Algebra Isn't Hard
 or
 Demystifying Math: A Gentle Approach to Algebra

by Peter J. Hutnick

17th July 2004

Contents

I Fundamentals of Algebra 17
1 Arithmetic 19
1.1 Vocabulary 19
1.2 Notation 19
1.2.1 Algebra Style Multiplication Notation 19
1.2.2 Notation Introduced in this Chapter 20
1.3 Addition 20
1.3.1 The Commutative Property of Addition 20
1.3.2 The Associative Property of Addition 20
1.3.3 The Identity and Inverse Properties of addition 21
1.4 Subtraction and Negative Numbers 21
1.4.1 The Number Line 21
1.4.2 Subtraction 21
1.4.3 The Inverse Property of Addition 21
1.5 Multiplication 22
1.5.1 The Commutative Property of Multiplication 22
1.5.2 The Associative Property of Multiplication 22
1.5.3 The Multiplicative Identity 22
1.5.4 The Distributive Property of Multiplication 22
1.6 Division "and" Fractions 22
1.6.1 The Idea 22
1.6.2 Ratios 23
1.6.3 Proportions 23
1.6.4 Fractions as an Expression of Probability 23
1.6.5 What About Decimals? 23
1.6.6 Percentages as a Special Case of Fractions 23
1.7 Exercises 24
2 More Arithmetic 25
2.1 Vocabulary 25
2.2 Notation 25
2.3 Multiplication as a Special Case of Addition 25
2.4 Exponentiation as a Special Case of Multiplication 25
2.4.1 A Number Raised to the Zero Power 25
2.4.2 A Number Raised to the First Power 26
2.4.2.1 Multiply Numbers with the Same Base by Adding the Exponents 26
2.4.3 A Number Raised to the Negative First Power 26
2.5 Fractional Powers as the Arithmetic Inverse of Exponentiation 26
2.5.1 The $\frac{1}{2}$ Power 26
2.5.2 The $\frac{1}{b}$ Power 26
2.5.3 The $\frac{a}{b}$ Power 26
2.5.4 Radicals 26
2.6 Logarithms as the Algebraic Inverse of Exponentiation 27
2.6.1 Simple Logarithms 27
2.6.2 Change of Base 27
2.7 Exercises 27
3 Order of Operations 29
3.1 Vocabulary 29
3.2 Notation 29
3.3 Order of Operations 29
3.4 Exercises 29
4 Simple Algebraic Operations 31
4.1 Vocabulary 31
4.2 Notation 31
4.3 Ordering Terms 31
4.4 Addition 31
4.5 Multiplication 31
4.6 Exercises 31
5 Factoring 33
5.1 Vocabulary 33
5.2 Notation 33
5.3 Basic Factoring 33
5.3.1 Prime Factorization 33
5.3.2 What is Factoring? 33
5.3.3 Caution in Factoring 34
5.4 Special Factors 34
5.5 Special Products 35
5.6 Exercises 35
6 Number Theory 37
6.1 Vocabulary 37
6.2 Notation 37
6.3 Counting (or Natural) Numbers 37
6.4 Whole Numbers 37
6.5 Integers 37
6.6 Rational Numbers 37
6.7 Irrational Numbers 37
6.8 Imaginary Numbers 37
6.9 Decimals 37
6.10 Prime Numbers 38
6.11 Exercises 38
7 Proportions 39
7.1 Vocabulary 39
7.2 Notation 39
7.3 Ratios 39
7.4 Exercises 39
8 Sets and Intervals 41
8.1 Vocabulary 41
8.2 Notation 41
8.3 Exercises 41
9 Equality and Inequality 43
9.1 Vocabulary 43
9.2 Notation 43
9.3 Exercises 43
10 Graphing Linear Equations 45
10.1 The Plane 45
10.2 Ordered Pairs 45
10.3 Plotting on the Plane 46
10.4 Slope-Intercept Form 46
10.5 Exercises 46
II Functions and Graphs 47
11 Functions 49
11.1 Vocabulary 49
11.2 Notation 49
11.3 Functions as a Machine 49
11.4 Inverse Functions 50
11.4.1 Cautions 50
11.5 Rational Functions 50
11.6 Functions of Functions 50
11.7 Exercises 50
12 Graphing Linear Functions 51
12.1 Vocabulary 51
12.2 Notation 51
12.3 How do we Know a Function is Linear? 51
12.4 The Most Straightforward Method 51
12.5 The Standard Form of a Linear Equation. 51
12.6 Exercises 51
13 More on Linear Functions 53
13.1 Vocabulary 53
13.2 Notation 53
13.3 The Distance Formula 53
13.4 The Pythagorean Theorem 54
13.5 The difference 54
13.6 Exercises 54
14 Systems of Equations 55
14.1 Vocabulary 55
14.2 Notation 55
14.3 Exercises 55
15 Polynomials 57
15.1 Vocabulary 57
15.2 Notation 57
15.3 The Binomial Theorem 57
15.4 Pascal's Triangle 57
15.5 Exercises 58
16 Quadratic Functions and Equations 59
16.1 Vocabulary 59
16.2 Notation 59
16.3 Quadratic Equations 59
16.4 Completing the Square 59
16.5 The Quadratic Formula 59
16.6 Deriving the Quadratic Formula 59
16.7 Quadratic Functions 60
16.8 Exercises 60
17 Zeros 61
17.1 Vocabulary 61
17.2 Notation 61
17.3 Exercises 61
18 Conic Graphs 63
18.1 Vocabulary 63
18.2 Notation 63
18.3 Conics as Intersections 63
18.3.1 Parabola 63
18.3.2 Ellipses 63
18.3.3 Hyperbola 63
18.3.4 Circles 63
18.4 Plotting Conics 63
18.4.1 Parabola 63
18.4.2 Ellipses 63
18.4.3 Hyperbola 63
18.4.4 Circles 63
18.5 Exercises 63
19 Conics as Loci 65
19.1 Vocabulary 65
19.2 Notation 65
19.3 Parabola 65
19.4 Ellipses 65
19.5 Hyperbola 65
19.6 Circles 65
19.7 Exercises 65
20 Other Functions 67
20.1 Exponential 67
20.2 Logarithmic 67
20.3 Rational 67
A Selected Proofs 69
A. 1 A Number Raised to the Zero Power equals 1 69
B A Brief Discussion of Decimals and Precision 71
C Modeling 73
D Probability 75
E Matrices 77
E. 1 Vocabulary 77
E. 2 Notation 77
E. 3 Matrix Operations 77
F Answers to Odd Numbered Exercises 79
G GNU Free Documentation License 81

1. APPLICABILITY AND DEFINITIONS 81
2. VERBATIM COPYING 82
3. COPYING IN QUANTITY 82
4. MODIFICATIONS 83
5. COMBINING DOCUMENTS 84
6. COLLECTIONS OF DOCUMENTS 84
7. AGGREGATION WITH INDEPENDENT WORKS 84
8. TRANSLATION 85
9. TERMINATION 85
10. FUTURE REVISIONS OF THIS LICENSE 85

Copyright

Copyright (C) 2003-2004 Peter J. Hutnick. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, the Front-Cover Text "A Free Curriculum Project Text", and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Introduction

Algebra Isn't Hard

Math isn't hard. No really. It is often explained in ways that are hard to understand. There are three common problems. First, many Math teachers forget that Math has its own language. Denominators and factors and quotients. They merrily speak a language you don't really understand, but can never quite understand why you are so confused. Second, they often explain a mathematical rule, give a few examples, then never (explicitly) mention it again. Of course the rule comes up over and over, but often students don't recognize non-trivial examples of the rule based on the trivial examples they were given when they were "on that chapter." Finally, Math teachers often don't explain how the rules inter-relate. Before "new math" teachers did proofs on the board, and students did proofs in their homework. Students were essentially required to understand the interrelation of the rules to progress. While doing proofs may have been taken to the point of absurdity, the contemporary phobia of proofs is no better. This relates to language as well. The difference between a denominator and a divisor is purely semantic. Without that knowledge the topic of fractions is harder than it need be.

This book will begin with topics that you already know, but the emphasis will be on concepts that were probably glossed over in your previous Math classes. We will build a foundation that will easily support your efforts to learn basic Algebra. You may be tempted to skip or "scan" this material. I assure you that this is a recipe for having a "hard" time with all of the subsequent material. Reading this material attentively, studying it, and learning it is a recipe for an easy time for the rest of this book, and a fantastic foundation for all your future Math study.

Structure of This Text

This text is structured to give students the maximum opportunity for success. Most chapters begin with the same two sections; Vocabulary and Notation. Familiarize yourself with the contents of these sections before reading the rest of the chapter. Refer to them while reading the rest of the chapter. You'll be amazed how much easier Math is when you speak the language!

The chapters are laid out in a structure that the author believes to be logical and conducive to success. Some trade-offs, however, have been made in order to keep related material together. This text is intended for a wide range of audiences, and some
may find it beneficial to skip around a bit.

Goals of this Text

This text is written with two ends in mind. First, to convey the concepts of Algebra in an easily comprehensible (and maybe fun!) way. The second is to break down some of the fear and loathing that many students feel toward Math.

About this Edition

This is an "Alpha" version of the book. Meaning that it is incomplete and has not been thoroughly proofread. Attempts to learn Algebra from this book alone are doomed. If you are a student of Algebra I hope you are using this book in conjunction with a "real" Algebra text. If not, you must be proofreading. Thanks!

We used LYX, a Free, WYSIWYM (What You See Is What You Mean) document preparation system, to prepare the first several chapters of this book. LYX is something like a word processor, except that instead of explicitly telling it how to format a document the user selects a type of document and indicates the meaning of text while producing the document. For example, instead of inserting a "hard" page break and switching to a big font at the beginning of each chapter, I just type the name of the chapter and select "chapter" from the menu. This has innumerable advantages. For example, inserting a chapter causes a recalculation of the chapter numbers and regeneration of the table of contents. The bottom line is; less time spent formatting means more time for writing.

We abandoned $\mathrm{LY}_{\mathrm{Y}} \mathrm{X}$ because it produces valid but unmanageable $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ output. We now compose in pure $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$, which makes managing the book much easier. If you want to make a contribution and you don't know $\mathrm{IAT}_{\mathrm{E}} X$, we will accept your submission or corrections in plain ASCII (or UTF-8) text format. (Please note that "bare newlines" are the One True Line Ending.)

See http://www.lyx.org for more information about LYX. See http://www.gnu.org for more information about Free Software.

Part I

Fundamentals of Algebra

Chapter 1

Arithmetic

Arithmetic? Why should we cover something you mastered years ago? Two reasons. First, you know how to do it, but you probably don't really understand it in the way that will make Algebra easy. Second, one of the "hardest" things about Algebra is the sudden appearance of symbolic math. Symbolic math isn't really hard, but it is scary at first. By re-learning arithmetic symbolically, we ease into this scary topic with something you already know.

1.1 Vocabulary

Property

Notation Notation includes nearly everything you write in Math, from the meaning contained in how numbers are physically arranged to the strange symbols we resort to in expressing complex ideas. It may all look like Greek to you, but really only about a third of it is!

Implicit Implicit is the opposite of explicit. It comes from the same root as imply. The notation $4 x$ is an example of implicit multiplication; it means that we have four times x.

1.2 Notation

1.2.1 Algebra Style Multiplication Notation

There is really only one bit of notation in this chapter that there is any real chance you are not familiar with. Multiplication is such a fundamental operation in Algebra that it is often implicit. Also, x is by far the most common variable. To avoid confusion a dot "." is used in place of the familiar multiplication sign " \times." Implicit multiplication looks like $5 x$ which means $5 \times x$, or like $9(x+3)$ which means "add three to the variable " x " then multiply by nine."

We have used dots everywhere throughout the first three chapters, because it is critical that you understand them. After the third chapter we will start using implicit notation the way it is normally used in Algebra.

1.2.2 Notation Introduced in this Chapter

For completeness we list the notation used in this chapter.
$=$ The equal sign. This symbol is a statement of fact. For example $x=5$ means that the symbol x has the value 5 .

+ Add e.g. $4+3=7$.
- Subtract e.g. $4-3=1$.
\times, \cdot, or implicit Multiply e.g. $4 \times 3=12,4 \cdot 3=12$, or $4(3)=12$.
\div or / We do not divide! More in section 1.6.

1.3 Addition

Addition has four rules (or properties).

1.3.1 The Commutative Property of Addition

The commutative property of addition says that when adding numbers, the order doesn't matter. This is normally symbolized as $a+b=b+a$. For example $1+2=3$ and $2+1=3$. We'll find this convenient later for grouping things together in algebraic expressions. What do a and b really mean? They can be real numbers, which are all the numbers you know so far, including positive, negative, fractional, decimal (including irrational decimals, like π).

They an also be variables or algebraic expressions. So, you know for a fact that $x+r=r+x$ given that r is a real number and x is a variable, even if you don't know what that means! This will come in handy later when we can re-write stuff in an easier to read (and manipulate) way.

1.3.2 The Associative Property of Addition

The associative property of addition says that when we add more than two numbers together, we can group them any way we want. This is normally symbolized as $(a+$ $b)+c=a+(b+c)$. Notice that we didn't change the order that they are in, just the order that we add them up in. This is a hard way of saying that the commutative property works for more than two numbers. What is the difference between saying $(a+b)+c=a+(b+c)$ and saying $(b+c)+a=a+(b+c)$? That's the order you are going to add them in, isn't it?

The important thing is this: you can add any number of things (numbers, variables, expressions) in any order you like, or that you find convenient.

1.3.3 The Identity and Inverse Properties of addition

The identity and inverse properties of addition are just a couple of obvious things written down so that we can rely on them to prove other things later. The identity property says that $a+0=a$. For example $\frac{\Theta \beta}{R x}+97 q+0=\frac{\Theta \beta}{R x}+97 q$. It doesn't matter what that other junk is (it's actually just junk), the point is that you can count on this rule. The inverse property has to do with the whole concept of negative numbers and subtraction, which we come to presently.

1.4 Subtraction and Negative Numbers

In easy Math, you can only have subtraction or negative numbers. You can't have both. (We're going to pick negative numbers.)

1.4.1 The Number Line

You may have seen a number line before. The number line is a line that is made up of an infinite number of points, each one describing its own distance from zero. So 1 is 1 unit away from zero. Zero is zero units away from zero, which works out nicely, don't you think? The number line looks like figure 1.1.

The number line allows us to depict addition visually. $2+1=3$ means that if we travel the amount of distance from 0 to 1 , starting at 2 , we will end up at 3 . The number line will also let us visually depict number theory in chapter 6 . It is also the basis for graphing, which we will introduce in chapter 10.

1.4.2 Subtraction

Subtraction is the same concept as addition, except the second number is taken to be its opposite. $2-1=1$ means that if we travel the amount of distance from 0 to -1 , starting at 2 we end up at 1 .

So, there really isn't any such thing as subtraction, is there? The whole idea of subtraction is taught so that Math teachers don't have to teach first graders about the number line. So forget everything you know about subtraction, just add numbers. If some of them are negative that's fine.

My Algebra book spent a bunch of time explaining the rules of subtraction. Guess what, they are exactly the same as the rules of addition since it is the exact same thing.

1.4.3 The Inverse Property of Addition

The inverse property of addition says that $a+(-a)=0$. In other words, every number is the same distance away from zero as the number that is the same distance away from zero in the opposite direction. Whew. You are probably the same height as all the other people in your class that are the same height as you ... what a silly thing to say. But, as always, this rule is needed in future proofs.

Figure 1.1: The arrow heads at the ends mean that the line goes on forever.

1.5 Multiplication

1.5.1 The Commutative Property of Multiplication

The commutative property of multiplication says that when multiplying numbers, the order doesn't matter. This is normally symbolized as $a \cdot b=b \cdot a$. For example $4 \cdot 3=12=3 \cdot 4$.

1.5.2 The Associative Property of Multiplication

The associative property of multiplication says that when we multiply more than two numbers together, we can group them any way we want. This is normally symbolized as $a \cdot(b \cdot c)=(a \cdot b) \cdot c$.

Don't let the similarity of the rules for addition and multiplication fool you, though. The rules are the same, but they don't mix. More in chapter 3.

1.5.3 The Multiplicative Identity

We saw in section 1.3.3 that the additive identity of addition involves zero. Multiplying by zero, however, yields zero. The multiplicative identity is $a \cdot 1=a$.

1.5.4 The Distributive Property of Multiplication

Multiplication has another wrinkle called the distributive property. It says that you can multiply before adding (in apparent contradiction of order of operations) as long as you multiply every term. The distributive property is normally symbolized as $a \cdot(b+c)=$ $a \cdot b+a \cdot c$. For example $5 \cdot(6+2)=30+10=40=5 \cdot 8$.

1.6 Division "and" Fractions

In easy Math you can either have division or fractions. You can't have both. We're going to pick fractions. I can almost hear you "Aww, I thought this was supposed to be easy ... fractions are hard!" Fractions are important, and thinking in terms of fractions will help you in your Math education. Besides, they aren't really hard. Say goodbye to division!

1.6.1 The Idea

The fact is that dividing by a number and multiplying by its inverse are the same thing. Incidentally, a fraction is a number. It indicates a point on the number line between two whole numbers. Someone probably taught you to divide a fraction by another fraction by the "invert and multiply" method. The fact is that this is fundamentally how all division is done, but when dealing with whole numbers this inversion is implicit. For example $4 \div 2=4 \cdot \frac{1}{2}=\frac{4}{2}=2$ (by the multiplicative identity and the "invert and
multiply" rule). This example shows that the notation is even almost the same. The fact is that the symbol " \div " represents a fraction, as you can clearly see.

Long division, then, is a technique that is handy for whole numbers and decimals, but is a poor conceptual "definition" of division. When you think division, think invert and multiply.

1.6.2 Ratios

Ratios are a way of using a fraction to describe a relationship. For example, if there are 12 boys and 18 girls in your class, you could say that the ratio of boys/girls is $\frac{12}{18}$, which, of course, is equivaltent to $\frac{2}{3}$. Outside of Mathematics ratios are sometimes expressed with a colon, for example, "The raito of boys to girls in my class is 2:3."

1.6.3 Proportions

Proportions are functionally the same as ratios, but usually involve scaling. For example, if a recipie calls for 1 cup of sugar and 1 teaspoon of salt you can easily double the recipie by using 2 cups of sugar and 2 tablespoons of salt, or halve it by using $1 / 2$ cup of sugar and $1 / 2$ teaspoon of salt.

Mathematically we use proportions to scale things or to find a variable.

$$
M A T H=M A T H
$$

1.6.4 Fractions as an Expression of Probability

1.6.5 What About Decimals?

We don't use decimals. Period (pun intended). We will see in Chapter 6 that decimals are a tool properly reserved for Science and Engineering. If your teacher lets you get away with using decimals he or she is doing you a disservice. Use fractions in Math. In Math we are only concerned with correct answers. Decimals, and particularly the decimals produced by a calculator, are implicitly estimates. From a Math point of view estimates are just as wrong as blank spaces and wild guesses.

There are a very few numbers that we use that can't be expressed as fractions. We have symbols for those numbers. We will encounter two such numbers in the course of this text: π and e.

1.6.6 Percentages as a Special Case of Fractions

To convert a percentage to a fraction, simply take the percentage to be the numerator and 100 to be the denominator, and reduce as necessary. Percentages are really a ratio that is fixed at somthing to 100 . We can see that $50 \%=\frac{50}{100}=\frac{1}{2}$. What about 33% ? $33 \%=\frac{33}{100}$. We'll learn in chapter 5 that we can't reduce this fraction, because 33 and 100 have no common factors. Note that $33 \% \neq \frac{1}{3}$, but, in fact, $33 \frac{1}{3} \%=\frac{33 \frac{1}{3}}{100} \cdot \frac{3}{3}=$ $\frac{100}{300}=\frac{1}{3}$

1.7 Exercises

1. Draw a picture discribing the inverse property of addition using the number line.
2. Draw a picutre describing the associative property of multiplication using the number line.
3. Convert $66 \frac{1}{6} \%$ to a fraction.
4. Convert 75% to a fraction.
5. Convert $\frac{1}{5}$ to a percentage.
6. Convert $\frac{2}{20}$ to a percentage.

Chapter 2

More Arithmetic

2.1 Vocabulary

2.2 Notation

2.3 Multiplication as a Special Case of Addition

An Elementary School teacher may have explained multiplication to you as a special case of addition. This is a useful way of looking at it. You could expand $a \cdot b$ to "'b" 'a-s' added up." For example $3 \cdot 4$ means "four threes added up" or $3+3+3+3=12$ This works for all cases, even $a \cdot 0, a \cdot 1$, and $a \cdot(-1)$.

2.4 Exponentiation as a Special Case of Multiplication

The reason viewing multiplication as a special case of addition is useful is that the parallel holds as we progress to exponentiation. So a^{b} expands to "'b' 'a-s' multiplied together." This works for all cases, even a^{0}, a^{1}, and a^{-1}. You don't believe me? Okay, one at a time.

2.4.1 A Number Raised to the Zero Power

The rule is that any number (even zero) raised to the zero power is 1 . A proof is provided in the appendix. A basic explanation that you can believe in without slogging through the proof follows.

When you add, you start with an implicit zero. For example (0) $+4+3=$ $4+3$. This is the additive identity property at work. With multiplication, however, you start with an implicit 1 . As (1) $\cdot 4 \cdot 3=4 \cdot 3$. That is the multiplicative identity. So where we have, say, nine to the third power we have $9^{3}=1 \cdot 9 \cdot 9 \cdot 9$. Nine to the first power is $9^{1}=(1) \cdot 9$. Then Nine
to the zero is $(1)=1$. Note that there is no nine here at all. So zero to the zero is $0^{0}=(1)=1$.

2.4.2 A Number Raised to the First Power

We saw above that $9^{1}=(1) \cdot 9=9$. The fact is that any number written without an exponent has an implicit exponent of one. Because of the rules of order of operations we can only add, subtract, multiply, and divide numbers with the same exponent. In the vast majority of cases that exponent is one.

2.4.2.1 Multiply Numbers with the Same Base by Adding the Exponents

We can surmise from the above that we can re-write numbers with (and only with) the same base by adding their exponents. That is to say $a^{b} \cdot a^{c} \cdot a^{d}=a^{b+c+d}$. This is really just a form of multiplying. The reverse is a form of "factoring."

2.4.3 A Number Raised to the Negative First Power

We learned in 1.6 that division is the arithmetic inverse of multiplication. The negative sign is used to indicate the arithmetic inverse of addition. If we apply the fact that the negative sign means "do the inverse operation" with the idea that a fraction is the opposite of a product we get the affect of negative exponents. Specifically, $9^{-1}=$ $\frac{1}{9^{1}}=\frac{1}{9}$. Using a different exponent will give us a better view of what is happening. $9^{-3}=\frac{1}{9^{3}}=\frac{1}{729}$.

This effect is immensely useful in Science, particularly when the base 10 is used. For example $10^{-3}=\frac{1}{1000}=.001$. These powers of ten provide convenient multipliers to shift decimal places around. For example, .00000000000234 can be more meaningfully conveyed as 2.34×10^{-12}. This method is so useful, and so commonly used in Science that it is called "Scientific Notation."

2.5 Fractional Powers as the Arithmetic Inverse of Exponentiation

2.5.1 The $\frac{1}{2}$ Power

2.5.2 The $\frac{1}{b}$ Power

2.5.3 The $\frac{a}{b}$ Power

2.5.4 Radicals

Radicals are a clumsy alternative notation to rational exponents. You are probably familiar with seeing the square root of 4 , which we write as $4^{\frac{1}{2}}$ as $\sqrt{4}$. You may have
also seen the cube root of 8 as $\sqrt[3]{8}$. This notation is associated with order of operations errors. It is included here in case you encounter it elsewhere (such as in a Science class).

2.6 Logarithms as the Algebraic Inverse of Exponentiation

See 11.4 "Inverse Functions" for more detailed discussion of inverse functions. When we say inverse function we mean that the answer becomes the question and the question becomes the answer. For example, in the expression $a^{b}=x$ the "question" is "what is a raised to the b power." The answer is "x." The inverse function would be $\log _{a} x=b$ or "by what power must we raise "a" to obtain "x." The answer is "b." Many students find logarithms difficult. For now you can be successful if you learn the terminology and come to understand the relationships of the terms.

2.6.1 Simple Logarithms

2.6.2 Change of Base

2.7 Exercises

1. Express $3+3+3+3$ in terms of mulitiplication.
2. Express $4+4+4$ in terms of multiplication.
3. Express $9 \cdot 3$ in terms of addition.
4. Express $8 \cdot 4$ in terms of addition.
5. Express $4 \cdot 4 \cdot 4$ in terms of exponentiation.
6. Express $3 \cdot 3$ in terms of exponentiation.
7. Express 3^{3} in terms of multiplication.
8. Express 4^{2} in terms of multiplication.
9. What is $16^{\frac{1}{4}}$?
10. What is $27^{\frac{1}{3}}$?
11.

Chapter 3

Order of Operations

One of the nice side effects of the "easy" way we choose to view arithmetic is that order of operations is significantly simplified.

3.1 Vocabulary

3.2 Notation

(and) Parentheses are used to override order of operations rules.
[and] Square brackets are used in the same way as parentheses, but usually enclose larger groups consisting of at least one parenthesized group.

3.3 Order of Operations

What is the value of x given $3+4 \cdot 2=x$? What about $4 \cdot 2+3=x$ or $2 \cdot(3+4)=x$?
In order to find the correct answers we must obey the rules of order of operations.

1. Outer brackets and parentheses.
2. Inner parentheses.
3. Exponents (and Logarithms)
4. Multiplication ("and" division).
5. Addition ("and" subtraction).

Applying these rules we see that $3+4 \cdot 2=11,4 \cdot 2+3=11$, and $2 \cdot(3+4)=14$.

3.4 Exercises

1. What is the value of $3[4(3+4)+5]$?
2. What is the value of foo?
3. What is the value of $(2+2)^{\frac{1}{2}}$?
4. What is the value of foo?
5. What is the value of $16^{\frac{1}{2}}+16^{\frac{1}{2}}$?
6. What is the value of $2^{\frac{1}{2}}+2^{\frac{1}{2}}$?

Chapter 4

Simple Algebraic Operations

4.1 Vocabulary

4.2 Notation

$=$ In the past you have seen the equal sign used as a question mark. In this chapter it is used as a period. An equal sign in Algebra is a statement of fact, though it still frequently implies a question.

4.3 Ordering Terms

4.4 Addition

4.5 Multiplication

4.6 Exercises

Find the error in the following statements:

1. $4(3+5)=12+5$
2.

Chapter 5

Factoring

Figure 5.1: The factor tree for 42.

5.1 Vocabulary

5.2 Notation

5.3 Basic Factoring

Whereas division is the arithmetic inverse of multiplication, factoring is the algebraic inverse of multiplication.

For $4 \cdot 7=x$, we know that $x=42$. To factor 42 we do the opposite operation: $42=6 \cdot 7$.

We can do the same thing symbolically. We know that $x(x+2)=x^{2}+2 x$, by the distributive property of multiplication, so we can also say that $x^{2}+2 x=x(x+2)$.

5.3.1 Prime Factorization

Prime numbers are numbers with no factors (other than ± 1 and \pm itself). For a more complete discussion of primes see section 6.10.

Prime factorization means factoring a number, and then factoring its factors, until you have a set of primes that multiply to the original number. For our example in the previous section we said that 42 factors to 7 and 6 . Is this a prime factorization? No. Seven is prime, but six is not. An easy way to visuallize prime factorization is with a factor tree, like the one in figure 5.1.

5.3.2 What is Factoring?

Factoring is using the rules of arithmetic to re-write or simplify an expression to our advantage. Mainly this consists of exploiting the fact that the multiplicative identity is 1.

5.3.3 Caution in Factoring

One of the initial hurdles of Algebra is learning to rigorously apply the rules of order of operations and the properties of addition, multiplication, and exponents while factoring. For example:

$$
\begin{array}{ll}
\frac{a x+\phi}{\nmid}=a x & \text { WRONG! } \\
\frac{a x+b}{b}=\frac{b\left(\frac{a x}{b}+1\right)}{b}=\frac{\not \hat{b}^{1}\left(\frac{a x}{b}+1\right)}{\not{ }^{1}}=\frac{a x}{b}+1 & \text { True! }
\end{array}
$$

Students seem to confuse the above with a case like:

$$
\frac{a b x+b}{b}=\frac{b(a x+1)}{b}=a x+1 \quad \text { True! }
$$

But even this case causes confusion:

$$
\frac{a b x+b}{\phi}=\frac{b(a x)}{b}=a x \quad \text { WRONG }!
$$

If you are ever unsure that you have factored correctly, simply multiply your answer back out and see if you can get back to the original statement. If you do that with the incorrect example above you'll see that you've lost a b.

$$
\begin{array}{ll}
\frac{b}{b} \cdot a x=\frac{a b x}{b}=\ldots & \text { We can't get back to } \frac{a b x+b}{b} . \\
\frac{b}{b} \cdot(a x+1)=\frac{b \cdot(a x+1)}{b}=\frac{a b x+b}{b} & \text { That's it. }
\end{array}
$$

5.4 Special Factors

There are several "special" factors that occur often in Mathematics texts and rarely elsewhere, that are normally covered in Algebra. These are something of a parlor trick, but we would be remiss if we did not include them here.

Special Prod- uct	Special Factors	Example
$\left(a^{2}-b^{2}\right)$	$(a+b)(a-b)$	$\left(x^{2}-4\right)=(x+2)(x-2)$
$\left(a^{3}-b^{3}\right)$	$(a-b)\left(a^{2}+a b+b^{2}\right)$	$\left(x^{3}-8\right)=(x-2)\left(x^{2}+2 x+4\right)$
$\left(a^{3}+b^{3}\right)$	$(a+b)\left(a^{2}-a b+b^{2}\right)$	$\left(x^{3}+8\right)=(x+2)\left(x^{2}-2 x+4\right)$
$\left(a^{n}-b^{n}\right)$	$(a-b)\left(a^{n-1}+a b+\right.$ $\left.\cdots+b^{n-1}\right)$	$\left(x^{3}-8\right)=(x-2)\left(x^{2}+2 x+4\right)$
$\left(a^{n}+b^{n}\right)$	$(a+b)\left(a^{n-1}-a b+\right.$ $\left.b^{n-1}\right)$	$\left(x^{3}+8\right)=(x+2)\left(x^{2}-2 x+4\right)$

5.5 Special Products

5.6 Exercises

What are the prime factors of:

1. 48
2. 315
3. 693
4. 2926

Factor:
5. $\left(4 x^{2}+12 x\right)$
6. $(9 x+9)$

7

Chapter 6

Number Theory

Number theory is a sizable branch of Mathematics. We only need some rudimentary theory to do Algebra.

6.1 Vocabulary

6.2 Notation

6.3 Counting (or Natural) Numbers

6.4 Whole Numbers

6.5 Integers

6.6 Rational Numbers

6.7 Irrational Numbers

6.8 Imaginary Numbers

6.9 Decimals

Decimals have no place in Mathematics. A brief explanation of decimals follows, but there is never a reason to use them in Math. An explanation follows because decimals are useful in Science and Engineering.

Decimals are a special piece of notation. They extend the decimal system (???) to include fractions (and irrational numbers). First, let us consider what 34 means. The
" 3 " means three tens and the " 4 " means four ones. We can represent the meaning of the "places" in the decimal system as powers of ten (hence the name). We start counting for this purpose at zero. As we will see in section 2.4.1, any number raised to the zero power is one. So $10^{0}=1$. So the first place indicates "ones." Next we have $10^{1}=10$, so the next place is "tens." The familiar pattern of $100 \mathrm{~s}, 1,000 \mathrm{~s}, 10,000$ s continues.

What is the next whole number exponent below zero? Negative one. We will learn in section 2.4.3 that a number raised to the negative first power is the inverse of that number. So, $10^{-1}=\frac{1}{10}$. The places to the right of the decimals represent negative powers of ten, starting with -1 . Therefore, 0.5 means $\frac{5}{10}=\frac{1}{2}$.

6.10 Prime Numbers

If a number has no positive, whole factors other than 1 and itself it is said to be prime. We need to recognize prime numbers so we know when to stop factoring. Primes have special uses in more advanced Mathematics, notably in Cryptography.

6.11 Exercises

Chapter 7

Proportions

Proportions give us an opportunity to try out some of the theory we have been discussing.

7.1 Vocabulary

7.2 Notation

7.3 Ratios

7.4 Exercises

Chapter 8

Sets and Intervals

8.1 Vocabulary

8.2 Notation

\cup Union - A set composed of all of the elements of two other sets. So $[1,10] \cup[5,15]$ is $[1,15]$.
\cap Intersection - A set comprised of all the common elements of two other sets. So $[1,10] \cap[5,15]$ is $[5,10]$.Empty Set. For example $[1,10] \cap[20,30]$ is \bigcirc.
\mathbb{R} The set of all Real numbers
ϵ Epsilon
[or] The end of a range in a set that includes the last element. Negative three is in the set $[-3,4)$.
(or) The end of a range in a set that excludes the last element. Four is not in the set $[-3,4)$, but $3 \frac{999}{1000}$ is in the set.
$\{$ or $\}$ Indicates interval notation.

8.3 Exercises

Chapter 9

Equality and Inequality

9.1 Vocabulary
 9.2 Notation
 =
 $<$
 $>$
 \leq
 \geq
 9.3 Exercises

Chapter 10

Graphing Linear Equations

Figure 10.1: The Plane.

10.1 The Plane

Recall from 1.4.1 that the number line is a line that is made up of an infinite number of points, each one describing its own distance from zero.

The number line is useful for understanding how numbers relate to one another and analyzing simple arithmetic. To study Algebraic equations (and later, functions) we need a more powerful tool. That tool is the Cartesian Plane, named for René Descartes.

Plane, in general, means "flat surface" In Mathematics plane means a flat, two dimensional surface. A line, if you recall, is a straight, one dimensional surface. A point has no dimension. Space has three. Two points will "line up" to show us where a line could be. Two lines can "line up" to show us a plane. If we arrange those two lines so that each is rotated 90° from the other we neatly divide the plane into four quadrants (figure 10.1).

The numbering of the quadrants might seem a little strange. It is important that QI is the upper right quadrant because it is the only one that represents both positive x and y values.

10.2 Ordered Pairs

An ordered pair defines a point on the plane. The first number represents how far along the x-axis the point is. The second represents how far along the y-axis the point is. Hence the name, ordered pair. You can think of them as directions. Let's plot the point $(1,2)$.

First we must travel along the x-axis one unit. (Figure 10.2)
Now we must travel along the y-axis two units. (Figure 10.3)
We have arrived at our point, (1,2). (Figure 10.4)

Figure 10.2: The x value.

x	y
1	2
2	4
3	6
-1	-2
-2	-4
0	0

Figure 10.5: Table of values for $y=$ x.

10.3 Plotting on the Plane

We know that we can find the value or values of x for a given value of y. So for $y=2 x$ we can generate the table in figure 10.5 .

When we plot each of these points we obtain the plot seen in figure 10.6.
It is easy to see that each of these points falls on the same line. It is tempting to "connect the dots" to complete our graph. In Mathematics we must justify any leaps of this nature that we take.

The easiest justification is to plot more points. As we do so, we will see that the image of a straight line becomes clearer and clearer. But there are an infinite number of points on the line; we can't plot them all.

We can use some reasoning. We know that we can use any number for x. We also know that for any two values of x you choose the corresponding value of y for the larger x will be larger than the value of y that corresponds with the smaller x. We can surmise that this is true no matter how small the difference is.

Finally, I will tell you that for any equation of the form $y=m x+b$, where m and b are any real numbers, the graph will be a straight line.

So we can plot the graph of $y=2 x$ as seen in figure 10.7.

10.4 Slope-Intercept Form

In the previous example there was nothing in the place of b. That's okay, since we know that $2 x=2 x+0$. That form, $y=m x+b$ is not arbitrary, however. It is called slope-intercept form. Notice that the graph of $y=2 x+0$ intersects the y axis where it equals 0 .

The graph of $y=2 x+1$, however, intersects at $y=1$. This is called the y intercept.
We also say that the slope of this line is 2 . Notice that if you pick a point on the line you can always get to another point on the line by moving to the right one unit, and up two units. We describe this as a slope of $\frac{2}{1}$, or just 2 . To remember how this fraction is formed we sometimes describe it as rise over run. In this context rise means moving up and run(ning) means moving to the right.

10.5 Exercises

kk

Figure 10.6: The points in the table plotted on an x, y coordinate plane.

Part II

Functions and Graphs

Chapter 11

Functions

11.1 Vocabulary

Domain All of the x values for which the function is defined.
Range All of the y values resulting in the domain.
Inverse Functions A pair of functions who's domain and range are exactly reversed.

11.2 Notation

$f(x)=x$ Read as "Eff of ex equals ex." This is exactly equivalent to $y=x$. Be aware, however that not all equations are functions. For example the equation of a circle of radius 1 and centered at the origin, $x^{2}+y^{2}=1$, cannot be expressed as a (single) function.
$f^{-1}(x)=x$ The inverse function of $\mathrm{f}(\mathrm{x})$. In this case $f^{-1}(x)=f(x)$. Can you see why algebraically? How about graphically?

11.3 Functions as a Machine

It is often convenient to think of a function as a machine. Something goes in (x) and something comes out $(f(x))$. You could also think of it as a rule, or a game. You could read $f(x)=x^{2}$ as "I'll say a number and you give me its square. Ready?"

I say, "1."
You say, "1."
I say, "2."
You say, "4."
I say, " $47 \frac{26}{37}$."
You say, " $2275 \frac{750}{1369}$.

11.4 Inverse Functions

The inverse of a function means the function in which the domain and range are switched.

11.4.1 Cautions

11.5 Rational Functions

11.6 Functions of Functions

11.7 Exercises

Chapter 12

Graphing Linear Functions

12.1 Vocabulary

12.2 Notation

12.3 How do we Know a Function is Linear?

12.4 The Most Straightforward Method

12.5 The Standard Form of a Linear Equation.

The standard form of a linear equation is $y=m x+b$, where:
$y \quad$ The variable that defines the vertical component of the equation.
m The slope of the graph of the equation.
$x \quad$ The variable that defines the horizontal component of the equation.
$b \quad$ The y intercept of the graph of the equation.
Blah

12.6 Exercises

Chapter 13

More on Linear Functions

13.1 Vocabulary

13.2 Notation

x_{1} Pronounced "Ex sub one." A subscript indicates a specific instance or value of a variable. For example, if we are working with two ordered pairs we might call them $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to keep them straight.

13.3 The Distance Formula

$$
d=\left(\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{2}\right)\right)^{\frac{1}{2}}
$$

13.4 The Pythagorean Theorem

Many Algebra students are familiar with the Pythagorean Theorem. It states simply $a^{2}+b^{2}=c^{2}$ where b and a are the base and height of the triangle, respectively, and c is it's hypotenuse of a right triangle. ${ }^{1}$

13.5 The difference

13.6 Exercises

[^0]
Chapter 14

Systems of Equations

14.1 Vocabulary

14.2 Notation

14.3 Exercises

Chapter 15

Polynomials

15.1 Vocabulary

15.2 Notation
15.3 The Binomial Theorem
15.4 Pascal's Triangle

				1		1					
			1		2		1				
		1		3		3		1			
	1		4		6		4		1		
1		5		10		10		5		1	
	6		15		20		15		6		1

Figure 15.1: The first seven rows of Pascal's triangle.

15.5 Exercises

Chapter 16

Quadratic Functions and Equations

16.1 Vocabulary

16.2 Notation

16.3 Quadratic Equations

16.4 Completing the Square

16.5 The Quadratic Formula

16.6 Deriving the Quadratic Formula

$a x^{2}+b x+c=0$	Start with the standard form of a quadratic equation.
$x^{2}+\frac{b}{a} x+\frac{c}{a}=0$	Prepare to complete the square by dividing by the coefficient of x^{2}.
$x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2}$	Add $\left(\frac{b}{2 a}\right)^{2}$ to both sides of the equation to complete the square.
$\left(x+\frac{b}{2 a}\right)^{2}=-\frac{4 a c}{4 a^{2}}+\frac{b^{2}}{4 a^{2}}$	Simplify both sides of the equation.
$\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$	Simplify the right side further.
$x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}$	Take the square root of both sides, remembering to preserve the negative solution.
$x=-\frac{b}{2 a}+\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a}$	Subtract $\frac{b}{2 a}$ from both sides of the equation. Take the square root of the denominator.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	The Quadratic Formula

16.7 Quadratic Functions

16.8 Exercises

Chapter 17

Zeros

Zeros, sometimes called roots, ...

17.1 Vocabulary

17.2 Notation
17.3 Exercises

Chapter 18

Conic Graphs

18.1 Vocabulary

18.2 Notation
18.3 Conics as Intersections
18.3.1 Parabola
18.3.2 Ellipses
18.3.3 Hyperbola
18.3.4 Circles
18.4 Plotting Conics
18.4.1 Parabola
18.4.2 Ellipses
18.4.3 Hyperbola
18.4.4 Circles
18.5 Exercises

Chapter 19

Conics as Loci

19.1 Vocabulary

19.2 Notation
19.3 Parabola
19.4 Ellipses
19.5 Hyperbola
19.6 Circles
19.7 Exercises

Chapter 20

Other Functions

20.1 Exponential

20.2 Logarithmic
20.3 Rational

Appendix A

Selected Proofs

A. 1 A Number Raised to the Zero Power equals 1

We can prove this for $n \neq 0$ as follows:

$$
\begin{aligned}
& \frac{n^{a}}{n^{b}}=n^{a-b} \\
& \frac{n^{a}}{n^{b}}=\frac{n^{a}}{n^{a}} \\
& \frac{n}{n}=1
\end{aligned}
$$

This is a property of exponents.
If we let $a=b$.
List is a property of fractions. Since n can take the value of all real numbers (except for zero) it is equally true of $\frac{n^{a}}{n^{a}}$.
$1=\frac{n^{a}}{n^{a}}=n^{a-a}=n^{0} \quad$ Substituting we show that a number raised to the zero power equals 1 .
This proof fails with the case 0^{0}, since $\frac{0}{0}=$ DNE. For our purposes $\frac{0^{0}}{0^{0}}=1$, but since we might suspect that it is undefined, the proof would only be as good as your faith in the initial assertion.

In fact, $\frac{0^{0}}{0^{0}}$ is what is called an indeterminate form. Using limits (a College Algebra/Calculus topic) we can show that 0^{0} generally, or pretty much equals 1 . There are several arguments that make it convenient and sensible to take it to equal 1. There are very few reasons to take it to be anything else, and none of them pertain to high school Algebra. We will, therefore, define zero to the zero power to equal one for the purposes of this class.

On the other hand, there remains no doubt that $\frac{n}{0^{1}}=\frac{n}{0}=$ DNE. Beware!

Appendix B

A Brief Discussion of Decimals and Precision

Appendix C

Modeling

Appendix D

Probability

Appendix E

Matrices

Matrices are, at their heart, a simplified method of solving systems of equations.

E. 1 Vocabulary

order The dimensions of the matrix. For example, the following is a 3×3 order matrix:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

E. 2 Notation

[and We have previously used square brackets for high-level grouping. Larger

E. 3 Matrix Operations

Appendix F

Answers to Odd Numbered Exercises

Appendix G

GNU Free Documentation License

Version 1.2, November 2002
Copyright © $2000,2001,2002$ Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a worldwide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ' means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3 .

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

Glossary

pi The ratio of the circumference of a circle to its diameter.
e The natural base.

Index

${ }^{\mathrm{LAT}} \mathrm{EX}, 11$
cryptography, 34
DNE, 65
domain, 45
expression, 16
implicit, 15
imply, 15
infinity, 17
intercept, 47
inverse function, 45
line, 17
notation, 15
prime, 34
properties, 16
property, 15
range, 45
right triangle, 50
slope, 47
subscript, 49
terms, 23
variables, 16
WYSIWYM, 11

Figure G.1: The Constant Function $f(x)=1$

Figure G.2: The Identity Function: $f(x)=x$

Figure G.3: The Absolute Value Function: $f(x)=|x|$

Figure G.4: $f(x)=\frac{1}{x}$

Figure G.5: The Square Root Function: $f(x)=x^{\frac{1}{2}}$

Figure G.6: The Square Function: $f(x)=x^{2}$

Figure G.7: The Cube Function: $f(x)=x^{3}$

Figure G.8: The Exponential Function: $f(x)=e^{x}$

Figure G.9: The Logarithmic Function: $f(x)=\ln (x)$

[^0]: ${ }^{1}$ Incidentally, the Pythagorean theorem turns out to be a special "degenerate" case of the laws of sines and cosigns. These laws add a term to account for the variation from this relation that appears in acute and obtuse triangles. You learned, or will learn, these laws in Trigonometry.

