An Investigation on the Applicability of Inter-Disciplinary Concepts to Software System Development

LinuxTag 2007, Berlin, Germany

Dr. Christian Heller
introduction
reflexions
 statics and dynamics
 double-hierarchy knowledge
state and logic
realisation
 cybol language
 cyboi interpreter
res medicinae
summary and future
introduction
reflexions
 statics and dynamics
 double-hierarchy knowledge
state and logic
realisation
 cybol language
 cyboi interpreter
res medicinae
summary and future
introduction

knowledge

human being

information

fact or message with recognisable news in semantic context

data

(machine-readable) characters / numbers that may contain information

knowledge

structured data which are inter-related (associated)

software

hardware
constructive development – complexity – example
• bundling of attributes and methods – coupling, no flexibility

• reflective meta architectures – bidirectional dependencies

• bidirectional dependencies – complexity, circular references

• global / static data access – untraceable data manipulation

container inheritance – falsified container content

problems – more in cybop book
falsifying container inheritance [iaq, dr. norvig]
introduction

- traditional programming
 - structure
 - procedure
 - class
 - inheritance

- scientific disciplines
 - new concept
 - ideas

+/-

- cybop
 - statics & dynamics
 - knowledge schema
 - state & logic
cybernetics (kybernetes = steersman)
• science of information and control
• in living things or machines (norbert wiener)

bionics (bio-cybernetics)
• biological principles applied to
• study and design of engineering systems

relation
• software engineering = systems engineering
• system as a whole gains in importance
• biological / human → software system
• physical brain: neural network
• logical mind: concepts
introduction
reflexions
 statics and dynamics
double-hierarchy knowledge
state and logic
realisation
 cybol language
cyboi interpreter
res medicinae
summary and future
category
(living thing)

super

is-a

sub

item
(human being)

has-a

whole

part

compound
(brain)

categorisation
plato – aristotle – alexander

category
living thing
human, animal, plant
generalisation
specialisation
compound (brain)

composition
gottfried wilhelm leibnitz
monades

human being
eye, brain, arm

container
element

statics and dynamics

has-a

composition

gottfried wilhelm leibnitz
monades

human being
eye, brain, arm

container
element

statics and dynamics
Health Level 7 - RIM
Reference Information Model

scheduling
role
service

finance
entity
role-role-role-relation

statics and dynamics
java.lang.Object

- parts: HashMap
- set(n: String, o: Object): void
- get(n: String): Object
- remove(n: String): void

Living Subject

- static birthdate: String

Person

- static address: String

Address a = (Address) get("address");
Address a = (Address) get(Person.address);
system owns knowledge (also: biological cell + dna)
introduction
reflexions
 statics and dynamics
double-hierarchy knowledge
state and logic
realisation
 cybol language
cyboi interpreter
res medicinae
summary and future
double-hierarchy knowledge

properties
- happy, sad, aggressive
- black, white
- shape, size
- smell

state structure
- head, eyes, ears, hair
- arms, legs

external concepts
- food, book
- clothes, shoes, hat

change logic
- walk, run, limp
human being

part 0..* legs

property

size

constraint

minimum

meta information

properties:
position, size, colour, order, weight

constraints:
minimum, maximum,

double hierarchy – in space, time etc.
The human mind structures the world into discrete items. These items may belong to a category. A compound model knows about its parts, which can be compounds or primitives indicated by abstraction relations. Relations are unidirectional.

```
item
+ category
+ compound
= schema
```
double-hierarchy knowledge

traditional

program structure

runtime structure

universal memory structure – flexibility

cybop
introduction
reflexions
 statics and dynamics
 double-hierarchy knowledge
 state and logic
realisation
 cybol language
cyboi interpreter
res medicinae
summary and future
misleading tiers – inflexible software architecture
human user

model view controller

application server

data mapper

database server

data transfer object

remote server

communication patterns

state and logic

mouse gui

corba soap

jdbc
star-like (not layer-like) translator architecture
introduction
reflexions
 statics and dynamics
 double-hierarchy knowledge
 state and logic
realisation
 cybol language
 cyboi interpreter
res medicinae
summary and future
cybol language
cybol tags + attributes, abstraction principles
cybol language

<table>
<thead>
<tr>
<th>name</th>
<th>channel</th>
<th>abstraction</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>inline</td>
<td>character</td>
<td>Res Medicine</td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>compound</td>
<td>/resmedicinae/gui/menu_bar.cybol</td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>compound</td>
<td>/resmedicinae/gui/tool_bar.cybol</td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>compound</td>
<td>/resmedicinae/gui/panel.cybol</td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>compound</td>
<td>/resmedicinae/gui/status_bar.cybol</td>
<td></td>
</tr>
</tbody>
</table>

whole-part relation

meta information

template editor with double hierarchy and triple click
introduction
reflexions
 statics and dynamics
double-hierarchy knowledge
state and logic
realisation
 cybol language
cyboi interpreter
res medicinae
summary and future
<table>
<thead>
<tr>
<th>criterion</th>
<th>java world</th>
<th>cybop world</th>
</tr>
</thead>
<tbody>
<tr>
<td>theory</td>
<td>oop (object oriented</td>
<td>cybop (cybernetics</td>
</tr>
<tr>
<td></td>
<td>programming)</td>
<td>oriented programming)</td>
</tr>
<tr>
<td>language</td>
<td>java</td>
<td>cybol</td>
</tr>
<tr>
<td>interpreter</td>
<td>jvm (java virtual machine)</td>
<td>cyboi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cybernetics oriented</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interpreter)</td>
</tr>
</tbody>
</table>
memoriser

applicator

cyboi

cyboi

controller

manager

checker

handler

controller part dependencies

cyboi control flow
introduction
reflexions
 statics and dynamics
double-hierarchy knowledge
 state and logic
realisation
 cybol language
cyboi interpreter
res medicinae
summary and future
res medicinae
runtime model hierarchy
introduction
reflexions
 statics and dynamics
 double-hierarchy knowledge
state and logic
realisation
 cybol language
 cyboi interpreter
res medicinae
summary and future
summary and future

knowledge triumvirate

template
- statics
- cybol language
- design time
- domain expert / application developer

schema
- structure
- cybop concepts
- analysis time
- knowledge architect / information scientist

model
- dynamics
- cyboi interpreter
- runtime
- systems developer

influence

instantiation
software engineering process

- analysis
- design
- implementation

requirements document

state knowledge
logic knowledge

common knowledge abstraction

summary and future
summary and future

traditional

models suffer from complexity

strong coupling / dependencies

inflexible

difficult to maintain

→ one schema as memory structure

→ directed acyclic graph (tree)

→ easily extensible

→ long-life software system

limits: only standard-, no real-time applications
call for developers

- x windows, linux console, tcp sockets
- database access via sql, graphics with OpenGL/ Mesa 3D
- signalling mechanism, threading, mutexes
- port to ms windows using cygwin
- parser/ serialiser to convert different file formats
- debian package, autoconf/ automake --> official GNU
- cybol knowledge templates for various domains
Christian Heller

CYBOP

Cybernetics Oriented Programming

An Investigation on the Applicability of Inter-Disciplinary Concepts to Software System Development

thank you!

http://www.cybop.net

hardcover: 536 pages

1st edition (January 19, 2007)

language: english

license: gnu fdl

50,00 EUR