Using Avahi in Guile Scheme Programs

For Guile-Avahi 0.4.1

Ludovic Courtes

Edition 0.4.1
8 December 2010

Copyright (© 2007, 2008 Ludovic Courtes

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the author.

Table of Contents

1 Introduction 1
2 Conventions., 3
2.1 Enumerates and ConstantS.ot 3
2.2 Procedure Names.ot 4
2.3 Explicit Finalization...........ooo i i 4
24 Error Handling o i 5]
3 Examples............ 7
3.1 Publishing a Serviceooiiiiiiiiii i 7
3.2 Browsing Published Services.............o i, 8
3.3 Resolving Services...... ..ot 9
4 API Reference............ 11
4.1 Core Interfacet e 11
4.2 Client Interface. ... e 14
4.3 Service Publicationouiiiiii 14
4.4 Service Browsing 17
Concept Index, 23
Procedure Index 25

Variable Index............ . . . 27

1 Introduction

Guile-Avahi (http://www.nongnu.org/guile-avahi/) provides GNU Guile bindings to
the Avahi library (http://avahi.org/). In other words, it makes it possible to write
Scheme programs that use the facilities of Avahi. Avahi itself is a C library that imple-
ments the multicast DNS (http://multicastdns.org/) (mDNS) and DNS Service Dis-
covery (http://dns-sd.org/) (DNS-SD) protocols, sometimes erroneously referred to as
“Bonjour”. Together, these protocols provide support for fully decentralized host nam-
ing and service publication and discovery. They are key components of the so-called
Zero-Configuration Networking Stack (http://www.zeroconf.org/) (Zeroconf).

More precisely, Guile-Avahi provides bindings for the client library of Avahi. The client
library allows application to use service discovery by transparently connecting them to the
Avahi system-wide daemon using D-Bus (http://dbus.freedesktop.org). This daemon
actually implements the DNS-SD protocol and handles service discovery and publication
on behalf of applications running on the same host.

Thus, the functionality of Guile-Avahi could be provided to Guile Scheme applications
by writing a D-Bus client to the Avahi daemon in Scheme. Alas, no Scheme-friendly D-
Bus implementation was available at the time Guile-Avahi was started, hence the approach
taken by Guile-Avahi.

This document, describes the Scheme API to Avahi offered by Guile-Avahi. The reader
is assumed to have basic knowledge of the protocol and library. Please send bug reports
and comments to the Guile-Avahi mailing list.

http://www.nongnu.org/guile-avahi/
http://avahi.org/
http://multicastdns.org/
http://dns-sd.org/
http://dns-sd.org/
http://www.zeroconf.org/
http://dbus.freedesktop.org
mailto:guile-avahi-bugs@nongnu.org

2 Conventions

This chapter details the conventions used in Guile-Avahi, as well as specificities of the
mapping of the C API to Scheme.

2.1 Enumerates and Constants

Lots of enumerates and constants are used in the Avahi C API. For each C enumerate type,
a disjoint Scheme type is used—thus, enumerate values and constants are not represented by
Scheme symbols nor by integers. This makes it impossible to use an enumerate value of the
wrong type on the Scheme side: such errors are automatically detected by type-checking.

The enumerate values are bound to variables exported by the (avahi) and other mod-
ules within the avahi hierarchy. These variables are named according to the following
convention:

e All variable names are lower-case; the underscore _ character used in the C API is
replaced by hyphen -.

e All variable names are prepended by the name of the enumerate type and the slash /
character.

e In some cases, the variable name is made more explicit than the one of the C API, e.g.,
by avoid abbreviations.

Consider for instance this C-side enumerate:

typedef enum

{
AVAHI_CLIENT_S_REGISTERING,
AVAHI_CLIENT_S_RUNNING,
AVAHI_CLIENT_S_COLLISION,
AVAHI_CLIENT_FAILURE,
AVAHI_CLIENT_CONNECTING

} AvahiClientState;

The corresponding Scheme values are bound to the following variables exported by the
(avahi client) module:

client-state/s-registering
client-state/s-running
client-state/s-collision
client-state/failure
client-state/connecting

Hopefully, most variable names can be deduced from this convention.

Scheme-side “enumerate” values can be compared using eq? (see Section “Equality” in
The GNU Guile Reference Manual). Consider the following example:

(let ((client (make-client ...)))

3

4 Using Avahi in Guile Scheme Programs

;; Check the client state.
(if (eq? (client-state client) client-state/failure)
(format #t "Oh, we failed.")))

In addition, all enumerate values can be converted to a human-readable string, in a
type-specific way. For instance, (watch-event->string watch-event/in) yields "in".
Note that these strings may not be sufficient for use in a user interface since they are fairly
concise and not internationalized.

2.2 Procedure Names

Unlike C functions in Avahi, the corresponding Scheme procedures are named in a way that
is close to natural English. Abbreviations are also avoided. For instance, the Scheme pro-
cedure corresponding to avahi_client_get_version is named client-server-version.
The avahi_ prefix is always omitted from variable names since a similar effect can be
achieved using Guile’s nifty binding renaming facilities, should it be needed (see Section
“Using Guile Modules” in The GNU Guile Reference Manual).

2.3 Explicit Finalization

Except for client objects, all objects created by the Avahi client API are local
representative of objects implemented by the system-wide Avahi daemon. For instance,
make-service-browser returns a “service browser” object which is actually a proxy to
a daemon-implemented service browser (see Section 4.4 [Service Browsing|, page 17). In
other words, the Avahi daemon allocates resources (objects) on behalf of its clients.

While the Avahi daemon can reclaim resources allocated on behalf of a client program
when that program exits, it cannot automatically determine when such resources become
unneeded and reclaimable while the program is running. Thus, clients must ezplicitly tell
the daemon when an object is no longer needed.

Consequently, except for client objects, objects manipulated by Guile-Avahi programs
must be freed using the appropriate free procedure. For instance, objects created by
make-service-browser must eventually be freed by free-service-browser!. Additional
procedures are available to determine whether a particular object has already been freed; for
instance, freed-service-browser? returns #t when the given service browser has already
been freed. Of course, freed objects are no longer usable; procedures that are passed a
previously freed object will raise an error/invalid-object exception (see Section 2.4
[Error Handling], page 5).

Note that all such client-side proxy objects are not subject to garbage collection until
they have been explicitly freed. Therefore, it is important to free them when they are no
longer needed!

As an exception, client objects as returned by make-client are subject to garbage
collection and need not be explicitly freed. This is because client programs will usually
create only one client object whose lifetime is that of the program itself.

Chapter 2: Conventions)

2.4 Error Handling

Avahi errors are implemented as Scheme exceptions (see Section “Exceptions” in The GNU
Guile Reference Manual). Each time a Avahi function returns an error, an exception with
key avahi-error is raised. The additional arguments that are thrown include an error code
and the name of the Avahi procedure that raised the exception. The error code is pretty
much like an enumerate value: it is one of the error/ variables exported by the (avahi)
module (see Section 2.1 [Enumerates and Constants|, page 3). Exceptions can be turned
into error messages using the error->string procedure.

The following examples illustrates how Avahi exceptions can be handled:
(let ((poll (make-simple-poll)))

..
3
3

)

(catch ’avahi-error
(lambda ()
(run-simple-poll (simple-poll poll)))
(lambda (key err function . currently-unused)
(format (current-error-port)
"an Avahi error was raised by ‘~a’: "a"}"
function (error->string err)))))

Again, error values can be compared using eq?:

;; ‘avahi-error’ handler.
(lambda (key err function . currently-unused)
(if (eq? err error/no-daemon)
(format (current-error-port)
""a: the Avahi daemon is not running~}"
function)))

Note that the catch handler is currently passed only 3 arguments but future versions
might provide it with additional arguments. Thus, it must be prepared to handle more than
3 arguments, as in this example.

3 Examples
This chapter lists examples that illustrate common use cases.

3.1 Publishing a Service

The following example shows the simplest way to publish a service. There are several stages:

e Create an Avahi client using make-client. This will actually connect the application to
the Avahi daemon that will eventually perform operations on behalf of the application.

e When the client switches to the running state (i.e., client-state/s-running), cre-
ate an entry group with make-entry-group and add a service (or several services,
addresses, etc.) to it.

e Commit the entry group using commit-entry-group.

e When all entries in the group have been successfully published, the group’s call-back
is invoked and passed the entry-group-state/established state. The application
must keep running so that the service remains published.

Here is the complete example:

(use-modules (avahi)
(avahi client)
(avahi client publish))

(define (group-callback group state)
(if (eq? state entry-group-state/established)
(format #t "service is now published!~%")))

(define client-callback
(let ((group #f))
(lambda (client state)
(if (eq? state client-state/s-running)
(begin

;; The client is now running so we can create an entry

;; group and publish a service.

(set! group (make-entry-group client group-callback))

(add-entry-group-service! group interface/unspecified
protocol/unspecified ’ ()
"my-avahi-service"
"_some-service-type._tcp"
#f #f ;; any domain and host
1234 ;; the port number

;; additional ‘txt’ properties
"scheme=yes" "java=no")

;; Commit the entry group, i.e., actually publish
;; the service.
(commit-entry-group group))))))

8 Using Avahi in Guile Scheme Programs

;3 The main loop.
(let* ((poll (make-simple-poll))

(client (make-client (simple-poll poll)
>() ;; no flags
client-callback)))

(and (client? client)

;3 Run forever.
(run-simple-poll poll)))

Of course, publishing a host address or service subtype works similarly.

3.2 Browsing Published Services

Browsing advertised services requires a number of stages. First, an Avahi daemon client
must be created, as usual (see Section 3.1 [Publishing a Service|, page 7).

(use—modules (avahi)
(avahi client)
(avahi client lookup))

(define Y%service-type
;; The type of services we are looking for.
"_workstation._tcp")

(define (service-browser-callback browser interface protocol event
service-name service-type
domain flags)

(if (eq? event browser-event/new)
(format #t "found service ‘~a’ of type ‘"a’”~%"
service-name service-type)))

(define client-callback
(let ((browser #f))
(lambda (client state)
(if (eq? state client-state/s-running)
;; Now that the client is up and running, create a service
;; browser looking for services of type ‘J/service-type’ on
;; any network interface and using any protocol.
(set! browser
(make-service-browser client
interface/unspecified
protocol/unspecified
%service-type #f *()
service-browser-callback))))))

(let* ((poll (make-simple-poll))

Chapter 3: Examples 9

(client (make-client (simple-poll poll)
>() ;; no flags
client-callback)))
(and (client? client)
(run-simple-poll poll)))
In this example, the service type being looked for is " _workstation._tcp". It is used to
advertise the presence of computers on a local area network, rather than an actual service.

3.3 Resolving Services

The previous example allowed us to find services of a given type, but did not provide us
with information such as the IP address of the host providing the service and the port
number where the service can be found. To obtain this information, a service resolver must
be launched, e.g., by augmenting the service browser call-back as follows:
(define (service-browser-callback browser interface protocol event
service-name service-type
domain flags)

(define (service-resolver-callback resolver interface protocol event
service—name service-type domain
host-name address-type address port
txt flags)

;; Handle service resolution events.
(cond ((eq? event resolver-event/found)
(format #t "resolved service ‘“a’ at ‘“a:"a’"%"
service-name host-name port))
((eq? event resolver-event/failure)
(format #t "failed to resolve service ‘~a’~}"
service-name))))

(if (eq? event browser-event/new)
(begin
(format #t "found service ‘“a’ of type ‘~a’~%"
service-name service-type)

;; Launch a service resolver for the service we just found.
(make-service-resolver (service-browser-client browser)
interface protocol
service—name service-type domain
protocol/unspecified ’()
service-resolver-callback))))

Now you know all the important things you need to know to benefit from Avahi!

11

4 API Reference

This chapter documents Guile-Avahi Scheme procedures. Note that further details can be
found in the Avahi C API reference (http://avahi.org/).

4.1 Core Interface

This section lists the Scheme procedures exported by the (avahi) module. These procedures
are mainly related to polls, the building block of event loops in Avahi programs. Polls come
in three flavors:

e The simple poll provides simple, single-threaded event dispatching. It essentially hangs
on select(), processes D-Bus I/O events, and invokes the relevant client call-backs
when appropriate.

e The threaded poll processes events similarly but in a separate thread of execution.

e Finally, the guile poll allows you to create customized event loops. This is useful, for
instance, in single-threaded programs that process events coming not only from Avahi
but also from other sources (e.g., GTK+ events, networking events, etc.).

Creating and manipulating polls is achieved using the procedures below.

unlock-threaded-poll threaded-poll [Scheme Procedure]
Unlock the event look object associated with threaded-poll.

lock-threaded-poll threaded-poll [Scheme Procedure]
Lock the event loop associated with threaded-poll. Use this if you want to access the
event loop object (e.g., creating a new event source) from anything but the event loop
helper thread, i.e. not from callbacks.

quit-threaded-poll threaded-poll [Scheme Procedure]
Quit the event loop associated with threaded-poll responsible for running the event
loop. It must be called from outside said thread (i.e., not from callbacks).

stop-threaded-poll threaded-poll [Scheme Procedure]
Stop the helper thread associated with threaded-poll responsible for running the event
loop. Tt must be called from outside said thread (i.e., not from callbacks).

start-threaded-poll threaded-poll [Scheme Procedure]
Start the helper thread associated with threaded-poll, which is responsible for running
the event loop. Callbacks are called from the helper thread. Thus, synchronization
may be required among threads.

threaded-poll threaded-poll [Scheme Procedure]
Return the poll object associated with threaded-poll.

make-threaded-poll [Scheme Procedure]
Return a threaded-poll object. A threaded poll is essentially an event loop that
processes events from the Avahi daemon in its own thread.

run-simple-poll simple-poll [Scheme Procedure]
Run the event loop of simple-poll until either an error occurs or a quit request is
scheduled. In the former case, an error is raised; in the latter, #f is returned.

http://avahi.org/

12 Using Avahi in Guile Scheme Programs

iterate-simple-poll simple-poll [sleep-time] [Scheme Procedure]
Handle events registered by simple-poll. If sleep-time is not specified, the function
blocks until an I/O event occurs. If sleep-time is specified, it is the maximum num-
ber of milliseconds of blocking. Return #f is a quit request has been scheduled, #t
otherwise.

simple-poll simple-poll [Scheme Procedure]
Return the poll object associated with simple-poll.

make-simple-poll [Scheme Procedure]
Return a simple-poll object. This is the easiest way to handle I/O of Avahi client
objects and similar.

guile-poll guile-poll [Scheme Procedure]
Return the poll object associated with guile-poll.

make-guile-poll new-watch update-watch! free-watch [Scheme Procedure]
new-timeout update-timeout! free-timeout
Return a guile-poll object that can then be used to handle I/O events for Avahi
objects such as clients. All arguments should be procedures:

e new-watch and new-timeout are invoked when the poll-using code requires a new
file descriptor to be watched after, or a new timeout to be honored, respectively.
new-watch is passed a watch object and a list of watch-event values; new-
timeout is passed a timeout object and a number of seconds and nanoseconds
representing the absolute date when the timeout expires, or #f if the newly
created timeout is disabled.

e update-watch! and update-timeout! are called to modify a previously created
watch or timeout. update-watch! is passed the watch object and a new list of
events; update-timeout! is passed a new expiration time or #f.

e Finally, free-watch and free-timeout are called when the poll is asked to to no
longer look handle them. For instance, when free-watch is called, the event loop
code may remove the associated file descriptor from the list of descriptors passed
to select.

The Guile-Avahi source code distribution comes with a detailed example.

timeout? obj [Scheme Procedure]
Return true if obj is of type timeout.

watch? obj [Scheme Procedure]
Return true if obj is of type watch.

threaded-poll? obj [Scheme Procedure]
Return true if obj is of type threaded-poll.

guile-poll? obj [Scheme Procedure]
Return true if obj is of type guile-poll.

simple-poll? obj [Scheme Procedure]
Return true if obj is of type simple-poll.

Chapter 4: API Reference 13

poll? obj [Scheme Procedure]
Return true if obj is of type poll.

interface->string enumval [Scheme Procedure]
Return a string describing enumval, a interface value.

protocol->string enumval [Scheme Procedure]
Return a string describing enumval, a protocol value.

watch-event->string enumval [Scheme Procedure]
Return a string describing enumval, a watch-event value.

error->string enumval [Scheme Procedure]
Return a string describing enumval, a error value.

The low-level API for watches, timeouts, and “guile polls”, all of which serve as the basic
for the creation of customized event loops (using make-guile-poll) is described below. In
practice, you should only need it in applications where the Avahi event loop needs to be
integrated in some other event loop; in other cases, the “simple poll” or “threaded poll”
should be enough.

set-timeout-user-data! timeout data [Scheme Procedure]
Associated data (an arbitrary Scheme object) with timeout.

timeout-user-data timeout [Scheme Procedure]
Return the user-specified data associated with timeout.

timeout-value timeout [Scheme Procedure]
Return the expiration time for timeout as two values: the number of seconds and
nanoseconds. If timeout is disabled, both values are #f.

set-watch-user-data! watch data [Scheme Procedure]
Associated data (an arbitrary Scheme object) with watch.

watch-user-data watch [Scheme Procedure]
Return the user-specified data associated with watch.

watch-events watch [Scheme Procedure]
Return the events of interest (a list of watch-event/ values) for watch.

watch-fd watch [Scheme Procedure]
Return the file descriptor associated with watch.

invoke-timeout timeout [Scheme Procedure]
Invoke the call-back associated with timeout. This notifies the interested code that the
timeout associated with timeout has been reached. The return value is unspecified.
An error/invalid-object error is raised if timeout is disabled or is no longer valid.

invoke-watch watch events [Scheme Procedure]
Invoke the call-back associated with watch. This notifies the interested code that the
events listed in events (a list of watch-event/ values) occurred on the file descriptor
associated with watch. The return value is unspecified. An error/invalid-object
error is raised if watch is no longer valid.

14 Using Avahi in Guile Scheme Programs

4.2 Client Interface

This section lists the Scheme procedures exported by the (avahi client) module.

client-state client [Scheme Procedure]
Return the state (a client-state/ value) of client.

client-host-fqdn client [Scheme Procedure]
Return the fully qualified domain name (FQDN) of the server client is connected to.

client-host-name client [Scheme Procedure]
Return the host name of the server client is connected to.

client-server-version client [Scheme Procedure]
Return the version (a string) of the server the client is connected to.

make-client poll flags callback [Scheme Procedure]
Return a new Avahi client. The client will use poll (a poll object as returned by,
e.g., (simple-poll (make-simple-poll))) for I/O management. In addition, when
the client state changes, callback (a two-argument procedure) will be invoked and
passed the client object and a client-state value. flags must be a list of client flags
(i.e., client-flag/ values).

client? obj [Scheme Procedure]
Return true if obj is of type client.

client-flag->string enumval [Scheme Procedure]
Return a string describing enumval, a client-flag value.

client-state->string enumval [Scheme Procedure]
Return a string describing enumval, a client-state value.

The flags argument expected by make-client is a list containing zero or more values
among the following:

client-flag/ignore-user-config [Scheme Variable]
Don’t read user configuration.

client-flag/no-fail [Scheme Variable]
Don’t fail if the daemon is not available when make-client is called; instead enter
client-state/connecting state and wait for the daemon to appear.

4.3 Service Publication

The service publication API is provided by the (avahi client publish). To publish ser-
vices, one must first create a client for the Avahi daemon (see Section 4.2 [Client Interface],
page 14).

alternative-service-name service-name [Scheme Procedure]
Find an alternative name to service-name. If called with an original service name,
" #2" is appended. Afterwards the number is incremented on each call (i.e., "foo"
becomes "foo #2", which becomes "foo #3", and so on).

Chapter 4: API Reference 15

alternative-host-name hostname [Scheme Procedure]
Find an alternative name to hostname. If called with an original host name, "2" is
appended. Afterwards the number is incremented on each call (i.e., "foo" becomes
"f002", which becomes "f003", and so on).

add-entry-group-address! group interface protocol [Scheme Procedure]
publish-flags fqdn address-protocol address
Add to group a mapping from fully-qualified domain name fqdn to address address.
Depending on address-protocol (a protocol/ value), address should be a 32-bit or
128-bit integer (for IPv4 and IPv6, respectively) in host byte order (see Section “Net-
work Address Conversion” in The GNU Guile Reference Manual).

update-entry-group-service! group interface protocol [Scheme Procedure]
publish-flags service-name service-type domain [txt...]
Update the service named service-name in group.

add-entry-group-service-subtype! group interface [Scheme Procedure]
protocol publish-flags service-name service-type domain subtype
Add subtype as a sub-type of a service already present in group. You may add as
many subtypes for a service as you wish.

add-entry-group-service! group interface protocol [Scheme Procedure]
publish-flags service-name service-type domain host port [txt...]

Add a service of type service-type (e.g., "_http._tcp") named service-name to group.
port should be an integer telling which port this service is listening on; host can be
a string indicating which host it is running on, or #f to let the daemon decide by
itself (recommended). Likewise, domain can be #f (recommended) or a string indi-
cating the domain where this service is to be registered. Additionaly txt arguments
should be string denoting additional txt properties (e.g., "color-printer=yes").
Finally, interface and protocol denote, respectively, the network interface and proto-
col used to publish the service. interface may be interface/unspecified, in which
case the daemon will choose the most appropriate interface, or it can be a string
(e.g., "eth0"), or an integer OS-provided integer index; similarly, protocol may be
protocol/unspecified, in which case the daemon will choose a protocol, or it can
be any other protocol/ value.

entry-group-client group [Scheme Procedure]
Return the client used by group.

entry-group-empty? group [Scheme Procedure]
Return #t if group is empty, #f otherwise.

entry-group-state group [Scheme Procedure]
Return the state of group, i.e., an entry-group-state/ value.

reset-entry-group! group [Scheme Procedure]
Reset group.

commit-entry-group group [Scheme Procedure]
Commit entry group group, i.e., register its entries on the network. It is an error to
commit an empty group.

16 Using Avahi in Guile Scheme Programs

make-entry-group client callback [Scheme Procedure]
Return a new entry group using client and callback as the state-change notification
procedure. callback should be a two-argument procedure. It will be passed the group
object and the group entry’s state (i.e., a group-entry-state/ value).

publish-flag->string enumval [Scheme Procedure]
Return a string describing enumval, a publish-flag value.

entry-group-state->string enumval [Scheme Procedure]
Return a string describing enumval, a entry-group-state value.

entry-group? obj [Scheme Procedure]
Return true if obj is of type entry-group.

freed-entry-group? obj [Scheme Procedure]
Return #t if obj is an object of type entry-group that has already been explicitly
freed.

free-entry-group! obj [Scheme Procedure]

Explicitly free obj, an object of type entry-group.

The publish-flags argument expected by add-entry-group-service! and similar pro-
cedures is a list containing zero or more values among the following:

publish-flag/unique [Scheme Variable]
For raw records: The RRset is intended to be unique.

publish-flag/no-probe [Scheme Variable]
For raw records: Though the RRset is intended to be unique no probes shall be sent.

publish-flag/no-announce [Scheme Variable]
For raw records: Do not announce this RR to other hosts.

publish-flag/allow-multiple [Scheme Variable]
For raw records: Allow multiple local records of this type, even if they are intended
to be unique.

publish-flag/no-reverse [Scheme Variable]
For address records: don’t create a reverse (PTR) entry.

publish-flag/no-cookie [Scheme Variable]
For service records: do not implicitly add the local service cookie to TXT data.

publish-flag/update [Scheme Variable]
Update existing records instead of adding new ones.

publish-flag/use-wide-area [Scheme Variable]
Register the record using wide area DNS (i.e., unicast DNS update).

publish-flag/use-multicast [Scheme Variable]
Register the record using multicast DNS.

Chapter 4: API Reference 17

4.4 Service Browsing

The service discovery API is provided by the (avahi client lookup) module. Service
discovery typically consists of two phases: browsing where one can find, e.g., available
services, and resolution where one can, e.g., get detailed information about a discovered
service such as its IP address.

All browsers and resolvers support the following lookup flags:

lookup-flag/use-wide-area [Scheme Variable]
Force lookup via wide-area DNS.

lookup-flag/use-multicast [Scheme Variable]
Force lookup via multicast DNS.

lookup-flag/no-txt [Scheme Variable]
When doing service resolving, don’t lookup TXT record.

lookup-flag/no-address [Scheme Variable]
When doing service resolving, don’t lookup A/AAAA record.

Procedures to create browsers and resolvers are described below.

make-address-resolver client interface protocol [Scheme Procedure]
address-type address lookup-flags callback

Return a new address resolver using the specified client, interface, etc., that
will resolve the host name corresponding to address of type address-type (either
protocol/inet for an IPv4 address or protocol/inet6 for an IPv6 address). As
usual, address should be the raw IP address in host byte order (see Section “Network
Address Conversion” in The GNU Guile Reference Manual). Upon resolution,
callback is invoked and passed:

e the address resolver object;

e an interface name or number (depending on the OS);

e the protocol (i.e., one of the protocol/ values);

e a resolver event type (i.e., one of the resolver-event/ values);
e the host IP address type (i.e., address-type);

e the host IP address (i.e., address);

e the corresponding host name;

e lookup result flags (i.e., a list of lookup-result-flag/ values).

An exception may be raised on failure.

make-host-name-resolver client interface protocol [Scheme Procedure]
host-name a-protocol lookup-flags callback
Return a new host-name resolver using the specified client, interface, etc., that will
resolve host-name, i.e., find the corresponding IP address. Upon resolution, callback
is invoked and passed:

e the host-name resolver object;

e an interface name or number (depending on the OS);

18 Using Avahi in Guile Scheme Programs
e the protocol (i.e., one of the protocol/ values);
e a resolver event type (i.e., one of the resolver-event/ values);
e the host name;
e the host IP address type (i.e., protocol/inet for an IPv4 address and
protocol/inet6 for an IPv6 address);
e the host IP address in host byte order (see Section “Network Address Conversion”
in The GNU Guile Reference Manual);
e lookup result flags (i.e., a list of lookup-result-flag/ values).
An exception may be raised on failure.
make-service-resolver client interface protocol [Scheme Procedure]
service-name type domain a-protocol lookup-flags callback
Return a new service resolver using the specified client, interface, etc., that will resolve
the host name, IP address, port and txt properties of the service of type type named
service-name. Upon resolution, callback is invoked and passed:
e the service type resolver object;
e an interface name or number (depending on the OS);
e the protocol (i.e., one of the protocol/ values);
e a resolver event type (i.e., one of the resolver-event/ values);
e the service name;
e the service type (e.g., "_http._tcp");
e the domain;
e the host name (name of the host the service is running on);
e the host IP address type (i.e., protocol/inet for an IPv4 address and
protocol/inet6 for an IPv6 address);
e the host IP address in host byte order (see Section “Network Address Conversion”
in The GNU Guile Reference Manual);
e a list of txt properties (strings);
e lookup result flags (i.e., a list of lookup-result-flag/ values).
An exception may be raised on failure.
make-service-browser client interface protocol type [Scheme Procedure]

domain lookup-flags callback

Return a new service browser using the specified client, interface, etc. Upon browsing
events (discovery, removal, etc.) callback will be called and passed:

the service browser object;

an interface name or number (depending on the OS);

the protocol (i.e., one of the protocol/ values);

a browser event type (i.e., one of the browser-event/ values);
the service name;

the service type (e.g., "_http._tcp");

Chapter 4: API Reference 19
e the domain;
e lookup result flags (i.e., a list of lookup-result-flag/ values).
make-service-type-browser client interface protocol [Scheme Procedure]

domain lookup-flags callback

Return a new service type browser using the specified client, interface, etc. Upon

browsing events (discovery, removal, etc.) callback will be called and passed:

e the service type browser object;

e an interface name or number (depending on the OS);

e the protocol (i.e., one of the protocol/ values);

e a browser event type (i.e., one of the browser-event/ values);
e a service type (e.g., "_http._tcp");

e the domain;

e lookup result flags (i.e., a list of lookup-result-flag/ values).

make-domain-browser client interface protocol domain [Scheme Procedure]

domain-browser-type lookup-flags callback

Return a new domain browser of type domain-browser-type (a domain-browser-
type/ value) for domain that uses client. Upon browsing events (discovery, removal,

etc.) callback will be called and passed:

e the domain browser object;

an interface name or number (depending on the OS);

e the protocol (i.e., one of the protocol/ values);

e a browser event type (i.e., one of the browser-event/ values);
e the domain;

e lookup result flags (i.e., a list of lookup-result-flag/ values).

address-resolver-client address-resolver [Scheme Procedure]

Return the client associated with address-resolver.

host-name-resolver-client host-name-resolver [Scheme Procedure]

Return the client associated with host-name-resolver.

service-resolver-client service-resolver [Scheme Procedure]

Return the client associated with service-resolver.

service-browser-client service-browser [Scheme Procedure]

Return the client associated with service-browser.

service-type-browser-client service-type-browser [Scheme Procedure]

Return the client associated with service-type-browser.

domain-browser-client domain-browser [Scheme Procedure]

Return the client associated with domain-browser.

lookup-result-flag->string enumval [Scheme Procedure]

Return a string describing enumval, a lookup-result-flag value.

20 Using Avahi in Guile Scheme Programs

lookup-flag->string enumval [Scheme Procedure]
Return a string describing enumval, a lookup-flag value.

resolver-event->string enumval [Scheme Procedure]
Return a string describing enumval, a resolver-event value.

browser-event->string enumval [Scheme Procedure]
Return a string describing enumval, a browser-event value.

domain-browser-type->string enumval [Scheme Procedure]
Return a string describing enumval, a domain-browser-type value.

address-resolver? obj [Scheme Procedure]
Return true if obj is of type address-resolver.

freed-address-resolver? obj [Scheme Procedure]
Return #t if obj is an object of type address-resolver that has already been ex-
plicitly freed.

free-address-resolver! obj [Scheme Procedure]
Explicitly free obj, an object of type address-resolver.

host-name-resolver? obj [Scheme Procedure]
Return true if obj is of type host-name-resolver.

freed-host-name-resolver? obj [Scheme Procedure]
Return #t if obj is an object of type host-name-resolver that has already been
explicitly freed.

free-host-name-resolver! obj [Scheme Procedure]
Explicitly free obj, an object of type host-name-resolver.

service-resolver? obj [Scheme Procedure]
Return true if obj is of type service-resolver.

freed-service-resolver? obj [Scheme Procedure]
Return #t if obj is an object of type service-resolver that has already been ex-
plicitly freed.

free-service-resolver! obj [Scheme Procedure]
Explicitly free obj, an object of type service-resolver.

service-type-browser? obj [Scheme Procedure]
Return true if obj is of type service-type-browser.

freed-service-type-browser? obj [Scheme Procedure]
Return #t if obj is an object of type service-type-browser that has already been
explicitly freed.

free-service-type-browser! obj [Scheme Procedure]
Explicitly free obj, an object of type service-type-browser.

Chapter 4: API Reference 21

service-browser? obj [Scheme Procedure]
Return true if obj is of type service-browser.

freed-service-browser? obj [Scheme Procedure]
Return #t if obj is an object of type service-browser that has already been explicitly
freed.

free-service-browser! obj [Scheme Procedure]

Explicitly free obj, an object of type service-browser.

domain-browser? obj [Scheme Procedure]
Return true if obj is of type domain-browser.

freed-domain-browser? obj [Scheme Procedure]
Return #t if obj is an object of type domain-browser that has already been explicitly
freed.

free-domain-browser! obj [Scheme Procedure]

Explicitly free obj, an object of type domain-browser.

Browser and resolver call-backs are usually passed a browser event or resolver event
value, respectively, among the following:

browser-event/new [Scheme Variable]
The object is new on the network.

browser-event/remove [Scheme Variable]
The object has been removed from the network.

browser-event/cache-exhausted [Scheme Variable]
One-time event, to notify the user that all entries from the caches have been sent.

browser-event/all-for-now [Scheme Variable]
One-time event, to notify the user that more records will probably not show up in the
near future, i.e., all cache entries have been read and all static servers been queried.

browser-event/failure [Scheme Variable]
Browsing failed.

resolver—event/found [Scheme Variable]
RR found, resolving successful.

resolver-event/failure [Scheme Variable]
Resolving failed.

In addition, browser and resolver call-backs are passed a list lookup result flags which is
a list of values among the following:

lookup-result-flag/cached [Scheme Variable]
This response originates from the cache.

lookup-result-flag/wide-area [Scheme Variable]
This response originates from wide area DNS.

22 Using Avahi in Guile Scheme Programs

lookup-result-flag/multicast [Scheme Variable]
This response originates from multicast DNS.

lookup-result-flag/local [Scheme Variable]
This record/service resides on and was announced by the local host. Only available
in service and record browsers and only on browser-event/new events.

lookup-result-flag/our-own [Scheme Variable]
This service belongs to the same local client as the browser object. Only available for
service browsers and only on browser-event/new events.

This is useful for applications that both publish and browse services to distinguish
between services published by the application itself and services published from other
applications.

lookup-result-flag/static [Scheme Variable]
The returned data has been defined statically by some configuration option.

Concept Index

A

avahi-error............. ... i,

B

browsing............. ...
bug reports ...

C

enumerate
EITOTS . ettt et et e e e
event loop ...l
exceptions il

23

R

resolution.............. ... i 17

Z

Zeroconf........ 1

Procedure Index

A

add-entry-group-address!.................... 15
add-entry-group-service! 15
add-entry-group-service-subtype!........... 15
address-resolver-client..................... 19
address-resolver?........... ..ot 20
alternative-host-name 15
alternative-service-name.................... 14

B

browser-event->string 20

C

client-flag->string.....................o.un. 14
client-host-fqdn............coviiinnienennnn. 14
client-host-name..............ccouiuuueeennnnn 14
client-server-versionc..uuuen.. 14
client-state........coiiiiiiiininiii i 14
client-state->string........................ 14
client? ... 14
commit-entry-group........................... 15

D

domain-browser-client 19
domain-browser-type->string................ 20
domain-browser?ciiiiiiiin. 21

E

entry-group-client..................., 15
entry-group-empty?........................... 15
entry-group-state..........................L 15
entry-group-state->string................... 16
eNErY—group?. ...\ 16
error->string.......... i 5,13

F

free-address-resolver! 20
free-domain-browser! 21
free-entry-group!........... ...l 16
free-host—-name-resolver!.................... 20
free-service-browser! 21
free-service-resolver! 20
free-service-type-browser!.................. 20
freed-address-resolver?..................... 20
freed-domain-browser?c..... 21
freed-entry-group?................ ... 16
freed-host-name-resolver?................... 20
freed-service-browser?ooounn.. 21

freed-service-resolver?..................... 20

25

freed-service-type-browser? 20

G

guile-poll.ttt 12
guile-poll?. i 12

H

I

interface->string................. 13
invoke-timeout o i 13
invoke-watch........... ool 13
iterate-simple-poll.......................... 12

L

lock-threaded-poll...............oovviinnn. 11
lookup-flag->string..................ooiunnn 20
lookup-result-flag->string.................. 19

M

make-address-resolver 17
make-client.......... ...ttt 14
make-domain-browser.......................... 19
make-entry-group....................ia.. 16
make-guile-poll ...l 12
make-host-name-resolver..................... 17
make-service-browser, 18
make-service-resolver 18
make-service-type-browser................... 19
make-simple-poll............................. 12
make-threaded-poll........................... 11

POll?. 13
protocol->string..................l 13
publish-flag->string 16

Q

quit-threaded-poll........................... 11

26

R

reset-entry-group!........................... 15
resolver-event->string...................... 20
run-simple-poll............ 11

S

service-browser-client 19
service-browser?........., 21
service-resolver-client..................... 19
service-resolver?........... ..., 20
service-type-browser-client 19
service-type-browser? 20
set-timeout-user-data! 13
set-watch-user-data! 13
simple-poll..... ...t 12
simple-poll?........ .. 12
start-threaded-poll.................. 11

Using Avahi in Guile Scheme Programs

T

threaded-poll ...ttt . 11
threaded-poll?coiiiiiiiinnnnnn. 12
timeout-user-data.............. il 13
timeout-valuet 13
timeout? e 12

U

unlock-threaded-polloun. 11
update-entry-group-service! 15

\%%

watch-event->string....................... 4,13
watch-events......... i 13
watch—fd 13
watch-user-data.................. ... oo oa.. 13
WatChl. 12

Variable Index

B

browser-event/all-for-now................... 21
browser-event/cache-exhausted.............. 21
browser-event/failure 21
browser-event/mew...................oiiiin... 21
browser-event/remove 21

C

client-flag/ignore-user-config............. 14
client-flag/mo-fail.......................... 14
client-state/s-registering................... 3

E

error/invalid-object...........c i 4
error/no—daemomouviiiiia i 5

L

lookup-flag/no-address 17
lookup-flag/no-txt.................ooiein.. 17
lookup-flag/use-multicast................... 17
lookup-flag/use-wide-area................... 17
lookup-result-flag/cached................... 21
lookup-result-flag/local.................... 22
lookup-result-flag/multicast 22

lookup-result-flag/our-own.................. 22

27

lookup-result-flag/static................... 22
lookup-result-flag/wide-area............... 21

P

publish-flag/allow-multiple 16
publish-flag/no-announce.................... 16
publish-flag/no-cookie...................... 16
publish-flag/no-probe....................... 16
publish-flag/no-reverse..................... 16
publish-flag/unique.......................... 16
publish-flag/update.......................... 16
publish-flag/use-multicast.................. 16
publish-flag/use-wide-area.................. 16

R

resolver-event/failure...................... 21
resolver-event/found 21

Ay

watch-event/in i, 4

	Introduction
	Conventions
	Enumerates and Constants
	Procedure Names
	Explicit Finalization
	Error Handling

	Examples
	Publishing a Service
	Browsing Published Services
	Resolving Services

	API Reference
	Core Interface
	Client Interface
	Service Publication
	Service Browsing

	Concept Index
	Procedure Index
	Variable Index

