A flexible Software Architecture for Presentation Layers
demonstrated on Medical Documentation with Episodes
and Inclusion of Topological Report

Christian Heller<christian.heller@tu-ilmenau.de Jens Bohkinfo@jens-bohl.de,
Torsten Kunze<info@torstenkunze.de, llka Philippow <ilka.philippow@tu-ilmenau.de

Technical University of lmenau
Faculty for Computer Science and Automation
Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 lImenau, Germany
http://www.tu-ilmenau.de, fon: +49-(0)3677-69-1230, fax: +49-(0)3677-69-1220

Abstract recurring structures means findibgsign Patterngor ap-
plication on similar problems. These two concepts — frame-
This document describes how existing design pattemgrks and design patterns —depend on each other and pro-
can be combined to merge their advantages into one doridahigher flexibility for software components [Pre94].
independent software framework. This framework, call@e aim of this work was to find suitable combinations
Cybernetics Oriented Programming (CYBOP), is charaof design patterns to compose a framework that is char-
terized by flexibility and extensibility. Further, the concepicterized by a strict hierarchical architecture. Everything
of Ontology is used to structure the software architectuire universe is organized within a hierarchy of elements —
as well as to keep it maintainable. Its hierarchical appeathe human body for example consists of organs, organs
ance stems from a core design decision: all framewocknsist of regions, regions consist of cells and so on. This
classes inherit from one super class Item which represem&sy simple idea can also be mapped on software architec-
a Tree. A Component Lifecycle ensures the proper startwpes — and basically, this is what this document is about.
and shutdown of any systems built on top of CYBOP. What kind of techniques to realize such a concept of strict
The practical proof of these new concepts was accohierarchy does software engineering provide? The follow-
plished within a diploma work which consisted of desigimg chapters first introduce common design patterns and
ing and developing a module called Record, of the Opé#re lifecycle of components as templates for own ideas
Source Software (OSS) project Res Medicinae. The maod then show how the resulting framewdkbernetics
task of this module is to provide a user interface for crea@riented ProgrammingCYBOP) [cyb04] is designed.
ing medical documentation. New structure models such as
Episodes were considered and implemented. In this con-
text, the integration of a graphical tool for Topologicah Design Principles
Documentation was highly demanded as well. The tool
allows documentation by help of anatomical images and
the setting of markers for pathological findings. 2.1 Essential Design Patterns
Keywords Design Pattern, Framework, Component Life-
cycle, Ontology, CYBOP, Res Medicinae, Episode Badeelsign patterns [EG95] are elements of reusable software.
Documentation, Topological Documentation They can be used for solving recurrent design problems
and are recommendations on how to build software in an
) elegant way. With the help of these patterns, software shall
1 Introduction be more extensible, flexible and easy to maintain with re-
spect to future enhancements. The following patterns are
Quiality of software is often defined by its maintainabilkessential within CYBOP.
ity, extensibility and flexibility.Object Oriented Program-
ming (OOP) helps to achieve these goals — but it isn’t pos-
sible alone by introducing another programming paradigbomposite This design pattern (figure 1) allows creating
So, major research objectives are to find concepts areke-like object structures. One object is child of another
principles to increase the reusability of software architeabject and has exactly one parent. This pattern is often
tures and the resulting coderameworksshall prevent used to realiz&Vhole-Partrelations: one object iBart of
code duplication and development efforts. Recognizimgother one.

Component Model-View-Controller Dividing the presentation lay-
Client ers into the logical componentdodel View and Con-
- X -
e o oneny | o+ troIIe_r, is a very approved way for designing software for
+remove(in Component user interfaces. The model encapsulates the data presented
1 ‘ ZA by the view and manipulated by the controller (figure 4).
Composite
Leaf
+operation()
+add(in C t + i
Hemovs(in Component ey Controller
Fig. 1. Composite Pattern / \
Model - View

Layers With the help of this pattern, software can be or-

ganized in horizontal layers (figure 2). Modules and ap- Fig. 4. Model-View-Controller Pattern
plications can be separated into logical levels, whereby

these levels should be as independent from each other as

possible, to ensure a high substitutability.

Layer 1 Hierarchical Model-View-Controller The Hierarchical
u TT Model-View-Controller [JCO0] combines the essential de-

sign patternsComposite Layersand Chain of Responsi-
Layer 2 bility into one conceptual architecture (figure 5). This ar-
chitecture divides the presentation layer into hierarchical

iL TT sections containing1VC-Triads The triads convention-
Layer 3 ally consist of model, view and controller parts. Triads
communicate with each other by relating over their con-

troller object.

Fig. 2. Layer Pattern Here is a short explanation of this concept, using a practi-
cal example: The upper-most triad could represent a dia-
log and the middle one a container such as a panel. In this
container, a third triad — for example a button — could be
held.

Chain Of Responsibility Messages initiated by a partic-
ular object can be sent over a chain of instances to the
receiving object (figure 3). So, either the message will be
transmitted over a bunch of objects or evaluated immedi---- (¢ -~ —————""———"—————-———
ately by the target object. Tlern -2

Tiern-1

Object 1

\ Objectz | o \MaemVew] N
/ Tier n

Object 3

Fig. 3. Chain Of Responsibility Pattern Fig. 5. Hierarchical Model-View-Controller Pattern

2.2 Component Lifecycle cation concerning a particular objective. CYBOP consists

L . . f th h logies:
EachComponentives in a system that is responsible focr) three such ontologies

the component’s creation, destruction etc. When talking- Basic Ontology
about components, this article sticks to the definition of~ Model Ontology
Apache-Jakarta-Avalon [jak02], which considers compo— System Ontology
nents to be passive entity that performs a specific role .
A component has a number of methods which need to be Figure 7 shows the model ontology. The layer super

called in a certain order. The order of method calls is Wﬁ#)es arkecord , Unit , Heading andDescription

. . : . ese classes are super types of all classes in a particular
is known asComponent LifecycleéAn outside, active en- ; pertyp P
gntological level.

?he right side shows a concrete implementation of the
model ontology — thélectronic Health Recordope04].
0Irhis data structure contains all information concerning
a particular patient. The figure showsoblem types
It is up to each container to indicate which in level Unit . These consist of episodes containing in-

right order. In other words, such an entity @omponent
Containercan control and use the component. The Aval
documentation [jak02] says:

lifecycle methods it will honor. This should be stances oPartialContact . In level Heading , the
clearly documented together with the description ~ structural elements of a partial contact can be found —
of the container. Subjective , Objective , Assessment andPlan .

Therapeutical issues are placed in leRgscription

. —such asMedication with particular dose.
3 An Extended Component Lifecycle P

The CYBORP lifecycle of components is an extension of Model - Ontology Beispiel

the lifecycle idea of Apache — basically the same idea buf fem | 1

another background and realization. ZAN w

All Whole-Part associationsetween objects were orga- 5 S g

nized under the rules of the component lifecycle. The re- [Lnit [

lations were created and destroyed in a sequence of life- 3 Vi

cycle steps. These steps are realized as method calls on |_Heading K] _(jomfb“’e

the components (figure 6). B 1
Description —— BloodPressure |

Component

Component exists

does_ not lobalize

Fig. 7. Model Ontology

Component
ready for
use

operation 1
operation 2
deglobalize finalize unlink operation 3

As shown, the concept of ontology can be used to or-
ganize data structures in a hierarchical order by defining

Fig. 6. State Diagram of CYBOB'’s Component Lifecycle . .
logical layers with super types.

Contrary to Apache’s lifecycle, this one introduces% CYBOP

globalizemethod by which global parameters can be fo ection 2 introduced essential design patterns that repre-
warded throughout the whole framework. Static methods+ the main structure of the CYBOP framework. Sec-
or managerclasses such become superfluous. Analogqys, 3 eyplained the Component Lifecycle and section 4
to the lifecycle of organic cells where the genetic infog, o \ye||_known idea of ontology. Now these design prin-
mation in form of a Desoxyribo Nuklein Acid (DNA) IS 105 and concepts will be combined to comprise their
shared before.separatlon,_the globalize method aHOWSaER/antages and to increase the demanded quality charac-
forward a configuration object to any new instance. i itics: high flexibility and maintainability.
Structure by Hierarchy-this is the basic idea behind CYBOP.
4 Ontology While this principle has been applied to many domain and
knowledge models, especially in the fieldAutificial In-
An ontology is a catalogue of types that are dependitajligence(Al), it apparently has not been used for the de-
on each other in hierarchical order. It is a formal specifiign of systems yet.

Let us recall theModel View Controllerdesign pattern whose usefulness is at least questionnable. In probably
which is used in one or another form by a majority of sy®0% of cases, theet andget methods consist of only
tems, today. There is\dewwhich mostly is aGraphical one single line accessing an attribute value. Sometimes,
User Interface(GUI). It consists of for example a frameadditional lines with an update function for other parts
panel, menubar and smaller components which are all pafrthe system are added. They are called whenever an at-
of the frame’s hierarchy. Then, there is tBentroller. The tribute value is changed byset method:

Hierarchical MVC pattern suggested to use a controller)

hierarchy consisting ofIVC Triads Finally, there is the Public void setvalue(Type v) {

Model Not only Al systems use Hierarchyto structure)

their domain data. The OpenEHR project [ope04] doesthe this-value = v; .

same. getUpdateManager().update(this);

Reflecting these facts, one question is at hdhdfiew, }

Controller and Model ideally have a hierarchical struc- But this update notification could as well be taken over

ture, why not creating whole software systems after tiﬂ§ the parent object that was calling teet method on
paradigm?Isn't every system essentially Bree of ob- one of its child objects:

jects?

Extending the concept diierarchical Model View Con- public void method() {

troller to whole software architectures, CYBOP was de-

signed to be the domain-independent backbone for infor- child.setValue(v);

mation systems of any kind. Originally designed for med- getUpdateManager().update(child);
ical purposes, it should also become usable for insurarice,

financial or other standard applications in future. o _
In the end, the responsibility of encapsulation falls to

the super clasgkemwith its access methods, alone. It is
the only remaining container class in the whole frame-
As shown, tree-like structures can be realized byGbe- work. No other container classes have to be written ever.
positepattern. In CYBOP, this pattern can be found sinfor the issue of sorting children (such as to simulate a
plified in classltem (figure 8) which is super type of allList), other concepts have to be used which are partly un-
other classes. References, respectively relations to clullelar yet and will not be described further in this paper.
elements are held within a hashmap. No attributes are ug@ether advantage of having just one container class is
except of this hashmap. Every element of the map canthat the unpredictable behaviour in object oriented lan-
accessed by a special key value. guages, when inheriting a container (hashtable) can be
avoided. Find more details in [Nor].

Finally, there is the issue of security. If a system'’s security
javalang.Object manager is forwarded in thglobalizelifecycle method
from object to object, as described in section 3, then it can
be stored as one child of theem super class. Whenever

a child needs to be accessed, a parent’s security manager
can check for permittance.

5.1 Class ltem

Item

idven : Hashap 5.2 Basic Structure
+getRoot() : It
+g;p§?em(_) o Comprising the design patter@omposite Layers and
rocenrn faan L Chain of Responsibilitythe CYBOP framework is com-
+setChildren(in children : HashMap) parable to a big tree containing objects organized in differ-
*0 ent levels. These levels are determined by a sp8gistem

R Ontology(as opposed to Knowledge Ontologyike for

example OpenEHR [ope04]) and might become the topic
of a follow-up paper. Figure 9 shows the object tree and
Fig.8.Class Item the different levels of granularity.

6 Record — An EHR Module
But that also means that any particudat - andget -
methods become superfluous. The recommendation toEne practical background for the application of CYBOP
capsulate attributes produces thousands of lines of ciglRes Medicinagres04]. A modern clinical information

Layer 1 (i‘ "

{

Layer 2 |

= b1
Layer 3 | el \ Vil
‘ -\ﬂt“]r' \"f"“,’(’?h
L\
Fig.9.Basic Structure |

—]
——

system is the aim of all efforts in this project. In future, it

shall serve medical documentation, archiving, laboratdrig- 11.Excerpt from Topological Structure of Human Skeleton

work etc.Res Medicinaés separated into single modules

depending on different tasks.

One of these modules Record— an application for doc-

umenting medical information (figure 10). In addition téluced theglobalizemethod by which references to glob-

new documentation models, it also contains a tool for togdly needed objects can be forwarded through a system

logical documentation. which eliminates the need for static methods or objects.
Ontologies can help to model particular domains and to
layer software. Every level of these ontologies has a par-

(CTTEE— -=x ticular supertype, whereby these types depend on each
s other by inheritance. This concept supports the modelling
o s p— and logical separation of software into hierarchical archi-

tectures. The granularity of the ontology (number of on-
tological levels) can be adapted to particular needs.
In the course of this document, it turned out that hierar-

ie | conco chies are not only ideal for structuring domain knowledge
“ but also for structuring whole systems (applications). As
= essential design decision to take, this paper proposed to
- introduce a top-most super class (callan here) which

represents Map container. Thousands of lines of code in
form of setandgetmethods can such be eliminated which
i leads to a tremendous code reduction and improved clar-
AN ity.
By applying the new concepts introduced in this docu-
Fig. 10. Screenshot of Record [urb02] ment, the quality of software can hopefully be increased.
The time for building systems might get reduced. The
clear architecture should avoid common confusion as the

systems grow.
Starting from an overall view of the human body, it

is possible to reach every organ or region of the body in
detail (figure 11). 8 Acknowledgements

0

L
1}

7 Summary Our special thanks go to all Enthusiasts of the Open Source

Community who have provided us with a great amount
Software patterns are essential elements of frameword&knowledge through a comprising code base to build
This paper showed how they can be combined to comprise We'd also like to acknowledge the contributordefs
their advantages and to realize hierarchical structures witledicinag especially all medical doctors who supported
unidirectional dependencies. us with their analysis work [KH04] and specialised knowl-
These structures can be created and properly destrogdde in our project mailing lists. Further on, great thanks
using the lifecycle of components. In that lifecycle, olgoes to the Urban and Fischer publishing company, for
ject relations become more transparent and are easigpraviding anatomical images from thefobotta — Atlas
control and to maintain. As an extension, this paper intrder Anatomie

References

[cyb04] CYBOP — Cybernetics Oriented Programming
http://www.cybop.net, 2002-2004.

[EG95] ERICH GAMMA , RICHARD HELM, RALPH JOHNSON
UND JOHN VLISSIDES(GANG OF FOUR): Design Pat-
terns. Elements of reusable object oriented Software.
Addison-Wesley, Bonn, Boston, Muenchen, 1 , 1995.
http://www.aw.com.

[[ak02] Apache Jakarta Avalon Framework, Web Server and
Applications http://jakarta.apache.org, 2002.

[JCO0] JasoN CAl, RANJIT KAPILA, GAURAV PAL:
HMVC: The layered pattern for developing
strong client tiers. Java World, July 2000.
http://www.javaworld.com/javaworld/jw-07-2000/.

[KHO4] KARSTEN HILBERT, CHRISTIAN HELLER, ROLAND
COLBERG ET AL.. Analysedokument zur Erstellung
eines Informationssystems fuer den Einsatz in der
Medizin http://www.resmedicinae.org/model/analysis,
2001-2004.

[Nor] NoORvVIG, PETER The Java IAQ: Infrequently Answered
Questions http://www.norvig.com/java-iag.html.

[ope04] OpenEHR — Design Principles Document
http://www.openehr.org, 2001-2004.

[Pre94] PREE, W.: Meta Patterns — A Means for Capturing the
Essentials of Reusable Object-Oriented DesigRro-
ceedings of ECOOP '94150-162, 1994.

[res04] Res Medicinae — Medical Information System
http://www.resmedicinae.org, 1999-2004.

[urb02] Anatomical Images from Sobotta: Atlas der Anatgmie
2002. http://www.urbanfischer.de.

