
BitPacket Manual
Release 1.0.0

Aleix Conchillo Flaqué

September 03, 2014

CONTENTS

1 Introduction 1
1.1 Download . 1
1.2 Build and install . 1
1.3 Usage . 1
1.4 History . 1

2 Concepts 3
2.1 Packets and fields . 3

3 The base field 5
3.1 Naming fields . 5
3.2 Building and parsing fields . 5
3.3 Calibration curves . 6

4 Single fields 7
4.1 Bit fields . 7
4.2 Numeric fields . 9
4.3 String and text fields . 10
4.4 Meta fields . 12

5 Container fields 13
5.1 Bit fields containers . 13
5.2 Structures . 15

6 Writers 21

7 API reference 23
7.1 Field . 23
7.2 Writer . 31
7.3 WriterConfig . 33

8 Indices and tables 35

Python Module Index 37

Index 39

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 Download

BitPacket is maintained in Savannah (and mirrored in github and gitorious). Savannah is the central point for develop-
ment, maintenance and distribution of official GNU software (and other non-GNU software, like BitPacket).

You can download the latest BitPacket release from the project’s website, or alternatively, you can also clone the source
repository.

git clone git://git.sv.gnu.org/bitpacket.git

Or, if you are behind a firewall, you might use the HTTP version:

git clone http://git.savannah.gnu.org/r/bitpacket.git

1.2 Build and install

BitPacket is distributed as a Distribute (setuptools) module, so the usual commands for building and installing setup-
tools modules can be used. However, this means that you need setuptools installed in your system.

Once the BitPacket tarball is decompressed, you can build BitPacket as a non-root user:

python setup.py build

If the built is successful, you can then install it, as root, with the following command:

python setup.py install

1.3 Usage

Using BitPacket in your application is straightforward. You only need to add the following import in your Python
scripts:

from BitPacket import *

1.4 History

The first version of BitPacket was released in 2007.

1

http://www.nongnu.org/bitpacket/
https://savannah.nongnu.org/projects/bitpacket
http://github.com/aconchillo/bitpacket/
https://gitorious.org/bitpacket
http://www.gnu.org/gnu/thegnuproject.html
http://www.nongnu.org/bitpacket/
https://pythonhosted.org/setuptools/

BitPacket Manual, Release 1.0.0

The validation guys from the project I was working on were building a test environment to validate a software which
involved a lot of network packet management. They started by accessing packet fields with indexes. This was very
error prone, hard to maintain, hard to read and hard to understand. So, I start digging through the web for something
that could help us, but I only found the struct module. However, it does not solve the indexing problem neither it
supports bit fields.

Then, I found the BitVector class which was able to work with bits given a byte array, and I built BitPacket in top of
it. Initially, BitPacket consisted on three classes: BitField (for single bit fields), BitStructure (a BitField itself, to build
packets as a sequence BitFields) and BitVariableStructure (something like a meta BitStructure).

At the end of 2009, a refactoring of the test environment was necessary, and I knew BitPacket was very slow and hard
to extend. Between 2007 and 2009, I discovered a great Python library for building and parsing packets, construct.
construct is great and performs its jobs very well. It is a very complete and powerful library for working with packets
in a declarative way. The problem was that we had a lot of code that need to be reused written with BitPacket, so
construct was not an option.

Finally, I decided I needed to refactor BitPacket, while learning more in the path, and create a small library, much
simpler than struct and much more powerful and fast than the old BitPacket. This is how BitPacket 1.0.0 was born.

2 Chapter 1. Introduction

http://docs.python.org/library/struct.html
http://cobweb.ecn.purdue.edu/~kak/dist/
http://construct.wikispaces.com/

CHAPTER

TWO

CONCEPTS

2.1 Packets and fields

packets.

3

BitPacket Manual, Release 1.0.0

4 Chapter 2. Concepts

CHAPTER

THREE

THE BASE FIELD

Base abstract class for all BitPacket fields.

API reference: Field

The Field class is the abstract root class for all other BitPacket classes. Initially, a field only has a name and no
value. Field subclasses must provide field details, such as the size of the field, the implementation of how the field
value will look like, that is, how the field should be built, and other field related details.

3.1 Naming fields

The most simple field accessor is its name. A field name is built upon creation but can be changed at run-time (special
care should be taken, though). It is recommended to follow python variable naming when assigning a name to a field.
This is because with the Container subclass (and its subclasses) fields can be accessed directly as class members.

Note: changing the field name at run-time is not recommended unless you know what you are doing.

3.2 Building and parsing fields

The main purpose of BitPacket is to provide an easy way to represent packets (or, say it another way, data structures).
In BitPacket, packets can be built from and to an string of bytes, arrays and streams.

A field subclass, then, needs to provide the following methods:

def value():_

This method returns the actual value of the field, whatever that is, a number, a string, etc.:

def set_value(value):_

This method sets a new value to the current field. The value might be a number, a string, etc. depending on the field’s
type:

def size():_

This method must return the field’s size. Note that some fields are bit-oriented, so the method might return values for
different units (basically, bits and bytes):

def str_value():_

This method must return the text string representation for the given field:

5

BitPacket Manual, Release 1.0.0

def str_hex_value():_

This method must return the hexadecimal string representation for the given field. That is, how the field looks like in
memory. For example, for a float value, the hexadecimal representation could bbe the bytes forming the IEEE-754
representation:

def str_eng_value():_

This method must return the text string representation of the result obtained after applying the field’s calibration curve.
Therefore, it is necessary to call the calibration curve of the field first and then return the result (after applying any
extra desired formatting):

def _encode(stream):_

This method will write the field’s value into the given stream (byte or bit oriented):

def _decode(stream):_

This method will convert the given stream (byte or bit oriented) into the internal field representation.

3.3 Calibration curves

Sometimes a field might need to be expressed in another way, or a calculation might be necessary to determine the
final value of the field. Consider, for example, a numeric field that represents a temperature with a 16-bit precision and
covers a range from 0 to 50 celsius degrees. The calibration curve comes in handy by letting the user to specify this
conversion function:

def set_calibration_curve(self, curve):_

This method lets the user to provide a function to compute the calibration curve. The function must be unary taking
the field’s value as it’s argument and computing (using a the desired conversion function) a result.

For the temperature example mentioned above, the calibration function could be something like:

def temp_conv(x):
return (x / 65535.0) * 50.0

6 Chapter 3. The base field

CHAPTER

FOUR

SINGLE FIELDS

4.1 Bit fields

A field to represent single bit fields.

API reference: BitField

A packet might be formed by multiple fields that can be single bit fields, numeric fields, etc. Sometimes, byte-aligned
fields are also formed by bit fields internally. The purpose of BitField is to provide these single bit fields.

For example, the first byte of the IP header is formed by two nibbles:

version hlen
4 bits 4 bits

The first nibble, version, can be constructed by the following piece of code:

>>> bf = BitField("version", 4, 15)
>>> print bf
(version = 0x0F)

That is, a 4 bits field with a default, optional, value 15.

4.1.1 Booleans

A bit field for representing a boolean type.

API reference: Boolean

A Boolean is a BitField with a single bit. So only True or False can be set.

>>> b = Boolean("Option", True)
>>> print b
(Option = True)

There a couple of helper function to enable or disable the field value:

>>> b.disable()
>>> print b
(Option = False)

>>> b.enable()
>>> print b
(Option = True)

7

BitPacket Manual, Release 1.0.0

4.1.2 Flags

A bit field for representing a flag.

API reference: Flag

A Flag is a BitField with a single bit. As in the Boolean type, it can have only two values Active and Inactive.
Basically, it is just a helper class to print Active or Inactive instead of True or False. The same behavior could be
achieved by using the Boolean type.

>>> f = Flag("Flag", Flag.Active)
>>> print f
(Flag = Active)

There a couple of helper function to activate or deactivate the flag:

>>> f.deactivate()
>>> print f
(Flag = Inactive)

>>> f.activate()
>>> print f
(Flag = Active)

4.1.3 Masks

A field to represent bit masks.

API reference: Mask

A bit mask is a field where each bit has a different meaning. Multiples bits can be set or unset at once, but each one
will represent a single thing. Bit masks are commonly used to define a set of options.

For example, we can define a 2-bit mask of whether our packet includes audio, video or both:

audio/video
2 bits

This can be simply constructed by the following code:

>>> m = Mask("audio/video", 0, AUDIO = 0x01, VIDEO = 0x02)
>>> m.mask(m.AUDIO | m.VIDEO)
>>> print m
(audio/video = 0x03)

We can also unmask a single option:

>>> m.unmask(m.AUDIO)
>>> print m
(audio/video = 0x02)

Or unmask all of them with set_value:

>>> m.set_value(0)
>>> print m
(audio/video = 0x00)

8 Chapter 4. Single fields

BitPacket Manual, Release 1.0.0

4.2 Numeric fields

An abstract class for numeric values (integer or real).

API reference: Value

This is the base class for numeric fields. Internally, it uses Python’s struct module to define the numeric value size and
the byte order (little-endian or big-endian).

The following code creates an 32-bit unsigned integer with a little-endian byte ordering.

>>> v32 = Value("value", "<I", 67436735)
>>> print v32
(value = 67436735)

Fortunately, BitPacket already defines most of numeric values that are commonly used.

4.2.1 Integer fields

This module provides classes to define signed and unsigned integers bit fields, from 8-bit to 64-bit.

Signed and unsigned

Multiple signed and unsigned integer classes are available. It is, for example, very easy to create a new 16-bit signed
integer bit field:

>>> value = Int16("int16", -1345)
>>> print value
(int16 = -1345)

or a 16-bit unsigned one:

>>> value = UInt16("uint16", 0x8000)
>>> print value
(uint16 = 32768)

Helper classes

Default helper classes use network byte order (big-endian):

Size Unsigned Signed
8 UInt8 Int8
16 UInt16 Int16
32 UInt32 Int32
64 UInt64 Int64

Little-endian helper classes:

Size Unsigned Signed
8 UInt8LE Int8LE
16 UInt16LE Int16LE
32 UInt32LE Int32LE
64 UInt64LE Int64LE

Big-endian helper classes:

4.2. Numeric fields 9

BitPacket Manual, Release 1.0.0

Size Unsigned Signed
8 UInt8BE Int8BE
16 UInt16BE Int16BE
32 UInt32BE Int32BE
64 UInt64BE Int64BE

4.2.2 Real fields

This module provides classes to define float (32-bit) and double (64-bit) fields.

Floats and doubles

A float value can be easily created with the Float class:

>>> value = Float("f", 1.967834)
>>> print value
(f = 1.96783399582)

Some times, it is also useful to see the hexadecimal value that forms this float number.

>>> print value.str_hex_value()
0x3FFBE1FC

The same might be applied for doubles:

>>> value = Double("f", 0.0087552)
>>> print value
(f = 0.0087552)

Helper classes

Default helper classes use network byte order (big-endian):

Size Class
32 Float
64 Double

Endianness helper classes:

Size Little-Endian Big-Endian
32 FloatLE FloatBE
64 DoubleLE DoubleBE

4.3 String and text fields

4.3.1 String of characters

Fields to store a string of characters.

API reference: String

A String field lets you store a string of characters of any size. The length of the string needs to be specified at
creation time.

10 Chapter 4. Single fields

BitPacket Manual, Release 1.0.0

The simplest case is a string with a fixed length. In the next example we create a string field with sixteen characters:

>>> data = String("data", 16)
>>> data.set_value("this is a string")
>>> print data
(data = 0x74686973206973206120737472696E67)

As usual, we can easily get back the original string:

>>> "".join(data.value())
’this is a string’

Note that, above, “print data” returns a human-readable string with hexadecimal values and “data.value()” returns the
actual string.

For convenience, there is a Text field that inherits from String and always returns the actual string.

>>> text = Text("text", 16)
>>> text.set_value("this is a string")
>>> print text
(text = this is a string)

So, Text is supposedly to be used with only text while String is to be used with any character.

4.3.2 Unpacking strings

Instead of a fixed length, we can specify a length function that will tell us what length the string should have. In the
following structure we create a Structure with a numeric “length” field and a string of unknown size.

length string
1 byte length

BitPacket already provides a helper the Data field which contains a length field and a string.

>>> packet = Structure("string")
>>> l = UInt8("length")
>>> s = String("data", lambda root: root["length"])
>>> packet.append(l)
>>> packet.append(s)

If we print the initial contents of the structure we can see that the length is 0 and that we still have an empty string.

>>> print packet
(string =

(length = 0)
(data =))

We can try to assign a value to our string directly and see what happens:

>>> try:
... s.set_value("this is a string")
... except ValueError as err:
... print "Error: %s" % err
Error: Data length must be 0 (16 given)

A ValueError exception is raised indicating that string length should be 0. This is because the “length” field has not
been assigned a value yet.

Finally, we can provide to the structure all the necessary information, for example, in an array:

4.3. String and text fields 11

BitPacket Manual, Release 1.0.0

>>> data = array.array("B", [0x10, 0x74, 0x68, 0x69, 0x73, 0x20,
... 0x69, 0x73, 0x20, 0x61, 0x20, 0x73,
... 0x74, 0x72, 0x69, 0x6E, 0x67])
>>> packet.set_array(data)
>>> print packet
(string =

(length = 16)
(data = 0x74686973206973206120737472696E67))

4.4 Meta fields

4.4.1 MetaField field

API reference: MetaField

12 Chapter 4. Single fields

CHAPTER

FIVE

CONTAINER FIELDS

Abstract root class for field containers.

API reference: Container

Packets can be seen as field containers. That is, a packet is formed by a sequence of fields. The Container class
provides this vision. A Container is also a Field itself. Therefore, a Container might also accomodate other
Containers.

Consider the first three bytes of the IP header:

version hlen tos length
4 bits 4 bits 1 byte 2 bytes

We can see the IP header as a Container with a sub-Container holding two bit fields (version and hlen) and two
additional fields (tos and length).

The Container class is just an abstract class that allows adding fields. That is, it provides the base methods to build
Containers.

5.1 Bit fields containers

A container implementation for bit fields.

API reference: BitStructure

The BitStructure class must be used, in conjunction with BitField, to create byte-aligned fields formed,
internally, by bit fields.

It is really important to understand that BitPacket is byte oriented, therefore, a BitStructure must be byte-aligned.

Consider the first byte of an IP header packet:

version hlen
4 bits 4 bits

This packet can be constructed as:

>>> ip = BitStructure("IP")

The line above creates an empty structure named IP. Now, we need to add fields to it. As BitStructure is a Container
subclass the Container.append() function can be used:

>>> ip.append(BitField("version", 4, 0x0E))
>>> ip.append(BitField("hlen", 4, 0x0C))
>>> print ip
(IP =

13

BitPacket Manual, Release 1.0.0

(version = 0x0E)
(hlen = 0x0C))

Note that the size of a BitStructure is returned in bytes. Remember that the purpose of a BitStructure is to
create a byte-aligned value that is built internally with bits:

>>> ip.size()
1

5.1.1 Accessing fields

BitStructure fields can be obtained as in a dictionary, and as in any Container subclass. Following the last example:

>>> ip["version"]
14
>>> ip["hlen"]
12

5.1.2 Packing bit structures

As with any BitPacket field, packing a BitStructure is really simple. Considering the IP header exampe above we can
easily create an array of bytes with the contents of the structure:

>>> ip_data = array.array("B")
>>> ip.array(ip_data)
>>> print ip_data
array(’B’, [236])

Or also create a string of bytes from it:

>>> ip.bytes()
’\xec’

5.1.3 Unpacking bit structures

To be able to unpack an integer value or a string of bytes into a BitStructure, we only need to create the desired
structure and assign data to it.

>>> bs = BitStructure("mypacket")
>>> bs.append(BitField("id", 8))
>>> bs.append(BitField("address", 32))
>>> print bs
(mypacket =

(id = 0x00)
(address = 0x00000000))

So, now we can unpack the following array of bytes:

>>> data = array.array("B", [0x38, 0x87, 0x34, 0x21, 0x40])

into our previously defined structure:

>>> bs.set_array(data)
>>> print bs
(mypacket =

14 Chapter 5. Container fields

BitPacket Manual, Release 1.0.0

(id = 0x38)
(address = 0x87342140))

Also, new data can also be unpacked (old data will be lost):

>>> data = array.array("B", [0x45, 0x67, 0x24, 0x98, 0xFB])
>>> bs.set_array(data)
>>> print bs
(mypacket =

(id = 0x45)
(address = 0x672498FB))

5.2 Structures

A container implementation for fields of different types.

API reference: Structure

The Structure class provides a byte-aligned Container implementation. This means that all the fields added
to a Structure should be byte-aligned. This does not mean that a BitField can not be added, but if added, it
should be added within a BitStructure. This is because bit and byte processing is done differently, and that’s why
BitStructure was created.

Consider the first three bytes of the IP header:

version hlen tos length
4 bits 4 bits 1 byte 2 bytes

For simplicity, we can create only a Structure with the last two fields, tos and length.

>>> ip = Structure("IP")

The line above creates an empty packet named ‘IP’. Now, we can add the two fields to it with an initial value:

>>> ip.append(UInt8("tos", 3))
>>> ip.append(UInt16("length", 146))
>>> print ip
(IP =

(tos = 3)
(length = 146))

5.2.1 Accessing fields

Structure fields, as in any other Container, can be obtained like in a dictionary, that is, by its name. Following
the last example:

>>> ip["tos"]
3
>>> ip["length"]
146

5.2.2 Packing structures

As with any other BitPacket field, packing a Structure is really simple. Considering the IP header exampe above,
we can easily create an array of bytes with the contents of the structure:

5.2. Structures 15

BitPacket Manual, Release 1.0.0

>>> ip_data = array.array("B")
>>> ip.array(ip_data)
>>> print ip_data
array(’B’, [3, 0, 146])

Or also create a string of bytes from it:

>>> ip.bytes()
’\x03\x00\x92’

5.2.3 Unpacking structures

To be able to unpack an integer value or a string of bytes into a Structure, we only need to create the desired packet
and assign data to it.

>>> bs = Structure("mypacket")
>>> bs.append(UInt8("id"))
>>> bs.append(UInt32("address"))
>>> print bs
(mypacket =

(id = 0)
(address = 0))

So, now we can unpack the following array of bytes:

>>> data = array.array("B", [0x38, 0x87, 0x34, 0x21, 0x40])

into our previously defined structure:

>>> bs.set_bytes(data.tostring())
>>> print bs
(mypacket =

(id = 56)
(address = 2268340544))

5.2.4 Structures as classes

An interesting use of structures is to subclass them to create our own reusable ones. As an example, we could create
the structure defined in the previous section as a new class:

>>> class MyStructure(Structure):
... def __init__(self, id = 0, address = 0):
... Structure.__init__(self, "mystructure")
... self.append(UInt8("id", id))
... self.append(UInt32("address", address))
...
... def id(self):
... return self["id"]
...
... def address(self):
... return self["address"]
...
>>> ms = MyStructure(0x33, 0x50607080)
>>> print ms
(mystructure =

(id = 51)
(address = 1348497536))

16 Chapter 5. Container fields

BitPacket Manual, Release 1.0.0

We can now use the accessors of our class to print its content:

>>> print "0x%X" % ms.id()
0x33
>>> print "0x%X" % ms.address()
0x50607080

5.2.5 Structure based fields

Arrays

An structure for fields of the same type.

API reference: Array

Sometimes we need to create packets that have a number of repeated fields in it. Normally, these kind of packets have
a counter field indicating the number of repeated fields after it.

An Array is a subclass of Structure. Initially, it contains a length field, which is the one that will indicate how
many fields the array holds. The type of the length field is specified in the Array constructor.

count id address
1 byte 1 byte 4 bytes

count times

In order to create an Array for the depicted packet above, we can define the base type of the fields (all of the same
type) that this array will contain. We will create a MyStructure class that contains two fields, id and address.

>>> class MyStructure(Structure):
... def __init__(self, name = "mystructure", id = 0, address = 0):
... Structure.__init__(self, name)
... self.append(UInt8("id", id))
... self.append(UInt32("address", address))

Now, we can define an Array that contains the default counter field of our desired name and size and a single
argument function that tells how to create the array fields.

>>> packet = Array("mypacket", UInt8("counter"),
... lambda root: MyStructure())

As a second argument to the Array constructor, we specify the field that specifies how many elements the array
contains. As the third argument, we have provided how to create the array elements. The anonymous function takes
an argument which is the top-level root Container that the Array belongs to.

So, let’s try to unpack some data and see what happens:

>>> data = array.array("B", [0x01, 0x54, 0x10, 0x20, 0x30, 0x40])
>>> packet.set_array(data)
>>> print packet
(mypacket =

(counter = 1)
(0 =
(id = 84)
(address = 270544960)))

At this point the array contains one field of type MyStructure as it has unpacked the given array, seen that the counter
field had value 1 and therefore read one MyStructure field. It is worth noting that the fields added to an Array are
automatically named in a zero-based scheme. That is, to access the first address field value we could do:

5.2. Structures 17

BitPacket Manual, Release 1.0.0

>>> packet["0.address"]
270544960

We can also easily add some data to the array. Consider again our packet:

>>> packet = Array("mypacket", UInt8("counter"),
... lambda root: MyStructure())

Adding a MyStructure field is as easy as adding a field to any other Structure:

>>> packet.append(MyStructure("foo", 54, 98812383))
>>> print packet
(mypacket =

(counter = 1)
(0 =
(id = 54)
(address = 98812383)))

It is interesting to see that if we add something else that is not a MyStructure, a TypeError exception will be raised
notifying about the problem:

>>> try:
... packet.append(UInt8("wrong", 12))
... except TypeError as err:
... print "Error: %s" % err
Error: Invalid field type for array ’mypacket’ (expected <class ’MyStructure’>, got <class ’BitPacket.Integer.UInt8BE’>)

Accessing fields

Array fields, as in any other Container can be obtained like in a dictionary, that is, by its name. Following the
last example:

>>> packet["0.id"]
54

Note that the id field could be another array instead of a numeric field, thus we could access further by using the dot
field separator (.).

Complex arrays

We can also build more complex packets, such as the one below, where we have one Array inside another.

count1 id count2 address
1 byte 1 byte 1 byte 4 bytes

count2 times
count1 times

We will first create a structure for the list of addresses. It will contain the count2 counter and an Array whose number
of elements is provided by count2 and that will be filled with 32-bit unsigned integers.

>>> class AddressList(Structure):
... def __init__(self):
... Structure.__init__(self, "addresslist")
... self.append(UInt8("id"))
... self.append(Array("address",
... UInt8("count2"),
... lambda root: UInt32("value")))

18 Chapter 5. Container fields

BitPacket Manual, Release 1.0.0

Now, we can build our packet as an structure with the count1 counter and an Array whose number of elements is
provided by count1 and that will be filled by address lists (that, remember, already has another Array).

>>> s = Array("mypacket",
... UInt8("count1"),
... lambda root: AddressList())

So, let’s try to set some data to this packet. As we have seen before with the simplest case, data should be propagated
and Array meta properties will be used to build the desired fields.

>>> s.set_array(array.array("B", [0x02, # count1
... 0x01, # id (1)
... 0x01, # count2 (1)
... 0x01, 0x02, 0x03, 0x04,
... 0x02, # id (2)
... 0x02, # count2 (2)
... 0x05, 0x06, 0x07, 0x08,
... 0x09, 0x0A, 0x0B, 0x0C]))
>>> print s
(mypacket =

(count1 = 2)
(0 =
(id = 1)
(address =

(count2 = 1)
(0 = 16909060)))

(1 =
(id = 2)
(address =

(count2 = 2)
(0 = 84281096)
(1 = 151653132))))

It works! As we see, our packet consists of a mystructure that contains two AddressList fields. The first one with a
single address and the second with two.

Data

An structure that holds a String and its length.

API reference: Data

A Data field lets you store a string of characters (divided by words) and keeps its length in another field. By default,
the size of a word is 1 byte. Basically, Data is a Structure with two fields in this order: length and data (internally
named Data). The length is a numeric field and specifies how many words the Data field contains.

In the next example we create a Data field with six characters and a length field of 1 byte (thus, a maximum of 255
characters can be hold):

>>> data = Data("data", UInt8("Length"));
>>> data.set_value("abcdef")
>>> print data
(data =

(Length = 6)
(Data = 0x616263646566))

We can easily get back the six characters by creating the string again:

5.2. Structures 19

BitPacket Manual, Release 1.0.0

>>> "".join(data["Data"])
’abcdef’

Note that, above, “print data” returns a human-readable string with hexadecimal values and “data.value()” returns the
actual string.

Word sizes

The length field tells us how many words the Data field contains. Above, we just saw an example with the default
word size of 1. But a 12 character string and a word size of 4, gives us 3 words.

>>> data = Data("data", UInt8("Length"), 4);
>>> data.set_value("abcdefghigkl")
>>> print data
(data =

(Length = 3)
(Data = 0x616263646566676869676B6C))

Note that data length needs to be a multiple of the word size.

It is also possible to obtain the word size from the value of another field.

WSize Length Data
1 byte 1 byte Length * WSize

Thus, instead of passing a number to the word size parameter, we pass it a single-argument function. The single-
argument, as in all other BitPacket fields, is the top-level root Container field where the Data field belongs to.

>>> packet = Structure("packet")
>>> packet.append(UInt8("WSize"))
>>> data = Data("data", UInt8("Length"), lambda root: root["WSize"]);
>>> packet.append(data)

>>> buffer = array.array("B", [2, 3, 40, 55, 22, 45, 34, 89])
>>> packet.set_array(buffer)
>>> print packet
(packet =

(WSize = 2)
(data =
(Length = 3)
(Data = 0x2837162D2259)))

20 Chapter 5. Container fields

CHAPTER

SIX

WRITERS

API reference: Writer API reference: WriterTextBasic API reference: WriterTextTable API refer-
ence: WriterTextXML API reference: WriterGtkTreeView API reference: WriterGtkTreeModel

21

BitPacket Manual, Release 1.0.0

22 Chapter 6. Writers

CHAPTER

SEVEN

API REFERENCE

7.1 Field

class Field(name)
Abstract root class for all other BitPacket classes. Initially, a field only has a name and no value. Field
subclasses must provide field details, such as the size of the field, the implementation of how the field value will
look like, that is, how the field should be built, and other field related details.

Initialize the field with the given name. And identity (returning the field’s value) calibration curve is set by
default.

array(array)
Returns the given array appended with the field byte representation to it.

bytes()
Returns a string of bytes representing this field.

calibration_curve()
Returns the calibration curve function.

eng_value()
Returns the engineering value of this field. The engineering value is the result of applying a calibration
curve to the value of this field. Some fields might represent temperatures, angles, etc. that need to be
converted from its digital form to its analog form. This function will return the value after the conversion
is done.

fields()
Returns a list of the children of this field. An empty list is returned if the field does not have any children.

hex_value()
Returns the hexadecimal integer representation of this field. That is, the bytes forming this field in its
integer representation.

name()
Returns the name of the field.

parent()
Returns the parent of this field, or None if the field is not part of any other field.

root()
Returns the root of this field. The root is the top level container that this field belongs to, if any. If the field
is not part of any other field the root is the field itself.

set_array(array)
Sets the given array bytes to the field. This function does the same as calling set_bytes with the bytes of
the array.

23

BitPacket Manual, Release 1.0.0

set_bytes(bytes)
Sets a string of bytes to the field.

set_calibration_curve(curve)
Sets the calibration curve to be applied to this field in order to obtain a desired conversion. Some fields
might represent temperatures, angles, etc. that need to be converted from its digital form to its analog
form. The calibration curve provides the functionality to perform this conversion.

set_stream(stream)
Sets this field with the contents of the given stream. Note that only the bytes necessary for this field will be
obtained from the stream. This means that the stream cursor will only advance as many bytes as the size
of this field.

set_value(value)
Sets a new value to the field.

size()
Returns the size of the field.

str_eng_value()
Returns a human-readable representation of the engineering value. This function will first calculate the
engineering value (by applying the calibration curve) and will return the string representation of it.

str_hex_value()
Returns a human-readable representation of the hexadecimal value of this field. Note that the type of the
field can be a float, integer, etc. This is the real representation (in memory) of the value.

str_value()
Returns a human-readable representation of the value of this field. Note that the type of the field can be a
float, integer, etc. So, the representation might be different for each type.

stream(stream)
Fill the given byte stream with the contents of this field.

value()
Returns the value of the field.

7.1.1 BitField

class BitField(name, size, value=0)
Bases: BitPacket.Field.Field

This class represents bit fields to be used by BitStructure in order to build byte-aligned fields. Remember
that BitPacket only works with byte-aligned fields, so it is not possible to create mixed (bit and byte) fields,
that’s why BitField can only be used inside a BitStructure.

Initialize the field with the given name and size (in bits). By default the field’s value will be initialized to 0 or to
value if specified.

set_value(value)
Sets a new unsigned integer value to the field.

size()
Returns the size of the field in bits.

str_eng_value()
Returns a human-readable representation of the engineering value. This function will first calculate the
engineering value (by applying the calibration curve) and will return the string representation of it. In case
of bit fields the representation is an hexadecimal value.

24 Chapter 7. API reference

BitPacket Manual, Release 1.0.0

str_hex_value()
Returns a human-readable representation of the hexadecimal value of this field. This will return the same
as str_value.

str_value()
Returns a human-readable representation of the value of this field. In case of bit fields the representation
is an hexadecimal value.

value()
Returns the value of this field. As single bit fields do not have a concrete type (signed integers, float...) this
will return the unsigned integer representation of this field.

Boolean

class Boolean(name, value=False)
Bases: BitPacket.BitField.BitField

This class represents a boolean field. It is a convenient class to represent True and False values.

Initialize the field with the given name. The default value is False.

disable()
Set the value to False.

enable()
Set the value to True.

str_eng_value()
Returns a text string with True or False.

str_value()
Returns a text string with True or False.

Flag

class Flag(name, value=0)
Bases: BitPacket.BitField.BitField

This class represents a boolean field. It is a convenient class to represent True and False values.

Initialize the field with the given name. The default value is Inactive.

Active = 1

Inactive = 0

activate()
Activate the flag.

deactivate()
Deactivate the flag.

str_eng_value()
Returns a text string with Active or Inactive.

str_value()
Returns a text string with Active or Inactive.

7.1. Field 25

BitPacket Manual, Release 1.0.0

Mask

class Mask(name, value, **kwargs)
Bases: BitPacket.BitField.BitField

This class represents a bit mask field. Each bit has a unique meaning. Bit masks can be set, unset and tested.

Initialize the field with the given name and value. The list of all masks and their values are be given in kwargs
with an arbitrary number of arguments (FLAG_1 = 0x01, FLAG_2 = 0x02 ...).

is_set(mask)
Tests whether the given bit mask is set. That is, all the given bits must be set.

mask(mask)
Mask the given bits in mask. The current bits will be kept and the new ones will be additionally masked.

str_eng_value()
Returns a text string with all the bit mask names that are set. Bit masks names are separated by |.

str_value()
Returns a human-readable representation of the hexadecimal value of this field.

unmask(mask)
Unmask the given bits in mask. The current bits will be kept and the new ones will be additionally
unmasked.

7.1.2 Container

class Container(name)
Bases: BitPacket.Field.Field

This is an abstrat class to create containers. A Container is just a field that might contain a sequence of fields
(that can be containers as well), thus forming a bigger field.

Initialize the Container with the given name. By default, it does not contain any fields.

append(field)
Appends a new field into the Container. A NameError exception will be raised if a field with the same
name is already in the container.

field(name)
Returns the field identified by name. name accepts a dot (.) separator to indicate sub-fields of a container
(multiple separators are allowed). If the field does not exist a KeyError exception is raised.

fields()
Returns the (ordered) list of fields of this Container.

keys()
Returns the list of fields’ names recursively (i.e. if fields are also containers). In case one or more of the
fields are containers, its fields will be suffixed with a dot separator. As an example, “a.b.c” is the key for a
field c inside a b container which is also inside a root a container.

reset()
Remove all the fields from this Container.

size()
Returns the size of the field in bytes. That is, the sum of all byte sizes of the fields in this Container.

26 Chapter 7. API reference

BitPacket Manual, Release 1.0.0

BitStructure

class BitStructure(name)
Bases: BitPacket.Container.Container

This class represents an structure formed by bit fields. The resulting structure must be byte-aligned and is to be
used with other BitPacket types.

Initialize the bit structure field with the given name. By default an structure field does not contain any fields.

size()
Returns the size of the field in bytes. This function will add all the bit field sizes in order to calculate the
byte size of the container.

Structure

class Structure(name)
Bases: BitPacket.Container.Container

This class provides a byte-aligned Container implementation. All the fields added to it should be byte-
aligned.

Initialize the structure with the given name. By default, it does not contain any fields.

Array

class Array(name, lengthfield, fieldtype)
Bases: BitPacket.Structure.Structure

An Array is an structure for fields of the same type. It contains a length field to count the number of elements
that the array holds. After the length field, all the rest of fields (of the same type) are stored.

Initialize the array with the given name, a lengthfield for the counter field and fieldtype for a single argu-
ment function that will return a new array member. The single argument is a reference to the top-level root
Container field where the array belongs to.

append(field)
Appends a new field to the array. The given field must be of the same type specified when creating the
array, otherwise a TypeError exception is raised.

It is important to note that the given field name will be changed by its index in the array.

Data

class Data(name, lengthfield, wordsize=1)
Bases: BitPacket.Structure.Structure

This class lets you store strings of characters (divided by words) and also provides a field to hold its length. It
is a Structure with two fields: length and data (internally created with name Data). The length is a numeric
field and specifies how many words the Data field contains. The Data field is internally a String.

Initialize the field with the given name and a lengthfield. The lengthfield must be a numeric field instance.
wordsize specifies how many bytes a word contains and it can be a numeric value or a unary function that knows
where to get the word size, it has a default value of 1. So, the total length in bytes of a Data field is the length
field multiplied by the word size. If wordsize is a function, it takes the top-level root Container field as a
single argument. This way, it is possible to provide a word size that depends on the value of another field.

7.1. Field 27

BitPacket Manual, Release 1.0.0

set_value(value)
Sets a new string to the Data field. The given string length must be a mutliple of the word size and must
fit in the length field (i.e. 300 characters are too long if the length field is UInt8, as only 255 characters
fit), otherwise a ValueError exception will be raised.

value()
Returns the value of the Data field as a string.

7.1.3 MetaField

class MetaField(name, fieldfunc)
Bases: BitPacket.Field.Field

type()

7.1.4 String

class String(name, length)
Bases: BitPacket.Field.Field

A String field lets you store a string of characters of any size. Usually, to unpack a string we need to extract
the length of the string from another field, in which case we need to specify a function that will know where to
get the length from. However, it is also possible to specify a fixed length string.

Initialize the string field with a name and a length. length can be a fixed number or a single arument function
that returns the length of the string. The single argument is a reference to the top-level root Container field
where the string belongs to. A possible function could be:

lambda root: root["Length"]

where we get the length of the string from a Length field.

set_value(data)
Sets a new string of characters to the field.

size()
Returns the size in bytes of the string.

str_eng_value()
This is equivalent of calling str_value ().

str_hex_value()
This is equivalent of calling str_value ().

str_value()
Returns a text string with the hexadecimal value of each character of the string. A prefix of 0x is added.
So, for “hello”, “0x68656C6C6F” would be returned.

value()
Returns the string of characters.

class Text(name, length)
Bases: BitPacket.String.String

Text is basically a String but conceived to be used with only text strings. It does not perform any check on
the data. It simply returns the internal string (which should be text) instead of generating a text string with the
hexadecimal values of the string.

28 Chapter 7. API reference

BitPacket Manual, Release 1.0.0

str_eng_value()
This is equivalent of calling str_value ().

str_hex_value()
This is equivalent of calling str_value ().

str_value()
Returns the text string.

7.1.5 Value

class Value(name, format, value)
Bases: BitPacket.Field.Field

This is the base class for numeric fields. Internally, it uses Python’s struct module to define the numeric value
size and the byte order (little-endian or big-endian).

Initialize the field with the given name and value. The format is a string conforming the Python’s struct module
format strings.

hex_value()
Returns the hexadecimal integer representation of this field. That is, the bytes forming this field in its
integer representation. This will vary depending on the field’s endiannes and size, so UInt16LE will
return a different hexadecimal value than UInt16BE for the same number.

set_value(value)
Sets the new numeric value to this field. The value must fit in this field, otherwise an exception is raised.

size()
Returns the size in bytes of this field.

str_eng_value()
Returns a human-readable representation of the engineering value. This function will first calculate the
engineering value (by applying the calibration curve) and will return the string representation of it.

str_hex_value()
Returns a human-readable representation of the hexadecimal representation of this field. This internally
uses hex_value().

str_value()
Returns a human-readable representation of the numeric value of this field.

value()
Returns the numeric value of this field.

Integer

Int8
alias of Int8BE

UInt8
alias of UInt8BE

Int16
alias of Int16BE

UInt16
alias of UInt16BE

7.1. Field 29

BitPacket Manual, Release 1.0.0

Int32
alias of Int32BE

UInt32
alias of UInt32BE

Int64
alias of Int64BE

UInt64
alias of UInt64BE

class Int8LE(name, value=0)
Bases: BitPacket.Value.Value

class UInt8LE(name, value=0)
Bases: BitPacket.Value.Value

class Int8BE(name, value=0)
Bases: BitPacket.Value.Value

class UInt8BE(name, value=0)
Bases: BitPacket.Value.Value

class Int16LE(name, value=0)
Bases: BitPacket.Value.Value

class UInt16LE(name, value=0)
Bases: BitPacket.Value.Value

class Int16BE(name, value=0)
Bases: BitPacket.Value.Value

class UInt16BE(name, value=0)
Bases: BitPacket.Value.Value

class Int32LE(name, value=0)
Bases: BitPacket.Value.Value

class UInt32LE(name, value=0)
Bases: BitPacket.Value.Value

class Int32BE(name, value=0)
Bases: BitPacket.Value.Value

class UInt32BE(name, value=0)
Bases: BitPacket.Value.Value

class Int64LE(name, value=0)
Bases: BitPacket.Value.Value

class UInt64LE(name, value=0)
Bases: BitPacket.Value.Value

class Int64BE(name, value=0)
Bases: BitPacket.Value.Value

class UInt64BE(name, value=0)
Bases: BitPacket.Value.Value

30 Chapter 7. API reference

BitPacket Manual, Release 1.0.0

Real

Float
alias of FloatBE

Double
alias of DoubleBE

class FloatLE(name, value=0.0)
Bases: BitPacket.Value.Value

class FloatBE(name, value=0.0)
Bases: BitPacket.Value.Value

class DoubleLE(name, value=0.0)
Bases: BitPacket.Value.Value

class DoubleBE(name, value=0.0)
Bases: BitPacket.Value.Value

7.2 Writer

class Writer(config=<BitPacket.writers.WriterConfig.WriterConfig object at 0x7f3689c2c510>)
This the abstract class for all bit fields sub-classes. All bit fields must inherit from this class and implement the
non-implemented methods in it.

config()

end_block(field, userdata=None)

level()

start_block(field, userdata=None)

write(field, userdata=None)
Returns the name of the field.

7.2.1 WriterStream

class WriterTextStream(stream, config=<BitPacket.writers.WriterTextStreamConfig.WriterTextStreamConfig
object at 0x7f3689c2cb90>)

Bases: BitPacket.writers.Writer.Writer

indent()

indentation()

stream()

WriterTextBasic

class WriterTextBasic(stream, config=<BitPacket.writers.WriterTextStreamConfig.WriterTextStreamConfig
object at 0x7f3689c2cb90>)

Bases: BitPacket.writers.WriterTextStream.WriterTextStream

end_block(field, userdata=None)

start_block(field, userdata=None)

7.2. Writer 31

BitPacket Manual, Release 1.0.0

write(field, userdata=None)

WriterTextTable

class WriterTextTable(stream, config=<BitPacket.writers.WriterTextTableConfig.WriterTextTableConfig
object at 0x7f3689c34110>)

Bases: BitPacket.writers.WriterTextStream.WriterTextStream

write(field, userdata=None)

WriterTextXML

class WriterTextXML(stream, config=<BitPacket.writers.WriterTextStreamConfig.WriterTextStreamConfig
object at 0x7f3689c2cb90>)

Bases: BitPacket.writers.WriterTextStream.WriterTextStream

end_block(field, userdata=None)

start_block(field, userdata=None)

write(field, userdata=None)

7.2.2 WriterGtk

WriterGtkTreeView

class WriterGtkTreeView
Bases: BitPacket.writers.Writer.Writer

view()

write(field, userdata=None)

WriterGtkTreeModel

class WriterGtkTreeModel(field)
Bases: gtk.GenericTreeModel

CLASS_COLUMN = 1

COLUMN_NAMES = [’Name’, ‘Class’, ‘Size’, ‘Raw’, ‘Hexadecimal’, ‘Engineering’]

COLUMN_TYPES = (<GType gchararray (64)>, <GType gchararray (64)>, <GType gint (24)>, <GType gchararray (64)>, <GType gchararray (64)>, <GType gchararray (64)>)

ENG_VALUE_COLUMN = 5

HEX_VALUE_COLUMN = 4

NAME_COLUMN = 0

NUM_COLUMNS = 6

RAW_VALUE_COLUMN = 3

SIZE_COLUMN = 2

on_get_column_type(n)

on_get_flags()

32 Chapter 7. API reference

BitPacket Manual, Release 1.0.0

on_get_iter(path)

on_get_n_columns()

on_get_path(rowref)

on_get_value(rowref, column)

on_iter_children(parent)

on_iter_has_child(rowref)

on_iter_n_children(rowref)

on_iter_next(rowref)

on_iter_nth_child(parent, n)

on_iter_parent(child)

7.3 WriterConfig

class WriterConfig(**kwargs)
Bases: object

set_config(**kwargs)

7.3.1 WriterStreamConfig

class WriterTextStreamConfig(**kwargs)
Bases: BitPacket.writers.WriterConfig.WriterConfig

WriterTextTableConfig

class WriterTextTableConfig(**kwargs)
Bases: BitPacket.writers.WriterTextStreamConfig.WriterTextStreamConfig

7.3. WriterConfig 33

BitPacket Manual, Release 1.0.0

34 Chapter 7. API reference

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

35

BitPacket Manual, Release 1.0.0

36 Chapter 8. Indices and tables

PYTHON MODULE INDEX

b
BitPacket.Array, 17
BitPacket.BitField, 7
BitPacket.BitStructure, 13
BitPacket.Boolean, 7
BitPacket.Container, 13
BitPacket.Data, 19
BitPacket.Field, 5
BitPacket.Flag, 7
BitPacket.Integer, 9
BitPacket.Mask, 8
BitPacket.MetaField, 12
BitPacket.Real, 10
BitPacket.String, 10
BitPacket.Structure, 15
BitPacket.Value, 9
BitPacket.writers.Writer, 21
BitPacket.writers.WriterGtkTreeModel,

21
BitPacket.writers.WriterGtkTreeView, 21
BitPacket.writers.WriterTextBasic, 21
BitPacket.writers.WriterTextTable, 21
BitPacket.writers.WriterTextXML, 21

37

BitPacket Manual, Release 1.0.0

38 Python Module Index

INDEX

A
activate() (Flag method), 25
Active (Flag attribute), 25
append() (Array method), 27
append() (Container method), 26
Array (class in BitPacket.Array), 27
array() (Field method), 23

B
BitField (class in BitPacket.BitField), 24
BitPacket.Array (module), 17
BitPacket.BitField (module), 7
BitPacket.BitStructure (module), 13
BitPacket.Boolean (module), 7
BitPacket.Container (module), 13
BitPacket.Data (module), 19
BitPacket.Field (module), 5
BitPacket.Flag (module), 7
BitPacket.Integer (module), 9
BitPacket.Mask (module), 8
BitPacket.MetaField (module), 12
BitPacket.Real (module), 10
BitPacket.String (module), 10
BitPacket.Structure (module), 15
BitPacket.Value (module), 9
BitPacket.writers.Writer (module), 21
BitPacket.writers.WriterGtkTreeModel (module), 21
BitPacket.writers.WriterGtkTreeView (module), 21
BitPacket.writers.WriterTextBasic (module), 21
BitPacket.writers.WriterTextTable (module), 21
BitPacket.writers.WriterTextXML (module), 21
BitStructure (class in BitPacket.BitStructure), 27
Boolean (class in BitPacket.Boolean), 25
bytes() (Field method), 23

C
calibration_curve() (Field method), 23
CLASS_COLUMN (WriterGtkTreeModel attribute), 32
COLUMN_NAMES (WriterGtkTreeModel attribute), 32
COLUMN_TYPES (WriterGtkTreeModel attribute), 32
config() (Writer method), 31
Container (class in BitPacket.Container), 26

D
Data (class in BitPacket.Data), 27
deactivate() (Flag method), 25
disable() (Boolean method), 25
Double (in module BitPacket.Real), 31
DoubleBE (class in BitPacket.Real), 31
DoubleLE (class in BitPacket.Real), 31

E
enable() (Boolean method), 25
end_block() (Writer method), 31
end_block() (WriterTextBasic method), 31
end_block() (WriterTextXML method), 32
eng_value() (Field method), 23
ENG_VALUE_COLUMN (WriterGtkTreeModel at-

tribute), 32

F
Field (class in BitPacket.Field), 23
field() (Container method), 26
fields() (Container method), 26
fields() (Field method), 23
Flag (class in BitPacket.Flag), 25
Float (in module BitPacket.Real), 31
FloatBE (class in BitPacket.Real), 31
FloatLE (class in BitPacket.Real), 31

H
hex_value() (Field method), 23
hex_value() (Value method), 29
HEX_VALUE_COLUMN (WriterGtkTreeModel at-

tribute), 32

I
Inactive (Flag attribute), 25
indent() (WriterTextStream method), 31
indentation() (WriterTextStream method), 31
Int16 (in module BitPacket.Integer), 29
Int16BE (class in BitPacket.Integer), 30
Int16LE (class in BitPacket.Integer), 30
Int32 (in module BitPacket.Integer), 29
Int32BE (class in BitPacket.Integer), 30

39

BitPacket Manual, Release 1.0.0

Int32LE (class in BitPacket.Integer), 30
Int64 (in module BitPacket.Integer), 30
Int64BE (class in BitPacket.Integer), 30
Int64LE (class in BitPacket.Integer), 30
Int8 (in module BitPacket.Integer), 29
Int8BE (class in BitPacket.Integer), 30
Int8LE (class in BitPacket.Integer), 30
is_set() (Mask method), 26

K
keys() (Container method), 26

L
level() (Writer method), 31

M
Mask (class in BitPacket.Mask), 26
mask() (Mask method), 26
MetaField (class in BitPacket.MetaField), 28

N
name() (Field method), 23
NAME_COLUMN (WriterGtkTreeModel attribute), 32
NUM_COLUMNS (WriterGtkTreeModel attribute), 32

O
on_get_column_type() (WriterGtkTreeModel method),

32
on_get_flags() (WriterGtkTreeModel method), 32
on_get_iter() (WriterGtkTreeModel method), 32
on_get_n_columns() (WriterGtkTreeModel method), 33
on_get_path() (WriterGtkTreeModel method), 33
on_get_value() (WriterGtkTreeModel method), 33
on_iter_children() (WriterGtkTreeModel method), 33
on_iter_has_child() (WriterGtkTreeModel method), 33
on_iter_n_children() (WriterGtkTreeModel method), 33
on_iter_next() (WriterGtkTreeModel method), 33
on_iter_nth_child() (WriterGtkTreeModel method), 33
on_iter_parent() (WriterGtkTreeModel method), 33

P
parent() (Field method), 23

R
RAW_VALUE_COLUMN (WriterGtkTreeModel at-

tribute), 32
reset() (Container method), 26
root() (Field method), 23

S
set_array() (Field method), 23
set_bytes() (Field method), 23
set_calibration_curve() (Field method), 24

set_config() (WriterConfig method), 33
set_stream() (Field method), 24
set_value() (BitField method), 24
set_value() (Data method), 27
set_value() (Field method), 24
set_value() (String method), 28
set_value() (Value method), 29
size() (BitField method), 24
size() (BitStructure method), 27
size() (Container method), 26
size() (Field method), 24
size() (String method), 28
size() (Value method), 29
SIZE_COLUMN (WriterGtkTreeModel attribute), 32
start_block() (Writer method), 31
start_block() (WriterTextBasic method), 31
start_block() (WriterTextXML method), 32
str_eng_value() (BitField method), 24
str_eng_value() (Boolean method), 25
str_eng_value() (Field method), 24
str_eng_value() (Flag method), 25
str_eng_value() (Mask method), 26
str_eng_value() (String method), 28
str_eng_value() (Text method), 28
str_eng_value() (Value method), 29
str_hex_value() (BitField method), 24
str_hex_value() (Field method), 24
str_hex_value() (String method), 28
str_hex_value() (Text method), 29
str_hex_value() (Value method), 29
str_value() (BitField method), 25
str_value() (Boolean method), 25
str_value() (Field method), 24
str_value() (Flag method), 25
str_value() (Mask method), 26
str_value() (String method), 28
str_value() (Text method), 29
str_value() (Value method), 29
stream() (Field method), 24
stream() (WriterTextStream method), 31
String (class in BitPacket.String), 28
Structure (class in BitPacket.Structure), 27

T
Text (class in BitPacket.String), 28
type() (MetaField method), 28

U
UInt16 (in module BitPacket.Integer), 29
UInt16BE (class in BitPacket.Integer), 30
UInt16LE (class in BitPacket.Integer), 30
UInt32 (in module BitPacket.Integer), 30
UInt32BE (class in BitPacket.Integer), 30
UInt32LE (class in BitPacket.Integer), 30

40 Index

BitPacket Manual, Release 1.0.0

UInt64 (in module BitPacket.Integer), 30
UInt64BE (class in BitPacket.Integer), 30
UInt64LE (class in BitPacket.Integer), 30
UInt8 (in module BitPacket.Integer), 29
UInt8BE (class in BitPacket.Integer), 30
UInt8LE (class in BitPacket.Integer), 30
unmask() (Mask method), 26

V
Value (class in BitPacket.Value), 29
value() (BitField method), 25
value() (Data method), 28
value() (Field method), 24
value() (String method), 28
value() (Value method), 29
view() (WriterGtkTreeView method), 32

W
write() (Writer method), 31
write() (WriterGtkTreeView method), 32
write() (WriterTextBasic method), 31
write() (WriterTextTable method), 32
write() (WriterTextXML method), 32
Writer (class in BitPacket.writers.Writer), 31
WriterConfig (class in BitPacket.writers.WriterConfig),

33
WriterGtkTreeModel (class in Bit-

Packet.writers.WriterGtkTreeModel), 32
WriterGtkTreeView (class in Bit-

Packet.writers.WriterGtkTreeView), 32
WriterTextBasic (class in Bit-

Packet.writers.WriterTextBasic), 31
WriterTextStream (class in Bit-

Packet.writers.WriterTextStream), 31
WriterTextStreamConfig (class in Bit-

Packet.writers.WriterTextStreamConfig),
33

WriterTextTable (class in Bit-
Packet.writers.WriterTextTable), 32

WriterTextTableConfig (class in Bit-
Packet.writers.WriterTextTableConfig), 33

WriterTextXML (class in Bit-
Packet.writers.WriterTextXML), 32

Index 41

	Introduction
	Download
	Build and install
	Usage
	History

	Concepts
	Packets and fields

	The base field
	Naming fields
	Building and parsing fields
	Calibration curves

	Single fields
	Bit fields
	Numeric fields
	String and text fields
	Meta fields

	Container fields
	Bit fields containers
	Structures

	Writers
	API reference
	Field
	Writer
	WriterConfig

	Indices and tables
	Python Module Index
	Index

