 1 ) =
if ( A \in\mathbb{C}, A , 1 ) by (rule MMI_div1)
    from S3 S6 show A }\in\mathbb{C}\longrightarrow(A/1 ) = A by (rule MMI_dedth
qed
lemma (in MMIsar0) MMI_divnegt:
    shows ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0)
    (- (A/B ) ) = ( ( - A ) / B )
proof -
        have S1:(A\in\mathbb{C}\wedge(1/B) ( C C ) }
    ( ( - A ) . ( 1 / B ) ) =
    ( - ( A . ( 1 / B ) ) ) by (rule MMI_mulneg1t)
        have S2: ( B \in\mathbb{C}\wedge B = 0) \longrightarrow(1/B ) \in\mathbb{C}\mathrm{ by (rule MMI_recclt)}
        from S1 S2 have S3: ( A \in\mathbb{C}\wedge ( B \in\mathbb{C}\wedge B = 0 ) ) }
    ((-A) . (1/B ) ) =
    ( - ( A · ( 1 / B ) ) ) by (rule MMI_sylan2)
        from S3 have S4: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedge B \not=0 ) \longrightarrow
    ((-A) . (1/B ) ) =
    ( - ( A . ( 1 / B ) ) ) by (rule MMI_3impb)
        have S5: ( ( - A ) \in\mathbb{C}\wedge B \in\mathbb{C}\wedge B = 0 ) \longrightarrow
    ( ( - A ) / B ) =
    ( ( - A ) . ( 1 / B ) ) by (rule MMI_divrect)
        have S6: A }\in\mathbb{C}\longrightarrow(-A)\in\mathbb{C}\mathrm{ by (rule MMI_negclt)
        from S5 S6 have S7: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeB\not=0 ) \longrightarrow
    ( ( - A ) / B ) =
    ( ( - A ) . ( 1 / B ) ) by (rule MMI_syl3an1)
        have S8: ( A \in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0 ) \longrightarrow
    ( A / B ) = ( A . ( 1 / B ) ) by (rule MMI_divrect)
            from S8 have S9: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeB\not=0)
    (- (A / B ) ) =
    ( - ( A . ( 1 / B ) ) ) by (rule MMI_negeqd)
            from S4 S7 S9 show ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeB\not=0 ) \longrightarrow
    ( - ( A / B ) ) = ( ( - A ) / B ) by (rule MMI_3eqtr4rd)
qed
lemma (in MMIsar0) MMI_divsubdirt:
    shows ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C}) ^C\not=0 ) 
    (( A - B ) / C ) =
```

```
    ( ( A / C ) - ( B / C ) )
proof -
    have S1:( ( A \in\mathbb{C}\wedge(-B) \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    (( A + ( - B ) ) / C ) =
    ( ( A / C ) + ( ( - B ) / C ) ) by (rule MMI_divdirt)
        have S2: B \in\mathbb{C}\longrightarrow( - B ) \in\mathbb{C}\mathrm{ by (rule MMI_negclt)}
    from S1 S2 have S3: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0) \longrightarrow
    ((A + (-B ) ) / C ) =
    ( ( A / C ) + ( ( - B ) / C ) ) by (rule MMI_syl3anl2)
    have S4: (A A \mathbb{C ^B B C ) }\longrightarrow
    ( A + ( - B ) ) = ( A - B ) by (rule MMI_negsubt)
    from S4 have S5: ( }A\in\mathbb{C}\wedgeB\in\mathbb{C}\wedgeC\in\mathbb{C})
    ( A + ( - B ) ) = ( A - B ) by (rule MMI_3adant3)
    from S5 have S6: ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\longrightarrow
    (( A + ( - B ) ) / C ) =
    ( ( A - B ) / C ) by (rule MMI_opreq1d)
    from S6 have S7: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    (( A + ( - B ) ) / C ) =
    ( ( A - B ) / C ) by (rule MMI_adantr)
        have S8: ( B \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeC\not=0 ) \longrightarrow
    ( - ( B / C ) ) = ( ( - B ) / C ) by (rule MMI_divnegt)
        from S8 have S9: ( ( B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^ C f 0 ) \longrightarrow}
    ( - ( B / C ) ) = ( ( - B ) / C ) by (rule MMI_3expa)
        from S9 have S10:( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) \longrightarrow
    ( - ( B / C ) ) = ( ( - B ) / C ) by (rule MMI_3adantl1)
    from S10 have S11: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^C F 0 ) \longrightarrow}
    ( ( A / C ) + ( - ( B / C ) ) ) =
    ( ( A / C ) + ( ( - B ) / C ) ) by (rule MMI_opreq2d)
        have S12: ( ( A/C ) \in\mathbb{C}^(B/C ) \in\mathbb{C})\longrightarrow
    (( A / C ) + ( - ( B / C ) ) ) =
    ( ( A / C ) - ( B / C ) ) by (rule MMI_negsubt)
        have S13: ( A \in\mathbb{C}\wedgeC\in\mathbb{C}\wedgeC\not= 0 ) \longrightarrow
    ( A / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_divclt)
        from S13 have S14: ( (A G\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0)}
    ( A / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3expa)
        from S14 have S15:( ( A \in\mathbb{C}\wedge B \in\mathbb{C ^C\in\mathbb{C ) }^C\not=0 ) }\longrightarrow
    ( A / C ) \in \mathbb{C by (rule MMI_3adantl2)}
        have S16: ( B \in\mathbb{C}\wedge C \in\mathbb{C ^ C F= 0 ) }\longrightarrow
    ( B / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_divclt)
        from S16 have S17:( ( B \in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0)}
    ( B / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3expa)
        from S17 have S18: ( ( A \in\mathbb{C}\wedge B \in\mathbb{C}\wedgeC\in\mathbb{C ) ^C C 0 ) \longrightarrow}
    ( B / C ) \in\mathbb{C}}\mathrm{ by (rule MMI_3adantl1)
```



```
) \longrightarrow
    (( A / C ) + ( - ( B / C ) ) ) =
    ( ( A / C ) - ( B / C ) ) by (rule MMI_sylanc)
        from S11 S19 have S20:( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 ) 
```

```
(( A / C ) + ( ( - B ) / C ) ) =
( ( A / C ) - ( B / C ) ) by (rule MMI_eqtr3d)
        from S3 S7 S20 show ( ( A \in\mathbb{C}\wedge B\in\mathbb{C}\wedgeC\in\mathbb{C})\wedgeC\not=0 )}
    (( A - B ) / C ) =
    ( ( A / C ) - ( B / C ) ) by (rule MMI_3eqtr3d)
qed
end
```


76 Metamath interface

theory Metamath_Interface imports Complex_ZF MMI_prelude
begin
This theory contains some lemmas that make it possible to use the theorems translated from Metamath in a the complex0 context.

76.1 MMisar0 and complex0 contexts.

In the section we show a lemma that the assumptions in complex0 context imply the assumptions of the MMIsar0 context. The Metamath_sampler theory provides examples how this lemma can be used.

The next lemma states that we can use the theorems proven in the MMIsar0 context in the complex0 context. Unfortunately we have to use low level Isabelle methods "rule" and "unfold" in the proof, simp and blast fail on the order axioms.

```
lemma (in complex0) MMIsar_valid:
    shows MMIsar0(\mathbb{R},\mathbb{C},\mathbf{1,0,i,CplxAdd(R,A),CplxMul(R,A,M),}
    StrictVersion(CplxROrder(R,A,r)))
proof -
    let real = \mathbb{R}
    let complex = \mathbb{C}
    let zero = 0
    let one = 1
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    have ( }\forall\textrm{a b. a }\in\mathrm{ real }\wedge b \in real \longrightarrow
        \langlea, b\rangle\in lessrrel \longleftrightarrow \longleftrightarrow (a = b \vee \b, a\rangle\in lessrrel))
    proof -
        have I:
```

$\forall \mathrm{ab} . \mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \longrightarrow\left(\mathrm{a}<\mathbb{R} \mathrm{b} \longleftrightarrow \neg\left(\mathrm{a}=\mathrm{b} \vee \mathrm{b}<_{\mathbb{R}} \mathrm{a}\right)\right)$
using pre_axlttri by blast
\{ fix a b assume $a \in$ real $\wedge b \in$ real with I have $\left(\mathrm{a}<_{\mathbb{R}} \mathrm{b} \longleftrightarrow \neg\left(\mathrm{a}=\mathrm{b} \vee \mathrm{b}<_{\mathbb{R}} \mathrm{a}\right)\right.$)
by blast
hence
$\langle\mathrm{a}, \mathrm{b}\rangle \in$ lessrrel $\longleftrightarrow \neg(\mathrm{a}=\mathrm{b} \vee\langle\mathrm{b}, \mathrm{a}\rangle \in$ lessrrel $)$
by simp
$\}$ thus ($\forall \mathrm{a} \mathrm{b} . \mathrm{a} \in$ real $\wedge \mathrm{b} \in$ real \longrightarrow
$(\langle\mathrm{a}, \mathrm{b}\rangle \in$ lessrrel $\longleftrightarrow \neg(\mathrm{a}=\mathrm{b} \vee\langle\mathrm{b}, \mathrm{a}\rangle \in \operatorname{lessrrel)))}$
by blast
qed
moreover
have ($\forall \mathrm{a}$ b c.
$\mathrm{a} \in$ real $\wedge \mathrm{b} \in$ real $\wedge \mathrm{c} \in$ real \longrightarrow
$\langle\mathrm{a}, \mathrm{b}\rangle \in$ lessrrel $\wedge\langle\mathrm{b}, \mathrm{c}\rangle \in$ lessrrel $\longrightarrow\langle\mathrm{a}, \mathrm{c}\rangle \in$ lessrrel $)$
proof -
have II: $\forall \mathrm{a} b \mathrm{c} . \quad \mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \wedge \mathrm{c} \in \mathbb{R} \longrightarrow$ $\left(\left(a<_{\mathbb{R}} b \wedge b<_{\mathbb{R}} c\right) \longrightarrow a<_{\mathbb{R}} c\right)$ using pre_axlttrn by blast
\{ fix a b c assume $\mathrm{a} \in$ real $\wedge \mathrm{b} \in$ real $\wedge \mathrm{c} \in$ real with II have $\left(\mathrm{a}<_{\mathbb{R}} \mathrm{b} \wedge \mathrm{b}<_{\mathbb{R}} \mathrm{c}\right.$) $\longrightarrow \mathrm{a}<_{\mathbb{R}} \mathrm{c}$
by blast hence
$\langle\mathrm{a}, \mathrm{b}\rangle \in$ lessrrel $\wedge\langle\mathrm{b}, \mathrm{c}\rangle \in$ lessrrel $\longrightarrow\langle\mathrm{a}, \mathrm{c}\rangle \in$ lessrrel by simp
$\}$ thus $(\forall \mathrm{abc}$.
$a \in$ real $\wedge b \in$ real $\wedge c \in$ real \longrightarrow
$\langle\mathrm{a}, \mathrm{b}\rangle \in$ lessrrel $\wedge\langle\mathrm{b}, \mathrm{c}\rangle \in$ lessrrel $\longrightarrow\langle\mathrm{a}, \mathrm{c}\rangle \in$ lessrrel $)$ by blast
qed
moreover have ($\forall \mathrm{A} B C$.
$A \in$ real $\wedge B \in$ real $\wedge C \in$ real \longrightarrow
$\langle\mathrm{A}, \mathrm{B}\rangle \in$ lessrrel \longrightarrow
\langle caddset $\langle\mathrm{C}, \mathrm{A}\rangle$, caddset $\langle\mathrm{C}, \mathrm{B}\rangle\rangle \in$ lessrrel)
using pre_axltadd by simp
moreover have $(\forall A B . A \in$ real $\wedge B \in$ real \longrightarrow
\langle zero, A $\rangle \in$ lessrrel $\wedge\langle$ zero, $B\rangle \in$ lessrrel \longrightarrow
\langle zero, cmulset $\langle A, B\rangle\rangle \in$ lessrrel)
using pre_axmulgt0 by simp
moreover have
$(\forall S . S \subseteq$ real $\wedge S \neq 0 \wedge(\exists x \in$ real. $\forall y \in S .\langle y, x\rangle \in$ lessrrel $) \longrightarrow$ ($\exists \mathrm{x} \in \mathrm{real}$.
($\forall \mathrm{y} \in \mathrm{S} .\langle\mathrm{x}, \mathrm{y}\rangle \notin$ lessrrel) \wedge
$(\forall y \in r e a l .\langle y, x\rangle \in$ lessrrel $\longrightarrow(\exists z \in S .\langle y, z\rangle \in$ lessrrel))))
using pre_axsup by simp
moreover have $\mathbb{R} \subseteq \mathbb{C}$ using axresscn by simp
moreover have $1 \neq 0$ using ax1ne0 by simp
moreover have \mathbb{C} isASet by simp

```
moreover have \(\operatorname{CplxAdd}(\mathrm{R}, \mathrm{A}): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}\)
    using axaddopr by simp
moreover have \(\operatorname{CplxMul}(\mathrm{R}, \mathrm{A}, \mathrm{M}): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}\)
    using axmulopr by simp
moreover have
    \(\forall \mathrm{ab} . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow \mathrm{a} \cdot \mathrm{b}=\mathrm{b} \cdot \mathrm{a}\)
    using axmulcom by simp
hence ( \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow\)
    cmulset \(\langle\mathrm{a}, \mathrm{b}\rangle=\mathrm{cmulset}\langle\mathrm{b}, \mathrm{a}\rangle\)
    ) by simp
moreover have \(\forall \mathrm{ab} . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow \mathrm{a}+\mathrm{b} \in \mathbb{C}\)
    using axaddcl by simp
hence ( \(\forall \mathrm{ab} . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow\)
            caddset \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathbb{C}\)
        ) by simp
moreover have \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow \mathrm{a} \cdot \mathrm{b} \in \mathbb{C}\)
    using axmulcl by simp
hence ( \(\forall \mathrm{a} \mathrm{b} . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow\)
    cmulset \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathbb{C}\) ) by simp
moreover have
    \(\forall \mathrm{ab} C . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C} \longrightarrow\)
    \(\mathrm{a} \cdot(\mathrm{b}+\mathrm{C})=\mathrm{a} \cdot \mathrm{b}+\mathrm{a} \cdot \mathrm{C}\)
    using axdistr by simp
hence \(\forall \mathrm{a}\) b C .
                \(\mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C} \longrightarrow\)
                cmulset \(\langle\mathrm{a}\), caddset \(\langle\mathrm{b}, \mathrm{C}\rangle\rangle=\)
                caddset
                \(\langle\mathrm{cmulset}\langle\mathrm{a}, \mathrm{b}\rangle\), cmulset \(\langle\mathrm{a}, \mathrm{C}\rangle\rangle\)
    by simp
moreover have \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \longrightarrow\)
        \(\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}\)
```

 using axaddcom by simp
 hence $\forall \mathrm{a}$ b.
$a \in \mathbb{C} \wedge b \in \mathbb{C} \longrightarrow$
caddset $\langle\mathrm{a}, \mathrm{b}\rangle=$ caddset $\langle\mathrm{b}, \mathrm{a}\rangle$ by simp
moreover have $\forall \mathrm{a} b \mathrm{C} . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C} \longrightarrow$
$a+b+C=a+(b+C)$
using axaddass by simp
hence $\forall \mathrm{a}$ b C
$\mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C} \longrightarrow$
caddset \langle caddset $\langle\mathrm{a}, \mathrm{b}\rangle, \mathrm{C}\rangle=$
caddset $\langle\mathrm{a}$, caddset $\langle\mathrm{b}, \mathrm{C}\rangle\rangle$ by simp
moreover have
$\forall \mathrm{ab} c . \mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \wedge \mathrm{c} \in \mathbb{C} \longrightarrow \mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathrm{c})$
using axmulass by simp
hence $\forall \mathrm{a}$ b C .
$\mathrm{a} \in \mathbb{C} \wedge \mathrm{b} \in \mathbb{C} \wedge \mathrm{C} \in \mathbb{C} \longrightarrow$
cmulset $\langle\mathrm{cmulset}\langle\mathrm{a}, \mathrm{b}\rangle, \mathrm{C}\rangle=$
cmulset $\langle\mathrm{a}, \mathrm{cmulset}\langle\mathrm{b}, \mathrm{C}\rangle\rangle$ by simp

```
moreover have \(1 \in \mathbb{R}\) using ax1re by simp
moreover have i.i \(+1=0\)
    using axi2m1 by simp
hence caddset \(\langle\) cmulset \(\langle\mathrm{i}, \mathrm{i}\rangle, \mathbf{1}\rangle=\mathbf{0}\) by simp
moreover have \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{C} \longrightarrow \mathrm{a}+\mathbf{0}=\mathrm{a}\)
    using ax0id by simp
hence \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{C} \longrightarrow\) caddset \(\langle\mathrm{a}, \mathbf{0}\rangle=\mathrm{a}\) by simp
moreover have \(i \in \mathbb{C}\) using axicn by simp
moreover have \(\forall a . a \in \mathbb{C} \longrightarrow(\exists x \in \mathbb{C} . a+x=0)\)
    using axnegex by simp
hence \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{C} \longrightarrow\)
    ( \(\exists \mathrm{x} \in \mathbb{C}\). caddset \(\langle\mathrm{a}, \mathrm{x}\rangle=0\) ) by simp
moreover have \(\forall a . a \in \mathbb{C} \wedge a \neq 0 \longrightarrow(\exists x \in \mathbb{C} . a \cdot x=1)\)
    using axrecex by simp
hence \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{C} \wedge \mathrm{a} \neq \mathbf{0} \longrightarrow\)
        ( \(\exists \mathrm{x} \in \mathbb{C}\). cmulset \(\langle\mathrm{a}, \mathrm{x}\rangle=1\) ) by \(\operatorname{simp}\)
    moreover have \(\forall \mathrm{a} . a \in \mathbb{C} \longrightarrow \mathrm{a} \cdot 1=\mathrm{a}\)
    using ax1id by simp
hence \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{C} \longrightarrow\)
    cmulset \(\langle\mathrm{a}, \mathbf{1}\rangle=\) a by simp
moreover have \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \longrightarrow \mathrm{a}+\mathrm{b} \in \mathbb{R}\)
    using axaddrcl by simp
hence \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \longrightarrow\)
        caddset \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathbb{R}\) by simp
moreover have \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \longrightarrow \mathrm{a} \cdot \mathrm{b} \in \mathbb{R}\)
    using axmulrcl by simp
hence \(\forall \mathrm{a}\) b. \(\mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \longrightarrow\)
        cmulset \(\langle\mathrm{a}, \mathrm{b}\rangle \in \mathbb{R}\) by \(\operatorname{simp}\)
moreover have \(\forall \mathrm{a} . a \in \mathbb{R} \longrightarrow(\exists \mathrm{x} \in \mathbb{R}\). \(a+\mathrm{x}=0)\)
    using axrnegex by simp
hence \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{R} \longrightarrow\)
        ( \(\exists \mathrm{x} \in \mathbb{R}\). caddset \(\langle\mathrm{a}, \mathrm{x}\rangle=0\) ) by simp
moreover have \(\forall a . a \in \mathbb{R} \wedge a \neq 0 \longrightarrow(\exists x \in \mathbb{R} . a \cdot x=1)\)
    using axrrecex by simp
hence \(\forall \mathrm{a} . \mathrm{a} \in \mathbb{R} \wedge \mathrm{a} \neq \mathbf{0} \longrightarrow\)
    ( \(\exists \mathrm{x} \in \mathbb{R}\). cmulset \(\langle\mathrm{a}, \mathrm{x}\rangle=1\) ) by simp
    ultimately have
(
    (
                ( \(\forall \mathrm{ab}\) b.
                        \(\mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \longrightarrow\)
                        \(\langle\mathrm{a}, \mathrm{b}\rangle \in\) lessrrel \(\longleftrightarrow\)
                        \(\neg(\mathrm{a}=\mathrm{b} \vee\langle\mathrm{b}, \mathrm{a}\rangle \in\) lessrrel)
            ) \(\wedge\)
            ( \(\forall \mathrm{a}\) b C.
                \(a \in \mathbb{R} \wedge b \in \mathbb{R} \wedge C \in \mathbb{R} \longrightarrow\)
```

```
                    \(\langle\mathrm{a}, \mathrm{b}\rangle \in\) lessrrel \(\wedge\)
                    \(\langle\mathrm{b}, \mathrm{C}\rangle \in\) lessrrel \(\longrightarrow\)
                    \(\langle a, C\rangle \in\) lessrrel
            ) \(\wedge\)
            ( \(\forall \mathrm{a}\) b C.
                    \(\mathrm{a} \in \mathbb{R} \wedge \mathrm{b} \in \mathbb{R} \wedge \mathrm{C} \in \mathbb{R} \longrightarrow\)
                \(\langle\mathrm{a}, \mathrm{b}\rangle \in\) lessrrel \(\longrightarrow\)
                \(\langle\) caddset \(\langle\mathrm{C}, \mathrm{a}\rangle\), caddset \(\langle\mathrm{C}, \mathrm{b}\rangle\rangle \in\)
                lessrrel
        )
        ) \(\wedge\)
            \((\forall \mathrm{ab}\).
                        \(a \in \mathbb{R} \wedge b \in \mathbb{R} \longrightarrow\)
                \(\langle 0, a\rangle \in\) lessrrel \(\wedge\)
                \(\langle 0, b\rangle \in\) lessrrel \(\longrightarrow\)
                \(\langle 0\), cmulset \(\langle\mathrm{a}, \mathrm{b}\rangle\rangle \in\)
                lessrrel
            ) \(\wedge\)
            \((\forall S . S \subseteq \mathbb{R} \wedge S \neq 0 \wedge\)
                ( \(\exists \mathrm{x} \in \mathbb{R} . \forall \mathrm{y} \in \mathrm{S} .\langle\mathrm{y}, \mathrm{x}\rangle \in\) lessrrel
                    ) \(\longrightarrow\)
                ( \(\exists \mathrm{x} \in \mathbb{R}\).
                    ( \(\forall \mathrm{y} \in \mathrm{S} .\langle\mathrm{x}, \mathrm{y}\rangle \notin\) lessrrel
                        ) \(\wedge\)
                        \((\forall y \in \mathbb{R} .\langle y, x\rangle \in\) lessrrel \(\longrightarrow\)
                                    ( \(\exists \mathrm{z} \in \mathrm{S} .\langle\mathrm{y}, \mathrm{z}\rangle \in\) lessrrel
                                    )
                    )
                )
            )
        ) \(\wedge\)
        \(\mathbb{R} \subseteq \mathbb{C} \wedge\)
        \(1 \neq 0\)
) \(\wedge\)
( \(\mathbb{C}\) isASet \(\wedge\) caddset \(\in \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \wedge\)
    cmulset \(\in \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}\)
) \(\wedge\)
(
    ( \(\forall \mathrm{ab}\) b.
        \(a \in \mathbb{C} \wedge b \in \mathbb{C} \longrightarrow\)
        cmulset \(\langle\mathrm{a}, \mathrm{b}\rangle=\mathrm{cmulset}\langle\mathrm{b}, \mathrm{a}\rangle\)
    ) \(\wedge\)
```

```
            (\forall\textrm{ab}.\textrm{a}\in\mathbb{C}\wedge\textrm{b}\in\mathbb{C}\longrightarrow
                caddset }\langle\textrm{a},\textrm{b}\rangle\in\mathbb{C
            )
    ) ^
    (}\forall\textrm{a}\mathrm{ b. a }\in\mathbb{C}\wedge\textrm{b}\in\mathbb{C}
        cmulset }\langle\textrm{a},\textrm{b}\rangle\in\mathbb{C
    ) ^
    (\foralla b C.
        a }\in\mathbb{C}\wedge\textrm{b}\in\mathbb{C}\wedgeC\in\mathbb{C}
        cmulset \langlea, caddset \langleb, C \rangle\rangle=
        caddse
        <cmulset \langlea, b\rangle, cmulset \langlea, C\rangle\rangle
    )
) }
(
    (
        (\foralla b.
            a}\in\mathbb{C}\wedgeb\in\mathbb{C}
            caddset }\langle\textrm{a},\textrm{b}\rangle=\mathrm{ caddset }\langle\textrm{b},\textrm{a}
        ) ^
        (\foralla b C.
            a}\in\mathbb{C}\wedgeb\in\mathbb{C}\wedgeC\in\mathbb{C}
            caddset \langlecaddset \langlea, b\rangle, C\rangle=
            caddset \langlea, caddset \langleb, C\rangle\rangle
        ) ^
        (\foralla b C.
            a}\in\mathbb{C}\wedgeb\in\mathbb{C}\wedgeC\in\mathbb{C}
            cmulset \langlecmulset \langlea, b\rangle, C\rangle=
            cmulset \langlea, cmulset \langleb, C\rangle\rangle
        )
    ) }
    (1 \in\mathbb{R}}
    caddset \langlecmulset \langlei, i\rangle, 1\rangle=0
    ) ^
    (\forall\textrm{a}.\textrm{a}\in\mathbb{C}\longrightarrow
    ) ^
    i}\in\mathbb{C
```

```
) ^
(
    (\foralla. a }\in\mathbb{C}
        (\existsx\in\mathbb{C}. caddset }\langle\textrm{a},\textrm{x}\rangle=
        )
    ) ^
    ( }\forall\textrm{a}.\textrm{a}\in\mathbb{C}\wedge\textrm{a}\not=\mathbf{0}
        ( \existsx\in\mathbb{C}.cmulset }\langle\textrm{a},\textrm{x}\rangle=
        )
    ) ^
    ( }\forall\textrm{a}.\textrm{a}\in\mathbb{C}
        cmulset }\langle\textrm{a},\mathbf{1}\rangle=\textrm{a
    )
) ^
(
    ( }\forall\textrm{a}\mathrm{ b. a }\in\mathbb{R}\wedge\textrm{b}\in\mathbb{R}
        caddset }\langle\textrm{a},\textrm{b}\rangle\in\mathbb{R
    ) ^
    ( }\forall\textrm{a}\mathrm{ b. a }\in\mathbb{R}\wedge\textrm{b}\in\mathbb{R}
        cmulset }\langle\textrm{a},\textrm{b}\rangle\in\mathbb{R
    )
) ^
( \foralla. a }\in\mathbb{R}
    ( \existsx\in\mathbb{R}.caddset }\langle\textrm{a},\textrm{x}\rangle=\mathbf{0
    )
) ^
( }\forall\textrm{a}.\textrm{a}\in\mathbb{R}\wedge\textrm{a}\not=0
    ( \exists\textrm{x}\in\mathbb{R}.cmulset }\langle\textrm{a},\textrm{x}\rangle=
    )
)
    by blast
then show MMIsar0(\mathbb{R},\mathbb{C},\mathbf{1,0,i,CplxAdd(R,A),CplxMul(R,A,M),}
    StrictVersion(CplxROrder(R,A,r))) unfolding MMIsarO_def by blast
qed
end
```


77 Metamath sampler

begin

The theorems translated from Metamath reside in the MMI_Complex_ZF, MMI_Complex_ZF_1 and MMI_Complex_ZF_2 theories. The proofs of these theorems are very verbose and for this reason the theories are not shown in the proof document or the FormaMath.org site. This theory file contains some examples of theorems translated from Metamath and formulated in the complex0 context. This serves two purposes: to give an overview of the material covered in the translated theorems and to provide examples of how to take a translated theorem (proven in the MMIsar0 context) and transfer it to the complex0 context. The typical procedure for moving a theorem from MMIsar0 to complex0 is as follows: First we define certain aliases that map names defined in the complex0 to their corresponding names in the MMIsar0 context. This makes it easy to copy and paste the statement of the theorem as displayed with ProofGeneral. Then we run the Isabelle from ProofGeneral up to the theorem we want to move. When the theorem is verified ProofGeneral displays the statement in the raw set theory notation, stripped from any notation defined in the MMIsar0 locale. This is what we copy to the proof in the complex0 locale. After that we just can write "then have ?thesis by simp" and the simplifier translates the raw set theory notation to the one used in complex0.

77.1 Extended reals and order

In this sectin we import a couple of theorems about the extended real line and the linear order on it.

Metamath uses the set of real numbers extended with $+\infty$ and $-\infty$. The $+\infty$ and $-\infty$ symbols are defined quite arbitrarily as \mathbb{C} and $\{\mathbb{C}\}$, respectively. The next lemma that corresponds to Metamath's renfdisj states that $+\infty$ and $-\infty$ are not elements of \mathbb{R}.

```
lemma (in complex0) renfdisj: shows }\mathbb{R}\cap{+\infty,-\infty}=
proof -
    let real = \mathbb{R}
    let complex = \mathbb{C}
    let one = 1
    let zero = 0
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    have MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
        using MMIsar_valid by simp
    then have real }\cap\mathrm{ {complex, {complex}} = 0
        by (rule MMIsar0.MMI_renfdisj)
```

thus $\mathbb{R} \cap\{+\infty,-\infty\}=0$ by simp qed

The order relation used most often in Metamath is defined on the set of complex reals extended with $+\infty$ and $-\infty$. The next lemma allows to use Metamath's xrltso that states that the < relations is a strict linear order on the extended set.

```
lemma (in complex0) xrltso: shows < Orders }\mp@subsup{\mathbb{R}}{}{*
proof -
    let real = \mathbb{R}
    let complex = \mathbb{C}
    let one = 1
    let zero = 0
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    have MMIsar0
            (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
            using MMIsar_valid by simp
    then have
            (lessrrel \cap real }\times\mathrm{ real U
            {\langle{complex}, complex\rangle} U real }\times\mathrm{ {complex} }
                {{complex}} }\times\mathrm{ real) Orders (real U {complex, {complex}})
            by (rule MMIsar0.MMI_xrltso)
    moreover have lessrrel }\cap\mathrm{ real }\times\mathrm{ real = lessrrel
            using cplx_strict_ord_on_cplx_reals by auto
    ultimately show < Orders }\mp@subsup{\mathbb{R}}{}{*}\mathrm{ by simp
qed
```

Metamath defines the usual $<$ and \leq ordering relations for the extended real line, including $+\infty$ and $-\infty$.

```
lemma (in complex0) xrrebndt: assumes A1: \(x \in \mathbb{R}^{*}\)
    shows \(\mathrm{x} \in \mathbb{R} \longleftrightarrow(-\infty<\mathrm{x} \wedge \mathrm{x}<+\infty)\)
proof -
    let real \(=\mathbb{R}\)
    let complex \(=\mathbb{C}\)
    let one \(=1\)
    let zero \(=0\)
    let iunit = i
    let caddset \(=C p l x A d d(R, A)\)
    let cmulset \(=\) CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder (R,A,r))
    have MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
        using MMIsar_valid by simp
    then have \(x \in \mathbb{R} \cup\{\mathbb{C},\{\mathbb{C}\}\} \longrightarrow\)
        \(\mathrm{x} \in \mathbb{R} \longleftrightarrow\langle\{\mathbb{C}\}, \mathrm{x}\rangle \in\) lessrrel \(\cap \mathbb{R} \times \mathbb{R} \cup\{\langle\{\mathbb{C}\}, \mathbb{C}\rangle\} \cup\)
        \(\mathbb{R} \times\{\mathbb{C}\} \cup\{\{\mathbb{C}\}\} \times \mathbb{R} \wedge\)
```

```
        <x,\mathbb{C}\rangle\in lessrrel \cap\mathbb{R}\times\mathbb{R}\cup{\langle{\mathbb{C}},\mathbb{C}\rangle}\cup
        \mathbb{R}\times{\mathbb{C}}\cup{{\mathbb{C}}}\times\mathbb{R}
        by (rule MMIsar0.MMI_xrrebndt)
    then have }\textrm{x}\in\mp@subsup{\mathbb{R}}{}{*}\longrightarrow(\textrm{x}\in\mathbb{R}\longleftrightarrow(-\infty<\textrm{x}\wedge\textrm{x}<+\infty)
        by simp
    with A1 show thesis by simp
qed
```

A quite involved inequality.

```
lemma (in complex0) lt2mul2divt:
    assumes A1: a }\in\mathbb{R}\quadb\in\mathbb{R}\quadc\in\mathbb{R}\quadd\in\mathbb{R}\mathrm{ and
    A2: 0 < b 0 < d
    shows a\cdotb<c.d \longleftrightarrow a/d < c/b
proof -
    let real = \mathbb{R}
    let complex = \mathbb{C}
    let one = 1
    let zero = 0
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    have MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
            using MMIsar_valid by simp
    then have
        (a \in real }\wedge b f real) \wedge
        (c \in real }\wedge d \in real) ^
        <zero, b\rangle \in lessrrel }\cap\mathrm{ real }\times\mathrm{ real }
        {\langle{complex}, complex\rangle} \cup real }\times\mathrm{ {complex} }\cup{{complex}} > real ^ 
        <zero, d\rangle}\in lessrrel \cap real > real \cup
        {\langle{complex}, complex\rangle} \cup real }\times{\mathrm{ complex} }\cup{{complex}} × real 
        <cmulset \langlea, b\rangle, cmulset \langlec, d\rangle\rangle}
        lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U
        real }\times\mathrm{ {complex} U {{complex}} }\times\mathrm{ real }
        \\bigcup{x \in complex . cmulset \langled, x\rangle= a},
        \{x\in complex . cmulset \langleb, x\rangle=c}\rangle\in
            lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U
            real }\times{\mathrm{ complex} }\cup{{complex}} 秋 real
            by (rule MMIsar0.MMI_lt2mul2divt)
    with A1 A2 show thesis by simp
qed
```

A real number is smaller than its half iff it is positive.
lemma (in complex0) halfpos: assumes A1: a $\in \mathbb{R}$
shows $0<a \longleftrightarrow a / 2<a$
proof -
let real $=\mathbb{R}$
let complex $=\mathbb{C}$

```
    let one = 1
    let zero = 0
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    from A1 have MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
        and a \in real
        using MMIsar_valid by auto
    then have
        zero, a\rangle}
        lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U
    real }\times{\mathrm{ {complex} }\cup{{complex}} > real \longleftrightarrow <
    \\bigcup{x \in complex . cmulset \langlecaddset \langleone, one\rangle, x\rangle=a}, a\rangle}
    lessrrel \cap real }\times\mathrm{ real U
    {\langle{complex}, complex\rangle} \cup real }\times {complex} \cup {{complex}} × real
    by (rule MMIsarO.MMI_halfpos)
    then show thesis by simp
qed
```

One more inequality.
lemma (in complex0) ledivp1t:
assumes A1: $a \in \mathbb{R} \quad b \in \mathbb{R}$ and
A2: $\mathbf{0} \leq \mathrm{a} \quad \mathbf{0} \leq \mathrm{b}$
shows $(\mathrm{a} /(\mathrm{b}+1)) \cdot \mathrm{b} \leq \mathrm{a}$
proof -
let real $=\mathbb{R}$
let complex $=\mathbb{C}$
let one $=1$
let zero = 0
let iunit = i
let caddset $=$ CplxAdd (R, A)
let cmulset $=$ CplxMul(R,A,M)
let lessrrel = StrictVersion(CplxROrder(R,A,r))
have MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp
then have
(a \in real $\wedge\langle a$, zero $\rangle \notin$
lessrrel \cap real \times real $\cup\{\langle\{c o m p l e x\}, ~ c o m p l e x\rangle\} \cup$
real \times \{complex\} \cup \{\{complex\}\} \times real) \wedge
$\mathrm{b} \in$ real $\wedge\langle\mathrm{b}$, zero〉 \notin lessrrel \cap real \times real \cup
$\{\langle\{$ complex\}, complex $\rangle\} \cup$ real \times \{complex $\} \cup$
$\{\{$ complex\}\} \times real \longrightarrow
$\langle\mathrm{a}, \mathrm{cmulset}\langle\bigcup\{\mathrm{x} \in$ complex $. \operatorname{cmulset}\langle$ caddset $\langle\mathrm{b}$, one $\rangle, \mathrm{x}\rangle=\mathrm{a}\}, \mathrm{b}\rangle\rangle \notin$
lessrrel \cap real \times real $\cup\{\langle\{c o m p l e x\}$, complex $\rangle\} \cup$
real \times \{complex\} \cup \{\{complex\}\} \times real
by (rule MMIsar0.MMI_ledivp1t)
with A1 A2 show thesis by simp
qed

77.2 Natural real numbers

In standard mathematics natural numbers are treated as a subset of real numbers. From the set theory point of view however those are quite different objects. In this section we talk about "real natural" numbers i.e. the conterpart of natural numbers that is a subset of the reals.

Two ways of saying that there are no natural numbers between n and $n+1$.
lemma (in complex0) no_nats_between:
assumes A1: $n \in \mathbb{N} \quad k \in \mathbb{N}$
shows
$\mathrm{n} \leq \mathrm{k} \longleftrightarrow \mathrm{n}<\mathrm{k}+1$
$\mathrm{n}<\mathrm{k} \longleftrightarrow \mathrm{n}+1 \leq \mathrm{k}$
proof -
let real $=\mathbb{R}$
let complex $=\mathbb{C}$
let one $=1$
let zero $=0$
let iunit = i
let caddset $=C p l x \operatorname{Add}(R, A)$
let cmulset $=$ CplxMul ($\mathrm{R}, \mathrm{A}, \mathrm{M}$)
let lessrrel $=$ StrictVersion(CplxROrder (R,A,r))
have I: MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp
then have
$n \in \bigcap\{N \in \operatorname{Pow}(r e a l)$. one $\in N \wedge$
$(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow$ caddset $\langle\mathrm{n}$, one $\rangle \in \mathrm{N})\} \wedge$
$k \in \bigcap\{N \in \operatorname{Pow}(r e a l)$. one $\in N \wedge$
$(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow$ caddset $\langle\mathrm{n}$, one $\rangle \in \mathrm{N})\} \longrightarrow$
$\langle\mathrm{k}, \mathrm{n}\rangle \notin$
lessrrel \cap real \times real $\cup\{\langle\{$ complex\}, complex $\rangle\} \cup$ real \times \{complex\}
\cup
$\{\{$ complex\}\} \times real \longleftrightarrow
$\langle\mathrm{n}$, caddset $\langle\mathrm{k}$, one $\rangle\rangle \in$
lessrrel \cap real \times real $\cup\{\langle\{$ complex\}, complex $\rangle\} \cup$ real \times \{complex\}
\cup
\{\{complex\}\} \times real by (rule MMIsar0.MMI_nnleltp1t)
then have $\mathrm{n} \in \mathbb{N} \wedge \mathrm{k} \in \mathbb{N} \longrightarrow \mathrm{n} \leq \mathrm{k} \longleftrightarrow \mathrm{n}<\mathrm{k}+1$
by simp
with A1 show $n \leq k \longleftrightarrow n<k+1$ by simp
from I have
$n \in \bigcap\{N \in \operatorname{Pow}(r e a l)$. one $\in N \wedge$
$(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow$ caddset $\langle\mathrm{n}$, one $\rangle \in \mathrm{N})\} \wedge$
$k \in \bigcap\{N \in \operatorname{Pow}(r e a l)$. one $\in N \wedge$
$(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow$ caddset $\langle\mathrm{n}$, one $\rangle \in \mathrm{N})\} \longrightarrow$

```
        \n, k\rangle\in
        lessrrel \cap real }\times\mathrm{ real }
        {\langle{complex}, complex\rangle} \cup real }\times\mathrm{ {complex} U
        {{complex}} > real \longleftrightarrow \langlek, caddset \langlen, one\rangle\rangle}\not
        lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U real × {complex
U
        {{complex}} }\times\mathrm{ real by (rule MMIsar0.MMI_nnltp1let)
    then have n }\in\mathbb{N}\wedgek\in\mathbb{N}\longrightarrow\textrm{n}<\textrm{k}\longleftrightarrow\textrm{n}+1\leq\textrm{k
        by simp
    with A1 show n < k \longleftrightarrow n + 1 \leq k by simp
qed
```

Metamath has some very complicated and general version of induction on (complex) natural numbers that I can't even understand. As an exercise I derived a more standard version that is imported to the complex0 context below.
lemma (in complex0) cplx_nat_ind: assumes A1: $\psi(1)$ and
A2: $\forall \mathrm{k} \in \mathbb{N} . \psi(\mathrm{k}) \longrightarrow \psi(\mathrm{k}+1)$ and
A3: $\mathrm{n} \in \mathbb{N}$
shows $\psi(\mathrm{n})$
proof -
let real $=\mathbb{R}$
let complex $=\mathbb{C}$
let one $=1$
let zero $=0$
let iunit = i
let caddset $=\mathrm{CplxAdd}(\mathrm{R}, \mathrm{A})$
let cmulset $=$ CplxMul ($\mathrm{R}, \mathrm{A}, \mathrm{M}$)
let lessrrel = StrictVersion(CplxROrder (R,A,r))
have I: MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp
moreover from A1 A2 A3 have
ψ (one)
$\forall k \in \bigcap\{N \in \operatorname{Pow}(r e a l)$. one $\in N \wedge$
$(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow$ caddset $\langle\mathrm{n}$, one $\rangle \in \mathrm{N})\}$.
$\psi(\mathrm{k}) \longrightarrow \psi($ caddset $\langle\mathrm{k}$, one〉)
$n \in \bigcap\{N \in \operatorname{Pow}(r e a l)$. one $\in N \wedge$
$(\forall \mathrm{n} . \mathrm{n} \in \mathrm{N} \longrightarrow$ caddset $\langle\mathrm{n}$, one $\rangle \in \mathrm{N})\}$
by auto
ultimately show $\psi(\mathrm{n})$ by (rule MMIsar0.nnind1)
qed
Some simple arithmetics.
lemma (in complex0) arith: shows
$2+2=4$
$2 \cdot 2=4$
$3 \cdot 2=6$
$3 \cdot 3=9$

```
proof -
    let real = \mathbb{R}
    let complex = \mathbb{C}
    let one = 1
    let zero = 0
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    have I: MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
        using MMIsar_valid by simp
    then have
        caddset \langlecaddset \langleone, one\rangle, caddset \langleone, one\rangle\rangle=
        caddset 〈caddset 〈caddset 〈one, one\rangle, one\rangle, one\rangle
        by (rule MMIsar0.MMI_2p2e4)
    thus 2 + 2 = 4 by simp
    from I have
            cmulset\langlecaddset\langleone, one\rangle, caddset\langleone, one\rangle\rangle=
            caddset\langlecaddset\langlecaddset\langleone, one\rangle, one\rangle, one\rangle
            by (rule MMIsar0.MMI_2t2e4)
    thus 2.2 = 4 by simp
    from I have
            cmulset\langlecaddset\langlecaddset\langleone, one\rangle, one\rangle, caddset\langleone, one\rangle\rangle=
            caddset <caddset<caddset\langlecaddset\langlecaddset
            <one, one\rangle, one\rangle, one\rangle, one\rangle, one\rangle
            by (rule MMIsar0.MMI_3t2e6)
    thus 3.2 = 6 by simp
    from I have cmulset
            <caddset<caddset<one, one\rangle, one\rangle,
            caddset\langlecaddset\langleone, one\rangle, one\\rangle}
            caddset/caddset/caddset <caddset
            <caddset\langlecaddset〈caddset\langlecaddset\langleone, one\rangle, one\rangle, one\rangle, one\rangle,
            one\rangle, one\rangle, one\rangle, one\
            by (rule MMIsar0.MMI_3t3e9)
    thus 3.3 = 9 by simp
qed
```


77．3 Infimum and supremum in real numbers

Real numbers form a complete ordered field．Here we import a couple of Metamath theorems about supremu and infimum．

If a set S has a smallest element，then the infimum of S belongs to it．

```
lemma (in complex0) lbinfmcl: assumes A1: S \subseteq\mathbb{R}}\mathrm{ and
    A2: \existsx\inS. }\forall\textrm{y}\in\textrm{S}.\textrm{x}\leq\textrm{y
    shows Infim(S,\mathbb{R},<)\inS
proof -
    let real = \mathbb{R}
```

```
let complex \(=\mathbb{C}\)
let one = 1
let zero \(=0\)
let iunit = i
let caddset \(=\) CplxAdd ( \(\mathrm{R}, \mathrm{A}\) )
let cmulset \(=\) CplxMul(R,A,M)
let lessrrel = StrictVersion(CplxROrder (R,A,r))
have I: MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp
then have
    \(\mathrm{S} \subseteq\) real \(\wedge(\exists \mathrm{x} \in \mathrm{S} . \forall \mathrm{y} \in \mathrm{S} .\langle\mathrm{y}, \mathrm{x}\rangle \notin\)
    lessrrel \(\cap\) real \(\times\) real \(\cup\{\langle\{c o m p l e x\}\), complex \(\rangle\} \cup\)
    real \(\times\) \{complex\} \(\cup\) \{\{complex\}\} \(\times\) real) \(\longrightarrow\)
    Sup (S, real,
    converse(lessrrel \(\cap\) real \(\times\) real \(\cup\)
    \(\{\langle\{c o m p l e x\}\), complex \(\rangle\} \cup\) real \(\times\) \{complex \(\} \cup\)
    \(\{\{\) complex\} \(\} \times\) real) ) \(\in S\)
    by (rule MMIsar0.MMI_lbinfmcl)
then have
    \(S \subseteq \mathbb{R} \wedge(\exists \mathrm{x} \in \mathrm{S} . \forall \mathrm{y} \in \mathrm{S} . \mathrm{x} \leq \mathrm{y}) \longrightarrow\)
    \(\operatorname{Sup}(S, \mathbb{R}\), converse(<)) \(\in S\) by simp
    with A1 A2 show thesis using Infim_def by simp
qed
Supremum of any subset of reals that is bounded above is real.
```

```
lemma (in complex0) sup_is_real:
```

lemma (in complex0) sup_is_real:
assumes }A\subseteq\mathbb{R}\mathrm{ and }A\not=0\mathrm{ and }\exists\textrm{x}\in\mathbb{R}.,\forally\inA. y \leq
assumes }A\subseteq\mathbb{R}\mathrm{ and }A\not=0\mathrm{ and }\exists\textrm{x}\in\mathbb{R}.,\forally\inA. y \leq
shows }\operatorname{Sup}(A,\mathbb{R},<)\in\mathbb{R
shows }\operatorname{Sup}(A,\mathbb{R},<)\in\mathbb{R
proof -
proof -
let real = \mathbb{R}
let real = \mathbb{R}
let complex = \mathbb{C}
let complex = \mathbb{C}
let one = 1
let one = 1
let zero = 0
let zero = 0
let iunit = i
let iunit = i
let caddset = CplxAdd(R,A)
let caddset = CplxAdd(R,A)
let cmulset = CplxMul(R,A,M)
let cmulset = CplxMul(R,A,M)
let lessrrel = StrictVersion(CplxROrder(R,A,r))
let lessrrel = StrictVersion(CplxROrder(R,A,r))
have MMIsar0
have MMIsar0
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
(real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
using MMIsar_valid by simp
using MMIsar_valid by simp
then have
then have
A}\subseteq\mathrm{ real ^ A \# 0 ^ (}\exists\textrm{x}\in\textrm{real.}.\forally\in\textrm{A}.\langlex, y\rangle\not
A}\subseteq\mathrm{ real ^ A \# 0 ^ (}\exists\textrm{x}\in\textrm{real.}.\forally\in\textrm{A}.\langlex, y\rangle\not
lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U
lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U
real }\times{\mathrm{ complex} }\cup{{complex}} × real)
real }\times{\mathrm{ complex} }\cup{{complex}} × real)
Sup(A, real,
Sup(A, real,
lessrrel }\cap\mathrm{ real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle}
lessrrel }\cap\mathrm{ real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle}
real }\times{\mathrm{ {complex} }\cup{{complex}} × real) \in rea
real }\times{\mathrm{ {complex} }\cup{{complex}} × real) \in rea
by (rule MMIsar0.MMI_suprcl)

```
        by (rule MMIsar0.MMI_suprcl)
```


with assms show thesis by simp qed

If a real number is smaller that the supremum of A, then we can find an element of A greater than it.

```
lemma (in complex0) suprlub:
    assumes \(A \subseteq \mathbb{R}\) and \(A \neq 0\) and \(\exists x \in \mathbb{R} . \forall y \in A . y \leq x\)
    and \(B \in \mathbb{R}\) and \(B<\operatorname{Sup}(A, \mathbb{R},<)\)
    shows \(\exists z \in A . B<z\)
proof -
    let real \(=\mathbb{R}\)
    let complex \(=\mathbb{C}\)
    let one = 1
    let zero = 0
    let iunit = i
    let caddset \(=\mathrm{CplxAdd}(\mathrm{R}, \mathrm{A})\)
    let cmulset \(=C p l x M u l(R, A, M)\)
    let lessrrel = StrictVersion(CplxROrder (R,A,r))
    have MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
        using MMIsar_valid by simp
    then have \((A \subseteq\) real \(\wedge A \neq 0 \wedge\) ( \(\exists \mathrm{x} \in \mathrm{real} . \forall \mathrm{y} \in \mathrm{A} .\langle\mathrm{x}, \mathrm{y}\rangle \notin\)
        lessrrel \(\cap\) real \(\times\) real \(\cup\{\langle\{\) complex \(\}\), complex \(\rangle\} \cup\)
        real \(\times\) \{complex\} \(\cup\)
        \(\{\{c o m p l e x\}\} \times\) real) \() \wedge B \in\) real \(\wedge\langle B\), Sup (A, real,
        lessrrel \(\cap\) real \(\times\) real \(\cup\{\langle\{c o m p l e x\}, ~ c o m p l e x\rangle\} \cup\)
        real \(\times\) \{complex\} \(\cup\)
        \(\{\{\) complex\}\} \(\times\) real) \(\rangle \in\) lessrrel \(\cap\) real \(\times\) real \(\cup\)
        \(\{\langle\{\) complex\}, complex \(\rangle\} \cup\) real \(\times\) \{complex\} \(\cup\)
        \(\{\{c o m p l e x\}\} \times\) real \(\longrightarrow\)
        \((\exists \mathrm{z} \in \mathrm{A} .\langle\mathrm{B}, \mathrm{z}\rangle \in\) lessrrel \(\cap\) real \(\times\) real \(\cup\)
        \(\{\langle\{c o m p l e x\}\), complex \(\rangle\} \cup\) real \(\times\) \{complex\} \(\cup\)
        \(\{\{\) complex\}\} \(\times\) real)
        by (rule MMIsar0.MMI_suprlub)
    with assms show thesis by simp
qed
```

Something a bit more interesting: infimum of a set that is bounded below is real and equal to the minus supremum of the set flipped around zero.

```
lemma (in complex0) infmsup:
    assumes \(\mathrm{A} \subseteq \mathbb{R}\) and \(\mathrm{A} \neq 0\) and \(\exists \mathrm{x} \in \mathbb{R} . \forall \mathrm{y} \in \mathrm{A} . \mathrm{x} \leq \mathrm{y}\)
    shows
    \(\operatorname{Infim}(A, \mathbb{R},<) \in \mathbb{R}\)
    \(\operatorname{Infim}(A, \mathbb{R},<)=(-\operatorname{Sup}(\{z \in \mathbb{R} .(-z) \in A\}, \mathbb{R},<))\)
proof -
    let real \(=\mathbb{R}\)
    let complex \(=\mathbb{C}\)
    let one = 1
    let zero = 0
```

```
    let iunit = i
    let caddset = CplxAdd(R,A)
    let cmulset = CplxMul(R,A,M)
    let lessrrel = StrictVersion(CplxROrder(R,A,r))
    have I: MMIsar0
        (real, complex, one, zero, iunit, caddset, cmulset, lessrrel)
        using MMIsar_valid by simp
    then have
    A}\subseteq\mathrm{ real }\wedge A = 0^^(\existsx\inreal. \forally\inA. \langley, x\rangle\not
    lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} \cup
    real }\times {complex} 
    {{complex}} }\times\mathrm{ real) }\longrightarrow\mathrm{ Sup(A, real, converse
    (lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} U
    real }\times\mathrm{ {complex} U
    {{complex}} < real)) =
    \x \in complex . caddset
    <Sup({z \in real . \{x \in complex . caddset }\langle\textrm{z},\textrm{x}\rangle=\mathrm{ zero} }\in\textrm{A}},\mathrm{ real,
    lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} \cup
    real }\times\mathrm{ {complex} U {{complex}} }\times\mathrm{ real), x 
    by (rule MMIsar0.MMI_infmsup)
then have A}\subseteq\mathbb{R}\wedge\neg(A=0)\wedge(\existsx\in\mathbb{R}.\forally\inA.x\leqy)
    Sup(A,\mathbb{R},converse(<)) = ( -Sup({z \in \mathbb{R. (-z) \in A },\mathbb{R,<) )}}\mathbf{~}=(
    by simp
with assms show
    Infim(A,\mathbb{R},<) = ( -Sup({z \in\mathbb{R}.(-z) \in A },\mathbb{R},<) )
    using Infim_def by simp
from I have
    A}\subseteq\mathrm{ real }\wedge A \not=0^ (\existsx\inreal. \forally\inA. \langley, x\rangle\not
    lessrrel }\cap\mathrm{ real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} \cup
    real }\times{\mathrm{ complex} }
    {{complex}} }\times\mathrm{ real) }\longrightarrow\mathrm{ Sup(A, real, converse
    (lessrrel \cap real }\times\mathrm{ real }\cup{\langle{complex}, complex\rangle} \cup
    real }\times {complex} \cup {{complex}} < real)) \in real
    by (rule MMIsar0.MMI_infmrcl)
with assms show Infim(A,\mathbb{R},<) \in\mathbb{R}
    using Infim_def by simp
qed
end
```


References

[1] N. A'Campo. A natural construction for the real numbers. 2003.
[2] R. D. Arthan. The Eudoxus Real Numbers. 2004.
[3] R. Street at al. The Efficient Real Numbers. 2003.
[4] Strecker G.E. Herrlich H. When is \mathbb{N} lindelöf? Comment. Math. Univ. Carolinae, 1997.
[5] I. L. Reilly and M. K. Vamanamurthy. Some topological anti-properties. Illinois J. Math., 24:382-389, 1980.

[^0]: theory Order_ZF imports Fol1

