
Guile-CV
Edition 0.4.0, revision 1, for use with Guile-CV 0.4.0

The Guile-CV Developpers

This manual documents Guile-CV version 0.4.0.

Copyright (C) 2016 - 2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License.”

i

Table of Contents

Preface . 1
Contributors to this Manual . 1
Join the GNU Project . 1
The Guile-CV License . 1

I. Introduction . 1
About Guile-CV . 2
Obtaining and Installing Guile-CV . 2
Contact Information . 6
Reporting Bugs . 6

II. Using Guile-CV . 6
Configuring Guile for Guile-CV . 6

Configuring Guile’s repl-print procedure . 6
Configuring Guile’s raised exception system . 7

Images used in Guile-CV’s documentation . 9
Starting Guile-CV . 9

III. Guile-CV Core Reference . 10
Overview . 10

Naming Conventions . 10
Abreviations . 10

Image Processing . 10
Image Structure and Accessors . 10
Kernel Structure and Accessors . 13
Import Export . 19
Histogram . 20
Texture . 21
Features . 23
Particles . 26
Filter . 26
Process . 29
Transform . 32
Morphology . 35
Segmentation . 39
Compose . 40
Utilities . 41

Support . 43
Modules . 44
Goops . 44
Pi . 44
Utils . 44

ii

Appendix A GNU Free Documentation License . . 44

Concept Index . 53

Procedure Index . 54

Variable Index . 56

Type Index . 57

I. Introduction 1

Preface

This manual describes how to use Guile-CV. It relates particularly to Guile-CV version
0.4.0.

Contributors to this Manual

Like Guile-CV itself, the Guile-CV reference manual is a living entity. Right now, the
contributor to this manual is:

• David Pirotte

who is also the author and maintainer of Guile-CV.

You are most welcome to join and help. Visit Guile-CV (http://www.gnu.org/software/guile-cv)
web site to find out how to get involved.

Join the GNU Project

GNU Guile-CV is part of the GNU Operating System, developed by the GNU Project.

If you are the author of an awesome program and want to join us in writing
Free (libre) Software, please consider making it an official GNU program and
become a GNU Maintainer. You can find instructions on how to do this here
(https://www.gnu.org/help/evaluation.html).

You don’t have a program to contribute? Look at all the other ways you may help
(https://www.gnu.org/help/help.html).

To learn more about Free (libre) Software, you can read and please share this page
(https://gnu.org/philosophy/free-sw.html).

The Guile-CV License

Guile-CV is Free Software. Guile-CV is copyrighted, not public domain, and there are
restrictions on its distribution or redistribution:

• Guile-CV and supporting files are published under the terms of the GNU General
Public License version 3 or later. See the file LICENSE.

• This manual is published under the terms of the GNU Free Documentation License
(see Appendix A [GNU Free Documentation License], page 44).

You must be aware there is no warranty whatsoever for Guile-CV. This is described in full
in the license.

I. Introduction

http://www.gnu.org/software/guile-cv
https://www.gnu.org/help/evaluation.html
https://www.gnu.org/help/evaluation.html
https://www.gnu.org/help/help.html
https://www.gnu.org/help/help.html
https://gnu.org/philosophy/free-sw.html
https://gnu.org/philosophy/free-sw.html

I. Introduction 2

About Guile-CV

GNU Guile-CV
Image Processing and Analysis in Guile (http://www.gnu.org/software/guile)
a Computer Vision functional programming library

Guile-CV (http://www.gnu.org/software/guile-cv) - Image Processing and Analysis in
Guile (http://www.gnu.org/software/guile) - is a Computer Vision functional program-
ming library for the Guile (http://www.gnu.org/software/guile) Scheme language.

Guile-CV (http://www.gnu.org/software/guile-cv) is based on Vigra
(http://ukoethe.github.io/vigra/) (Vision with Generic Algorithms), en-
hanced with additional algorithms (Image Textures, Delineate, Reconstruction and
many more), all accessible through a nice, clean and easy to use high level API.

Guile-CV (http://www.gnu.org/software/guile-cv) is natively multi-threaded, and
takes advantage of multiple cores, using high-level and fine grained application-level
parallelism constructs available in Guile (http://www.gnu.org/software/guile),
based on its support to POSIX threads.

Objective

Guile-CV (http://www.gnu.org/software/guile-cv) objective is to be a robust,
reliable and fast - Image Processing and Analysis - Computer Vision functional
programming library for the Guile (http://www.gnu.org/software/guile) Scheme
language. Guile-CV (http://www.gnu.org/software/guile-cv) also wants to be easy

to use, study, modify and extend.

Guile-CV (http://www.gnu.org/software/guile-cv) can be used as an educational

sofware, a research toolbox but it can also be used ’in production’: Guile-CV
(http://www.gnu.org/software/guile-cv) is robust, reliable and fast, and we
will make sure Guile-CV (http://www.gnu.org/software/guile-cv) remains robust,
reliable and fast as it grows.

Savannah

Guile-CV (http://www.gnu.org/software/guile-cv) also has a Savannah project page
(http://savannah.gnu.org/projects/guile-cv).

Obtaining and Installing Guile-CV

Guile-CV (http://www.gnu.org/software/guile-cv) can be obtained from the follow-
ing archive site (http://ftp.gnu.org/gnu/guile-cv). The file will be named guile-cv-
version.tar.gz. The current version is 0.4.0, so the file you should grab is:

http://ftp.gnu.org/gnu/guile-cv/guile-cv-0.4.0.tar.gz

Dependencies

Guile-CV (http://www.gnu.org/software/guile-cv) needs the following software to run:

• Autoconf >= 2.69

• Automake >= 1.14

• Makeinfo >= 6.6

http://www.gnu.org/software/guile
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile
http://www.gnu.org/software/guile
http://www.gnu.org/software/guile-cv
http://ukoethe.github.io/vigra/
http://ukoethe.github.io/vigra/
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://savannah.gnu.org/projects/guile-cv
http://savannah.gnu.org/projects/guile-cv
http://www.gnu.org/software/guile-cv
http://ftp.gnu.org/gnu/guile-cv
http://ftp.gnu.org/gnu/guile-cv/guile-cv-0.4.0.tar.gz
http://www.gnu.org/software/guile-cv

I. Introduction 3

• Guile (http://www.gnu.org/software/guile) >= 2.0.14
[allows 2.2, 3.0 (>= 3.0.7)]

• Guile-Lib (http://www.nongnu.org/guile-lib) >= 0.2.5

• Vigra (http://ukoethe.github.io/vigra/) >= 1.11.0

Note:

If you manually install Vigra (http://ukoethe.github.io/vigra/), make sure
you pass the cmake DCMAKE BUILD TYPE=RELEASE option, which trig-
gers absolutely essential adequate runtime optimization flags.

• Vigra C (https://github.com/BSeppke/vigra_c) >= commit 0af647d08 - Oct 28,
2018

The local minima and maxima interfaces have been improved, and now support
the full set of options provided by Vigra, to our request (thank you Benjamin!).
In addition there has been a few bugs fixed, including one we detected while
working on Guile-CV local minima bindigs.

Vigra C - a C wrapper [to some of] the Vigra functionality - is currently only avail-
able by cloning its source code git (https://git-scm.com/) repository: there is
no release and no versioning scheme either1. But no big deal, its home page has
an ’Installation’ section which guides you step by step.

Notes:

1. Make sure you pass the cmake DCMAKE BUILD TYPE=RELEASE op-
tion, which triggers absolutely essential adequate runtime optimization flags;

2. Vigra C says it depends on cmake >= 3.1, but this is only true if you want to
build its documentation, probably not the case. Most distribution still have
cmake 2.8, if that is your case, you may safely edit /your/path/vigra_

c/CMakeLists.txt and downgrade this requirement to the cmake version
installed on your machine;

3. Make sure the directory where libvigra_c.so has been installed is
’known’, either because it is defined in /etc/ld.so.conf.d, or you set the
environment variable LD_LIBRARY_PATH, otherwise Guile won’t find it and
configure will report an error.

• LaTex (http://www.latex-project.org/)

Any modern latex distribution will do, we use TexLive (https://tug.org/texlive/).

Guile-CV will check that it can find the standalone documentclass, as well as the
following packages: inputenc, fontenc, lmodern, xcolor, booktabs, siunitx,
iwona.

Iwona (http://www.tug.dk/FontCatalogue/iwona/): this is the font used to
create [im-histogram], page 20, headers, legend indices and footers. Note that it
could be that it is not part of your ’basic’ LaTex distro, on debian for example,
iwona is part of the texlive-fonts-extra package.

1 We do our best to check that the libvigra c installed library does contain the required Guile-CV functionalty
though, and these checks are listed as part of our configure steps

http://www.gnu.org/software/guile
http://www.nongnu.org/guile-lib
http://ukoethe.github.io/vigra/
http://ukoethe.github.io/vigra/
https://github.com/BSeppke/vigra_c
https://git-scm.com/
http://www.latex-project.org/
https://tug.org/texlive/
http://www.tug.dk/FontCatalogue/iwona/

I. Introduction 4

Install from the tarball

Assuming you have satisfied the dependencies, open a terminal and proceed with the fol-
lowing steps:

cd <download-path>

tar zxf guile-cv-0.4.0.tar.gz

cd guile-cv-0.4.0

./configure [--prefix=/your/prefix] [--with-guile-site=yes]

make

make install

Special note:

Before you start to use Guile-CV (http://www.gnu.org/software/guile-cv), make
sure you read and implement the recommendation made in the manual, section See
[Configuring Guile for Guile-CV], page 6.

Happy Guile-CV (http://www.gnu.org/software/guile-cv)!

Install from the source

Guile-CV (http://www.gnu.org/software/guile-cv) uses Git (https://git-scm.com/)
for revision control, hosted on Savannah (http://savannah.gnu.org/projects/guile-cv),
you may browse the sources repository here (http://git.savannah.gnu.org/cgit/guile-cv.git).

There are currently 2 [important] branches: master and devel. Guile-CV
(http://www.gnu.org/software/guile-cv) stable branch is master, developments occur
on the devel branch.

So, to grab, compile and install from the source, open a terminal and:

git clone git://git.savannah.gnu.org/guile-cv.git

cd guile-cv

./autogen.sh

./configure [--prefix=/your/prefix] [--with-guile-site=yes]

make

make install

Special note:

Before you start to use Guile-CV (http://www.gnu.org/software/guile-cv), make
sure you read and implement the recommendation made in the manual, section See
[Configuring Guile for Guile-CV], page 6.

The above steps ensure you’re using Guile-CV (http://www.gnu.org/software/guile-cv)
bleeding edge stable version. If you wish to participate to developments, checkout the
devel branch:

git checkout devel

Happy hacking!

Notes:

1. The default and --prefix installation locations for source modules and compiled files
(in the absence of --with-guile-site=yes) are:

http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
https://git-scm.com/
http://savannah.gnu.org/projects/guile-cv
http://git.savannah.gnu.org/cgit/guile-cv.git
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv
http://www.gnu.org/software/guile-cv

I. Introduction 5

$(datadir)/guile-cv

$(libdir)/guile-cv/guile/$(GUILE_EFFECTIVE_VERSION)/site-ccache

If you pass --with-guile-site=yes, these locations become the Guile global site and
site-ccache directories, respectively.

The configure step reports these locations as the content of the sitedir and
siteccachedir variables, respectivelly the source modules and compiled files install
locations. After installation, you may consult these variables using pkg-config:

pkg-config guile-cv-1.0 --variable=sitedir

pkg-config guile-cv-1.0 --variable=siteccachedir

You will need - unless you have used --with-guile-site=yes, or
unless these locations are already ’known’ by Guile - to define or
augment your GUILE_LOAD_PATH and GUILE_COMPILED_PATH environ-
ment variables with these locations, respectively (or %load-path and
%load-compiled-path at run time if you prefer2 (See Environment Variables
(https://www.gnu.org/software/guile/manual/guile.html#Environment-Variables)
and Load Path (https://www.gnu.org/software/guile/manual/guile.html#Load-Paths)
in the Guile Reference Manual).

2. Guile-CV also installs its libguile-cv.* library files, in $(libdir). The configure
step reports its location as the content of the libdir variable, which depends on on
the content of the prefix and exec_prefix variables (also reported). After nstallation,
you may consult these variables using pkg-config:

pkg-config guile-cv-1.0 --variable=prefix

pkg-config guile-cv-1.0 --variable=exec_prefix

pkg-config guile-cv-1.0 --variable=libdir

You will need - unless the $(libdir) location is already ’known’ by your system - to
either define or augment your $LD_LIBRARY_PATH environment variable, or alter the
/etc/ld.so.conf (or add a file in /etc/ld.so.conf.d) and run (as root) ldconfig,
so that Guile-CV finds its libguile-cv.* library files3.

3. To install Guile-CV, you must have write permissions to the default or $(prefix)

directory and its subdirs, as well as to both Guile’s site and site-ccache directories if
--with-guile-site=yes was passed.

4. Like for any other GNU Tool Chain compatible software, you may install the
documentation locally using make install-info, make install-html and/or make

install-pdf.

5. Last but not least :), Guile-CV comes with a test-suite, which we recommend you
to run (especially before [Reporting Bugs], page 6):

make check

2 In this case, you may as well decide to either alter your $HOME/.guile personal file, or, if you are working
in a mult-user environmet, you may also opt for a global configuration. In this case, the file must be
named init.scm and placed it here (evaluate the following expression in a terminal): guile -c "(display

(%global-site-dir))(newline)".
3 Contact your administrator if you opt for the second solution but don’t have write priviledges on your

system.

https://www.gnu.org/software/guile/manual/guile.html#Environment-Variables
https://www.gnu.org/software/guile/manual/guile.html#Environment-Variables
https://www.gnu.org/software/guile/manual/guile.html#Load-Paths

II. Using Guile-CV 6

Contact Information

Mailing lists

Guile-CV uses the following mailing list:

• guile-user@gnu.org is for general user help and discussion.

• guile-devel@gnu.org is used to discuss most aspects of Guile-CV, including develop-
ment and enhancement requests.

Please use ‘Guile-CV - ’ to preceed the subject line of Guile-CV related emails, thanks!

You can (un)subscribe to the one or both of these mailing lists by following instructions on
their respective list information page (https://lists.gnu.org/mailman/listinfo/).

IRC

Most of the time you can find me on irc, channel #guile, #guix and #scheme on
irc.libera.chat, #introspection, #gtk and #clutter on irc.gnome.org, under the nickname
daviid.

Reporting Bugs

Guile-CV uses the following bug reports mailing list:

• bugs-guile-cv@gnu.org

You can (un)subscribe to the bugs report list by following instructions on the list informa-
tion page (https://lists.gnu.org/mailman/listinfo/bug-guile-cv).

Further information and a list of available commands are available here
(https://debbugs.gnu.org/server-control.html).

II. Using Guile-CV

Configuring Guile for Guile-CV

Guile must be modified, with respect to two core functionalities, before to start to use
Guile-CV: (a) its repl-print procedure and (b) its raised exception system.

Configuring Guile’s repl-print procedure

Guile’s repl-print procedure calls (write val), which is inadequate for Guile-CV images
- or for that matter, for any work that involves very large data structure manipulations -
even very small images4. Fortunately, Guile provides both a simple mechanism to alter the
default repl printer and the alternate repl printer procedure we need: truncated-print.

4 Even for very small images, using write is inadequate, in a terminal, and will definitely kill your Emacs/Geiser
session. Not to mention it will raise your electricity bill :) - till you succeed to delete its process, Emacs
will use one core at more then 100%, desperately trying to display hundreds of thousands of floating point
values, heating your laptop (if you have a laptop) up to the point you’ll be able to cook an egg on it, and
get its fans crasy... You’ve been warned :).

mailto:guile-user@gnu.org
mailto:guile-devel@gnu.org
https://lists.gnu.org/mailman/listinfo/
mailto:bugs-guile-cv@gnu.org
https://lists.gnu.org/mailman/listinfo/bug-guile-cv
https://lists.gnu.org/mailman/listinfo/bug-guile-cv
https://debbugs.gnu.org/server-control.html
https://debbugs.gnu.org/server-control.html

II. Using Guile-CV 7

To modify the default repl printer, you may alter (or add if it doesn’t exist) your
$HOME/.guile file or, if you are working in a multi-user environmet, you may alther (or
add if it doesn’t exist) the file named init.scm in the Guile global site directory5..

Which ever solution you choose, add the following lines:

(use-modules (ice-9 pretty-print)

(system repl common))

(repl-default-option-set! ’print

(lambda (repl obj)

(truncated-print obj) (newline)))

Configuring Guile’s raised exception system

Guile’s core raised exception printers call simple-format, which is inadequate for Guile-CV
images - or for that matter, for any work that involves very large data structure manipula-
tions - even very small images (see the related footnote of the previous section, it explains
how ‘inadequate’ this default is for Guile-CV images).

Unfortunately, Guile does not provide an easy mechanism to alter its core raised exception
printers. This leaves us with no other option but making some changes to the module where
those are defined, namely the (ice-9 boot-9) Guile’s core module, which then needs to be
(re)compiled and (re)installed6.

As the (ice-9 boot-9) Guile’s core module has changed from 2.0, 2.2 to 3.0, and still is
subject to change any time in the future, we can’t provide a ‘one patch for all’ solution.

Instead, we describe the steps to manually update your local version. However if you think
it is ‘too much’ for you, get in touch with us, and we will guide you or provide a ‘ready to

use module’, depending on your version of Guile.

So, let’s first figure out where the (ice-9 boot-9) resides on your system7, in a guile
session, enter the following:

(string-append (%package-data-dir) "/" (effective-version))

⇒
$2 = "/opt3/share/guile/3.0"

The above returned value is an example of course, just proceed with the value returned by
your system. So, the file we need to edit, in our example, is here:

/opt3/share/guile/3.0/ice-9/boot-9.scm

Edit the above file and:

1. Search for the line (define format simple-format), and below, add a line containing
(define exception-format simple-format), so now your version of the file looks like
this:

5 The Guile global site directory location may be obtained by evaluating the following expression in a ter-
minal): guile -c "(display (%global-site-dir))(newline)". You need write privileges to add or modify
this file, contact your system administrator if you’re not in charge of the system you are working on.

6 Special thanks to Daniel Llorens, who proposed these changes, without which it would just be impossible to
work with Guile-CV - or for that matter, any work that involves very large data structure manipulations.

7 You need write privileges to modify this module, contact your admin if you’re not in charge of the system
you are working on.

II. Using Guile-CV 8

(define format simple-format)

(define exception-format simple-format)

2. Replace all occurences of ’(format ’ using ’(exception-format ’ [note and meticu-
lously respect the presence of the leading open paren ’(’ and the trailing space ’ ’ in
both the search and replace expressions].

Save the file.

3. Compile the file - in the following lines, substitute /opt3 by your $prefix value, 3.0
by your guile (effective-version) as well as $HOME:

cd /opt3/share/guile/3.0/ice-9

guild compile boot-9.scm

a
;;; note: source file /opt3/share/guile/3.0/ice-9/boot-9.scm

;;; newer than compiled /opt3/lib/guile/3.0/ccache/ice-9/boot-9.go

wrote ‘$HOME/.cache/guile/ccache/3.0-LE-8-3.A/opt3/share/guile/3.0/ice-9/boot-9.scm.go’

Note that the target (compiled) filename is boot-9.scm.go - not boot-9.go.

4. Install the compiled file:

cp $HOME/.cache/guile/ccache/3.0-LE-8-3.A/opt3/share/guile/3.0/ice-9/boot-9.scm.go \

/opt3/lib/guile/3.0/ccache/ice-9/boot-9.go

Finally, once the above is completed, add the following lines8 to your $HOME/.guile or, if
you are working in a multi-user environmet, to the file named init.scm in the so-called
Guile global site directory (the previous subsection lists the terminal command you need to
run to see where that directory is on your system):

(define %n-char-limit 400)

(define %n-char-limit-fmt-expr

(simple-format #f "~~~a@y" %n-char-limit))

(define (rewrite-fmt fmt tell)

(let loop ((f "")

(b 0))

(let ((next (string-contains-ci fmt tell b)))

(if next

(loop (if (or (zero? next)

(not (char=? #\~ (string-ref fmt (- next 1)))))

(string-append f

(substring fmt b next)

%n-char-limit-fmt-expr)

f)

(+ next 2))

(string-append f (substring fmt b))))))

(when (defined? ’exception-format)

8 Early versions of Guile-CV used to recommend an exception-format setting based on truncated-print,
which works as expected if you are using Guile 2.0 or 2.2, but using Guile 3.0, a raised exception would lead
to a series of ‘Unwind-only stack overflow exception’ and exit Guile abruptly.

II. Using Guile-CV 9

(set! exception-format

(lambda (port fmt0 . args)

(apply (@ (ice-9 format) format)

port

(rewrite-fmt (rewrite-fmt fmt0 "~s") "~a")

args))))

Feel free to adapt the %n-char-limit value to your own taste.

You are now ready to use Guile-CV!

Images used in Guile-CV’s documentation

Images used in Guile-CV’s documentation are distributed with the source and installed
here:

$prefix/share/doc/guile-cv/images

Examples using im-load and im-save given in this manual, unless a full pathname is
specified, assume that these images are available from the guile current working directory,
see getcwd and chdir in Guile’s manual

Our best recommendation, at least to start with, is to create a working directory, such as
mkdir $HOME/guile-cv/images, for example, and as you need them, copy the distributed
images you are interested in.

Starting Guile-CV

Special Note

Before you start to use Guile-CV, make sure you read and implement the recommendation
made in [Configuring Guile for Guile-CV], page 6,

With the previous [Images used in Guile-CV’s documentation], page 9, recommendations
in mind, open a terminal and:

cd ~/guile-cv/images

guile

scheme@(guile-user)> ,use (cv)

scheme@(guile-user)> (im-load "sand.tif")

⇒
$2 = (512 512 1 (#f32(125.0 128.0 124.0 118.0 108.0 75.0 76.0 # ...)))

Or if you use Emacs (https://www.gnu.org/software/emacs) which, coupled with Geiser
(http://www.nongnu.org/geiser) absolutely rocks :-), then a typical session becomes:

fire Emacs

M-x cd

a
Change default directory: ~/guile-cv/images

M-x run-guile

scheme@(guile-user)> ,use (cv)

https://www.gnu.org/software/emacs
http://www.nongnu.org/geiser
http://www.nongnu.org/geiser

III. Guile-CV Core Reference 10

scheme@(guile-user)> (im-load "sand.tif")

⇒
$2 = (512 512 1 (#f32(125.0 128.0 124.0 118.0 108.0 75.0 76.0 # ...)))

Note that to benefit from Emacs’s Tab completion mechanism, while typing image filenames,
Emacs itself must be in that directory, hence the above first step M-x cd ...

III. Guile-CV Core Reference

Overview

FIXME - The overview section and its subsections is a mock-up, all need to be actually
’filled’.

Naming Conventions

Vigra Funtions

Guile-CV low level CR procedure names that bind a Vigra functions always start with
vigra- ...

vigra-local-minima

vigra-crop-channel

...

Abreviations

FIXME. Needs to be ’filled’.

Image Processing

Image Structure and Accessors

The Guile-CV procedures and methods related to image data structure, creating, accessing
and copying images.

Procedures

Description

A Guile-CV image is represented by a list containing the following elements:

(width height n-channel idata)

where idata is a list of n-channel elements, each element being a vector of (* width height)

cells. More precisely, each element is an srfi-4 homogeneous numeric vector of 32 bit floats,
called f32vector, knowing that f32 is the C type float.

The external representation (ie. read syntax) for idata vectors is #f32(...). As an example,
a gray scale image of width 3 and height 2, initialized to 0.0 is represented by the following
expression:

(3 2 1 (#f32(0.0 0.0 0.0 0.0 0.0 0.0)))

III. Guile-CV Core Reference 11

The n-channel is an integer >= 1, with no limit but the memory size. This said, most
Guile-CV procedures and methods expect either GRAY scale (n-channel=1), or RGB (n-
channel=3) images. For the later, the channels are Red, Green and Blue in that order.

Guile-CV provides usefull accessors for all these fields. However, very often, you will need
them all, in which case your best friend is (ice-9 match), here is an example:

,use (cv)

(define image (im-make 4 3 3))

(match image

((width height n-chan idata)

(match idata

((r g b)

... your code here ...))))

You will find many examples of such a ‘pattern’ in Guile-CV’s source code itself of course,
along with some other ‘techniques’ that might be useful, so we invite you to read it, and if
you do so: feedback, design and code review is more then welcome! This section describes
what is in the module (cv idata).

Note that the (cv) module imports and re-exports, among may others, the public interface
of (ice-9 match).

Procedures

[Procedure]im-make width height n [value]
[Procedure]im-make-channel width height [value]
[Procedure]im-make-channels width height n [value]

Returns a new image, list of channels or channel.

Each channel is an srfi-4 homogeneous vector of 32 bit floats (f32vector), of width by
height initialized to value. The default value is 0.0

[Procedure]im-copy image
[Procedure]im-copy-channel channel width height

Returns a new fresh copy of image or channel.

[Method]im-size image
Returns the list of (width height n-channel)for image.

[Method]im-width image
[Method]im-height image
[Method]im-n-channel image
[Method]im-channels image

[Procedure]im-channel image n
Returns, respectively the width, the height, n-channel, channels or the nth channel
for image.

[Procedure]im-image? image
[Method]im-gray? image

III. Guile-CV Core Reference 12

[Method]im-rgb? image
Returns #t if image is respectively a Guile-CV image, a GRAY scale or an RGB
image.

[Procedure]im-binary? i1 i2 i3 . . .
[Procedure]im-binary-channel? width height c1 c2 c3 . . .

Returns #t if i1 i2 i3 . . . or c1 c2 c3 . . . respectively are BINARY (Black and White)
images or channels respectively.

Note that when more then one image or channel is passed, they must all be of the
same size.

[Procedure]im-=? [precision] i1 i2 i3 . . .
[Procedure]im-=-channel? width height [precision] c1 c2 c3 . . .

Returns #t if i1 i2 i3 . . . or c1 c2 c3 . . . respectively are of the same size, have the
same number of channels that all respectively contain the same values.

If the first argument is a number, it is used as the precision to compare pixel values.
The default precision value is 1.0e-4. Note that if you are certain your images or
channels contain ’discrete’ float values, you may pass 0.0 as the precision to be used,
i which case values will be compared using = (instead of float=?, which is faster.

[Procedure]im-ref image i j [k]
[Procedure]im-fast-ref image i j [k]

Returns the pixel value stored at position i and j of the image channel k. The default
value for k is 0.

im-fast-ref does not check the validity of its arguments: use it at your own risk.

[Procedure]im-set! image i j [k] value
[Procedure]im-fast-set! image i j [k] value

Returns nothing.

Sets the pixel value stored at position i and j of the image channel k to value. The
default value for k is 0.

im-fast-set! does not check the validity of its arguments: use it at your own risk.

[Procedure]im-channel-offset i j width height
[Procedure]im-fast-channel-offset i j width

Returns the channel offset for the i and j indices, based on the width and height of
the channel.

This procedure converts the matrix indices i and j to a vector offset for a channel of
size width and height.

im-fast-channel-offset does not check the validity of its arguments: use it at your own
risk.

[Procedure]im-channel-ref channel i j width height
[Procedure]im-fast-channel-ref channel i j width

Returns the pixel value stored at position i and j of the channel of size width and
height.

III. Guile-CV Core Reference 13

im-fast-channel-ref does not check the validity of its arguments: use it at your own
risk.

[Procedure]im-channel-set! channel i j width height value
[Procedure]im-fast-channel-set! channel i j width value

Returns nothing.

Sets the pixel at position i and j of channel of size width and height to value.

im-fast-channel-set! does not check the validity of its arguments: use it at your own
risk.

[Procedure]im-collect what i1 i2 i3 . . .
Returns a list of what collected from i1 i2 i3 . . .

The valid what synbols are:

size

width

height

n-channel

channels

chan-0, gray, red

chan-1, green

chan-2, blue

chan-k (*)

(*): whith k being a valid channel indice, [0 (- n 1)].

Kernel Structure and Accessors

The Guile-CV procedures and methods related to kernel data structure, creating and ac-
cessing kernels.

Procedures

Description

A Guile-CV kernel (https://en.wikipedia.org/wiki/Kernel_(image_processing)) is
represented by a list containing the following elements:

(width height kdata)

where kdata is a vector of (* width height) cells. More precisely, kdata is an srfi-4

homogeneous numeric vector of 64 bit floats, called f64vector, knowing that f64 is the C
type double.

The external representation (ie. read syntax) for kdata vectors is #f64(...). As an exam-
ple, the identity kernel of width 3 and height 3, initialized to 0.0 is represented by the
following expression:

(3 3 #f64(0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0))

The kernel width and height can be different (kernels can be rectangular), but both width
and height must be odd values.

https://en.wikipedia.org/wiki/Kernel_(image_processing)

III. Guile-CV Core Reference 14

Guile-CV provides useful accessors for kernel fields, however, if you need them all, just like
for accessing image fields, your best friend is (ice-9 match), here is an example:

,use (cv)

(match kernel

((width height kdata)

... your code here ...))

Note that the (cv) module imports and re-exports, among may others, the public interface
of (ice-9 match).

Guile-CV defines a few useful kernels, see [kernel variables], page 17, at the end of this
section, that you both may want to use and reuse: it will be easier, if you need to do so, to
define your own kernels reusing an existing one, see the (cv kdata) module.

Procedures

[Procedure]k-make width height [values #f] [norm #f]
Returns a new kernel.

The kdata value of this new kernel is an srfi-4 homogeneous numeric vector of 64 bit
floats, f64vector, composed of width by height cells.

The optional values argument can be:

#f kdata is initialized to the ‘identity’ kernel (all zeros except the
center of the kernel, initialzed to 1)

a single value

all kdata cells are initialized using that single value

a list of values

a list of width by height values, used to initialzed kdata, in the
order they are given

The optional norm argument can be:

#f in this case, kdata is not normalized

#t unless values would be #f, kdata is normalized using (reduce + 0

values)

a single value

all kdata cells are normalized using that value, which must be a
number different from 0

When both values and norm are passed - which is mandatory if you want to pass
norm (since these are optional arguments, as opposed to keyword arguments) - values
must precede norm on the arguments list.

As an example, here is how to define a 3 x 3 normalized mean kernel:

,use (cv)

(k-make 3 3 1 #t)

a
$2 = (3 3 #f64(0.1111111111111111 0.1111111111111111 # # # # ...))

III. Guile-CV Core Reference 15

(k-display $2)

a

0.11111 0.11111 0.11111

0.11111 0.11111 0.11111

0.11111 0.11111 0.11111

[Procedure]k-make-circular-mask radius [value 1] [norm #f]
Returns a new circular mask kernel.

The kdata value of this new kernel is an srfi-4 homogeneous numeric vector of 64
bit floats, f64vector, composed of width by height cells where width and height are
equal and odd values determined by the procedure.

The mandatory radius argument must be a floating point number satisfying the
following predicate: (float>=? radius 0.5).

The optional norm argument can be:

#f in this case, kdata is not normalized

#t kdata values are normalized using (* n value), where n is the num-
ber of non zero elements of the circular kernel mask being defined.

When both value and norm are passed - which is mandatory if you want to pass norm
(since these are optional arguments, as opposed to optional keyword arguments) -
value must precede norm on the arguments list.

To illustrate, here are the circular kernel masks of radius 0.5, 1, 1.5 respectively:

...

(for-each (lambda (i)

(k-display (k-make-circular-mask i)

#:proc float->int))

’(0.5 1.0 1.5))

a

0 1 0

1 1 1

0 1 0

1 1 1

1 1 1

1 1 1

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

III. Guile-CV Core Reference 16

To better illustrate, let’s define a bigger circular kernel mask, transform it to an image
and [im-show], page 42, it:

...

(match (k-make-circular-mask 49)

((w h kdata) (list w h 1 (list (f64vector->f32vector kdata)))))

a
$6 = (99 99 1 (#f32(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 # ...)))

(im-show $6 ’scale)

And you should see the following image9

[Procedure]k-width kernel
[Procedure]k-height kernel
[Procedure]k-size kernel
[Procedure]k-channel kernel

Returns, respectively, the width, the height, the list of width and height or the kdata
for kernel.

[Procedure]kernel? kernel
Returns #t if kernel is a Guile-CV kernel.

[Procedure]k-ref kernel i j
[Procedure]k-fast-ref kernel i j

Returns the value stored at position i and j of the kernel.

k-fast-ref does not check the validity of its arguments: use it at your own risk.

[Procedure]k-set! kernel i j value
[Procedure]k-fast-set! kernel i j value

Returns nothing.

Sets the value stored at position i and j of the kernel to value.

k-fast-set! does not check the validity of its arguments: use it at your own risk.

[Procedure]k-offset i j width height
[Procedure]k-fast-offset i j width

Returns the kernel offset for the i and j indices, based on the width and height of the
kernel.

This procedure converts the matrix indices i and j to a vector offset for a kernel of
size width and height.

k-fast-offset does not check the validity of its arguments: use it at your own risk.

[Procedure]k-display image [#:proc #f] [#:port (current-output-port)]
Returns nothing.

Displays the content of kernel on port, applying proc to each kernel value.

,use (cv)

9 The ’scale optional argument passed to [im-show], page 42, as its name indicate, is so that kernel values
will be scaled, which in this case means that 1.0 values will become 255.0 - otherwise, it would be almost
impossible for a human eye to actually see the shape of the circle . . .

III. Guile-CV Core Reference 17

(k-display %k-laplacian)

a
0.37500 0.25000 0.37500

0.25000 -2.50000 0.25000

0.37500 0.25000 0.37500

Variables

Notes: (a) the following kernels are merely offered as ‘didactic’ examples, some of these
were used ‘in the old days’, but in most cases, you will find and prefer to use a ‘specific’
and ‘modern’ procedure that will give (much) better results, such as, [im-gaussian-blur],
page 26, [im-gaussian-sharp], page 27, [im-sharpen], page 27, (a simple sharpening proce-
dure), [im-canny], page 39, (edge detection) ... and (b) in order to make these definitions
easier to read, we’ve added some spaces and newlines.

[Variable]%k-identity
(k-display %k-identity #:proc float->int)

a
0 0 0

0 1 0

0 0 0

[Variable]%k-edge0
(k-make 3 3

’(1 0 -1

0 0 0

-1 0 1))

[Variable]%k-edge1
(k-make 3 3

’(0 1 0

1 -4 1

0 1 0))

[Variable]%k-sharpen
(k-make 3 3

’(-1 -1 -1

-1 9 -1

-1 -1 -1))

[Variable]%k-mean
(k-make 3 3

’(1 1 1

1 1 1

1 1 1)

9)

[Variable]%k-gaussian-blur0
(k-make 3 3

III. Guile-CV Core Reference 18

’(1 2 1

2 4 2

1 2 1)

16)

[Variable]%k-gaussian-blur1
(k-make 5 5

’(1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1)

256)

[Variable]%k-unsharp
(k-make 5 5

’(1 4 6 4 1

4 16 24 16 4

6 24 -476 24 6

4 16 24 16 4

1 4 6 4 1)

-256)

[Variable]%k-emboss
Also called %k-compass or %k-directional, this kind of filter is useful to enhance
edges in given directions. With a 3 x 3 kernel, one normally uses filters for 0, 45,
90 and 135 degrees. The various angles are obtained ‘rotating’ the positive and
negative values to ‘align’ with the various directions.

(k-make 3 3

’(-2 -2 0

-2 6 0

0 0 0))

[Variable]%k-laplacian
This is a variation of the more traditional Laplacian kernels, that are meant to enhance
edges, in this case in an isotropic fashion (non-directional). This the implementation
in the Vigra code and it atributes large weights to the diagonal pixels of the kernel.
Nevertheless, the total weight is zero.

(k-make 3 3

’(0.375 0.25 0.375

0.25 -2.5 0.25

0.375 0.25 0.375))

Prewitt filtering

[Variable]%k-prewitt-y
A 3 x 3 kernel which emphasizes horizontal edges by approximating a vertical gradient.

(k-make 3 3

III. Guile-CV Core Reference 19

’(1 1 1

0 0 0

-1 -1 -1))

[Variable]%k-prewitt-x
A 3 x 3 kernel which emphasizes vertical edges by approximating an horizontal gra-
dient.

(k-make 3 3

’(1 0 -1

1 0 -1

1 0 -1))

Sobel filtering

Filtering an image using a ‘Sobel filter’ requires a three steps approach: (1) filtering the
image using the ‘Sobel y filter’, (2) dito using the ‘Sobel x filter’, and (3) combining
the results to obtain ‘Sobel magnitude’: (sqrt (+ (sqrt sobel-y) (sqrt sobel-x)).

[Variable]%k-sobel-y
(k-make 3 3

’(1 2 1

0 0 0

-1 -2 -1))

[Variable]%k-sobel-x
(k-make 3 3

’(1 0 -1

2 0 -2

1 0 -1))

Import Export

The Guile-CV procedures and methods to load, save and query file system images.

Procedures

[Procedure]im-load filename
Returns a Guile-CV image.

Loads the image pointed by filename and returns a Guile-CV image. filename can
either be a GRAY or an RGB image.

At this point, Guile-CV supports the following file formats: GIF, TIFF, JPEG, BMP,
EXR, HDR, PNM (PBM, PGM, PPM), PNG, SunRaster, KHOROS-VIFF.

[Procedure]im-save image filename [scale #f]
Returns #t.

Saves image in filename.

The optional scale argument can take the following values:

#f pixel values are ‘clipped’: values < 0 are saved as 0, values > 255

are saved as 255, and otherwise are saved unchanged

III. Guile-CV Core Reference 20

#t all pixel values are scaled10 to the [0 255] range

The type in which image is saved is determined by the filename extension, as in the
folowing example:

(im-load "edx.png")

...

(im-save $4 "/tmp/edx.jpg")

[Method]im-size filename
Returns the list of (width height n-channel)for filename.

[Method]im-width filename
[Method]im-height filename
[Method]im-n-channel filename

Returns, respectively the width, the height and the n-channel for filename.

[Method]im-gray? filename
[Method]im-rgb? filename

Returns #t if filename is respectively a GRAY scale or an RGB image.

Histogram

Other Guile-CV histogram procedures and methods.

Procedures

[Procedure]im-histogram image [#:subtitle “Untitled”]
Returns two values: (1) an image; (2) a list (or a list of list) of significant values for
image: one list if image is GRAY, a list of list of values per channel if image is RGB.

The returned image is composed of a header (title, #:subtitle), either the GRAY or
the RGB channel histogram(s) for image and a footer, which is a table containg, for
each channel, the following values: mean, standard deviation, minimum, maximum,
the mode11 followed by its value.

Here below, the call sequence and the histogram for the GRAY image sinter.png

given along with Guile-CV documentation and examples:

scheme@(guile-user)> (im-load "sinter.png")

$32 = (212 128 1 (#f32(25.0 39.0 50.0 52.0 51.0 45.0 # ...)))

scheme@(guile-user)> (im-histogram $32 #:subtitle "sinter.png")

$34 = (282 271 1 (#f32(255.0 255.0 255.0 255.0 255.0 # ...)))

$35 = (27136 163.346 75.081 0 243 215 727)

Note that histogram images returned by im-histogram have no borders, the above
histogram has been padded - using (im-padd $34 1 1 1 1 #:color ’(96 96 96)) - for
better readability, otherwise the title above and the table below would look as if they
were not centered.

10 Note that in this particular context, scale does not mean a change in dimension, but rather bringing pixel
values from the range they occupy in memory to the [0 255] range

11 The mode is the integer corresponding to the histogram entry that received the maximum of hits, and the
value displayed in parens precisely is the number of hits.

III. Guile-CV Core Reference 21

Texture

The Guile-CV procedures and methods related to image texture measures.

Procedures

Description

Although introduced a long time ago12, image texture measures are still very actual, with
new research and practicle applications in many areas, as described in this (highly recom-
mended) document13.

Image texture measures are ‘descriptive statistics’, derived from the ‘Gray Level

Co-occurrence Matrices (GLCM)’ and its associated set of ‘Gray Level Co-occurrence

Probability (GLCP)’ matrices.

Guile-CV GLCM and GLCP data structures are identical to the one used for Guile-CV images
(See [Image Structure and Accessors], page 10). Although they are not images ‘per se’,
they are composed of four square matrices (four channels), of size n-gl (the number of gray
levels to consider), and upon which we (and users) need to run linear algebra procedures,
already defined and available in Guile-CV.

Guile-CV offers the 11th first texture measures, out of the 14th originally proposed by
Haralick et al., which are the most commonly used and adopted ones.

This reference manual assumes you are familiar with the concepts, terminology and mathe-
matic formulas involved in the calculations of GLCMs, GLCPs and image texture measures.
If that is not the case, consider carefully reading one or both of the documents cited above
(or any other tutorial or reference material of your choice of course).

Procedures

[Procedure]im-texture image n-gl [#:dist 1] [#:p-max 255] [#:use-log2 #f]
[#:no-px-y0 #f]

Returns a list.

The procedure calls [im-glcp], page 22, passing image, n-gl (the number of gray levels
to consider), dist (the distance between the ‘reference’ and the ‘neighbour’ pixels)
and p-max (the image (pixel) maximum value), then computes and returns a list of
the 11th first texture measures proposed by Haralick et al., which are:

12 R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features of Image Classification, IEEE Transac-
tions on Systems, Man and Cybernetics, vol. SMC-3, no. 6, Nov. 1973.

13 M. Hall-Beyer, GLCM Texture: A Tutorial v. 3.0 March 2017

III. Guile-CV Core Reference 22

(h1) uniformity (angular second moment)

(h2) contrast

(h3) correlation

(h4) variance (sum of squares)

(h5) homogeneity (inverse difference moment)

(h6) sum average

(h7) sum variance

(h8) sum entropy

(h9) entropy

(h10) difference variance

(h11) difference entropy

The #:use-log2 optional keyword argument, which defaults to #f, is passed to the
internal procedures that calculate the parameters h8, h9 and h11. The original formu-
las proposed by Haralck and al. use log, but I have seen a couple of implementations
using log214.

The #:no-px-y0 optional keyword argument, which defaults to #f, is passed to the
internal procedure that calculate the parameter h10. For some obscure reason, and
only with respect to this parameter, I have seen some implementations eliminating
the first element of the so-called Px-y, an internediate f32vector result, which holds,
as its first element, the sum of the elements of the main diagnal of the GLCP15.

[Procedure]im-glcp image n-gl [#:dist 1] [#:p-max 255]
Returns the GLCP for image.

The procedure calls [im-glcm], page 22, passing image, n-gl (the number of gray levels
to consider), dist (the distance between the ‘reference’ and the ‘neighbour’ pixels)
and p-max (the image (pixel) maximum value), adds GLCM’ (the transposed version
of GLCM, so the result is symmetrical around the diagonal), then computes and returns
the GLCP.

The returned GLCP is an ‘image’ composed four channels (four square matrices of
size n-gl), corresponding to the (symmetrical) Gray Level Co-occurrences expressed
as propabibilities, each calculated at a specific ‘angle’, respectively 0o, 45o, 90o, and
135o.

[Procedure]im-glcm image n-gl [#:dist 1] [#:p-max 255]
Returns the GLCM for image.

The procedure scales the original image (it brings its values in the range [0 (- n-gl

1)]), then computes and returns the GLCM.

The returned GLCM is an ‘image’ composed four channels (four square matrices of size
n-gl), corresponding to the Gray Level Co-occurrences, each calculated at a specific
‘angle’, respectively 0o, 45o, 90o, and 135o.

14 Since it is used as a factor in all three formulas, the final result obtained using log2 is equivalent to the
result obtained using log multiplied by 1.4426950408889634

15 Guile-CV computes the difference average using all elements of the Px-y, by default, but offers this
option as a courtesy, for users who would want to use Guile-CV as an immediate substitute to compute
image texture measures for a (large) image set for which they would already have trained a classifier. It is
not recommended to use it otherwise.

III. Guile-CV Core Reference 23

Features

The Guile-CV procedures and methods related to image features.

Procedures

[Procedure]im-features image l-image [#:n-label #f]
Returns a list of features, one list for each labeled object - including the backgroud -
in ascending order.

Notes: (a) image can either be an RGB or a GRAY image; (b) l-image is the
‘corresponding’ labeled image; (c) when used, the #:n-label optional keyword argu-
ment must be total number of label values used in l-image, as returned by [im-label],
page 39, and [im-label-all], page 39.

The GRAY feature list values are:

area The labeled object area in pixel

left top right bottom

The coordinates of the ‘bounding box’ labeled object16

mean-x mean-y

Also sometimes called the ‘centroid’, these are the average of
the x and y coordinates of all of the pixels in the labeled object.
These two coordinate values are floating points, representing the
‘mathematical position’ of the mean x and y values of the la-
beled object

min max mean std-dev

The minimum, maximum, mean and standard gray deviaton la-
beled object values

major-ev-x major-ev-y minor-ev-x minor-ev-y

Respectively the major and minor eigen vectors
(https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors)
x and y normalized coordinates17: (= (sqrt (+ (expt x 2) (expt

y 2))) 1)

major-axis minor-axis

Respectively the major and minor eigen values
(https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors),
optimized so that they actually correspond to major and minor
radius of the ellipse covering the same area as the particle itself

angle The angle of the major eigen vector axis, in degrees in the
trigonometirc circle reference system

16 Note that when passed to [im-crop], page 33, right and bottom must be increased by 1: (im-crop image

left top (+ right 1) (+ bottom 1)).
17 Note that Vigra calculates and returns these values in the image coordinate system, where the y-axis is

‘flipped’ compared to the trigonometric circle ‘traditional’ representation. Guile-CV however transforms
and returns these values using the trigonometric circle reference system.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

III. Guile-CV Core Reference 24

center-mass-x center-mass-y

The center of mass x and y coordinates

perimeter

The labeled object perimeter in pixels

skewness kurtosis

Respectively the skewness (https://en.wikipedia.org/wiki/Skewness)
and the kurtosis (https://en.wikipedia.org/wiki/Kurtosis)
of the labeled object

circularity aspect-ratio roundness

Respectively the circularity (/ (* 4 %pi area) (expt perimeter

2)), the aspect ratio (/ major-axis minor-axis) and the round-
ness (/ minor-axis major-axis) of the labeled object

The RGB feature list values are:

area The labeled object area in pixel

left top right bottom

The coordinates of the labeled object (the corresponding GRAY
feature footnote applies here too of course)

mean-x mean-y

Also sometimes called the ‘centroid’, these are the average of the
x and y coordinates of all of the (red green blue) pixels in the
labeled object. These two coordinate values are floating points,
representing the ‘mathematical position’ of the mean x and y
values of tha labeled object

min-r min-g min-b max-r max-g max-b mean-r mean-g mean-b std-dev-r

std-dev-g std-dev-b

The minimum, maximum, mean and standard deviaton labeled ob-
ject values of the red, green and blue channels

major-axis minor-axis

Respectively the major and minor eigen values
(https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors),
optimized so that they actually correspond to major and minor
radius of the ellipse covering the same area as the particle itself

angle The angle of the major eigen vector axis, in degrees in the
trigonometirc circle reference system

center-mass-x center-mass-y

The center of mass x and y coordinates

perimeter

The labeled object perimeter in pixels

skewness-r skewness-g skewness-b kurtosis-r kurtosis-g kurtosis-b

Respectively the skewness (https://en.wikipedia.org/wiki/Skewness)
and the kurtosis (https://en.wikipedia.org/wiki/Kurtosis)
labeled object values of the red, green and blue channels

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

III. Guile-CV Core Reference 25

circularity aspect-ratio roundness

Respectively the circularity (/ (* 4 %pi area) (expt perimeter

2)), the aspect ratio (/ major-axis minor-axis) and the round-
ness (/ minor-axis major-axis) of the labeled object

Though we did not make it public, Guile-CV has an internal feature display procedure
that you might be interested to (re)use, so here is an example of a GRAY feature list
display:

scheme@(guile-user)> ,use (cv)

scheme@(guile-user)> (im-load "pp-17-bf.png")

$2 = (85 95 3 (#f32(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...) ...))

scheme@(guile-user)> (im-rgb->gray $2)

$3 = (85 95 1 (#f32(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 # ...)))

$4 = (0.0 251.0 128.3132714138286 8075)

scheme@(guile-user)> (im-threshold $3 136)

$5 = (85 95 1 (#f32(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 # ...)))

scheme@(guile-user)> (im-label $5)

$6 = (85 95 1 (#f32(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 # ...)))

$7 = 2

scheme@(guile-user)> (im-features $2 $6)

$8 = ((3782 0 0 84 94 43.19196319580078 45.657588958740234 0.0 # ...) ...)

scheme@(guile-user)> ((@@ (cv features) f-display) (match $8 ((bg a) a)))

area : 4293 (pixels)

left top right bottom : 0 0 84 94

mean-x mean-y : 40.94992 48.18262

min (red, green, blue) : 137.00000 136.00000 135.00000

max (red, green, blue) : 255.00000 250.00000 250.00000

mean (red, green, blue) : 236.13417 232.84999 232.84207

std. dev. (red, green, blue) : 20.23275 19.41402 19.84854

major ev x, y : 0.22202 0.97504

minor ev x, y : 0.97504 -0.22202

major, minor axis : 39.86419 34.27900 (radius)

angle : 77.17241 (degrees)

center of mass x, y : 40.73749 48.28692

perimeter : 367.74725

skewness (red, green, blue) : -2.90164 -2.99066 -2.91777

kurtosis (red, green, blue) : 8.53371 9.05482 8.61162

circularity : 0.39891

aspect ratio : 1.16293

roundness : 0.85989

As we mentioned above, f-diplay is defined in the (cv features) module, but it
is not exported: in Guile, calling none exported procedure (which should not be
‘abused’) is done using the syntax @@ module-name binding-name, which in this ex-
ample translates to (@@ (cv features) f-display).

III. Guile-CV Core Reference 26

Particles

The Guile-CV procedures and methods to obtain and clean image particles.

Procedures

[Procedure]im-particles image features [#:clean #t]
Returns two values, a list of images (the particles) and a list of their bounding boxes
in the original image.

Each returned image is a ‘particle’, which is a subpart of image determined by
its bounding box, given by the left top right bottom values of the corresponding
‘entry’ in features (see [im-features], page 23, for a complete description of a feature
value list.

When #:clean is #t, which is the default, [im-particle-clean], page 26, is called upon
each particle (see below for a description of the expected result).

[Procedure]im-particle-clean particle
Returns a new image.

Cleaning a particle (which is an image) means detecting and removing any object(s)
that is(are) not connected to the ‘particle’ itself.

This procedure is based on the property that in a ‘particle’, which is an (sub)image
resulting from a [im-crop], page 33, based on the bounding box coordinates as returned
by im-features, there precisely is one object that, if you call im-features upon
particle, would have its bounding box coordinates being the entire particle. In other
words, if you call im-particle-clean upon an image that is not a ‘particle’, the
result will just be a black image.

Filter

The Guile-CV procedures and methods to filter images.

Procedures

[Procedure]im-gaussian-blur image sigma
[Procedure]im-gaussian-blur-channel channel width height sigma

Returns a new image or channel.

The new image or new channel is the result of the computation of the Gaussian
blurring, also known as the Gaussian smoothing, by means of a convolution of image
or channel with a 2D Gaussian function, where sigma is the standard deviation of the
Gaussian distribution.

[Procedure]im-gaussian-gradient image sigma
[Procedure]im-gaussian-gradient-channel channel width height sigma

Returns a new image or channel.

The new image or new channel is the result of the computation of the strength of the
first order partial derivatives by means of a convolution of image or channel with the
first order derivative of a 2D Gaussian function, where sigma is the standard deviation
of the Gaussian distribution.

III. Guile-CV Core Reference 27

[Procedure]im-gaussian-sharp image factor scale
[Procedure]im-gaussian-sharp-channel channel width height factor scale

Returns a new image or channel.

The new image or new channel is the result of the computation of the Gaussian
sharpening: the procedure does (a) perform a Gaussian smoothing at the given scale
to create a temporary image smooth and (b) blends image and smooth according to
the formula (- (* (+ factor 1) image) (* smooth factor)).

[Procedure]im-sharpen image factor
[Procedure]im-sharpen-channel channel width height factor

Returns a new image or channel.

This procedure performs a ‘simple sharpening’ operation on image. It actually calls
[im-convolve], page 27, with the following kernel:

-1/16 -1/8 -1/16 0 0 0

(* factor -1/8 3/4 -1/8) + 0 1 0

-1/16 -1/8 -1/16 0 0 0

and uses mirror as the ‘out of bound strategy’.

[Procedure]im-median-filter image w-width w-height [#:obs ’repeat]
[Procedure]im-median-filter-channel channel width height w-width

w-height [#:obs ’repeat]
Returns a new image or channel.

In the new image or channel, each pixel value is the ‘median’ value of
neighboring entries. The pattern of neighbors is called a ‘window’, the
size of which is given by w-width and w-height (see Median Filter
(https://en.wikipedia.org/wiki/Median_filter) for more information).
Both w-width and w-height must be odd numbers, inferior to width and height
respectively.

The optional keyword argument #:obs determines the ‘out-of-bound strategy’.
Valid #:obs symbols are:

avoid do not operate on pixels upon which (centering) the kernel does not
fit in the image

repeat repeat the nearest pixels

mirror mirror the nearest pixels

wrap wrap image around (periodic boundary conditions)

zero out-of-bound pixel values to be 0.0

[Procedure]im-convolve image kernel [#:obs ’repeat]
[Procedure]im-convolve-channel channel width height kernel k-width k-height

[#:obs ’repeat]
Returns a new image or channel.

The new image or new channel is the result of the convolution
(https://en.wikipedia.org/wiki/Kernel_(image_processing)#Convolution)

https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Kernel_(image_processing)#Convolution
https://en.wikipedia.org/wiki/Kernel_(image_processing)#Convolution

III. Guile-CV Core Reference 28

of image using kernel. The kernel (https://en.wikipedia.org/wiki/Kernel_(image_processing))
k-width and k-height values can be different, but they must be odd numbers, inferior
to width and height respectively.

The optional keyword argument #:obs determines the ‘out-of-bound strategy’.
Valid #:obs symbols are:

avoid do not operate on pixels upon which (centering) the kernel does not
fit in the image

clip clip the kernel when operating on pixels upon which (centering) the
kernel does not fit in the image (this is only useful if the kernel is
>= 0 everywhere)

repeat repeat the nearest pixels

mirror mirror the nearest pixels

wrap wrap image around (periodic boundary conditions)

zero out-of-bound pixel values to be 0.0

Kernel data structure, accessors, procedures and predefined kernels are all described
in this node of the Guile-CV manual: [Kernel Structure and Accessors], page 13.

[Procedure]im-nl-means image arg...
[Procedure]im-nl-means-channel channel width height arg...

Returns a new image or channel.

The new image or new channel is the result of a non-local means
(https://en.wikipedia.org/wiki/Non-local_means) denoising as de-
scribed here18. The following table lists the optional keyword arguments and their
default values:

Policy arguments:

#:policy-type 1

accepts 0 (ratio policy) or 1 (norm policy)

#:sigma 15.0

default to 5.0 if the policy-type is 0

#:mean-ratio 5.0

default to 0.95 if the policy-type is 0

#:variance-ratio 0.5

#:epsilon 1.0e-5

Filter arguments:

#:spatial-sigma 2.0

#:search-radius 3

#:patch-radius 1

the patch-radius can be either 1 or 2

18 P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot. An Optimized Blockwise Non Local Means
Denoising Filter for 3D Magnetic Resonance Images . IEEE Transactions on Medical Imaging, 27(4):425-441,
Avril 2008.

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Non-local_means
https://en.wikipedia.org/wiki/Non-local_means

III. Guile-CV Core Reference 29

#:mean-sigma 1.0

#:step-size 2

#:n-iteration 1

The im-nl-means-channel procedure accepts one additional optional keyword argu-
ment:

#:n-thread (- (current-processor-count) 1)

FIXME need to describe the parameters

Process

The Guile-CV procedures and methods to process images.

Procedures

[Procedure]im-threshold image threshold [#:bg ’black]
Returns a new BLACK and WHITE image.

The image argument can either be a GRAY or an an RGB image, in which case each
pixel is converted to GRAY as it is processed. Valid #:bg values are black (the
default) and white.

Pixels for which the original value is >= threshold are set to 255.0 if #:bg is ’black,
and set to 0.0 if #:bg is ’white. The other pixels are set to 0.0 or 255.0 respectively.

[Procedure]im-scrap image size [#:pred <] [#:con 8] [#:bg ’black]
[#:exclude-on-edges #f]

Returns a new image.

Scraping an image is the operation of removing objects depending on their size (in
pixels). When exclude-on-edges is #t, all objects that are on any edges are also
removed.

The procedure first calls [im-label], page 39, using con and bg, then calls [im-features],
page 23. The area feature of each object is then compared to size using pred and
the object is removed if the result is #t.

Note that image must be a binary image.

[Method]im-add image val
[Method]im-add i1 i2 i3 . . .
[Method]im-add-channel channel width height val
[Method]im-add-channel width height c1 c2 c3 . . .

Returns a new image or channel.

Performs the scalar addition of image with val or the matrix addition of i1 i2 i3 . . .
or c1 c2 c3 . . . respectively.

[Method]im-subtract image val
[Method]im-subtract i1 i2 i3 . . .
[Method]im-subtract-channel channel width height val
[Method]im-subtract-channel width height c1 c2 c3 . . .

Returns a new image or channel.

III. Guile-CV Core Reference 30

Performs the scalar subtraction of image with val or the matrix subtraction of i1 i2
i3 . . . or c1 c2 c3 . . . respectively.

[Method]im-times image val
[Method]im-times i1 i2 i3 . . .
[Method]im-times-channel channel width height val
[Method]im-times-channel c1 w1 h1 c2 w2 h2 c3 w3 h3 . . .

Returns a new image or channel.

Performs the scalar multiplication of image with val or the element by element mul-
tiplication of i1 i2 i3 . . . or c1 c2 c3 . . . respectively.

[Procedure]im-mtimes i1 i2 i3 . . .
[Procedure]im-mtimes-channel width height c1 c2 c3 . . .

Returns a new image or channel.

Performs matrix multiplication of i1 i2 i3 . . . or c1 w1 h1 c2 w2 h2 c3 w3 h3 . . .
recursively. The number of lines of the next image must equal the number of columns
of the previous intermediate result.

[Method]im-divide image val
[Method]im-divide i1 i2 i3 . . .
[Method]im-divide-channel channel width height val
[Method]im-divide-channel c1 w1 h1 c2 w2 h2 c3 w3 h3 . . .

Returns a new image or channel.

Performs the scalar division of image with val or the element by element division of
i1 i2 i3 . . . or c1 c2 c3 . . . respectively.

It is the user responsibility to insure that none of the c2 c3 . . . values is zero.

[Procedure]im-mdivide i1 i2 i3 . . .
[Procedure]im-mdivide-channel width height c1 c2 c3 . . .

Returns a new image or channel.

Performs the matrix multiplication of i1 or c1 by the inverse of i2 i3 . . . or c2 c3 . . .
recursively. The number of lines of the next image must equal the number of columns
of the previous intermediate result19.

It is the user responsibility to insure that none of the c2 c3 . . . values is zero.

[Procedure]im-range image
[Procedure]im-range-channel channel width

Returns a list of six values (min row col max row col) if image is GRAY, and a list
of list of these values if image is RGB or for any n-chan > 1 images.

[Procedure]im-min image
[Procedure]im-max image
[Procedure]im-min-channel channel width

19 Technically speaking, there is no such thing as matrix division. Dividing a matrix by another matrix is an
undefined function. The closest equivalent is to multiply the matrix by the inverse of the other matrix.

III. Guile-CV Core Reference 31

[Procedure]im-max-channel channel width
Returns three multiple values if image is GRAY: min row col or max row col respec-
tively. If image is RGB or for any n-chan > 1 images, it returns a list of list of these
values.

[Procedure]im-map proc i1 i2 i3 . . .
[Procedure]im-map-channel proc width height c1 c2 c3 . . .

Returns a new image or channel.

Apply proc to each pixel value of each channel of i1 (if only two arguments are given),
or to the corresponding pixel values of each channels of i1 i2 i3 . . . (if more than two
arguments are given).

[Procedure]im-reduce image proc default
[Procedure]im-reduce-channel channel proc default

Returns one value if image is GRAY. If image is RGB or for any n-chan > 1, it returns
a list of values.

If image is empty, im-reduce returns default (this is the only use for default). If
image has only one pixel, then the pixel value is what is returned. Otherwise, proc
is called on the pixel values of image.

Each proc call is (proc elem prev), where elem is a pixel value from the channel
(the second and subsequent pixel values of the channel), and prev is the returned
value from the previous call to proc. The first pixel value - for each channel - is the
prev for the first call to proc.

For example:

,use (cv)

(im-load "edx.png")

a
$2 = (128 128 1 (#f32(4.0 26.0 102.0 97.0 58.0 10.0 9.0 21.0 # ...)))

(im-reduce $2 + 0)

a
$3 = 556197.0

[Procedure]im-normalize image [#:value 255.0]
[Procedure]im-normalize-channel channel width height [#:value 255.0]

Returns a new normalized image or channel.

Normalizing an image or a channel consist of dividing all pixels by a value so they all
fall in the [0.0 -> 1.0] range. The default #:value is 255.0.

[Procedure]im-and i1 i2 i3 . . .
[Procedure]im-and-channel width height c1 c2 c3 . . .
[Procedure]im-or i1 i2 i3 . . .
[Procedure]im-or-channel width height c1 c2 c3 . . .
[Procedure]im-xor i1 i2 i3 . . .
[Procedure]im-xor-channel width height c1 c2 c3 . . .

Returns image if one argument only, otherwise, it returns a new image or channel, as
the result of computing the logical AND, OR or XOR of all images or channels.

III. Guile-CV Core Reference 32

In the case of AND, for all positive results, the pixel values (of each channel) of the
new image are set to the one obtained from i1 or c1 respectively, and 0.0 otherwise.

In the case of OR, the pixel values (of each channel) of the new image are set to the
one obtained from the first non zero ii or ci respectively, otherwise it is set to 0.0.

In the case of XOR, the pixel values (of each channel) of the new image are set to the
value obtained from successively computing (logior (logand a (- 255 b)) (logand

(- 255 a) b)) where a would be the previous result and b the current image or
channel pixel value, until all images passed in arguments have been processed20.

All images must have the same width, height and n-channel.

There are, of course, scientific use and examples of images logical XOR, and that is
why Guile-CV (http://www.gnu.org/software/guile-cv) is being developed for,
but let’s have a bit of fun here, and see if our levitating GNU likes apples!

Transform

The Guile-CV procedures and methods to transform images.

Procedures

[Procedure]im-rgba->rgb image [#:bg ’(0.0 0.0 0.0)]
[Procedure]im-rgba->gray image [#:bg ’(0.0 0.0 0.0)]
[Procedure]im-rgb->gray image

Returns a new RGB or GRAY image.

In the RGBA case, image channels are first normalized. The new RGB channels are
obtained by applying the following pseudo code algorithm:

R = (((1 - Source.A) * BG.R) + (Source.A * Source.R)) * 255.0

G = (((1 - Source.A) * BG.G) + (Source.A * Source.G)) * 255.0

B = (((1 - Source.A) * BG.B) + (Source.A * Source.B)) * 255.0

[Procedure]im-resize image new-width new-height [#:i-mode ’bilinear]
[Procedure]im-resize-channel channel width height new-width new-height

[#:i-mode ’bilinear]
Returns a new image or chanbnel resized to new-width, new-height.

The interpolation mode #:i-mode, can be one of:

none

bilinear

biquadratic

bicubic

? (fixme)

[Procedure]im-rotate image angle [#:i-mode ’bilinear]
[Procedure]im-rotate-channel channel width height angle [#:i-mode ’bilinear]

Returns a new image or channel rotated by angle.

20 Note that there is no mathematically valid XOR operation on floating points, hence as they are ‘accessed’,
pixel values are converted to integer, using float->int, defined in the (cv support libguile-cv) module).

http://www.gnu.org/software/guile-cv

III. Guile-CV Core Reference 33

The angle is in degrees: +/-[0.0 360.0].

It is neccessary, for rotations other than multiples of 90˚, to recalculate the tar-
get coordinates, since after the rotation, they might be floats. The ’next neighbor’
interpolation possible modes, #:i-mode, are:

bilinear

biquadratic

bicubic

? (fixme)

[Procedure]im-flip image plane
[Procedure]im-flip-channel channel width height plane

Returns a new image or channel flipped according to the selected plane.

Valid flipping plane values are:

hori horizontal

vert vertical

both

[Procedure]im-invert image
[Procedure]im-invert-channel channel width height

Returns a new inversed image or channel.

Calculating the inverse of an image or a channel consist of applying the exponent
function, expt, to all pixel values, raising them to the power of -1.

[Procedure]im-transpose image
[Procedure]im-transpose-channel channel width height

Returns a new tranposed image or channel.

Transposing an image or a channel consist of flipping it over its main diagonal. In
the transposed result, switched in size, row values are the original column values and
column values are the original row values.

[Procedure]im-complement image
Returns a new image.

This procedure computes the mathematical complement of image, which for Guile-CV
means that for each pixel of each channel, the new value is (- 255.0 pixel-value).

[Procedure]im-clip image [#:lower 0.0] [#:upper 255.0]
[Procedure]im-clip-channel channel width height [#:lower 0.0] [#:upper

255.0]
Returns a new clipped image or channel.

Clipping an image or a channel consist of replacing all pixel values below lower by
the lower value and all pixel values above upper by the upper value.

[Procedure]im-crop image left top right bottom
[Procedure]im-crop-channel channel width height left top right bottom

[#:new-w #f] [#:new-h #f]
Returns a new image, resulting of the crop of image at left, top, right and bottom.

III. Guile-CV Core Reference 34

[Procedure]im-crop-size width height left top right bottom
Returns a list, (new-width new-height).

Given the original image width and height, this procedure checks that left, top, right
and bottom are valid and return a list, (new-width new-height), otherwise, it raises
an error.

[Procedure]im-padd image left top right bottom [#:color ’(0.0 0.0 0.0)]
[Procedure]im-padd-channel channel width height left top right bottom

[#:new-w #f] [#:new-h #f] [#:value 0.0]
Returns a new image or channel, respectively padding image or channel by left, top,
right and bottom pixels initialized respectively to color or value. Note that when
im-padd is called upon a GRAY image, color is reduced to its corresponding gray
value:

(/ (reduce + 0 color) 3)

[Procedure]im-padd-size width height left top right bottom
Returns a list, (new-width new-height).

Given the original image width and height, this procedure checks that left, top, right
and bottom are >= 0 and return a list, (new-width new-height), otherwise, it raises
an error.

[Procedure]im-local-minima image [#:threshold +float-max+]
[Procedure]im-local-maxima image [#:threshold (- +float-max+)]
[Procedure]im-local-minima-channel channel width height [#:threshold

+float-max+]
[Procedure]im-local-maxima-channel channel width height [#:threshold (-

+float-max+)]
All local mnima and maxima related procedures also accept the following addi-
tional optional keyword arguments: [#:con 8] [#:marker 1.0] [#:borders? #f]
[#:plateaus? #f] [#:epsilon 1.0e-4]

Returns a new image or channel.

Finds the local minima or maxima in image or channel. Local minima or maxima are
defined as ‘points’ that are not on the borders (unless #:borders? is #t), and whose
values are lower or higher, respectively, then the values of all direct neighbors. In the
result image or channel, these points are marked using the #:marker value (all other
pixels values will be set to 0).

By default, the algorithm uses 8-connectivity to define a neighborhood, which can be
changed passing the optional keyword argument #:con, which can be either 4 or 8.

The #:threshold optional keyword argument can be used to discard minima and
maxima whose (original pixel) value is not below or above the threshold, respectively.
Both default values depend on +float-max+, which is defined (and so is +float-min+)
using the corresponding limit value as given by the C float.h header.

The #:plateaus? optional keyword argument can be used to allow regions of
‘constant’ (original pixel) value whose neighbors are all higher (minima) or lower
(maxima) than the value of the region. Tow pixel values are considered part of the

III. Guile-CV Core Reference 35

same region (representing the same ‘constant’ value) if the absolute value of their
difference is <= to #:epsilon.

Notes:

• If you want to know how many minima or maxima were found, use [im-reduce],
page 31, upon the result;

• If you are interested by the original minima or maxima pixel values, Use [im-
times], page 30, between the original image and the result.

[Procedure]im-fft image
[Procedure]im-fft-channel channel width height

Returns two images or channels.

Computes and returns the Fast Fourier Transform21 of the image or channel. It
returns two values, images or channels: the first contains the real part and the second
the imaginary part of the transformation.

[Procedure]im-fft-inverse real imaginary
[Procedure]im-fft-inverse-channel real-channel imaginary-channel width

height
Returns two images or channels.

Computes and returns the inverse Fast Fourier Transform given its real and imagi-
nary or real-channel and imaginary-channel parts. It returns two values, images or
channels: the first contains the real part and the second the imaginary part of the
inverse transformation.

[Procedure]im-fcc image mask
[Procedure]im-fncc image mask
[Procedure]im-fcc-channel i-chan m-chan width height m-width m-height
[Procedure]im-fncc-channel i-chan m-chan width height m-width m-height

Returns an image or a channel.

Computes and returns the Fast Cross Correlation or Fast Normalized Cross Corre-
lation between image and a (usually smaller) mask22, using the Fast Fourier Trans-
form23.

Morphology

The Guile-CV procedures and methods related to morphology.

Procedures

[Procedure]im-disc-erode image radius
[Procedure]im-disc-erode-channel channel width height radius

Returns a new image or channel.

21 The FFT (Fast Fourier Transform) is simply a faster way to compute the Fourier transform. All FFT related
procedures, and their inverse, are obtained by calling the FFTW library (http://www.fftw.org/).

22 Also called a template, or a pattern.
23 Hence the names, FCC (Fast Cross Correlation) and FNCC (Fast Normalized Cross Correlation).

http://www.fftw.org/

III. Guile-CV Core Reference 36

Performs the morpholgical erosion of image using a disc of a given radius. Here is an
example:

(im-make 5 5 1 1.0)

a
$2 = (5 5 1 (#f32(1.0 1.0 1.0 1.0 1.0 ...)))

(im-set! $2 1 2 0.0)

(im-disc-erode $2 1)

a
$3 = (5 5 1 (#f32(1.0 0.0 0.0 0.0 1.0 ...)))

(im-display $2 #:proc inexact->exact)

a
Channel 1

1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

(im-display $3 #:proc inexact->exact)

a
Channel 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 1

1 1 1 1 1

[Procedure]im-disc-dilate image radius
[Procedure]im-disc-dilate-channel channel width height radius

Returns a new image or channel.

Performs the morpholgical dilation of image using a disc of a given radius. Here is
an example:

...

a
$13 = (11 11 1 (#f32(0.0 0.0 0.0 0.0 0.0 ...)))

(im-disc-dilate $13 1)

a
$14 = (11 11 1 (#f32(1.0 1.0 1.0 1.0 1.0 ...)))

(im-display $13 #:proc inexact->exact)

a
Channel 1

0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 1 1 1 0

0 1 1 1 1 0 0 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 0

0 1 1 0 0 0 1 1 1 1 0

III. Guile-CV Core Reference 37

0 1 1 0 0 0 1 1 1 1 0

0 1 1 0 0 0 1 1 1 1 0

0 1 1 1 1 1 1 1 0 0 0

0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

(im-display $14 #:proc inexact->exact)

a
Channel 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0

[Procedure]im-open image radius
[Procedure]im-open-channel channel width height radius

Returns a new image or channel.

Performs the dilation of the erosion of image using radius. Opening removes small
objects.

[Procedure]im-close image radius
[Procedure]im-close-channel channel width height radius

Returns a new image or channel.

Performs the erosion of the dilation of image using radius. Closing removes small
holes.

[Procedure]im-fill-holes image
[Procedure]im-fill-holes-channel channel width height

Returns a new image or channel.

The argument must be a BINARY image. As its name indicate, this procedure fill
the holes of all and every objects in the image.

[Procedure]im-delineate image [#:threshold 10] [#:radius 2]
[Procedure]im-delineate-channel channel width height [#:threshold 10]

[#:radius 2]
Returns a new image or channel.

Both threshold and radius must be exact integers.

Also known as ‘Edge Enhancement’, this procedure performs the delineation of image,
obtained by applying the following pseudo code algorithm:

;; with

III. Guile-CV Core Reference 38

;; Min = (im-disc-erode image radius)

;; Max = (im-disc-dilate image radius)

D = Max - Min

If D < threshold

;; not an edge

output pixel = input pixel

;; it is an edge

If (pixel -- Min) < (Max -- pixel)

output pixel = Min

output pixel = Max

Here above, left being the original image - a small part of an optical microscope
capture of a sinter sample - you can see the difference between im-delineate called
with the default threshold and radius values, then called using #:threshold 25 and
#:radius 5.

[Procedure]im-distance-map image [#:bg ’black] [#:mode ’euclidean]
[Procedure]im-distance-map-channel channel width height [#:bg ’black]

[#:mode ’euclidean]
Returns a new image or channel.

Also know as ‘Distance Tranform’, this procedure performs the distance map of
image, which consist of, for each background pixel, calculating its distance to the
nearest object or contour. In the return new image or channel, all background pix-
els will be assigned the their distance value, all other pixels will be assigned to 0.
Distances larger than 255 are labelled as 255.

The default backgroung pixel value is ’black, the optional #:bg keyword argument
also accepts ’white.

The default distance map mode is ’euclidean (https://en.wikipedia.org/wiki/Euclidean_distance).
Other valid optional #:mode keyword argument are ’chessboard
(https://en.wikipedia.org/wiki/Chessboard_distance) and ’manhattan
(https://en.wikipedia.org/wiki/Taxicab_geometry).

Here above, left being the original image - a few cells - you can see the results obtained
by calling im-distance-map using respectively the ’euclidean, ’manhattan and
’chessboard modes.

[Procedure]im-reconstruct image seeds [#:con 8]
Returns a new image.

This procedure implements a ‘binary morphological reconstruction’ algorithm,
which extracts the connected components of image that are ‘marked’ by (any of) the
connected components contained in seeds.

Morphological reconstruction is part of a set of image operators often referred to as
‘geodesic’ (geodesic distance, geodesic dilation . . .). Morphological (or geodesic)
operations upon digital images come from and use the Mathematical morphology
(MM) (https://en.wikipedia.org/wiki/Mathematical_morphology) theory and
technique developed for the analysis and processing of geometrical structures.

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Chessboard_distance
https://en.wikipedia.org/wiki/Chessboard_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Mathematical_morphology

III. Guile-CV Core Reference 39

First described here24, this implementation is based on a revision
of the same article published in ‘the IEEE Transactions on Image

Processing, Vol. 2, No. 2, pp. 176-201, April 1993’, available here
(http://www.vincent-net.com/luc/papers/93ieeeip_recons.pdf).

Segmentation

The Guile-CV procedures and methods related to segmentation.

Procedures

[Procedure]im-label image [#:con 8] [#:bg ’black]
[Procedure]im-label-channel channel width height [#:con 8] [#:bg ’black]
[Procedure]im-label-all image [#:con 8]
[Procedure]im-label-all-channel channel width height [#:con 8]

Returns two values: a new GRAY image or channel, and the total number of labels25.

The im-label and im-label-channel procedures label foreground objects in the
binary image. In the new image or channel, 0.0 indicates a background pixel, 1.0
indicates that the pixel belongs to object number 1, 2.0 that the pixel belongs to
object number 2, etc.

The im-label-all and im-label-all-channel procedures label all objects in the
binary image, with no specific distinction for any background value. As a result, these
two procedures will label not only the continuous background, if any, but also any
hole(s). As an example, they are used by [im-fill-holes], page 37, defined in the module
(cv morphology), which you may have a look at for a better understanding of how
it works.

Two pixels belong to the same object if they are neighbors. By default the algorithm
uses 8-connectivity to define a neighborhood, but this can be changed through the
keyword argument #:con, which can be either 4 or 8.

[Procedure]im-canny image [#:sigma 1.0] [#:threshold 0.0] [#:marker 255.0]
[Procedure]im-canny-channel channel width height [#:sigma 1.0] [#:threshold

0.0] [#:marker 255.0]
Returns a new image or channel.

Detect and mark edges using a Canny Edge Detector (https://en.wikipedia.org/wiki/Canny_edge_detector)
algorithm: (a) compute the image Gaussian gradient using sigma,
(b) remove edges whose strength is below threshold, then for all re-
maining edges, (d) remove the non-local maxima (edge thinning
(https://en.wikipedia.org/wiki/Edge_detection#Edge_thinning)) and
(e) set their intensity using marker.

24 in Serra, Jean and Vincent, Luc (1992), "An overview of morphological filtering", Circuits, Systems and
Signal Processing (Springer) 11 (1): 47-108

25 The number of labels correspond to the highest label value + 1: earlier version of Guile-CV, prior to version
1.8.0, did return the number of objects, which correspond to the highest label value. This was less then
optimal, since not only 0.0 is a label, but other procedures, im-features for example, do consider and return
and element for the background as well.

http://www.vincent-net.com/luc/papers/93ieeeip_recons.pdf
http://www.vincent-net.com/luc/papers/93ieeeip_recons.pdf
https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Edge_detection#Edge_thinning
https://en.wikipedia.org/wiki/Edge_detection#Edge_thinning

III. Guile-CV Core Reference 40

[Procedure]im-crack-edge image [#:marker 255.0]
[Procedure]im-crack-edge-channel channel width height [#:marker 255.0]

Returns a new image or channel.

Crack edges are marked ‘between’ the (different) pixels of image. In order to accom-
modate the cracks, the resulting image or channel size must be (- (* width 2) 1) and
(- (* height 2) 1) respectively.

Crack pixels are first inserted, then all crack pixels whose non-crack neighbors have
different values are crack edges and marked using marker, while all other pixels (crack
and non-crack) become region pixels. Here is a simple example, with two regions, a
and b, and using * as the crack edge marker:

Original Inserted Cracks Final Result

a b b

a a b

a a a

a . b . b

.

a . a . b

.

a . a . a

a * b b b

a * * * b

a a a * b

a a a * *

a a a a a

Crack Edge Images have the following properties:

• Crack Edge Images have odd width and height.

• Crack pixels have at least one odd coordinate.

• Only crack pixels may be marked as crack edge pixels.

• Crack pixels with two odd coordinates must be marked as edge pixels whenever
any of their neighboring crack pixels was marked.

As a consequence of the last two properties, both edges and regions are 4-connected.
Thus, 4-connectivity and 8-connectivity yield identical connected components in
Crack Edge Images (the so called well-composedness). This ensures that Crack Edge
Images have nice topological properties26.

Compose

Other Guile-CV procedures and methods to compose images.

Procedures

[Procedure]im-compose position alignment [#:color ’(0 0 0)] img-1 img-2 . . .
[Procedure]im-compose-channels position alignment channels widths heights

[#:value ’0.0]
Returns a new image or a new channel.

The valid position and alignment symbols are:

left right

top center bottom

26 See L. J. Latecki: Well-Composed Sets, Academic Press, 2000

III. Guile-CV Core Reference 41

above below

left center right

When used, the optional #:color keyword argument must come after the mandatory
alignment argument and precede img-1, otherwise Guile will raise an exception. For
RGB images, it is the color used to padd images passed in argument that are inferior,
in width or height (depending on the position), to the biggest of them. For GRAY
images, the #:color is reduced to its corresponding gray value:

(/ (reduce + 0 color) 3)

For the im-compose-channels procedure, the list of channels, widths and heights
must be of equal length and equally ordered, so the nth element of widths and heights
are the width and height of the nth element of channels. The optional #:value
keyword argument is used to padd channels that are inferior, in width or height
(depending on the position), to the biggest of them.

Utilities

Other Guile-CV utility procedures, methods and variables.

Procedures

Variables

Procedures

[Procedure]im-display image [#:proc #f] [#:port (current-output-port)]
[Procedure]im-display-channel channel width height [#:proc #f] [#:port

(current-output-port)]
Returns nothing.

Displays the content of image or channel on port.

The optional #:proc keyword argument must either be #f, the default, or a procedure
that accepts a single (32 bits float) argument. When #:proc is #f, im-display will
use an internally defined procedure which formats its argument ‘à la octave’: nine
positions, six decimals, all number aligned on the dot. any value >= 1000 is converted
to use the exponential float notation. Here is an ‘hand made’ example:

...

$2 = (4 3 3 (#f32(0.0 1.0 2.0 3.0 4.0 5.0))

scheme@(guile-user)> (im-divide $2 99)

$3 = (4 3 3 (#f32(10.1010103225708 0.010101010091602802 ...) ...))

scheme@(guile-user)> (im-set! $3 0 0 0 10000)

$4 = (4 3 3 (#f32(10000.0 0.010101010091602802 # # # # ...) ...))

scheme@(guile-user)> (im-display $4)

a

Channel 1

1.0E+4 0.01010 0.02020 0.03030

III. Guile-CV Core Reference 42

0.04040 0.05051 0.06061 0.07071

0.08081 0.09091 0.10101 0.11111

Channel 2

0.12121 0.13131 0.14141 0.15152

0.16162 0.17172 0.18182 0.19192

0.20202 0.21212 0.22222 0.23232

Channel 3

0.24242 0.25253 0.26263 0.27273

0.28283 0.29293 0.30303 0.31313

0.32323 0.33333 0.34343 0.35354

Caution: unless you specify port, both this and [im-display-channel], page 41, pro-
cedures are meant to be used on very small and testing images, otherwise even on a
small image, it might be ok in a terminal, but it will definitely will kill your emacs.

[Method]im-show filename
[Method]im-show image [scale #f]
[Method]im-show image name [scale #f]

Returns the string "#<Image: . . .>", where ". . ." is either filename or a filename
constructed by im-show, see below.

The optional scale argument can take the following values:

#f pixel values are ‘clipped’: values < 0 are saved as 0, values > 255

are saved as 255, and otherwise are saved unchanged

#t all pixel values are scaled27 to the [0 255] range

These three methods will also effectively dislay the image if you are using Geiser
(http://www.nongnu.org/geiser), which analyzes Guile’s procedures and methods
returned values (through the use of its pattern matcher), and when appropriate, trig-
gers its image display mechanism.

Geiser has two variables that allow you to choose either to inline images in its Emacs
(https://www.gnu.org/software/emacs) (Guile repl) buffer, or to display them
using externel viewer: geiser-image-viewer and geiser-repl-inline-images-p.
You may choose to add these variables in your .emacs file, for example:

(setq geiser-image-viewer "eog")

(setq geiser-repl-inline-images-p nil)

Note that (setq geiser-repl-inline-images-p t) will only work if you are using
a graphics-aware Emacs, and otherwise, will fall on the external viewer approach, if
the variable geiser-image-viewer has been defined. When using Geiser in a non
graphics-aware Emac, or when using the external viewer approach, images will appear

27 Note that in this particular context, scale does not mean a change in dimension, but rather bringing pixel
values from the range they occupy in memory to the [0 255] range

http://www.nongnu.org/geiser
http://www.nongnu.org/geiser
https://www.gnu.org/software/emacs
https://www.gnu.org/software/emacs

III. Guile-CV Core Reference 43

as buttons: press return on them to invoke (or raise) the external viewer (window
containing that image).

Except for the first im-show method, Guile-CV has to save the image first, and does it
in the location defined by the [%image-cache], page 43, variable. If you call im-show
passing name, the image is saved as %image-cache/name.png, otherwise under a
generated name, the result of (symbol->string (gensym "im-show-")).

Note that if you do not specify name, a new external viewer window is opened at
each im-show invocation, even for identical image calls: this because in Guile-CV,
on purpose, images are just list, with no (unique) identifier, and there is no way for
im-show to know ... Further to this point, when you pass name as an argument, you
are not ‘identifying’ image, which may actually differ, but rather just ask to reuse
the filename and hence the external viewer window associated with it.

Last note: many external viewers, such as Eog (the Gnome Eye Viewer), will try
to apply, per default, some sort of smoothing techniques, especially on zoom-in and
zoom-out: where this is fine for viewing ‘lazer’ pictures, you probably want to check
and disable these options when working with Guile-CV.

Variables

[Variable]%image-cache
Specifies the location used by [im-show], page 42, to save images.

The default value is /tmp/<username>/guile-cv, but you may set! it. If you’d like
to reuse that location for future guile-cv sessions, you may save it in guile-cv’s ‘per
user’ config file <userdir>/.config/guile-cv as an assoc pair, here is an example:

cat ~/.config/guile-cv.conf

((image-cache . "~/tmp"))

Note that if used, the ‘~’ is expanded at load time, so in geiser, it becomes:

scheme@(guile-user)> ,use (cv)

scheme@(guile-user)> %image-cache

a
$2 = "/home/david/tmp"

[Variable]%image-cache-format
Specifies the format used by [im-show], page 42, to save images.

The default value is "png", but you may set! it. If you’d like to reuse that for-
mat for future guile-cv sessions, you may save it in guile-cv’s ‘per user’ config file
<userdir>/.config/guile-cv, as an assoc pair, here is an example:

cat ~/.config/guile-cv.conf

((image-cache-format . "jpg"))

Support

Guile-CV uses a series of support modules, each documented in the following subsections.
You may either import them all, like this (use-modules (cv support)), or individually,
such as (use-modules (cv support modules)), (use-modules (cv support goops)), ...

Appendix A: GNU Free Documentation License 44

Modules

[re-export-public-interface], page 44

[Syntax]re-export-public-interface mod1 mod2 ...
Re-export the public interface of a mod1 mod2 . . .

Invoked like use-modules, where each mod1 mod2 . . . is a module name (a list of
symbol(s)).

Goops

Pi

Procedures

[Procedure]radian->degree rad
[Procedure]degree->radian deg

Returns respectively a degree or a radian value.

Variables

[Variable]%pi
[Variable]%2pi
[Variable]%pi/2

Respectively bound to (acos -1), (* 2 %pi) and (/ %pi 2).

Utils

Appendix A GNU Free Documentation License

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals

http://fsf.org/

Appendix A: GNU Free Documentation License 45

providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed

Appendix A: GNU Free Documentation License 46

for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

Appendix A: GNU Free Documentation License 47

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document

Appendix A: GNU Free Documentation License 48

as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

Appendix A: GNU Free Documentation License 49

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

Appendix A: GNU Free Documentation License 50

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 51

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Appendix A: GNU Free Documentation License 52

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index 53

Concept Index

This index contains concepts, keywords and non-Schemey names for several features, to
make it easier to locate the desired sections.

C
Copying . 1
Crack Edge Image . 40

D
Distance Map . 38
Distance Transform . 38

E
Edge Detection . 39
Edge Enhancement . 37
Euclidean Distance . 38

F
Fast Cross Correlation . 35
Fast Fourier Transform . 35
Fast Fourier Transform Inverse 35
Fast Normalized Cross Correlation 35
Features . 23

G
Gaussian Blur . 26
Gaussian Gradient . 26
Gaussian Sharp . 27
Gaussian Smooth . 26
Geodesic Operators . 38
GLCM . 22
GLCP . 22
GPL . 1
Gray Level Co-occurence Matrix 22

Gray Level Co-occurence Probability 22

I
Image Convolution . 27
Image Particles . 26
Image Textures . 21

L
License . 1

M
Mathematical Morphology . 38
Matrix Division . 30
Matrix Multiplication . 30
Median Filter . 27
Morphological Reconstruction 38

N
Non-Local Means Denoising . 28

T
the GNU Project . 1

U
User Configuration . 43

Procedure Index 54

Procedure Index

This is an alphabetical list of all the procedures, methods and macros in Guile-CV.

D
degree->radian . 44

I
im-=-channel? . 12
im-=? . 12
im-add . 29
im-add-channel . 29
im-and . 31
im-and-channel . 31
im-binary-channel? . 12
im-binary? . 12
im-canny . 39
im-canny-channel . 39
im-channel . 11
im-channel-offset . 12
im-channel-ref . 12
im-channel-set! . 13
im-channels . 11
im-clip . 33
im-clip-channel . 33
im-close . 37
im-close-channel . 37
im-collect . 13
im-complement . 33
im-compose . 40
im-compose-channels . 40
im-convolve . 27
im-convolve-channel . 27
im-copy . 11
im-copy-channel . 11
im-crack-edge . 40
im-crack-edge-channel . 40
im-crop . 33
im-crop-channel . 33
im-crop-size . 34
im-delineate . 37
im-delineate-channel . 37
im-disc-dilate . 36
im-disc-dilate-channel . 36
im-disc-erode . 35
im-disc-erode-channel . 35
im-display . 41
im-display-channel . 41
im-distance-map . 38
im-distance-map-channel . 38
im-divide . 30
im-divide-channel . 30
im-fast-channel-offset . 12
im-fast-channel-ref . 12
im-fast-channel-set! . 13

im-fast-ref . 12
im-fast-set! . 12
im-fcc . 35
im-fcc-channel . 35
im-features . 23
im-fft . 35
im-fft-channel . 35
im-fft-inverse . 35
im-fft-inverse-channel . 35
im-fill-holes . 37
im-fill-holes-channel . 37
im-flip . 33
im-flip-channel . 33
im-fncc . 35
im-fncc-channel . 35
im-gaussian-blur . 26
im-gaussian-blur-channel . 26
im-gaussian-gradient . 26
im-gaussian-gradient-channel 26
im-gaussian-sharp . 27
im-gaussian-sharp-channel 27
im-glcm . 22
im-glcp . 22
im-gray? . 11, 20
im-height . 11, 20
im-histogram . 20
im-image? . 11
im-invert . 33
im-invert-channel . 33
im-label . 39
im-label-all . 39
im-label-all-channel . 39
im-label-channel . 39
im-load . 19
im-local-maxima . 34
im-local-maxima-channel . 34
im-local-minima . 34
im-local-minima-channel . 34
im-make . 11
im-make-channel . 11
im-make-channels . 11
im-map . 31
im-map-channel . 31
im-max . 30
im-max-channel . 30
im-mdivide . 30
im-mdivide-channel . 30
im-median-filter . 27
im-median-filter-channel . 27
im-min . 30
im-min-channel . 30
im-mtimes . 30
im-mtimes-channel . 30

Procedure Index 55

im-n-channel . 11, 20
im-nl-means . 28
im-nl-means-channel . 28
im-normalize . 31
im-normalize-channel . 31
im-open . 37
im-open-channel . 37
im-or . 31
im-or-channel . 31
im-padd . 34
im-padd-channel . 34
im-padd-size . 34
im-particle-clean . 26
im-particles . 26
im-range . 30
im-range-channel . 30
im-reconstruct . 38
im-reduce . 31
im-reduce-channel . 31
im-ref . 12
im-resize . 32
im-resize-channel . 32
im-rgb->gray . 32
im-rgb? . 11, 20
im-rgba->gray . 32
im-rgba->rgb . 32
im-rotate . 32
im-rotate-channel . 32
im-save . 19
im-scrap . 29
im-set! . 12
im-sharpen . 27
im-sharpen-channel . 27
im-show . 42

im-size . 11, 20
im-subtract . 29
im-subtract-channel . 29
im-texture . 21
im-threshold . 29
im-times . 30
im-times-channel . 30
im-transpose . 33
im-transpose-channel . 33
im-width . 11, 20
im-xor . 31
im-xor-channel . 31

K
k-channel . 16
k-display . 16
k-fast-offset . 16
k-fast-ref . 16
k-fast-set! . 16
k-height . 16
k-make . 14
k-make-circular-mask . 15
k-offset . 16
k-ref . 16
k-set! . 16
k-size . 16
k-width . 16
kernel? . 16

R
radian->degree . 44
re-export-public-interface 44

Variable Index 56

Variable Index

This is an alphabetical list of all the important variables and constants in Guile-CV.

%2pi . 44
%image-cache . 43
%image-cache-format . 43
%k-edge0 . 17
%k-edge1 . 17
%k-emboss . 18
%k-gaussian-blur0 . 17
%k-gaussian-blur1 . 18
%k-identity . 17
%k-laplacian . 18

%k-mean . 17

%k-prewitt-x . 19

%k-prewitt-y . 18

%k-sharpen . 17

%k-sobel-x . 19

%k-sobel-y . 19

%k-unsharp . 18

%pi . 44

%pi/2 . 44

Type Index 57

Type Index

This is an alphabetical list of all the important data types defined in the Guile-CV Pro-
grammers Manual.

(Index is nonexistent)

	Preface
	Contributors to this Manual
	Join the GNU Project
	The Guile-CV License

	I. Introduction
	About Guile-CV
	Obtaining and Installing Guile-CV
	Contact Information
	Reporting Bugs

	II. Using Guile-CV
	Configuring Guile for Guile-CV
	Configuring Guile's repl-print procedure
	Configuring Guile's raised exception system

	Images used in Guile-CV's documentation
	Starting Guile-CV

	III. Guile-CV Core Reference
	Overview
	Naming Conventions
	Abreviations

	Image Processing
	Image Structure and Accessors
	Kernel Structure and Accessors
	Import Export
	Histogram
	Texture
	Features
	Particles
	Filter
	Process
	Transform
	Morphology
	Segmentation
	Compose
	Utilities

	Support
	Modules
	Goops
	Pi
	Utils

	A GNU Free Documentation License
	Concept Index
	Procedure Index
	Variable Index
	Type Index

