Tiny, Violent Collisions Thomas D. Gutierrez University of California, Davis, USA

About the Author

Tom Gutierrez received his Bachelor of Science and Master degrees in physics from San Jose State University in his home town of San Jose, California. As a Master's student he helped work on a laser spectrometer at NASA Ames Research Center. The instrument measured the ratio of different isotopes of carbon in CO_2 gas and could be used for such diverse applications as medical diagonstics and space exploration. Later, he received his Ph.D. in physics from the University of California, Davis where he performed calculations for various reactions in high energy physics collisions. He currently lives in Berkeley, California where he studies proton-proton collisions seen at the STAR experiment at Brookhaven National Laboratory on Long Island, New York.

High Energy Collisions

Take an orange and expanded it to the size of the earth. The atoms of the earth-sized orange would themselves be about the size of regular oranges and would fill the entire "earth-orange." Now, take an atom and expand it to the size of a football field. The nucleus of that atom would be about the size of a tiny seed in the middle of the field. From this analogy, you can see that atomic nuclei are very small objects by human standards. They are roughly 10^{-15} meters in diameter – one-hundred thousand times smaller than a typical atom. These nuclei cannot be seen or studied via any conventional means such as the naked eye or microscopes. So how do scientists study the structure of very small objects like atomic nuclei?

The simplest nucleus, that of hydrogen, is called the proton. Faced with the inability to isolate a single proton, open it up, and directly examine what is inside, scientists must resort to a brute-force and somewhat indirect means of exploration: high energy collisions. By colliding protons with other particles (such as other protons or electrons) at very high energies, one hopes to learn about what they are made of and how they work. The American physicist Richard Feynman once compared this process to slamming delecate watches together and figuring out how they work by only examining the broken debris. While this analogy may seem pessimistic, with sufficient mathematical models and experimental precision, considerable information can be extracted from the debris of such high energy subatomic collisions. One can learn about both the nature of the forces at work and also about the sub-structure of such systems.

The experiments are in the category of "high energy physics" (also known as

"subatomic" physics). The primary tool of scientific exploration in these experiments is an extremely violent collision between two very, very small subatomic objects such as nuclei. As a general rule, the higher the energy of the collisions, the more detail of the original system you are able to resolve. These experiments are operated at laboratories such as CERN, SLAC, BNL, and Fermilab, just to name a few. The giant machines that perform the collisions are roughly the size of towns. For example, the RHIC collider at BNL is a ring about 1 km in diameter and can be seen from space. The newest machine currently being built, the LHC at CERN, is a ring 9 km in diameter!

Let's examine the kinematics of such a collisions in some detail...